xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_bnx.c,v 1.31 2010/01/19 22:07:00 pooka Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.31 2010/01/19 22:07:00 pooka Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5716  C0
48  *
49  * The following controllers are not supported by this driver:
50  *
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/microcode/bnx/bnxfw.h>
64 
65 /****************************************************************************/
66 /* BNX Driver Version                                                       */
67 /****************************************************************************/
68 #define BNX_DRIVER_VERSION	"v0.9.6"
69 
70 /****************************************************************************/
71 /* BNX Debug Options                                                        */
72 /****************************************************************************/
73 #ifdef BNX_DEBUG
74 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
75 
76 	/*          0 = Never              */
77 	/*          1 = 1 in 2,147,483,648 */
78 	/*        256 = 1 in     8,388,608 */
79 	/*       2048 = 1 in     1,048,576 */
80 	/*      65536 = 1 in        32,768 */
81 	/*    1048576 = 1 in         2,048 */
82 	/*  268435456 =	1 in             8 */
83 	/*  536870912 = 1 in             4 */
84 	/* 1073741824 = 1 in             2 */
85 
86 	/* Controls how often the l2_fhdr frame error check will fail. */
87 	int bnx_debug_l2fhdr_status_check = 0;
88 
89 	/* Controls how often the unexpected attention check will fail. */
90 	int bnx_debug_unexpected_attention = 0;
91 
92 	/* Controls how often to simulate an mbuf allocation failure. */
93 	int bnx_debug_mbuf_allocation_failure = 0;
94 
95 	/* Controls how often to simulate a DMA mapping failure. */
96 	int bnx_debug_dma_map_addr_failure = 0;
97 
98 	/* Controls how often to simulate a bootcode failure. */
99 	int bnx_debug_bootcode_running_failure = 0;
100 #endif
101 
102 /****************************************************************************/
103 /* PCI Device ID Table                                                      */
104 /*                                                                          */
105 /* Used by bnx_probe() to identify the devices supported by this driver.    */
106 /****************************************************************************/
107 static const struct bnx_product {
108 	pci_vendor_id_t		bp_vendor;
109 	pci_product_id_t	bp_product;
110 	pci_vendor_id_t		bp_subvendor;
111 	pci_product_id_t	bp_subproduct;
112 	const char		*bp_name;
113 } bnx_devices[] = {
114 #ifdef PCI_SUBPRODUCT_HP_NC370T
115 	{
116 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
117 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
118 	  "HP NC370T Multifunction Gigabit Server Adapter"
119 	},
120 #endif
121 #ifdef PCI_SUBPRODUCT_HP_NC370i
122 	{
123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
125 	  "HP NC370i Multifunction Gigabit Server Adapter"
126 	},
127 #endif
128 	{
129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
130 	  0, 0,
131 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
132 	},
133 #ifdef PCI_SUBPRODUCT_HP_NC370F
134 	{
135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
137 	  "HP NC370F Multifunction Gigabit Server Adapter"
138 	},
139 #endif
140 	{
141 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
142 	  0, 0,
143 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
144 	},
145 	{
146 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
147 	  0, 0,
148 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
149 	},
150 	{
151 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
152 	  0, 0,
153 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
154 	},
155 	{
156 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
157 	  0, 0,
158 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
159 	},
160 	{
161 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
162 	  0, 0,
163 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
164 	},
165 	{
166 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
167 	  0, 0,
168 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
169 	},
170 	{
171 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
172 	  0, 0,
173 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
174 	},
175 };
176 
177 /****************************************************************************/
178 /* Supported Flash NVRAM device data.                                       */
179 /****************************************************************************/
180 static struct flash_spec flash_table[] =
181 {
182 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
183 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
184 	/* Slow EEPROM */
185 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
186 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
187 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
188 	 "EEPROM - slow"},
189 	/* Expansion entry 0001 */
190 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
191 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
192 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
193 	 "Entry 0001"},
194 	/* Saifun SA25F010 (non-buffered flash) */
195 	/* strap, cfg1, & write1 need updates */
196 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
197 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
198 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
199 	 "Non-buffered flash (128kB)"},
200 	/* Saifun SA25F020 (non-buffered flash) */
201 	/* strap, cfg1, & write1 need updates */
202 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
203 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
204 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
205 	 "Non-buffered flash (256kB)"},
206 	/* Expansion entry 0100 */
207 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
208 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
209 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
210 	 "Entry 0100"},
211 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
212 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
213 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
214 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
215 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
216 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
217 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
218 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
219 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
220 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
221 	/* Saifun SA25F005 (non-buffered flash) */
222 	/* strap, cfg1, & write1 need updates */
223 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
226 	 "Non-buffered flash (64kB)"},
227 	/* Fast EEPROM */
228 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
229 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
230 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
231 	 "EEPROM - fast"},
232 	/* Expansion entry 1001 */
233 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
236 	 "Entry 1001"},
237 	/* Expansion entry 1010 */
238 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
241 	 "Entry 1010"},
242 	/* ATMEL AT45DB011B (buffered flash) */
243 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
246 	 "Buffered flash (128kB)"},
247 	/* Expansion entry 1100 */
248 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
249 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
250 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
251 	 "Entry 1100"},
252 	/* Expansion entry 1101 */
253 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
254 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
255 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
256 	 "Entry 1101"},
257 	/* Ateml Expansion entry 1110 */
258 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
259 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
260 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
261 	 "Entry 1110 (Atmel)"},
262 	/* ATMEL AT45DB021B (buffered flash) */
263 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
264 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
265 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
266 	 "Buffered flash (256kB)"},
267 };
268 
269 /*
270  * The BCM5709 controllers transparently handle the
271  * differences between Atmel 264 byte pages and all
272  * flash devices which use 256 byte pages, so no
273  * logical-to-physical mapping is required in the
274  * driver.
275  */
276 static struct flash_spec flash_5709 = {
277 	.flags		= BNX_NV_BUFFERED,
278 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
279 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
280 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
281 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
282 	.name		= "5709 buffered flash (256kB)",
283 };
284 
285 /****************************************************************************/
286 /* OpenBSD device entry points.                                             */
287 /****************************************************************************/
288 static int	bnx_probe(device_t, cfdata_t, void *);
289 void	bnx_attach(device_t, device_t, void *);
290 int	bnx_detach(device_t, int);
291 
292 /****************************************************************************/
293 /* BNX Debug Data Structure Dump Routines                                   */
294 /****************************************************************************/
295 #ifdef BNX_DEBUG
296 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
297 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
298 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
299 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
300 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
301 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
302 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
303 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
304 void	bnx_dump_status_block(struct bnx_softc *);
305 void	bnx_dump_stats_block(struct bnx_softc *);
306 void	bnx_dump_driver_state(struct bnx_softc *);
307 void	bnx_dump_hw_state(struct bnx_softc *);
308 void	bnx_breakpoint(struct bnx_softc *);
309 #endif
310 
311 /****************************************************************************/
312 /* BNX Register/Memory Access Routines                                      */
313 /****************************************************************************/
314 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
315 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
316 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
317 int	bnx_miibus_read_reg(device_t, int, int);
318 void	bnx_miibus_write_reg(device_t, int, int, int);
319 void	bnx_miibus_statchg(device_t);
320 
321 /****************************************************************************/
322 /* BNX NVRAM Access Routines                                                */
323 /****************************************************************************/
324 int	bnx_acquire_nvram_lock(struct bnx_softc *);
325 int	bnx_release_nvram_lock(struct bnx_softc *);
326 void	bnx_enable_nvram_access(struct bnx_softc *);
327 void	bnx_disable_nvram_access(struct bnx_softc *);
328 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
329 	    u_int32_t);
330 int	bnx_init_nvram(struct bnx_softc *);
331 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
332 int	bnx_nvram_test(struct bnx_softc *);
333 #ifdef BNX_NVRAM_WRITE_SUPPORT
334 int	bnx_enable_nvram_write(struct bnx_softc *);
335 void	bnx_disable_nvram_write(struct bnx_softc *);
336 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
337 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
338 	    u_int32_t);
339 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
340 #endif
341 
342 /****************************************************************************/
343 /*                                                                          */
344 /****************************************************************************/
345 void	bnx_get_media(struct bnx_softc *);
346 int	bnx_dma_alloc(struct bnx_softc *);
347 void	bnx_dma_free(struct bnx_softc *);
348 void	bnx_release_resources(struct bnx_softc *);
349 
350 /****************************************************************************/
351 /* BNX Firmware Synchronization and Load                                    */
352 /****************************************************************************/
353 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
354 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
355 	    u_int32_t);
356 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
357 	    struct fw_info *);
358 void	bnx_init_cpus(struct bnx_softc *);
359 
360 void	bnx_stop(struct ifnet *, int);
361 int	bnx_reset(struct bnx_softc *, u_int32_t);
362 int	bnx_chipinit(struct bnx_softc *);
363 int	bnx_blockinit(struct bnx_softc *);
364 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
365 	    u_int16_t *, u_int32_t *);
366 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
367 
368 int	bnx_init_tx_chain(struct bnx_softc *);
369 void	bnx_init_tx_context(struct bnx_softc *);
370 int	bnx_init_rx_chain(struct bnx_softc *);
371 void	bnx_init_rx_context(struct bnx_softc *);
372 void	bnx_free_rx_chain(struct bnx_softc *);
373 void	bnx_free_tx_chain(struct bnx_softc *);
374 
375 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
376 void	bnx_start(struct ifnet *);
377 int	bnx_ioctl(struct ifnet *, u_long, void *);
378 void	bnx_watchdog(struct ifnet *);
379 int	bnx_init(struct ifnet *);
380 
381 void	bnx_init_context(struct bnx_softc *);
382 void	bnx_get_mac_addr(struct bnx_softc *);
383 void	bnx_set_mac_addr(struct bnx_softc *);
384 void	bnx_phy_intr(struct bnx_softc *);
385 void	bnx_rx_intr(struct bnx_softc *);
386 void	bnx_tx_intr(struct bnx_softc *);
387 void	bnx_disable_intr(struct bnx_softc *);
388 void	bnx_enable_intr(struct bnx_softc *);
389 
390 int	bnx_intr(void *);
391 void	bnx_iff(struct bnx_softc *);
392 void	bnx_stats_update(struct bnx_softc *);
393 void	bnx_tick(void *);
394 
395 struct pool *bnx_tx_pool = NULL;
396 int	bnx_alloc_pkts(struct bnx_softc *);
397 
398 /****************************************************************************/
399 /* OpenBSD device dispatch table.                                           */
400 /****************************************************************************/
401 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
402     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
403 
404 /****************************************************************************/
405 /* Device probe function.                                                   */
406 /*                                                                          */
407 /* Compares the device to the driver's list of supported devices and        */
408 /* reports back to the OS whether this is the right driver for the device.  */
409 /*                                                                          */
410 /* Returns:                                                                 */
411 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
412 /****************************************************************************/
413 static const struct bnx_product *
414 bnx_lookup(const struct pci_attach_args *pa)
415 {
416 	int i;
417 	pcireg_t subid;
418 
419 	for (i = 0; i < __arraycount(bnx_devices); i++) {
420 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
421 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
422 			continue;
423 		if (!bnx_devices[i].bp_subvendor)
424 			return &bnx_devices[i];
425 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
426 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
427 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
428 			return &bnx_devices[i];
429 	}
430 
431 	return NULL;
432 }
433 static int
434 bnx_probe(device_t parent, cfdata_t match, void *aux)
435 {
436 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
437 
438 	if (bnx_lookup(pa) != NULL)
439 		return (1);
440 
441 	return (0);
442 }
443 
444 /****************************************************************************/
445 /* Device attach function.                                                  */
446 /*                                                                          */
447 /* Allocates device resources, performs secondary chip identification,      */
448 /* resets and initializes the hardware, and initializes driver instance     */
449 /* variables.                                                               */
450 /*                                                                          */
451 /* Returns:                                                                 */
452 /*   0 on success, positive value on failure.                               */
453 /****************************************************************************/
454 void
455 bnx_attach(device_t parent, device_t self, void *aux)
456 {
457 	const struct bnx_product *bp;
458 	struct bnx_softc	*sc = device_private(self);
459 	struct pci_attach_args	*pa = aux;
460 	pci_chipset_tag_t	pc = pa->pa_pc;
461 	pci_intr_handle_t	ih;
462 	const char 		*intrstr = NULL;
463 	u_int32_t		command;
464 	struct ifnet		*ifp;
465 	u_int32_t		val;
466 	int			mii_flags = MIIF_FORCEANEG;
467 	pcireg_t		memtype;
468 
469 	if (bnx_tx_pool == NULL) {
470 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
471 		if (bnx_tx_pool != NULL) {
472 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
473 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
474 		} else {
475 			aprint_error(": can't alloc bnx_tx_pool\n");
476 			return;
477 		}
478 	}
479 
480 	bp = bnx_lookup(pa);
481 	if (bp == NULL)
482 		panic("unknown device");
483 
484 	sc->bnx_dev = self;
485 
486 	aprint_naive("\n");
487 	aprint_normal(": %s\n", bp->bp_name);
488 
489 	sc->bnx_pa = *pa;
490 
491 	/*
492 	 * Map control/status registers.
493 	*/
494 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
495 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
496 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
497 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
498 
499 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
500 		aprint_error_dev(sc->bnx_dev,
501 		    "failed to enable memory mapping!\n");
502 		return;
503 	}
504 
505 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
506 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
507 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
508 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
509 		return;
510 	}
511 
512 	if (pci_intr_map(pa, &ih)) {
513 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
514 		goto bnx_attach_fail;
515 	}
516 
517 	intrstr = pci_intr_string(pc, ih);
518 
519 	/*
520 	 * Configure byte swap and enable indirect register access.
521 	 * Rely on CPU to do target byte swapping on big endian systems.
522 	 * Access to registers outside of PCI configurtion space are not
523 	 * valid until this is done.
524 	 */
525 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
526 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
527 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
528 
529 	/* Save ASIC revsion info. */
530 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
531 
532 	/*
533 	 * Find the base address for shared memory access.
534 	 * Newer versions of bootcode use a signature and offset
535 	 * while older versions use a fixed address.
536 	 */
537 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
538 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
539 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
540 		    (sc->bnx_pa.pa_function << 2));
541 	else
542 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
543 
544 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
545 
546 	/* Set initial device and PHY flags */
547 	sc->bnx_flags = 0;
548 	sc->bnx_phy_flags = 0;
549 
550 	/* Get PCI bus information (speed and type). */
551 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
552 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
553 		u_int32_t clkreg;
554 
555 		sc->bnx_flags |= BNX_PCIX_FLAG;
556 
557 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
558 
559 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
560 		switch (clkreg) {
561 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
562 			sc->bus_speed_mhz = 133;
563 			break;
564 
565 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
566 			sc->bus_speed_mhz = 100;
567 			break;
568 
569 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
571 			sc->bus_speed_mhz = 66;
572 			break;
573 
574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
576 			sc->bus_speed_mhz = 50;
577 			break;
578 
579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
582 			sc->bus_speed_mhz = 33;
583 			break;
584 		}
585 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
586 			sc->bus_speed_mhz = 66;
587 		else
588 			sc->bus_speed_mhz = 33;
589 
590 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
591 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
592 
593 	/* Reset the controller. */
594 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
595 		goto bnx_attach_fail;
596 
597 	/* Initialize the controller. */
598 	if (bnx_chipinit(sc)) {
599 		aprint_error_dev(sc->bnx_dev,
600 		    "Controller initialization failed!\n");
601 		goto bnx_attach_fail;
602 	}
603 
604 	/* Perform NVRAM test. */
605 	if (bnx_nvram_test(sc)) {
606 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
607 		goto bnx_attach_fail;
608 	}
609 
610 	/* Fetch the permanent Ethernet MAC address. */
611 	bnx_get_mac_addr(sc);
612 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
613 	    ether_sprintf(sc->eaddr));
614 
615 	/*
616 	 * Trip points control how many BDs
617 	 * should be ready before generating an
618 	 * interrupt while ticks control how long
619 	 * a BD can sit in the chain before
620 	 * generating an interrupt.  Set the default
621 	 * values for the RX and TX rings.
622 	 */
623 
624 #ifdef BNX_DEBUG
625 	/* Force more frequent interrupts. */
626 	sc->bnx_tx_quick_cons_trip_int = 1;
627 	sc->bnx_tx_quick_cons_trip     = 1;
628 	sc->bnx_tx_ticks_int           = 0;
629 	sc->bnx_tx_ticks               = 0;
630 
631 	sc->bnx_rx_quick_cons_trip_int = 1;
632 	sc->bnx_rx_quick_cons_trip     = 1;
633 	sc->bnx_rx_ticks_int           = 0;
634 	sc->bnx_rx_ticks               = 0;
635 #else
636 	sc->bnx_tx_quick_cons_trip_int = 20;
637 	sc->bnx_tx_quick_cons_trip     = 20;
638 	sc->bnx_tx_ticks_int           = 80;
639 	sc->bnx_tx_ticks               = 80;
640 
641 	sc->bnx_rx_quick_cons_trip_int = 6;
642 	sc->bnx_rx_quick_cons_trip     = 6;
643 	sc->bnx_rx_ticks_int           = 18;
644 	sc->bnx_rx_ticks               = 18;
645 #endif
646 
647 	/* Update statistics once every second. */
648 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
649 
650 	/* Find the media type for the adapter. */
651 	bnx_get_media(sc);
652 
653 	/*
654 	 * Store config data needed by the PHY driver for
655 	 * backplane applications
656 	 */
657 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
658 	    BNX_SHARED_HW_CFG_CONFIG);
659 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
660 	    BNX_PORT_HW_CFG_CONFIG);
661 
662 	/* Allocate DMA memory resources. */
663 	sc->bnx_dmatag = pa->pa_dmat;
664 	if (bnx_dma_alloc(sc)) {
665 		aprint_error_dev(sc->bnx_dev,
666 		    "DMA resource allocation failed!\n");
667 		goto bnx_attach_fail;
668 	}
669 
670 	/* Initialize the ifnet interface. */
671 	ifp = &sc->bnx_ec.ec_if;
672 	ifp->if_softc = sc;
673 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
674 	ifp->if_ioctl = bnx_ioctl;
675 	ifp->if_stop = bnx_stop;
676 	ifp->if_start = bnx_start;
677 	ifp->if_init = bnx_init;
678 	ifp->if_timer = 0;
679 	ifp->if_watchdog = bnx_watchdog;
680 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
681 	IFQ_SET_READY(&ifp->if_snd);
682 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
683 
684 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
685 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
686 
687 	ifp->if_capabilities |=
688 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
689 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
690 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
691 
692 	/* Hookup IRQ last. */
693 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
694 	if (sc->bnx_intrhand == NULL) {
695 		aprint_error_dev(self, "couldn't establish interrupt");
696 		if (intrstr != NULL)
697 			aprint_error(" at %s", intrstr);
698 		aprint_error("\n");
699 		goto bnx_attach_fail;
700 	}
701 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
702 
703 	sc->bnx_mii.mii_ifp = ifp;
704 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
705 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
706 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
707 
708 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
709 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
710 	    ether_mediastatus);
711 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
712 		mii_flags |= MIIF_HAVEFIBER;
713 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
714 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
715 
716 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
717 		aprint_error_dev(self, "no PHY found!\n");
718 		ifmedia_add(&sc->bnx_mii.mii_media,
719 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
720 		ifmedia_set(&sc->bnx_mii.mii_media,
721 		    IFM_ETHER|IFM_MANUAL);
722 	} else {
723 		ifmedia_set(&sc->bnx_mii.mii_media,
724 		    IFM_ETHER|IFM_AUTO);
725 	}
726 
727 	/* Attach to the Ethernet interface list. */
728 	if_attach(ifp);
729 	ether_ifattach(ifp,sc->eaddr);
730 
731 	callout_init(&sc->bnx_timeout, 0);
732 
733 	if (pmf_device_register(self, NULL, NULL))
734 		pmf_class_network_register(self, ifp);
735 	else
736 		aprint_error_dev(self, "couldn't establish power handler\n");
737 
738 	/* Print some important debugging info. */
739 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
740 
741 	goto bnx_attach_exit;
742 
743 bnx_attach_fail:
744 	bnx_release_resources(sc);
745 
746 bnx_attach_exit:
747 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
748 }
749 
750 /****************************************************************************/
751 /* Device detach function.                                                  */
752 /*                                                                          */
753 /* Stops the controller, resets the controller, and releases resources.     */
754 /*                                                                          */
755 /* Returns:                                                                 */
756 /*   0 on success, positive value on failure.                               */
757 /****************************************************************************/
758 int
759 bnx_detach(device_t dev, int flags)
760 {
761 	int s;
762 	struct bnx_softc *sc;
763 	struct ifnet *ifp;
764 
765 	sc = device_private(dev);
766 	ifp = &sc->bnx_ec.ec_if;
767 
768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
769 
770 	/* Stop and reset the controller. */
771 	s = splnet();
772 	if (ifp->if_flags & IFF_RUNNING)
773 		bnx_stop(ifp, 1);
774 	else {
775 		/* Disable the transmit/receive blocks. */
776 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
777 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
778 		DELAY(20);
779 		bnx_disable_intr(sc);
780 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
781 	}
782 
783 	splx(s);
784 
785 	pmf_device_deregister(dev);
786 	callout_destroy(&sc->bnx_timeout);
787 	ether_ifdetach(ifp);
788 	if_detach(ifp);
789 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
790 
791 	/* Release all remaining resources. */
792 	bnx_release_resources(sc);
793 
794 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
795 
796 	return(0);
797 }
798 
799 /****************************************************************************/
800 /* Indirect register read.                                                  */
801 /*                                                                          */
802 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
803 /* configuration space.  Using this mechanism avoids issues with posted     */
804 /* reads but is much slower than memory-mapped I/O.                         */
805 /*                                                                          */
806 /* Returns:                                                                 */
807 /*   The value of the register.                                             */
808 /****************************************************************************/
809 u_int32_t
810 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
811 {
812 	struct pci_attach_args	*pa = &(sc->bnx_pa);
813 
814 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
815 	    offset);
816 #ifdef BNX_DEBUG
817 	{
818 		u_int32_t val;
819 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
820 		    BNX_PCICFG_REG_WINDOW);
821 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
822 		    "val = 0x%08X\n", __func__, offset, val);
823 		return (val);
824 	}
825 #else
826 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
827 #endif
828 }
829 
830 /****************************************************************************/
831 /* Indirect register write.                                                 */
832 /*                                                                          */
833 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
834 /* configuration space.  Using this mechanism avoids issues with posted     */
835 /* writes but is muchh slower than memory-mapped I/O.                       */
836 /*                                                                          */
837 /* Returns:                                                                 */
838 /*   Nothing.                                                               */
839 /****************************************************************************/
840 void
841 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
842 {
843 	struct pci_attach_args  *pa = &(sc->bnx_pa);
844 
845 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
846 		__func__, offset, val);
847 
848 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
849 	    offset);
850 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
851 }
852 
853 /****************************************************************************/
854 /* Context memory write.                                                    */
855 /*                                                                          */
856 /* The NetXtreme II controller uses context memory to track connection      */
857 /* information for L2 and higher network protocols.                         */
858 /*                                                                          */
859 /* Returns:                                                                 */
860 /*   Nothing.                                                               */
861 /****************************************************************************/
862 void
863 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
864     u_int32_t ctx_val)
865 {
866 	u_int32_t idx, offset = ctx_offset + cid_addr;
867 	u_int32_t val, retry_cnt = 5;
868 
869 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
870 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
871 		REG_WR(sc, BNX_CTX_CTX_CTRL,
872 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
873 
874 		for (idx = 0; idx < retry_cnt; idx++) {
875 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
876 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
877 				break;
878 			DELAY(5);
879 		}
880 
881 #if 0
882 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
883 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
884 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
885 				__FILE__, __LINE__, cid_addr, ctx_offset);
886 #endif
887 
888 	} else {
889 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
890 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
891 	}
892 }
893 
894 /****************************************************************************/
895 /* PHY register read.                                                       */
896 /*                                                                          */
897 /* Implements register reads on the MII bus.                                */
898 /*                                                                          */
899 /* Returns:                                                                 */
900 /*   The value of the register.                                             */
901 /****************************************************************************/
902 int
903 bnx_miibus_read_reg(device_t dev, int phy, int reg)
904 {
905 	struct bnx_softc	*sc = device_private(dev);
906 	u_int32_t		val;
907 	int			i;
908 
909 	/* Make sure we are accessing the correct PHY address. */
910 	if (phy != sc->bnx_phy_addr) {
911 		DBPRINT(sc, BNX_VERBOSE,
912 		    "Invalid PHY address %d for PHY read!\n", phy);
913 		return(0);
914 	}
915 
916 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
917 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
918 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
919 
920 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
921 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
922 
923 		DELAY(40);
924 	}
925 
926 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
927 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
928 	    BNX_EMAC_MDIO_COMM_START_BUSY;
929 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
930 
931 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
932 		DELAY(10);
933 
934 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
935 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
936 			DELAY(5);
937 
938 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
939 			val &= BNX_EMAC_MDIO_COMM_DATA;
940 
941 			break;
942 		}
943 	}
944 
945 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
946 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
947 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
948 		val = 0x0;
949 	} else
950 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
951 
952 	DBPRINT(sc, BNX_EXCESSIVE,
953 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
954 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
955 
956 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
957 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
958 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
959 
960 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
961 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
962 
963 		DELAY(40);
964 	}
965 
966 	return (val & 0xffff);
967 }
968 
969 /****************************************************************************/
970 /* PHY register write.                                                      */
971 /*                                                                          */
972 /* Implements register writes on the MII bus.                               */
973 /*                                                                          */
974 /* Returns:                                                                 */
975 /*   The value of the register.                                             */
976 /****************************************************************************/
977 void
978 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
979 {
980 	struct bnx_softc	*sc = device_private(dev);
981 	u_int32_t		val1;
982 	int			i;
983 
984 	/* Make sure we are accessing the correct PHY address. */
985 	if (phy != sc->bnx_phy_addr) {
986 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
987 		    phy);
988 		return;
989 	}
990 
991 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
992 	    "val = 0x%04X\n", __func__,
993 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
994 
995 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
996 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
997 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
998 
999 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1000 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1001 
1002 		DELAY(40);
1003 	}
1004 
1005 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1006 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1007 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1008 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1009 
1010 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1011 		DELAY(10);
1012 
1013 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1014 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1015 			DELAY(5);
1016 			break;
1017 		}
1018 	}
1019 
1020 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1021 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1022 		    __LINE__);
1023 	}
1024 
1025 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1026 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1027 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1028 
1029 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1030 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1031 
1032 		DELAY(40);
1033 	}
1034 }
1035 
1036 /****************************************************************************/
1037 /* MII bus status change.                                                   */
1038 /*                                                                          */
1039 /* Called by the MII bus driver when the PHY establishes link to set the    */
1040 /* MAC interface registers.                                                 */
1041 /*                                                                          */
1042 /* Returns:                                                                 */
1043 /*   Nothing.                                                               */
1044 /****************************************************************************/
1045 void
1046 bnx_miibus_statchg(device_t dev)
1047 {
1048 	struct bnx_softc	*sc = device_private(dev);
1049 	struct mii_data		*mii = &sc->bnx_mii;
1050 	int			val;
1051 
1052 	val = REG_RD(sc, BNX_EMAC_MODE);
1053 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1054 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1055 	    BNX_EMAC_MODE_25G);
1056 
1057 	/* Set MII or GMII interface based on the speed
1058 	 * negotiated by the PHY.
