xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: if_bnx.c,v 1.12 2007/12/15 00:39:29 perry Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.12 2007/12/15 00:39:29 perry Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5708C B1
44  *
45  * The following controllers are not supported by this driver:
46  * (These are not "Production" versions of the controller.)
47  *
48  *   BCM5706C A0, A1
49  *   BCM5706S A0, A1, A2, A3
50  *   BCM5708C A0, B0
51  *   BCM5708S A0, B0, B1
52  */
53 
54 #include <sys/callout.h>
55 
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58 
59 /****************************************************************************/
60 /* BNX Driver Version                                                       */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63 
64 /****************************************************************************/
65 /* BNX Debug Options                                                        */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69 
70 	/*          0 = Never              */
71 	/*          1 = 1 in 2,147,483,648 */
72 	/*        256 = 1 in     8,388,608 */
73 	/*       2048 = 1 in     1,048,576 */
74 	/*      65536 = 1 in        32,768 */
75 	/*    1048576 = 1 in         2,048 */
76 	/*  268435456 =	1 in             8 */
77 	/*  536870912 = 1 in             4 */
78 	/* 1073741824 = 1 in             2 */
79 
80 	/* Controls how often the l2_fhdr frame error check will fail. */
81 	int bnx_debug_l2fhdr_status_check = 0;
82 
83 	/* Controls how often the unexpected attention check will fail. */
84 	int bnx_debug_unexpected_attention = 0;
85 
86 	/* Controls how often to simulate an mbuf allocation failure. */
87 	int bnx_debug_mbuf_allocation_failure = 0;
88 
89 	/* Controls how often to simulate a DMA mapping failure. */
90 	int bnx_debug_dma_map_addr_failure = 0;
91 
92 	/* Controls how often to simulate a bootcode failure. */
93 	int bnx_debug_bootcode_running_failure = 0;
94 #endif
95 
96 /****************************************************************************/
97 /* PCI Device ID Table                                                      */
98 /*                                                                          */
99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
100 /****************************************************************************/
101 static const struct bnx_product {
102 	pci_vendor_id_t		bp_vendor;
103 	pci_product_id_t	bp_product;
104 	pci_vendor_id_t		bp_subvendor;
105 	pci_product_id_t	bp_subproduct;
106 	const char		*bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 	{
110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 	  "HP NC370T Multifunction Gigabit Server Adapter"
113 	},
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 	{
117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 	  "HP NC370i Multifunction Gigabit Server Adapter"
120 	},
121 #endif
122 	{
123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 	  0, 0,
125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
126 	},
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 	{
129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 	  "HP NC370F Multifunction Gigabit Server Adapter"
132 	},
133 #endif
134 	{
135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 	  0, 0,
137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 	},
139 	{
140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 	  0, 0,
142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
143 	},
144 	{
145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 	  0, 0,
147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 	},
149 };
150 
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data.                                       */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 	/* Slow EEPROM */
157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 	 "EEPROM - slow"},
161 	/* Expansion entry 0001 */
162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 	 "Entry 0001"},
166 	/* Saifun SA25F010 (non-buffered flash) */
167 	/* strap, cfg1, & write1 need updates */
168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 	 "Non-buffered flash (128kB)"},
172 	/* Saifun SA25F020 (non-buffered flash) */
173 	/* strap, cfg1, & write1 need updates */
174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 	 "Non-buffered flash (256kB)"},
178 	/* Expansion entry 0100 */
179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 	 "Entry 0100"},
183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 	/* Saifun SA25F005 (non-buffered flash) */
194 	/* strap, cfg1, & write1 need updates */
195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 	 "Non-buffered flash (64kB)"},
199 	/* Fast EEPROM */
200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 	 "EEPROM - fast"},
204 	/* Expansion entry 1001 */
205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 	 "Entry 1001"},
209 	/* Expansion entry 1010 */
210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 	 "Entry 1010"},
214 	/* ATMEL AT45DB011B (buffered flash) */
215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 	 "Buffered flash (128kB)"},
219 	/* Expansion entry 1100 */
220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 	 "Entry 1100"},
224 	/* Expansion entry 1101 */
225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 	 "Entry 1101"},
229 	/* Ateml Expansion entry 1110 */
230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 	 "Entry 1110 (Atmel)"},
234 	/* ATMEL AT45DB021B (buffered flash) */
235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 	 "Buffered flash (256kB)"},
239 };
240 
241 /****************************************************************************/
242 /* OpenBSD device entry points.                                             */
243 /****************************************************************************/
244 static int	bnx_probe(device_t, cfdata_t, void *);
245 void	bnx_attach(struct device *, struct device *, void *);
246 #if 0
247 void	bnx_detach(void *);
248 #endif
249 void	bnx_shutdown(void *);
250 
251 /****************************************************************************/
252 /* BNX Debug Data Structure Dump Routines                                   */
253 /****************************************************************************/
254 #ifdef BNX_DEBUG
255 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
256 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
257 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
258 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
259 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
260 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
261 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
262 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
263 void	bnx_dump_status_block(struct bnx_softc *);
264 void	bnx_dump_stats_block(struct bnx_softc *);
265 void	bnx_dump_driver_state(struct bnx_softc *);
266 void	bnx_dump_hw_state(struct bnx_softc *);
267 void	bnx_breakpoint(struct bnx_softc *);
268 #endif
269 
270 /****************************************************************************/
271 /* BNX Register/Memory Access Routines                                      */
272 /****************************************************************************/
273 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
274 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
275 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
276 int	bnx_miibus_read_reg(struct device *, int, int);
277 void	bnx_miibus_write_reg(struct device *, int, int, int);
278 void	bnx_miibus_statchg(struct device *);
279 
280 /****************************************************************************/
281 /* BNX NVRAM Access Routines                                                */
282 /****************************************************************************/
283 int	bnx_acquire_nvram_lock(struct bnx_softc *);
284 int	bnx_release_nvram_lock(struct bnx_softc *);
285 void	bnx_enable_nvram_access(struct bnx_softc *);
286 void	bnx_disable_nvram_access(struct bnx_softc *);
287 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
288 	    u_int32_t);
289 int	bnx_init_nvram(struct bnx_softc *);
290 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
291 int	bnx_nvram_test(struct bnx_softc *);
292 #ifdef BNX_NVRAM_WRITE_SUPPORT
293 int	bnx_enable_nvram_write(struct bnx_softc *);
294 void	bnx_disable_nvram_write(struct bnx_softc *);
295 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
296 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
297 	    u_int32_t);
298 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
299 #endif
300 
301 /****************************************************************************/
302 /*                                                                          */
303 /****************************************************************************/
304 int	bnx_dma_alloc(struct bnx_softc *);
305 void	bnx_dma_free(struct bnx_softc *);
306 void	bnx_release_resources(struct bnx_softc *);
307 
308 /****************************************************************************/
309 /* BNX Firmware Synchronization and Load                                    */
310 /****************************************************************************/
311 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
312 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
313 	    u_int32_t);
314 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
315 	    struct fw_info *);
316 void	bnx_init_cpus(struct bnx_softc *);
317 
318 void	bnx_stop(struct bnx_softc *);
319 int	bnx_reset(struct bnx_softc *, u_int32_t);
320 int	bnx_chipinit(struct bnx_softc *);
321 int	bnx_blockinit(struct bnx_softc *);
322 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
323 	    u_int16_t *, u_int32_t *);
324 
325 int	bnx_init_tx_chain(struct bnx_softc *);
326 int	bnx_init_rx_chain(struct bnx_softc *);
327 void	bnx_free_rx_chain(struct bnx_softc *);
328 void	bnx_free_tx_chain(struct bnx_softc *);
329 
330 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
331 void	bnx_start(struct ifnet *);
332 int	bnx_ioctl(struct ifnet *, u_long, void *);
333 void	bnx_watchdog(struct ifnet *);
334 int	bnx_ifmedia_upd(struct ifnet *);
335 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
336 int	bnx_init(struct ifnet *);
337 
338 void	bnx_init_context(struct bnx_softc *);
339 void	bnx_get_mac_addr(struct bnx_softc *);
340 void	bnx_set_mac_addr(struct bnx_softc *);
341 void	bnx_phy_intr(struct bnx_softc *);
342 void	bnx_rx_intr(struct bnx_softc *);
343 void	bnx_tx_intr(struct bnx_softc *);
344 void	bnx_disable_intr(struct bnx_softc *);
345 void	bnx_enable_intr(struct bnx_softc *);
346 
347 int	bnx_intr(void *);
348 void	bnx_set_rx_mode(struct bnx_softc *);
349 void	bnx_stats_update(struct bnx_softc *);
350 void	bnx_tick(void *);
351 
352 /****************************************************************************/
353 /* OpenBSD device dispatch table.                                           */
354 /****************************************************************************/
355 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
356     bnx_probe, bnx_attach, NULL, NULL);
357 
358 /****************************************************************************/
359 /* Device probe function.                                                   */
360 /*                                                                          */
361 /* Compares the device to the driver's list of supported devices and        */
362 /* reports back to the OS whether this is the right driver for the device.  */
363 /*                                                                          */
364 /* Returns:                                                                 */
365 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
366 /****************************************************************************/
367 static const struct bnx_product *
368 bnx_lookup(const struct pci_attach_args *pa)
369 {
370 	int i;
371 	pcireg_t subid;
372 
373 	for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
374 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
375 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
376 			continue;
377 		if (!bnx_devices[i].bp_subvendor)
378 			return &bnx_devices[i];
379 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
380 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
381 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
382 			return &bnx_devices[i];
383 	}
384 
385 	return NULL;
386 }
387 static int
388 bnx_probe(device_t parent, cfdata_t match, void *aux)
389 {
390 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391 
392 	if (bnx_lookup(pa) != NULL)
393 		return (1);
394 
395 	return (0);
396 }
397 
398 /****************************************************************************/
399 /* Device attach function.                                                  */
400 /*                                                                          */
401 /* Allocates device resources, performs secondary chip identification,      */
402 /* resets and initializes the hardware, and initializes driver instance     */
403 /* variables.                                                               */
404 /*                                                                          */
405 /* Returns:                                                                 */
406 /*   0 on success, positive value on failure.                               */
407 /****************************************************************************/
408 void
409 bnx_attach(struct device *parent, struct device *self, void *aux)
410 {
411 	const struct bnx_product *bp;
412 	struct bnx_softc	*sc = (struct bnx_softc *)self;
413 	struct pci_attach_args	*pa = aux;
414 	pci_chipset_tag_t	pc = pa->pa_pc;
415 	pci_intr_handle_t	ih;
416 	const char 		*intrstr = NULL;
417 	u_int32_t		command;
418 	struct ifnet		*ifp;
419 	u_int32_t		val;
420 	pcireg_t		memtype;
421 
422 	bp = bnx_lookup(pa);
423 	if (bp == NULL)
424 		panic("unknown device");
425 
426 	aprint_naive("\n");
427 	aprint_normal(": %s\n", bp->bp_name);
428 
429 	sc->bnx_pa = *pa;
430 
431 	/*
432 	 * Map control/status registers.
433 	*/
434 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
435 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
437 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
438 
439 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
440 		aprint_error("%s: failed to enable memory mapping!\n",
441 		    sc->bnx_dev.dv_xname);
442 		return;
443 	}
444 
445 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
446 	switch (memtype) {
447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
448 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
449 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
450 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
451 		    NULL, &sc->bnx_size) == 0)
452 			break;
453 	default:
454 		aprint_error("%s: can't find mem space\n",
455 		    sc->bnx_dev.dv_xname);
456 		return;
457 	}
458 
459 	if (pci_intr_map(pa, &ih)) {
460 		aprint_error("%s: couldn't map interrupt\n",
461 		    sc->bnx_dev.dv_xname);
462 		goto bnx_attach_fail;
463 	}
464 
465 	intrstr = pci_intr_string(pc, ih);
466 
467 	/*
468 	 * Configure byte swap and enable indirect register access.
469 	 * Rely on CPU to do target byte swapping on big endian systems.
470 	 * Access to registers outside of PCI configurtion space are not
471 	 * valid until this is done.
472 	 */
473 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
474 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
475 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
476 
477 	/* Save ASIC revsion info. */
478 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
479 
480 	/* Weed out any non-production controller revisions. */
481 	switch(BNX_CHIP_ID(sc)) {
482 	case BNX_CHIP_ID_5706_A0:
483 	case BNX_CHIP_ID_5706_A1:
484 	case BNX_CHIP_ID_5708_A0:
485 	case BNX_CHIP_ID_5708_B0:
486 		aprint_error("%s: unsupported controller revision (%c%d)!\n",
487 		    sc->bnx_dev.dv_xname,
488 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
489 		    PCI_REVISION(pa->pa_class) & 0x0f);
490 		goto bnx_attach_fail;
491 	}
492 
493 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
494 		aprint_error("%s: SerDes controllers are not supported!\n",
495 		    sc->bnx_dev.dv_xname);
496 		goto bnx_attach_fail;
497 	}
498 
499 	/*
500 	 * Find the base address for shared memory access.
501 	 * Newer versions of bootcode use a signature and offset
502 	 * while older versions use a fixed address.
503 	 */
504 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
505 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
506 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
507 	else
508 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
509 
510 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
511 
512 	/* Set initial device and PHY flags */
513 	sc->bnx_flags = 0;
514 	sc->bnx_phy_flags = 0;
515 
516 	/* Get PCI bus information (speed and type). */
517 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
518 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
519 		u_int32_t clkreg;
520 
521 		sc->bnx_flags |= BNX_PCIX_FLAG;
522 
523 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
524 
525 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
526 		switch (clkreg) {
527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
528 			sc->bus_speed_mhz = 133;
529 			break;
530 
531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
532 			sc->bus_speed_mhz = 100;
533 			break;
534 
535 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
537 			sc->bus_speed_mhz = 66;
538 			break;
539 
540 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
541 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
542 			sc->bus_speed_mhz = 50;
543 			break;
544 
545 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
546 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
547 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
548 			sc->bus_speed_mhz = 33;
549 			break;
550 		}
551 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
552 			sc->bus_speed_mhz = 66;
553 		else
554 			sc->bus_speed_mhz = 33;
555 
556 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
557 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
558 
559 	/* Reset the controller. */
560 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
561 		goto bnx_attach_fail;
562 
563 	/* Initialize the controller. */
564 	if (bnx_chipinit(sc)) {
565 		aprint_error("%s: Controller initialization failed!\n",
566 		    sc->bnx_dev.dv_xname);
567 		goto bnx_attach_fail;
568 	}
569 
570 	/* Perform NVRAM test. */
571 	if (bnx_nvram_test(sc)) {
572 		aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
573 		goto bnx_attach_fail;
574 	}
575 
576 	/* Fetch the permanent Ethernet MAC address. */
577 	bnx_get_mac_addr(sc);
578 	aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
579 	    ether_sprintf(sc->eaddr));
580 
581 	/*
582 	 * Trip points control how many BDs
583 	 * should be ready before generating an
584 	 * interrupt while ticks control how long
585 	 * a BD can sit in the chain before
586 	 * generating an interrupt.  Set the default
587 	 * values for the RX and TX rings.
588 	 */
589 
590 #ifdef BNX_DEBUG
591 	/* Force more frequent interrupts. */
592 	sc->bnx_tx_quick_cons_trip_int = 1;
593 	sc->bnx_tx_quick_cons_trip     = 1;
594 	sc->bnx_tx_ticks_int           = 0;
595 	sc->bnx_tx_ticks               = 0;
596 
597 	sc->bnx_rx_quick_cons_trip_int = 1;
598 	sc->bnx_rx_quick_cons_trip     = 1;
599 	sc->bnx_rx_ticks_int           = 0;
600 	sc->bnx_rx_ticks               = 0;
601 #else
602 	sc->bnx_tx_quick_cons_trip_int = 20;
603 	sc->bnx_tx_quick_cons_trip     = 20;
604 	sc->bnx_tx_ticks_int           = 80;
605 	sc->bnx_tx_ticks               = 80;
606 
607 	sc->bnx_rx_quick_cons_trip_int = 6;
608 	sc->bnx_rx_quick_cons_trip     = 6;
609 	sc->bnx_rx_ticks_int           = 18;
610 	sc->bnx_rx_ticks               = 18;
611 #endif
612 
613 	/* Update statistics once every second. */
614 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
615 
616 	/*
617 	 * The copper based NetXtreme II controllers
618 	 * use an integrated PHY at address 1 while
619 	 * the SerDes controllers use a PHY at
620 	 * address 2.
