1 /* $NetBSD: if_bnx.c,v 1.31 2010/01/19 22:07:00 pooka Exp $ */ 2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */ 3 4 /*- 5 * Copyright (c) 2006 Broadcom Corporation 6 * David Christensen <davidch@broadcom.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written consent. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS' 22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <sys/cdefs.h> 35 #if 0 36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $"); 37 #endif 38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.31 2010/01/19 22:07:00 pooka Exp $"); 39 40 /* 41 * The following controllers are supported by this driver: 42 * BCM5706C A2, A3 43 * BCM5706S A2, A3 44 * BCM5708C B1, B2 45 * BCM5708S B1, B2 46 * BCM5709C A1, C0 47 * BCM5716 C0 48 * 49 * The following controllers are not supported by this driver: 50 * 51 * BCM5706C A0, A1 52 * BCM5706S A0, A1 53 * BCM5708C A0, B0 54 * BCM5708S A0, B0 55 * BCM5709C A0 B0, B1, B2 (pre-production) 56 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production) 57 */ 58 59 #include <sys/callout.h> 60 #include <sys/mutex.h> 61 62 #include <dev/pci/if_bnxreg.h> 63 #include <dev/microcode/bnx/bnxfw.h> 64 65 /****************************************************************************/ 66 /* BNX Driver Version */ 67 /****************************************************************************/ 68 #define BNX_DRIVER_VERSION "v0.9.6" 69 70 /****************************************************************************/ 71 /* BNX Debug Options */ 72 /****************************************************************************/ 73 #ifdef BNX_DEBUG 74 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND; 75 76 /* 0 = Never */ 77 /* 1 = 1 in 2,147,483,648 */ 78 /* 256 = 1 in 8,388,608 */ 79 /* 2048 = 1 in 1,048,576 */ 80 /* 65536 = 1 in 32,768 */ 81 /* 1048576 = 1 in 2,048 */ 82 /* 268435456 = 1 in 8 */ 83 /* 536870912 = 1 in 4 */ 84 /* 1073741824 = 1 in 2 */ 85 86 /* Controls how often the l2_fhdr frame error check will fail. */ 87 int bnx_debug_l2fhdr_status_check = 0; 88 89 /* Controls how often the unexpected attention check will fail. */ 90 int bnx_debug_unexpected_attention = 0; 91 92 /* Controls how often to simulate an mbuf allocation failure. */ 93 int bnx_debug_mbuf_allocation_failure = 0; 94 95 /* Controls how often to simulate a DMA mapping failure. */ 96 int bnx_debug_dma_map_addr_failure = 0; 97 98 /* Controls how often to simulate a bootcode failure. */ 99 int bnx_debug_bootcode_running_failure = 0; 100 #endif 101 102 /****************************************************************************/ 103 /* PCI Device ID Table */ 104 /* */ 105 /* Used by bnx_probe() to identify the devices supported by this driver. */ 106 /****************************************************************************/ 107 static const struct bnx_product { 108 pci_vendor_id_t bp_vendor; 109 pci_product_id_t bp_product; 110 pci_vendor_id_t bp_subvendor; 111 pci_product_id_t bp_subproduct; 112 const char *bp_name; 113 } bnx_devices[] = { 114 #ifdef PCI_SUBPRODUCT_HP_NC370T 115 { 116 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 117 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T, 118 "HP NC370T Multifunction Gigabit Server Adapter" 119 }, 120 #endif 121 #ifdef PCI_SUBPRODUCT_HP_NC370i 122 { 123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 124 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i, 125 "HP NC370i Multifunction Gigabit Server Adapter" 126 }, 127 #endif 128 { 129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706, 130 0, 0, 131 "Broadcom NetXtreme II BCM5706 1000Base-T" 132 }, 133 #ifdef PCI_SUBPRODUCT_HP_NC370F 134 { 135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, 136 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F, 137 "HP NC370F Multifunction Gigabit Server Adapter" 138 }, 139 #endif 140 { 141 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S, 142 0, 0, 143 "Broadcom NetXtreme II BCM5706 1000Base-SX" 144 }, 145 { 146 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708, 147 0, 0, 148 "Broadcom NetXtreme II BCM5708 1000Base-T" 149 }, 150 { 151 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S, 152 0, 0, 153 "Broadcom NetXtreme II BCM5708 1000Base-SX" 154 }, 155 { 156 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709, 157 0, 0, 158 "Broadcom NetXtreme II BCM5709 1000Base-T" 159 }, 160 { 161 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S, 162 0, 0, 163 "Broadcom NetXtreme II BCM5709 1000Base-SX" 164 }, 165 { 166 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716, 167 0, 0, 168 "Broadcom NetXtreme II BCM5716 1000Base-T" 169 }, 170 { 171 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S, 172 0, 0, 173 "Broadcom NetXtreme II BCM5716 1000Base-SX" 174 }, 175 }; 176 177 /****************************************************************************/ 178 /* Supported Flash NVRAM device data. */ 179 /****************************************************************************/ 180 static struct flash_spec flash_table[] = 181 { 182 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE) 183 #define NONBUFFERED_FLAGS (BNX_NV_WREN) 184 /* Slow EEPROM */ 185 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400, 186 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 187 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 188 "EEPROM - slow"}, 189 /* Expansion entry 0001 */ 190 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406, 191 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 192 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 193 "Entry 0001"}, 194 /* Saifun SA25F010 (non-buffered flash) */ 195 /* strap, cfg1, & write1 need updates */ 196 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406, 197 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 198 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2, 199 "Non-buffered flash (128kB)"}, 200 /* Saifun SA25F020 (non-buffered flash) */ 201 /* strap, cfg1, & write1 need updates */ 202 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406, 203 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 204 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4, 205 "Non-buffered flash (256kB)"}, 206 /* Expansion entry 0100 */ 207 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406, 208 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 209 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 210 "Entry 0100"}, 211 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */ 212 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406, 213 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 214 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2, 215 "Entry 0101: ST M45PE10 (128kB non-bufferred)"}, 216 /* Entry 0110: ST M45PE20 (non-buffered flash)*/ 217 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406, 218 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE, 219 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4, 220 "Entry 0110: ST M45PE20 (256kB non-bufferred)"}, 221 /* Saifun SA25F005 (non-buffered flash) */ 222 /* strap, cfg1, & write1 need updates */ 223 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406, 224 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 225 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE, 226 "Non-buffered flash (64kB)"}, 227 /* Fast EEPROM */ 228 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400, 229 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE, 230 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE, 231 "EEPROM - fast"}, 232 /* Expansion entry 1001 */ 233 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406, 234 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 235 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 236 "Entry 1001"}, 237 /* Expansion entry 1010 */ 238 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406, 239 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 240 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 241 "Entry 1010"}, 242 /* ATMEL AT45DB011B (buffered flash) */ 243 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400, 244 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 245 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE, 246 "Buffered flash (128kB)"}, 247 /* Expansion entry 1100 */ 248 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406, 249 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 250 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 251 "Entry 1100"}, 252 /* Expansion entry 1101 */ 253 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406, 254 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE, 255 SAIFUN_FLASH_BYTE_ADDR_MASK, 0, 256 "Entry 1101"}, 257 /* Ateml Expansion entry 1110 */ 258 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400, 259 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 260 BUFFERED_FLASH_BYTE_ADDR_MASK, 0, 261 "Entry 1110 (Atmel)"}, 262 /* ATMEL AT45DB021B (buffered flash) */ 263 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400, 264 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE, 265 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2, 266 "Buffered flash (256kB)"}, 267 }; 268 269 /* 270 * The BCM5709 controllers transparently handle the 271 * differences between Atmel 264 byte pages and all 272 * flash devices which use 256 byte pages, so no 273 * logical-to-physical mapping is required in the 274 * driver. 275 */ 276 static struct flash_spec flash_5709 = { 277 .flags = BNX_NV_BUFFERED, 278 .page_bits = BCM5709_FLASH_PAGE_BITS, 279 .page_size = BCM5709_FLASH_PAGE_SIZE, 280 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK, 281 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2, 282 .name = "5709 buffered flash (256kB)", 283 }; 284 285 /****************************************************************************/ 286 /* OpenBSD device entry points. */ 287 /****************************************************************************/ 288 static int bnx_probe(device_t, cfdata_t, void *); 289 void bnx_attach(device_t, device_t, void *); 290 int bnx_detach(device_t, int); 291 292 /****************************************************************************/ 293 /* BNX Debug Data Structure Dump Routines */ 294 /****************************************************************************/ 295 #ifdef BNX_DEBUG 296 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *); 297 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int); 298 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int); 299 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *); 300 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *); 301 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *); 302 void bnx_dump_tx_chain(struct bnx_softc *, int, int); 303 void bnx_dump_rx_chain(struct bnx_softc *, int, int); 304 void bnx_dump_status_block(struct bnx_softc *); 305 void bnx_dump_stats_block(struct bnx_softc *); 306 void bnx_dump_driver_state(struct bnx_softc *); 307 void bnx_dump_hw_state(struct bnx_softc *); 308 void bnx_breakpoint(struct bnx_softc *); 309 #endif 310 311 /****************************************************************************/ 312 /* BNX Register/Memory Access Routines */ 313 /****************************************************************************/ 314 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t); 315 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t); 316 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t); 317 int bnx_miibus_read_reg(device_t, int, int); 318 void bnx_miibus_write_reg(device_t, int, int, int); 319 void bnx_miibus_statchg(device_t); 320 321 /****************************************************************************/ 322 /* BNX NVRAM Access Routines */ 323 /****************************************************************************/ 324 int bnx_acquire_nvram_lock(struct bnx_softc *); 325 int bnx_release_nvram_lock(struct bnx_softc *); 326 void bnx_enable_nvram_access(struct bnx_softc *); 327 void bnx_disable_nvram_access(struct bnx_softc *); 328 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 329 u_int32_t); 330 int bnx_init_nvram(struct bnx_softc *); 331 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int); 332 int bnx_nvram_test(struct bnx_softc *); 333 #ifdef BNX_NVRAM_WRITE_SUPPORT 334 int bnx_enable_nvram_write(struct