1059 	 */
1060 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1061 	case IFM_10_T:
1062 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1063 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1064 			val |= BNX_EMAC_MODE_PORT_MII_10;
1065 			break;
1066 		}
1067 		/* FALLTHROUGH */
1068 	case IFM_100_TX:
1069 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1070 		val |= BNX_EMAC_MODE_PORT_MII;
1071 		break;
1072 	case IFM_2500_SX:
1073 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1074 		val |= BNX_EMAC_MODE_25G;
1075 		/* FALLTHROUGH */
1076 	case IFM_1000_T:
1077 	case IFM_1000_SX:
1078 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1079 		val |= BNX_EMAC_MODE_PORT_GMII;
1080 		break;
1081 	default:
1082 		val |= BNX_EMAC_MODE_PORT_GMII;
1083 		break;
1084 	}
1085 
1086 	/* Set half or full duplex based on the duplicity
1087 	 * negotiated by the PHY.
1088 	 */
1089 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1090 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1091 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1092 	} else {
1093 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1094 	}
1095 
1096 	REG_WR(sc, BNX_EMAC_MODE, val);
1097 }
1098 
1099 /****************************************************************************/
1100 /* Acquire NVRAM lock.                                                      */
1101 /*                                                                          */
1102 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1103 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1104 /* for use by the driver.                                                   */
1105 /*                                                                          */
1106 /* Returns:                                                                 */
1107 /*   0 on success, positive value on failure.                               */
1108 /****************************************************************************/
1109 int
1110 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1111 {
1112 	u_int32_t		val;
1113 	int			j;
1114 
1115 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1116 
1117 	/* Request access to the flash interface. */
1118 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1119 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1120 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1121 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1122 			break;
1123 
1124 		DELAY(5);
1125 	}
1126 
1127 	if (j >= NVRAM_TIMEOUT_COUNT) {
1128 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1129 		return (EBUSY);
1130 	}
1131 
1132 	return (0);
1133 }
1134 
1135 /****************************************************************************/
1136 /* Release NVRAM lock.                                                      */
1137 /*                                                                          */
1138 /* When the caller is finished accessing NVRAM the lock must be released.   */
1139 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1140 /* for use by the driver.                                                   */
1141 /*                                                                          */
1142 /* Returns:                                                                 */
1143 /*   0 on success, positive value on failure.                               */
1144 /****************************************************************************/
1145 int
1146 bnx_release_nvram_lock(struct bnx_softc *sc)
1147 {
1148 	int			j;
1149 	u_int32_t		val;
1150 
1151 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1152 
1153 	/* Relinquish nvram interface. */
1154 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1155 
1156 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1157 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1158 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1159 			break;
1160 
1161 		DELAY(5);
1162 	}
1163 
1164 	if (j >= NVRAM_TIMEOUT_COUNT) {
1165 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1166 		return (EBUSY);
1167 	}
1168 
1169 	return (0);
1170 }
1171 
1172 #ifdef BNX_NVRAM_WRITE_SUPPORT
1173 /****************************************************************************/
1174 /* Enable NVRAM write access.                                               */
1175 /*                                                                          */
1176 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1177 /*                                                                          */
1178 /* Returns:                                                                 */
1179 /*   0 on success, positive value on failure.                               */
1180 /****************************************************************************/
1181 int
1182 bnx_enable_nvram_write(struct bnx_softc *sc)
1183 {
1184 	u_int32_t		val;
1185 
1186 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1187 
1188 	val = REG_RD(sc, BNX_MISC_CFG);
1189 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1190 
1191 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1192 		int j;
1193 
1194 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1195 		REG_WR(sc, BNX_NVM_COMMAND,
1196 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1197 
1198 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1199 			DELAY(5);
1200 
1201 			val = REG_RD(sc, BNX_NVM_COMMAND);
1202 			if (val & BNX_NVM_COMMAND_DONE)
1203 				break;
1204 		}
1205 
1206 		if (j >= NVRAM_TIMEOUT_COUNT) {
1207 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1208 			return (EBUSY);
1209 		}
1210 	}
1211 
1212 	return (0);
1213 }
1214 
1215 /****************************************************************************/
1216 /* Disable NVRAM write access.                                              */
1217 /*                                                                          */
1218 /* When the caller is finished writing to NVRAM write access must be        */
1219 /* disabled.                                                                */
1220 /*                                                                          */
1221 /* Returns:                                                                 */
1222 /*   Nothing.                                                               */
1223 /****************************************************************************/
1224 void
1225 bnx_disable_nvram_write(struct bnx_softc *sc)
1226 {
1227 	u_int32_t		val;
1228 
1229 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1230 
1231 	val = REG_RD(sc, BNX_MISC_CFG);
1232 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1233 }
1234 #endif
1235 
1236 /****************************************************************************/
1237 /* Enable NVRAM access.                                                     */
1238 /*                                                                          */
1239 /* Before accessing NVRAM for read or write operations the caller must      */
1240 /* enabled NVRAM access.                                                    */
1241 /*                                                                          */
1242 /* Returns:                                                                 */
1243 /*   Nothing.                                                               */
1244 /****************************************************************************/
1245 void
1246 bnx_enable_nvram_access(struct bnx_softc *sc)
1247 {
1248 	u_int32_t		val;
1249 
1250 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1251 
1252 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1253 	/* Enable both bits, even on read. */
1254 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1255 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1256 }
1257 
1258 /****************************************************************************/
1259 /* Disable NVRAM access.                                                    */
1260 /*                                                                          */
1261 /* When the caller is finished accessing NVRAM access must be disabled.     */
1262 /*                                                                          */
1263 /* Returns:                                                                 */
1264 /*   Nothing.                                                               */
1265 /****************************************************************************/
1266 void
1267 bnx_disable_nvram_access(struct bnx_softc *sc)
1268 {
1269 	u_int32_t		val;
1270 
1271 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1272 
1273 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1274 
1275 	/* Disable both bits, even after read. */
1276 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1277 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1278 }
1279 
1280 #ifdef BNX_NVRAM_WRITE_SUPPORT
1281 /****************************************************************************/
1282 /* Erase NVRAM page before writing.                                         */
1283 /*                                                                          */
1284 /* Non-buffered flash parts require that a page be erased before it is      */
1285 /* written.                                                                 */
1286 /*                                                                          */
1287 /* Returns:                                                                 */
1288 /*   0 on success, positive value on failure.                               */
1289 /****************************************************************************/
1290 int
1291 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1292 {
1293 	u_int32_t		cmd;
1294 	int			j;
1295 
1296 	/* Buffered flash doesn't require an erase. */
1297 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1298 		return (0);
1299 
1300 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1301 
1302 	/* Build an erase command. */
1303 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1304 	    BNX_NVM_COMMAND_DOIT;
1305 
1306 	/*
1307 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1308 	 * and issue the erase command.
1309 	 */
1310 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1311 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1312 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1313 
1314 	/* Wait for completion. */
1315 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1316 		u_int32_t val;
1317 
1318 		DELAY(5);
1319 
1320 		val = REG_RD(sc, BNX_NVM_COMMAND);
1321 		if (val & BNX_NVM_COMMAND_DONE)
1322 			break;
1323 	}
1324 
1325 	if (j >= NVRAM_TIMEOUT_COUNT) {
1326 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1327 		return (EBUSY);
1328 	}
1329 
1330 	return (0);
1331 }
1332 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1333 
1334 /****************************************************************************/
1335 /* Read a dword (32 bits) from NVRAM.                                       */
1336 /*                                                                          */
1337 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1338 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1339 /*                                                                          */
1340 /* Returns:                                                                 */
1341 /*   0 on success and the 32 bit value read, positive value on failure.     */
1342 /****************************************************************************/
1343 int
1344 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1345     u_int8_t *ret_val, u_int32_t cmd_flags)
1346 {
1347 	u_int32_t		cmd;
1348 	int			i, rc = 0;
1349 
1350 	/* Build the command word. */
1351 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1352 
1353 	/* Calculate the offset for buffered flash if translation is used. */
1354 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1355 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1356 		    sc->bnx_flash_info->page_bits) +
1357 		    (offset % sc->bnx_flash_info->page_size);
1358 	}
1359 
1360 	/*
1361 	 * Clear the DONE bit separately, set the address to read,
1362 	 * and issue the read.
1363 	 */
1364 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1365 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1366 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1367 
1368 	/* Wait for completion. */
1369 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1370 		u_int32_t val;
1371 
1372 		DELAY(5);
1373 
1374 		val = REG_RD(sc, BNX_NVM_COMMAND);
1375 		if (val & BNX_NVM_COMMAND_DONE) {
1376 			val = REG_RD(sc, BNX_NVM_READ);
1377 
1378 			val = bnx_be32toh(val);
1379 			memcpy(ret_val, &val, 4);
1380 			break;
1381 		}
1382 	}
1383 
1384 	/* Check for errors. */
1385 	if (i >= NVRAM_TIMEOUT_COUNT) {
1386 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1387 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1388 		rc = EBUSY;
1389 	}
1390 
1391 	return(rc);
1392 }
1393 
1394 #ifdef BNX_NVRAM_WRITE_SUPPORT
1395 /****************************************************************************/
1396 /* Write a dword (32 bits) to NVRAM.                                        */
1397 /*                                                                          */
1398 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1399 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1400 /* enabled NVRAM write access.                                              */
1401 /*                                                                          */
1402 /* Returns:                                                                 */
1403 /*   0 on success, positive value on failure.                               */
1404 /****************************************************************************/
1405 int
1406 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1407     u_int32_t cmd_flags)
1408 {
1409 	u_int32_t		cmd, val32;
1410 	int			j;
1411 
1412 	/* Build the command word. */
1413 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1414 
1415 	/* Calculate the offset for buffered flash if translation is used. */
1416 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1417 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1418 		    sc->bnx_flash_info->page_bits) +
1419 		    (offset % sc->bnx_flash_info->page_size);
1420 	}
1421 
1422 	/*
1423 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1424 	 * set the NVRAM address to write, and issue the write command
1425 	 */
1426 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1427 	memcpy(&val32, val, 4);
1428 	val32 = htobe32(val32);
1429 	REG_WR(sc, BNX_NVM_WRITE, val32);
1430 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1431 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1432 
1433 	/* Wait for completion. */
1434 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1435 		DELAY(5);
1436 
1437 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1438 			break;
1439 	}
1440 	if (j >= NVRAM_TIMEOUT_COUNT) {
1441 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1442 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1443 		return (EBUSY);
1444 	}
1445 
1446 	return (0);
1447 }
1448 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1449 
1450 /****************************************************************************/
1451 /* Initialize NVRAM access.                                                 */
1452 /*                                                                          */
1453 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1454 /* access that device.                                                      */
1455 /*                                                                          */
1456 /* Returns:                                                                 */
1457 /*   0 on success, positive value on failure.                               */
1458 /****************************************************************************/
1459 int
1460 bnx_init_nvram(struct bnx_softc *sc)
1461 {
1462 	u_int32_t		val;
1463 	int			j, entry_count, rc = 0;
1464 	struct flash_spec	*flash;
1465 
1466 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1467 
1468 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1469 		sc->bnx_flash_info = &flash_5709;
1470 		goto bnx_init_nvram_get_flash_size;
1471 	}
1472 
1473 	/* Determine the selected interface. */
1474 	val = REG_RD(sc, BNX_NVM_CFG1);
1475 
1476 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1477 
1478 	/*
1479 	 * Flash reconfiguration is required to support additional
1480 	 * NVRAM devices not directly supported in hardware.
1481 	 * Check if the flash interface was reconfigured
1482 	 * by the bootcode.
1483 	 */
1484 
1485 	if (val & 0x40000000) {
1486 		/* Flash interface reconfigured by bootcode. */
1487 
1488 		DBPRINT(sc,BNX_INFO_LOAD,
1489 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1490 
1491 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1492 		     j++, flash++) {
1493 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1494 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1495 				sc->bnx_flash_info = flash;
1496 				break;
1497 			}
1498 		}
1499 	} else {
1500 		/* Flash interface not yet reconfigured. */
1501 		u_int32_t mask;
1502 
1503 		DBPRINT(sc,BNX_INFO_LOAD,
1504 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1505 
1506 		if (val & (1 << 23))
1507 			mask = FLASH_BACKUP_STRAP_MASK;
1508 		else
1509 			mask = FLASH_STRAP_MASK;
1510 
1511 		/* Look for the matching NVRAM device configuration data. */
1512 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1513 		    j++, flash++) {
1514 			/* Check if the dev matches any of the known devices. */
1515 			if ((val & mask) == (flash->strapping & mask)) {
1516 				/* Found a device match. */
1517 				sc->bnx_flash_info = flash;
1518 
1519 				/* Request access to the flash interface. */
1520 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1521 					return (rc);
1522 
1523 				/* Reconfigure the flash interface. */
1524 				bnx_enable_nvram_access(sc);
1525 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1526 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1527 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1528 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1529 				bnx_disable_nvram_access(sc);
1530 				bnx_release_nvram_lock(sc);
1531 
1532 				break;
1533 			}
1534 		}
1535 	}
1536 
1537 	/* Check if a matching device was found. */
1538 	if (j == entry_count) {
1539 		sc->bnx_flash_info = NULL;
1540 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1541 			__FILE__, __LINE__);
1542 		rc = ENODEV;
1543 	}
1544 
1545 bnx_init_nvram_get_flash_size:
1546 	/* Write the flash config data to the shared memory interface. */
1547 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1548 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1549 	if (val)
1550 		sc->bnx_flash_size = val;
1551 	else
1552 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1553 
1554 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1555 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1556 
1557 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1558 
1559 	return (rc);
1560 }
1561 
1562 /****************************************************************************/
1563 /* Read an arbitrary range of data from NVRAM.                              */
1564 /*                                                                          */
1565 /* Prepares the NVRAM interface for access and reads the requested data     */
1566 /* into the supplied buffer.                                                */
1567 /*                                                                          */
1568 /* Returns:                                                                 */
1569 /*   0 on success and the data read, positive value on failure.             */
1570 /****************************************************************************/
1571 int
1572 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1573     int buf_size)
1574 {
1575 	int			rc = 0;
1576 	u_int32_t		cmd_flags, offset32, len32, extra;
1577 
1578 	if (buf_size == 0)
1579 		return (0);
1580 
1581 	/* Request access to the flash interface. */
1582 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1583 		return (rc);
1584 
1585 	/* Enable access to flash interface */
1586 	bnx_enable_nvram_access(sc);
1587 
1588 	len32 = buf_size;
1589 	offset32 = offset;
1590 	extra = 0;
1591 
1592 	cmd_flags = 0;
1593 
1594 	if (offset32 & 3) {
1595 		u_int8_t buf[4];
1596 		u_int32_t pre_len;
1597 
1598 		offset32 &= ~3;
1599 		pre_len = 4 - (offset & 3);
1600 
1601 		if (pre_len >= len32) {
1602 			pre_len = len32;
1603 			cmd_flags =
1604 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1605 		} else
1606 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1607 
1608 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1609 
1610 		if (rc)
1611 			return (rc);
1612 
1613 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1614 
1615 		offset32 += 4;
1616 		ret_buf += pre_len;
1617 		len32 -= pre_len;
1618 	}
1619 
1620 	if (len32 & 3) {
1621 		extra = 4 - (len32 & 3);
1622 		len32 = (len32 + 4) & ~3;
1623 	}
1624 
1625 	if (len32 == 4) {
1626 		u_int8_t buf[4];
1627 
1628 		if (cmd_flags)
1629 			cmd_flags = BNX_NVM_COMMAND_LAST;
1630 		else
1631 			cmd_flags =
1632 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1633 
1634 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1635 
1636 		memcpy(ret_buf, buf, 4 - extra);
1637 	} else if (len32 > 0) {
1638 		u_int8_t buf[4];
1639 
1640 		/* Read the first word. */
1641 		if (cmd_flags)
1642 			cmd_flags = 0;
1643 		else
1644 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1645 
1646 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1647 
1648 		/* Advance to the next dword. */
1649 		offset32 += 4;
1650 		ret_buf += 4;
1651 		len32 -= 4;
1652 
1653 		while (len32 > 4 && rc == 0) {
1654 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1655 
1656 			/* Advance to the next dword. */
1657 			offset32 += 4;
1658 			ret_buf += 4;
1659 			len32 -= 4;
1660 		}
1661 
1662 		if (rc)
1663 			return (rc);
1664 
1665 		cmd_flags = BNX_NVM_COMMAND_LAST;
1666 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1667 
1668 		memcpy(ret_buf, buf, 4 - extra);
1669 	}
1670 
1671 	/* Disable access to flash interface and release the lock. */
1672 	bnx_disable_nvram_access(sc);
1673 	bnx_release_nvram_lock(sc);
1674 
1675 	return (rc);
1676 }
1677 
1678 #ifdef BNX_NVRAM_WRITE_SUPPORT
1679 /****************************************************************************/
1680 /* Write an arbitrary range of data from NVRAM.                             */
1681 /*                                                                          */
1682 /* Prepares the NVRAM interface for write access and writes the requested   */
1683 /* data from the supplied buffer.  The caller is responsible for            */
1684 /* calculating any appropriate CRCs.                                        */
1685 /*                                                                          */
1686 /* Returns:                                                                 */
1687 /*   0 on success, positive value on failure.                               */
1688 /****************************************************************************/
1689 int
1690 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1691     int buf_size)
1692 {
1693 	u_int32_t		written, offset32, len32;
1694 	u_int8_t		*buf, start[4], end[4];
1695 	int			rc = 0;
1696 	int			align_start, align_end;
1697 
1698 	buf = data_buf;
1699 	offset32 = offset;
1700 	len32 = buf_size;
1701 	align_start = align_end = 0;
1702 
1703 	if ((align_start = (offset32 & 3))) {
1704 		offset32 &= ~3;
1705 		len32 += align_start;
1706 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1707 			return (rc);
1708 	}
1709 
1710 	if (len32 & 3) {
1711 	       	if ((len32 > 4) || !align_start) {
1712 			align_end = 4 - (len32 & 3);
1713 			len32 += align_end;
1714 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1715 			    end, 4))) {
1716 				return (rc);
1717 			}
1718 		}
1719 	}
1720 
1721 	if (align_start || align_end) {
1722 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1723 		if (buf == 0)
1724 			return (ENOMEM);
1725 
1726 		if (align_start)
1727 			memcpy(buf, start, 4);
1728 
1729 		if (align_end)
1730 			memcpy(buf + len32 - 4, end, 4);
1731 
1732 		memcpy(buf + align_start, data_buf, buf_size);
1733 	}
1734 
1735 	written = 0;
1736 	while ((written < len32) && (rc == 0)) {
1737 		u_int32_t page_start, page_end, data_start, data_end;
1738 		u_int32_t addr, cmd_flags;
1739 		int i;
1740 		u_int8_t flash_buffer[264];
1741 
1742 	    /* Find the page_start addr */
1743 		page_start = offset32 + written;
1744 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1745 		/* Find the page_end addr */
1746 		page_end = page_start + sc->bnx_flash_info->page_size;
1747 		/* Find the data_start addr */
1748 		data_start = (written == 0) ? offset32 : page_start;
1749 		/* Find the data_end addr */
1750 		data_end = (page_end > offset32 + len32) ?