621 	 */
622 	sc->bnx_phy_addr = 1;
623 
624 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
625 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
626 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
627 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
628 			sc->bnx_phy_addr = 2;
629 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
630 					 BNX_SHARED_HW_CFG_CONFIG);
631 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
632 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
633 		}
634 	}
635 
636 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
637 		aprint_error("%s: SerDes is not supported by this driver!\n",
638 		    sc->bnx_dev.dv_xname);
639 		goto bnx_attach_fail;
640 	}
641 
642 	/* Allocate DMA memory resources. */
643 	sc->bnx_dmatag = pa->pa_dmat;
644 	if (bnx_dma_alloc(sc)) {
645 		aprint_error("%s: DMA resource allocation failed!\n",
646 		    sc->bnx_dev.dv_xname);
647 		goto bnx_attach_fail;
648 	}
649 
650 	/* Initialize the ifnet interface. */
651 	ifp = &sc->ethercom.ec_if;
652 	ifp->if_softc = sc;
653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 	ifp->if_ioctl = bnx_ioctl;
655 	ifp->if_start = bnx_start;
656 	ifp->if_init = bnx_init;
657 	ifp->if_timer = 0;
658 	ifp->if_watchdog = bnx_watchdog;
659         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
660                 ifp->if_baudrate = IF_Gbps(2.5);
661         else
662                 ifp->if_baudrate = IF_Gbps(1);
663 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
664 	IFQ_SET_READY(&ifp->if_snd);
665 	bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
666 
667 	sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
668 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
669 
670 	ifp->if_capabilities |=
671 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
672 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
673 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
674 
675 	/* Hookup IRQ last. */
676 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
677 	if (sc->bnx_intrhand == NULL) {
678 		aprint_error("%s: couldn't establish interrupt",
679 		    sc->bnx_dev.dv_xname);
680 		if (intrstr != NULL)
681 			aprint_error(" at %s", intrstr);
682 		aprint_error("\n");
683 		goto bnx_attach_fail;
684 	}
685 
686 	sc->bnx_mii.mii_ifp = ifp;
687 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
688 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
689 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
690 
691 	/* Look for our PHY. */
692 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
693 	    bnx_ifmedia_sts);
694 	mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
695 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
696 
697 	if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
698 		aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
699 		ifmedia_add(&sc->bnx_mii.mii_media,
700 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
701 		ifmedia_set(&sc->bnx_mii.mii_media,
702 		    IFM_ETHER|IFM_MANUAL);
703 	} else {
704 		ifmedia_set(&sc->bnx_mii.mii_media,
705 		    IFM_ETHER|IFM_AUTO);
706 	}
707 
708 	/* Attach to the Ethernet interface list. */
709 	if_attach(ifp);
710 	ether_ifattach(ifp,sc->eaddr);
711 
712 	callout_init(&sc->bnx_timeout, 0);
713 
714 	/* Print some important debugging info. */
715 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
716 
717 	goto bnx_attach_exit;
718 
719 bnx_attach_fail:
720 	bnx_release_resources(sc);
721 
722 bnx_attach_exit:
723 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
724 }
725 
726 /****************************************************************************/
727 /* Device detach function.                                                  */
728 /*                                                                          */
729 /* Stops the controller, resets the controller, and releases resources.     */
730 /*                                                                          */
731 /* Returns:                                                                 */
732 /*   0 on success, positive value on failure.                               */
733 /****************************************************************************/
734 #if 0
735 void
736 bnx_detach(void *xsc)
737 {
738 	struct bnx_softc *sc;
739 	struct ifnet *ifp = &sc->arpcom.ac_if;
740 
741 	sc = device_get_softc(dev);
742 
743 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
744 
745 	/* Stop and reset the controller. */
746 	bnx_stop(sc);
747 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
748 
749 	ether_ifdetach(ifp);
750 
751 	/* If we have a child device on the MII bus remove it too. */
752 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
753 		ifmedia_removeall(&sc->bnx_ifmedia);
754 	} else {
755 		bus_generic_detach(dev);
756 		device_delete_child(dev, sc->bnx_mii);
757 	}
758 
759 	/* Release all remaining resources. */
760 	bnx_release_resources(sc);
761 
762 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
763 
764 	return(0);
765 }
766 #endif
767 
768 /****************************************************************************/
769 /* Device shutdown function.                                                */
770 /*                                                                          */
771 /* Stops and resets the controller.                                         */
772 /*                                                                          */
773 /* Returns:                                                                 */
774 /*   Nothing                                                                */
775 /****************************************************************************/
776 void
777 bnx_shutdown(void *xsc)
778 {
779 	struct bnx_softc	*sc = (struct bnx_softc *)xsc;
780 
781 	bnx_stop(sc);
782 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
783 }
784 
785 /****************************************************************************/
786 /* Indirect register read.                                                  */
787 /*                                                                          */
788 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
789 /* configuration space.  Using this mechanism avoids issues with posted     */
790 /* reads but is much slower than memory-mapped I/O.                         */
791 /*                                                                          */
792 /* Returns:                                                                 */
793 /*   The value of the register.                                             */
794 /****************************************************************************/
795 u_int32_t
796 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
797 {
798 	struct pci_attach_args	*pa = &(sc->bnx_pa);
799 
800 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
801 	    offset);
802 #ifdef BNX_DEBUG
803 	{
804 		u_int32_t val;
805 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
806 		    BNX_PCICFG_REG_WINDOW);
807 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
808 		    "val = 0x%08X\n", __func__, offset, val);
809 		return (val);
810 	}
811 #else
812 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
813 #endif
814 }
815 
816 /****************************************************************************/
817 /* Indirect register write.                                                 */
818 /*                                                                          */
819 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
820 /* configuration space.  Using this mechanism avoids issues with posted     */
821 /* writes but is muchh slower than memory-mapped I/O.                       */
822 /*                                                                          */
823 /* Returns:                                                                 */
824 /*   Nothing.                                                               */
825 /****************************************************************************/
826 void
827 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
828 {
829 	struct pci_attach_args  *pa = &(sc->bnx_pa);
830 
831 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
832 		__func__, offset, val);
833 
834 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
835 	    offset);
836 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
837 }
838 
839 /****************************************************************************/
840 /* Context memory write.                                                    */
841 /*                                                                          */
842 /* The NetXtreme II controller uses context memory to track connection      */
843 /* information for L2 and higher network protocols.                         */
844 /*                                                                          */
845 /* Returns:                                                                 */
846 /*   Nothing.                                                               */
847 /****************************************************************************/
848 void
849 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
850     u_int32_t val)
851 {
852 
853 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
854 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
855 
856 	offset += cid_addr;
857 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
858 	REG_WR(sc, BNX_CTX_DATA, val);
859 }
860 
861 /****************************************************************************/
862 /* PHY register read.                                                       */
863 /*                                                                          */
864 /* Implements register reads on the MII bus.                                */
865 /*                                                                          */
866 /* Returns:                                                                 */
867 /*   The value of the register.                                             */
868 /****************************************************************************/
869 int
870 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
871 {
872 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
873 	u_int32_t		val;
874 	int			i;
875 
876 	/* Make sure we are accessing the correct PHY address. */
877 	if (phy != sc->bnx_phy_addr) {
878 		DBPRINT(sc, BNX_VERBOSE,
879 		    "Invalid PHY address %d for PHY read!\n", phy);
880 		return(0);
881 	}
882 
883 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
884 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
885 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
886 
887 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
888 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
889 
890 		DELAY(40);
891 	}
892 
893 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
894 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
895 	    BNX_EMAC_MDIO_COMM_START_BUSY;
896 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
897 
898 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
899 		DELAY(10);
900 
901 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
902 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
903 			DELAY(5);
904 
905 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
906 			val &= BNX_EMAC_MDIO_COMM_DATA;
907 
908 			break;
909 		}
910 	}
911 
912 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
913 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
914 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
915 		val = 0x0;
916 	} else
917 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
918 
919 	DBPRINT(sc, BNX_EXCESSIVE,
920 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
921 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
922 
923 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
924 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
925 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
926 
927 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
928 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
929 
930 		DELAY(40);
931 	}
932 
933 	return (val & 0xffff);
934 }
935 
936 /****************************************************************************/
937 /* PHY register write.                                                      */
938 /*                                                                          */
939 /* Implements register writes on the MII bus.                               */
940 /*                                                                          */
941 /* Returns:                                                                 */
942 /*   The value of the register.                                             */
943 /****************************************************************************/
944 void
945 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
946 {
947 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
948 	u_int32_t		val1;
949 	int			i;
950 
951 	/* Make sure we are accessing the correct PHY address. */
952 	if (phy != sc->bnx_phy_addr) {
953 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
954 		    phy);
955 		return;
956 	}
957 
958 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
959 	    "val = 0x%04X\n", __func__,
960 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
961 
962 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
963 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
964 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
965 
966 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
967 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
968 
969 		DELAY(40);
970 	}
971 
972 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
973 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
974 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
975 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
976 
977 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
978 		DELAY(10);
979 
980 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
981 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
982 			DELAY(5);
983 			break;
984 		}
985 	}
986 
987 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
988 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
989 		    __LINE__);
990 	}
991 
992 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995 
996 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
997 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
998 
999 		DELAY(40);
1000 	}
1001 }
1002 
1003 /****************************************************************************/
1004 /* MII bus status change.                                                   */
1005 /*                                                                          */
1006 /* Called by the MII bus driver when the PHY establishes link to set the    */
1007 /* MAC interface registers.                                                 */
1008 /*                                                                          */
1009 /* Returns:                                                                 */
1010 /*   Nothing.                                                               */
1011 /****************************************************************************/
1012 void
1013 bnx_miibus_statchg(struct device *dev)
1014 {
1015 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
1016 	struct mii_data		*mii = &sc->bnx_mii;
1017 
1018 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1019 
1020 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1021 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1022 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1023 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1024 	} else {
1025 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1026 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1027 	}
1028 
1029 	/* Set half or full duplex based on the duplicity
1030 	 * negotiated by the PHY.
1031 	 */
1032 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1033 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1034 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1035 	} else {
1036 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1037 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1038 	}
1039 }
1040 
1041 /****************************************************************************/
1042 /* Acquire NVRAM lock.                                                      */
1043 /*                                                                          */
1044 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1045 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1046 /* for use by the driver.                                                   */
1047 /*                                                                          */
1048 /* Returns:                                                                 */
1049 /*   0 on success, positive value on failure.                               */
1050 /****************************************************************************/
1051 int
1052 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1053 {
1054 	u_int32_t		val;
1055 	int			j;
1056 
1057 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1058 
1059 	/* Request access to the flash interface. */
1060 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1061 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1062 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1063 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1064 			break;
1065 
1066 		DELAY(5);
1067 	}
1068 
1069 	if (j >= NVRAM_TIMEOUT_COUNT) {
1070 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1071 		return (EBUSY);
1072 	}
1073 
1074 	return (0);
1075 }
1076 
1077 /****************************************************************************/
1078 /* Release NVRAM lock.                                                      */
1079 /*                                                                          */
1080 /* When the caller is finished accessing NVRAM the lock must be released.   */
1081 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1082 /* for use by the driver.                                                   */
1083 /*                                                                          */
1084 /* Returns:                                                                 */
1085 /*   0 on success, positive value on failure.                               */
1086 /****************************************************************************/
1087 int
1088 bnx_release_nvram_lock(struct bnx_softc *sc)
1089 {
1090 	int			j;
1091 	u_int32_t		val;
1092 
1093 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1094 
1095 	/* Relinquish nvram interface. */
1096 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1097 
1098 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1099 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1100 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1101 			break;
1102 
1103 		DELAY(5);
1104 	}
1105 
1106 	if (j >= NVRAM_TIMEOUT_COUNT) {
1107 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1108 		return (EBUSY);
1109 	}
1110 
1111 	return (0);
1112 }
1113 
1114 #ifdef BNX_NVRAM_WRITE_SUPPORT
1115 /****************************************************************************/
1116 /* Enable NVRAM write access.                                               */
1117 /*                                                                          */
1118 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1119 /*                                                                          */
1120 /* Returns:                                                                 */
1121 /*   0 on success, positive value on failure.                               */
1122 /****************************************************************************/
1123 int
1124 bnx_enable_nvram_write(struct bnx_softc *sc)
1125 {
1126 	u_int32_t		val;
1127 
1128 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1129 
1130 	val = REG_RD(sc, BNX_MISC_CFG);
1131 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1132 
1133 	if (!sc->bnx_flash_info->buffered) {
1134 		int j;
1135 
1136 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1137 		REG_WR(sc, BNX_NVM_COMMAND,
1138 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1139 
1140 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1141 			DELAY(5);
1142 
1143 			val = REG_RD(sc, BNX_NVM_COMMAND);
1144 			if (val & BNX_NVM_COMMAND_DONE)
1145 				break;
1146 		}
1147 
1148 		if (j >= NVRAM_TIMEOUT_COUNT) {
1149 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1150 			return (EBUSY);
1151 		}
1152 	}
1153 
1154 	return (0);
1155 }
1156 
1157 /****************************************************************************/
1158 /* Disable NVRAM write access.                                              */
1159 /*                                                                          */
1160 /* When the caller is finished writing to NVRAM write access must be        */
1161 /* disabled.                                                                */
1162 /*                                                                          */
1163 /* Returns:                                                                 */
1164 /*   Nothing.                                                               */
1165 /****************************************************************************/
1166 void
1167 bnx_disable_nvram_write(struct bnx_softc *sc)
1168 {
1169 	u_int32_t		val;
1170 
1171 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1172 
1173 	val = REG_RD(sc, BNX_MISC_CFG);
1174 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1175 }
1176 #endif
1177 
1178 /****************************************************************************/
1179 /* Enable NVRAM access.                                                     */
1180 /*                                                                          */
1181 /* Before accessing NVRAM for read or write operations the caller must      */
1182 /* enabled NVRAM access.                                                    */
1183 /*                                                                          */
1184 /* Returns:                                                                 */
1185 /*   Nothing.                                                               */
1186 /****************************************************************************/
1187 void
1188 bnx_enable_nvram_access(struct bnx_softc *sc)
1189 {
1190 	u_int32_t		val;
1191 
1192 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1193 
1194 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1195 	/* Enable both bits, even on read. */
1196 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1197 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1198 }
1199 
1200 /****************************************************************************/
1201 /* Disable NVRAM access.                                                    */
1202 /*                                                                          */
1203 /* When the caller is finished accessing NVRAM access must be disabled.     */
1204 /*                                                                          */
1205 /* Returns:                                                                 */
1206 /*   Nothing.                                                               */
1207 /****************************************************************************/
1208 void
1209 bnx_disable_nvram_access(struct bnx_softc *sc)
1210 {
1211 	u_int32_t		val;
1212 
1213 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1214 
1215 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1216 
1217 	/* Disable both bits, even after read. */
1218 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1219 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1220 }
1221 
1222 #ifdef BNX_NVRAM_WRITE_SUPPORT
1223 /****************************************************************************/
1224 /* Erase NVRAM page before writing.                                         */
1225 /*                                                                          */
1226 /* Non-buffered flash parts require that a page be erased before it is      */
1227 /* written.                                                                 */
1228 /*                                                                          */
1229 /* Returns:                                                                 */
1230 /*   0 on success, positive value on failure.                               */
1231 /****************************************************************************/
1232 int
1233 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1234 {
1235 	u_int32_t		cmd;
1236 	int			j;
1237 
1238 	/* Buffered flash doesn't require an erase. */
1239 	if (sc->bnx_flash_info->buffered)
1240 		return (0);
1241 
1242 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1243 
1244 	/* Build an erase command. */
1245 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1246 	    BNX_NVM_COMMAND_DOIT;
1247 
1248 	/*
1249 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1250 	 * and issue the erase command.
1251 	 */
1252 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1253 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1254 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1255 
1256 	/* Wait for completion. */
1257 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1258 		u_int32_t val;
1259 
1260 		DELAY(5);
1261 
1262 		val = REG_RD(sc, BNX_NVM_COMMAND);
1263 		if (val & BNX_NVM_COMMAND_DONE)
1264 			break;
1265 	}
1266 
1267 	if (j >= NVRAM_TIMEOUT_COUNT) {
1268 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1269 		return (EBUSY);
1270 	}
1271 
1272 	return (0);
1273 }
1274 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1275 
1276 /****************************************************************************/
1277 /* Read a dword (32 bits) from NVRAM.                                       */
1278 /*                                                                          */
1279 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1280 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1281 /*                                                                          */
1282 /* Returns:                                                                 */
1283 /*   0 on success and the 32 bit value read, positive value on failure.     */
1284 /****************************************************************************/
1285 int
1286 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1287     u_int8_t *ret_val, u_int32_t cmd_flags)
1288 {
1289 	u_int32_t		cmd;
1290 	int			i, rc = 0;
1291 
1292 	/* Build the command word. */
1293 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1294 
1295 	/* Calculate the offset for buffered flash. */
1296 	if (sc->bnx_flash_info->buffered)
1297 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1298 		    sc->bnx_flash_info->page_bits) +
1299 		    (offset % sc->bnx_flash_info->page_size);
1300 
1301 	/*
1302 	 * Clear the DONE bit separately, set the address to read,
1303 	 * and issue the read.
1304 	 */
1305 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1306 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1307 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1308 
1309 	/* Wait for completion. */
1310 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1311 		u_int32_t val;
1312 
1313 		DELAY(5);
1314 
1315 		val = REG_RD(sc, BNX_NVM_COMMAND);
1316 		if (val & BNX_NVM_COMMAND_DONE) {
1317 			val = REG_RD(sc, BNX_NVM_READ);
1318 
1319 			val = bnx_be32toh(val);
1320 			memcpy(ret_val, &val, 4);
1321 			break;
1322 		}
1323 	}
1324 
1325 	/* Check for errors. */
1326 	if (i >= NVRAM_TIMEOUT_COUNT) {
1327 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1328 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1329 		rc = EBUSY;
1330 	}
1331 
1332 	return(rc);
1333 }
1334 
1335 #ifdef BNX_NVRAM_WRITE_SUPPORT
1336 /****************************************************************************/
1337 /* Write a dword (32 bits) to NVRAM.                                        */
1338 /*                                                                          */
1339 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1340 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1341 /* enabled NVRAM write access.                                              */
1342 /*                                                                          */
1343 /* Returns:                                                                 */
1344 /*   0 on success, positive value on failure.                               */
1345 /****************************************************************************/
1346 int
1347 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1348     u_int32_t cmd_flags)
1349 {
1350 	u_int32_t		cmd, val32;
1351 	int			j;
1352 
1353 	/* Build the command word. */
1354 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1355 
1356 	/* Calculate the offset for buffered flash. */
1357 	if (sc->bnx_flash_info->buffered)
1358 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1359 		    sc->bnx_flash_info->page_bits) +
1360 		    (offset % sc->bnx_flash_info->page_size);
1361 
1362 	/*
1363 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1364 	 * set the NVRAM address to write, and issue the write command
1365 	 */
1366 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1367 	memcpy(&val32, val, 4);
1368 	val32 = htobe32(val32);
1369 	REG_WR(sc, BNX_NVM_WRITE, val32);
1370 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1371 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1372 
1373 	/* Wait for completion. */
1374 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1375 		DELAY(5);
1376 
1377 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1378 			break;
1379 	}
1380 	if (j >= NVRAM_TIMEOUT_COUNT) {
1381 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1382 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1383 		return (EBUSY);
1384 	}
1385 
1386 	return (0);
1387 }
1388 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1389 
1390 /****************************************************************************/
1391 /* Initialize NVRAM access.                                                 */
1392 /*                                                                          */
1393 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1394 /* access that device.                                                      */
1395 /*                                                                          */
1396 /* Returns:                                                                 */
1397 /*   0 on success, positive value on failure.                               */
1398 /****************************************************************************/
1399 int
1400 bnx_init_nvram(struct bnx_softc *sc)
1401 {
1402 	u_int32_t		val;
1403 	int			j, entry_count, rc;
1404 	struct flash_spec	*flash;
1405 
1406 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1407 
1408 	/* Determine the selected interface. */
1409 	val = REG_RD(sc, BNX_NVM_CFG1);
1410 
1411 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1412 
1413 	rc = 0;
1414 
1415 	/*
1416 	 * Flash reconfiguration is required to support additional
1417 	 * NVRAM devices not directly supported in hardware.
1418 	 * Check if the flash interface was reconfigured
1419 	 * by the bootcode.
1420 	 */
1421 
1422 	if (val & 0x40000000) {
1423 		/* Flash interface reconfigured by bootcode. */
1424 
1425 		DBPRINT(sc,BNX_INFO_LOAD,
1426 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1427 
1428 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1429 		     j++, flash++) {
1430 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1431 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1432 				sc->bnx_flash_info = flash;
1433 				break;
1434 			}
1435 		}
1436 	} else {
1437 		/* Flash interface not yet reconfigured. */
1438 		u_int32_t mask;
1439 
1440 		DBPRINT(sc,BNX_INFO_LOAD,
1441 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1442 
1443 		if (val & (1 << 23))
1444 			mask = FLASH_BACKUP_STRAP_MASK;
1445 		else
1446 			mask = FLASH_STRAP_MASK;
1447 
1448 		/* Look for the matching NVRAM device configuration data. */
1449 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1450 		    j++, flash++) {
1451 			/* Check if the dev matches any of the known devices. */
1452 			if ((val & mask) == (flash->strapping & mask)) {
1453 				/* Found a device match. */
1454 				sc->bnx_flash_info = flash;
1455 
1456 				/* Request access to the flash interface. */
1457 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1458 					return (rc);
1459 
1460 				/* Reconfigure the flash interface. */
1461 				bnx_enable_nvram_access(sc);
1462 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1463 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1464 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1465 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1466 				bnx_disable_nvram_access(sc);
1467 				bnx_release_nvram_lock(sc);
1468 
1469 				break;
1470 			}
1471 		}
1472 	}
1473 
1474 	/* Check if a matching device was found. */
1475 	if (j == entry_count) {
1476 		sc->bnx_flash_info = NULL;
1477 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1478 			__FILE__, __LINE__);
1479 		rc = ENODEV;
1480 	}
1481 
1482 	/* Write the flash config data to the shared memory interface. */
1483 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1484 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1485 	if (val)
1486 		sc->bnx_flash_size = val;
1487 	else
1488 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1489 
1490 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1491 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1492 
1493 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1494 
1495 	return (rc);
1496 }
1497 
1498 /****************************************************************************/
1499 /* Read an arbitrary range of data from NVRAM.                              */
1500 /*                                                                          */
1501 /* Prepares the NVRAM interface for access and reads the requested data     */
1502 /* into the supplied buffer.                                                */
1503 /*                                                                          */
1504 /* Returns:                                                                 */
1505 /*   0 on success and the data read, positive value on failure.             */
1506 /****************************************************************************/
1507 int
1508 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1509     int buf_size)
1510 {
1511 	int			rc = 0;
1512 	u_int32_t		cmd_flags, offset32, len32, extra;
1513 
1514 	if (buf_size == 0)
1515 		return (0);
1516 
1517 	/* Request access to the flash interface. */
1518 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1519 		return (rc);
1520 
1521 	/* Enable access to flash interface */
1522 	bnx_enable_nvram_access(sc);
1523 
1524 	len32 = buf_size;
1525 	offset32 = offset;
1526 	extra = 0;
1527 
1528 	cmd_flags = 0;
1529 
1530 	if (offset32 & 3) {
1531 		u_int8_t buf[4];
1532 		u_int32_t pre_len;
1533 
1534 		offset32 &= ~3;
1535 		pre_len = 4 - (offset & 3);
1536 
1537 		if (pre_len >= len32) {
1538 			pre_len = len32;
1539 			cmd_flags =
1540 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1541 		} else
1542 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1543 
1544 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1545 
1546 		if (rc)
1547 			return (rc);
1548 
1549 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1550 
1551 		offset32 += 4;
1552 		ret_buf += pre_len;
1553 		len32 -= pre_len;
1554 	}
1555 
1556 	if (len32 & 3) {
1557 		extra = 4 - (len32 & 3);
1558 		len32 = (len32 + 4) & ~3;
1559 	}
1560 
1561 	if (len32 == 4) {
1562 		u_int8_t buf[4];
1563 
1564 		if (cmd_flags)
1565 			cmd_flags = BNX_NVM_COMMAND_LAST;
1566 		else
1567 			cmd_flags =
1568 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1569 
1570 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1571 
1572 		memcpy(ret_buf, buf, 4 - extra);
1573 	} else if (len32 > 0) {
1574 		u_int8_t buf[4];
1575 
1576 		/* Read the first word. */
1577 		if (cmd_flags)
1578 			cmd_flags = 0;
1579 		else
1580 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1581 
1582 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1583 
1584 		/* Advance to the next dword. */
1585 		offset32 += 4;
1586 		ret_buf += 4;
1587 		len32 -= 4;
1588 
1589 		while (len32 > 4 && rc == 0) {
1590 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1591 
1592 			/* Advance to the next dword. */
1593 			offset32 += 4;
1594 			ret_buf += 4;
1595 			len32 -= 4;
1596 		}
1597 
1598 		if (rc)
1599 			return (rc);
1600 
1601 		cmd_flags = BNX_NVM_COMMAND_LAST;
1602 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1603 
1604 		memcpy(ret_buf, buf, 4 - extra);
1605 	}
1606 
1607 	/* Disable access to flash interface and release the lock. */
1608 	bnx_disable_nvram_access(sc);
1609 	bnx_release_nvram_lock(sc);
1610 
1611 	return (rc);
1612 }
1613 
1614 #ifdef BNX_NVRAM_WRITE_SUPPORT
1615 /****************************************************************************/
1616 /* Write an arbitrary range of data from NVRAM.                             */
1617 /*                                                                          */
1618 /* Prepares the NVRAM interface for write access and writes the requested   */
1619 /* data from the supplied buffer.  The caller is responsible for            */
1620 /* calculating any appropriate CRCs.                                        */
1621 /*                                                                          */
1622 /* Returns:                                                                 */
1623 /*   0 on success, positive value on failure.                               */
1624 /****************************************************************************/
1625 int
1626 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1627     int buf_size)
1628 {
1629 	u_int32_t		written, offset32, len32;
1630 	u_int8_t		*buf, start[4], end[4];
1631 	int			rc = 0;
1632 	int			align_start, align_end;
1633 
1634 	buf = data_buf;
1635 	offset32 = offset;
1636 	len32 = buf_size;
1637 	align_start = align_end = 0;
1638 
1639 	if ((align_start = (offset32 & 3))) {
1640 		offset32 &= ~3;
1641 		len32 += align_start;
1642 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1643 			return (rc);
1644 	}
1645 
1646 	if (len32 & 3) {
1647 	       	if ((len32 > 4) || !align_start) {
1648 			align_end = 4 - (len32 & 3);
1649 			len32 += align_end;
1650 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1651 			    end, 4))) {
1652 				return (rc);
1653 			}
1654 		}
1655 	}
1656 
1657 	if (align_start || align_end) {
1658 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1659 		if (buf == 0)
1660 			return (ENOMEM);
1661 
1662 		if (align_start)
1663 			memcpy(buf, start, 4);
1664 
1665 		if (align_end)
1666 			memcpy(buf + len32 - 4, end, 4);
1667 
1668 		memcpy(buf + align_start, data_buf, buf_size);
1669 	}
1670 
1671 	written = 0;
1672 	while ((written < len32) && (rc == 0)) {
1673 		u_int32_t page_start, page_end, data_start, data_end;
1674 		u_int32_t addr, cmd_flags;
1675 		int i;
1676 		u_int8_t flash_buffer[264];
1677 
1678 	    /* Find the page_start addr */
1679 		page_start = offset32 + written;
1680 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1681 		/* Find the page_end addr */
1682 		page_end = page_start + sc->bnx_flash_info->page_size;
1683 		/* Find the data_start addr */
1684 		data_start = (written == 0) ? offset32 : page_start;
1685 		/* Find the data_end addr */
1686 		data_end = (page_end > offset32 + len32) ?