bnx_softc *); 335 void bnx_disable_nvram_write(struct bnx_softc *); 336 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t); 337 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *, 338 u_int32_t); 339 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int); 340 #endif 341 342 /****************************************************************************/ 343 /* */ 344 /****************************************************************************/ 345 void bnx_get_media(struct bnx_softc *); 346 int bnx_dma_alloc(struct bnx_softc *); 347 void bnx_dma_free(struct bnx_softc *); 348 void bnx_release_resources(struct bnx_softc *); 349 350 /****************************************************************************/ 351 /* BNX Firmware Synchronization and Load */ 352 /****************************************************************************/ 353 int bnx_fw_sync(struct bnx_softc *, u_int32_t); 354 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t, 355 u_int32_t); 356 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *, 357 struct fw_info *); 358 void bnx_init_cpus(struct bnx_softc *); 359 360 void bnx_stop(struct ifnet *, int); 361 int bnx_reset(struct bnx_softc *, u_int32_t); 362 int bnx_chipinit(struct bnx_softc *); 363 int bnx_blockinit(struct bnx_softc *); 364 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *, 365 u_int16_t *, u_int32_t *); 366 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *); 367 368 int bnx_init_tx_chain(struct bnx_softc *); 369 void bnx_init_tx_context(struct bnx_softc *); 370 int bnx_init_rx_chain(struct bnx_softc *); 371 void bnx_init_rx_context(struct bnx_softc *); 372 void bnx_free_rx_chain(struct bnx_softc *); 373 void bnx_free_tx_chain(struct bnx_softc *); 374 375 int bnx_tx_encap(struct bnx_softc *, struct mbuf *); 376 void bnx_start(struct ifnet *); 377 int bnx_ioctl(struct ifnet *, u_long, void *); 378 void bnx_watchdog(struct ifnet *); 379 int bnx_init(struct ifnet *); 380 381 void bnx_init_context(struct bnx_softc *); 382 void bnx_get_mac_addr(struct bnx_softc *); 383 void bnx_set_mac_addr(struct bnx_softc *); 384 void bnx_phy_intr(struct bnx_softc *); 385 void bnx_rx_intr(struct bnx_softc *); 386 void bnx_tx_intr(struct bnx_softc *); 387 void bnx_disable_intr(struct bnx_softc *); 388 void bnx_enable_intr(struct bnx_softc *); 389 390 int bnx_intr(void *); 391 void bnx_iff(struct bnx_softc *); 392 void bnx_stats_update(struct bnx_softc *); 393 void bnx_tick(void *); 394 395 struct pool *bnx_tx_pool = NULL; 396 int bnx_alloc_pkts(struct bnx_softc *); 397 398 /****************************************************************************/ 399 /* OpenBSD device dispatch table. */ 400 /****************************************************************************/ 401 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc), 402 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 403 404 /****************************************************************************/ 405 /* Device probe function. */ 406 /* */ 407 /* Compares the device to the driver's list of supported devices and */ 408 /* reports back to the OS whether this is the right driver for the device. */ 409 /* */ 410 /* Returns: */ 411 /* BUS_PROBE_DEFAULT on success, positive value on failure. */ 412 /****************************************************************************/ 413 static const struct bnx_product * 414 bnx_lookup(const struct pci_attach_args *pa) 415 { 416 int i; 417 pcireg_t subid; 418 419 for (i = 0; i < __arraycount(bnx_devices); i++) { 420 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor || 421 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product) 422 continue; 423 if (!bnx_devices[i].bp_subvendor) 424 return &bnx_devices[i]; 425 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); 426 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor && 427 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct) 428 return &bnx_devices[i]; 429 } 430 431 return NULL; 432 } 433 static int 434 bnx_probe(device_t parent, cfdata_t match, void *aux) 435 { 436 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 437 438 if (bnx_lookup(pa) != NULL) 439 return (1); 440 441 return (0); 442 } 443 444 /****************************************************************************/ 445 /* Device attach function. */ 446 /* */ 447 /* Allocates device resources, performs secondary chip identification, */ 448 /* resets and initializes the hardware, and initializes driver instance */ 449 /* variables. */ 450 /* */ 451 /* Returns: */ 452 /* 0 on success, positive value on failure. */ 453 /****************************************************************************/ 454 void 455 bnx_attach(device_t parent, device_t self, void *aux) 456 { 457 const struct bnx_product *bp; 458 struct bnx_softc *sc = device_private(self); 459 struct pci_attach_args *pa = aux; 460 pci_chipset_tag_t pc = pa->pa_pc; 461 pci_intr_handle_t ih; 462 const char *intrstr = NULL; 463 u_int32_t command; 464 struct ifnet *ifp; 465 u_int32_t val; 466 int mii_flags = MIIF_FORCEANEG; 467 pcireg_t memtype; 468 469 if (bnx_tx_pool == NULL) { 470 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT); 471 if (bnx_tx_pool != NULL) { 472 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt), 473 0, 0, 0, "bnxpkts", NULL, IPL_NET); 474 } else { 475 aprint_error(": can't alloc bnx_tx_pool\n"); 476 return; 477 } 478 } 479 480 bp = bnx_lookup(pa); 481 if (bp == NULL) 482 panic("unknown device"); 483 484 sc->bnx_dev = self; 485 486 aprint_naive("\n"); 487 aprint_normal(": %s\n", bp->bp_name); 488 489 sc->bnx_pa = *pa; 490 491 /* 492 * Map control/status registers. 493 */ 494 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 495 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; 496 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 497 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 498 499 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 500 aprint_error_dev(sc->bnx_dev, 501 "failed to enable memory mapping!\n"); 502 return; 503 } 504 505 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0); 506 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag, 507 &sc->bnx_bhandle, NULL, &sc->bnx_size)) { 508 aprint_error_dev(sc->bnx_dev, "can't find mem space\n"); 509 return; 510 } 511 512 if (pci_intr_map(pa, &ih)) { 513 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n"); 514 goto bnx_attach_fail; 515 } 516 517 intrstr = pci_intr_string(pc, ih); 518 519 /* 520 * Configure byte swap and enable indirect register access. 521 * Rely on CPU to do target byte swapping on big endian systems. 522 * Access to registers outside of PCI configurtion space are not 523 * valid until this is done. 524 */ 525 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 526 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 527 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP); 528 529 /* Save ASIC revsion info. */ 530 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID); 531 532 /* 533 * Find the base address for shared memory access. 534 * Newer versions of bootcode use a signature and offset 535 * while older versions use a fixed address. 536 */ 537 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE); 538 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG) 539 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 + 540 (sc->bnx_pa.pa_function << 2)); 541 else 542 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE; 543 544 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base); 545 546 /* Set initial device and PHY flags */ 547 sc->bnx_flags = 0; 548 sc->bnx_phy_flags = 0; 549 550 /* Get PCI bus information (speed and type). */ 551 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS); 552 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) { 553 u_int32_t clkreg; 554 555 sc->bnx_flags |= BNX_PCIX_FLAG; 556 557 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS); 558 559 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET; 560 switch (clkreg) { 561 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ: 562 sc->bus_speed_mhz = 133; 563 break; 564 565 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ: 566 sc->bus_speed_mhz = 100; 567 break; 568 569 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ: 570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ: 571 sc->bus_speed_mhz = 66; 572 break; 573 574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ: 575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ: 576 sc->bus_speed_mhz = 50; 577 break; 578 579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW: 580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ: 581 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ: 582 sc->bus_speed_mhz = 33; 583 break; 584 } 585 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN) 586 sc->bus_speed_mhz = 66; 587 else 588 sc->bus_speed_mhz = 33; 589 590 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET) 591 sc->bnx_flags |= BNX_PCI_32BIT_FLAG; 592 593 /* Reset the controller. */ 594 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) 595 goto bnx_attach_fail; 596 597 /* Initialize the controller. */ 598 if (bnx_chipinit(sc)) { 599 aprint_error_dev(sc->bnx_dev, 600 "Controller initialization failed!\n"); 601 goto bnx_attach_fail; 602 } 603 604 /* Perform NVRAM test. */ 605 if (bnx_nvram_test(sc)) { 606 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n"); 607 goto bnx_attach_fail; 608 } 609 610 /* Fetch the permanent Ethernet MAC address. */ 611 bnx_get_mac_addr(sc); 612 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n", 613 ether_sprintf(sc->eaddr)); 614 615 /* 616 * Trip points control how many BDs 617 * should be ready before generating an 618 * interrupt while ticks control how long 619 * a BD can sit in the chain before 620 * generating an interrupt. Set the default 621 * values for the RX and TX rings. 622 */ 623 624 #ifdef BNX_DEBUG 625 /* Force more frequent interrupts. */ 626 sc->bnx_tx_quick_cons_trip_int = 1; 627 sc->bnx_tx_quick_cons_trip = 1; 628 sc->bnx_tx_ticks_int = 0; 629 sc->bnx_tx_ticks = 0; 630 631 sc->bnx_rx_quick_cons_trip_int = 1; 632 sc->bnx_rx_quick_cons_trip = 1; 633 sc->bnx_rx_ticks_int = 0; 634 sc->bnx_rx_ticks = 0; 635 #else 636 sc->bnx_tx_quick_cons_trip_int = 20; 637 sc->bnx_tx_quick_cons_trip = 20; 638 sc->bnx_tx_ticks_int = 80; 639 sc->bnx_tx_ticks = 80; 640 641 sc->bnx_rx_quick_cons_trip_int = 6; 642 sc->bnx_rx_quick_cons_trip = 6; 643 sc->bnx_rx_ticks_int = 18; 644 sc->bnx_rx_ticks = 18; 645 #endif 646 647 /* Update statistics once every second. */ 648 sc->bnx_stats_ticks = 1000000 & 0xffff00; 649 650 /* Find the media type for the adapter. */ 651 bnx_get_media(sc); 652 653 /* 654 * Store config data needed by the PHY driver for 655 * backplane applications 656 */ 657 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 658 BNX_SHARED_HW_CFG_CONFIG); 659 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base + 660 BNX_PORT_HW_CFG_CONFIG); 661 662 /* Allocate DMA memory resources. */ 663 sc->bnx_dmatag = pa->pa_dmat; 664 if (bnx_dma_alloc(sc)) { 665 aprint_error_dev(sc->bnx_dev, 666 "DMA resource allocation failed!\n"); 667 goto bnx_attach_fail; 668 } 669 670 /* Initialize the ifnet interface. */ 671 ifp = &sc->bnx_ec.ec_if; 672 ifp->if_softc = sc; 673 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 674 ifp->if_ioctl = bnx_ioctl; 675 ifp->if_stop = bnx_stop; 676 ifp->if_start = bnx_start; 677 ifp->if_init = bnx_init; 678 ifp->if_timer = 0; 679 ifp->if_watchdog = bnx_watchdog; 680 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1); 681 IFQ_SET_READY(&ifp->if_snd); 682 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 683 684 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU | 685 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; 686 687 ifp->if_capabilities |= 688 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 689 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 690 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 691 692 /* Hookup IRQ last. */ 693 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc); 694 if (sc->bnx_intrhand == NULL) { 695 aprint_error_dev(self, "couldn't establish interrupt"); 696 if (intrstr != NULL) 697 aprint_error(" at %s", intrstr); 698 aprint_error("\n"); 699 goto bnx_attach_fail; 700 } 701 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr); 702 703 sc->bnx_mii.mii_ifp = ifp; 704 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg; 705 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg; 706 sc->bnx_mii.mii_statchg = bnx_miibus_statchg; 707 708 sc->bnx_ec.ec_mii = &sc->bnx_mii; 709 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange, 710 ether_mediastatus); 711 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) 712 mii_flags |= MIIF_HAVEFIBER; 713 mii_attach(self, &sc->bnx_mii, 0xffffffff, 714 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); 715 716 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) { 717 aprint_error_dev(self, "no PHY found!