1751 		    (offset32 + len32) : page_end;
1752 
1753 		/* Request access to the flash interface. */
1754 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1755 			goto nvram_write_end;
1756 
1757 		/* Enable access to flash interface */
1758 		bnx_enable_nvram_access(sc);
1759 
1760 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1761 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1762 			int j;
1763 
1764 			/* Read the whole page into the buffer
1765 			 * (non-buffer flash only) */
1766 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1767 				if (j == (sc->bnx_flash_info->page_size - 4))
1768 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1769 
1770 				rc = bnx_nvram_read_dword(sc,
1771 					page_start + j,
1772 					&flash_buffer[j],
1773 					cmd_flags);
1774 
1775 				if (rc)
1776 					goto nvram_write_end;
1777 
1778 				cmd_flags = 0;
1779 			}
1780 		}
1781 
1782 		/* Enable writes to flash interface (unlock write-protect) */
1783 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1784 			goto nvram_write_end;
1785 
1786 		/* Erase the page */
1787 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1788 			goto nvram_write_end;
1789 
1790 		/* Re-enable the write again for the actual write */
1791 		bnx_enable_nvram_write(sc);
1792 
1793 		/* Loop to write back the buffer data from page_start to
1794 		 * data_start */
1795 		i = 0;
1796 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1797 			for (addr = page_start; addr < data_start;
1798 				addr += 4, i += 4) {
1799 
1800 				rc = bnx_nvram_write_dword(sc, addr,
1801 				    &flash_buffer[i], cmd_flags);
1802 
1803 				if (rc != 0)
1804 					goto nvram_write_end;
1805 
1806 				cmd_flags = 0;
1807 			}
1808 		}
1809 
1810 		/* Loop to write the new data from data_start to data_end */
1811 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1812 			if ((addr == page_end - 4) ||
1813 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1814 			    && (addr == data_end - 4))) {
1815 
1816 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1817 			}
1818 
1819 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1820 
1821 			if (rc != 0)
1822 				goto nvram_write_end;
1823 
1824 			cmd_flags = 0;
1825 			buf += 4;
1826 		}
1827 
1828 		/* Loop to write back the buffer data from data_end
1829 		 * to page_end */
1830 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1831 			for (addr = data_end; addr < page_end;
1832 			    addr += 4, i += 4) {
1833 
1834 				if (addr == page_end-4)
1835 					cmd_flags = BNX_NVM_COMMAND_LAST;
1836 
1837 				rc = bnx_nvram_write_dword(sc, addr,
1838 				    &flash_buffer[i], cmd_flags);
1839 
1840 				if (rc != 0)
1841 					goto nvram_write_end;
1842 
1843 				cmd_flags = 0;
1844 			}
1845 		}
1846 
1847 		/* Disable writes to flash interface (lock write-protect) */
1848 		bnx_disable_nvram_write(sc);
1849 
1850 		/* Disable access to flash interface */
1851 		bnx_disable_nvram_access(sc);
1852 		bnx_release_nvram_lock(sc);
1853 
1854 		/* Increment written */
1855 		written += data_end - data_start;
1856 	}
1857 
1858 nvram_write_end:
1859 	if (align_start || align_end)
1860 		free(buf, M_DEVBUF);
1861 
1862 	return (rc);
1863 }
1864 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1865 
1866 /****************************************************************************/
1867 /* Verifies that NVRAM is accessible and contains valid data.               */
1868 /*                                                                          */
1869 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1870 /* correct.                                                                 */
1871 /*                                                                          */
1872 /* Returns:                                                                 */
1873 /*   0 on success, positive value on failure.                               */
1874 /****************************************************************************/
1875 int
1876 bnx_nvram_test(struct bnx_softc *sc)
1877 {
1878 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1879 	u_int8_t		*data = (u_int8_t *) buf;
1880 	int			rc = 0;
1881 	u_int32_t		magic, csum;
1882 
1883 	/*
1884 	 * Check that the device NVRAM is valid by reading
1885 	 * the magic value at offset 0.
1886 	 */
1887 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1888 		goto bnx_nvram_test_done;
1889 
1890 	magic = bnx_be32toh(buf[0]);
1891 	if (magic != BNX_NVRAM_MAGIC) {
1892 		rc = ENODEV;
1893 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1894 		    "Expected: 0x%08X, Found: 0x%08X\n",
1895 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1896 		goto bnx_nvram_test_done;
1897 	}
1898 
1899 	/*
1900 	 * Verify that the device NVRAM includes valid
1901 	 * configuration data.
1902 	 */
1903 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1904 		goto bnx_nvram_test_done;
1905 
1906 	csum = ether_crc32_le(data, 0x100);
1907 	if (csum != BNX_CRC32_RESIDUAL) {
1908 		rc = ENODEV;
1909 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1910 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1911 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1912 		goto bnx_nvram_test_done;
1913 	}
1914 
1915 	csum = ether_crc32_le(data + 0x100, 0x100);
1916 	if (csum != BNX_CRC32_RESIDUAL) {
1917 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1918 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1919 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1920 		rc = ENODEV;
1921 	}
1922 
1923 bnx_nvram_test_done:
1924 	return (rc);
1925 }
1926 
1927 /****************************************************************************/
1928 /* Identifies the current media type of the controller and sets the PHY     */
1929 /* address.                                                                 */
1930 /*                                                                          */
1931 /* Returns:                                                                 */
1932 /*   Nothing.                                                               */
1933 /****************************************************************************/
1934 void
1935 bnx_get_media(struct bnx_softc *sc)
1936 {
1937 	sc->bnx_phy_addr = 1;
1938 
1939 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1940 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1941 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1942 		u_int32_t strap;
1943 
1944 		/*
1945 		 * The BCM5709S is software configurable
1946 		 * for Copper or SerDes operation.
1947 		 */
1948 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1949 			DBPRINT(sc, BNX_INFO_LOAD,
1950 			    "5709 bonded for copper.\n");
1951 			goto bnx_get_media_exit;
1952 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1953 			DBPRINT(sc, BNX_INFO_LOAD,
1954 			    "5709 bonded for dual media.\n");
1955 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1956 			goto bnx_get_media_exit;
1957 		}
1958 
1959 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1960 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1961 		else {
1962 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
1963 			    >> 8;
1964 		}
1965 
1966 		if (sc->bnx_pa.pa_function == 0) {
1967 			switch (strap) {
1968 			case 0x4:
1969 			case 0x5:
1970 			case 0x6:
1971 				DBPRINT(sc, BNX_INFO_LOAD,
1972 					"BCM5709 s/w configured for SerDes.\n");
1973 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1974 			default:
1975 				DBPRINT(sc, BNX_INFO_LOAD,
1976 					"BCM5709 s/w configured for Copper.\n");
1977 			}
1978 		} else {
1979 			switch (strap) {
1980 			case 0x1:
1981 			case 0x2:
1982 			case 0x4:
1983 				DBPRINT(sc, BNX_INFO_LOAD,
1984 					"BCM5709 s/w configured for SerDes.\n");
1985 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1986 			default:
1987 				DBPRINT(sc, BNX_INFO_LOAD,
1988 					"BCM5709 s/w configured for Copper.\n");
1989 			}
1990 		}
1991 
1992 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
1993 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1994 
1995 	if (sc->bnx_phy_flags && BNX_PHY_SERDES_FLAG) {
1996 		u_int32_t val;
1997 
1998 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
1999 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2000 			sc->bnx_phy_addr = 2;
2001 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2002 				 BNX_SHARED_HW_CFG_CONFIG);
2003 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2004 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2005 				DBPRINT(sc, BNX_INFO_LOAD,
2006 				    "Found 2.5Gb capable adapter\n");
2007 			}
2008 		}
2009 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2010 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2011 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2012 
2013 bnx_get_media_exit:
2014 	DBPRINT(sc, (BNX_INFO_LOAD),
2015 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2016 }
2017 
2018 /****************************************************************************/
2019 /* Free any DMA memory owned by the driver.                                 */
2020 /*                                                                          */
2021 /* Scans through each data structre that requires DMA memory and frees      */
2022 /* the memory if allocated.                                                 */
2023 /*                                                                          */
2024 /* Returns:                                                                 */
2025 /*   Nothing.                                                               */
2026 /****************************************************************************/
2027 void
2028 bnx_dma_free(struct bnx_softc *sc)
2029 {
2030 	int			i;
2031 
2032 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2033 
2034 	/* Destroy the status block. */
2035 	if (sc->status_block != NULL && sc->status_map != NULL) {
2036 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2037 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2038 		    BNX_STATUS_BLK_SZ);
2039 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2040 		    sc->status_rseg);
2041 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2042 		sc->status_block = NULL;
2043 		sc->status_map = NULL;
2044 	}
2045 
2046 	/* Destroy the statistics block. */
2047 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2048 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2049 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2050 		    BNX_STATS_BLK_SZ);
2051 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2052 		    sc->stats_rseg);
2053 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2054 		sc->stats_block = NULL;
2055 		sc->stats_map = NULL;
2056 	}
2057 
2058 	/* Free, unmap and destroy all context memory pages. */
2059 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2060 		for (i = 0; i < sc->ctx_pages; i++) {
2061 			if (sc->ctx_block[i] != NULL) {
2062 				bus_dmamap_unload(sc->bnx_dmatag,
2063 				    sc->ctx_map[i]);
2064 				bus_dmamem_unmap(sc->bnx_dmatag,
2065 				    (void *)sc->ctx_block[i],
2066 				    BCM_PAGE_SIZE);
2067 				bus_dmamem_free(sc->bnx_dmatag,
2068 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2069 				bus_dmamap_destroy(sc->bnx_dmatag,
2070 				    sc->ctx_map[i]);
2071 				sc->ctx_block[i] = NULL;
2072 			}
2073 		}
2074 	}
2075 
2076 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2077 	for (i = 0; i < TX_PAGES; i++ ) {
2078 		if (sc->tx_bd_chain[i] != NULL &&
2079 		    sc->tx_bd_chain_map[i] != NULL) {
2080 			bus_dmamap_unload(sc->bnx_dmatag,
2081 			    sc->tx_bd_chain_map[i]);
2082 			bus_dmamem_unmap(sc->bnx_dmatag,
2083 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2084 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2085 			    sc->tx_bd_chain_rseg[i]);
2086 			bus_dmamap_destroy(sc->bnx_dmatag,
2087 			    sc->tx_bd_chain_map[i]);
2088 			sc->tx_bd_chain[i] = NULL;
2089 			sc->tx_bd_chain_map[i] = NULL;
2090 		}
2091 	}
2092 
2093 	/* Destroy the TX dmamaps. */
2094 	/* This isn't necessary since we dont allocate them up front */
2095 
2096 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2097 	for (i = 0; i < RX_PAGES; i++ ) {
2098 		if (sc->rx_bd_chain[i] != NULL &&
2099 		    sc->rx_bd_chain_map[i] != NULL) {
2100 			bus_dmamap_unload(sc->bnx_dmatag,
2101 			    sc->rx_bd_chain_map[i]);
2102 			bus_dmamem_unmap(sc->bnx_dmatag,
2103 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2104 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2105 			    sc->rx_bd_chain_rseg[i]);
2106 
2107 			bus_dmamap_destroy(sc->bnx_dmatag,
2108 			    sc->rx_bd_chain_map[i]);
2109 			sc->rx_bd_chain[i] = NULL;
2110 			sc->rx_bd_chain_map[i] = NULL;
2111 		}
2112 	}
2113 
2114 	/* Unload and destroy the RX mbuf maps. */
2115 	for (i = 0; i < TOTAL_RX_BD; i++) {
2116 		if (sc->rx_mbuf_map[i] != NULL) {
2117 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2118 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2119 		}
2120 	}
2121 
2122 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2123 }
2124 
2125 /****************************************************************************/
2126 /* Allocate any DMA memory needed by the driver.                            */
2127 /*                                                                          */
2128 /* Allocates DMA memory needed for the various global structures needed by  */
2129 /* hardware.                                                                */
2130 /*                                                                          */
2131 /* Returns:                                                                 */
2132 /*   0 for success, positive value for failure.                             */
2133 /****************************************************************************/
2134 int
2135 bnx_dma_alloc(struct bnx_softc *sc)
2136 {
2137 	int			i, rc = 0;
2138 
2139 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2140 
2141 	/*
2142 	 * Allocate DMA memory for the status block, map the memory into DMA
2143 	 * space, and fetch the physical address of the block.
2144 	 */
2145 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2146 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2147 		aprint_error_dev(sc->bnx_dev,
2148 		    "Could not create status block DMA map!\n");
2149 		rc = ENOMEM;
2150 		goto bnx_dma_alloc_exit;
2151 	}
2152 
2153 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2154 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2155 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2156 		aprint_error_dev(sc->bnx_dev,
2157 		    "Could not allocate status block DMA memory!\n");
2158 		rc = ENOMEM;
2159 		goto bnx_dma_alloc_exit;
2160 	}
2161 
2162 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2163 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2164 		aprint_error_dev(sc->bnx_dev,
2165 		    "Could not map status block DMA memory!\n");
2166 		rc = ENOMEM;
2167 		goto bnx_dma_alloc_exit;
2168 	}
2169 
2170 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2171 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2172 		aprint_error_dev(sc->bnx_dev,
2173 		    "Could not load status block DMA memory!\n");
2174 		rc = ENOMEM;
2175 		goto bnx_dma_alloc_exit;
2176 	}
2177 
2178 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2179 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2180 
2181 	/* DRC - Fix for 64 bit addresses. */
2182 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2183 		(u_int32_t) sc->status_block_paddr);
2184 
2185 	/* BCM5709 uses host memory as cache for context memory. */
2186 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2187 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2188 		if (sc->ctx_pages == 0)
2189 			sc->ctx_pages = 1;
2190 		if (sc->ctx_pages > 4) /* XXX */
2191 			sc->ctx_pages = 4;
2192 
2193 		DBRUNIF((sc->ctx_pages > 512),
2194 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2195 				__FILE__, __LINE__, sc->ctx_pages));
2196 
2197 
2198 		for (i = 0; i < sc->ctx_pages; i++) {
2199 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2200 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2201 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2202 			    &sc->ctx_map[i]) != 0) {
2203 				rc = ENOMEM;
2204 				goto bnx_dma_alloc_exit;
2205 			}
2206 
2207 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2208 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2209 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2210 				rc = ENOMEM;
2211 				goto bnx_dma_alloc_exit;
2212 			}
2213 
2214 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2215 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2216 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2217 				rc = ENOMEM;
2218 				goto bnx_dma_alloc_exit;
2219 			}
2220 
2221 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2222 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2223 			    BUS_DMA_NOWAIT) != 0) {
2224 				rc = ENOMEM;
2225 				goto bnx_dma_alloc_exit;
2226 			}
2227 
2228 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * Allocate DMA memory for the statistics block, map the memory into
2234 	 * DMA space, and fetch the physical address of the block.
2235 	 */
2236 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2237 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2238 		aprint_error_dev(sc->bnx_dev,
2239 		    "Could not create stats block DMA map!\n");
2240 		rc = ENOMEM;
2241 		goto bnx_dma_alloc_exit;
2242 	}
2243 
2244 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2245 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2246 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2247 		aprint_error_dev(sc->bnx_dev,
2248 		    "Could not allocate stats block DMA memory!\n");
2249 		rc = ENOMEM;
2250 		goto bnx_dma_alloc_exit;
2251 	}
2252 
2253 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2254 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2255 		aprint_error_dev(sc->bnx_dev,
2256 		    "Could not map stats block DMA memory!\n");
2257 		rc = ENOMEM;
2258 		goto bnx_dma_alloc_exit;
2259 	}
2260 
2261 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2262 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2263 		aprint_error_dev(sc->bnx_dev,
2264 		    "Could not load status block DMA memory!\n");
2265 		rc = ENOMEM;
2266 		goto bnx_dma_alloc_exit;
2267 	}
2268 
2269 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2270 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2271 
2272 	/* DRC - Fix for 64 bit address. */
2273 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2274 	    (u_int32_t) sc->stats_block_paddr);
2275 
2276 	/*
2277 	 * Allocate DMA memory for the TX buffer descriptor chain,
2278 	 * and fetch the physical address of the block.
2279 	 */
2280 	for (i = 0; i < TX_PAGES; i++) {
2281 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2282 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2283 		    &sc->tx_bd_chain_map[i])) {
2284 			aprint_error_dev(sc->bnx_dev,
2285 			    "Could not create Tx desc %d DMA map!\n", i);
2286 			rc = ENOMEM;
2287 			goto bnx_dma_alloc_exit;
2288 		}
2289 
2290 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2291 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2292 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2293 			aprint_error_dev(sc->bnx_dev,
2294 			    "Could not allocate TX desc %d DMA memory!\n",
2295 			    i);
2296 			rc = ENOMEM;
2297 			goto bnx_dma_alloc_exit;
2298 		}
2299 
2300 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2301 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2302 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2303 			aprint_error_dev(sc->bnx_dev,
2304 			    "Could not map TX desc %d DMA memory!\n", i);
2305 			rc = ENOMEM;
2306 			goto bnx_dma_alloc_exit;
2307 		}
2308 
2309 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2310 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2311 		    BUS_DMA_NOWAIT)) {
2312 			aprint_error_dev(sc->bnx_dev,
2313 			    "Could not load TX desc %d DMA memory!\n", i);
2314 			rc = ENOMEM;
2315 			goto bnx_dma_alloc_exit;
2316 		}
2317 
2318 		sc->tx_bd_chain_paddr[i] =
2319 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2320 
2321 		/* DRC - Fix for 64 bit systems. */
2322 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2323 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2324 	}
2325 
2326 	/*
2327 	 * Create lists to hold TX mbufs.
2328 	 */
2329 	TAILQ_INIT(&sc->tx_free_pkts);
2330 	TAILQ_INIT(&sc->tx_used_pkts);
2331 	sc->tx_pkt_count = 0;
2332 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2333 
2334 	/*
2335 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2336 	 * and fetch the physical address of the block.
2337 	 */
2338 	for (i = 0; i < RX_PAGES; i++) {
2339 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2340 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2341 		    &sc->rx_bd_chain_map[i])) {
2342 			aprint_error_dev(sc->bnx_dev,
2343 			    "Could not create Rx desc %d DMA map!\n", i);
2344 			rc = ENOMEM;
2345 			goto bnx_dma_alloc_exit;
2346 		}
2347 
2348 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2349 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2350 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2351 			aprint_error_dev(sc->bnx_dev,
2352 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2353 			rc = ENOMEM;
2354 			goto bnx_dma_alloc_exit;
2355 		}
2356 
2357 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2358 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2359 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2360 			aprint_error_dev(sc->bnx_dev,
2361 			    "Could not map Rx desc %d DMA memory!\n", i);
2362 			rc = ENOMEM;
2363 			goto bnx_dma_alloc_exit;
2364 		}
2365 
2366 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2367 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2368 		    BUS_DMA_NOWAIT)) {
2369 			aprint_error_dev(sc->bnx_dev,
2370 			    "Could not load Rx desc %d DMA memory!\n", i);
2371 			rc = ENOMEM;
2372 			goto bnx_dma_alloc_exit;
2373 		}
2374 
2375 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2376 		sc->rx_bd_chain_paddr[i] =
2377 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2378 
2379 		/* DRC - Fix for 64 bit systems. */
2380 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2381 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2382 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2383 		    0, BNX_RX_CHAIN_PAGE_SZ,
2384 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2385 	}
2386 
2387 	/*
2388 	 * Create DMA maps for the Rx buffer mbufs.