1687 		    (offset32 + len32) : page_end;
1688 
1689 		/* Request access to the flash interface. */
1690 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1691 			goto nvram_write_end;
1692 
1693 		/* Enable access to flash interface */
1694 		bnx_enable_nvram_access(sc);
1695 
1696 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1697 		if (sc->bnx_flash_info->buffered == 0) {
1698 			int j;
1699 
1700 			/* Read the whole page into the buffer
1701 			 * (non-buffer flash only) */
1702 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1703 				if (j == (sc->bnx_flash_info->page_size - 4))
1704 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1705 
1706 				rc = bnx_nvram_read_dword(sc,
1707 					page_start + j,
1708 					&flash_buffer[j],
1709 					cmd_flags);
1710 
1711 				if (rc)
1712 					goto nvram_write_end;
1713 
1714 				cmd_flags = 0;
1715 			}
1716 		}
1717 
1718 		/* Enable writes to flash interface (unlock write-protect) */
1719 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1720 			goto nvram_write_end;
1721 
1722 		/* Erase the page */
1723 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1724 			goto nvram_write_end;
1725 
1726 		/* Re-enable the write again for the actual write */
1727 		bnx_enable_nvram_write(sc);
1728 
1729 		/* Loop to write back the buffer data from page_start to
1730 		 * data_start */
1731 		i = 0;
1732 		if (sc->bnx_flash_info->buffered == 0) {
1733 			for (addr = page_start; addr < data_start;
1734 				addr += 4, i += 4) {
1735 
1736 				rc = bnx_nvram_write_dword(sc, addr,
1737 				    &flash_buffer[i], cmd_flags);
1738 
1739 				if (rc != 0)
1740 					goto nvram_write_end;
1741 
1742 				cmd_flags = 0;
1743 			}
1744 		}
1745 
1746 		/* Loop to write the new data from data_start to data_end */
1747 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1748 			if ((addr == page_end - 4) ||
1749 			    ((sc->bnx_flash_info->buffered) &&
1750 			    (addr == data_end - 4))) {
1751 
1752 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1753 			}
1754 
1755 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1756 
1757 			if (rc != 0)
1758 				goto nvram_write_end;
1759 
1760 			cmd_flags = 0;
1761 			buf += 4;
1762 		}
1763 
1764 		/* Loop to write back the buffer data from data_end
1765 		 * to page_end */
1766 		if (sc->bnx_flash_info->buffered == 0) {
1767 			for (addr = data_end; addr < page_end;
1768 			    addr += 4, i += 4) {
1769 
1770 				if (addr == page_end-4)
1771 					cmd_flags = BNX_NVM_COMMAND_LAST;
1772 
1773 				rc = bnx_nvram_write_dword(sc, addr,
1774 				    &flash_buffer[i], cmd_flags);
1775 
1776 				if (rc != 0)
1777 					goto nvram_write_end;
1778 
1779 				cmd_flags = 0;
1780 			}
1781 		}
1782 
1783 		/* Disable writes to flash interface (lock write-protect) */
1784 		bnx_disable_nvram_write(sc);
1785 
1786 		/* Disable access to flash interface */
1787 		bnx_disable_nvram_access(sc);
1788 		bnx_release_nvram_lock(sc);
1789 
1790 		/* Increment written */
1791 		written += data_end - data_start;
1792 	}
1793 
1794 nvram_write_end:
1795 	if (align_start || align_end)
1796 		free(buf, M_DEVBUF);
1797 
1798 	return (rc);
1799 }
1800 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1801 
1802 /****************************************************************************/
1803 /* Verifies that NVRAM is accessible and contains valid data.               */
1804 /*                                                                          */
1805 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1806 /* correct.                                                                 */
1807 /*                                                                          */
1808 /* Returns:                                                                 */
1809 /*   0 on success, positive value on failure.                               */
1810 /****************************************************************************/
1811 int
1812 bnx_nvram_test(struct bnx_softc *sc)
1813 {
1814 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1815 	u_int8_t		*data = (u_int8_t *) buf;
1816 	int			rc = 0;
1817 	u_int32_t		magic, csum;
1818 
1819 	/*
1820 	 * Check that the device NVRAM is valid by reading
1821 	 * the magic value at offset 0.
1822 	 */
1823 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1824 		goto bnx_nvram_test_done;
1825 
1826 	magic = bnx_be32toh(buf[0]);
1827 	if (magic != BNX_NVRAM_MAGIC) {
1828 		rc = ENODEV;
1829 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1830 		    "Expected: 0x%08X, Found: 0x%08X\n",
1831 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1832 		goto bnx_nvram_test_done;
1833 	}
1834 
1835 	/*
1836 	 * Verify that the device NVRAM includes valid
1837 	 * configuration data.
1838 	 */
1839 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1840 		goto bnx_nvram_test_done;
1841 
1842 	csum = ether_crc32_le(data, 0x100);
1843 	if (csum != BNX_CRC32_RESIDUAL) {
1844 		rc = ENODEV;
1845 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1846 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1847 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1848 		goto bnx_nvram_test_done;
1849 	}
1850 
1851 	csum = ether_crc32_le(data + 0x100, 0x100);
1852 	if (csum != BNX_CRC32_RESIDUAL) {
1853 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1854 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1855 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1856 		rc = ENODEV;
1857 	}
1858 
1859 bnx_nvram_test_done:
1860 	return (rc);
1861 }
1862 
1863 /****************************************************************************/
1864 /* Free any DMA memory owned by the driver.                                 */
1865 /*                                                                          */
1866 /* Scans through each data structre that requires DMA memory and frees      */
1867 /* the memory if allocated.                                                 */
1868 /*                                                                          */
1869 /* Returns:                                                                 */
1870 /*   Nothing.                                                               */
1871 /****************************************************************************/
1872 void
1873 bnx_dma_free(struct bnx_softc *sc)
1874 {
1875 	int			i;
1876 
1877 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1878 
1879 	/* Destroy the status block. */
1880 	if (sc->status_block != NULL && sc->status_map != NULL) {
1881 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1882 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1883 		    BNX_STATUS_BLK_SZ);
1884 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1885 		    sc->status_rseg);
1886 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1887 		sc->status_block = NULL;
1888 		sc->status_map = NULL;
1889 	}
1890 
1891 	/* Destroy the statistics block. */
1892 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
1893 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1894 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1895 		    BNX_STATS_BLK_SZ);
1896 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1897 		    sc->stats_rseg);
1898 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1899 		sc->stats_block = NULL;
1900 		sc->stats_map = NULL;
1901 	}
1902 
1903 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
1904 	for (i = 0; i < TX_PAGES; i++ ) {
1905 		if (sc->tx_bd_chain[i] != NULL &&
1906 		    sc->tx_bd_chain_map[i] != NULL) {
1907 			bus_dmamap_unload(sc->bnx_dmatag,
1908 			    sc->tx_bd_chain_map[i]);
1909 			bus_dmamem_unmap(sc->bnx_dmatag,
1910 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1911 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1912 			    sc->tx_bd_chain_rseg[i]);
1913 			bus_dmamap_destroy(sc->bnx_dmatag,
1914 			    sc->tx_bd_chain_map[i]);
1915 			sc->tx_bd_chain[i] = NULL;
1916 			sc->tx_bd_chain_map[i] = NULL;
1917 		}
1918 	}
1919 
1920 	/* Unload and destroy the TX mbuf maps. */
1921 	for (i = 0; i < TOTAL_TX_BD; i++) {
1922 		if (sc->tx_mbuf_map[i] != NULL) {
1923 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1924 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1925 		}
1926 	}
1927 
1928 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
1929 	for (i = 0; i < RX_PAGES; i++ ) {
1930 		if (sc->rx_bd_chain[i] != NULL &&
1931 		    sc->rx_bd_chain_map[i] != NULL) {
1932 			bus_dmamap_unload(sc->bnx_dmatag,
1933 			    sc->rx_bd_chain_map[i]);
1934 			bus_dmamem_unmap(sc->bnx_dmatag,
1935 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1936 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1937 			    sc->rx_bd_chain_rseg[i]);
1938 
1939 			bus_dmamap_destroy(sc->bnx_dmatag,
1940 			    sc->rx_bd_chain_map[i]);
1941 			sc->rx_bd_chain[i] = NULL;
1942 			sc->rx_bd_chain_map[i] = NULL;
1943 		}
1944 	}
1945 
1946 	/* Unload and destroy the RX mbuf maps. */
1947 	for (i = 0; i < TOTAL_RX_BD; i++) {
1948 		if (sc->rx_mbuf_map[i] != NULL) {
1949 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1950 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1951 		}
1952 	}
1953 
1954 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1955 }
1956 
1957 /****************************************************************************/
1958 /* Allocate any DMA memory needed by the driver.                            */
1959 /*                                                                          */
1960 /* Allocates DMA memory needed for the various global structures needed by  */
1961 /* hardware.                                                                */
1962 /*                                                                          */
1963 /* Returns:                                                                 */
1964 /*   0 for success, positive value for failure.                             */
1965 /****************************************************************************/
1966 int
1967 bnx_dma_alloc(struct bnx_softc *sc)
1968 {
1969 	int			i, rc = 0;
1970 
1971 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1972 
1973 	/*
1974 	 * Allocate DMA memory for the status block, map the memory into DMA
1975 	 * space, and fetch the physical address of the block.
1976 	 */
1977 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1978 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1979 		aprint_error("%s: Could not create status block DMA map!\n",
1980 		    sc->bnx_dev.dv_xname);
1981 		rc = ENOMEM;
1982 		goto bnx_dma_alloc_exit;
1983 	}
1984 
1985 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1986 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1987 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
1988 		aprint_error(
1989 		    "%s: Could not allocate status block DMA memory!\n",
1990 		    sc->bnx_dev.dv_xname);
1991 		rc = ENOMEM;
1992 		goto bnx_dma_alloc_exit;
1993 	}
1994 
1995 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1996 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1997 		aprint_error("%s: Could not map status block DMA memory!\n",
1998 		    sc->bnx_dev.dv_xname);
1999 		rc = ENOMEM;
2000 		goto bnx_dma_alloc_exit;
2001 	}
2002 
2003 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2004 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2005 		aprint_error("%s: Could not load status block DMA memory!\n",
2006 		    sc->bnx_dev.dv_xname);
2007 		rc = ENOMEM;
2008 		goto bnx_dma_alloc_exit;
2009 	}
2010 
2011 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2012 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
2013 
2014 	/* DRC - Fix for 64 bit addresses. */
2015 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2016 		(u_int32_t) sc->status_block_paddr);
2017 
2018 	/*
2019 	 * Allocate DMA memory for the statistics block, map the memory into
2020 	 * DMA space, and fetch the physical address of the block.
2021 	 */
2022 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2023 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2024 		aprint_error("%s: Could not create stats block DMA map!\n",
2025 		    sc->bnx_dev.dv_xname);
2026 		rc = ENOMEM;
2027 		goto bnx_dma_alloc_exit;
2028 	}
2029 
2030 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2031 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2032 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2033 		aprint_error("%s: Could not allocate stats block DMA memory!\n",
2034 		    sc->bnx_dev.dv_xname);
2035 		rc = ENOMEM;
2036 		goto bnx_dma_alloc_exit;
2037 	}
2038 
2039 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2040 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2041 		aprint_error("%s: Could not map stats block DMA memory!\n",
2042 		    sc->bnx_dev.dv_xname);
2043 		rc = ENOMEM;
2044 		goto bnx_dma_alloc_exit;
2045 	}
2046 
2047 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2048 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2049 		aprint_error("%s: Could not load status block DMA memory!\n",
2050 		    sc->bnx_dev.dv_xname);
2051 		rc = ENOMEM;
2052 		goto bnx_dma_alloc_exit;
2053 	}
2054 
2055 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2056 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2057 
2058 	/* DRC - Fix for 64 bit address. */
2059 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2060 	    (u_int32_t) sc->stats_block_paddr);
2061 
2062 	/*
2063 	 * Allocate DMA memory for the TX buffer descriptor chain,
2064 	 * and fetch the physical address of the block.
2065 	 */
2066 	for (i = 0; i < TX_PAGES; i++) {
2067 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2068 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2069 		    &sc->tx_bd_chain_map[i])) {
2070 			aprint_error(
2071 			    "%s: Could not create Tx desc %d DMA map!\n",
2072 			    sc->bnx_dev.dv_xname, i);
2073 			rc = ENOMEM;
2074 			goto bnx_dma_alloc_exit;
2075 		}
2076 
2077 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2078 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2079 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2080 			aprint_error(
2081 			    "%s: Could not allocate TX desc %d DMA memory!\n",
2082 			    sc->bnx_dev.dv_xname, i);
2083 			rc = ENOMEM;
2084 			goto bnx_dma_alloc_exit;
2085 		}
2086 
2087 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2088 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2089 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2090 			aprint_error(
2091 			    "%s: Could not map TX desc %d DMA memory!\n",
2092 			    sc->bnx_dev.dv_xname, i);
2093 			rc = ENOMEM;
2094 			goto bnx_dma_alloc_exit;
2095 		}
2096 
2097 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2098 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2099 		    BUS_DMA_NOWAIT)) {
2100 			aprint_error(
2101 			    "%s: Could not load TX desc %d DMA memory!\n",
2102 			    sc->bnx_dev.dv_xname, i);
2103 			rc = ENOMEM;
2104 			goto bnx_dma_alloc_exit;
2105 		}
2106 
2107 		sc->tx_bd_chain_paddr[i] =
2108 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2109 
2110 		/* DRC - Fix for 64 bit systems. */
2111 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2112 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2113 	}
2114 
2115 	/*
2116 	 * Create DMA maps for the TX buffer mbufs.
2117 	 */
2118 	for (i = 0; i < TOTAL_TX_BD; i++) {
2119 		if (bus_dmamap_create(sc->bnx_dmatag,
2120 		    MCLBYTES * BNX_MAX_SEGMENTS,
2121 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2122 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
2123 		    &sc->tx_mbuf_map[i])) {
2124 			aprint_error(
2125 			    "%s: Could not create Tx mbuf %d DMA map!\n",
2126 			    sc->bnx_dev.dv_xname, i);
2127 			rc = ENOMEM;
2128 			goto bnx_dma_alloc_exit;
2129 		}
2130 	}
2131 
2132 	/*
2133 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2134 	 * and fetch the physical address of the block.
2135 	 */
2136 	for (i = 0; i < RX_PAGES; i++) {
2137 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2138 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2139 		    &sc->rx_bd_chain_map[i])) {
2140 			aprint_error(
2141 			    "%s: Could not create Rx desc %d DMA map!\n",
2142 			    sc->bnx_dev.dv_xname, i);
2143 			rc = ENOMEM;
2144 			goto bnx_dma_alloc_exit;
2145 		}
2146 
2147 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2148 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2149 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2150 			aprint_error(
2151 			    "%s: Could not allocate Rx desc %d DMA memory!\n",
2152 			    sc->bnx_dev.dv_xname, i);
2153 			rc = ENOMEM;
2154 			goto bnx_dma_alloc_exit;
2155 		}
2156 
2157 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2158 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2159 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2160 			aprint_error(
2161 			    "%s: Could not map Rx desc %d DMA memory!\n",
2162 			    sc->bnx_dev.dv_xname, i);
2163 			rc = ENOMEM;
2164 			goto bnx_dma_alloc_exit;
2165 		}
2166 
2167 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2168 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2169 		    BUS_DMA_NOWAIT)) {
2170 			aprint_error(
2171 			    "%s: Could not load Rx desc %d DMA memory!\n",
2172 			    sc->bnx_dev.dv_xname, i);
2173 			rc = ENOMEM;
2174 			goto bnx_dma_alloc_exit;
2175 		}
2176 
2177 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2178 		sc->rx_bd_chain_paddr[i] =
2179 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2180 
2181 		/* DRC - Fix for 64 bit systems. */
2182 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2183 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2184 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2185 		    0, BNX_RX_CHAIN_PAGE_SZ,
2186 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2187 	}
2188 
2189 	/*
2190 	 * Create DMA maps for the Rx buffer mbufs.