\n"); 718 ifmedia_add(&sc->bnx_mii.mii_media, 719 IFM_ETHER|IFM_MANUAL, 0, NULL); 720 ifmedia_set(&sc->bnx_mii.mii_media, 721 IFM_ETHER|IFM_MANUAL); 722 } else { 723 ifmedia_set(&sc->bnx_mii.mii_media, 724 IFM_ETHER|IFM_AUTO); 725 } 726 727 /* Attach to the Ethernet interface list. */ 728 if_attach(ifp); 729 ether_ifattach(ifp,sc->eaddr); 730 731 callout_init(&sc->bnx_timeout, 0); 732 733 if (pmf_device_register(self, NULL, NULL)) 734 pmf_class_network_register(self, ifp); 735 else 736 aprint_error_dev(self, "couldn't establish power handler\n"); 737 738 /* Print some important debugging info. */ 739 DBRUN(BNX_INFO, bnx_dump_driver_state(sc)); 740 741 goto bnx_attach_exit; 742 743 bnx_attach_fail: 744 bnx_release_resources(sc); 745 746 bnx_attach_exit: 747 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 748 } 749 750 /****************************************************************************/ 751 /* Device detach function. */ 752 /* */ 753 /* Stops the controller, resets the controller, and releases resources. */ 754 /* */ 755 /* Returns: */ 756 /* 0 on success, positive value on failure. */ 757 /****************************************************************************/ 758 int 759 bnx_detach(device_t dev, int flags) 760 { 761 int s; 762 struct bnx_softc *sc; 763 struct ifnet *ifp; 764 765 sc = device_private(dev); 766 ifp = &sc->bnx_ec.ec_if; 767 768 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 769 770 /* Stop and reset the controller. */ 771 s = splnet(); 772 if (ifp->if_flags & IFF_RUNNING) 773 bnx_stop(ifp, 1); 774 else { 775 /* Disable the transmit/receive blocks. */ 776 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); 777 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 778 DELAY(20); 779 bnx_disable_intr(sc); 780 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); 781 } 782 783 splx(s); 784 785 pmf_device_deregister(dev); 786 callout_destroy(&sc->bnx_timeout); 787 ether_ifdetach(ifp); 788 if_detach(ifp); 789 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY); 790 791 /* Release all remaining resources. */ 792 bnx_release_resources(sc); 793 794 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 795 796 return(0); 797 } 798 799 /****************************************************************************/ 800 /* Indirect register read. */ 801 /* */ 802 /* Reads NetXtreme II registers using an index/data register pair in PCI */ 803 /* configuration space. Using this mechanism avoids issues with posted */ 804 /* reads but is much slower than memory-mapped I/O. */ 805 /* */ 806 /* Returns: */ 807 /* The value of the register. */ 808 /****************************************************************************/ 809 u_int32_t 810 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset) 811 { 812 struct pci_attach_args *pa = &(sc->bnx_pa); 813 814 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 815 offset); 816 #ifdef BNX_DEBUG 817 { 818 u_int32_t val; 819 val = pci_conf_read(pa->pa_pc, pa->pa_tag, 820 BNX_PCICFG_REG_WINDOW); 821 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, " 822 "val = 0x%08X\n", __func__, offset, val); 823 return (val); 824 } 825 #else 826 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW); 827 #endif 828 } 829 830 /****************************************************************************/ 831 /* Indirect register write. */ 832 /* */ 833 /* Writes NetXtreme II registers using an index/data register pair in PCI */ 834 /* configuration space. Using this mechanism avoids issues with posted */ 835 /* writes but is muchh slower than memory-mapped I/O. */ 836 /* */ 837 /* Returns: */ 838 /* Nothing. */ 839 /****************************************************************************/ 840 void 841 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val) 842 { 843 struct pci_attach_args *pa = &(sc->bnx_pa); 844 845 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n", 846 __func__, offset, val); 847 848 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS, 849 offset); 850 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val); 851 } 852 853 /****************************************************************************/ 854 /* Context memory write. */ 855 /* */ 856 /* The NetXtreme II controller uses context memory to track connection */ 857 /* information for L2 and higher network protocols. */ 858 /* */ 859 /* Returns: */ 860 /* Nothing. */ 861 /****************************************************************************/ 862 void 863 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset, 864 u_int32_t ctx_val) 865 { 866 u_int32_t idx, offset = ctx_offset + cid_addr; 867 u_int32_t val, retry_cnt = 5; 868 869 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 870 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val); 871 REG_WR(sc, BNX_CTX_CTX_CTRL, 872 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ)); 873 874 for (idx = 0; idx < retry_cnt; idx++) { 875 val = REG_RD(sc, BNX_CTX_CTX_CTRL); 876 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0) 877 break; 878 DELAY(5); 879 } 880 881 #if 0 882 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ) 883 BNX_PRINTF("%s(%d); Unable to write CTX memory: " 884 "cid_addr = 0x%08X, offset = 0x%08X!\n", 885 __FILE__, __LINE__, cid_addr, ctx_offset); 886 #endif 887 888 } else { 889 REG_WR(sc, BNX_CTX_DATA_ADR, offset); 890 REG_WR(sc, BNX_CTX_DATA, ctx_val); 891 } 892 } 893 894 /****************************************************************************/ 895 /* PHY register read. */ 896 /* */ 897 /* Implements register reads on the MII bus. */ 898 /* */ 899 /* Returns: */ 900 /* The value of the register. */ 901 /****************************************************************************/ 902 int 903 bnx_miibus_read_reg(device_t dev, int phy, int reg) 904 { 905 struct bnx_softc *sc = device_private(dev); 906 u_int32_t val; 907 int i; 908 909 /* Make sure we are accessing the correct PHY address. */ 910 if (phy != sc->bnx_phy_addr) { 911 DBPRINT(sc, BNX_VERBOSE, 912 "Invalid PHY address %d for PHY read!\n", phy); 913 return(0); 914 } 915 916 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 917 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 918 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 919 920 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 921 REG_RD(sc, BNX_EMAC_MDIO_MODE); 922 923 DELAY(40); 924 } 925 926 val = BNX_MIPHY(phy) | BNX_MIREG(reg) | 927 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT | 928 BNX_EMAC_MDIO_COMM_START_BUSY; 929 REG_WR(sc, BNX_EMAC_MDIO_COMM, val); 930 931 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 932 DELAY(10); 933 934 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 935 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) { 936 DELAY(5); 937 938 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 939 val &= BNX_EMAC_MDIO_COMM_DATA; 940 941 break; 942 } 943 } 944 945 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) { 946 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, " 947 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg); 948 val = 0x0; 949 } else 950 val = REG_RD(sc, BNX_EMAC_MDIO_COMM); 951 952 DBPRINT(sc, BNX_EXCESSIVE, 953 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy, 954 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 955 956 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 957 val = REG_RD(sc, BNX_EMAC_MDIO_MODE); 958 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 959 960 REG_WR(sc, BNX_EMAC_MDIO_MODE, val); 961 REG_RD(sc, BNX_EMAC_MDIO_MODE); 962 963 DELAY(40); 964 } 965 966 return (val & 0xffff); 967 } 968 969 /****************************************************************************/ 970 /* PHY register write. */ 971 /* */ 972 /* Implements register writes on the MII bus. */ 973 /* */ 974 /* Returns: */ 975 /* The value of the register. */ 976 /****************************************************************************/ 977 void 978 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val) 979 { 980 struct bnx_softc *sc = device_private(dev); 981 u_int32_t val1; 982 int i; 983 984 /* Make sure we are accessing the correct PHY address. */ 985 if (phy != sc->bnx_phy_addr) { 986 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n", 987 phy); 988 return; 989 } 990 991 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, " 992 "val = 0x%04X\n", __func__, 993 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff); 994 995 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 996 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 997 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL; 998 999 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1000 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1001 1002 DELAY(40); 1003 } 1004 1005 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val | 1006 BNX_EMAC_MDIO_COMM_COMMAND_WRITE | 1007 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT; 1008 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1); 1009 1010 for (i = 0; i < BNX_PHY_TIMEOUT; i++) { 1011 DELAY(10); 1012 1013 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM); 1014 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) { 1015 DELAY(5); 1016 break; 1017 } 1018 } 1019 1020 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) { 1021 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__, 1022 __LINE__); 1023 } 1024 1025 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) { 1026 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE); 1027 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL; 1028 1029 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1); 1030 REG_RD(sc, BNX_EMAC_MDIO_MODE); 1031 1032 DELAY(40); 1033 } 1034 } 1035 1036 /****************************************************************************/ 1037 /* MII bus status change. */ 1038 /* */ 1039 /* Called by the MII bus driver when the PHY establishes link to set the */ 1040 /* MAC interface registers. */ 1041 /* */ 1042 /* Returns: */ 1043 /* Nothing. */ 1044 /****************************************************************************/ 1045 void 1046 bnx_miibus_statchg(device_t dev) 1047 { 1048 struct bnx_softc *sc = device_private(dev); 1049 struct mii_data *mii = &sc->bnx_mii; 1050 int val; 1051 1052 val = REG_RD(sc, BNX_EMAC_MODE); 1053 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX | 1054 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK | 1055 BNX_EMAC_MODE_25G); 1056 1057 /* Set MII or GMII interface based on the speed 1058 * negotiated by the PHY. 1059 */ 1060 switch (IFM_SUBTYPE(mii->mii_media_active)) { 1061 case IFM_10_T: 1062 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 1063 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n"); 1064 val |= BNX_EMAC_MODE_PORT_MII_10; 1065 break; 1066 } 1067 /* FALLTHROUGH */ 1068 case IFM_100_TX: 1069 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n"); 1070 val |= BNX_EMAC_MODE_PORT_MII; 1071 break; 1072 case IFM_2500_SX: 1073 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n"); 1074 val |= BNX_EMAC_MODE_25G; 1075 /* FALLTHROUGH */ 1076 case IFM_1000_T: 1077 case IFM_1000_SX: 1078 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n"); 1079 val |= BNX_EMAC_MODE_PORT_GMII; 1080 break; 1081 default: 1082 val |= BNX_EMAC_MODE_PORT_GMII; 1083 break; 1084 } 1085 1086 /* Set half or full duplex based on the duplicity 1087 * negotiated by the PHY. 1088 */ 1089 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { 1090 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n"); 1091 val |= BNX_EMAC_MODE_HALF_DUPLEX; 1092 } else { 1093 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n"); 1094 } 1095 1096 REG_WR(sc, BNX_EMAC_MODE, val); 1097 } 1098 1099 /****************************************************************************/ 1100 /* Acquire NVRAM lock. */ 1101 /* */ 1102 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */ 1103 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1104 /* for use by the driver. */ 1105 /* */ 1106 /* Returns: */ 1107 /* 0 on success, positive value on failure. */ 1108 /****************************************************************************/ 1109 int 1110 bnx_acquire_nvram_lock(struct bnx_softc *sc) 1111 { 1112 u_int32_t val; 1113 int j; 1114 1115 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n"); 1116 1117 /* Request access to the flash interface. */ 1118 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2); 1119 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1120 val = REG_RD(sc, BNX_NVM_SW_ARB); 1121 if (val & BNX_NVM_SW_ARB_ARB_ARB2) 1122 break; 1123 1124 DELAY(5); 1125 } 1126 1127 if (j >= NVRAM_TIMEOUT_COUNT) { 1128 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n"); 1129 return (EBUSY); 1130 } 1131 1132 return (0); 1133 } 1134 1135 /****************************************************************************/ 1136 /* Release NVRAM lock. */ 1137 /* */ 1138 /* When the caller is finished accessing NVRAM the lock must be released. */ 1139 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */ 1140 /* for use by the driver. */ 1141 /* */ 1142 /* Returns: */ 1143 /* 0 on success, positive value on failure. */ 1144 /****************************************************************************/ 1145 int 1146 bnx_release_nvram_lock(struct bnx_softc *sc) 1147 { 1148 int j; 1149 u_int32_t val; 1150 1151 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n"); 1152 1153 /* Relinquish nvram interface. */ 1154 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2); 1155 1156 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1157 val = REG_RD(sc, BNX_NVM_SW_ARB); 1158 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2)) 1159 break; 1160 1161 DELAY(5); 1162 } 1163 1164 if (j >= NVRAM_TIMEOUT_COUNT) { 1165 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n"); 1166 return (EBUSY); 1167 } 1168 1169 return (0); 1170 } 1171 1172 #ifdef BNX_NVRAM_WRITE_SUPPORT 1173 /****************************************************************************/ 1174 /* Enable NVRAM write access. */ 1175 /* */ 1176 /* Before writing to NVRAM the caller must enable NVRAM writes. */ 1177 /* */ 1178 /* Returns: */ 1179 /* 0 on success, positive value on failure. */ 1180 /****************************************************************************/ 1181 int 1182 bnx_enable_nvram_write(struct bnx_softc *sc) 1183 { 1184 u_int32_t val; 1185 1186 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n"); 1187 1188 val = REG_RD(sc, BNX_MISC_CFG); 1189 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI); 1190 1191 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1192 int j; 1193 1194 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1195 REG_WR(sc, BNX_NVM_COMMAND, 1196 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT); 1197 1198 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1199 DELAY(5); 1200 1201 val = REG_RD(sc, BNX_NVM_COMMAND); 1202 if (val & BNX_NVM_COMMAND_DONE) 1203 break; 1204 } 1205 1206 if (j >= NVRAM_TIMEOUT_COUNT) { 1207 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n"); 1208 return (EBUSY); 1209 } 1210 } 1211 1212 return (0); 1213 } 1214 1215 /****************************************************************************/ 1216 /* Disable NVRAM write access. */ 1217 /* */ 1218 /* When the caller is finished writing to NVRAM write access must be */ 1219 /* disabled. */ 1220 /* */ 1221 /* Returns: */ 1222 /* Nothing. */ 1223 /****************************************************************************/ 1224 void 1225 bnx_disable_nvram_write(struct bnx_softc *sc) 1226 { 1227 u_int32_t val; 1228 1229 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n"); 1230 1231 val = REG_RD(sc, BNX_MISC_CFG); 1232 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN); 1233 } 1234 #endif 1235 1236 /****************************************************************************/ 1237 /* Enable NVRAM access. */ 1238 /* */ 1239 /* Before accessing NVRAM for read or write operations the caller must */ 1240 /* enabled NVRAM access. */ 1241 /* */ 1242 /* Returns: */ 1243 /* Nothing. */ 1244 /****************************************************************************/ 1245 void 1246 bnx_enable_nvram_access(struct bnx_softc *sc) 1247 { 1248 u_int32_t val; 1249 1250 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n"); 1251 1252 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1253 /* Enable both bits, even on read. */ 1254 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1255 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN); 1256 } 1257 1258 /****************************************************************************/ 1259 /* Disable NVRAM access. */ 1260 /* */ 1261 /* When the caller is finished accessing NVRAM access must be disabled. */ 1262 /* */ 1263 /* Returns: */ 1264 /* Nothing. */ 1265 /****************************************************************************/ 1266 void 1267 bnx_disable_nvram_access(struct bnx_softc *sc) 1268 { 1269 u_int32_t val; 1270 1271 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n"); 1272 1273 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE); 1274 1275 /* Disable both bits, even after read. */ 1276 REG_WR(sc, BNX_NVM_ACCESS_ENABLE, 1277 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN)); 1278 } 1279 1280 #ifdef BNX_NVRAM_WRITE_SUPPORT 1281 /****************************************************************************/ 1282 /* Erase NVRAM page before writing. */ 1283 /* */ 1284 /* Non-buffered flash parts require that a page be erased before it is */ 1285 /* written. */ 1286 /* */ 1287 /* Returns: */ 1288 /* 0 on success, positive value on failure. */ 1289 /****************************************************************************/ 1290 int 1291 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset) 1292 { 1293 u_int32_t cmd; 1294 int j; 1295 1296 /* Buffered flash doesn't require an erase. */ 1297 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) 1298 return (0); 1299 1300 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n"); 1301 1302 /* Build an erase command. */ 1303 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR | 1304 BNX_NVM_COMMAND_DOIT; 1305 1306 /* 1307 * Clear the DONE bit separately, set the NVRAM adress to erase, 1308 * and issue the erase command. 1309 */ 1310 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1311 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1312 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1313 1314 /* Wait for completion. */ 1315 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1316 u_int32_t val; 1317 1318 DELAY(5); 1319 1320 val = REG_RD(sc, BNX_NVM_COMMAND); 1321 if (val & BNX_NVM_COMMAND_DONE) 1322 break; 1323 } 1324 1325 if (j >= NVRAM_TIMEOUT_COUNT) { 1326 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n"); 1327 return (EBUSY); 1328 } 1329 1330 return (0); 1331 } 1332 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1333 1334 /****************************************************************************/ 1335 /* Read a dword (32 bits) from NVRAM. */ 1336 /* */ 1337 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */ 1338 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */ 1339 /* */ 1340 /* Returns: */ 1341 /* 0 on success and the 32 bit value read, positive value on failure. */ 1342 /****************************************************************************/ 1343 int 1344 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset, 1345 u_int8_t *ret_val, u_int32_t cmd_flags) 1346 { 1347 u_int32_t cmd; 1348 int i, rc = 0; 1349 1350 /* Build the command word. */ 1351 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags; 1352 1353 /* Calculate the offset for buffered flash if translation is used. */ 1354 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1355 offset = ((offset / sc->bnx_flash_info->page_size) << 1356 sc->bnx_flash_info->page_bits) + 1357 (offset % sc->bnx_flash_info->page_size); 1358 } 1359 1360 /* 1361 * Clear the DONE bit separately, set the address to read, 1362 * and issue the read. 1363 */ 1364 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1365 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1366 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1367 1368 /* Wait for completion. */ 1369 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) { 1370 u_int32_t val; 1371 1372 DELAY(5); 1373 1374 val = REG_RD(sc, BNX_NVM_COMMAND); 1375 if (val & BNX_NVM_COMMAND_DONE) { 1376 val = REG_RD(sc, BNX_NVM_READ); 1377 1378 val = bnx_be32toh(val); 1379 memcpy(ret_val, &val, 4); 1380 break; 1381 } 1382 } 1383 1384 /* Check for errors. */ 1385 if (i >= NVRAM_TIMEOUT_COUNT) { 1386 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at " 1387 "offset 0x%08X!\n", __FILE__, __LINE__, offset); 1388 rc = EBUSY; 1389 } 1390 1391 return(rc); 1392 } 1393 1394 #ifdef BNX_NVRAM_WRITE_SUPPORT 1395 /****************************************************************************/ 1396 /* Write a dword (32 bits) to NVRAM. */ 1397 /* */ 1398 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */ 1399 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */ 1400 /* enabled NVRAM write access. */ 1401 /* */ 1402 /* Returns: */ 1403 /* 0 on success, positive value on failure. */ 1404 /****************************************************************************/ 1405 int 1406 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val, 1407 u_int32_t cmd_flags) 1408 { 1409 u_int32_t cmd, val32; 1410 int j; 1411 1412 /* Build the command word. */ 1413 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags; 1414 1415 /* Calculate the offset for buffered flash if translation is used. */ 1416 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) { 1417 offset = ((offset / sc->bnx_flash_info->page_size) << 1418 sc->bnx_flash_info->page_bits) + 1419 (offset % sc->bnx_flash_info->page_size); 1420 } 1421 1422 /* 1423 * Clear the DONE bit separately, convert NVRAM data to big-endian, 1424 * set the NVRAM address to write, and issue the write command 1425 */ 1426 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE); 1427 memcpy(&val32, val, 4); 1428 val32 = htobe32(val32); 1429 REG_WR(sc, BNX_NVM_WRITE, val32); 1430 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE); 1431 REG_WR(sc, BNX_NVM_COMMAND, cmd); 1432 1433 /* Wait for completion. */ 1434 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) { 1435 DELAY(5); 1436 1437 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE) 1438 break; 1439 } 1440 if (j >= NVRAM_TIMEOUT_COUNT) { 1441 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at " 1442 "offset 0x%08X\n", __FILE__, __LINE__, offset); 1443 return (EBUSY); 1444 } 1445 1446 return (0); 1447 } 1448 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1449 1450 /****************************************************************************/ 1451 /* Initialize NVRAM access. */ 1452 /* */ 1453 /* Identify the NVRAM device in use and prepare the NVRAM interface to */ 1454 /* access that device. */ 1455 /* */ 1456 /* Returns: */ 1457 /* 0 on success, positive value on failure. */ 1458 /****************************************************************************/ 1459 int 1460 bnx_init_nvram(struct bnx_softc *sc) 1461 { 1462 u_int32_t val; 1463 int j, entry_count, rc = 0; 1464 struct flash_spec *flash; 1465 1466 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 1467 1468 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1469 sc->bnx_flash_info = &flash_5709; 1470 goto bnx_init_nvram_get_flash_size; 1471 } 1472 1473 /* Determine the selected interface. */ 1474 val = REG_RD(sc, BNX_NVM_CFG1); 1475 1476 entry_count = sizeof(flash_table) / sizeof(struct flash_spec); 1477 1478 /* 1479 * Flash reconfiguration is required to support additional 1480 * NVRAM devices not directly supported in hardware. 1481 * Check if the flash interface was reconfigured 1482 * by the bootcode. 1483 */ 1484 1485 if (val & 0x40000000) { 1486 /* Flash interface reconfigured by bootcode. */ 1487 1488 DBPRINT(sc,BNX_INFO_LOAD, 1489 "bnx_init_nvram(): Flash WAS reconfigured.