2389 	 */
2390 	for (i = 0; i < TOTAL_RX_BD; i++) {
2391 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2392 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2393 		    &sc->rx_mbuf_map[i])) {
2394 			aprint_error_dev(sc->bnx_dev,
2395 			    "Could not create Rx mbuf %d DMA map!\n", i);
2396 			rc = ENOMEM;
2397 			goto bnx_dma_alloc_exit;
2398 		}
2399 	}
2400 
2401  bnx_dma_alloc_exit:
2402 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2403 
2404 	return(rc);
2405 }
2406 
2407 /****************************************************************************/
2408 /* Release all resources used by the driver.                                */
2409 /*                                                                          */
2410 /* Releases all resources acquired by the driver including interrupts,      */
2411 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2412 /*                                                                          */
2413 /* Returns:                                                                 */
2414 /*   Nothing.                                                               */
2415 /****************************************************************************/
2416 void
2417 bnx_release_resources(struct bnx_softc *sc)
2418 {
2419 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2420 
2421 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2422 
2423 	bnx_dma_free(sc);
2424 
2425 	if (sc->bnx_intrhand != NULL)
2426 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2427 
2428 	if (sc->bnx_size)
2429 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2430 
2431 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2432 }
2433 
2434 /****************************************************************************/
2435 /* Firmware synchronization.                                                */
2436 /*                                                                          */
2437 /* Before performing certain events such as a chip reset, synchronize with  */
2438 /* the firmware first.                                                      */
2439 /*                                                                          */
2440 /* Returns:                                                                 */
2441 /*   0 for success, positive value for failure.                             */
2442 /****************************************************************************/
2443 int
2444 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2445 {
2446 	int			i, rc = 0;
2447 	u_int32_t		val;
2448 
2449 	/* Don't waste any time if we've timed out before. */
2450 	if (sc->bnx_fw_timed_out) {
2451 		rc = EBUSY;
2452 		goto bnx_fw_sync_exit;
2453 	}
2454 
2455 	/* Increment the message sequence number. */
2456 	sc->bnx_fw_wr_seq++;
2457 	msg_data |= sc->bnx_fw_wr_seq;
2458 
2459  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2460 	    msg_data);
2461 
2462 	/* Send the message to the bootcode driver mailbox. */
2463 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2464 
2465 	/* Wait for the bootcode to acknowledge the message. */
2466 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2467 		/* Check for a response in the bootcode firmware mailbox. */
2468 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2469 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2470 			break;
2471 		DELAY(1000);
2472 	}
2473 
2474 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2475 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2476 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2477 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2478 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2479 
2480 		msg_data &= ~BNX_DRV_MSG_CODE;
2481 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2482 
2483 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2484 
2485 		sc->bnx_fw_timed_out = 1;
2486 		rc = EBUSY;
2487 	}
2488 
2489 bnx_fw_sync_exit:
2490 	return (rc);
2491 }
2492 
2493 /****************************************************************************/
2494 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2495 /*                                                                          */
2496 /* Returns:                                                                 */
2497 /*   Nothing.                                                               */
2498 /****************************************************************************/
2499 void
2500 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2501     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2502 {
2503 	int			i;
2504 	u_int32_t		val;
2505 
2506 	/* Set the page size used by RV2P. */
2507 	if (rv2p_proc == RV2P_PROC2) {
2508 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2509 		    USABLE_RX_BD_PER_PAGE);
2510 	}
2511 
2512 	for (i = 0; i < rv2p_code_len; i += 8) {
2513 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2514 		rv2p_code++;
2515 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2516 		rv2p_code++;
2517 
2518 		if (rv2p_proc == RV2P_PROC1) {
2519 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2520 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2521 		} else {
2522 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2523 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2524 		}
2525 	}
2526 
2527 	/* Reset the processor, un-stall is done later. */
2528 	if (rv2p_proc == RV2P_PROC1)
2529 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2530 	else
2531 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2532 }
2533 
2534 /****************************************************************************/
2535 /* Load RISC processor firmware.                                            */
2536 /*                                                                          */
2537 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2538 /* associated with a particular processor.                                  */
2539 /*                                                                          */
2540 /* Returns:                                                                 */
2541 /*   Nothing.                                                               */
2542 /****************************************************************************/
2543 void
2544 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2545     struct fw_info *fw)
2546 {
2547 	u_int32_t		offset;
2548 	u_int32_t		val;
2549 
2550 	/* Halt the CPU. */
2551 	val = REG_RD_IND(sc, cpu_reg->mode);
2552 	val |= cpu_reg->mode_value_halt;
2553 	REG_WR_IND(sc, cpu_reg->mode, val);
2554 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2555 
2556 	/* Load the Text area. */
2557 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2558 	if (fw->text) {
2559 		int j;
2560 
2561 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2562 			REG_WR_IND(sc, offset, fw->text[j]);
2563 	}
2564 
2565 	/* Load the Data area. */
2566 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2567 	if (fw->data) {
2568 		int j;
2569 
2570 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2571 			REG_WR_IND(sc, offset, fw->data[j]);
2572 	}
2573 
2574 	/* Load the SBSS area. */
2575 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2576 	if (fw->sbss) {
2577 		int j;
2578 
2579 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2580 			REG_WR_IND(sc, offset, fw->sbss[j]);
2581 	}
2582 
2583 	/* Load the BSS area. */
2584 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2585 	if (fw->bss) {
2586 		int j;
2587 
2588 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2589 			REG_WR_IND(sc, offset, fw->bss[j]);
2590 	}
2591 
2592 	/* Load the Read-Only area. */
2593 	offset = cpu_reg->spad_base +
2594 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2595 	if (fw->rodata) {
2596 		int j;
2597 
2598 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2599 			REG_WR_IND(sc, offset, fw->rodata[j]);
2600 	}
2601 
2602 	/* Clear the pre-fetch instruction. */
2603 	REG_WR_IND(sc, cpu_reg->inst, 0);
2604 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2605 
2606 	/* Start the CPU. */
2607 	val = REG_RD_IND(sc, cpu_reg->mode);
2608 	val &= ~cpu_reg->mode_value_halt;
2609 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2610 	REG_WR_IND(sc, cpu_reg->mode, val);
2611 }
2612 
2613 /****************************************************************************/
2614 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2615 /*                                                                          */
2616 /* Loads the firmware for each CPU and starts the CPU.                      */
2617 /*                                                                          */
2618 /* Returns:                                                                 */
2619 /*   Nothing.                                                               */
2620 /****************************************************************************/
2621 void
2622 bnx_init_cpus(struct bnx_softc *sc)
2623 {
2624 	struct cpu_reg cpu_reg;
2625 	struct fw_info fw;
2626 
2627 	switch(BNX_CHIP_NUM(sc)) {
2628 	case BNX_CHIP_NUM_5709:
2629 		/* Initialize the RV2P processor. */
2630 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2631 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2632 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2633 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2634 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2635 		} else {
2636 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2637 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2638 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2639 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2640 		}
2641 
2642 		/* Initialize the RX Processor. */
2643 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2644 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2645 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2646 		cpu_reg.state = BNX_RXP_CPU_STATE;
2647 		cpu_reg.state_value_clear = 0xffffff;
2648 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2649 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2650 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2651 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2652 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2653 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2654 		cpu_reg.mips_view_base = 0x8000000;
2655 
2656 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2657 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2658 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2659 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2660 
2661 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2662 		fw.text_len = bnx_RXP_b09FwTextLen;
2663 		fw.text_index = 0;
2664 		fw.text = bnx_RXP_b09FwText;
2665 
2666 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2667 		fw.data_len = bnx_RXP_b09FwDataLen;
2668 		fw.data_index = 0;
2669 		fw.data = bnx_RXP_b09FwData;
2670 
2671 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2672 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2673 		fw.sbss_index = 0;
2674 		fw.sbss = bnx_RXP_b09FwSbss;
2675 
2676 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2677 		fw.bss_len = bnx_RXP_b09FwBssLen;
2678 		fw.bss_index = 0;
2679 		fw.bss = bnx_RXP_b09FwBss;
2680 
2681 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2682 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2683 		fw.rodata_index = 0;
2684 		fw.rodata = bnx_RXP_b09FwRodata;
2685 
2686 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2687 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2688 
2689 		/* Initialize the TX Processor. */
2690 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2691 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2692 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2693 		cpu_reg.state = BNX_TXP_CPU_STATE;
2694 		cpu_reg.state_value_clear = 0xffffff;
2695 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2696 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2697 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2698 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2699 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2700 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2701 		cpu_reg.mips_view_base = 0x8000000;
2702 
2703 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2704 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2705 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2706 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2707 
2708 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2709 		fw.text_len = bnx_TXP_b09FwTextLen;
2710 		fw.text_index = 0;
2711 		fw.text = bnx_TXP_b09FwText;
2712 
2713 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2714 		fw.data_len = bnx_TXP_b09FwDataLen;
2715 		fw.data_index = 0;
2716 		fw.data = bnx_TXP_b09FwData;
2717 
2718 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2719 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2720 		fw.sbss_index = 0;
2721 		fw.sbss = bnx_TXP_b09FwSbss;
2722 
2723 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2724 		fw.bss_len = bnx_TXP_b09FwBssLen;
2725 		fw.bss_index = 0;
2726 		fw.bss = bnx_TXP_b09FwBss;
2727 
2728 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2729 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2730 		fw.rodata_index = 0;
2731 		fw.rodata = bnx_TXP_b09FwRodata;
2732 
2733 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2734 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2735 
2736 		/* Initialize the TX Patch-up Processor. */
2737 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2738 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2739 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2740 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2741 		cpu_reg.state_value_clear = 0xffffff;
2742 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2743 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2744 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2745 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2746 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2747 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2748 		cpu_reg.mips_view_base = 0x8000000;
2749 
2750 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2751 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2752 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2753 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2754 
2755 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2756 		fw.text_len = bnx_TPAT_b09FwTextLen;
2757 		fw.text_index = 0;
2758 		fw.text = bnx_TPAT_b09FwText;
2759 
2760 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2761 		fw.data_len = bnx_TPAT_b09FwDataLen;
2762 		fw.data_index = 0;
2763 		fw.data = bnx_TPAT_b09FwData;
2764 
2765 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2766 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2767 		fw.sbss_index = 0;
2768 		fw.sbss = bnx_TPAT_b09FwSbss;
2769 
2770 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2771 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2772 		fw.bss_index = 0;
2773 		fw.bss = bnx_TPAT_b09FwBss;
2774 
2775 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2776 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2777 		fw.rodata_index = 0;
2778 		fw.rodata = bnx_TPAT_b09FwRodata;
2779 
2780 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2781 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2782 
2783 		/* Initialize the Completion Processor. */
2784 		cpu_reg.mode = BNX_COM_CPU_MODE;
2785 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2786 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2787 		cpu_reg.state = BNX_COM_CPU_STATE;
2788 		cpu_reg.state_value_clear = 0xffffff;
2789 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2790 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2791 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2792 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2793 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2794 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2795 		cpu_reg.mips_view_base = 0x8000000;
2796 
2797 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2798 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2799 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2800 		fw.start_addr = bnx_COM_b09FwStartAddr;
2801 
2802 		fw.text_addr = bnx_COM_b09FwTextAddr;
2803 		fw.text_len = bnx_COM_b09FwTextLen;
2804 		fw.text_index = 0;
2805 		fw.text = bnx_COM_b09FwText;
2806 
2807 		fw.data_addr = bnx_COM_b09FwDataAddr;
2808 		fw.data_len = bnx_COM_b09FwDataLen;
2809 		fw.data_index = 0;
2810 		fw.data = bnx_COM_b09FwData;
2811 
2812 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2813 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2814 		fw.sbss_index = 0;
2815 		fw.sbss = bnx_COM_b09FwSbss;
2816 
2817 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2818 		fw.bss_len = bnx_COM_b09FwBssLen;
2819 		fw.bss_index = 0;
2820 		fw.bss = bnx_COM_b09FwBss;
2821 
2822 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2823 		fw.rodata_len = bnx_COM_b09FwRodataLen;
2824 		fw.rodata_index = 0;
2825 		fw.rodata = bnx_COM_b09FwRodata;
2826 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2827 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2828 		break;
2829 	default:
2830 		/* Initialize the RV2P processor. */
2831 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2832 		    RV2P_PROC1);
2833 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2834 		    RV2P_PROC2);
2835 
2836 		/* Initialize the RX Processor. */
2837 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2838 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2839 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2840 		cpu_reg.state = BNX_RXP_CPU_STATE;
2841 		cpu_reg.state_value_clear = 0xffffff;
2842 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2843 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2844 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2845 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2846 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2847 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2848 		cpu_reg.mips_view_base = 0x8000000;
2849 
2850 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2851 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2852 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2853 		fw.start_addr = bnx_RXP_b06FwStartAddr;
2854 
2855 		fw.text_addr = bnx_RXP_b06FwTextAddr;
2856 		fw.text_len = bnx_RXP_b06FwTextLen;
2857 		fw.text_index = 0;
2858 		fw.text = bnx_RXP_b06FwText;
2859 
2860 		fw.data_addr = bnx_RXP_b06FwDataAddr;
2861 		fw.data_len = bnx_RXP_b06FwDataLen;
2862 		fw.data_index = 0;
2863 		fw.data = bnx_RXP_b06FwData;
2864 
2865 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2866 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2867 		fw.sbss_index = 0;
2868 		fw.sbss = bnx_RXP_b06FwSbss;
2869 
2870 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2871 		fw.bss_len = bnx_RXP_b06FwBssLen;
2872 		fw.bss_index = 0;
2873 		fw.bss = bnx_RXP_b06FwBss;
2874 
2875 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2876 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2877 		fw.rodata_index = 0;
2878 		fw.rodata = bnx_RXP_b06FwRodata;
2879 
2880 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2881 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2882 
2883 		/* Initialize the TX Processor. */
2884 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2885 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2886 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2887 		cpu_reg.state = BNX_TXP_CPU_STATE;
2888 		cpu_reg.state_value_clear = 0xffffff;
2889 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2890 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2891 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2892 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2893 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2894 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2895 		cpu_reg.mips_view_base = 0x8000000;
2896 
2897 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2898 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2899 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2900 		fw.start_addr = bnx_TXP_b06FwStartAddr;
2901 
2902 		fw.text_addr = bnx_TXP_b06FwTextAddr;
2903 		fw.text_len = bnx_TXP_b06FwTextLen;
2904 		fw.text_index = 0;
2905 		fw.text = bnx_TXP_b06FwText;
2906 
2907 		fw.data_addr = bnx_TXP_b06FwDataAddr;
2908 		fw.data_len = bnx_TXP_b06FwDataLen;
2909 		fw.data_index = 0;
2910 		fw.data = bnx_TXP_b06FwData;
2911 
2912 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2913 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
2914 		fw.sbss_index = 0;
2915 		fw.sbss = bnx_TXP_b06FwSbss;
2916 
2917 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
2918 		fw.bss_len = bnx_TXP_b06FwBssLen;
2919 		fw.bss_index = 0;
2920 		fw.bss = bnx_TXP_b06FwBss;
2921 
2922 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2923 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
2924 		fw.rodata_index = 0;
2925 		fw.rodata = bnx_TXP_b06FwRodata;
2926 
2927 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2928 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2929 
2930 		/* Initialize the TX Patch-up Processor. */
2931 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2932 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2933 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2934 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2935 		cpu_reg.state_value_clear = 0xffffff;
2936 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2937 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2938 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2939 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2940 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2941 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2942 		cpu_reg.mips_view_base = 0x8000000;
2943 
2944 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2945 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2946 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2947 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
2948 
2949 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
2950 		fw.text_len = bnx_TPAT_b06FwTextLen;
2951 		fw.text_index = 0;
2952 		fw.text = bnx_TPAT_b06FwText;
2953 
2954 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
2955 		fw.data_len = bnx_TPAT_b06FwDataLen;
2956 		fw.data_index = 0;
2957 		fw.data = bnx_TPAT_b06FwData;
2958 
2959 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2960 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2961 		fw.sbss_index = 0;
2962 		fw.sbss = bnx_TPAT_b06FwSbss;
2963 
2964 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2965 		fw.bss_len = bnx_TPAT_b06FwBssLen;
2966 		fw.bss_index = 0;
2967 		fw.bss = bnx_TPAT_b06FwBss;
2968 
2969 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2970 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2971 		fw.rodata_index = 0;
2972 		fw.rodata = bnx_TPAT_b06FwRodata;
2973 
2974 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2975 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2976 
2977 		/* Initialize the Completion Processor. */
2978 		cpu_reg.mode = BNX_COM_CPU_MODE;
2979 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2980 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2981 		cpu_reg.state = BNX_COM_CPU_STATE;
2982 		cpu_reg.state_value_clear = 0xffffff;
2983 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2984 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2985 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2986 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2987 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2988 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2989 		cpu_reg.mips_view_base = 0x8000000;
2990 
2991 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
2992 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2993 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
2994 		fw.start_addr = bnx_COM_b06FwStartAddr;
2995 
2996 		fw.text_addr = bnx_COM_b06FwTextAddr;
2997 		fw.text_len = bnx_COM_b06FwTextLen;
2998 		fw.text_index = 0;
2999 		fw.text = bnx_COM_b06FwText;
3000 
3001 		fw.data_addr = bnx_COM_b06FwDataAddr;
3002 		fw.data_len = bnx_COM_b06FwDataLen;
3003 		fw.data_index = 0;
3004 		fw.data = bnx_COM_b06FwData;
3005 
3006 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3007 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3008 		fw.sbss_index = 0;
3009 		fw.sbss = bnx_COM_b06FwSbss;
3010 
3011 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3012 		fw.bss_len = bnx_COM_b06FwBssLen;
3013 		fw.bss_index = 0;
3014 		fw.bss = bnx_COM_b06FwBss;
3015 
3016 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3017 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3018 		fw.rodata_index = 0;
3019 		fw.rodata = bnx_COM_b06FwRodata;
3020 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3021 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3022 		break;
3023 	}
3024 }
3025 
3026 /****************************************************************************/
3027 /* Initialize context memory.                                               */
3028 /*                                                                          */
3029 /* Clears the memory associated with each Context ID (CID).                 */
3030 /*                                                                          */
3031 /* Returns:                                                                 */
3032 /*   Nothing.                                                               */
3033 /****************************************************************************/
3034 void
3035 bnx_init_context(struct bnx_softc *sc)
3036 {
3037 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3038 		/* DRC: Replace this constant value with a #define. */
3039 		int i, retry_cnt = 10;
3040 		u_int32_t val;
3041 
3042 		/*
3043 		 * BCM5709 context memory may be cached
3044 		 * in host memory so prepare the host memory
3045 		 * for access.
3046 		 */
3047 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3048 		    | (1 << 12);
3049 		val |= (BCM_PAGE_BITS - 8) << 16;
3050 		REG_WR(sc, BNX_CTX_COMMAND, val);
3051 
3052 		/* Wait for mem init command to complete. */
3053 		for (i = 0; i < retry_cnt; i++) {
3054 			val = REG_RD(sc, BNX_CTX_COMMAND);
3055 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3056 				break;
3057 			DELAY(2);
3058 		}
3059 
3060 
3061 		/* ToDo: Consider returning an error here. */
3062 
3063 		for (i = 0; i < sc->ctx_pages; i++) {
3064 			int j;
3065 
3066 
3067 			/* Set the physaddr of the context memory cache. */
3068 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3069 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3070 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3071 			val = (u_int32_t)
3072 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3073 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3074 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3075 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3076 
3077 
3078 			/* Verify that the context memory write was successful. */
3079 			for (j = 0; j < retry_cnt; j++) {
3080 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3081 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3082 					break;
3083 				DELAY(5);
3084 			}
3085 
3086 			/* ToDo: Consider returning an error here. */
3087 		}
3088 	} else {
3089 		u_int32_t vcid_addr, offset;
3090 
3091 		/*
3092 		 * For the 5706/5708, context memory is local to
3093 		 * the controller, so initialize the controller
3094 		 * context memory.
3095 		 */
3096 
3097 		vcid_addr = GET_CID_ADDR(96);
3098 		while (vcid_addr) {
3099 
3100 			vcid_addr -= PHY_CTX_SIZE;
3101 
3102 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3103 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3104 
3105 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
3106 				CTX_WR(sc, 0x00, offset, 0);
3107 			}
3108 
3109 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3110 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3111 		}
3112 	}
3113 }
3114 
3115 /****************************************************************************/
3116 /* Fetch the permanent MAC address of the controller.                       */
3117 /*                                                                          */
3118 /* Returns:                                                                 */
3119 /*   Nothing.                                                               */
3120 /****************************************************************************/
3121 void
3122 bnx_get_mac_addr(struct bnx_softc *sc)
3123 {
3124 	u_int32_t		mac_lo = 0, mac_hi = 0;
3125 
3126 	/*
3127 	 * The NetXtreme II bootcode populates various NIC
3128 	 * power-on and runtime configuration items in a
3129 	 * shared memory area.  The factory configured MAC
3130 	 * address is available from both NVRAM and the
3131 	 * shared memory area so we'll read the value from
3132 	 * shared memory for speed.