2191 	 */
2192 	for (i = 0; i < TOTAL_RX_BD; i++) {
2193 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2194 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2195 		    &sc->rx_mbuf_map[i])) {
2196 			aprint_error(
2197 			    "%s: Could not create Rx mbuf %d DMA map!\n",
2198 			    sc->bnx_dev.dv_xname, i);
2199 			rc = ENOMEM;
2200 			goto bnx_dma_alloc_exit;
2201 		}
2202 	}
2203 
2204  bnx_dma_alloc_exit:
2205 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2206 
2207 	return(rc);
2208 }
2209 
2210 /****************************************************************************/
2211 /* Release all resources used by the driver.                                */
2212 /*                                                                          */
2213 /* Releases all resources acquired by the driver including interrupts,      */
2214 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2215 /*                                                                          */
2216 /* Returns:                                                                 */
2217 /*   Nothing.                                                               */
2218 /****************************************************************************/
2219 void
2220 bnx_release_resources(struct bnx_softc *sc)
2221 {
2222 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2223 
2224 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2225 
2226 	bnx_dma_free(sc);
2227 
2228 	if (sc->bnx_intrhand != NULL)
2229 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2230 
2231 	if (sc->bnx_size)
2232 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2233 
2234 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2235 }
2236 
2237 /****************************************************************************/
2238 /* Firmware synchronization.                                                */
2239 /*                                                                          */
2240 /* Before performing certain events such as a chip reset, synchronize with  */
2241 /* the firmware first.                                                      */
2242 /*                                                                          */
2243 /* Returns:                                                                 */
2244 /*   0 for success, positive value for failure.                             */
2245 /****************************************************************************/
2246 int
2247 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2248 {
2249 	int			i, rc = 0;
2250 	u_int32_t		val;
2251 
2252 	/* Don't waste any time if we've timed out before. */
2253 	if (sc->bnx_fw_timed_out) {
2254 		rc = EBUSY;
2255 		goto bnx_fw_sync_exit;
2256 	}
2257 
2258 	/* Increment the message sequence number. */
2259 	sc->bnx_fw_wr_seq++;
2260 	msg_data |= sc->bnx_fw_wr_seq;
2261 
2262  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2263 	    msg_data);
2264 
2265 	/* Send the message to the bootcode driver mailbox. */
2266 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2267 
2268 	/* Wait for the bootcode to acknowledge the message. */
2269 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2270 		/* Check for a response in the bootcode firmware mailbox. */
2271 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2272 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2273 			break;
2274 		DELAY(1000);
2275 	}
2276 
2277 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2278 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2279 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2280 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2281 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2282 
2283 		msg_data &= ~BNX_DRV_MSG_CODE;
2284 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2285 
2286 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2287 
2288 		sc->bnx_fw_timed_out = 1;
2289 		rc = EBUSY;
2290 	}
2291 
2292 bnx_fw_sync_exit:
2293 	return (rc);
2294 }
2295 
2296 /****************************************************************************/
2297 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2298 /*                                                                          */
2299 /* Returns:                                                                 */
2300 /*   Nothing.                                                               */
2301 /****************************************************************************/
2302 void
2303 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2304     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2305 {
2306 	int			i;
2307 	u_int32_t		val;
2308 
2309 	for (i = 0; i < rv2p_code_len; i += 8) {
2310 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2311 		rv2p_code++;
2312 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2313 		rv2p_code++;
2314 
2315 		if (rv2p_proc == RV2P_PROC1) {
2316 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2317 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2318 		}
2319 		else {
2320 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2321 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2322 		}
2323 	}
2324 
2325 	/* Reset the processor, un-stall is done later. */
2326 	if (rv2p_proc == RV2P_PROC1)
2327 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2328 	else
2329 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2330 }
2331 
2332 /****************************************************************************/
2333 /* Load RISC processor firmware.                                            */
2334 /*                                                                          */
2335 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2336 /* associated with a particular processor.                                  */
2337 /*                                                                          */
2338 /* Returns:                                                                 */
2339 /*   Nothing.                                                               */
2340 /****************************************************************************/
2341 void
2342 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2343     struct fw_info *fw)
2344 {
2345 	u_int32_t		offset;
2346 	u_int32_t		val;
2347 
2348 	/* Halt the CPU. */
2349 	val = REG_RD_IND(sc, cpu_reg->mode);
2350 	val |= cpu_reg->mode_value_halt;
2351 	REG_WR_IND(sc, cpu_reg->mode, val);
2352 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2353 
2354 	/* Load the Text area. */
2355 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2356 	if (fw->text) {
2357 		int j;
2358 
2359 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2360 			REG_WR_IND(sc, offset, fw->text[j]);
2361 	}
2362 
2363 	/* Load the Data area. */
2364 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2365 	if (fw->data) {
2366 		int j;
2367 
2368 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2369 			REG_WR_IND(sc, offset, fw->data[j]);
2370 	}
2371 
2372 	/* Load the SBSS area. */
2373 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2374 	if (fw->sbss) {
2375 		int j;
2376 
2377 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2378 			REG_WR_IND(sc, offset, fw->sbss[j]);
2379 	}
2380 
2381 	/* Load the BSS area. */
2382 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2383 	if (fw->bss) {
2384 		int j;
2385 
2386 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2387 			REG_WR_IND(sc, offset, fw->bss[j]);
2388 	}
2389 
2390 	/* Load the Read-Only area. */
2391 	offset = cpu_reg->spad_base +
2392 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2393 	if (fw->rodata) {
2394 		int j;
2395 
2396 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2397 			REG_WR_IND(sc, offset, fw->rodata[j]);
2398 	}
2399 
2400 	/* Clear the pre-fetch instruction. */
2401 	REG_WR_IND(sc, cpu_reg->inst, 0);
2402 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2403 
2404 	/* Start the CPU. */
2405 	val = REG_RD_IND(sc, cpu_reg->mode);
2406 	val &= ~cpu_reg->mode_value_halt;
2407 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2408 	REG_WR_IND(sc, cpu_reg->mode, val);
2409 }
2410 
2411 /****************************************************************************/
2412 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2413 /*                                                                          */
2414 /* Loads the firmware for each CPU and starts the CPU.                      */
2415 /*                                                                          */
2416 /* Returns:                                                                 */
2417 /*   Nothing.                                                               */
2418 /****************************************************************************/
2419 void
2420 bnx_init_cpus(struct bnx_softc *sc)
2421 {
2422 	struct cpu_reg cpu_reg;
2423 	struct fw_info fw;
2424 
2425 	/* Initialize the RV2P processor. */
2426 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2427 	    RV2P_PROC1);
2428 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2429 	    RV2P_PROC2);
2430 
2431 	/* Initialize the RX Processor. */
2432 	cpu_reg.mode = BNX_RXP_CPU_MODE;
2433 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2434 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2435 	cpu_reg.state = BNX_RXP_CPU_STATE;
2436 	cpu_reg.state_value_clear = 0xffffff;
2437 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2438 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2439 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2440 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2441 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2442 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
2443 	cpu_reg.mips_view_base = 0x8000000;
2444 
2445 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2446 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2447 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2448 	fw.start_addr = bnx_RXP_b06FwStartAddr;
2449 
2450 	fw.text_addr = bnx_RXP_b06FwTextAddr;
2451 	fw.text_len = bnx_RXP_b06FwTextLen;
2452 	fw.text_index = 0;
2453 	fw.text = bnx_RXP_b06FwText;
2454 
2455 	fw.data_addr = bnx_RXP_b06FwDataAddr;
2456 	fw.data_len = bnx_RXP_b06FwDataLen;
2457 	fw.data_index = 0;
2458 	fw.data = bnx_RXP_b06FwData;
2459 
2460 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2461 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
2462 	fw.sbss_index = 0;
2463 	fw.sbss = bnx_RXP_b06FwSbss;
2464 
2465 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
2466 	fw.bss_len = bnx_RXP_b06FwBssLen;
2467 	fw.bss_index = 0;
2468 	fw.bss = bnx_RXP_b06FwBss;
2469 
2470 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2471 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
2472 	fw.rodata_index = 0;
2473 	fw.rodata = bnx_RXP_b06FwRodata;
2474 
2475 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2476 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2477 
2478 	/* Initialize the TX Processor. */
2479 	cpu_reg.mode = BNX_TXP_CPU_MODE;
2480 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2481 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2482 	cpu_reg.state = BNX_TXP_CPU_STATE;
2483 	cpu_reg.state_value_clear = 0xffffff;
2484 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2485 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2486 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2487 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2488 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2489 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
2490 	cpu_reg.mips_view_base = 0x8000000;
2491 
2492 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2493 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2494 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2495 	fw.start_addr = bnx_TXP_b06FwStartAddr;
2496 
2497 	fw.text_addr = bnx_TXP_b06FwTextAddr;
2498 	fw.text_len = bnx_TXP_b06FwTextLen;
2499 	fw.text_index = 0;
2500 	fw.text = bnx_TXP_b06FwText;
2501 
2502 	fw.data_addr = bnx_TXP_b06FwDataAddr;
2503 	fw.data_len = bnx_TXP_b06FwDataLen;
2504 	fw.data_index = 0;
2505 	fw.data = bnx_TXP_b06FwData;
2506 
2507 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2508 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
2509 	fw.sbss_index = 0;
2510 	fw.sbss = bnx_TXP_b06FwSbss;
2511 
2512 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
2513 	fw.bss_len = bnx_TXP_b06FwBssLen;
2514 	fw.bss_index = 0;
2515 	fw.bss = bnx_TXP_b06FwBss;
2516 
2517 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2518 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
2519 	fw.rodata_index = 0;
2520 	fw.rodata = bnx_TXP_b06FwRodata;
2521 
2522 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2523 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2524 
2525 	/* Initialize the TX Patch-up Processor. */
2526 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
2527 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2528 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2529 	cpu_reg.state = BNX_TPAT_CPU_STATE;
2530 	cpu_reg.state_value_clear = 0xffffff;
2531 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2532 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2533 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2534 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2535 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2536 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2537 	cpu_reg.mips_view_base = 0x8000000;
2538 
2539 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2540 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2541 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2542 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
2543 
2544 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
2545 	fw.text_len = bnx_TPAT_b06FwTextLen;
2546 	fw.text_index = 0;
2547 	fw.text = bnx_TPAT_b06FwText;
2548 
2549 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
2550 	fw.data_len = bnx_TPAT_b06FwDataLen;
2551 	fw.data_index = 0;
2552 	fw.data = bnx_TPAT_b06FwData;
2553 
2554 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2555 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2556 	fw.sbss_index = 0;
2557 	fw.sbss = bnx_TPAT_b06FwSbss;
2558 
2559 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2560 	fw.bss_len = bnx_TPAT_b06FwBssLen;
2561 	fw.bss_index = 0;
2562 	fw.bss = bnx_TPAT_b06FwBss;
2563 
2564 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2565 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2566 	fw.rodata_index = 0;
2567 	fw.rodata = bnx_TPAT_b06FwRodata;
2568 
2569 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2570 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2571 
2572 	/* Initialize the Completion Processor. */
2573 	cpu_reg.mode = BNX_COM_CPU_MODE;
2574 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2575 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2576 	cpu_reg.state = BNX_COM_CPU_STATE;
2577 	cpu_reg.state_value_clear = 0xffffff;
2578 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2579 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2580 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2581 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2582 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2583 	cpu_reg.spad_base = BNX_COM_SCRATCH;
2584 	cpu_reg.mips_view_base = 0x8000000;
2585 
2586 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
2587 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2588 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
2589 	fw.start_addr = bnx_COM_b06FwStartAddr;
2590 
2591 	fw.text_addr = bnx_COM_b06FwTextAddr;
2592 	fw.text_len = bnx_COM_b06FwTextLen;
2593 	fw.text_index = 0;
2594 	fw.text = bnx_COM_b06FwText;
2595 
2596 	fw.data_addr = bnx_COM_b06FwDataAddr;
2597 	fw.data_len = bnx_COM_b06FwDataLen;
2598 	fw.data_index = 0;
2599 	fw.data = bnx_COM_b06FwData;
2600 
2601 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2602 	fw.sbss_len = bnx_COM_b06FwSbssLen;
2603 	fw.sbss_index = 0;
2604 	fw.sbss = bnx_COM_b06FwSbss;
2605 
2606 	fw.bss_addr = bnx_COM_b06FwBssAddr;
2607 	fw.bss_len = bnx_COM_b06FwBssLen;
2608 	fw.bss_index = 0;
2609 	fw.bss = bnx_COM_b06FwBss;
2610 
2611 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2612 	fw.rodata_len = bnx_COM_b06FwRodataLen;
2613 	fw.rodata_index = 0;
2614 	fw.rodata = bnx_COM_b06FwRodata;
2615 
2616 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2617 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2618 }
2619 
2620 /****************************************************************************/
2621 /* Initialize context memory.                                               */
2622 /*                                                                          */
2623 /* Clears the memory associated with each Context ID (CID).                 */
2624 /*                                                                          */
2625 /* Returns:                                                                 */
2626 /*   Nothing.                                                               */
2627 /****************************************************************************/
2628 void
2629 bnx_init_context(struct bnx_softc *sc)
2630 {
2631 	u_int32_t		vcid;
2632 
2633 	vcid = 96;
2634 	while (vcid) {
2635 		u_int32_t vcid_addr, pcid_addr, offset;
2636 
2637 		vcid--;
2638 
2639    		vcid_addr = GET_CID_ADDR(vcid);
2640 		pcid_addr = vcid_addr;
2641 
2642 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2643 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2644 
2645 		/* Zero out the context. */
2646 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2647 			CTX_WR(sc, 0x00, offset, 0);
2648 
2649 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2650 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2651 	}
2652 }
2653 
2654 /****************************************************************************/
2655 /* Fetch the permanent MAC address of the controller.                       */
2656 /*                                                                          */
2657 /* Returns:                                                                 */
2658 /*   Nothing.                                                               */
2659 /****************************************************************************/
2660 void
2661 bnx_get_mac_addr(struct bnx_softc *sc)
2662 {
2663 	u_int32_t		mac_lo = 0, mac_hi = 0;
2664 
2665 	/*
2666 	 * The NetXtreme II bootcode populates various NIC
2667 	 * power-on and runtime configuration items in a
2668 	 * shared memory area.  The factory configured MAC
2669 	 * address is available from both NVRAM and the
2670 	 * shared memory area so we'll read the value from
2671 	 * shared memory for speed.
2672 	 */
2673 
2674 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2675 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2676 
2677 	if ((mac_lo == 0) && (mac_hi == 0)) {
2678 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2679 		    __FILE__, __LINE__);
2680 	} else {
2681 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
2682 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
2683 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
2684 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
2685 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
2686 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
2687 	}
2688 
2689 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2690 	    "%s\n", ether_sprintf(sc->eaddr));
2691 }
2692 
2693 /****************************************************************************/
2694 /* Program the MAC address.                                                 */
2695 /*                                                                          */
2696 /* Returns:                                                                 */
2697 /*   Nothing.                                                               */
2698 /****************************************************************************/
2699 void
2700 bnx_set_mac_addr(struct bnx_softc *sc)
2701 {
2702 	u_int32_t		val;
2703 	const u_int8_t		*mac_addr = CLLADDR(sc->ethercom.ec_if.if_sadl);
2704 
2705 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2706 	    "%s\n", ether_sprintf(sc->eaddr));
2707 
2708 	val = (mac_addr[0] << 8) | mac_addr[1];
2709 
2710 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2711 
2712 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2713 		(mac_addr[4] << 8) | mac_addr[5];
2714 
2715 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2716 }
2717 
2718 /****************************************************************************/
2719 /* Stop the controller.                                                     */
2720 /*                                                                          */
2721 /* Returns:                                                                 */
2722 /*   Nothing.                                                               */
2723 /****************************************************************************/
2724 void
2725 bnx_stop(struct bnx_softc *sc)
2726 {
2727 	struct ifnet		*ifp = &sc->ethercom.ec_if;
2728 	struct mii_data		*mii = NULL;
2729 
2730 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2731 
2732 	mii = &sc->bnx_mii;
2733 
2734 	callout_stop(&sc->bnx_timeout);
2735 
2736 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2737 
2738 	/* Disable the transmit/receive blocks. */
2739 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2740 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2741 	DELAY(20);
2742 
2743 	bnx_disable_intr(sc);
2744 
2745 	/* Tell firmware that the driver is going away. */
2746 	bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2747 
2748 	/* Free the RX lists. */
2749 	bnx_free_rx_chain(sc);
2750 
2751 	/* Free TX buffers. */
2752 	bnx_free_tx_chain(sc);
2753 
2754 	ifp->if_timer = 0;
2755 
2756 	sc->bnx_link = 0;
2757 
2758 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2759 
2760 }
2761 
2762 int
2763 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2764 {
2765 	u_int32_t		val;
2766 	int			i, rc = 0;
2767 
2768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2769 
2770 	/* Wait for pending PCI transactions to complete. */
2771 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2772 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2773 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2774 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2775 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2776 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2777 	DELAY(5);
2778 
2779 	/* Assume bootcode is running. */
2780 	sc->bnx_fw_timed_out = 0;
2781 
2782 	/* Give the firmware a chance to prepare for the reset. */
2783 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2784 	if (rc)
2785 		goto bnx_reset_exit;
2786 
2787 	/* Set a firmware reminder that this is a soft reset. */
2788 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2789 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
2790 
2791 	/* Dummy read to force the chip to complete all current transactions. */
2792 	val = REG_RD(sc, BNX_MISC_ID);
2793 
2794 	/* Chip reset. */
2795 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2796 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2797 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2798 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2799 
2800 	/* Allow up to 30us for reset to complete. */
2801 	for (i = 0; i < 10; i++) {
2802 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2803 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2804 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2805 			break;
2806 
2807 		DELAY(10);
2808 	}
2809 
2810 	/* Check that reset completed successfully. */
2811 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2812 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2813 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2814 		rc = EBUSY;
2815 		goto bnx_reset_exit;
2816 	}
2817 
2818 	/* Make sure byte swapping is properly configured. */
2819 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2820 	if (val != 0x01020304) {
2821 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2822 		    __FILE__, __LINE__);
2823 		rc = ENODEV;
2824 		goto bnx_reset_exit;
2825 	}
2826 
2827 	/* Just completed a reset, assume that firmware is running again. */
2828 	sc->bnx_fw_timed_out = 0;
2829 
2830 	/* Wait for the firmware to finish its initialization. */
2831 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2832 	if (rc)
2833 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2834 		    "initialization!\n", __FILE__, __LINE__);
2835 
2836 bnx_reset_exit:
2837 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2838 
2839 	return (rc);
2840 }
2841 
2842 int
2843 bnx_chipinit(struct bnx_softc *sc)
2844 {
2845 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2846 	u_int32_t		val;
2847 	int			rc = 0;
2848 
2849 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2850 
2851 	/* Make sure the interrupt is not active. */
2852 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2853 
2854 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
2855 	/* channels and PCI clock compensation delay.                      */
2856 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2857 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
2858 #if BYTE_ORDER == BIG_ENDIAN
2859 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2860 #endif
2861 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2862 	    DMA_READ_CHANS << 12 |
2863 	    DMA_WRITE_CHANS << 16;
2864 
2865 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2866 
2867 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2868 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2869 
2870 	/*
2871 	 * This setting resolves a problem observed on certain Intel PCI
2872 	 * chipsets that cannot handle multiple outstanding DMA operations.
2873 	 * See errata E9_5706A1_65.