\n"); 1490 1491 for (j = 0, flash = &flash_table[0]; j < entry_count; 1492 j++, flash++) { 1493 if ((val & FLASH_BACKUP_STRAP_MASK) == 1494 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) { 1495 sc->bnx_flash_info = flash; 1496 break; 1497 } 1498 } 1499 } else { 1500 /* Flash interface not yet reconfigured. */ 1501 u_int32_t mask; 1502 1503 DBPRINT(sc,BNX_INFO_LOAD, 1504 "bnx_init_nvram(): Flash was NOT reconfigured.\n"); 1505 1506 if (val & (1 << 23)) 1507 mask = FLASH_BACKUP_STRAP_MASK; 1508 else 1509 mask = FLASH_STRAP_MASK; 1510 1511 /* Look for the matching NVRAM device configuration data. */ 1512 for (j = 0, flash = &flash_table[0]; j < entry_count; 1513 j++, flash++) { 1514 /* Check if the dev matches any of the known devices. */ 1515 if ((val & mask) == (flash->strapping & mask)) { 1516 /* Found a device match. */ 1517 sc->bnx_flash_info = flash; 1518 1519 /* Request access to the flash interface. */ 1520 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1521 return (rc); 1522 1523 /* Reconfigure the flash interface. */ 1524 bnx_enable_nvram_access(sc); 1525 REG_WR(sc, BNX_NVM_CFG1, flash->config1); 1526 REG_WR(sc, BNX_NVM_CFG2, flash->config2); 1527 REG_WR(sc, BNX_NVM_CFG3, flash->config3); 1528 REG_WR(sc, BNX_NVM_WRITE1, flash->write1); 1529 bnx_disable_nvram_access(sc); 1530 bnx_release_nvram_lock(sc); 1531 1532 break; 1533 } 1534 } 1535 } 1536 1537 /* Check if a matching device was found. */ 1538 if (j == entry_count) { 1539 sc->bnx_flash_info = NULL; 1540 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n", 1541 __FILE__, __LINE__); 1542 rc = ENODEV; 1543 } 1544 1545 bnx_init_nvram_get_flash_size: 1546 /* Write the flash config data to the shared memory interface. */ 1547 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2); 1548 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK; 1549 if (val) 1550 sc->bnx_flash_size = val; 1551 else 1552 sc->bnx_flash_size = sc->bnx_flash_info->total_size; 1553 1554 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = " 1555 "0x%08X\n", sc->bnx_flash_info->total_size); 1556 1557 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 1558 1559 return (rc); 1560 } 1561 1562 /****************************************************************************/ 1563 /* Read an arbitrary range of data from NVRAM. */ 1564 /* */ 1565 /* Prepares the NVRAM interface for access and reads the requested data */ 1566 /* into the supplied buffer. */ 1567 /* */ 1568 /* Returns: */ 1569 /* 0 on success and the data read, positive value on failure. */ 1570 /****************************************************************************/ 1571 int 1572 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf, 1573 int buf_size) 1574 { 1575 int rc = 0; 1576 u_int32_t cmd_flags, offset32, len32, extra; 1577 1578 if (buf_size == 0) 1579 return (0); 1580 1581 /* Request access to the flash interface. */ 1582 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1583 return (rc); 1584 1585 /* Enable access to flash interface */ 1586 bnx_enable_nvram_access(sc); 1587 1588 len32 = buf_size; 1589 offset32 = offset; 1590 extra = 0; 1591 1592 cmd_flags = 0; 1593 1594 if (offset32 & 3) { 1595 u_int8_t buf[4]; 1596 u_int32_t pre_len; 1597 1598 offset32 &= ~3; 1599 pre_len = 4 - (offset & 3); 1600 1601 if (pre_len >= len32) { 1602 pre_len = len32; 1603 cmd_flags = 1604 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1605 } else 1606 cmd_flags = BNX_NVM_COMMAND_FIRST; 1607 1608 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1609 1610 if (rc) 1611 return (rc); 1612 1613 memcpy(ret_buf, buf + (offset & 3), pre_len); 1614 1615 offset32 += 4; 1616 ret_buf += pre_len; 1617 len32 -= pre_len; 1618 } 1619 1620 if (len32 & 3) { 1621 extra = 4 - (len32 & 3); 1622 len32 = (len32 + 4) & ~3; 1623 } 1624 1625 if (len32 == 4) { 1626 u_int8_t buf[4]; 1627 1628 if (cmd_flags) 1629 cmd_flags = BNX_NVM_COMMAND_LAST; 1630 else 1631 cmd_flags = 1632 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST; 1633 1634 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1635 1636 memcpy(ret_buf, buf, 4 - extra); 1637 } else if (len32 > 0) { 1638 u_int8_t buf[4]; 1639 1640 /* Read the first word. */ 1641 if (cmd_flags) 1642 cmd_flags = 0; 1643 else 1644 cmd_flags = BNX_NVM_COMMAND_FIRST; 1645 1646 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags); 1647 1648 /* Advance to the next dword. */ 1649 offset32 += 4; 1650 ret_buf += 4; 1651 len32 -= 4; 1652 1653 while (len32 > 4 && rc == 0) { 1654 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0); 1655 1656 /* Advance to the next dword. */ 1657 offset32 += 4; 1658 ret_buf += 4; 1659 len32 -= 4; 1660 } 1661 1662 if (rc) 1663 return (rc); 1664 1665 cmd_flags = BNX_NVM_COMMAND_LAST; 1666 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags); 1667 1668 memcpy(ret_buf, buf, 4 - extra); 1669 } 1670 1671 /* Disable access to flash interface and release the lock. */ 1672 bnx_disable_nvram_access(sc); 1673 bnx_release_nvram_lock(sc); 1674 1675 return (rc); 1676 } 1677 1678 #ifdef BNX_NVRAM_WRITE_SUPPORT 1679 /****************************************************************************/ 1680 /* Write an arbitrary range of data from NVRAM. */ 1681 /* */ 1682 /* Prepares the NVRAM interface for write access and writes the requested */ 1683 /* data from the supplied buffer. The caller is responsible for */ 1684 /* calculating any appropriate CRCs. */ 1685 /* */ 1686 /* Returns: */ 1687 /* 0 on success, positive value on failure. */ 1688 /****************************************************************************/ 1689 int 1690 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf, 1691 int buf_size) 1692 { 1693 u_int32_t written, offset32, len32; 1694 u_int8_t *buf, start[4], end[4]; 1695 int rc = 0; 1696 int align_start, align_end; 1697 1698 buf = data_buf; 1699 offset32 = offset; 1700 len32 = buf_size; 1701 align_start = align_end = 0; 1702 1703 if ((align_start = (offset32 & 3))) { 1704 offset32 &= ~3; 1705 len32 += align_start; 1706 if ((rc = bnx_nvram_read(sc, offset32, start, 4))) 1707 return (rc); 1708 } 1709 1710 if (len32 & 3) { 1711 if ((len32 > 4) || !align_start) { 1712 align_end = 4 - (len32 & 3); 1713 len32 += align_end; 1714 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4, 1715 end, 4))) { 1716 return (rc); 1717 } 1718 } 1719 } 1720 1721 if (align_start || align_end) { 1722 buf = malloc(len32, M_DEVBUF, M_NOWAIT); 1723 if (buf == 0) 1724 return (ENOMEM); 1725 1726 if (align_start) 1727 memcpy(buf, start, 4); 1728 1729 if (align_end) 1730 memcpy(buf + len32 - 4, end, 4); 1731 1732 memcpy(buf + align_start, data_buf, buf_size); 1733 } 1734 1735 written = 0; 1736 while ((written < len32) && (rc == 0)) { 1737 u_int32_t page_start, page_end, data_start, data_end; 1738 u_int32_t addr, cmd_flags; 1739 int i; 1740 u_int8_t flash_buffer[264]; 1741 1742 /* Find the page_start addr */ 1743 page_start = offset32 + written; 1744 page_start -= (page_start % sc->bnx_flash_info->page_size); 1745 /* Find the page_end addr */ 1746 page_end = page_start + sc->bnx_flash_info->page_size; 1747 /* Find the data_start addr */ 1748 data_start = (written == 0) ? offset32 : page_start; 1749 /* Find the data_end addr */ 1750 data_end = (page_end > offset32 + len32) ? 1751 (offset32 + len32) : page_end; 1752 1753 /* Request access to the flash interface. */ 1754 if ((rc = bnx_acquire_nvram_lock(sc)) != 0) 1755 goto nvram_write_end; 1756 1757 /* Enable access to flash interface */ 1758 bnx_enable_nvram_access(sc); 1759 1760 cmd_flags = BNX_NVM_COMMAND_FIRST; 1761 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1762 int j; 1763 1764 /* Read the whole page into the buffer 1765 * (non-buffer flash only) */ 1766 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) { 1767 if (j == (sc->bnx_flash_info->page_size - 4)) 1768 cmd_flags |= BNX_NVM_COMMAND_LAST; 1769 1770 rc = bnx_nvram_read_dword(sc, 1771 page_start + j, 1772 &flash_buffer[j], 1773 cmd_flags); 1774 1775 if (rc) 1776 goto nvram_write_end; 1777 1778 cmd_flags = 0; 1779 } 1780 } 1781 1782 /* Enable writes to flash interface (unlock write-protect) */ 1783 if ((rc = bnx_enable_nvram_write(sc)) != 0) 1784 goto nvram_write_end; 1785 1786 /* Erase the page */ 1787 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0) 1788 goto nvram_write_end; 1789 1790 /* Re-enable the write again for the actual write */ 1791 bnx_enable_nvram_write(sc); 1792 1793 /* Loop to write back the buffer data from page_start to 1794 * data_start */ 1795 i = 0; 1796 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1797 for (addr = page_start; addr < data_start; 1798 addr += 4, i += 4) { 1799 1800 rc = bnx_nvram_write_dword(sc, addr, 1801 &flash_buffer[i], cmd_flags); 1802 1803 if (rc != 0) 1804 goto nvram_write_end; 1805 1806 cmd_flags = 0; 1807 } 1808 } 1809 1810 /* Loop to write the new data from data_start to data_end */ 1811 for (addr = data_start; addr < data_end; addr += 4, i++) { 1812 if ((addr == page_end - 4) || 1813 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED) 1814 && (addr == data_end - 4))) { 1815 1816 cmd_flags |= BNX_NVM_COMMAND_LAST; 1817 } 1818 1819 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags); 1820 1821 if (rc != 0) 1822 goto nvram_write_end; 1823 1824 cmd_flags = 0; 1825 buf += 4; 1826 } 1827 1828 /* Loop to write back the buffer data from data_end 1829 * to page_end */ 1830 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) { 1831 for (addr = data_end; addr < page_end; 1832 addr += 4, i += 4) { 1833 1834 if (addr == page_end-4) 1835 cmd_flags = BNX_NVM_COMMAND_LAST; 1836 1837 rc = bnx_nvram_write_dword(sc, addr, 1838 &flash_buffer[i], cmd_flags); 1839 1840 if (rc != 0) 1841 goto nvram_write_end; 1842 1843 cmd_flags = 0; 1844 } 1845 } 1846 1847 /* Disable writes to flash interface (lock write-protect) */ 1848 bnx_disable_nvram_write(sc); 1849 1850 /* Disable access to flash interface */ 1851 bnx_disable_nvram_access(sc); 1852 bnx_release_nvram_lock(sc); 1853 1854 /* Increment written */ 1855 written += data_end - data_start; 1856 } 1857 1858 nvram_write_end: 1859 if (align_start || align_end) 1860 free(buf, M_DEVBUF); 1861 1862 return (rc); 1863 } 1864 #endif /* BNX_NVRAM_WRITE_SUPPORT */ 1865 1866 /****************************************************************************/ 1867 /* Verifies that NVRAM is accessible and contains valid data. */ 1868 /* */ 1869 /* Reads the configuration data from NVRAM and verifies that the CRC is */ 1870 /* correct. */ 1871 /* */ 1872 /* Returns: */ 1873 /* 0 on success, positive value on failure. */ 1874 /****************************************************************************/ 1875 int 1876 bnx_nvram_test(struct bnx_softc *sc) 1877 { 1878 u_int32_t buf[BNX_NVRAM_SIZE / 4]; 1879 u_int8_t *data = (u_int8_t *) buf; 1880 int rc = 0; 1881 u_int32_t magic, csum; 1882 1883 /* 1884 * Check that the device NVRAM is valid by reading 1885 * the magic value at offset 0. 1886 */ 1887 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0) 1888 goto bnx_nvram_test_done; 1889 1890 magic = bnx_be32toh(buf[0]); 1891 if (magic != BNX_NVRAM_MAGIC) { 1892 rc = ENODEV; 1893 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! " 1894 "Expected: 0x%08X, Found: 0x%08X\n", 1895 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic); 1896 goto bnx_nvram_test_done; 1897 } 1898 1899 /* 1900 * Verify that the device NVRAM includes valid 1901 * configuration data. 1902 */ 1903 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0) 1904 goto bnx_nvram_test_done; 1905 1906 csum = ether_crc32_le(data, 0x100); 1907 if (csum != BNX_CRC32_RESIDUAL) { 1908 rc = ENODEV; 1909 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information " 1910 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n", 1911 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 1912 goto bnx_nvram_test_done; 1913 } 1914 1915 csum = ether_crc32_le(data + 0x100, 0x100); 1916 if (csum != BNX_CRC32_RESIDUAL) { 1917 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration " 1918 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n", 1919 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum); 1920 rc = ENODEV; 1921 } 1922 1923 bnx_nvram_test_done: 1924 return (rc); 1925 } 1926 1927 /****************************************************************************/ 1928 /* Identifies the current media type of the controller and sets the PHY */ 1929 /* address. */ 1930 /* */ 1931 /* Returns: */ 1932 /* Nothing. */ 1933 /****************************************************************************/ 1934 void 1935 bnx_get_media(struct bnx_softc *sc) 1936 { 1937 sc->bnx_phy_addr = 1; 1938 1939 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 1940 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL); 1941 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID; 1942 u_int32_t strap; 1943 1944 /* 1945 * The BCM5709S is software configurable 1946 * for Copper or SerDes operation. 