3133 	 */
3134 
3135 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3136 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3137 
3138 	if ((mac_lo == 0) && (mac_hi == 0)) {
3139 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3140 		    __FILE__, __LINE__);
3141 	} else {
3142 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3143 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3144 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3145 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3146 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3147 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3148 	}
3149 
3150 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3151 	    "%s\n", ether_sprintf(sc->eaddr));
3152 }
3153 
3154 /****************************************************************************/
3155 /* Program the MAC address.                                                 */
3156 /*                                                                          */
3157 /* Returns:                                                                 */
3158 /*   Nothing.                                                               */
3159 /****************************************************************************/
3160 void
3161 bnx_set_mac_addr(struct bnx_softc *sc)
3162 {
3163 	u_int32_t		val;
3164 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3165 
3166 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3167 	    "%s\n", ether_sprintf(sc->eaddr));
3168 
3169 	val = (mac_addr[0] << 8) | mac_addr[1];
3170 
3171 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3172 
3173 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3174 		(mac_addr[4] << 8) | mac_addr[5];
3175 
3176 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3177 }
3178 
3179 /****************************************************************************/
3180 /* Stop the controller.                                                     */
3181 /*                                                                          */
3182 /* Returns:                                                                 */
3183 /*   Nothing.                                                               */
3184 /****************************************************************************/
3185 void
3186 bnx_stop(struct ifnet *ifp, int disable)
3187 {
3188 	struct bnx_softc *sc = ifp->if_softc;
3189 
3190 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3191 
3192 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3193 		return;
3194 
3195 	callout_stop(&sc->bnx_timeout);
3196 
3197 	mii_down(&sc->bnx_mii);
3198 
3199 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3200 
3201 	/* Disable the transmit/receive blocks. */
3202 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3203 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3204 	DELAY(20);
3205 
3206 	bnx_disable_intr(sc);
3207 
3208 	/* Tell firmware that the driver is going away. */
3209 	if (disable)
3210 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3211 	else
3212 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3213 
3214 	/* Free RX buffers. */
3215 	bnx_free_rx_chain(sc);
3216 
3217 	/* Free TX buffers. */
3218 	bnx_free_tx_chain(sc);
3219 
3220 	ifp->if_timer = 0;
3221 
3222 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3223 
3224 }
3225 
3226 int
3227 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3228 {
3229 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3230 	u_int32_t		val;
3231 	int			i, rc = 0;
3232 
3233 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3234 
3235 	/* Wait for pending PCI transactions to complete. */
3236 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3237 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3238 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3239 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3240 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3241 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3242 	DELAY(5);
3243 
3244 	/* Disable DMA */
3245 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3246 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3247 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3248 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3249 	}
3250 
3251 	/* Assume bootcode is running. */
3252 	sc->bnx_fw_timed_out = 0;
3253 
3254 	/* Give the firmware a chance to prepare for the reset. */
3255 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3256 	if (rc)
3257 		goto bnx_reset_exit;
3258 
3259 	/* Set a firmware reminder that this is a soft reset. */
3260 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3261 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3262 
3263 	/* Dummy read to force the chip to complete all current transactions. */
3264 	val = REG_RD(sc, BNX_MISC_ID);
3265 
3266 	/* Chip reset. */
3267 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3268 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3269 		REG_RD(sc, BNX_MISC_COMMAND);
3270 		DELAY(5);
3271 
3272 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3273 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3274 
3275 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3276 		    val);
3277 	} else {
3278 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3279 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3280 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3281 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3282 
3283 		/* Allow up to 30us for reset to complete. */
3284 		for (i = 0; i < 10; i++) {
3285 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3286 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3287 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3288 				break;
3289 			}
3290 			DELAY(10);
3291 		}
3292 
3293 		/* Check that reset completed successfully. */
3294 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3295 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3296 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3297 			    __FILE__, __LINE__);
3298 			rc = EBUSY;
3299 			goto bnx_reset_exit;
3300 		}
3301 	}
3302 
3303 	/* Make sure byte swapping is properly configured. */
3304 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3305 	if (val != 0x01020304) {
3306 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3307 		    __FILE__, __LINE__);
3308 		rc = ENODEV;
3309 		goto bnx_reset_exit;
3310 	}
3311 
3312 	/* Just completed a reset, assume that firmware is running again. */
3313 	sc->bnx_fw_timed_out = 0;
3314 
3315 	/* Wait for the firmware to finish its initialization. */
3316 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3317 	if (rc)
3318 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3319 		    "initialization!\n", __FILE__, __LINE__);
3320 
3321 bnx_reset_exit:
3322 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3323 
3324 	return (rc);
3325 }
3326 
3327 int
3328 bnx_chipinit(struct bnx_softc *sc)
3329 {
3330 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3331 	u_int32_t		val;
3332 	int			rc = 0;
3333 
3334 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3335 
3336 	/* Make sure the interrupt is not active. */
3337 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3338 
3339 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3340 	/* channels and PCI clock compensation delay.                      */
3341 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3342 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3343 #if BYTE_ORDER == BIG_ENDIAN
3344 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3345 #endif
3346 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3347 	    DMA_READ_CHANS << 12 |
3348 	    DMA_WRITE_CHANS << 16;
3349 
3350 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3351 
3352 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3353 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3354 
3355 	/*
3356 	 * This setting resolves a problem observed on certain Intel PCI
3357 	 * chipsets that cannot handle multiple outstanding DMA operations.
3358 	 * See errata E9_5706A1_65.
3359 	 */
3360 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3361 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3362 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3363 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3364 
3365 	REG_WR(sc, BNX_DMA_CONFIG, val);
3366 
3367 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3368 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3369 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3370 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3371 		    val & ~0x20000);
3372 	}
3373 
3374 	/* Enable the RX_V2P and Context state machines before access. */
3375 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3376 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3377 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3378 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3379 
3380 	/* Initialize context mapping and zero out the quick contexts. */
3381 	bnx_init_context(sc);
3382 
3383 	/* Initialize the on-boards CPUs */
3384 	bnx_init_cpus(sc);
3385 
3386 	/* Prepare NVRAM for access. */
3387 	if (bnx_init_nvram(sc)) {
3388 		rc = ENODEV;
3389 		goto bnx_chipinit_exit;
3390 	}
3391 
3392 	/* Set the kernel bypass block size */
3393 	val = REG_RD(sc, BNX_MQ_CONFIG);
3394 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3395 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3396 
3397 	/* Enable bins used on the 5709. */
3398 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3399 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3400 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3401 			val |= BNX_MQ_CONFIG_HALT_DIS;
3402 	}
3403 
3404 	REG_WR(sc, BNX_MQ_CONFIG, val);
3405 
3406 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3407 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3408 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3409 
3410 	val = (BCM_PAGE_BITS - 8) << 24;
3411 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3412 
3413 	/* Configure page size. */
3414 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3415 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3416 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3417 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3418 
3419 #if 0
3420 	/* Set the perfect match control register to default. */
3421 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3422 #endif
3423 
3424 bnx_chipinit_exit:
3425 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3426 
3427 	return(rc);
3428 }
3429 
3430 /****************************************************************************/
3431 /* Initialize the controller in preparation to send/receive traffic.        */
3432 /*                                                                          */
3433 /* Returns:                                                                 */
3434 /*   0 for success, positive value for failure.                             */
3435 /****************************************************************************/
3436 int
3437 bnx_blockinit(struct bnx_softc *sc)
3438 {
3439 	u_int32_t		reg, val;
3440 	int 			rc = 0;
3441 
3442 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3443 
3444 	/* Load the hardware default MAC address. */
3445 	bnx_set_mac_addr(sc);
3446 
3447 	/* Set the Ethernet backoff seed value */
3448 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3449 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3450 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3451 
3452 	sc->last_status_idx = 0;
3453 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3454 
3455 	/* Set up link change interrupt generation. */
3456 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3457 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3458 
3459 	/* Program the physical address of the status block. */
3460 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3461 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3462 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3463 
3464 	/* Program the physical address of the statistics block. */
3465 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3466 	    (u_int32_t)(sc->stats_block_paddr));
3467 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3468 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3469 
3470 	/* Program various host coalescing parameters. */
3471 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3472 	    << 16) | sc->bnx_tx_quick_cons_trip);
3473 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3474 	    << 16) | sc->bnx_rx_quick_cons_trip);
3475 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3476 	    sc->bnx_comp_prod_trip);
3477 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3478 	    sc->bnx_tx_ticks);
3479 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3480 	    sc->bnx_rx_ticks);
3481 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3482 	    sc->bnx_com_ticks);
3483 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3484 	    sc->bnx_cmd_ticks);
3485 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3486 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3487 	REG_WR(sc, BNX_HC_CONFIG,
3488 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3489 	    BNX_HC_CONFIG_COLLECT_STATS));
3490 
3491 	/* Clear the internal statistics counters. */
3492 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3493 
3494 	/* Verify that bootcode is running. */
3495 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3496 
3497 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3498 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3499 	    __FILE__, __LINE__); reg = 0);
3500 
3501 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3502 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3503 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3504 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3505 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3506 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3507 		rc = ENODEV;
3508 		goto bnx_blockinit_exit;
3509 	}
3510 
3511 	/* Check if any management firmware is running. */
3512 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3513 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3514 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3515 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3516 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3517 	}
3518 
3519 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3520 	    BNX_DEV_INFO_BC_REV);
3521 
3522 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3523 
3524 	/* Enable DMA */
3525 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3526 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3527 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3528 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3529 	}
3530 
3531 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3532 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3533 
3534 	/* Enable link state change interrupt generation. */
3535 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3536 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3537 		    BNX_MISC_ENABLE_DEFAULT_XI);
3538 	} else
3539 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3540 
3541 	/* Enable all remaining blocks in the MAC. */
3542 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3543 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3544 	DELAY(20);
3545 
3546 bnx_blockinit_exit:
3547 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3548 
3549 	return (rc);
3550 }
3551 
3552 static int
3553 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3554     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3555 {
3556 	bus_dmamap_t		map;
3557 	struct rx_bd		*rxbd;
3558 	u_int32_t		addr;
3559 	int i;
3560 #ifdef BNX_DEBUG
3561 	u_int16_t debug_chain_prod =	*chain_prod;
3562 #endif
3563 	u_int16_t first_chain_prod;
3564 
3565 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3566 
3567 	/* Map the mbuf cluster into device memory. */
3568 	map = sc->rx_mbuf_map[*chain_prod];
3569 	first_chain_prod = *chain_prod;
3570 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3571 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3572 		    __FILE__, __LINE__);
3573 
3574 		m_freem(m_new);
3575 
3576 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3577 
3578 		return ENOBUFS;
3579 	}
3580 	/* Make sure there is room in the receive chain. */
3581 	if (map->dm_nsegs > sc->free_rx_bd) {
3582 		bus_dmamap_unload(sc->bnx_dmatag, map);
3583 		m_freem(m_new);
3584 		return EFBIG;
3585 	}
3586 #ifdef BNX_DEBUG
3587 	/* Track the distribution of buffer segments. */
3588 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3589 #endif
3590 
3591 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3592 	    BUS_DMASYNC_PREREAD);
3593 
3594 	/* Update some debug statistics counters */
3595 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3596 	    sc->rx_low_watermark = sc->free_rx_bd);
3597 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3598 
3599 	/*
3600 	 * Setup the rx_bd for the first segment
3601 	 */
3602 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3603 
3604 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3605 	rxbd->rx_bd_haddr_lo = htole32(addr);
3606 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3607 	rxbd->rx_bd_haddr_hi = htole32(addr);
3608 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3609 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3610 	*prod_bseq += map->dm_segs[0].ds_len;
3611 	bus_dmamap_sync(sc->bnx_dmatag,
3612 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3613 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3614 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3615 
3616 	for (i = 1; i < map->dm_nsegs; i++) {
3617 		*prod = NEXT_RX_BD(*prod);
3618 		*chain_prod = RX_CHAIN_IDX(*prod);
3619 
3620 		rxbd =
3621 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3622 
3623 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3624 		rxbd->rx_bd_haddr_lo = htole32(addr);
3625 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3626 		rxbd->rx_bd_haddr_hi = htole32(addr);
3627 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3628 		rxbd->rx_bd_flags = 0;
3629 		*prod_bseq += map->dm_segs[i].ds_len;
3630 		bus_dmamap_sync(sc->bnx_dmatag,
3631 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3632 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3633 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3634 	}
3635 
3636 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3637 	bus_dmamap_sync(sc->bnx_dmatag,
3638 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3639 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3640 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3641 
3642 	/*
3643 	 * Save the mbuf, ajust the map pointer (swap map for first and
3644 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3645 	 * and update counter.
3646 	 */
3647 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3648 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3649 	sc->rx_mbuf_map[*chain_prod] = map;
3650 	sc->free_rx_bd -= map->dm_nsegs;
3651 
3652 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3653 	    map->dm_nsegs));
3654 	*prod = NEXT_RX_BD(*prod);
3655 	*chain_prod = RX_CHAIN_IDX(*prod);
3656 
3657 	return 0;
3658 }
3659 
3660 /****************************************************************************/
3661 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3662 /*                                                                          */
3663 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3664 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3665 /* necessary.                                                               */
3666 /*                                                                          */
3667 /* Returns:                                                                 */
3668 /*   0 for success, positive value for failure.                             */
3669 /****************************************************************************/
3670 int
3671 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3672     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3673 {
3674 	struct mbuf 		*m_new = NULL;
3675 	int			rc = 0;
3676 	u_int16_t min_free_bd;
3677 
3678 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3679 	    __func__);
3680 
3681 	/* Make sure the inputs are valid. */
3682 	DBRUNIF((*chain_prod > MAX_RX_BD),
3683 	    aprint_error_dev(sc->bnx_dev,
3684 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3685 		*chain_prod, (u_int16_t)MAX_RX_BD));
3686 
3687 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3688 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3689 	    *prod_bseq);
3690 
3691 	/* try to get in as many mbufs as possible */
3692 	if (sc->mbuf_alloc_size == MCLBYTES)
3693 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3694 	else
3695 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3696 	while (sc->free_rx_bd >= min_free_bd) {
3697 		/* Simulate an mbuf allocation failure. */
3698 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3699 		    aprint_error_dev(sc->bnx_dev,
3700 		    "Simulating mbuf allocation failure.\n");
3701 			sc->mbuf_sim_alloc_failed++;
3702 			rc = ENOBUFS;
3703 			goto bnx_get_buf_exit);
3704 
3705 		/* This is a new mbuf allocation. */
3706 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3707 		if (m_new == NULL) {
3708 			DBPRINT(sc, BNX_WARN,
3709 			    "%s(%d): RX mbuf header allocation failed!\n",
3710 			    __FILE__, __LINE__);
3711 
3712 			sc->mbuf_alloc_failed++;
3713 
3714 			rc = ENOBUFS;
3715 			goto bnx_get_buf_exit;
3716 		}
3717 
3718 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3719 
3720 		/* Simulate an mbuf cluster allocation failure. */
3721 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3722 			m_freem(m_new);
3723 			sc->rx_mbuf_alloc--;
3724 			sc->mbuf_alloc_failed++;
3725 			sc->mbuf_sim_alloc_failed++;
3726 			rc = ENOBUFS;
3727 			goto bnx_get_buf_exit);
3728 
3729 		if (sc->mbuf_alloc_size == MCLBYTES)
3730 			MCLGET(m_new, M_DONTWAIT);
3731 		else
3732 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3733 			    M_DONTWAIT);
3734 		if (!(m_new->m_flags & M_EXT)) {
3735 			DBPRINT(sc, BNX_WARN,
3736 			    "%s(%d): RX mbuf chain allocation failed!\n",
3737 			    __FILE__, __LINE__);
3738 
3739 			m_freem(m_new);
3740 
3741 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3742 			sc->mbuf_alloc_failed++;
3743 
3744 			rc = ENOBUFS;
3745 			goto bnx_get_buf_exit;
3746 		}
3747 
3748 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3749 		if (rc != 0)
3750 			goto bnx_get_buf_exit;
3751 	}
3752 
3753 bnx_get_buf_exit:
3754 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3755 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3756 	    *chain_prod, *prod_bseq);
3757 
3758 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3759 	    __func__);
3760 
3761 	return(rc);
3762 }
3763 
3764 int
3765 bnx_alloc_pkts(struct bnx_softc *sc)
3766 {
3767 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3768 	struct bnx_pkt *pkt;
3769 	int i;
3770 
3771 	for (i = 0; i < 4; i++) { /* magic! */
3772 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3773 		if (pkt == NULL)
3774 			break;
3775 
3776 		if (bus_dmamap_create(sc->bnx_dmatag,
3777 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3778 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3779 		    &pkt->pkt_dmamap) != 0)
3780 			goto put;
3781 
3782 		if (!ISSET(ifp->if_flags, IFF_UP))
3783 			goto stopping;
3784 
3785 		mutex_enter(&sc->tx_pkt_mtx);
3786 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3787 		sc->tx_pkt_count++;
3788 		mutex_exit(&sc->tx_pkt_mtx);
3789 	}
3790 
3791 	return (i == 0) ? ENOMEM : 0;
3792 
3793 stopping:
3794 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3795 put:
3796 	pool_put(bnx_tx_pool, pkt);
3797 	return (i == 0) ? ENOMEM : 0;
3798 }
3799 
3800 /****************************************************************************/
3801 /* Initialize the TX context memory.                                        */
3802 /*                                                                          */
3803 /* Returns:                                                                 */
3804 /*   Nothing                                                                */
3805 /****************************************************************************/
3806 void
3807 bnx_init_tx_context(struct bnx_softc *sc)
3808 {
3809 	u_int32_t val;
3810 
3811 	/* Initialize the context ID for an L2 TX chain. */
3812 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3813 		/* Set the CID type to support an L2 connection. */
3814 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3815 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3816 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3817 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3818 
3819 		/* Point the hardware to the first page in the chain. */
3820 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3821 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3822 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3823 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3824 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3825 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3826 	} else {
3827 		/* Set the CID type to support an L2 connection. */
3828 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3829 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3830 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3831 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3832 
3833 		/* Point the hardware to the first page in the chain. */
3834 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3835 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3836 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3837 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3838 	}
3839 }
3840 
3841 
3842 /****************************************************************************/
3843 /* Allocate memory and initialize the TX data structures.                   */
3844 /*                                                                          */
3845 /* Returns:                                                                 */
3846 /*   0 for success, positive value for failure.                             */
3847 /****************************************************************************/
3848 int
3849 bnx_init_tx_chain(struct bnx_softc *sc)
3850 {
3851 	struct tx_bd		*txbd;
3852 	u_int32_t		addr;
3853 	int			i, rc = 0;
3854 
3855 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3856 
3857 	/* Force an allocation of some dmamaps for tx up front */
3858 	bnx_alloc_pkts(sc);
3859 
3860 	/* Set the initial TX producer/consumer indices. */
3861 	sc->tx_prod = 0;
3862 	sc->tx_cons = 0;
3863 	sc->tx_prod_bseq = 0;
3864 	sc->used_tx_bd = 0;
3865 	sc->max_tx_bd = USABLE_TX_BD;
3866 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3867 	DBRUNIF(1, sc->tx_full_count = 0);
3868 
3869 	/*
3870 	 * The NetXtreme II supports a linked-list structure called
3871 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3872 	 * consists of a series of 1 or more chain pages, each of which
3873 	 * consists of a fixed number of BD entries.
3874 	 * The last BD entry on each page is a pointer to the next page
3875 	 * in the chain, and the last pointer in the BD chain
3876 	 * points back to the beginning of the chain.
3877 	 */
3878 
3879 	/* Set the TX next pointer chain entries. */
3880 	for (i = 0; i < TX_PAGES; i++) {
3881 		int j;
3882 
3883 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3884 
3885 		/* Check if we've reached the last page. */
3886 		if (i == (TX_PAGES - 1))
3887 			j = 0;
3888 		else
3889 			j = i + 1;
3890 
3891 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3892 		txbd->tx_bd_haddr_lo = htole32(addr);
3893 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3894 		txbd->tx_bd_haddr_hi = htole32(addr);
3895 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3896 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3897 	}
3898 
3899 	/*
3900 	 * Initialize the context ID for an L2 TX chain.