2874 	 */
2875 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2876 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2877 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
2878 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2879 
2880 	REG_WR(sc, BNX_DMA_CONFIG, val);
2881 
2882 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2883 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
2884 		u_int16_t nval;
2885 
2886 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2887 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2888 		    nval & ~0x2);
2889 	}
2890 
2891 	/* Enable the RX_V2P and Context state machines before access. */
2892 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2893 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2894 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2895 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2896 
2897 	/* Initialize context mapping and zero out the quick contexts. */
2898 	bnx_init_context(sc);
2899 
2900 	/* Initialize the on-boards CPUs */
2901 	bnx_init_cpus(sc);
2902 
2903 	/* Prepare NVRAM for access. */
2904 	if (bnx_init_nvram(sc)) {
2905 		rc = ENODEV;
2906 		goto bnx_chipinit_exit;
2907 	}
2908 
2909 	/* Set the kernel bypass block size */
2910 	val = REG_RD(sc, BNX_MQ_CONFIG);
2911 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2912 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2913 	REG_WR(sc, BNX_MQ_CONFIG, val);
2914 
2915 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2916 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2917 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2918 
2919 	val = (BCM_PAGE_BITS - 8) << 24;
2920 	REG_WR(sc, BNX_RV2P_CONFIG, val);
2921 
2922 	/* Configure page size. */
2923 	val = REG_RD(sc, BNX_TBDR_CONFIG);
2924 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2925 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2926 	REG_WR(sc, BNX_TBDR_CONFIG, val);
2927 
2928 bnx_chipinit_exit:
2929 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2930 
2931 	return(rc);
2932 }
2933 
2934 /****************************************************************************/
2935 /* Initialize the controller in preparation to send/receive traffic.        */
2936 /*                                                                          */
2937 /* Returns:                                                                 */
2938 /*   0 for success, positive value for failure.                             */
2939 /****************************************************************************/
2940 int
2941 bnx_blockinit(struct bnx_softc *sc)
2942 {
2943 	u_int32_t		reg, val;
2944 	int 			rc = 0;
2945 
2946 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2947 
2948 	/* Load the hardware default MAC address. */
2949 	bnx_set_mac_addr(sc);
2950 
2951 	/* Set the Ethernet backoff seed value */
2952 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2953 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2954 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2955 
2956 	sc->last_status_idx = 0;
2957 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2958 
2959 	/* Set up link change interrupt generation. */
2960 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2961 
2962 	/* Program the physical address of the status block. */
2963 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2964 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2965 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2966 
2967 	/* Program the physical address of the statistics block. */
2968 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2969 	    (u_int32_t)(sc->stats_block_paddr));
2970 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2971 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2972 
2973 	/* Program various host coalescing parameters. */
2974 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2975 	    << 16) | sc->bnx_tx_quick_cons_trip);
2976 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2977 	    << 16) | sc->bnx_rx_quick_cons_trip);
2978 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2979 	    sc->bnx_comp_prod_trip);
2980 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2981 	    sc->bnx_tx_ticks);
2982 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2983 	    sc->bnx_rx_ticks);
2984 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2985 	    sc->bnx_com_ticks);
2986 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2987 	    sc->bnx_cmd_ticks);
2988 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2989 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
2990 	REG_WR(sc, BNX_HC_CONFIG,
2991 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2992 	    BNX_HC_CONFIG_COLLECT_STATS));
2993 
2994 	/* Clear the internal statistics counters. */
2995 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2996 
2997 	/* Verify that bootcode is running. */
2998 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2999 
3000 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3001 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3002 	    __FILE__, __LINE__); reg = 0);
3003 
3004 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3005 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3006 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3007 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3008 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3009 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3010 		rc = ENODEV;
3011 		goto bnx_blockinit_exit;
3012 	}
3013 
3014 	/* Check if any management firmware is running. */
3015 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3016 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3017 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3018 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3019 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3020 	}
3021 
3022 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3023 	    BNX_DEV_INFO_BC_REV);
3024 
3025 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3026 
3027 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3028 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3029 
3030 	/* Enable link state change interrupt generation. */
3031 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3032 
3033 	/* Enable all remaining blocks in the MAC. */
3034 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3035 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3036 	DELAY(20);
3037 
3038 bnx_blockinit_exit:
3039 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3040 
3041 	return (rc);
3042 }
3043 
3044 /****************************************************************************/
3045 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3046 /*                                                                          */
3047 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3048 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3049 /* necessary.                                                               */
3050 /*                                                                          */
3051 /* Returns:                                                                 */
3052 /*   0 for success, positive value for failure.                             */
3053 /****************************************************************************/
3054 int
3055 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3056     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3057 {
3058 	bus_dmamap_t		map;
3059 	struct mbuf 		*m_new = NULL;
3060 	struct rx_bd		*rxbd;
3061 	int			i, rc = 0;
3062 	u_int32_t		addr;
3063 #ifdef BNX_DEBUG
3064 	u_int16_t debug_chain_prod =	*chain_prod;
3065 #endif
3066 	u_int16_t first_chain_prod;
3067 	u_int16_t min_free_bd;
3068 
3069 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3070 	    __func__);
3071 
3072 	/* Make sure the inputs are valid. */
3073 	DBRUNIF((*chain_prod > MAX_RX_BD),
3074 	    aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
3075 	    sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
3076 
3077 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3078 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3079 	    *prod_bseq);
3080 
3081 	/* try to get in as many mbufs as possible */
3082 	if (sc->mbuf_alloc_size == MCLBYTES)
3083 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3084 	else
3085 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3086 	while (sc->free_rx_bd >= min_free_bd) {
3087 		if (m == NULL) {
3088 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3089 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3090 
3091 				sc->mbuf_alloc_failed++;
3092 				rc = ENOBUFS;
3093 				goto bnx_get_buf_exit);
3094 
3095 			/* This is a new mbuf allocation. */
3096 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3097 			if (m_new == NULL) {
3098 				DBPRINT(sc, BNX_WARN,
3099 				    "%s(%d): RX mbuf header allocation failed!\n",
3100 				    __FILE__, __LINE__);
3101 
3102 				DBRUNIF(1, sc->mbuf_alloc_failed++);
3103 
3104 				rc = ENOBUFS;
3105 				goto bnx_get_buf_exit;
3106 			}
3107 
3108 			DBRUNIF(1, sc->rx_mbuf_alloc++);
3109 			if (sc->mbuf_alloc_size == MCLBYTES)
3110 				MCLGET(m_new, M_DONTWAIT);
3111 			else
3112 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3113 				    M_DONTWAIT);
3114 			if (!(m_new->m_flags & M_EXT)) {
3115 				DBPRINT(sc, BNX_WARN,
3116 				    "%s(%d): RX mbuf chain allocation failed!\n",
3117 				    __FILE__, __LINE__);
3118 
3119 				m_freem(m_new);
3120 
3121 				DBRUNIF(1, sc->rx_mbuf_alloc--);
3122 				DBRUNIF(1, sc->mbuf_alloc_failed++);
3123 
3124 				rc = ENOBUFS;
3125 				goto bnx_get_buf_exit;
3126 			}
3127 
3128 		} else {
3129 			m_new = m;
3130 			m = NULL;
3131 			m_new->m_data = m_new->m_ext.ext_buf;
3132 		}
3133 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3134 
3135 		/* Map the mbuf cluster into device memory. */
3136 		map = sc->rx_mbuf_map[*chain_prod];
3137 		first_chain_prod = *chain_prod;
3138 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3139 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3140 			    __FILE__, __LINE__);
3141 
3142 			m_freem(m_new);
3143 
3144 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3145 
3146 			rc = ENOBUFS;
3147 			goto bnx_get_buf_exit;
3148 		}
3149 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3150 		    BUS_DMASYNC_PREREAD);
3151 
3152 		/* Watch for overflow. */
3153 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3154 		    aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
3155 		    sc->bnx_dev.dv_xname,
3156 		    sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
3157 
3158 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3159 		    sc->rx_low_watermark = sc->free_rx_bd);
3160 
3161 		/*
3162 		 * Setup the rx_bd for the first segment
3163 		 */
3164 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3165 
3166 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3167 		rxbd->rx_bd_haddr_lo = htole32(addr);
3168 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3169 		rxbd->rx_bd_haddr_hi = htole32(addr);
3170 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3171 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3172 		*prod_bseq += map->dm_segs[0].ds_len;
3173 		bus_dmamap_sync(sc->bnx_dmatag,
3174 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3175 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3176 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3177 
3178 		for (i = 1; i < map->dm_nsegs; i++) {
3179 			*prod = NEXT_RX_BD(*prod);
3180 			*chain_prod = RX_CHAIN_IDX(*prod);
3181 
3182 			rxbd =
3183 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3184 
3185 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3186 			rxbd->rx_bd_haddr_lo = htole32(addr);
3187 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3188 			rxbd->rx_bd_haddr_hi = htole32(addr);
3189 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3190 			rxbd->rx_bd_flags = 0;
3191 			*prod_bseq += map->dm_segs[i].ds_len;
3192 			bus_dmamap_sync(sc->bnx_dmatag,
3193 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3194 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3195 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3196 		}
3197 
3198 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3199 		bus_dmamap_sync(sc->bnx_dmatag,
3200 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3201 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3202 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3203 
3204 		/*
3205 		 * Save the mbuf, ajust the map pointer (swap map for first and
3206 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3207 		 * and update counter.
3208 		 */
3209 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
3210 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3211 		sc->rx_mbuf_map[*chain_prod] = map;
3212 		sc->free_rx_bd -= map->dm_nsegs;
3213 
3214 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3215 		    map->dm_nsegs));
3216 		*prod = NEXT_RX_BD(*prod);
3217 		*chain_prod = RX_CHAIN_IDX(*prod);
3218 	}
3219 
3220 bnx_get_buf_exit:
3221 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3222 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3223 	    *chain_prod, *prod_bseq);
3224 
3225 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3226 	    __func__);
3227 
3228 	return(rc);
3229 }
3230 
3231 /****************************************************************************/
3232 /* Allocate memory and initialize the TX data structures.                   */
3233 /*                                                                          */
3234 /* Returns:                                                                 */
3235 /*   0 for success, positive value for failure.                             */
3236 /****************************************************************************/
3237 int
3238 bnx_init_tx_chain(struct bnx_softc *sc)
3239 {
3240 	struct tx_bd		*txbd;
3241 	u_int32_t		val, addr;
3242 	int			i, rc = 0;
3243 
3244 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3245 
3246 	/* Set the initial TX producer/consumer indices. */
3247 	sc->tx_prod = 0;
3248 	sc->tx_cons = 0;
3249 	sc->tx_prod_bseq = 0;
3250 	sc->used_tx_bd = 0;
3251 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3252 
3253 	/*
3254 	 * The NetXtreme II supports a linked-list structure called
3255 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3256 	 * consists of a series of 1 or more chain pages, each of which
3257 	 * consists of a fixed number of BD entries.
3258 	 * The last BD entry on each page is a pointer to the next page
3259 	 * in the chain, and the last pointer in the BD chain
3260 	 * points back to the beginning of the chain.
3261 	 */
3262 
3263 	/* Set the TX next pointer chain entries. */
3264 	for (i = 0; i < TX_PAGES; i++) {
3265 		int j;
3266 
3267 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3268 
3269 		/* Check if we've reached the last page. */
3270 		if (i == (TX_PAGES - 1))
3271 			j = 0;
3272 		else
3273 			j = i + 1;
3274 
3275 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3276 		txbd->tx_bd_haddr_lo = htole32(addr);
3277 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3278 		txbd->tx_bd_haddr_hi = htole32(addr);
3279 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3280 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3281 	}
3282 
3283 	/*
3284 	 * Initialize the context ID for an L2 TX chain.
3285 	 */
3286 	val = BNX_L2CTX_TYPE_TYPE_L2;
3287 	val |= BNX_L2CTX_TYPE_SIZE_L2;
3288 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3289 
3290 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3291 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3292 
3293 	/* Point the hardware to the first page in the chain. */
3294 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3295 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3296 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3297 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3298 
3299 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3300 
3301 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3302 
3303 	return(rc);
3304 }
3305 
3306 /****************************************************************************/
3307 /* Free memory and clear the TX data structures.                            */
3308 /*                                                                          */
3309 /* Returns:                                                                 */
3310 /*   Nothing.                                                               */
3311 /****************************************************************************/
3312 void
3313 bnx_free_tx_chain(struct bnx_softc *sc)
3314 {
3315 	int			i;
3316 
3317 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3318 
3319 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3320 	for (i = 0; i < TOTAL_TX_BD; i++) {
3321 		if (sc->tx_mbuf_ptr[i] != NULL) {
3322 			if (sc->tx_mbuf_map != NULL)
3323 				bus_dmamap_sync(sc->bnx_dmatag,
3324 				    sc->tx_mbuf_map[i], 0,
3325 				    sc->tx_mbuf_map[i]->dm_mapsize,
3326 				    BUS_DMASYNC_POSTWRITE);
3327 			m_freem(sc->tx_mbuf_ptr[i]);
3328 			sc->tx_mbuf_ptr[i] = NULL;
3329 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3330 		}
3331 	}
3332 
3333 	/* Clear each TX chain page. */
3334 	for (i = 0; i < TX_PAGES; i++) {
3335 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3336 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3337 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3338 	}
3339 
3340 	/* Check if we lost any mbufs in the process. */
3341 	DBRUNIF((sc->tx_mbuf_alloc),
3342 	    aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
3343 	    sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
3344 
3345 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3346 }
3347 
3348 /****************************************************************************/
3349 /* Allocate memory and initialize the RX data structures.                   */
3350 /*                                                                          */
3351 /* Returns:                                                                 */
3352 /*   0 for success, positive value for failure.                             */
3353 /****************************************************************************/
3354 int
3355 bnx_init_rx_chain(struct bnx_softc *sc)
3356 {
3357 	struct rx_bd		*rxbd;
3358 	int			i, rc = 0;
3359 	u_int16_t		prod, chain_prod;
3360 	u_int32_t		prod_bseq, val, addr;
3361 
3362 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3363 
3364 	/* Initialize the RX producer and consumer indices. */
3365 	sc->rx_prod = 0;
3366 	sc->rx_cons = 0;
3367 	sc->rx_prod_bseq = 0;
3368 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3369 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3370 
3371 	/* Initialize the RX next pointer chain entries. */
3372 	for (i = 0; i < RX_PAGES; i++) {
3373 		int j;
3374 
3375 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3376 
3377 		/* Check if we've reached the last page. */
3378 		if (i == (RX_PAGES - 1))
3379 			j = 0;
3380 		else
3381 			j = i + 1;
3382 
3383 		/* Setup the chain page pointers. */
3384 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3385 		rxbd->rx_bd_haddr_hi = htole32(addr);
3386 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3387 		rxbd->rx_bd_haddr_lo = htole32(addr);
3388 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3389 		    0, BNX_RX_CHAIN_PAGE_SZ,
3390 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3391 	}
3392 
3393 	/* Initialize the context ID for an L2 RX chain. */
3394 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3395 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3396 	val |= 0x02 << 8;
3397 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3398 
3399 	/* Point the hardware to the first page in the chain. */
3400 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3401 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3402 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3403 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3404 
3405 	/* Allocate mbuf clusters for the rx_bd chain. */
3406 	prod = prod_bseq = 0;
3407 	chain_prod = RX_CHAIN_IDX(prod);
3408 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3409 		BNX_PRINTF(sc,
3410 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3411 	}
3412 
3413 	/* Save the RX chain producer index. */
3414 	sc->rx_prod = prod;
3415 	sc->rx_prod_bseq = prod_bseq;
3416 
3417 	for (i = 0; i < RX_PAGES; i++)
3418 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3419 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3420 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3421 
3422 	/* Tell the chip about the waiting rx_bd's. */
3423 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3424 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3425 
3426 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3427 
3428 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3429 
3430 	return(rc);
3431 }
3432 
3433 /****************************************************************************/
3434 /* Free memory and clear the RX data structures.                            */
3435 /*                                                                          */
3436 /* Returns:                                                                 */
3437 /*   Nothing.                                                               */
3438 /****************************************************************************/
3439 void
3440 bnx_free_rx_chain(struct bnx_softc *sc)
3441 {
3442 	int			i;
3443 
3444 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3445 
3446 	/* Free any mbufs still in the RX mbuf chain. */
3447 	for (i = 0; i < TOTAL_RX_BD; i++) {
3448 		if (sc->rx_mbuf_ptr[i] != NULL) {
3449 			if (sc->rx_mbuf_map[i] != NULL)
3450 				bus_dmamap_sync(sc->bnx_dmatag,
3451 				    sc->rx_mbuf_map[i],	0,
3452 				    sc->rx_mbuf_map[i]->dm_mapsize,
3453 				    BUS_DMASYNC_POSTREAD);
3454 			m_freem(sc->rx_mbuf_ptr[i]);
3455 			sc->rx_mbuf_ptr[i] = NULL;
3456 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3457 		}
3458 	}
3459 
3460 	/* Clear each RX chain page. */
3461 	for (i = 0; i < RX_PAGES; i++)
3462 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3463 
3464 	/* Check if we lost any mbufs in the process. */
3465 	DBRUNIF((sc->rx_mbuf_alloc),
3466 	    aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
3467 	    sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
3468 
3469 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3470 }
3471 
3472 /****************************************************************************/
3473 /* Set media options.                                                       */
3474 /*                                                                          */
3475 /* Returns:                                                                 */
3476 /*   0 for success, positive value for failure.                             */
3477 /****************************************************************************/
3478 int
3479 bnx_ifmedia_upd(struct ifnet *ifp)
3480 {
3481 	struct bnx_softc	*sc;
3482 	struct mii_data		*mii;
3483 	struct ifmedia		*ifm;
3484 	int			rc = 0;
3485 
3486 	sc = ifp->if_softc;
3487 	ifm = &sc->bnx_ifmedia;
3488 
3489 	/* DRC - ToDo: Add SerDes support. */
3490 
3491 	mii = &sc->bnx_mii;
3492 	sc->bnx_link = 0;
3493 	if (mii->mii_instance) {
3494 		struct mii_softc *miisc;
3495 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3496 			mii_phy_reset(miisc);
3497 	}
3498 	mii_mediachg(mii);
3499 
3500 	return(rc);
3501 }
3502 
3503 /****************************************************************************/
3504 /* Reports current media status.                                            */
3505 /*                                                                          */
3506 /* Returns:                                                                 */
3507 /*   Nothing.                                                               */
3508 /****************************************************************************/
3509 void
3510 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3511 {
3512 	struct bnx_softc	*sc;
3513 	struct mii_data		*mii;
3514 	int			s;
3515 
3516 	sc = ifp->if_softc;
3517 
3518 	s = splnet();
3519 
3520 	mii = &sc->bnx_mii;
3521 
3522 	/* DRC - ToDo: Add SerDes support. */
3523 
3524 	mii_pollstat(mii);
3525 	ifmr->ifm_active = mii->mii_media_active;
3526 	ifmr->ifm_status = mii->mii_media_status;
3527 
3528 	splx(s);
3529 }
3530 
3531 /****************************************************************************/
3532 /* Handles PHY generated interrupt events.                                  */
3533 /*                                                                          */
3534 /* Returns:                                                                 */
3535 /*   Nothing.                                                               */
3536 /****************************************************************************/
3537 void
3538 bnx_phy_intr(struct bnx_softc *sc)
3539 {
3540 	u_int32_t		new_link_state, old_link_state;
3541 
3542 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3543 	    BUS_DMASYNC_POSTREAD);
3544 	new_link_state = sc->status_block->status_attn_bits &
3545 	    STATUS_ATTN_BITS_LINK_STATE;
3546 	old_link_state = sc->status_block->status_attn_bits_ack &
3547 	    STATUS_ATTN_BITS_LINK_STATE;
3548 
3549 	/* Handle any changes if the link state has changed. */
3550 	if (new_link_state != old_link_state) {
3551 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3552 
3553 		sc->bnx_link = 0;
3554 		callout_stop(&sc->bnx_timeout);
3555 		bnx_tick(sc);
3556 
3557 		/* Update the status_attn_bits_ack field in the status block. */
3558 		if (new_link_state) {
3559 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3560 			    STATUS_ATTN_BITS_LINK_STATE);
3561 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3562 		} else {
3563 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3564 			    STATUS_ATTN_BITS_LINK_STATE);
3565 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3566 		}
3567 	}
3568 
3569 	/* Acknowledge the link change interrupt. */
3570 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3571 }
3572 
3573 /****************************************************************************/
3574 /* Handles received frame interrupt events.                                 */
3575 /*                                                                          */
3576 /* Returns:                                                                 */
3577 /*   Nothing.                                                               */
3578 /****************************************************************************/
3579 void
3580 bnx_rx_intr(struct bnx_softc *sc)
3581 {
3582 	struct status_block	*sblk = sc->status_block;
3583 	struct ifnet		*ifp = &sc->ethercom.ec_if;
3584 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
3585 	u_int16_t		sw_prod, sw_chain_prod;
3586 	u_int32_t		sw_prod_bseq;
3587 	struct l2_fhdr		*l2fhdr;
3588 	int			i;
3589 
3590 	DBRUNIF(1, sc->rx_interrupts++);
3591 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3592 	    BUS_DMASYNC_POSTREAD);
3593 
3594 	/* Prepare the RX chain pages to be accessed by the host CPU. */
3595 	for (i = 0; i < RX_PAGES; i++)
3596 		bus_dmamap_sync(sc->bnx_dmatag,
3597 		    sc->rx_bd_chain_map[i], 0,
3598 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3599 		    BUS_DMASYNC_POSTWRITE);
3600 
3601 	/* Get the hardware's view of the RX consumer index. */
3602 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3603 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3604 		hw_cons++;
3605 
3606 	/* Get working copies of the driver's view of the RX indices. */
3607 	sw_cons = sc->rx_cons;
3608 	sw_prod = sc->rx_prod;
3609 	sw_prod_bseq = sc->rx_prod_bseq;
3610 
3611 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3612 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3613 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
3614 
3615 	/* Prevent speculative reads from getting ahead of the status block. */
3616 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3617 	    BUS_SPACE_BARRIER_READ);
3618 
3619 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3620 	    sc->rx_low_watermark = sc->free_rx_bd);
3621 
3622 	/*
3623 	 * Scan through the receive chain as long
3624 	 * as there is work to do.
3625 	 */
3626 	while (sw_cons != hw_cons) {
3627 		struct mbuf *m;
3628 		struct rx_bd *rxbd;
3629 		unsigned int len;
3630 		u_int32_t status;
3631 
3632 		/* Convert the producer/consumer indices to an actual
3633 		 * rx_bd index.