1947 */ 1948 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) { 1949 DBPRINT(sc, BNX_INFO_LOAD, 1950 "5709 bonded for copper.\n"); 1951 goto bnx_get_media_exit; 1952 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) { 1953 DBPRINT(sc, BNX_INFO_LOAD, 1954 "5709 bonded for dual media.\n"); 1955 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 1956 goto bnx_get_media_exit; 1957 } 1958 1959 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE) 1960 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21; 1961 else { 1962 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) 1963 >> 8; 1964 } 1965 1966 if (sc->bnx_pa.pa_function == 0) { 1967 switch (strap) { 1968 case 0x4: 1969 case 0x5: 1970 case 0x6: 1971 DBPRINT(sc, BNX_INFO_LOAD, 1972 "BCM5709 s/w configured for SerDes.\n"); 1973 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 1974 default: 1975 DBPRINT(sc, BNX_INFO_LOAD, 1976 "BCM5709 s/w configured for Copper.\n"); 1977 } 1978 } else { 1979 switch (strap) { 1980 case 0x1: 1981 case 0x2: 1982 case 0x4: 1983 DBPRINT(sc, BNX_INFO_LOAD, 1984 "BCM5709 s/w configured for SerDes.\n"); 1985 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 1986 default: 1987 DBPRINT(sc, BNX_INFO_LOAD, 1988 "BCM5709 s/w configured for Copper.\n"); 1989 } 1990 } 1991 1992 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) 1993 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG; 1994 1995 if (sc->bnx_phy_flags && BNX_PHY_SERDES_FLAG) { 1996 u_int32_t val; 1997 1998 sc->bnx_flags |= BNX_NO_WOL_FLAG; 1999 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) { 2000 sc->bnx_phy_addr = 2; 2001 val = REG_RD_IND(sc, sc->bnx_shmem_base + 2002 BNX_SHARED_HW_CFG_CONFIG); 2003 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) { 2004 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG; 2005 DBPRINT(sc, BNX_INFO_LOAD, 2006 "Found 2.5Gb capable adapter\n"); 2007 } 2008 } 2009 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) || 2010 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) 2011 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG; 2012 2013 bnx_get_media_exit: 2014 DBPRINT(sc, (BNX_INFO_LOAD), 2015 "Using PHY address %d.\n", sc->bnx_phy_addr); 2016 } 2017 2018 /****************************************************************************/ 2019 /* Free any DMA memory owned by the driver. */ 2020 /* */ 2021 /* Scans through each data structre that requires DMA memory and frees */ 2022 /* the memory if allocated. */ 2023 /* */ 2024 /* Returns: */ 2025 /* Nothing. */ 2026 /****************************************************************************/ 2027 void 2028 bnx_dma_free(struct bnx_softc *sc) 2029 { 2030 int i; 2031 2032 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 2033 2034 /* Destroy the status block. */ 2035 if (sc->status_block != NULL && sc->status_map != NULL) { 2036 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map); 2037 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block, 2038 BNX_STATUS_BLK_SZ); 2039 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg, 2040 sc->status_rseg); 2041 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map); 2042 sc->status_block = NULL; 2043 sc->status_map = NULL; 2044 } 2045 2046 /* Destroy the statistics block. */ 2047 if (sc->stats_block != NULL && sc->stats_map != NULL) { 2048 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map); 2049 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block, 2050 BNX_STATS_BLK_SZ); 2051 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg, 2052 sc->stats_rseg); 2053 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map); 2054 sc->stats_block = NULL; 2055 sc->stats_map = NULL; 2056 } 2057 2058 /* Free, unmap and destroy all context memory pages. */ 2059 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2060 for (i = 0; i < sc->ctx_pages; i++) { 2061 if (sc->ctx_block[i] != NULL) { 2062 bus_dmamap_unload(sc->bnx_dmatag, 2063 sc->ctx_map[i]); 2064 bus_dmamem_unmap(sc->bnx_dmatag, 2065 (void *)sc->ctx_block[i], 2066 BCM_PAGE_SIZE); 2067 bus_dmamem_free(sc->bnx_dmatag, 2068 &sc->ctx_segs[i], sc->ctx_rsegs[i]); 2069 bus_dmamap_destroy(sc->bnx_dmatag, 2070 sc->ctx_map[i]); 2071 sc->ctx_block[i] = NULL; 2072 } 2073 } 2074 } 2075 2076 /* Free, unmap and destroy all TX buffer descriptor chain pages. */ 2077 for (i = 0; i < TX_PAGES; i++ ) { 2078 if (sc->tx_bd_chain[i] != NULL && 2079 sc->tx_bd_chain_map[i] != NULL) { 2080 bus_dmamap_unload(sc->bnx_dmatag, 2081 sc->tx_bd_chain_map[i]); 2082 bus_dmamem_unmap(sc->bnx_dmatag, 2083 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ); 2084 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2085 sc->tx_bd_chain_rseg[i]); 2086 bus_dmamap_destroy(sc->bnx_dmatag, 2087 sc->tx_bd_chain_map[i]); 2088 sc->tx_bd_chain[i] = NULL; 2089 sc->tx_bd_chain_map[i] = NULL; 2090 } 2091 } 2092 2093 /* Destroy the TX dmamaps. */ 2094 /* This isn't necessary since we dont allocate them up front */ 2095 2096 /* Free, unmap and destroy all RX buffer descriptor chain pages. */ 2097 for (i = 0; i < RX_PAGES; i++ ) { 2098 if (sc->rx_bd_chain[i] != NULL && 2099 sc->rx_bd_chain_map[i] != NULL) { 2100 bus_dmamap_unload(sc->bnx_dmatag, 2101 sc->rx_bd_chain_map[i]); 2102 bus_dmamem_unmap(sc->bnx_dmatag, 2103 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ); 2104 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2105 sc->rx_bd_chain_rseg[i]); 2106 2107 bus_dmamap_destroy(sc->bnx_dmatag, 2108 sc->rx_bd_chain_map[i]); 2109 sc->rx_bd_chain[i] = NULL; 2110 sc->rx_bd_chain_map[i] = NULL; 2111 } 2112 } 2113 2114 /* Unload and destroy the RX mbuf maps. */ 2115 for (i = 0; i < TOTAL_RX_BD; i++) { 2116 if (sc->rx_mbuf_map[i] != NULL) { 2117 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2118 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]); 2119 } 2120 } 2121 2122 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 2123 } 2124 2125 /****************************************************************************/ 2126 /* Allocate any DMA memory needed by the driver. */ 2127 /* */ 2128 /* Allocates DMA memory needed for the various global structures needed by */ 2129 /* hardware. */ 2130 /* */ 2131 /* Returns: */ 2132 /* 0 for success, positive value for failure. */ 2133 /****************************************************************************/ 2134 int 2135 bnx_dma_alloc(struct bnx_softc *sc) 2136 { 2137 int i, rc = 0; 2138 2139 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 2140 2141 /* 2142 * Allocate DMA memory for the status block, map the memory into DMA 2143 * space, and fetch the physical address of the block. 2144 */ 2145 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1, 2146 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) { 2147 aprint_error_dev(sc->bnx_dev, 2148 "Could not create status block DMA map!\n"); 2149 rc = ENOMEM; 2150 goto bnx_dma_alloc_exit; 2151 } 2152 2153 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 2154 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1, 2155 &sc->status_rseg, BUS_DMA_NOWAIT)) { 2156 aprint_error_dev(sc->bnx_dev, 2157 "Could not allocate status block DMA memory!\n"); 2158 rc = ENOMEM; 2159 goto bnx_dma_alloc_exit; 2160 } 2161 2162 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg, 2163 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) { 2164 aprint_error_dev(sc->bnx_dev, 2165 "Could not map status block DMA memory!\n"); 2166 rc = ENOMEM; 2167 goto bnx_dma_alloc_exit; 2168 } 2169 2170 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map, 2171 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2172 aprint_error_dev(sc->bnx_dev, 2173 "Could not load status block DMA memory!\n"); 2174 rc = ENOMEM; 2175 goto bnx_dma_alloc_exit; 2176 } 2177 2178 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr; 2179 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ); 2180 2181 /* DRC - Fix for 64 bit addresses. */ 2182 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n", 2183 (u_int32_t) sc->status_block_paddr); 2184 2185 /* BCM5709 uses host memory as cache for context memory. */ 2186 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 2187 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE; 2188 if (sc->ctx_pages == 0) 2189 sc->ctx_pages = 1; 2190 if (sc->ctx_pages > 4) /* XXX */ 2191 sc->ctx_pages = 4; 2192 2193 DBRUNIF((sc->ctx_pages > 512), 2194 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n", 2195 __FILE__, __LINE__, sc->ctx_pages)); 2196 2197 2198 for (i = 0; i < sc->ctx_pages; i++) { 2199 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE, 2200 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, 2201 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 2202 &sc->ctx_map[i]) != 0) { 2203 rc = ENOMEM; 2204 goto bnx_dma_alloc_exit; 2205 } 2206 2207 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE, 2208 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i], 2209 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) { 2210 rc = ENOMEM; 2211 goto bnx_dma_alloc_exit; 2212 } 2213 2214 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i], 2215 sc->ctx_rsegs[i], BCM_PAGE_SIZE, 2216 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) { 2217 rc = ENOMEM; 2218 goto bnx_dma_alloc_exit; 2219 } 2220 2221 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i], 2222 sc->ctx_block[i], BCM_PAGE_SIZE, NULL, 2223 BUS_DMA_NOWAIT) != 0) { 2224 rc = ENOMEM; 2225 goto bnx_dma_alloc_exit; 2226 } 2227 2228 bzero(sc->ctx_block[i], BCM_PAGE_SIZE); 2229 } 2230 } 2231 2232 /* 2233 * Allocate DMA memory for the statistics block, map the memory into 2234 * DMA space, and fetch the physical address of the block. 2235 */ 2236 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1, 2237 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) { 2238 aprint_error_dev(sc->bnx_dev, 2239 "Could not create stats block DMA map!\n"); 2240 rc = ENOMEM; 2241 goto bnx_dma_alloc_exit; 2242 } 2243 2244 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 2245 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1, 2246 &sc->stats_rseg, BUS_DMA_NOWAIT)) { 2247 aprint_error_dev(sc->bnx_dev, 2248 "Could not allocate stats block DMA memory!\n"); 2249 rc = ENOMEM; 2250 goto bnx_dma_alloc_exit; 2251 } 2252 2253 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg, 2254 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) { 2255 aprint_error_dev(sc->bnx_dev, 2256 "Could not map stats block DMA memory!\n"); 2257 rc = ENOMEM; 2258 goto bnx_dma_alloc_exit; 2259 } 2260 2261 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map, 2262 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) { 2263 aprint_error_dev(sc->bnx_dev, 2264 "Could not load status block DMA memory!\n"); 2265 rc = ENOMEM; 2266 goto bnx_dma_alloc_exit; 2267 } 2268 2269 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr; 2270 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ); 2271 2272 /* DRC - Fix for 64 bit address. */ 2273 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n", 2274 (u_int32_t) sc->stats_block_paddr); 2275 2276 /* 2277 * Allocate DMA memory for the TX buffer descriptor chain, 2278 * and fetch the physical address of the block. 2279 */ 2280 for (i = 0; i < TX_PAGES; i++) { 2281 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1, 2282 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2283 &sc->tx_bd_chain_map[i])) { 2284 aprint_error_dev(sc->bnx_dev, 2285 "Could not create Tx desc %d DMA map!\n", i); 2286 rc = ENOMEM; 2287 goto bnx_dma_alloc_exit; 2288 } 2289 2290 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 2291 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1, 2292 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { 2293 aprint_error_dev(sc->bnx_dev, 2294 "Could not allocate TX desc %d DMA memory!