3901 	 */
3902 	bnx_init_tx_context(sc);
3903 
3904 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3905 
3906 	return(rc);
3907 }
3908 
3909 /****************************************************************************/
3910 /* Free memory and clear the TX data structures.                            */
3911 /*                                                                          */
3912 /* Returns:                                                                 */
3913 /*   Nothing.                                                               */
3914 /****************************************************************************/
3915 void
3916 bnx_free_tx_chain(struct bnx_softc *sc)
3917 {
3918 	struct bnx_pkt		*pkt;
3919 	int			i;
3920 
3921 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3922 
3923 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3924 	mutex_enter(&sc->tx_pkt_mtx);
3925 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
3926 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
3927 		mutex_exit(&sc->tx_pkt_mtx);
3928 
3929 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
3930 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3931 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
3932 
3933 		m_freem(pkt->pkt_mbuf);
3934 		DBRUNIF(1, sc->tx_mbuf_alloc--);
3935 
3936 		mutex_enter(&sc->tx_pkt_mtx);
3937 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3938         }
3939 
3940 	/* Destroy all the dmamaps we allocated for TX */
3941 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
3942 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
3943 		sc->tx_pkt_count--;
3944 		mutex_exit(&sc->tx_pkt_mtx);
3945 
3946 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3947 		pool_put(bnx_tx_pool, pkt);
3948 
3949 		mutex_enter(&sc->tx_pkt_mtx);
3950 	}
3951 	mutex_exit(&sc->tx_pkt_mtx);
3952 
3953 
3954 
3955 	/* Clear each TX chain page. */
3956 	for (i = 0; i < TX_PAGES; i++) {
3957 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3958 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3959 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3960 	}
3961 
3962 	sc->used_tx_bd = 0;
3963 
3964 	/* Check if we lost any mbufs in the process. */
3965 	DBRUNIF((sc->tx_mbuf_alloc),
3966 	    aprint_error_dev(sc->bnx_dev,
3967 	        "Memory leak! Lost %d mbufs from tx chain!\n",
3968 		sc->tx_mbuf_alloc));
3969 
3970 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3971 }
3972 
3973 /****************************************************************************/
3974 /* Initialize the RX context memory.                                        */
3975 /*                                                                          */
3976 /* Returns:                                                                 */
3977 /*   Nothing                                                                */
3978 /****************************************************************************/
3979 void
3980 bnx_init_rx_context(struct bnx_softc *sc)
3981 {
3982 	u_int32_t val;
3983 
3984 	/* Initialize the context ID for an L2 RX chain. */
3985 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3986 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3987 
3988 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3989 		u_int32_t lo_water, hi_water;
3990 
3991 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
3992 		hi_water = USABLE_RX_BD / 4;
3993 
3994 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
3995 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
3996 
3997 		if (hi_water > 0xf)
3998 			hi_water = 0xf;
3999 		else if (hi_water == 0)
4000 			lo_water = 0;
4001 		val |= lo_water |
4002 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4003 	}
4004 
4005  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4006 
4007 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4008 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4009 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4010 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4011 	}
4012 
4013 	/* Point the hardware to the first page in the chain. */
4014 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4015 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4016 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4017 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4018 }
4019 
4020 /****************************************************************************/
4021 /* Allocate memory and initialize the RX data structures.                   */
4022 /*                                                                          */
4023 /* Returns:                                                                 */
4024 /*   0 for success, positive value for failure.                             */
4025 /****************************************************************************/
4026 int
4027 bnx_init_rx_chain(struct bnx_softc *sc)
4028 {
4029 	struct rx_bd		*rxbd;
4030 	int			i, rc = 0;
4031 	u_int16_t		prod, chain_prod;
4032 	u_int32_t		prod_bseq, addr;
4033 
4034 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4035 
4036 	/* Initialize the RX producer and consumer indices. */
4037 	sc->rx_prod = 0;
4038 	sc->rx_cons = 0;
4039 	sc->rx_prod_bseq = 0;
4040 	sc->free_rx_bd = USABLE_RX_BD;
4041 	sc->max_rx_bd = USABLE_RX_BD;
4042 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4043 	DBRUNIF(1, sc->rx_empty_count = 0);
4044 
4045 	/* Initialize the RX next pointer chain entries. */
4046 	for (i = 0; i < RX_PAGES; i++) {
4047 		int j;
4048 
4049 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4050 
4051 		/* Check if we've reached the last page. */
4052 		if (i == (RX_PAGES - 1))
4053 			j = 0;
4054 		else
4055 			j = i + 1;
4056 
4057 		/* Setup the chain page pointers. */
4058 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4059 		rxbd->rx_bd_haddr_hi = htole32(addr);
4060 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
4061 		rxbd->rx_bd_haddr_lo = htole32(addr);
4062 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4063 		    0, BNX_RX_CHAIN_PAGE_SZ,
4064 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4065 	}
4066 
4067 	/* Allocate mbuf clusters for the rx_bd chain. */
4068 	prod = prod_bseq = 0;
4069 	chain_prod = RX_CHAIN_IDX(prod);
4070 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4071 		BNX_PRINTF(sc,
4072 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4073 	}
4074 
4075 	/* Save the RX chain producer index. */
4076 	sc->rx_prod = prod;
4077 	sc->rx_prod_bseq = prod_bseq;
4078 
4079 	for (i = 0; i < RX_PAGES; i++)
4080 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4081 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4082 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4083 
4084 	/* Tell the chip about the waiting rx_bd's. */
4085 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4086 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4087 
4088 	bnx_init_rx_context(sc);
4089 
4090 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4091 
4092 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4093 
4094 	return(rc);
4095 }
4096 
4097 /****************************************************************************/
4098 /* Free memory and clear the RX data structures.                            */
4099 /*                                                                          */
4100 /* Returns:                                                                 */
4101 /*   Nothing.                                                               */
4102 /****************************************************************************/
4103 void
4104 bnx_free_rx_chain(struct bnx_softc *sc)
4105 {
4106 	int			i;
4107 
4108 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4109 
4110 	/* Free any mbufs still in the RX mbuf chain. */
4111 	for (i = 0; i < TOTAL_RX_BD; i++) {
4112 		if (sc->rx_mbuf_ptr[i] != NULL) {
4113 			if (sc->rx_mbuf_map[i] != NULL) {
4114 				bus_dmamap_sync(sc->bnx_dmatag,
4115 				    sc->rx_mbuf_map[i],	0,
4116 				    sc->rx_mbuf_map[i]->dm_mapsize,
4117 				    BUS_DMASYNC_POSTREAD);
4118 				bus_dmamap_unload(sc->bnx_dmatag,
4119 				    sc->rx_mbuf_map[i]);
4120 			}
4121 			m_freem(sc->rx_mbuf_ptr[i]);
4122 			sc->rx_mbuf_ptr[i] = NULL;
4123 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4124 		}
4125 	}
4126 
4127 	/* Clear each RX chain page. */
4128 	for (i = 0; i < RX_PAGES; i++)
4129 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4130 
4131 	sc->free_rx_bd = sc->max_rx_bd;
4132 
4133 	/* Check if we lost any mbufs in the process. */
4134 	DBRUNIF((sc->rx_mbuf_alloc),
4135 	    aprint_error_dev(sc->bnx_dev,
4136 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4137 		sc->rx_mbuf_alloc));
4138 
4139 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4140 }
4141 
4142 /****************************************************************************/
4143 /* Handles PHY generated interrupt events.                                  */
4144 /*                                                                          */
4145 /* Returns:                                                                 */
4146 /*   Nothing.                                                               */
4147 /****************************************************************************/
4148 void
4149 bnx_phy_intr(struct bnx_softc *sc)
4150 {
4151 	u_int32_t		new_link_state, old_link_state;
4152 
4153 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4154 	    BUS_DMASYNC_POSTREAD);
4155 	new_link_state = sc->status_block->status_attn_bits &
4156 	    STATUS_ATTN_BITS_LINK_STATE;
4157 	old_link_state = sc->status_block->status_attn_bits_ack &
4158 	    STATUS_ATTN_BITS_LINK_STATE;
4159 
4160 	/* Handle any changes if the link state has changed. */
4161 	if (new_link_state != old_link_state) {
4162 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4163 
4164 		callout_stop(&sc->bnx_timeout);
4165 		bnx_tick(sc);
4166 
4167 		/* Update the status_attn_bits_ack field in the status block. */
4168 		if (new_link_state) {
4169 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4170 			    STATUS_ATTN_BITS_LINK_STATE);
4171 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4172 		} else {
4173 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4174 			    STATUS_ATTN_BITS_LINK_STATE);
4175 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4176 		}
4177 	}
4178 
4179 	/* Acknowledge the link change interrupt. */
4180 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4181 }
4182 
4183 /****************************************************************************/
4184 /* Handles received frame interrupt events.                                 */
4185 /*                                                                          */
4186 /* Returns:                                                                 */
4187 /*   Nothing.                                                               */
4188 /****************************************************************************/
4189 void
4190 bnx_rx_intr(struct bnx_softc *sc)
4191 {
4192 	struct status_block	*sblk = sc->status_block;
4193 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4194 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4195 	u_int16_t		sw_prod, sw_chain_prod;
4196 	u_int32_t		sw_prod_bseq;
4197 	struct l2_fhdr		*l2fhdr;
4198 	int			i;
4199 
4200 	DBRUNIF(1, sc->rx_interrupts++);
4201 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4202 	    BUS_DMASYNC_POSTREAD);
4203 
4204 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4205 	for (i = 0; i < RX_PAGES; i++)
4206 		bus_dmamap_sync(sc->bnx_dmatag,
4207 		    sc->rx_bd_chain_map[i], 0,
4208 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4209 		    BUS_DMASYNC_POSTWRITE);
4210 
4211 	/* Get the hardware's view of the RX consumer index. */
4212 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4213 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4214 		hw_cons++;
4215 
4216 	/* Get working copies of the driver's view of the RX indices. */
4217 	sw_cons = sc->rx_cons;
4218 	sw_prod = sc->rx_prod;
4219 	sw_prod_bseq = sc->rx_prod_bseq;
4220 
4221 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4222 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4223 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4224 
4225 	/* Prevent speculative reads from getting ahead of the status block. */
4226 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4227 	    BUS_SPACE_BARRIER_READ);
4228 
4229 	/* Update some debug statistics counters */
4230 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4231 	    sc->rx_low_watermark = sc->free_rx_bd);
4232 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4233 
4234 	/*
4235 	 * Scan through the receive chain as long
4236 	 * as there is work to do.
4237 	 */
4238 	while (sw_cons != hw_cons) {
4239 		struct mbuf *m;
4240 		struct rx_bd *rxbd;
4241 		unsigned int len;
4242 		u_int32_t status;
4243 
4244 		/* Convert the producer/consumer indices to an actual
4245 		 * rx_bd index.
4246 		 */
4247 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4248 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4249 
4250 		/* Get the used rx_bd. */
4251 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4252 		sc->free_rx_bd++;
4253 
4254 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4255 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4256 
4257 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4258 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4259 #ifdef DIAGNOSTIC
4260 			/* Validate that this is the last rx_bd. */
4261 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4262 			    printf("%s: Unexpected mbuf found in "
4263 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4264 			        sw_chain_cons);
4265 			}
4266 #endif
4267 
4268 			/* DRC - ToDo: If the received packet is small, say less
4269 			 *             than 128 bytes, allocate a new mbuf here,
4270 			 *             copy the data to that mbuf, and recycle
4271 			 *             the mapped jumbo frame.
4272 			 */
4273 
4274 			/* Unmap the mbuf from DMA space. */
4275 #ifdef DIAGNOSTIC
4276 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4277 				printf("invalid map sw_cons 0x%x "
4278 				"sw_prod 0x%x "
4279 				"sw_chain_cons 0x%x "
4280 				"sw_chain_prod 0x%x "
4281 				"hw_cons 0x%x "
4282 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4283 				"TOTAL_RX_BD 0x%x\n",
4284 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4285 				hw_cons,
4286 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4287 			}
4288 #endif
4289 			bus_dmamap_sync(sc->bnx_dmatag,
4290 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4291 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4292 			    BUS_DMASYNC_POSTREAD);
4293 			bus_dmamap_unload(sc->bnx_dmatag,
4294 			    sc->rx_mbuf_map[sw_chain_cons]);
4295 
4296 			/* Remove the mbuf from the driver's chain. */
4297 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4298 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4299 
4300 			/*
4301 			 * Frames received on the NetXteme II are prepended
4302 			 * with the l2_fhdr structure which provides status
4303 			 * information about the received frame (including
4304 			 * VLAN tags and checksum info) and are also
4305 			 * automatically adjusted to align the IP header
4306 			 * (i.e. two null bytes are inserted before the
4307 			 * Ethernet header).
4308 			 */
4309 			l2fhdr = mtod(m, struct l2_fhdr *);
4310 
4311 			len    = l2fhdr->l2_fhdr_pkt_len;
4312 			status = l2fhdr->l2_fhdr_status;
4313 
4314 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4315 			    aprint_error("Simulating l2_fhdr status error.\n");
4316 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4317 
4318 			/* Watch for unusual sized frames. */
4319 			DBRUNIF(((len < BNX_MIN_MTU) ||
4320 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4321 			    aprint_error_dev(sc->bnx_dev,
4322 			        "Unusual frame size found. "
4323 				"Min(%d), Actual(%d), Max(%d)\n",
4324 				(int)BNX_MIN_MTU, len,
4325 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4326 
4327 			bnx_dump_mbuf(sc, m);
4328 			bnx_breakpoint(sc));
4329 
4330 			len -= ETHER_CRC_LEN;
4331 
4332 			/* Check the received frame for errors. */
4333 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4334 			    L2_FHDR_ERRORS_PHY_DECODE |
4335 			    L2_FHDR_ERRORS_ALIGNMENT |
4336 			    L2_FHDR_ERRORS_TOO_SHORT |
4337 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4338 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4339 			    len >
4340 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4341 				ifp->if_ierrors++;
4342 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4343 
4344 				/* Reuse the mbuf for a new frame. */
4345 				if (bnx_add_buf(sc, m, &sw_prod,
4346 				    &sw_chain_prod, &sw_prod_bseq)) {
4347 					DBRUNIF(1, bnx_breakpoint(sc));
4348 					panic("%s: Can't reuse RX mbuf!\n",
4349 					    device_xname(sc->bnx_dev));
4350 				}
4351 				continue;
4352 			}
4353 
4354 			/*
4355 			 * Get a new mbuf for the rx_bd.   If no new
4356 			 * mbufs are available then reuse the current mbuf,
4357 			 * log an ierror on the interface, and generate
4358 			 * an error in the system log.
4359 			 */
4360 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4361 			    &sw_prod_bseq)) {
4362 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4363 				    "Failed to allocate "
4364 				    "new mbuf, incoming frame dropped!\n"));
4365 
4366 				ifp->if_ierrors++;
4367 
4368 				/* Try and reuse the exisitng mbuf. */
4369 				if (bnx_add_buf(sc, m, &sw_prod,
4370 				    &sw_chain_prod, &sw_prod_bseq)) {
4371 					DBRUNIF(1, bnx_breakpoint(sc));
4372 					panic("%s: Double mbuf allocation "
4373 					    "failure!",
4374 					    device_xname(sc->bnx_dev));
4375 				}
4376 				continue;
4377 			}
4378 
4379 			/* Skip over the l2_fhdr when passing the data up
4380 			 * the stack.
4381 			 */
4382 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4383 
4384 			/* Adjust the pckt length to match the received data. */
4385 			m->m_pkthdr.len = m->m_len = len;
4386 
4387 			/* Send the packet to the appropriate interface. */
4388 			m->m_pkthdr.rcvif = ifp;
4389 
4390 			DBRUN(BNX_VERBOSE_RECV,
4391 			    struct ether_header *eh;
4392 			    eh = mtod(m, struct ether_header *);
4393 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4394 			    __func__, ether_sprintf(eh->ether_dhost),
4395 			    ether_sprintf(eh->ether_shost),
4396 			    htons(eh->ether_type)));
4397 
4398 			/* Validate the checksum. */
4399 
4400 			/* Check for an IP datagram. */
4401 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4402 				/* Check if the IP checksum is valid. */
4403 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4404 				    == 0)
4405 					m->m_pkthdr.csum_flags |=
4406 					    M_CSUM_IPv4;
4407 #ifdef BNX_DEBUG
4408 				else
4409 					DBPRINT(sc, BNX_WARN_SEND,
4410 					    "%s(): Invalid IP checksum "
4411 					        "= 0x%04X!\n",
4412 						__func__,
4413 						l2fhdr->l2_fhdr_ip_xsum
4414 						);
4415 #endif
4416 			}
4417 
4418 			/* Check for a valid TCP/UDP frame. */
4419 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4420 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4421 				/* Check for a good TCP/UDP checksum. */
4422 				if ((status &
4423 				    (L2_FHDR_ERRORS_TCP_XSUM |
4424 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4425 					m->m_pkthdr.csum_flags |=
4426 					    M_CSUM_TCPv4 |
4427 					    M_CSUM_UDPv4;
4428 				} else {
4429 					DBPRINT(sc, BNX_WARN_SEND,
4430 					    "%s(): Invalid TCP/UDP "
4431 					    "checksum = 0x%04X!\n",
4432 					    __func__,
4433 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4434 				}
4435 			}
4436 
4437 			/*
4438 			 * If we received a packet with a vlan tag,
4439 			 * attach that information to the packet.
4440 			 */
4441 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4442 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4443 				VLAN_INPUT_TAG(ifp, m,
4444 				    l2fhdr->l2_fhdr_vlan_tag,
4445 				    continue);
4446 			}
4447 
4448 			/*
4449 			 * Handle BPF listeners. Let the BPF
4450 			 * user see the packet.
4451 			 */
4452 			if (ifp->if_bpf)
4453 				bpf_ops->bpf_mtap(ifp->if_bpf, m);
4454 
4455 			/* Pass the mbuf off to the upper layers. */
4456 			ifp->if_ipackets++;
4457 			DBPRINT(sc, BNX_VERBOSE_RECV,
4458 			    "%s(): Passing received frame up.\n", __func__);
4459 			(*ifp->if_input)(ifp, m);
4460 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4461 
4462 		}
4463 
4464 		sw_cons = NEXT_RX_BD(sw_cons);
4465 
4466 		/* Refresh hw_cons to see if there's new work */
4467 		if (sw_cons == hw_cons) {
4468 			hw_cons = sc->hw_rx_cons =
4469 			    sblk->status_rx_quick_consumer_index0;
4470 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4471 			    USABLE_RX_BD_PER_PAGE)
4472 				hw_cons++;
4473 		}
4474 
4475 		/* Prevent speculative reads from getting ahead of
4476 		 * the status block.
4477 		 */
4478 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4479 		    BUS_SPACE_BARRIER_READ);
4480 	}
4481 
4482 	for (i = 0; i < RX_PAGES; i++)
4483 		bus_dmamap_sync(sc->bnx_dmatag,
4484 		    sc->rx_bd_chain_map[i], 0,
4485 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4486 		    BUS_DMASYNC_PREWRITE);
4487 
4488 	sc->rx_cons = sw_cons;
4489 	sc->rx_prod = sw_prod;
4490 	sc->rx_prod_bseq = sw_prod_bseq;
4491 
4492 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4493 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4494 
4495 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4496 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4497 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4498 }
4499 
4500 /****************************************************************************/
4501 /* Handles transmit completion interrupt events.                            */
4502 /*                                                                          */
4503 /* Returns:                                                                 */
4504 /*   Nothing.                                                               */
4505 /****************************************************************************/
4506 void
4507 bnx_tx_intr(struct bnx_softc *sc)
4508 {
4509 	struct status_block	*sblk = sc->status_block;
4510 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4511 	struct bnx_pkt		*pkt;
4512 	bus_dmamap_t		map;
4513 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4514 
4515 	DBRUNIF(1, sc->tx_interrupts++);
4516 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4517 	    BUS_DMASYNC_POSTREAD);
4518 
4519 	/* Get the hardware's view of the TX consumer index. */
4520 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4521 
4522 	/* Skip to the next entry if this is a chain page pointer. */
4523 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4524 		hw_tx_cons++;
4525 
4526 	sw_tx_cons = sc->tx_cons;
4527 
4528 	/* Prevent speculative reads from getting ahead of the status block. */
4529 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4530 	    BUS_SPACE_BARRIER_READ);
4531 
4532 	/* Cycle through any completed TX chain page entries. */
4533 	while (sw_tx_cons != hw_tx_cons) {
4534 #ifdef BNX_DEBUG
4535 		struct tx_bd *txbd = NULL;
4536 #endif
4537 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4538 
4539 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4540 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4541 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4542 
4543 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4544 		    aprint_error_dev(sc->bnx_dev,
4545 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4546 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4547 
4548 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4549 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4550 
4551 		DBRUNIF((txbd == NULL),
4552 		    aprint_error_dev(sc->bnx_dev,
4553 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4554 		    bnx_breakpoint(sc));
4555 
4556 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4557 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4558 
4559 
4560 		mutex_enter(&sc->tx_pkt_mtx);
4561 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4562 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4563 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4564 			mutex_exit(&sc->tx_pkt_mtx);
4565 			/*
4566 			 * Free the associated mbuf. Remember
4567 			 * that only the last tx_bd of a packet
4568 			 * has an mbuf pointer and DMA map.
4569 			 */
4570 			map = pkt->pkt_dmamap;
4571 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4572 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4573 			bus_dmamap_unload(sc->bnx_dmatag, map);
4574 
4575 			m_freem(pkt->pkt_mbuf);
4576 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4577 
4578 			ifp->if_opackets++;
4579 
4580 			mutex_enter(&sc->tx_pkt_mtx);
4581 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4582 		}
4583 		mutex_exit(&sc->tx_pkt_mtx);
4584 
4585 		sc->used_tx_bd--;
4586 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4587 			__FILE__, __LINE__, sc->used_tx_bd);
4588 
4589 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4590 
4591 		/* Refresh hw_cons to see if there's new work. */
4592 		hw_tx_cons = sc->hw_tx_cons =
4593 		    sblk->status_tx_quick_consumer_index0;
4594 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4595 		    USABLE_TX_BD_PER_PAGE)
4596 			hw_tx_cons++;
4597 
4598 		/* Prevent speculative reads from getting ahead of
4599 		 * the status block.
4600 		 */
4601 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4602 		    BUS_SPACE_BARRIER_READ);
4603 	}
4604 
4605 	/* Clear the TX timeout timer. */
4606 	ifp->if_timer = 0;
4607 
4608 	/* Clear the tx hardware queue full flag. */
4609 	if (sc->used_tx_bd < sc->max_tx_bd) {
4610 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4611 		    aprint_debug_dev(sc->bnx_dev,
4612 		        "Open TX chain! %d/%d (used/total)\n",
4613 			sc->used_tx_bd, sc->max_tx_bd));
4614 		ifp->if_flags &= ~IFF_OACTIVE;
4615 	}
4616 
4617 	sc->tx_cons = sw_tx_cons;
4618 }
4619 
4620 /****************************************************************************/
4621 /* Disables interrupt generation.                                           */
4622 /*                                                                          */
4623 /* Returns:                                                                 */
4624 /*   Nothing.                                                               */
4625 /****************************************************************************/
4626 void
4627 bnx_disable_intr(struct bnx_softc *sc)
4628 {
4629 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4630 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4631 }
4632 
4633 /****************************************************************************/
4634 /* Enables interrupt generation.                                            */
4635 /*                                                                          */
4636 /* Returns:                                                                 */
4637 /*   Nothing.                                                               */
4638 /****************************************************************************/
4639 void
4640 bnx_enable_intr(struct bnx_softc *sc)
4641 {
4642 	u_int32_t		val;
4643 
4644 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4645 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4646 
4647 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4648 	    sc->last_status_idx);
4649 
4650 	val = REG_RD(sc, BNX_HC_COMMAND);
4651 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4652 }
4653 
4654 /****************************************************************************/
4655 /* Handles controller initialization.                                       */
4656 /*                                                                          */
4657 /****************************************************************************/
4658 int
4659 bnx_init(struct ifnet *ifp)
4660 {
4661 	struct bnx_softc	*sc = ifp->if_softc;
4662 	u_int32_t		ether_mtu;
4663 	int			s, error = 0;
4664 
4665 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4666 
4667 	s = splnet();
4668 
4669 	bnx_stop(ifp, 0);
4670 
4671 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4672 		aprint_error_dev(sc->bnx_dev,
4673 		    "Controller reset failed!\n");
4674 		goto bnx_init_exit;
4675 	}
4676 
4677 	if ((error = bnx_chipinit(sc)) != 0) {
4678 		aprint_error_dev(sc->bnx_dev,
4679 		    "Controller initialization failed!\n");
4680 		goto bnx_init_exit;
4681 	}
4682 
4683 	if ((error = bnx_blockinit(sc)) != 0) {
4684 		aprint_error_dev(sc->bnx_dev,
4685 		    "Block initialization failed!\n");
4686 		goto bnx_init_exit;
4687 	}
4688 
4689 	/* Calculate and program the Ethernet MRU size. */
4690 	if (ifp->if_mtu <= ETHERMTU) {
4691 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4692 		sc->mbuf_alloc_size = MCLBYTES;
4693 	} else {
4694 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4695 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4696 	}
4697 
4698 
4699 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4700 	    __func__, ether_mtu);
4701 
4702 	/*
4703 	 * Program the MRU and enable Jumbo frame
4704 	 * support.