3634 		 */
3635 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3636 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3637 
3638 		/* Get the used rx_bd. */
3639 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3640 		sc->free_rx_bd++;
3641 
3642 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3643 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3644 
3645 		/* The mbuf is stored with the last rx_bd entry of a packet. */
3646 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3647 #ifdef DIAGNOSTIC
3648 			/* Validate that this is the last rx_bd. */
3649 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3650 			    printf("%s: Unexpected mbuf found in "
3651 			        "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
3652 			        sw_chain_cons);
3653 			}
3654 #endif
3655 
3656 			/* DRC - ToDo: If the received packet is small, say less
3657 			 *             than 128 bytes, allocate a new mbuf here,
3658 			 *             copy the data to that mbuf, and recycle
3659 			 *             the mapped jumbo frame.
3660 			 */
3661 
3662 			/* Unmap the mbuf from DMA space. */
3663 #ifdef DIAGNOSTIC
3664 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3665 				printf("invalid map sw_cons 0x%x "
3666 				"sw_prod 0x%x "
3667 				"sw_chain_cons 0x%x "
3668 				"sw_chain_prod 0x%x "
3669 				"hw_cons 0x%x "
3670 				"TOTAL_RX_BD_PER_PAGE 0x%x "
3671 				"TOTAL_RX_BD 0x%x\n",
3672 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3673 				hw_cons,
3674 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3675 			}
3676 #endif
3677 			bus_dmamap_sync(sc->bnx_dmatag,
3678 			    sc->rx_mbuf_map[sw_chain_cons], 0,
3679 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3680 			    BUS_DMASYNC_POSTREAD);
3681 			bus_dmamap_unload(sc->bnx_dmatag,
3682 			    sc->rx_mbuf_map[sw_chain_cons]);
3683 
3684 			/* Remove the mbuf from the driver's chain. */
3685 			m = sc->rx_mbuf_ptr[sw_chain_cons];
3686 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3687 
3688 			/*
3689 			 * Frames received on the NetXteme II are prepended
3690 			 * with the l2_fhdr structure which provides status
3691 			 * information about the received frame (including
3692 			 * VLAN tags and checksum info) and are also
3693 			 * automatically adjusted to align the IP header
3694 			 * (i.e. two null bytes are inserted before the
3695 			 * Ethernet header).
3696 			 */
3697 			l2fhdr = mtod(m, struct l2_fhdr *);
3698 
3699 			len    = l2fhdr->l2_fhdr_pkt_len;
3700 			status = l2fhdr->l2_fhdr_status;
3701 
3702 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3703 			    aprint_error("Simulating l2_fhdr status error.\n");
3704 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
3705 
3706 			/* Watch for unusual sized frames. */
3707 			DBRUNIF(((len < BNX_MIN_MTU) ||
3708 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3709 			    aprint_error("%s: Unusual frame size found. "
3710 			    "Min(%d), Actual(%d), Max(%d)\n",
3711 			    sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
3712 			    (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3713 
3714 			bnx_dump_mbuf(sc, m);
3715 			bnx_breakpoint(sc));
3716 
3717 			len -= ETHER_CRC_LEN;
3718 
3719 			/* Check the received frame for errors. */
3720 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
3721 			    L2_FHDR_ERRORS_PHY_DECODE |
3722 			    L2_FHDR_ERRORS_ALIGNMENT |
3723 			    L2_FHDR_ERRORS_TOO_SHORT |
3724 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
3725 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3726 			    len >
3727 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3728 				ifp->if_ierrors++;
3729 				DBRUNIF(1, sc->l2fhdr_status_errors++);
3730 
3731 				/* Reuse the mbuf for a new frame. */
3732 				if (bnx_get_buf(sc, m, &sw_prod,
3733 				    &sw_chain_prod, &sw_prod_bseq)) {
3734 					DBRUNIF(1, bnx_breakpoint(sc));
3735 					panic("%s: Can't reuse RX mbuf!\n",
3736 					    sc->bnx_dev.dv_xname);
3737 				}
3738 				continue;
3739 			}
3740 
3741 			/*
3742 			 * Get a new mbuf for the rx_bd.   If no new
3743 			 * mbufs are available then reuse the current mbuf,
3744 			 * log an ierror on the interface, and generate
3745 			 * an error in the system log.
3746 			 */
3747 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3748 			    &sw_prod_bseq)) {
3749 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3750 					"new mbuf, incoming frame dropped!\n"));
3751 
3752 				ifp->if_ierrors++;
3753 
3754 				/* Try and reuse the exisitng mbuf. */
3755 				if (bnx_get_buf(sc, m, &sw_prod,
3756 				    &sw_chain_prod, &sw_prod_bseq)) {
3757 					DBRUNIF(1, bnx_breakpoint(sc));
3758 					panic("%s: Double mbuf allocation "
3759 					    "failure!", sc->bnx_dev.dv_xname);
3760 				}
3761 				continue;
3762 			}
3763 
3764 			/* Skip over the l2_fhdr when passing the data up
3765 			 * the stack.
3766 			 */
3767 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3768 
3769 			/* Adjust the pckt length to match the received data. */
3770 			m->m_pkthdr.len = m->m_len = len;
3771 
3772 			/* Send the packet to the appropriate interface. */
3773 			m->m_pkthdr.rcvif = ifp;
3774 
3775 			DBRUN(BNX_VERBOSE_RECV,
3776 			    struct ether_header *eh;
3777 			    eh = mtod(m, struct ether_header *);
3778 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3779 			    __func__, ether_sprintf(eh->ether_dhost),
3780 			    ether_sprintf(eh->ether_shost),
3781 			    htons(eh->ether_type)));
3782 
3783 			/* Validate the checksum. */
3784 
3785 			/* Check for an IP datagram. */
3786 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3787 				/* Check if the IP checksum is valid. */
3788 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3789 				    == 0)
3790 					m->m_pkthdr.csum_flags |=
3791 					    M_CSUM_IPv4;
3792 #ifdef BNX_DEBUG
3793 				else
3794 					DBPRINT(sc, BNX_WARN_SEND,
3795 					    "%s(): Invalid IP checksum "
3796 					        "= 0x%04X!\n",
3797 						__func__,
3798 						l2fhdr->l2_fhdr_ip_xsum
3799 						);
3800 #endif
3801 			}
3802 
3803 			/* Check for a valid TCP/UDP frame. */
3804 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3805 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
3806 				/* Check for a good TCP/UDP checksum. */
3807 				if ((status &
3808 				    (L2_FHDR_ERRORS_TCP_XSUM |
3809 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3810 					m->m_pkthdr.csum_flags |=
3811 					    M_CSUM_TCPv4 |
3812 					    M_CSUM_UDPv4;
3813 				} else {
3814 					DBPRINT(sc, BNX_WARN_SEND,
3815 					    "%s(): Invalid TCP/UDP "
3816 					    "checksum = 0x%04X!\n",
3817 					    __func__,
3818 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
3819 				}
3820 			}
3821 
3822 			/*
3823 			 * If we received a packet with a vlan tag,
3824 			 * attach that information to the packet.
3825 			 */
3826 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3827 #if 0
3828 				struct ether_vlan_header vh;
3829 
3830 				DBPRINT(sc, BNX_VERBOSE_SEND,
3831 				    "%s(): VLAN tag = 0x%04X\n",
3832 				    __func__,
3833 				    l2fhdr->l2_fhdr_vlan_tag);
3834 
3835 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3836 					m_freem(m);
3837 					continue;
3838 				}
3839 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3840 				vh.evl_proto = vh.evl_encap_proto;
3841 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3842 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3843 				m_adj(m, ETHER_HDR_LEN);
3844 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3845 					continue;
3846 				m->m_pkthdr.len += sizeof(vh);
3847 				if (m->m_len < sizeof(vh) &&
3848 				    (m = m_pullup(m, sizeof(vh))) == NULL)
3849 					goto bnx_rx_int_next_rx;
3850 				m_copyback(m, 0, sizeof(vh), &vh);
3851 #else
3852 				VLAN_INPUT_TAG(ifp, m,
3853 				    l2fhdr->l2_fhdr_vlan_tag,
3854 				    continue);
3855 #endif
3856 			}
3857 
3858 #if NBPFILTER > 0
3859 			/*
3860 			 * Handle BPF listeners. Let the BPF
3861 			 * user see the packet.
3862 			 */
3863 			if (ifp->if_bpf)
3864 				bpf_mtap(ifp->if_bpf, m);
3865 #endif
3866 
3867 			/* Pass the mbuf off to the upper layers. */
3868 			ifp->if_ipackets++;
3869 			DBPRINT(sc, BNX_VERBOSE_RECV,
3870 			    "%s(): Passing received frame up.\n", __func__);
3871 			(*ifp->if_input)(ifp, m);
3872 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3873 
3874 		}
3875 
3876 		sw_cons = NEXT_RX_BD(sw_cons);
3877 
3878 		/* Refresh hw_cons to see if there's new work */
3879 		if (sw_cons == hw_cons) {
3880 			hw_cons = sc->hw_rx_cons =
3881 			    sblk->status_rx_quick_consumer_index0;
3882 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3883 			    USABLE_RX_BD_PER_PAGE)
3884 				hw_cons++;
3885 		}
3886 
3887 		/* Prevent speculative reads from getting ahead of
3888 		 * the status block.
3889 		 */
3890 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3891 		    BUS_SPACE_BARRIER_READ);
3892 	}
3893 
3894 	for (i = 0; i < RX_PAGES; i++)
3895 		bus_dmamap_sync(sc->bnx_dmatag,
3896 		    sc->rx_bd_chain_map[i], 0,
3897 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3898 		    BUS_DMASYNC_PREWRITE);
3899 
3900 	sc->rx_cons = sw_cons;
3901 	sc->rx_prod = sw_prod;
3902 	sc->rx_prod_bseq = sw_prod_bseq;
3903 
3904 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3905 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3906 
3907 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3908 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3909 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3910 }
3911 
3912 /****************************************************************************/
3913 /* Handles transmit completion interrupt events.                            */
3914 /*                                                                          */
3915 /* Returns:                                                                 */
3916 /*   Nothing.                                                               */
3917 /****************************************************************************/
3918 void
3919 bnx_tx_intr(struct bnx_softc *sc)
3920 {
3921 	struct status_block	*sblk = sc->status_block;
3922 	struct ifnet		*ifp = &sc->ethercom.ec_if;
3923 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3924 
3925 	DBRUNIF(1, sc->tx_interrupts++);
3926 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3927 	    BUS_DMASYNC_POSTREAD);
3928 
3929 	/* Get the hardware's view of the TX consumer index. */
3930 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3931 
3932 	/* Skip to the next entry if this is a chain page pointer. */
3933 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3934 		hw_tx_cons++;
3935 
3936 	sw_tx_cons = sc->tx_cons;
3937 
3938 	/* Prevent speculative reads from getting ahead of the status block. */
3939 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3940 	    BUS_SPACE_BARRIER_READ);
3941 
3942 	/* Cycle through any completed TX chain page entries. */
3943 	while (sw_tx_cons != hw_tx_cons) {
3944 #ifdef BNX_DEBUG
3945 		struct tx_bd *txbd = NULL;
3946 #endif
3947 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3948 
3949 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3950 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3951 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3952 
3953 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3954 		    aprint_error("%s: TX chain consumer out of range! "
3955 		    " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
3956 		    sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3957 
3958 		DBRUNIF(1, txbd = &sc->tx_bd_chain
3959 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3960 
3961 		DBRUNIF((txbd == NULL),
3962 		    aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
3963 		    sc->bnx_dev.dv_xname, sw_tx_chain_cons);
3964 		    bnx_breakpoint(sc));
3965 
3966 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3967 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3968 
3969 		/*
3970 		 * Free the associated mbuf. Remember
3971 		 * that only the last tx_bd of a packet
3972 		 * has an mbuf pointer and DMA map.
3973 		 */
3974 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3975 			/* Validate that this is the last tx_bd. */
3976 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3977 			    TX_BD_FLAGS_END)),
3978 			    aprint_error("%s: tx_bd END flag not set but "
3979 			    "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
3980 			    bnx_breakpoint(sc));
3981 
3982 			DBRUN(BNX_INFO_SEND,
3983 			    aprint_debug("%s: Unloading map/freeing mbuf "
3984 			    "from tx_bd[0x%04X]\n",
3985 			    __func__, sw_tx_chain_cons));
3986 
3987 			/* Unmap the mbuf. */
3988 			bus_dmamap_unload(sc->bnx_dmatag,
3989 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
3990 
3991 			/* Free the mbuf. */
3992 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3993 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3994 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3995 
3996 			ifp->if_opackets++;
3997 		}
3998 
3999 		sc->used_tx_bd--;
4000 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4001 
4002 		/* Refresh hw_cons to see if there's new work. */
4003 		hw_tx_cons = sc->hw_tx_cons =
4004 		    sblk->status_tx_quick_consumer_index0;
4005 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4006 		    USABLE_TX_BD_PER_PAGE)
4007 			hw_tx_cons++;
4008 
4009 		/* Prevent speculative reads from getting ahead of
4010 		 * the status block.
4011 		 */
4012 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4013 		    BUS_SPACE_BARRIER_READ);
4014 	}
4015 
4016 	/* Clear the TX timeout timer. */
4017 	ifp->if_timer = 0;
4018 
4019 	/* Clear the tx hardware queue full flag. */
4020 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4021 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4022 		    aprint_debug("%s: TX chain is open for business! Used "
4023 		    "tx_bd = %d\n", sc->bnx_dev.dv_xname,
4024 		    sc->used_tx_bd));
4025 		ifp->if_flags &= ~IFF_OACTIVE;
4026 	}
4027 
4028 	sc->tx_cons = sw_tx_cons;
4029 }
4030 
4031 /****************************************************************************/
4032 /* Disables interrupt generation.                                           */
4033 /*                                                                          */
4034 /* Returns:                                                                 */
4035 /*   Nothing.                                                               */
4036 /****************************************************************************/
4037 void
4038 bnx_disable_intr(struct bnx_softc *sc)
4039 {
4040 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4041 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4042 }
4043 
4044 /****************************************************************************/
4045 /* Enables interrupt generation.                                            */
4046 /*                                                                          */
4047 /* Returns:                                                                 */
4048 /*   Nothing.                                                               */
4049 /****************************************************************************/
4050 void
4051 bnx_enable_intr(struct bnx_softc *sc)
4052 {
4053 	u_int32_t		val;
4054 
4055 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4056 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4057 
4058 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4059 	    sc->last_status_idx);
4060 
4061 	val = REG_RD(sc, BNX_HC_COMMAND);
4062 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4063 }
4064 
4065 /****************************************************************************/
4066 /* Handles controller initialization.                                       */
4067 /*                                                                          */
4068 /****************************************************************************/
4069 int
4070 bnx_init(struct ifnet *ifp)
4071 {
4072 	struct bnx_softc	*sc = ifp->if_softc;
4073 	u_int32_t		ether_mtu;
4074 	int			s, error = 0;
4075 
4076 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4077 
4078 	s = splnet();
4079 
4080 	bnx_stop(sc);
4081 
4082 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4083 		aprint_error("bnx: Controller reset failed!\n");
4084 		goto bnx_init_exit;
4085 	}
4086 
4087 	if ((error = bnx_chipinit(sc)) != 0) {
4088 		aprint_error("bnx: Controller initialization failed!\n");
4089 		goto bnx_init_exit;
4090 	}
4091 
4092 	if ((error = bnx_blockinit(sc)) != 0) {
4093 		aprint_error("bnx: Block initialization failed!\n");
4094 		goto bnx_init_exit;
4095 	}
4096 
4097 	/* Calculate and program the Ethernet MRU size. */
4098 	if (ifp->if_mtu <= ETHERMTU) {
4099 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4100 		sc->mbuf_alloc_size = MCLBYTES;
4101 	} else {
4102 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4103 		sc->mbuf_alloc_size = BNX_MAX_MRU;
4104 	}
4105 
4106 
4107 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4108 	    __func__, ether_mtu);
4109 
4110 	/*
4111 	 * Program the MRU and enable Jumbo frame
4112 	 * support.
4113 	 */
4114 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4115 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4116 
4117 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4118 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4119 
4120 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4121 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4122 	    sc->mbuf_alloc_size, sc->max_frame_size);
4123 
4124 	/* Program appropriate promiscuous/multicast filtering. */
4125 	bnx_set_rx_mode(sc);
4126 
4127 	/* Init RX buffer descriptor chain. */
4128 	bnx_init_rx_chain(sc);
4129 
4130 	/* Init TX buffer descriptor chain. */
4131 	bnx_init_tx_chain(sc);
4132 
4133 	/* Enable host interrupts. */
4134 	bnx_enable_intr(sc);
4135 
4136 	bnx_ifmedia_upd(ifp);
4137 
4138 	ifp->if_flags |= IFF_RUNNING;
4139 	ifp->if_flags &= ~IFF_OACTIVE;
4140 
4141 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4142 
4143 bnx_init_exit:
4144 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4145 
4146 	splx(s);
4147 
4148 	return(error);
4149 }
4150 
4151 /****************************************************************************/
4152 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4153 /* memory visible to the controller.                                        */
4154 /*                                                                          */
4155 /* Returns:                                                                 */
4156 /*   0 for success, positive value for failure.                             */
4157 /****************************************************************************/
4158 int
4159 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4160 {
4161 	bus_dmamap_t		map;
4162 	struct tx_bd		*txbd = NULL;
4163 	struct mbuf		*m0;
4164 	u_int16_t		vlan_tag = 0, flags = 0;
4165 	u_int16_t		chain_prod, prod;
4166 #ifdef BNX_DEBUG
4167 	u_int16_t		debug_prod;
4168 #endif
4169 	u_int32_t		addr, prod_bseq;
4170 	int			i, error, rc = 0;
4171 	struct m_tag		*mtag;
4172 
4173 	m0 = *m_head;
4174 
4175 	/* Transfer any checksum offload flags to the bd. */
4176 	if (m0->m_pkthdr.csum_flags) {
4177 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4178 			flags |= TX_BD_FLAGS_IP_CKSUM;
4179 		if (m0->m_pkthdr.csum_flags &
4180 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4181 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4182 	}
4183 
4184 	/* Transfer any VLAN tags to the bd. */
4185 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
4186 	if (mtag != NULL) {
4187 		flags |= TX_BD_FLAGS_VLAN_TAG;
4188 		vlan_tag = VLAN_TAG_VALUE(mtag);
4189 	}
4190 
4191 	/* Map the mbuf into DMAable memory. */
4192 	prod = sc->tx_prod;
4193 	chain_prod = TX_CHAIN_IDX(prod);
4194 	map = sc->tx_mbuf_map[chain_prod];
4195 
4196 	/* Map the mbuf into our DMA address space. */
4197 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4198 	if (error != 0) {
4199 		aprint_error("%s: Error mapping mbuf into TX chain!\n",
4200 		    sc->bnx_dev.dv_xname);
4201 		m_freem(m0);
4202 		*m_head = NULL;
4203 		return (error);
4204 	}
4205 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4206 	    BUS_DMASYNC_PREWRITE);
4207         /*
4208          * The chip seems to require that at least 16 descriptors be kept
4209          * empty at all times.  Make sure we honor that.
4210          * XXX Would it be faster to assume worst case scenario for
4211          * map->dm_nsegs and do this calculation higher up?
4212          */
4213         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4214                 bus_dmamap_unload(sc->bnx_dmatag, map);
4215                 return (ENOBUFS);
4216         }
4217 
4218 	/* prod points to an empty tx_bd at this point. */
4219 	prod_bseq = sc->tx_prod_bseq;
4220 #ifdef BNX_DEBUG
4221 	debug_prod = chain_prod;
4222 #endif
4223 	DBPRINT(sc, BNX_INFO_SEND,
4224 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4225 		"prod_bseq = 0x%08X\n",
4226 		__func__, *prod, chain_prod, prod_bseq);
4227 
4228 	/*
4229 	 * Cycle through each mbuf segment that makes up
4230 	 * the outgoing frame, gathering the mapping info
4231 	 * for that segment and creating a tx_bd for the
4232 	 * mbuf.
4233 	 */
4234 	for (i = 0; i < map->dm_nsegs ; i++) {
4235 		chain_prod = TX_CHAIN_IDX(prod);
4236 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4237 
4238 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4239 		txbd->tx_bd_haddr_lo = htole32(addr);
4240 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4241 		txbd->tx_bd_haddr_hi = htole32(addr);
4242 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4243 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4244 		txbd->tx_bd_flags = htole16(flags);
4245 		prod_bseq += map->dm_segs[i].ds_len;
4246 		if (i == 0)
4247 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4248 		prod = NEXT_TX_BD(prod);
4249 	}
4250 	/* Set the END flag on the last TX buffer descriptor. */
4251 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4252 
4253 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4254 
4255 	DBPRINT(sc, BNX_INFO_SEND,
4256 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4257 		"prod_bseq = 0x%08X\n",
4258 		__func__, prod, chain_prod, prod_bseq);
4259 
4260 	/*
4261 	 * Ensure that the mbuf pointer for this
4262 	 * transmission is placed at the array
4263 	 * index of the last descriptor in this
4264 	 * chain.  This is done because a single
4265 	 * map is used for all segments of the mbuf
4266 	 * and we don't want to unload the map before
4267 	 * all of the segments have been freed.