\n", 2295 i); 2296 rc = ENOMEM; 2297 goto bnx_dma_alloc_exit; 2298 } 2299 2300 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i], 2301 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ, 2302 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) { 2303 aprint_error_dev(sc->bnx_dev, 2304 "Could not map TX desc %d DMA memory!\n", i); 2305 rc = ENOMEM; 2306 goto bnx_dma_alloc_exit; 2307 } 2308 2309 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 2310 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL, 2311 BUS_DMA_NOWAIT)) { 2312 aprint_error_dev(sc->bnx_dev, 2313 "Could not load TX desc %d DMA memory!\n", i); 2314 rc = ENOMEM; 2315 goto bnx_dma_alloc_exit; 2316 } 2317 2318 sc->tx_bd_chain_paddr[i] = 2319 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr; 2320 2321 /* DRC - Fix for 64 bit systems. */ 2322 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n", 2323 i, (u_int32_t) sc->tx_bd_chain_paddr[i]); 2324 } 2325 2326 /* 2327 * Create lists to hold TX mbufs. 2328 */ 2329 TAILQ_INIT(&sc->tx_free_pkts); 2330 TAILQ_INIT(&sc->tx_used_pkts); 2331 sc->tx_pkt_count = 0; 2332 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET); 2333 2334 /* 2335 * Allocate DMA memory for the Rx buffer descriptor chain, 2336 * and fetch the physical address of the block. 2337 */ 2338 for (i = 0; i < RX_PAGES; i++) { 2339 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1, 2340 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT, 2341 &sc->rx_bd_chain_map[i])) { 2342 aprint_error_dev(sc->bnx_dev, 2343 "Could not create Rx desc %d DMA map!\n", i); 2344 rc = ENOMEM; 2345 goto bnx_dma_alloc_exit; 2346 } 2347 2348 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 2349 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1, 2350 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) { 2351 aprint_error_dev(sc->bnx_dev, 2352 "Could not allocate Rx desc %d DMA memory!\n", i); 2353 rc = ENOMEM; 2354 goto bnx_dma_alloc_exit; 2355 } 2356 2357 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i], 2358 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ, 2359 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) { 2360 aprint_error_dev(sc->bnx_dev, 2361 "Could not map Rx desc %d DMA memory!\n", i); 2362 rc = ENOMEM; 2363 goto bnx_dma_alloc_exit; 2364 } 2365 2366 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 2367 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL, 2368 BUS_DMA_NOWAIT)) { 2369 aprint_error_dev(sc->bnx_dev, 2370 "Could not load Rx desc %d DMA memory!\n", i); 2371 rc = ENOMEM; 2372 goto bnx_dma_alloc_exit; 2373 } 2374 2375 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ); 2376 sc->rx_bd_chain_paddr[i] = 2377 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr; 2378 2379 /* DRC - Fix for 64 bit systems. */ 2380 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n", 2381 i, (u_int32_t) sc->rx_bd_chain_paddr[i]); 2382 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 2383 0, BNX_RX_CHAIN_PAGE_SZ, 2384 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2385 } 2386 2387 /* 2388 * Create DMA maps for the Rx buffer mbufs. 2389 */ 2390 for (i = 0; i < TOTAL_RX_BD; i++) { 2391 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU, 2392 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT, 2393 &sc->rx_mbuf_map[i])) { 2394 aprint_error_dev(sc->bnx_dev, 2395 "Could not create Rx mbuf %d DMA map!\n", i); 2396 rc = ENOMEM; 2397 goto bnx_dma_alloc_exit; 2398 } 2399 } 2400 2401 bnx_dma_alloc_exit: 2402 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 2403 2404 return(rc); 2405 } 2406 2407 /****************************************************************************/ 2408 /* Release all resources used by the driver. */ 2409 /* */ 2410 /* Releases all resources acquired by the driver including interrupts, */ 2411 /* interrupt handler, interfaces, mutexes, and DMA memory. */ 2412 /* */ 2413 /* Returns: */ 2414 /* Nothing. */ 2415 /****************************************************************************/ 2416 void 2417 bnx_release_resources(struct bnx_softc *sc) 2418 { 2419 struct pci_attach_args *pa = &(sc->bnx_pa); 2420 2421 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 2422 2423 bnx_dma_free(sc); 2424 2425 if (sc->bnx_intrhand != NULL) 2426 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand); 2427 2428 if (sc->bnx_size) 2429 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size); 2430 2431 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 2432 } 2433 2434 /****************************************************************************/ 2435 /* Firmware synchronization. */ 2436 /* */ 2437 /* Before performing certain events such as a chip reset, synchronize with */ 2438 /* the firmware first. */ 2439 /* */ 2440 /* Returns: */ 2441 /* 0 for success, positive value for failure. */ 2442 /****************************************************************************/ 2443 int 2444 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data) 2445 { 2446 int i, rc = 0; 2447 u_int32_t val; 2448 2449 /* Don't waste any time if we've timed out before. */ 2450 if (sc->bnx_fw_timed_out) { 2451 rc = EBUSY; 2452 goto bnx_fw_sync_exit; 2453 } 2454 2455 /* Increment the message sequence number. */ 2456 sc->bnx_fw_wr_seq++; 2457 msg_data |= sc->bnx_fw_wr_seq; 2458 2459 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n", 2460 msg_data); 2461 2462 /* Send the message to the bootcode driver mailbox. */ 2463 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2464 2465 /* Wait for the bootcode to acknowledge the message. */ 2466 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) { 2467 /* Check for a response in the bootcode firmware mailbox. */ 2468 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB); 2469 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ)) 2470 break; 2471 DELAY(1000); 2472 } 2473 2474 /* If we've timed out, tell the bootcode that we've stopped waiting. */ 2475 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) && 2476 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) { 2477 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! " 2478 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data); 2479 2480 msg_data &= ~BNX_DRV_MSG_CODE; 2481 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT; 2482 2483 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data); 2484 2485 sc->bnx_fw_timed_out = 1; 2486 rc = EBUSY; 2487 } 2488 2489 bnx_fw_sync_exit: 2490 return (rc); 2491 } 2492 2493 /****************************************************************************/ 2494 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */ 2495 /* */ 2496 /* Returns: */ 2497 /* Nothing. */ 2498 /****************************************************************************/ 2499 void 2500 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code, 2501 u_int32_t rv2p_code_len, u_int32_t rv2p_proc) 2502 { 2503 int i; 2504 u_int32_t val; 2505 2506 /* Set the page size used by RV2P. */ 2507 if (rv2p_proc == RV2P_PROC2) { 2508 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code, 2509 USABLE_RX_BD_PER_PAGE); 2510 } 2511 2512 for (i = 0; i < rv2p_code_len; i += 8) { 2513 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code); 2514 rv2p_code++; 2515 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code); 2516 rv2p_code++; 2517 2518 if (rv2p_proc == RV2P_PROC1) { 2519 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR; 2520 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val); 2521 } else { 2522 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR; 2523 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val); 2524 } 2525 } 2526 2527 /* Reset the processor, un-stall is done later. */ 2528 if (rv2p_proc == RV2P_PROC1) 2529 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET); 2530 else 2531 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET); 2532 } 2533 2534 /****************************************************************************/ 2535 /* Load RISC processor firmware. */ 2536 /* */ 2537 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */ 2538 /* associated with a particular processor. */ 2539 /* */ 2540 /* Returns: */ 2541 /* Nothing. */ 2542 /****************************************************************************/ 2543 void 2544 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg, 2545 struct fw_info *fw) 2546 { 2547 u_int32_t offset; 2548 u_int32_t val; 2549 2550 /* Halt the CPU. */ 2551 val = REG_RD_IND(sc, cpu_reg->mode); 2552 val |= cpu_reg->mode_value_halt; 2553 REG_WR_IND(sc, cpu_reg->mode, val); 2554 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2555 2556 /* Load the Text area. */ 2557 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base); 2558 if (fw->text) { 2559 int j; 2560 2561 for (j = 0; j < (fw->text_len / 4); j++, offset += 4) 2562 REG_WR_IND(sc, offset, fw->text[j]); 2563 } 2564 2565 /* Load the Data area. */ 2566 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base); 2567 if (fw->data) { 2568 int j; 2569 2570 for (j = 0; j < (fw->data_len / 4); j++, offset += 4) 2571 REG_WR_IND(sc, offset, fw->data[j]); 2572 } 2573 2574 /* Load the SBSS area. */ 2575 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base); 2576 if (fw->sbss) { 2577 int j; 2578 2579 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) 2580 REG_WR_IND(sc, offset, fw->sbss[j]); 2581 } 2582 2583 /* Load the BSS area. */ 2584 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base); 2585 if (fw->bss) { 2586 int j; 2587 2588 for (j = 0; j < (fw->bss_len/4); j++, offset += 4) 2589 REG_WR_IND(sc, offset, fw->bss[j]); 2590 } 2591 2592 /* Load the Read-Only area. */ 2593 offset = cpu_reg->spad_base + 2594 (fw->rodata_addr - cpu_reg->mips_view_base); 2595 if (fw->rodata) { 2596 int j; 2597 2598 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) 2599 REG_WR_IND(sc, offset, fw->rodata[j]); 2600 } 2601 2602 /* Clear the pre-fetch instruction. */ 2603 REG_WR_IND(sc, cpu_reg->inst, 0); 2604 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr); 2605 2606 /* Start the CPU. */ 2607 val = REG_RD_IND(sc, cpu_reg->mode); 2608 val &= ~cpu_reg->mode_value_halt; 2609 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear); 2610 REG_WR_IND(sc, cpu_reg->mode, val); 2611 } 2612 2613 /****************************************************************************/ 2614 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */ 2615 /* */ 2616 /* Loads the firmware for each CPU and starts the CPU. */ 2617 /* */ 2618 /* Returns: */ 2619 /* Nothing. */ 2620 /****************************************************************************/ 2621 void 2622 bnx_init_cpus(struct bnx_softc *sc) 2623 { 2624 struct cpu_reg cpu_reg; 2625 struct fw_info fw; 2626 2627 switch(BNX_CHIP_NUM(sc)) { 2628 case BNX_CHIP_NUM_5709: 2629 /* Initialize the RV2P processor. */ 2630 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) { 2631 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1, 2632 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1); 2633 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2, 2634 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2); 2635 } else { 2636 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1, 2637 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1); 2638 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2, 2639 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2); 2640 } 2641 2642 /* Initialize the RX Processor. */ 2643 cpu_reg.mode = BNX_RXP_CPU_MODE; 2644 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; 2645 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; 2646 cpu_reg.state = BNX_RXP_CPU_STATE; 2647 cpu_reg.state_value_clear = 0xffffff; 2648 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; 2649 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; 2650 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; 2651 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; 2652 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; 2653 cpu_reg.spad_base = BNX_RXP_SCRATCH; 2654 cpu_reg.mips_view_base = 0x8000000; 2655 2656 fw.ver_major = bnx_RXP_b09FwReleaseMajor; 2657 fw.ver_minor = bnx_RXP_b09FwReleaseMinor; 2658 fw.ver_fix = bnx_RXP_b09FwReleaseFix; 2659 fw.start_addr = bnx_RXP_b09FwStartAddr; 