4705 	 */
4706 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4707 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4708 
4709 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4710 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4711 
4712 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4713 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4714 	    sc->mbuf_alloc_size, sc->max_frame_size);
4715 
4716 	/* Program appropriate promiscuous/multicast filtering. */
4717 	bnx_iff(sc);
4718 
4719 	/* Init RX buffer descriptor chain. */
4720 	bnx_init_rx_chain(sc);
4721 
4722 	/* Init TX buffer descriptor chain. */
4723 	bnx_init_tx_chain(sc);
4724 
4725 	/* Enable host interrupts. */
4726 	bnx_enable_intr(sc);
4727 
4728 	if ((error = ether_mediachange(ifp)) != 0)
4729 		goto bnx_init_exit;
4730 
4731 	ifp->if_flags |= IFF_RUNNING;
4732 	ifp->if_flags &= ~IFF_OACTIVE;
4733 
4734 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4735 
4736 bnx_init_exit:
4737 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4738 
4739 	splx(s);
4740 
4741 	return(error);
4742 }
4743 
4744 /****************************************************************************/
4745 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4746 /* memory visible to the controller.                                        */
4747 /*                                                                          */
4748 /* Returns:                                                                 */
4749 /*   0 for success, positive value for failure.                             */
4750 /****************************************************************************/
4751 int
4752 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4753 {
4754 	struct bnx_pkt		*pkt;
4755 	bus_dmamap_t		map;
4756 	struct tx_bd		*txbd = NULL;
4757 	u_int16_t		vlan_tag = 0, flags = 0;
4758 	u_int16_t		chain_prod, prod;
4759 #ifdef BNX_DEBUG
4760 	u_int16_t		debug_prod;
4761 #endif
4762 	u_int32_t		addr, prod_bseq;
4763 	int			i, error;
4764 	struct m_tag		*mtag;
4765 
4766 again:
4767 	mutex_enter(&sc->tx_pkt_mtx);
4768 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4769 	if (pkt == NULL) {
4770 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4771 			mutex_exit(&sc->tx_pkt_mtx);
4772 			return ENETDOWN;
4773 		}
4774 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4775 			mutex_exit(&sc->tx_pkt_mtx);
4776 			if (bnx_alloc_pkts(sc) == 0)
4777 				goto again;
4778 		} else {
4779 			mutex_exit(&sc->tx_pkt_mtx);
4780 		}
4781 		return (ENOMEM);
4782 	}
4783 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4784 	mutex_exit(&sc->tx_pkt_mtx);
4785 
4786 	/* Transfer any checksum offload flags to the bd. */
4787 	if (m->m_pkthdr.csum_flags) {
4788 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4789 			flags |= TX_BD_FLAGS_IP_CKSUM;
4790 		if (m->m_pkthdr.csum_flags &
4791 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4792 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4793 	}
4794 
4795 	/* Transfer any VLAN tags to the bd. */
4796 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4797 	if (mtag != NULL) {
4798 		flags |= TX_BD_FLAGS_VLAN_TAG;
4799 		vlan_tag = VLAN_TAG_VALUE(mtag);
4800 	}
4801 
4802 	/* Map the mbuf into DMAable memory. */
4803 	prod = sc->tx_prod;
4804 	chain_prod = TX_CHAIN_IDX(prod);
4805 	map = pkt->pkt_dmamap;
4806 
4807 	/* Map the mbuf into our DMA address space. */
4808 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4809 	if (error != 0) {
4810 		aprint_error_dev(sc->bnx_dev,
4811 		    "Error mapping mbuf into TX chain!\n");
4812 		sc->tx_dma_map_failures++;
4813 		goto maperr;
4814 	}
4815 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4816 	    BUS_DMASYNC_PREWRITE);
4817         /* Make sure there's room in the chain */
4818 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4819                 goto nospace;
4820 
4821 	/* prod points to an empty tx_bd at this point. */
4822 	prod_bseq = sc->tx_prod_bseq;
4823 #ifdef BNX_DEBUG
4824 	debug_prod = chain_prod;
4825 #endif
4826 	DBPRINT(sc, BNX_INFO_SEND,
4827 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4828 		"prod_bseq = 0x%08X\n",
4829 		__func__, prod, chain_prod, prod_bseq);
4830 
4831 	/*
4832 	 * Cycle through each mbuf segment that makes up
4833 	 * the outgoing frame, gathering the mapping info
4834 	 * for that segment and creating a tx_bd for the
4835 	 * mbuf.
4836 	 */
4837 	for (i = 0; i < map->dm_nsegs ; i++) {
4838 		chain_prod = TX_CHAIN_IDX(prod);
4839 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4840 
4841 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4842 		txbd->tx_bd_haddr_lo = htole32(addr);
4843 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4844 		txbd->tx_bd_haddr_hi = htole32(addr);
4845 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4846 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4847 		txbd->tx_bd_flags = htole16(flags);
4848 		prod_bseq += map->dm_segs[i].ds_len;
4849 		if (i == 0)
4850 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4851 		prod = NEXT_TX_BD(prod);
4852 	}
4853 	/* Set the END flag on the last TX buffer descriptor. */
4854 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4855 
4856 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4857 
4858 	DBPRINT(sc, BNX_INFO_SEND,
4859 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4860 		"prod_bseq = 0x%08X\n",
4861 		__func__, prod, chain_prod, prod_bseq);
4862 
4863 	pkt->pkt_mbuf = m;
4864 	pkt->pkt_end_desc = chain_prod;
4865 
4866 	mutex_enter(&sc->tx_pkt_mtx);
4867 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4868 	mutex_exit(&sc->tx_pkt_mtx);
4869 
4870 	sc->used_tx_bd += map->dm_nsegs;
4871 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4872 		__FILE__, __LINE__, sc->used_tx_bd);
4873 
4874 	/* Update some debug statistics counters */
4875 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4876 	    sc->tx_hi_watermark = sc->used_tx_bd);
4877 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4878 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4879 
4880 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4881 	    map->dm_nsegs));
4882 
4883 	/* prod points to the next free tx_bd at this point. */
4884 	sc->tx_prod = prod;
4885 	sc->tx_prod_bseq = prod_bseq;
4886 
4887 	return (0);
4888 
4889 
4890 nospace:
4891 	bus_dmamap_unload(sc->bnx_dmatag, map);
4892 maperr:
4893 	mutex_enter(&sc->tx_pkt_mtx);
4894 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4895 	mutex_exit(&sc->tx_pkt_mtx);
4896 
4897 	return (ENOMEM);
4898 }
4899 
4900 /****************************************************************************/
4901 /* Main transmit routine.                                                   */
4902 /*                                                                          */
4903 /* Returns:                                                                 */
4904 /*   Nothing.                                                               */
4905 /****************************************************************************/
4906 void
4907 bnx_start(struct ifnet *ifp)
4908 {
4909 	struct bnx_softc	*sc = ifp->if_softc;
4910 	struct mbuf		*m_head = NULL;
4911 	int			count = 0;
4912 	u_int16_t		tx_prod, tx_chain_prod;
4913 
4914 	/* If there's no link or the transmit queue is empty then just exit. */
4915 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4916 		DBPRINT(sc, BNX_INFO_SEND,
4917 		    "%s(): output active or device not running.\n", __func__);
4918 		goto bnx_start_exit;
4919 	}
4920 
4921 	/* prod points to the next free tx_bd. */
4922 	tx_prod = sc->tx_prod;
4923 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4924 
4925 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4926 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
4927 	    "used_tx %d max_tx %d\n",
4928 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
4929 	    sc->used_tx_bd, sc->max_tx_bd);
4930 
4931 	/*
4932 	 * Keep adding entries while there is space in the ring.
4933 	 */
4934 	while (sc->used_tx_bd < sc->max_tx_bd) {
4935 		/* Check for any frames to send. */
4936 		IFQ_POLL(&ifp->if_snd, m_head);
4937 		if (m_head == NULL)
4938 			break;
4939 
4940 		/*
4941 		 * Pack the data into the transmit ring. If we
4942 		 * don't have room, set the OACTIVE flag to wait
4943 		 * for the NIC to drain the chain.
4944 		 */
4945 		if (bnx_tx_encap(sc, m_head)) {
4946 			ifp->if_flags |= IFF_OACTIVE;
4947 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4948 			    "business! Total tx_bd used = %d\n",
4949 			    sc->used_tx_bd);
4950 			break;
4951 		}
4952 
4953 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4954 		count++;
4955 
4956 		/* Send a copy of the frame to any BPF listeners. */
4957 		if (ifp->if_bpf)
4958 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
4959 	}
4960 
4961 	if (count == 0) {
4962 		/* no packets were dequeued */
4963 		DBPRINT(sc, BNX_VERBOSE_SEND,
4964 		    "%s(): No packets were dequeued\n", __func__);
4965 		goto bnx_start_exit;
4966 	}
4967 
4968 	/* Update the driver's counters. */
4969 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4970 
4971 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4972 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4973 	    tx_chain_prod, sc->tx_prod_bseq);
4974 
4975 	/* Start the transmit. */
4976 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4977 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4978 
4979 	/* Set the tx timeout. */
4980 	ifp->if_timer = BNX_TX_TIMEOUT;
4981 
4982 bnx_start_exit:
4983 	return;
4984 }
4985 
4986 /****************************************************************************/
4987 /* Handles any IOCTL calls from the operating system.                       */
4988 /*                                                                          */
4989 /* Returns:                                                                 */
4990 /*   0 for success, positive value for failure.                             */
4991 /****************************************************************************/
4992 int
4993 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4994 {
4995 	struct bnx_softc	*sc = ifp->if_softc;
4996 	struct ifreq		*ifr = (struct ifreq *) data;
4997 	struct mii_data		*mii = &sc->bnx_mii;
4998 	int			s, error = 0;
4999 
5000 	s = splnet();
5001 
5002 	switch (command) {
5003 	case SIOCSIFFLAGS:
5004 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5005 			break;
5006 		/* XXX set an ifflags callback and let ether_ioctl
5007 		 * handle all of this.
5008 		 */
5009 		if (ifp->if_flags & IFF_UP) {
5010 			if (ifp->if_flags & IFF_RUNNING)
5011 				error = ENETRESET;
5012 			else
5013 				bnx_init(ifp);
5014 		} else if (ifp->if_flags & IFF_RUNNING)
5015 			bnx_stop(ifp, 1);
5016 		break;
5017 
5018 	case SIOCSIFMEDIA:
5019 	case SIOCGIFMEDIA:
5020 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5021 		    sc->bnx_phy_flags);
5022 
5023 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5024 		break;
5025 
5026 	default:
5027 		error = ether_ioctl(ifp, command, data);
5028 	}
5029 
5030 	if (error == ENETRESET) {
5031 		if (ifp->if_flags & IFF_RUNNING)
5032 			bnx_iff(sc);
5033 		error = 0;
5034 	}
5035 
5036 	splx(s);
5037 	return (error);
5038 }
5039 
5040 /****************************************************************************/
5041 /* Transmit timeout handler.                                                */
5042 /*                                                                          */
5043 /* Returns:                                                                 */
5044 /*   Nothing.                                                               */
5045 /****************************************************************************/
5046 void
5047 bnx_watchdog(struct ifnet *ifp)
5048 {
5049 	struct bnx_softc	*sc = ifp->if_softc;
5050 
5051 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5052 	    bnx_dump_status_block(sc));
5053 	/*
5054 	 * If we are in this routine because of pause frames, then
5055 	 * don't reset the hardware.
5056 	 */
5057 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5058 		return;
5059 
5060 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5061 
5062 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5063 
5064 	bnx_init(ifp);
5065 
5066 	ifp->if_oerrors++;
5067 }
5068 
5069 /*
5070  * Interrupt handler.
5071  */
5072 /****************************************************************************/
5073 /* Main interrupt entry point.  Verifies that the controller generated the  */
5074 /* interrupt and then calls a separate routine for handle the various       */
5075 /* interrupt causes (PHY, TX, RX).                                          */
5076 /*                                                                          */
5077 /* Returns:                                                                 */
5078 /*   0 for success, positive value for failure.                             */
5079 /****************************************************************************/
5080 int
5081 bnx_intr(void *xsc)
5082 {
5083 	struct bnx_softc	*sc;
5084 	struct ifnet		*ifp;
5085 	u_int32_t		status_attn_bits;
5086 	const struct status_block *sblk;
5087 
5088 	sc = xsc;
5089 	if (!device_is_active(sc->bnx_dev))
5090 		return 0;
5091 
5092 	ifp = &sc->bnx_ec.ec_if;
5093 
5094 	DBRUNIF(1, sc->interrupts_generated++);
5095 
5096 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5097 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5098 
5099 	/*
5100 	 * If the hardware status block index
5101 	 * matches the last value read by the
5102 	 * driver and we haven't asserted our
5103 	 * interrupt then there's nothing to do.
5104 	 */
5105 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5106 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5107 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5108 		return (0);
5109 
5110 	/* Ack the interrupt and stop others from occuring. */
5111 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5112 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5113 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5114 
5115 	/* Keep processing data as long as there is work to do. */
5116 	for (;;) {
5117 		sblk = sc->status_block;
5118 		status_attn_bits = sblk->status_attn_bits;
5119 
5120 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5121 		    aprint_debug("Simulating unexpected status attention bit set.");
5122 		    status_attn_bits = status_attn_bits |
5123 		    STATUS_ATTN_BITS_PARITY_ERROR);
5124 
5125 		/* Was it a link change interrupt? */
5126 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5127 		    (sblk->status_attn_bits_ack &
5128 		    STATUS_ATTN_BITS_LINK_STATE))
5129 			bnx_phy_intr(sc);
5130 
5131 		/* If any other attention is asserted then the chip is toast. */
5132 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5133 		    (sblk->status_attn_bits_ack &
5134 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5135 			DBRUN(1, sc->unexpected_attentions++);
5136 
5137 			BNX_PRINTF(sc,
5138 			    "Fatal attention detected: 0x%08X\n",
5139 			    sblk->status_attn_bits);
5140 
5141 			DBRUN(BNX_FATAL,
5142 			    if (bnx_debug_unexpected_attention == 0)
5143 			    bnx_breakpoint(sc));
5144 
5145 			bnx_init(ifp);
5146 			return (1);
5147 		}
5148 
5149 		/* Check for any completed RX frames. */
5150 		if (sblk->status_rx_quick_consumer_index0 !=
5151 		    sc->hw_rx_cons)
5152 			bnx_rx_intr(sc);
5153 
5154 		/* Check for any completed TX frames. */
5155 		if (sblk->status_tx_quick_consumer_index0 !=
5156 		    sc->hw_tx_cons)
5157 			bnx_tx_intr(sc);
5158 
5159 		/* Save the status block index value for use during the
5160 		 * next interrupt.
5161 		 */
5162 		sc->last_status_idx = sblk->status_idx;
5163 
5164 		/* Prevent speculative reads from getting ahead of the
5165 		 * status block.
5166 		 */
5167 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5168 		    BUS_SPACE_BARRIER_READ);
5169 
5170 		/* If there's no work left then exit the isr. */
5171 		if ((sblk->status_rx_quick_consumer_index0 ==
5172 		    sc->hw_rx_cons) &&
5173 		    (sblk->status_tx_quick_consumer_index0 ==
5174 		    sc->hw_tx_cons))
5175 			break;
5176 	}
5177 
5178 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5179 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5180 
5181 	/* Re-enable interrupts. */
5182 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5183 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5184 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5185 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5186 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5187 
5188 	/* Handle any frames that arrived while handling the interrupt. */
5189 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5190 		bnx_start(ifp);
5191 
5192 	return (1);
5193 }
5194 
5195 /****************************************************************************/
5196 /* Programs the various packet receive modes (broadcast and multicast).     */
5197 /*                                                                          */
5198 /* Returns:                                                                 */
5199 /*   Nothing.                                                               */
5200 /****************************************************************************/
5201 void
5202 bnx_iff(struct bnx_softc *sc)
5203 {
5204 	struct ethercom		*ec = &sc->bnx_ec;
5205 	struct ifnet		*ifp = &ec->ec_if;
5206 	struct ether_multi	*enm;
5207 	struct ether_multistep	step;
5208 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5209 	u_int32_t		rx_mode, sort_mode;
5210 	int			h, i;
5211 
5212 	/* Initialize receive mode default settings. */
5213 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5214 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5215 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5216 	ifp->if_flags &= ~IFF_ALLMULTI;
5217 
5218 	/*
5219 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5220 	 * be enbled.
5221 	 */
5222 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5223 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5224 
5225 	/*
5226 	 * Check for promiscuous, all multicast, or selected
5227 	 * multicast address filtering.
5228 	 */
5229 	if (ifp->if_flags & IFF_PROMISC) {
5230 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5231 
5232 		ifp->if_flags |= IFF_ALLMULTI;
5233 		/* Enable promiscuous mode. */
5234 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5235 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5236 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5237 allmulti:
5238 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5239 
5240 		ifp->if_flags |= IFF_ALLMULTI;
5241 		/* Enable all multicast addresses. */
5242 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5243 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5244 			    0xffffffff);
5245 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5246 	} else {
5247 		/* Accept one or more multicast(s). */
5248 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5249 
5250 		ETHER_FIRST_MULTI(step, ec, enm);
5251 		while (enm != NULL) {
5252 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5253 			    ETHER_ADDR_LEN)) {
5254 				goto allmulti;
5255 			}
5256 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5257 			    0xFF;
5258 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5259 			ETHER_NEXT_MULTI(step, enm);
5260 		}
5261 
5262 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5263 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5264 			    hashes[i]);
5265 
5266 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5267 	}
5268 
5269 	/* Only make changes if the recive mode has actually changed. */
5270 	if (rx_mode != sc->rx_mode) {
5271 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5272 		    rx_mode);
5273 
5274 		sc->rx_mode = rx_mode;
5275 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5276 	}
5277 
5278 	/* Disable and clear the exisitng sort before enabling a new sort. */
5279 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5280 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5281 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5282 }
5283 
5284 /****************************************************************************/
5285 /* Called periodically to updates statistics from the controllers           */
5286 /* statistics block.                                                        */
5287 /*                                                                          */
5288 /* Returns:                                                                 */
5289 /*   Nothing.                                                               */
5290 /****************************************************************************/
5291 void
5292 bnx_stats_update(struct bnx_softc *sc)
5293 {
5294 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5295 	struct statistics_block	*stats;
5296 
5297 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5298 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5299 	    BUS_DMASYNC_POSTREAD);
5300 
5301 	stats = (struct statistics_block *)sc->stats_block;
5302 
5303 	/*
5304 	 * Update the interface statistics from the
5305 	 * hardware statistics.
5306 	 */
5307 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5308 
5309 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5310 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5311 	    (u_long)stats->stat_IfInMBUFDiscards +
5312 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5313 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5314 
5315 	ifp->if_oerrors = (u_long)
5316 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5317 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5318 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5319 
5320 	/*
5321 	 * Certain controllers don't report
5322 	 * carrier sense errors correctly.
5323 	 * See errata E11_5708CA0_1165.
5324 	 */
5325 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5326 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5327 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5328 
5329 	/*
5330 	 * Update the sysctl statistics from the
5331 	 * hardware statistics.
5332 	 */
5333 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5334 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5335 
5336 	sc->stat_IfHCInBadOctets =
5337 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5338 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5339 
5340 	sc->stat_IfHCOutOctets =
5341 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5342 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5343 
5344 	sc->stat_IfHCOutBadOctets =
5345 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5346 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5347 
5348 	sc->stat_IfHCInUcastPkts =
5349 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5350 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5351 
5352 	sc->stat_IfHCInMulticastPkts =
5353 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5354 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5355 
5356 	sc->stat_IfHCInBroadcastPkts =
5357 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5358 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5359 
5360 	sc->stat_IfHCOutUcastPkts =
5361 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5362 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5363 
5364 	sc->stat_IfHCOutMulticastPkts =
5365 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5366 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5367 
5368 	sc->stat_IfHCOutBroadcastPkts =
5369 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5370 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5371 
5372 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5373 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5374 
5375 	sc->stat_Dot3StatsCarrierSenseErrors =
5376 	    stats->stat_Dot3StatsCarrierSenseErrors;
5377 
5378 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5379 
5380 	sc->stat_Dot3StatsAlignmentErrors =
5381 	    stats->stat_Dot3StatsAlignmentErrors;
5382 
5383 	sc->stat_Dot3StatsSingleCollisionFrames =
5384 	    stats->stat_Dot3StatsSingleCollisionFrames;
5385 
5386 	sc->stat_Dot3StatsMultipleCollisionFrames =
5387 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5388 
5389 	sc->stat_Dot3StatsDeferredTransmissions =
5390 	    stats->stat_Dot3StatsDeferredTransmissions;
5391 
5392 	sc->stat_Dot3StatsExcessiveCollisions =
5393 	    stats->stat_Dot3StatsExcessiveCollisions;
5394 
5395 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5396 
5397 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5398 
5399 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5400 
5401 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5402 
5403 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5404 
5405 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5406 
5407 	sc->stat_EtherStatsPktsRx64Octets =
5408 	    stats->stat_EtherStatsPktsRx64Octets;
5409 
5410 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5411 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5412 
5413 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5414 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5415 
5416 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5417 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5418 
5419 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5420 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5421 
5422 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5423 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5424 
5425 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5426 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5427 
5428 	sc->stat_EtherStatsPktsTx64Octets =
5429 	    stats->stat_EtherStatsPktsTx64Octets;
5430 
5431 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5432 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5433 
5434 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5435 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5436 
5437 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5438 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5439 
5440 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5441 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5442 
5443 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5444 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5445 
5446 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5447 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5448 
5449 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5450 
5451 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5452 
5453 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5454 
5455 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5456 
5457 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5458 
5459 	sc->stat_MacControlFramesReceived =
5460 	    stats->stat_MacControlFramesReceived;
5461 
5462 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5463 
5464 	sc->stat_IfInFramesL2FilterDiscards =
5465 	    stats->stat_IfInFramesL2FilterDiscards;
5466 
5467 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5468 
5469 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5470 
5471 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5472 
5473 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5474 
5475 	sc->stat_CatchupInRuleCheckerDiscards =
5476 	    stats->stat_CatchupInRuleCheckerDiscards;
5477 
5478 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5479 
5480 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5481 
5482 	sc->stat_CatchupInRuleCheckerP4Hit =
5483 	    stats->stat_CatchupInRuleCheckerP4Hit;
5484 
5485 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5486 }
5487 
5488 void
5489 bnx_tick(void *xsc)
5490 {
5491 	struct bnx_softc	*sc = xsc;
5492 	struct mii_data		*mii;
5493 	u_int32_t		msg;
5494 	u_int16_t		prod, chain_prod;
5495 	u_int32_t		prod_bseq;
5496 	int s = splnet();
5497 
5498 	/* Tell the firmware that the driver is still running. */
5499 #ifdef BNX_DEBUG
5500 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5501 #else
5502 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5503 #endif
5504 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5505 
5506 	/* Update the statistics from the hardware statistics block. */
5507 	bnx_stats_update(sc);
5508 
5509 	/* Schedule the next tick. */
5510 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5511 
5512 	mii = &sc->bnx_mii;
5513 	mii_tick(mii);
5514 
5515 	/* try to get more RX buffers, just in case */
5516 	prod = sc->rx_prod;
5517 	prod_bseq = sc->rx_prod_bseq;
5518 	chain_prod = RX_CHAIN_IDX(prod);
5519 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5520 	sc->rx_prod = prod;
5521 	sc->rx_prod_bseq = prod_bseq;
5522 	splx(s);
5523 	return;
5524 }
5525 
5526 /****************************************************************************/
5527 /* BNX Debug Routines                                                       */
5528 /****************************************************************************/
5529 #ifdef BNX_DEBUG
5530 
5531 /****************************************************************************/
5532 /* Prints out information about an mbuf.                                    */
5533 /*                                                                          */
5534 /* Returns:                                                                 */
5535 /*   Nothing.                                                               */
5536 /****************************************************************************/
5537 void
5538 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5539 {
5540 	struct mbuf		*mp = m;
5541 
5542 	if (m == NULL) {
5543 		/* Index out of range. */
5544 		aprint_error("mbuf ptr is null!\n");
5545 		return;
5546 	}
5547 
5548 	while (mp) {
5549 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5550 		    mp, mp->m_len);
5551 
5552 		if (mp->m_flags & M_EXT)
5553 			aprint_debug("M_EXT ");
5554 		if (mp->m_flags & M_PKTHDR)
5555 			aprint_debug("M_PKTHDR ");
5556 		aprint_debug("\n");
5557 
5558 		if (mp->m_flags & M_EXT)
5559 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5560 			    mp, mp->m_ext.ext_size);
5561 
5562 		mp = mp->m_next;
5563 	}
5564 }
5565 
5566 /****************************************************************************/
5567 /* Prints out the mbufs in the TX mbuf chain.                               */
5568 /*                                                                          */
5569 /* Returns:                                                                 */
5570 /*   Nothing.                                                               */
5571 /****************************************************************************/
5572 void
5573 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5574 {
5575 #if 0
5576 	struct mbuf		*m;
5577 	int			i;
5578 
5579 	aprint_debug_dev(sc->bnx_dev,
5580 	    "----------------------------"
5581 	    "  tx mbuf data  "
5582 	    "----------------------------\n");
5583 
5584 	for (i = 0; i < count; i++) {
5585 	 	m = sc->tx_mbuf_ptr[chain_prod];
5586 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5587 		bnx_dump_mbuf(sc, m);
5588 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5589 	}
5590 
5591 	aprint_debug_dev(sc->bnx_dev,
5592 	    "--------------------------------------------"
5593 	    "----------------------------\n");
5594 #endif
5595 }
5596 
5597 /*
5598  * This routine prints the RX mbuf chain.