4268 	 */
4269 	sc->tx_mbuf_ptr[chain_prod] = m0;
4270 	sc->used_tx_bd += map->dm_nsegs;
4271 
4272 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4273 	    sc->tx_hi_watermark = sc->used_tx_bd);
4274 
4275 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4276 
4277 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4278 	    map_arg.maxsegs));
4279 
4280 	/* prod points to the next free tx_bd at this point. */
4281 	sc->tx_prod = prod;
4282 	sc->tx_prod_bseq = prod_bseq;
4283 
4284 	return (rc);
4285 }
4286 
4287 /****************************************************************************/
4288 /* Main transmit routine.                                                   */
4289 /*                                                                          */
4290 /* Returns:                                                                 */
4291 /*   Nothing.                                                               */
4292 /****************************************************************************/
4293 void
4294 bnx_start(struct ifnet *ifp)
4295 {
4296 	struct bnx_softc	*sc = ifp->if_softc;
4297 	struct mbuf		*m_head = NULL;
4298 	int			count = 0;
4299 	u_int16_t		tx_prod, tx_chain_prod;
4300 
4301 	/* If there's no link or the transmit queue is empty then just exit. */
4302 	if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4303 		DBPRINT(sc, BNX_INFO_SEND,
4304 		    "%s(): No link or transmit queue empty.\n", __func__);
4305 		goto bnx_start_exit;
4306 	}
4307 
4308 	/* prod points to the next free tx_bd. */
4309 	tx_prod = sc->tx_prod;
4310 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4311 
4312 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4313 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4314 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4315 
4316 	/*
4317 	 * Keep adding entries while there is space in the ring.  We keep
4318 	 * BNX_TX_SLACK_SPACE entries unused at all times.
4319 	 */
4320 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4321 		/* Check for any frames to send. */
4322 		IFQ_POLL(&ifp->if_snd, m_head);
4323 		if (m_head == NULL)
4324 			break;
4325 
4326 		/*
4327 		 * Pack the data into the transmit ring. If we
4328 		 * don't have room, set the OACTIVE flag to wait
4329 		 * for the NIC to drain the chain.
4330 		 */
4331 		if (bnx_tx_encap(sc, &m_head)) {
4332 			ifp->if_flags |= IFF_OACTIVE;
4333 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4334 			    "business! Total tx_bd used = %d\n",
4335 			    sc->used_tx_bd);
4336 			break;
4337 		}
4338 
4339 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4340 		count++;
4341 
4342 #if NBPFILTER > 0
4343 		/* Send a copy of the frame to any BPF listeners. */
4344 		if (ifp->if_bpf)
4345 			bpf_mtap(ifp->if_bpf, m_head);
4346 #endif
4347 	}
4348 
4349 	if (count == 0) {
4350 		/* no packets were dequeued */
4351 		DBPRINT(sc, BNX_VERBOSE_SEND,
4352 		    "%s(): No packets were dequeued\n", __func__);
4353 		goto bnx_start_exit;
4354 	}
4355 
4356 	/* Update the driver's counters. */
4357 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4358 
4359 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4360 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4361 	    tx_chain_prod, sc->tx_prod_bseq);
4362 
4363 	/* Start the transmit. */
4364 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4365 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4366 
4367 	/* Set the tx timeout. */
4368 	ifp->if_timer = BNX_TX_TIMEOUT;
4369 
4370 bnx_start_exit:
4371 	return;
4372 }
4373 
4374 /****************************************************************************/
4375 /* Handles any IOCTL calls from the operating system.                       */
4376 /*                                                                          */
4377 /* Returns:                                                                 */
4378 /*   0 for success, positive value for failure.                             */
4379 /****************************************************************************/
4380 int
4381 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4382 {
4383 	struct bnx_softc	*sc = ifp->if_softc;
4384 	struct ifreq		*ifr = (struct ifreq *) data;
4385 	struct mii_data		*mii;
4386 	int			s, error = 0;
4387 
4388 	s = splnet();
4389 
4390 	switch (command) {
4391 	case SIOCSIFFLAGS:
4392 		if (ifp->if_flags & IFF_UP) {
4393 			if ((ifp->if_flags & IFF_RUNNING) &&
4394 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
4395 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4396 				bnx_set_rx_mode(sc);
4397 			} else if (!(ifp->if_flags & IFF_RUNNING))
4398 				bnx_init(ifp);
4399 
4400 		} else if (ifp->if_flags & IFF_RUNNING)
4401 			bnx_stop(sc);
4402 
4403 		sc->bnx_if_flags = ifp->if_flags;
4404 		break;
4405 
4406 	case SIOCSIFMEDIA:
4407 	case SIOCGIFMEDIA:
4408 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4409 		    sc->bnx_phy_flags);
4410 
4411 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4412 			error = ifmedia_ioctl(ifp, ifr,
4413 			    &sc->bnx_ifmedia, command);
4414 		else {
4415 			mii = &sc->bnx_mii;
4416 			error = ifmedia_ioctl(ifp, ifr,
4417 			    &mii->mii_media, command);
4418 		}
4419 		break;
4420 
4421 	default:
4422 		error = ether_ioctl(ifp, command, data);
4423 		if (error != ENETRESET)
4424 			break;
4425 		error = 0;
4426 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
4427 			/* reload packet filter if running */
4428 			if (ifp->if_flags & IFF_RUNNING)
4429 				bnx_set_rx_mode(sc);
4430 		}
4431 		break;
4432 	}
4433 
4434 	splx(s);
4435 
4436 	return (error);
4437 }
4438 
4439 /****************************************************************************/
4440 /* Transmit timeout handler.                                                */
4441 /*                                                                          */
4442 /* Returns:                                                                 */
4443 /*   Nothing.                                                               */
4444 /****************************************************************************/
4445 void
4446 bnx_watchdog(struct ifnet *ifp)
4447 {
4448 	struct bnx_softc	*sc = ifp->if_softc;
4449 
4450 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4451 	    bnx_dump_status_block(sc));
4452 
4453 	aprint_error("%s: Watchdog timeout -- resetting!\n",
4454 	    sc->bnx_dev.dv_xname);
4455 
4456 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4457 
4458 	bnx_init(ifp);
4459 
4460 	ifp->if_oerrors++;
4461 }
4462 
4463 /*
4464  * Interrupt handler.
4465  */
4466 /****************************************************************************/
4467 /* Main interrupt entry point.  Verifies that the controller generated the  */
4468 /* interrupt and then calls a separate routine for handle the various       */
4469 /* interrupt causes (PHY, TX, RX).                                          */
4470 /*                                                                          */
4471 /* Returns:                                                                 */
4472 /*   0 for success, positive value for failure.                             */
4473 /****************************************************************************/
4474 int
4475 bnx_intr(void *xsc)
4476 {
4477 	struct bnx_softc	*sc;
4478 	struct ifnet		*ifp;
4479 	u_int32_t		status_attn_bits;
4480 
4481 	sc = xsc;
4482 	ifp = &sc->ethercom.ec_if;
4483 
4484 	DBRUNIF(1, sc->interrupts_generated++);
4485 
4486 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4487 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4488 
4489 	/*
4490 	 * If the hardware status block index
4491 	 * matches the last value read by the
4492 	 * driver and we haven't asserted our
4493 	 * interrupt then there's nothing to do.
4494 	 */
4495 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
4496 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4497 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4498 		return (0);
4499 
4500 	/* Ack the interrupt and stop others from occuring. */
4501 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4502 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4503 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4504 
4505 	/* Keep processing data as long as there is work to do. */
4506 	for (;;) {
4507 		status_attn_bits = sc->status_block->status_attn_bits;
4508 
4509 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4510 		    aprint_debug("Simulating unexpected status attention bit set.");
4511 		    status_attn_bits = status_attn_bits |
4512 		    STATUS_ATTN_BITS_PARITY_ERROR);
4513 
4514 		/* Was it a link change interrupt? */
4515 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4516 		    (sc->status_block->status_attn_bits_ack &
4517 		    STATUS_ATTN_BITS_LINK_STATE))
4518 			bnx_phy_intr(sc);
4519 
4520 		/* If any other attention is asserted then the chip is toast. */
4521 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4522 		    (sc->status_block->status_attn_bits_ack &
4523 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
4524 			DBRUN(1, sc->unexpected_attentions++);
4525 
4526 			aprint_error("%s: Fatal attention detected: 0x%08X\n",
4527 			    sc->bnx_dev.dv_xname,
4528 			    sc->status_block->status_attn_bits);
4529 
4530 			DBRUN(BNX_FATAL,
4531 			    if (bnx_debug_unexpected_attention == 0)
4532 			    bnx_breakpoint(sc));
4533 
4534 			bnx_init(ifp);
4535 			return (1);
4536 		}
4537 
4538 		/* Check for any completed RX frames. */
4539 		if (sc->status_block->status_rx_quick_consumer_index0 !=
4540 		    sc->hw_rx_cons)
4541 			bnx_rx_intr(sc);
4542 
4543 		/* Check for any completed TX frames. */
4544 		if (sc->status_block->status_tx_quick_consumer_index0 !=
4545 		    sc->hw_tx_cons)
4546 			bnx_tx_intr(sc);
4547 
4548 		/* Save the status block index value for use during the
4549 		 * next interrupt.
4550 		 */
4551 		sc->last_status_idx = sc->status_block->status_idx;
4552 
4553 		/* Prevent speculative reads from getting ahead of the
4554 		 * status block.
4555 		 */
4556 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4557 		    BUS_SPACE_BARRIER_READ);
4558 
4559 		/* If there's no work left then exit the isr. */
4560 		if ((sc->status_block->status_rx_quick_consumer_index0 ==
4561 		    sc->hw_rx_cons) &&
4562 		    (sc->status_block->status_tx_quick_consumer_index0 ==
4563 		    sc->hw_tx_cons))
4564 			break;
4565 	}
4566 
4567 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4568 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4569 
4570 	/* Re-enable interrupts. */
4571 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4572 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4573 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4574 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4575 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4576 
4577 	/* Handle any frames that arrived while handling the interrupt. */
4578 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4579 		bnx_start(ifp);
4580 
4581 	return (1);
4582 }
4583 
4584 /****************************************************************************/
4585 /* Programs the various packet receive modes (broadcast and multicast).     */
4586 /*                                                                          */
4587 /* Returns:                                                                 */
4588 /*   Nothing.                                                               */
4589 /****************************************************************************/
4590 void
4591 bnx_set_rx_mode(struct bnx_softc *sc)
4592 {
4593 	struct ethercom		*ec = &sc->ethercom;
4594 	struct ifnet		*ifp = &ec->ec_if;
4595 	struct ether_multi	*enm;
4596 	struct ether_multistep	step;
4597 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4598 	u_int32_t		rx_mode, sort_mode;
4599 	int			h, i;
4600 
4601 	/* Initialize receive mode default settings. */
4602 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4603 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4604 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4605 
4606 	/*
4607 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4608 	 * be enbled.
4609 	 */
4610 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4611 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4612 
4613 	/*
4614 	 * Check for promiscuous, all multicast, or selected
4615 	 * multicast address filtering.
4616 	 */
4617 	if (ifp->if_flags & IFF_PROMISC) {
4618 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4619 
4620 		/* Enable promiscuous mode. */
4621 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4622 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4623 	} else if (ifp->if_flags & IFF_ALLMULTI) {
4624 allmulti:
4625 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4626 
4627 		/* Enable all multicast addresses. */
4628 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4629 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4630 			    0xffffffff);
4631 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4632 	} else {
4633 		/* Accept one or more multicast(s). */
4634 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4635 
4636 		ETHER_FIRST_MULTI(step, ec, enm);
4637 		while (enm != NULL) {
4638 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4639 			    ETHER_ADDR_LEN)) {
4640 				ifp->if_flags |= IFF_ALLMULTI;
4641 				goto allmulti;
4642 			}
4643 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4644 			    0xFF;
4645 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4646 			ETHER_NEXT_MULTI(step, enm);
4647 		}
4648 
4649 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4650 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4651 			    hashes[i]);
4652 
4653 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4654 	}
4655 
4656 	/* Only make changes if the recive mode has actually changed. */
4657 	if (rx_mode != sc->rx_mode) {
4658 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4659 		    rx_mode);
4660 
4661 		sc->rx_mode = rx_mode;
4662 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4663 	}
4664 
4665 	/* Disable and clear the exisitng sort before enabling a new sort. */
4666 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4667 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4668 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4669 }
4670 
4671 /****************************************************************************/
4672 /* Called periodically to updates statistics from the controllers           */
4673 /* statistics block.                                                        */
4674 /*                                                                          */
4675 /* Returns:                                                                 */
4676 /*   Nothing.                                                               */
4677 /****************************************************************************/
4678 void
4679 bnx_stats_update(struct bnx_softc *sc)
4680 {
4681 	struct ifnet		*ifp = &sc->ethercom.ec_if;
4682 	struct statistics_block	*stats;
4683 
4684 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4685 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4686 	    BUS_DMASYNC_POSTREAD);
4687 
4688 	stats = (struct statistics_block *)sc->stats_block;
4689 
4690 	/*
4691 	 * Update the interface statistics from the
4692 	 * hardware statistics.
4693 	 */
4694 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4695 
4696 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4697 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
4698 	    (u_long)stats->stat_IfInMBUFDiscards +
4699 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
4700 	    (u_long)stats->stat_Dot3StatsFCSErrors;
4701 
4702 	ifp->if_oerrors = (u_long)
4703 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4704 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4705 	    (u_long)stats->stat_Dot3StatsLateCollisions;
4706 
4707 	/*
4708 	 * Certain controllers don't report
4709 	 * carrier sense errors correctly.
4710 	 * See errata E11_5708CA0_1165.
4711 	 */
4712 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4713 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4714 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4715 
4716 	/*
4717 	 * Update the sysctl statistics from the
4718 	 * hardware statistics.
4719 	 */
4720 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4721 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
4722 
4723 	sc->stat_IfHCInBadOctets =
4724 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4725 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4726 
4727 	sc->stat_IfHCOutOctets =
4728 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4729 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
4730 
4731 	sc->stat_IfHCOutBadOctets =
4732 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4733 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4734 
4735 	sc->stat_IfHCInUcastPkts =
4736 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4737 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4738 
4739 	sc->stat_IfHCInMulticastPkts =
4740 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4741 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4742 
4743 	sc->stat_IfHCInBroadcastPkts =
4744 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4745 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4746 
4747 	sc->stat_IfHCOutUcastPkts =
4748 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4749 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4750 
4751 	sc->stat_IfHCOutMulticastPkts =
4752 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4753 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4754 
4755 	sc->stat_IfHCOutBroadcastPkts =
4756 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4757 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4758 
4759 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4760 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4761 
4762 	sc->stat_Dot3StatsCarrierSenseErrors =
4763 	    stats->stat_Dot3StatsCarrierSenseErrors;
4764 
4765 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4766 
4767 	sc->stat_Dot3StatsAlignmentErrors =
4768 	    stats->stat_Dot3StatsAlignmentErrors;
4769 
4770 	sc->stat_Dot3StatsSingleCollisionFrames =
4771 	    stats->stat_Dot3StatsSingleCollisionFrames;
4772 
4773 	sc->stat_Dot3StatsMultipleCollisionFrames =
4774 	    stats->stat_Dot3StatsMultipleCollisionFrames;
4775 
4776 	sc->stat_Dot3StatsDeferredTransmissions =
4777 	    stats->stat_Dot3StatsDeferredTransmissions;
4778 
4779 	sc->stat_Dot3StatsExcessiveCollisions =
4780 	    stats->stat_Dot3StatsExcessiveCollisions;
4781 
4782 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4783 
4784 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4785 
4786 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4787 
4788 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4789 
4790 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4791 
4792 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4793 
4794 	sc->stat_EtherStatsPktsRx64Octets =
4795 	    stats->stat_EtherStatsPktsRx64Octets;
4796 
4797 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4798 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4799 
4800 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4801 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4802 
4803 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4804 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4805 
4806 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4807 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4808 
4809 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4810 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4811 
4812 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4813 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4814 
4815 	sc->stat_EtherStatsPktsTx64Octets =
4816 	    stats->stat_EtherStatsPktsTx64Octets;
4817 
4818 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4819 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4820 
4821 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4822 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4823 
4824 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4825 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4826 
4827 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4828 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4829 
4830 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4831 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4832 
4833 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4834 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4835 
4836 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4837 
4838 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4839 
4840 	sc->stat_OutXonSent = stats->stat_OutXonSent;
4841 
4842 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4843 
4844 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4845 
4846 	sc->stat_MacControlFramesReceived =
4847 	    stats->stat_MacControlFramesReceived;
4848 
4849 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4850 
4851 	sc->stat_IfInFramesL2FilterDiscards =
4852 	    stats->stat_IfInFramesL2FilterDiscards;
4853 
4854 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4855 
4856 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4857 
4858 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4859 
4860 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4861 
4862 	sc->stat_CatchupInRuleCheckerDiscards =
4863 	    stats->stat_CatchupInRuleCheckerDiscards;
4864 
4865 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4866 
4867 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4868 
4869 	sc->stat_CatchupInRuleCheckerP4Hit =
4870 	    stats->stat_CatchupInRuleCheckerP4Hit;
4871 
4872 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4873 }
4874 
4875 void
4876 bnx_tick(void *xsc)
4877 {
4878 	struct bnx_softc	*sc = xsc;
4879 	struct ifnet		*ifp = &sc->ethercom.ec_if;
4880 	struct mii_data		*mii = NULL;
4881 	u_int32_t		msg;
4882 	u_int16_t		prod, chain_prod;
4883 	u_int32_t		prod_bseq;
4884 	int s = splnet();
4885 
4886 	/* Tell the firmware that the driver is still running. */
4887 #ifdef BNX_DEBUG
4888 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4889 #else
4890 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4891 #endif
4892 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4893 
4894 	/* Update the statistics from the hardware statistics block. */
4895 	bnx_stats_update(sc);
4896 
4897 	/* Schedule the next tick. */
4898 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4899 
4900 	/* If link is up already up then we're done. */
4901 	if (sc->bnx_link)
4902 		goto bnx_tick_exit;
4903 
4904 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
4905 
4906 	mii = &sc->bnx_mii;
4907 	mii_tick(mii);
4908 
4909 	/* Check if the link has come up. */
4910 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4911 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4912 		sc->bnx_link++;
4913 		/* Now that link is up, handle any outstanding TX traffic. */
4914 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4915 			bnx_start(ifp);
4916 	}
4917 
4918 bnx_tick_exit:
4919 	/* try to get more RX buffers, just in case */
4920 	prod = sc->rx_prod;
4921 	prod_bseq = sc->rx_prod_bseq;
4922 	chain_prod = RX_CHAIN_IDX(prod);
4923 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
4924 	sc->rx_prod = prod;
4925 	sc->rx_prod_bseq = prod_bseq;
4926 	splx(s);
4927 	return;
4928 }
4929 
4930 /****************************************************************************/
4931 /* BNX Debug Routines                                                       */
4932 /****************************************************************************/
4933 #ifdef BNX_DEBUG
4934 
4935 /****************************************************************************/
4936 /* Prints out information about an mbuf.                                    */
4937 /*                                                                          */
4938 /* Returns:                                                                 */
4939 /*   Nothing.                                                               */
4940 /****************************************************************************/
4941 void
4942 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4943 {
4944 	struct mbuf		*mp = m;
4945 
4946 	if (m == NULL) {
4947 		/* Index out of range. */
4948 		aprint_error("mbuf ptr is null!\n");
4949 		return;
4950 	}
4951 
4952 	while (mp) {
4953 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4954 		    mp, mp->m_len);
4955 
4956 		if (mp->m_flags & M_EXT)
4957 			aprint_debug("M_EXT ");
4958 		if (mp->m_flags & M_PKTHDR)
4959 			aprint_debug("M_PKTHDR ");
4960 		aprint_debug("\n");
4961 
4962 		if (mp->m_flags & M_EXT)
4963 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4964 			    mp, mp->m_ext.ext_size);
4965 
4966 		mp = mp->m_next;
4967 	}
4968 }
4969 
4970 /****************************************************************************/
4971 /* Prints out the mbufs in the TX mbuf chain.                               */
4972 /*                                                                          */
4973 /* Returns:                                                                 */
4974 /*   Nothing.                                                               */
4975 /****************************************************************************/
4976 void
4977 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4978 {
4979 	struct mbuf		*m;
4980 	int			i;
4981 
4982 	BNX_PRINTF(sc,
4983 	    "----------------------------"
4984 	    "  tx mbuf data  "
4985 	    "----------------------------\n");
4986 
4987 	for (i = 0; i < count; i++) {
4988 	 	m = sc->tx_mbuf_ptr[chain_prod];
4989 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4990 		bnx_dump_mbuf(sc, m);
4991 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4992 	}
4993 
4994 	BNX_PRINTF(sc,
4995 	    "--------------------------------------------"
4996 	    "----------------------------\n");
4997 }
4998 
4999 /*
5000  * This routine prints the RX mbuf chain.