5599  */
5600 void
5601 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5602 {
5603 	struct mbuf		*m;
5604 	int			i;
5605 
5606 	aprint_debug_dev(sc->bnx_dev,
5607 	    "----------------------------"
5608 	    "  rx mbuf data  "
5609 	    "----------------------------\n");
5610 
5611 	for (i = 0; i < count; i++) {
5612 	 	m = sc->rx_mbuf_ptr[chain_prod];
5613 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5614 		bnx_dump_mbuf(sc, m);
5615 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5616 	}
5617 
5618 
5619 	aprint_debug_dev(sc->bnx_dev,
5620 	    "--------------------------------------------"
5621 	    "----------------------------\n");
5622 }
5623 
5624 void
5625 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5626 {
5627 	if (idx > MAX_TX_BD)
5628 		/* Index out of range. */
5629 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5630 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5631 		/* TX Chain page pointer. */
5632 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5633 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5634 		    txbd->tx_bd_haddr_lo);
5635 	else
5636 		/* Normal tx_bd entry. */
5637 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5638 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5639 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5640 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5641 		    txbd->tx_bd_flags);
5642 }
5643 
5644 void
5645 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5646 {
5647 	if (idx > MAX_RX_BD)
5648 		/* Index out of range. */
5649 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5650 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5651 		/* TX Chain page pointer. */
5652 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5653 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5654 		    rxbd->rx_bd_haddr_lo);
5655 	else
5656 		/* Normal tx_bd entry. */
5657 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5658 		    "0x%08X, flags = 0x%08X\n", idx,
5659 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5660 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5661 }
5662 
5663 void
5664 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5665 {
5666 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5667 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5668 	    "tcp_udp_xsum = 0x%04X\n", idx,
5669 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5670 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5671 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5672 }
5673 
5674 /*
5675  * This routine prints the TX chain.
5676  */
5677 void
5678 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5679 {
5680 	struct tx_bd		*txbd;
5681 	int			i;
5682 
5683 	/* First some info about the tx_bd chain structure. */
5684 	aprint_debug_dev(sc->bnx_dev,
5685 	    "----------------------------"
5686 	    "  tx_bd  chain  "
5687 	    "----------------------------\n");
5688 
5689 	BNX_PRINTF(sc,
5690 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5691 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5692 
5693 	BNX_PRINTF(sc,
5694 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5695 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5696 
5697 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5698 
5699 	aprint_error_dev(sc->bnx_dev, ""
5700 	    "-----------------------------"
5701 	    "   tx_bd data   "
5702 	    "-----------------------------\n");
5703 
5704 	/* Now print out the tx_bd's themselves. */
5705 	for (i = 0; i < count; i++) {
5706 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5707 		bnx_dump_txbd(sc, tx_prod, txbd);
5708 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5709 	}
5710 
5711 	aprint_debug_dev(sc->bnx_dev,
5712 	    "-----------------------------"
5713 	    "--------------"
5714 	    "-----------------------------\n");
5715 }
5716 
5717 /*
5718  * This routine prints the RX chain.
5719  */
5720 void
5721 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5722 {
5723 	struct rx_bd		*rxbd;
5724 	int			i;
5725 
5726 	/* First some info about the tx_bd chain structure. */
5727 	aprint_debug_dev(sc->bnx_dev,
5728 	    "----------------------------"
5729 	    "  rx_bd  chain  "
5730 	    "----------------------------\n");
5731 
5732 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5733 
5734 	BNX_PRINTF(sc,
5735 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5736 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5737 
5738 	BNX_PRINTF(sc,
5739 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5740 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5741 
5742 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5743 
5744 	aprint_error_dev(sc->bnx_dev,
5745 	    "----------------------------"
5746 	    "   rx_bd data   "
5747 	    "----------------------------\n");
5748 
5749 	/* Now print out the rx_bd's themselves. */
5750 	for (i = 0; i < count; i++) {
5751 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5752 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5753 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5754 	}
5755 
5756 	aprint_debug_dev(sc->bnx_dev,
5757 	    "----------------------------"
5758 	    "--------------"
5759 	    "----------------------------\n");
5760 }
5761 
5762 /*
5763  * This routine prints the status block.
5764  */
5765 void
5766 bnx_dump_status_block(struct bnx_softc *sc)
5767 {
5768 	struct status_block	*sblk;
5769 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5770 	    BUS_DMASYNC_POSTREAD);
5771 
5772 	sblk = sc->status_block;
5773 
5774    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5775 	    "-----------------------------\n");
5776 
5777 	BNX_PRINTF(sc,
5778 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5779 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5780 	    sblk->status_idx);
5781 
5782 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5783 	    sblk->status_rx_quick_consumer_index0,
5784 	    sblk->status_tx_quick_consumer_index0);
5785 
5786 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5787 
5788 	/* Theses indices are not used for normal L2 drivers. */
5789 	if (sblk->status_rx_quick_consumer_index1 ||
5790 		sblk->status_tx_quick_consumer_index1)
5791 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5792 		    sblk->status_rx_quick_consumer_index1,
5793 		    sblk->status_tx_quick_consumer_index1);
5794 
5795 	if (sblk->status_rx_quick_consumer_index2 ||
5796 		sblk->status_tx_quick_consumer_index2)
5797 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5798 		    sblk->status_rx_quick_consumer_index2,
5799 		    sblk->status_tx_quick_consumer_index2);
5800 
5801 	if (sblk->status_rx_quick_consumer_index3 ||
5802 		sblk->status_tx_quick_consumer_index3)
5803 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5804 		    sblk->status_rx_quick_consumer_index3,
5805 		    sblk->status_tx_quick_consumer_index3);
5806 
5807 	if (sblk->status_rx_quick_consumer_index4 ||
5808 		sblk->status_rx_quick_consumer_index5)
5809 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5810 		    sblk->status_rx_quick_consumer_index4,
5811 		    sblk->status_rx_quick_consumer_index5);
5812 
5813 	if (sblk->status_rx_quick_consumer_index6 ||
5814 		sblk->status_rx_quick_consumer_index7)
5815 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5816 		    sblk->status_rx_quick_consumer_index6,
5817 		    sblk->status_rx_quick_consumer_index7);
5818 
5819 	if (sblk->status_rx_quick_consumer_index8 ||
5820 		sblk->status_rx_quick_consumer_index9)
5821 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5822 		    sblk->status_rx_quick_consumer_index8,
5823 		    sblk->status_rx_quick_consumer_index9);
5824 
5825 	if (sblk->status_rx_quick_consumer_index10 ||
5826 		sblk->status_rx_quick_consumer_index11)
5827 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5828 		    sblk->status_rx_quick_consumer_index10,
5829 		    sblk->status_rx_quick_consumer_index11);
5830 
5831 	if (sblk->status_rx_quick_consumer_index12 ||
5832 		sblk->status_rx_quick_consumer_index13)
5833 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5834 		    sblk->status_rx_quick_consumer_index12,
5835 		    sblk->status_rx_quick_consumer_index13);
5836 
5837 	if (sblk->status_rx_quick_consumer_index14 ||
5838 		sblk->status_rx_quick_consumer_index15)
5839 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5840 		    sblk->status_rx_quick_consumer_index14,
5841 		    sblk->status_rx_quick_consumer_index15);
5842 
5843 	if (sblk->status_completion_producer_index ||
5844 		sblk->status_cmd_consumer_index)
5845 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5846 		    sblk->status_completion_producer_index,
5847 		    sblk->status_cmd_consumer_index);
5848 
5849 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5850 	    "-----------------------------\n");
5851 }
5852 
5853 /*
5854  * This routine prints the statistics block.
5855  */
5856 void
5857 bnx_dump_stats_block(struct bnx_softc *sc)
5858 {
5859 	struct statistics_block	*sblk;
5860 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5861 	    BUS_DMASYNC_POSTREAD);
5862 
5863 	sblk = sc->stats_block;
5864 
5865 	aprint_debug_dev(sc->bnx_dev, ""
5866 	    "-----------------------------"
5867 	    " Stats  Block "
5868 	    "-----------------------------\n");
5869 
5870 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5871 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5872 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5873 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5874 
5875 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5876 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5877 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5878 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5879 
5880 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5881 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5882 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5883 	    sblk->stat_IfHCInMulticastPkts_hi,
5884 	    sblk->stat_IfHCInMulticastPkts_lo);
5885 
5886 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5887 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5888 	    sblk->stat_IfHCInBroadcastPkts_hi,
5889 	    sblk->stat_IfHCInBroadcastPkts_lo,
5890 	    sblk->stat_IfHCOutUcastPkts_hi,
5891 	    sblk->stat_IfHCOutUcastPkts_lo);
5892 
5893 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5894 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5895 	    sblk->stat_IfHCOutMulticastPkts_hi,
5896 	    sblk->stat_IfHCOutMulticastPkts_lo,
5897 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5898 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5899 
5900 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5901 		BNX_PRINTF(sc, "0x%08X : "
5902 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5903 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5904 
5905 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5906 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5907 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5908 
5909 	if (sblk->stat_Dot3StatsFCSErrors)
5910 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5911 		    sblk->stat_Dot3StatsFCSErrors);
5912 
5913 	if (sblk->stat_Dot3StatsAlignmentErrors)
5914 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5915 		    sblk->stat_Dot3StatsAlignmentErrors);
5916 
5917 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5918 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5919 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5920 
5921 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5922 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5923 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
5924 
5925 	if (sblk->stat_Dot3StatsDeferredTransmissions)
5926 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5927 		    sblk->stat_Dot3StatsDeferredTransmissions);
5928 
5929 	if (sblk->stat_Dot3StatsExcessiveCollisions)
5930 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5931 		    sblk->stat_Dot3StatsExcessiveCollisions);
5932 
5933 	if (sblk->stat_Dot3StatsLateCollisions)
5934 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5935 		    sblk->stat_Dot3StatsLateCollisions);
5936 
5937 	if (sblk->stat_EtherStatsCollisions)
5938 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5939 		    sblk->stat_EtherStatsCollisions);
5940 
5941 	if (sblk->stat_EtherStatsFragments)
5942 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5943 		    sblk->stat_EtherStatsFragments);
5944 
5945 	if (sblk->stat_EtherStatsJabbers)
5946 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5947 		    sblk->stat_EtherStatsJabbers);
5948 
5949 	if (sblk->stat_EtherStatsUndersizePkts)
5950 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5951 		    sblk->stat_EtherStatsUndersizePkts);
5952 
5953 	if (sblk->stat_EtherStatsOverrsizePkts)
5954 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5955 		    sblk->stat_EtherStatsOverrsizePkts);
5956 
5957 	if (sblk->stat_EtherStatsPktsRx64Octets)
5958 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5959 		    sblk->stat_EtherStatsPktsRx64Octets);
5960 
5961 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5962 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5963 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5964 
5965 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5966 		BNX_PRINTF(sc, "0x%08X : "
5967 		    "EtherStatsPktsRx128Octetsto255Octets\n",
5968 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5969 
5970 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5971 		BNX_PRINTF(sc, "0x%08X : "
5972 		    "EtherStatsPktsRx256Octetsto511Octets\n",
5973 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5974 
5975 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5976 		BNX_PRINTF(sc, "0x%08X : "
5977 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
5978 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5979 
5980 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5981 		BNX_PRINTF(sc, "0x%08X : "
5982 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
5983 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5984 
5985 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5986 		BNX_PRINTF(sc, "0x%08X : "
5987 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
5988 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5989 
5990 	if (sblk->stat_EtherStatsPktsTx64Octets)
5991 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5992 		    sblk->stat_EtherStatsPktsTx64Octets);
5993 
5994 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5995 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5996 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5997 
5998 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5999 		BNX_PRINTF(sc, "0x%08X : "
6000 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6001 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6002 
6003 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6004 		BNX_PRINTF(sc, "0x%08X : "
6005 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6006 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6007 
6008 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6009 		BNX_PRINTF(sc, "0x%08X : "
6010 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6011 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6012 
6013 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6014 		BNX_PRINTF(sc, "0x%08X : "
6015 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6016 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6017 
6018 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6019 		BNX_PRINTF(sc, "0x%08X : "
6020 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6021 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6022 
6023 	if (sblk->stat_XonPauseFramesReceived)
6024 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6025 		    sblk->stat_XonPauseFramesReceived);
6026 
6027 	if (sblk->stat_XoffPauseFramesReceived)
6028 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6029 		    sblk->stat_XoffPauseFramesReceived);
6030 
6031 	if (sblk->stat_OutXonSent)
6032 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6033 		    sblk->stat_OutXonSent);
6034 
6035 	if (sblk->stat_OutXoffSent)
6036 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6037 		    sblk->stat_OutXoffSent);
6038 
6039 	if (sblk->stat_FlowControlDone)
6040 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6041 		    sblk->stat_FlowControlDone);
6042 
6043 	if (sblk->stat_MacControlFramesReceived)
6044 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6045 		    sblk->stat_MacControlFramesReceived);
6046 
6047 	if (sblk->stat_XoffStateEntered)
6048 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6049 		    sblk->stat_XoffStateEntered);
6050 
6051 	if (sblk->stat_IfInFramesL2FilterDiscards)
6052 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6053 		    sblk->stat_IfInFramesL2FilterDiscards);
6054 
6055 	if (sblk->stat_IfInRuleCheckerDiscards)
6056 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6057 		    sblk->stat_IfInRuleCheckerDiscards);
6058 
6059 	if (sblk->stat_IfInFTQDiscards)
6060 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6061 		    sblk->stat_IfInFTQDiscards);
6062 
6063 	if (sblk->stat_IfInMBUFDiscards)
6064 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6065 		    sblk->stat_IfInMBUFDiscards);
6066 
6067 	if (sblk->stat_IfInRuleCheckerP4Hit)
6068 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6069 		    sblk->stat_IfInRuleCheckerP4Hit);
6070 
6071 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6072 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6073 		    sblk->stat_CatchupInRuleCheckerDiscards);
6074 
6075 	if (sblk->stat_CatchupInFTQDiscards)
6076 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6077 		    sblk->stat_CatchupInFTQDiscards);
6078 
6079 	if (sblk->stat_CatchupInMBUFDiscards)
6080 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6081 		    sblk->stat_CatchupInMBUFDiscards);
6082 
6083 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6084 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6085 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6086 
6087 	aprint_debug_dev(sc->bnx_dev,
6088 	    "-----------------------------"
6089 	    "--------------"
6090 	    "-----------------------------\n");
6091 }
6092 
6093 void
6094 bnx_dump_driver_state(struct bnx_softc *sc)
6095 {
6096 	aprint_debug_dev(sc->bnx_dev,
6097 	    "-----------------------------"
6098 	    " Driver State "
6099 	    "-----------------------------\n");
6100 
6101 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6102 	    "address\n", sc);
6103 
6104 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6105 	    sc->status_block);
6106 
6107 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6108 	    "address\n", sc->stats_block);
6109 
6110 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6111 	    "adddress\n", sc->tx_bd_chain);
6112 
6113 #if 0
6114 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6115 	    sc->rx_bd_chain);
6116 
6117 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6118 	    sc->tx_mbuf_ptr);
6119 #endif
6120 
6121 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6122 	    sc->rx_mbuf_ptr);
6123 
6124 	BNX_PRINTF(sc,
6125 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6126 	    sc->interrupts_generated);
6127 
6128 	BNX_PRINTF(sc,
6129 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6130 	    sc->rx_interrupts);
6131 
6132 	BNX_PRINTF(sc,
6133 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6134 	    sc->tx_interrupts);
6135 
6136 	BNX_PRINTF(sc,
6137 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6138 	    sc->last_status_idx);
6139 
6140 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6141 	    sc->tx_prod);
6142 
6143 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6144 	    sc->tx_cons);
6145 
6146 	BNX_PRINTF(sc,
6147 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6148 	    sc->tx_prod_bseq);
6149 	BNX_PRINTF(sc,
6150 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6151 	    sc->tx_mbuf_alloc);
6152 
6153 	BNX_PRINTF(sc,
6154 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6155 	    sc->used_tx_bd);
6156 
6157 	BNX_PRINTF(sc,
6158 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6159 	    sc->tx_hi_watermark, sc->max_tx_bd);
6160 
6161 
6162 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6163 	    sc->rx_prod);
6164 
6165 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6166 	    sc->rx_cons);
6167 
6168 	BNX_PRINTF(sc,
6169 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6170 	    sc->rx_prod_bseq);
6171 
6172 	BNX_PRINTF(sc,
6173 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6174 	    sc->rx_mbuf_alloc);
6175 
6176 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6177 	    sc->free_rx_bd);
6178 
6179 	BNX_PRINTF(sc,
6180 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6181 	    sc->rx_low_watermark, sc->max_rx_bd);
6182 
6183 	BNX_PRINTF(sc,
6184 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6185 	    "mbuf alloc failures\n",
6186 	    sc->mbuf_alloc_failed);
6187 
6188 	BNX_PRINTF(sc,
6189 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6190 	    "simulated mbuf alloc failures\n",
6191 	    sc->mbuf_sim_alloc_failed);
6192 
6193 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6194 	    "-----------------------------\n");
6195 }
6196 
6197 void
6198 bnx_dump_hw_state(struct bnx_softc *sc)
6199 {
6200 	u_int32_t		val1;
6201 	int			i;
6202 
6203 	aprint_debug_dev(sc->bnx_dev,
6204 	    "----------------------------"
6205 	    " Hardware State "
6206 	    "----------------------------\n");
6207 
6208 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6209 
6210 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6211 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6212 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6213 
6214 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6215 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6216 
6217 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6218 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6219 
6220 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6221 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6222 	    BNX_EMAC_STATUS);
6223 
6224 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6225 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6226 
6227 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6228 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6229 	    BNX_TBDR_STATUS);
6230 
6231 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6232 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6233 	    BNX_TDMA_STATUS);
6234 
6235 	val1 = REG_RD(sc, BNX_HC_STATUS);
6236 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6237 
6238 	aprint_debug_dev(sc->bnx_dev,
6239 	    "----------------------------"
6240 	    "----------------"
6241 	    "----------------------------\n");
6242 
6243 	aprint_debug_dev(sc->bnx_dev,
6244 	    "----------------------------"
6245 	    " Register  Dump "
6246 	    "----------------------------\n");
6247 
6248 	for (i = 0x400; i < 0x8000; i += 0x10)
6249 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6250 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6251 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6252 
6253 	aprint_debug_dev(sc->bnx_dev,
6254 	    "----------------------------"
6255 	    "----------------"
6256 	    "----------------------------\n");
6257 }
6258 
6259 void
6260 bnx_breakpoint(struct bnx_softc *sc)
6261 {
6262 	/* Unreachable code to shut the compiler up about unused functions. */
6263 	if (0) {
6264    		bnx_dump_txbd(sc, 0, NULL);
6265 		bnx_dump_rxbd(sc, 0, NULL);
6266 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6267 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6268 		bnx_dump_l2fhdr(sc, 0, NULL);
6269 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6270 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6271 		bnx_dump_status_block(sc);
6272 		bnx_dump_stats_block(sc);
6273 		bnx_dump_driver_state(sc);
6274 		bnx_dump_hw_state(sc);
6275 	}
6276 
6277 	bnx_dump_driver_state(sc);
6278 	/* Print the important status block fields. */
6279 	bnx_dump_status_block(sc);
6280 
6281 #if 0
6282 	/* Call the debugger. */
6283 	breakpoint();
6284 #endif
6285 
6286 	return;
6287 }
6288 #endif
6289