5001  */
5002 void
5003 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5004 {
5005 	struct mbuf		*m;
5006 	int			i;
5007 
5008 	BNX_PRINTF(sc,
5009 	    "----------------------------"
5010 	    "  rx mbuf data  "
5011 	    "----------------------------\n");
5012 
5013 	for (i = 0; i < count; i++) {
5014 	 	m = sc->rx_mbuf_ptr[chain_prod];
5015 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5016 		bnx_dump_mbuf(sc, m);
5017 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5018 	}
5019 
5020 
5021 	BNX_PRINTF(sc,
5022 	    "--------------------------------------------"
5023 	    "----------------------------\n");
5024 }
5025 
5026 void
5027 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5028 {
5029 	if (idx > MAX_TX_BD)
5030 		/* Index out of range. */
5031 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5032 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5033 		/* TX Chain page pointer. */
5034 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5035 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5036 		    txbd->tx_bd_haddr_lo);
5037 	else
5038 		/* Normal tx_bd entry. */
5039 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5040 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5041 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5042 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5043 		    txbd->tx_bd_flags);
5044 }
5045 
5046 void
5047 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5048 {
5049 	if (idx > MAX_RX_BD)
5050 		/* Index out of range. */
5051 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5052 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5053 		/* TX Chain page pointer. */
5054 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5055 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5056 		    rxbd->rx_bd_haddr_lo);
5057 	else
5058 		/* Normal tx_bd entry. */
5059 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5060 		    "0x%08X, flags = 0x%08X\n", idx,
5061 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5062 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5063 }
5064 
5065 void
5066 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5067 {
5068 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5069 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5070 	    "tcp_udp_xsum = 0x%04X\n", idx,
5071 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5072 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5073 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5074 }
5075 
5076 /*
5077  * This routine prints the TX chain.
5078  */
5079 void
5080 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5081 {
5082 	struct tx_bd		*txbd;
5083 	int			i;
5084 
5085 	/* First some info about the tx_bd chain structure. */
5086 	BNX_PRINTF(sc,
5087 	    "----------------------------"
5088 	    "  tx_bd  chain  "
5089 	    "----------------------------\n");
5090 
5091 	BNX_PRINTF(sc,
5092 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5093 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5094 
5095 	BNX_PRINTF(sc,
5096 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5097 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5098 
5099 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5100 
5101 	BNX_PRINTF(sc, ""
5102 	    "-----------------------------"
5103 	    "   tx_bd data   "
5104 	    "-----------------------------\n");
5105 
5106 	/* Now print out the tx_bd's themselves. */
5107 	for (i = 0; i < count; i++) {
5108 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5109 		bnx_dump_txbd(sc, tx_prod, txbd);
5110 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5111 	}
5112 
5113 	BNX_PRINTF(sc,
5114 	    "-----------------------------"
5115 	    "--------------"
5116 	    "-----------------------------\n");
5117 }
5118 
5119 /*
5120  * This routine prints the RX chain.
5121  */
5122 void
5123 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5124 {
5125 	struct rx_bd		*rxbd;
5126 	int			i;
5127 
5128 	/* First some info about the tx_bd chain structure. */
5129 	BNX_PRINTF(sc,
5130 	    "----------------------------"
5131 	    "  rx_bd  chain  "
5132 	    "----------------------------\n");
5133 
5134 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5135 
5136 	BNX_PRINTF(sc,
5137 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5138 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5139 
5140 	BNX_PRINTF(sc,
5141 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5142 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5143 
5144 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5145 
5146 	BNX_PRINTF(sc,
5147 	    "----------------------------"
5148 	    "   rx_bd data   "
5149 	    "----------------------------\n");
5150 
5151 	/* Now print out the rx_bd's themselves. */
5152 	for (i = 0; i < count; i++) {
5153 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5154 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5155 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5156 	}
5157 
5158 	BNX_PRINTF(sc,
5159 	    "----------------------------"
5160 	    "--------------"
5161 	    "----------------------------\n");
5162 }
5163 
5164 /*
5165  * This routine prints the status block.
5166  */
5167 void
5168 bnx_dump_status_block(struct bnx_softc *sc)
5169 {
5170 	struct status_block	*sblk;
5171 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5172 	    BUS_DMASYNC_POSTREAD);
5173 
5174 	sblk = sc->status_block;
5175 
5176    	BNX_PRINTF(sc, "----------------------------- Status Block "
5177 	    "-----------------------------\n");
5178 
5179 	BNX_PRINTF(sc,
5180 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5181 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5182 	    sblk->status_idx);
5183 
5184 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5185 	    sblk->status_rx_quick_consumer_index0,
5186 	    sblk->status_tx_quick_consumer_index0);
5187 
5188 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5189 
5190 	/* Theses indices are not used for normal L2 drivers. */
5191 	if (sblk->status_rx_quick_consumer_index1 ||
5192 		sblk->status_tx_quick_consumer_index1)
5193 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5194 		    sblk->status_rx_quick_consumer_index1,
5195 		    sblk->status_tx_quick_consumer_index1);
5196 
5197 	if (sblk->status_rx_quick_consumer_index2 ||
5198 		sblk->status_tx_quick_consumer_index2)
5199 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5200 		    sblk->status_rx_quick_consumer_index2,
5201 		    sblk->status_tx_quick_consumer_index2);
5202 
5203 	if (sblk->status_rx_quick_consumer_index3 ||
5204 		sblk->status_tx_quick_consumer_index3)
5205 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5206 		    sblk->status_rx_quick_consumer_index3,
5207 		    sblk->status_tx_quick_consumer_index3);
5208 
5209 	if (sblk->status_rx_quick_consumer_index4 ||
5210 		sblk->status_rx_quick_consumer_index5)
5211 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5212 		    sblk->status_rx_quick_consumer_index4,
5213 		    sblk->status_rx_quick_consumer_index5);
5214 
5215 	if (sblk->status_rx_quick_consumer_index6 ||
5216 		sblk->status_rx_quick_consumer_index7)
5217 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5218 		    sblk->status_rx_quick_consumer_index6,
5219 		    sblk->status_rx_quick_consumer_index7);
5220 
5221 	if (sblk->status_rx_quick_consumer_index8 ||
5222 		sblk->status_rx_quick_consumer_index9)
5223 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5224 		    sblk->status_rx_quick_consumer_index8,
5225 		    sblk->status_rx_quick_consumer_index9);
5226 
5227 	if (sblk->status_rx_quick_consumer_index10 ||
5228 		sblk->status_rx_quick_consumer_index11)
5229 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5230 		    sblk->status_rx_quick_consumer_index10,
5231 		    sblk->status_rx_quick_consumer_index11);
5232 
5233 	if (sblk->status_rx_quick_consumer_index12 ||
5234 		sblk->status_rx_quick_consumer_index13)
5235 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5236 		    sblk->status_rx_quick_consumer_index12,
5237 		    sblk->status_rx_quick_consumer_index13);
5238 
5239 	if (sblk->status_rx_quick_consumer_index14 ||
5240 		sblk->status_rx_quick_consumer_index15)
5241 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5242 		    sblk->status_rx_quick_consumer_index14,
5243 		    sblk->status_rx_quick_consumer_index15);
5244 
5245 	if (sblk->status_completion_producer_index ||
5246 		sblk->status_cmd_consumer_index)
5247 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5248 		    sblk->status_completion_producer_index,
5249 		    sblk->status_cmd_consumer_index);
5250 
5251 	BNX_PRINTF(sc, "-------------------------------------------"
5252 	    "-----------------------------\n");
5253 }
5254 
5255 /*
5256  * This routine prints the statistics block.
5257  */
5258 void
5259 bnx_dump_stats_block(struct bnx_softc *sc)
5260 {
5261 	struct statistics_block	*sblk;
5262 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5263 	    BUS_DMASYNC_POSTREAD);
5264 
5265 	sblk = sc->stats_block;
5266 
5267 	BNX_PRINTF(sc, ""
5268 	    "-----------------------------"
5269 	    " Stats  Block "
5270 	    "-----------------------------\n");
5271 
5272 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5273 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5274 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5275 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5276 
5277 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5278 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5279 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5280 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5281 
5282 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5283 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5284 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5285 	    sblk->stat_IfHCInMulticastPkts_hi,
5286 	    sblk->stat_IfHCInMulticastPkts_lo);
5287 
5288 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5289 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5290 	    sblk->stat_IfHCInBroadcastPkts_hi,
5291 	    sblk->stat_IfHCInBroadcastPkts_lo,
5292 	    sblk->stat_IfHCOutUcastPkts_hi,
5293 	    sblk->stat_IfHCOutUcastPkts_lo);
5294 
5295 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5296 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5297 	    sblk->stat_IfHCOutMulticastPkts_hi,
5298 	    sblk->stat_IfHCOutMulticastPkts_lo,
5299 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5300 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5301 
5302 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5303 		BNX_PRINTF(sc, "0x%08X : "
5304 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5305 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5306 
5307 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5308 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5309 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5310 
5311 	if (sblk->stat_Dot3StatsFCSErrors)
5312 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5313 		    sblk->stat_Dot3StatsFCSErrors);
5314 
5315 	if (sblk->stat_Dot3StatsAlignmentErrors)
5316 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5317 		    sblk->stat_Dot3StatsAlignmentErrors);
5318 
5319 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5320 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5321 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5322 
5323 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5324 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5325 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
5326 
5327 	if (sblk->stat_Dot3StatsDeferredTransmissions)
5328 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5329 		    sblk->stat_Dot3StatsDeferredTransmissions);
5330 
5331 	if (sblk->stat_Dot3StatsExcessiveCollisions)
5332 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5333 		    sblk->stat_Dot3StatsExcessiveCollisions);
5334 
5335 	if (sblk->stat_Dot3StatsLateCollisions)
5336 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5337 		    sblk->stat_Dot3StatsLateCollisions);
5338 
5339 	if (sblk->stat_EtherStatsCollisions)
5340 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5341 		    sblk->stat_EtherStatsCollisions);
5342 
5343 	if (sblk->stat_EtherStatsFragments)
5344 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5345 		    sblk->stat_EtherStatsFragments);
5346 
5347 	if (sblk->stat_EtherStatsJabbers)
5348 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5349 		    sblk->stat_EtherStatsJabbers);
5350 
5351 	if (sblk->stat_EtherStatsUndersizePkts)
5352 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5353 		    sblk->stat_EtherStatsUndersizePkts);
5354 
5355 	if (sblk->stat_EtherStatsOverrsizePkts)
5356 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5357 		    sblk->stat_EtherStatsOverrsizePkts);
5358 
5359 	if (sblk->stat_EtherStatsPktsRx64Octets)
5360 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5361 		    sblk->stat_EtherStatsPktsRx64Octets);
5362 
5363 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5364 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5365 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5366 
5367 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5368 		BNX_PRINTF(sc, "0x%08X : "
5369 		    "EtherStatsPktsRx128Octetsto255Octets\n",
5370 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5371 
5372 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5373 		BNX_PRINTF(sc, "0x%08X : "
5374 		    "EtherStatsPktsRx256Octetsto511Octets\n",
5375 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5376 
5377 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5378 		BNX_PRINTF(sc, "0x%08X : "
5379 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
5380 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5381 
5382 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5383 		BNX_PRINTF(sc, "0x%08X : "
5384 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
5385 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5386 
5387 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5388 		BNX_PRINTF(sc, "0x%08X : "
5389 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
5390 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5391 
5392 	if (sblk->stat_EtherStatsPktsTx64Octets)
5393 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5394 		    sblk->stat_EtherStatsPktsTx64Octets);
5395 
5396 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5397 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5398 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5399 
5400 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5401 		BNX_PRINTF(sc, "0x%08X : "
5402 		    "EtherStatsPktsTx128Octetsto255Octets\n",
5403 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5404 
5405 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5406 		BNX_PRINTF(sc, "0x%08X : "
5407 		    "EtherStatsPktsTx256Octetsto511Octets\n",
5408 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5409 
5410 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5411 		BNX_PRINTF(sc, "0x%08X : "
5412 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
5413 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5414 
5415 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5416 		BNX_PRINTF(sc, "0x%08X : "
5417 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
5418 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5419 
5420 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5421 		BNX_PRINTF(sc, "0x%08X : "
5422 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
5423 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5424 
5425 	if (sblk->stat_XonPauseFramesReceived)
5426 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5427 		    sblk->stat_XonPauseFramesReceived);
5428 
5429 	if (sblk->stat_XoffPauseFramesReceived)
5430 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5431 		    sblk->stat_XoffPauseFramesReceived);
5432 
5433 	if (sblk->stat_OutXonSent)
5434 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5435 		    sblk->stat_OutXonSent);
5436 
5437 	if (sblk->stat_OutXoffSent)
5438 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5439 		    sblk->stat_OutXoffSent);
5440 
5441 	if (sblk->stat_FlowControlDone)
5442 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5443 		    sblk->stat_FlowControlDone);
5444 
5445 	if (sblk->stat_MacControlFramesReceived)
5446 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5447 		    sblk->stat_MacControlFramesReceived);
5448 
5449 	if (sblk->stat_XoffStateEntered)
5450 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5451 		    sblk->stat_XoffStateEntered);
5452 
5453 	if (sblk->stat_IfInFramesL2FilterDiscards)
5454 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5455 		    sblk->stat_IfInFramesL2FilterDiscards);
5456 
5457 	if (sblk->stat_IfInRuleCheckerDiscards)
5458 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5459 		    sblk->stat_IfInRuleCheckerDiscards);
5460 
5461 	if (sblk->stat_IfInFTQDiscards)
5462 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5463 		    sblk->stat_IfInFTQDiscards);
5464 
5465 	if (sblk->stat_IfInMBUFDiscards)
5466 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5467 		    sblk->stat_IfInMBUFDiscards);
5468 
5469 	if (sblk->stat_IfInRuleCheckerP4Hit)
5470 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5471 		    sblk->stat_IfInRuleCheckerP4Hit);
5472 
5473 	if (sblk->stat_CatchupInRuleCheckerDiscards)
5474 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5475 		    sblk->stat_CatchupInRuleCheckerDiscards);
5476 
5477 	if (sblk->stat_CatchupInFTQDiscards)
5478 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5479 		    sblk->stat_CatchupInFTQDiscards);
5480 
5481 	if (sblk->stat_CatchupInMBUFDiscards)
5482 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5483 		    sblk->stat_CatchupInMBUFDiscards);
5484 
5485 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
5486 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5487 		    sblk->stat_CatchupInRuleCheckerP4Hit);
5488 
5489 	BNX_PRINTF(sc,
5490 	    "-----------------------------"
5491 	    "--------------"
5492 	    "-----------------------------\n");
5493 }
5494 
5495 void
5496 bnx_dump_driver_state(struct bnx_softc *sc)
5497 {
5498 	BNX_PRINTF(sc,
5499 	    "-----------------------------"
5500 	    " Driver State "
5501 	    "-----------------------------\n");
5502 
5503 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5504 	    "address\n", sc);
5505 
5506 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5507 	    sc->status_block);
5508 
5509 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5510 	    "address\n", sc->stats_block);
5511 
5512 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5513 	    "adddress\n", sc->tx_bd_chain);
5514 
5515 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5516 	    sc->rx_bd_chain);
5517 
5518 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5519 	    sc->tx_mbuf_ptr);
5520 
5521 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5522 	    sc->rx_mbuf_ptr);
5523 
5524 	BNX_PRINTF(sc,
5525 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
5526 	    sc->interrupts_generated);
5527 
5528 	BNX_PRINTF(sc,
5529 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5530 	    sc->rx_interrupts);
5531 
5532 	BNX_PRINTF(sc,
5533 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5534 	    sc->tx_interrupts);
5535 
5536 	BNX_PRINTF(sc,
5537 	    "         0x%08X - (sc->last_status_idx) status block index\n",
5538 	    sc->last_status_idx);
5539 
5540 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
5541 	    sc->tx_prod);
5542 
5543 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
5544 	    sc->tx_cons);
5545 
5546 	BNX_PRINTF(sc,
5547 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5548 	    sc->tx_prod_bseq);
5549 
5550 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
5551 	    sc->rx_prod);
5552 
5553 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
5554 	    sc->rx_cons);
5555 
5556 	BNX_PRINTF(sc,
5557 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5558 	    sc->rx_prod_bseq);
5559 
5560 	BNX_PRINTF(sc,
5561 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5562 	    sc->rx_mbuf_alloc);
5563 
5564 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5565 	    sc->free_rx_bd);
5566 
5567 	BNX_PRINTF(sc,
5568 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5569 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5570 
5571 	BNX_PRINTF(sc,
5572 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5573 	    sc->tx_mbuf_alloc);
5574 
5575 	BNX_PRINTF(sc,
5576 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5577 	    sc->rx_mbuf_alloc);
5578 
5579 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5580 	    sc->used_tx_bd);
5581 
5582 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5583 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5584 
5585 	BNX_PRINTF(sc,
5586 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5587 	    sc->mbuf_alloc_failed);
5588 
5589 	BNX_PRINTF(sc, "-------------------------------------------"
5590 	    "-----------------------------\n");
5591 }
5592 
5593 void
5594 bnx_dump_hw_state(struct bnx_softc *sc)
5595 {
5596 	u_int32_t		val1;
5597 	int			i;
5598 
5599 	BNX_PRINTF(sc,
5600 	    "----------------------------"
5601 	    " Hardware State "
5602 	    "----------------------------\n");
5603 
5604 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5605 
5606 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5607 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5608 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
5609 
5610 	val1 = REG_RD(sc, BNX_DMA_STATUS);
5611 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5612 
5613 	val1 = REG_RD(sc, BNX_CTX_STATUS);
5614 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5615 
5616 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
5617 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5618 	    BNX_EMAC_STATUS);
5619 
5620 	val1 = REG_RD(sc, BNX_RPM_STATUS);
5621 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5622 
5623 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
5624 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5625 	    BNX_TBDR_STATUS);
5626 
5627 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
5628 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5629 	    BNX_TDMA_STATUS);
5630 
5631 	val1 = REG_RD(sc, BNX_HC_STATUS);
5632 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5633 
5634 	BNX_PRINTF(sc,
5635 	    "----------------------------"
5636 	    "----------------"
5637 	    "----------------------------\n");
5638 
5639 	BNX_PRINTF(sc,
5640 	    "----------------------------"
5641 	    " Register  Dump "
5642 	    "----------------------------\n");
5643 
5644 	for (i = 0x400; i < 0x8000; i += 0x10)
5645 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5646 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5647 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5648 
5649 	BNX_PRINTF(sc,
5650 	    "----------------------------"
5651 	    "----------------"
5652 	    "----------------------------\n");
5653 }
5654 
5655 void
5656 bnx_breakpoint(struct bnx_softc *sc)
5657 {
5658 	/* Unreachable code to shut the compiler up about unused functions. */
5659 	if (0) {
5660    		bnx_dump_txbd(sc, 0, NULL);
5661 		bnx_dump_rxbd(sc, 0, NULL);
5662 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5663 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5664 		bnx_dump_l2fhdr(sc, 0, NULL);
5665 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5666 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5667 		bnx_dump_status_block(sc);
5668 		bnx_dump_stats_block(sc);
5669 		bnx_dump_driver_state(sc);
5670 		bnx_dump_hw_state(sc);
5671 	}
5672 
5673 	bnx_dump_driver_state(sc);
5674 	/* Print the important status block fields. */
5675 	bnx_dump_status_block(sc);
5676 
5677 #if 0
5678 	/* Call the debugger. */
5679 	breakpoint();
5680 #endif
5681 
5682 	return;
5683 }
5684 #endif
5685