2660 2661 fw.text_addr = bnx_RXP_b09FwTextAddr; 2662 fw.text_len = bnx_RXP_b09FwTextLen; 2663 fw.text_index = 0; 2664 fw.text = bnx_RXP_b09FwText; 2665 2666 fw.data_addr = bnx_RXP_b09FwDataAddr; 2667 fw.data_len = bnx_RXP_b09FwDataLen; 2668 fw.data_index = 0; 2669 fw.data = bnx_RXP_b09FwData; 2670 2671 fw.sbss_addr = bnx_RXP_b09FwSbssAddr; 2672 fw.sbss_len = bnx_RXP_b09FwSbssLen; 2673 fw.sbss_index = 0; 2674 fw.sbss = bnx_RXP_b09FwSbss; 2675 2676 fw.bss_addr = bnx_RXP_b09FwBssAddr; 2677 fw.bss_len = bnx_RXP_b09FwBssLen; 2678 fw.bss_index = 0; 2679 fw.bss = bnx_RXP_b09FwBss; 2680 2681 fw.rodata_addr = bnx_RXP_b09FwRodataAddr; 2682 fw.rodata_len = bnx_RXP_b09FwRodataLen; 2683 fw.rodata_index = 0; 2684 fw.rodata = bnx_RXP_b09FwRodata; 2685 2686 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); 2687 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2688 2689 /* Initialize the TX Processor. */ 2690 cpu_reg.mode = BNX_TXP_CPU_MODE; 2691 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; 2692 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; 2693 cpu_reg.state = BNX_TXP_CPU_STATE; 2694 cpu_reg.state_value_clear = 0xffffff; 2695 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; 2696 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; 2697 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; 2698 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; 2699 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; 2700 cpu_reg.spad_base = BNX_TXP_SCRATCH; 2701 cpu_reg.mips_view_base = 0x8000000; 2702 2703 fw.ver_major = bnx_TXP_b09FwReleaseMajor; 2704 fw.ver_minor = bnx_TXP_b09FwReleaseMinor; 2705 fw.ver_fix = bnx_TXP_b09FwReleaseFix; 2706 fw.start_addr = bnx_TXP_b09FwStartAddr; 2707 2708 fw.text_addr = bnx_TXP_b09FwTextAddr; 2709 fw.text_len = bnx_TXP_b09FwTextLen; 2710 fw.text_index = 0; 2711 fw.text = bnx_TXP_b09FwText; 2712 2713 fw.data_addr = bnx_TXP_b09FwDataAddr; 2714 fw.data_len = bnx_TXP_b09FwDataLen; 2715 fw.data_index = 0; 2716 fw.data = bnx_TXP_b09FwData; 2717 2718 fw.sbss_addr = bnx_TXP_b09FwSbssAddr; 2719 fw.sbss_len = bnx_TXP_b09FwSbssLen; 2720 fw.sbss_index = 0; 2721 fw.sbss = bnx_TXP_b09FwSbss; 2722 2723 fw.bss_addr = bnx_TXP_b09FwBssAddr; 2724 fw.bss_len = bnx_TXP_b09FwBssLen; 2725 fw.bss_index = 0; 2726 fw.bss = bnx_TXP_b09FwBss; 2727 2728 fw.rodata_addr = bnx_TXP_b09FwRodataAddr; 2729 fw.rodata_len = bnx_TXP_b09FwRodataLen; 2730 fw.rodata_index = 0; 2731 fw.rodata = bnx_TXP_b09FwRodata; 2732 2733 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); 2734 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2735 2736 /* Initialize the TX Patch-up Processor. */ 2737 cpu_reg.mode = BNX_TPAT_CPU_MODE; 2738 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; 2739 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; 2740 cpu_reg.state = BNX_TPAT_CPU_STATE; 2741 cpu_reg.state_value_clear = 0xffffff; 2742 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; 2743 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; 2744 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; 2745 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; 2746 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; 2747 cpu_reg.spad_base = BNX_TPAT_SCRATCH; 2748 cpu_reg.mips_view_base = 0x8000000; 2749 2750 fw.ver_major = bnx_TPAT_b09FwReleaseMajor; 2751 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor; 2752 fw.ver_fix = bnx_TPAT_b09FwReleaseFix; 2753 fw.start_addr = bnx_TPAT_b09FwStartAddr; 2754 2755 fw.text_addr = bnx_TPAT_b09FwTextAddr; 2756 fw.text_len = bnx_TPAT_b09FwTextLen; 2757 fw.text_index = 0; 2758 fw.text = bnx_TPAT_b09FwText; 2759 2760 fw.data_addr = bnx_TPAT_b09FwDataAddr; 2761 fw.data_len = bnx_TPAT_b09FwDataLen; 2762 fw.data_index = 0; 2763 fw.data = bnx_TPAT_b09FwData; 2764 2765 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr; 2766 fw.sbss_len = bnx_TPAT_b09FwSbssLen; 2767 fw.sbss_index = 0; 2768 fw.sbss = bnx_TPAT_b09FwSbss; 2769 2770 fw.bss_addr = bnx_TPAT_b09FwBssAddr; 2771 fw.bss_len = bnx_TPAT_b09FwBssLen; 2772 fw.bss_index = 0; 2773 fw.bss = bnx_TPAT_b09FwBss; 2774 2775 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr; 2776 fw.rodata_len = bnx_TPAT_b09FwRodataLen; 2777 fw.rodata_index = 0; 2778 fw.rodata = bnx_TPAT_b09FwRodata; 2779 2780 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); 2781 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2782 2783 /* Initialize the Completion Processor. */ 2784 cpu_reg.mode = BNX_COM_CPU_MODE; 2785 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; 2786 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; 2787 cpu_reg.state = BNX_COM_CPU_STATE; 2788 cpu_reg.state_value_clear = 0xffffff; 2789 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; 2790 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; 2791 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; 2792 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; 2793 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; 2794 cpu_reg.spad_base = BNX_COM_SCRATCH; 2795 cpu_reg.mips_view_base = 0x8000000; 2796 2797 fw.ver_major = bnx_COM_b09FwReleaseMajor; 2798 fw.ver_minor = bnx_COM_b09FwReleaseMinor; 2799 fw.ver_fix = bnx_COM_b09FwReleaseFix; 2800 fw.start_addr = bnx_COM_b09FwStartAddr; 2801 2802 fw.text_addr = bnx_COM_b09FwTextAddr; 2803 fw.text_len = bnx_COM_b09FwTextLen; 2804 fw.text_index = 0; 2805 fw.text = bnx_COM_b09FwText; 2806 2807 fw.data_addr = bnx_COM_b09FwDataAddr; 2808 fw.data_len = bnx_COM_b09FwDataLen; 2809 fw.data_index = 0; 2810 fw.data = bnx_COM_b09FwData; 2811 2812 fw.sbss_addr = bnx_COM_b09FwSbssAddr; 2813 fw.sbss_len = bnx_COM_b09FwSbssLen; 2814 fw.sbss_index = 0; 2815 fw.sbss = bnx_COM_b09FwSbss; 2816 2817 fw.bss_addr = bnx_COM_b09FwBssAddr; 2818 fw.bss_len = bnx_COM_b09FwBssLen; 2819 fw.bss_index = 0; 2820 fw.bss = bnx_COM_b09FwBss; 2821 2822 fw.rodata_addr = bnx_COM_b09FwRodataAddr; 2823 fw.rodata_len = bnx_COM_b09FwRodataLen; 2824 fw.rodata_index = 0; 2825 fw.rodata = bnx_COM_b09FwRodata; 2826 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); 2827 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2828 break; 2829 default: 2830 /* Initialize the RV2P processor. */ 2831 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1), 2832 RV2P_PROC1); 2833 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2), 2834 RV2P_PROC2); 2835 2836 /* Initialize the RX Processor. */ 2837 cpu_reg.mode = BNX_RXP_CPU_MODE; 2838 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT; 2839 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA; 2840 cpu_reg.state = BNX_RXP_CPU_STATE; 2841 cpu_reg.state_value_clear = 0xffffff; 2842 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE; 2843 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK; 2844 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER; 2845 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION; 2846 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT; 2847 cpu_reg.spad_base = BNX_RXP_SCRATCH; 2848 cpu_reg.mips_view_base = 0x8000000; 2849 2850 fw.ver_major = bnx_RXP_b06FwReleaseMajor; 2851 fw.ver_minor = bnx_RXP_b06FwReleaseMinor; 2852 fw.ver_fix = bnx_RXP_b06FwReleaseFix; 2853 fw.start_addr = bnx_RXP_b06FwStartAddr; 2854 2855 fw.text_addr = bnx_RXP_b06FwTextAddr; 2856 fw.text_len = bnx_RXP_b06FwTextLen; 2857 fw.text_index = 0; 2858 fw.text = bnx_RXP_b06FwText; 2859 2860 fw.data_addr = bnx_RXP_b06FwDataAddr; 2861 fw.data_len = bnx_RXP_b06FwDataLen; 2862 fw.data_index = 0; 2863 fw.data = bnx_RXP_b06FwData; 2864 2865 fw.sbss_addr = bnx_RXP_b06FwSbssAddr; 2866 fw.sbss_len = bnx_RXP_b06FwSbssLen; 2867 fw.sbss_index = 0; 2868 fw.sbss = bnx_RXP_b06FwSbss; 2869 2870 fw.bss_addr = bnx_RXP_b06FwBssAddr; 2871 fw.bss_len = bnx_RXP_b06FwBssLen; 2872 fw.bss_index = 0; 2873 fw.bss = bnx_RXP_b06FwBss; 2874 2875 fw.rodata_addr = bnx_RXP_b06FwRodataAddr; 2876 fw.rodata_len = bnx_RXP_b06FwRodataLen; 2877 fw.rodata_index = 0; 2878 fw.rodata = bnx_RXP_b06FwRodata; 2879 2880 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n"); 2881 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2882 2883 /* Initialize the TX Processor. */ 2884 cpu_reg.mode = BNX_TXP_CPU_MODE; 2885 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT; 2886 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA; 2887 cpu_reg.state = BNX_TXP_CPU_STATE; 2888 cpu_reg.state_value_clear = 0xffffff; 2889 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE; 2890 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK; 2891 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER; 2892 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION; 2893 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT; 2894 cpu_reg.spad_base = BNX_TXP_SCRATCH; 2895 cpu_reg.mips_view_base = 0x8000000; 2896 2897 fw.ver_major = bnx_TXP_b06FwReleaseMajor; 2898 fw.ver_minor = bnx_TXP_b06FwReleaseMinor; 2899 fw.ver_fix = bnx_TXP_b06FwReleaseFix; 2900 fw.start_addr = bnx_TXP_b06FwStartAddr; 2901 2902 fw.text_addr = bnx_TXP_b06FwTextAddr; 2903 fw.text_len = bnx_TXP_b06FwTextLen; 2904 fw.text_index = 0; 2905 fw.text = bnx_TXP_b06FwText; 2906 2907 fw.data_addr = bnx_TXP_b06FwDataAddr; 2908 fw.data_len = bnx_TXP_b06FwDataLen; 2909 fw.data_index = 0; 2910 fw.data = bnx_TXP_b06FwData; 2911 2912 fw.sbss_addr = bnx_TXP_b06FwSbssAddr; 2913 fw.sbss_len = bnx_TXP_b06FwSbssLen; 2914 fw.sbss_index = 0; 2915 fw.sbss = bnx_TXP_b06FwSbss; 2916 2917 fw.bss_addr = bnx_TXP_b06FwBssAddr; 2918 fw.bss_len = bnx_TXP_b06FwBssLen; 2919 fw.bss_index = 0; 2920 fw.bss = bnx_TXP_b06FwBss; 2921 2922 fw.rodata_addr = bnx_TXP_b06FwRodataAddr; 2923 fw.rodata_len = bnx_TXP_b06FwRodataLen; 2924 fw.rodata_index = 0; 2925 fw.rodata = bnx_TXP_b06FwRodata; 2926 2927 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n"); 2928 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2929 2930 /* Initialize the TX Patch-up Processor. */ 2931 cpu_reg.mode = BNX_TPAT_CPU_MODE; 2932 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT; 2933 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA; 2934 cpu_reg.state = BNX_TPAT_CPU_STATE; 2935 cpu_reg.state_value_clear = 0xffffff; 2936 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE; 2937 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK; 2938 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER; 2939 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION; 2940 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT; 2941 cpu_reg.spad_base = BNX_TPAT_SCRATCH; 2942 cpu_reg.mips_view_base = 0x8000000; 2943 2944 fw.ver_major = bnx_TPAT_b06FwReleaseMajor; 2945 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor; 2946 fw.ver_fix = bnx_TPAT_b06FwReleaseFix; 2947 fw.start_addr = bnx_TPAT_b06FwStartAddr; 2948 2949 fw.text_addr = bnx_TPAT_b06FwTextAddr; 2950 fw.text_len = bnx_TPAT_b06FwTextLen; 2951 fw.text_index = 0; 2952 fw.text = bnx_TPAT_b06FwText; 2953 2954 fw.data_addr = bnx_TPAT_b06FwDataAddr; 2955 fw.data_len = bnx_TPAT_b06FwDataLen; 2956 fw.data_index = 0; 2957 fw.data = bnx_TPAT_b06FwData; 2958 2959 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr; 2960 fw.sbss_len = bnx_TPAT_b06FwSbssLen; 2961 fw.sbss_index = 0; 2962 fw.sbss = bnx_TPAT_b06FwSbss; 2963 2964 fw.bss_addr = bnx_TPAT_b06FwBssAddr; 2965 fw.bss_len = bnx_TPAT_b06FwBssLen; 2966 fw.bss_index = 0; 2967 fw.bss = bnx_TPAT_b06FwBss; 2968 2969 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr; 2970 fw.rodata_len = bnx_TPAT_b06FwRodataLen; 2971 fw.rodata_index = 0; 2972 fw.rodata = bnx_TPAT_b06FwRodata; 2973 2974 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n"); 2975 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 2976 2977 /* Initialize the Completion Processor. */ 2978 cpu_reg.mode = BNX_COM_CPU_MODE; 2979 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT; 2980 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA; 2981 cpu_reg.state = BNX_COM_CPU_STATE; 2982 cpu_reg.state_value_clear = 0xffffff; 2983 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE; 2984 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK; 2985 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER; 2986 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION; 2987 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT; 2988 cpu_reg.spad_base = BNX_COM_SCRATCH; 2989 cpu_reg.mips_view_base = 0x8000000; 2990 2991 fw.ver_major = bnx_COM_b06FwReleaseMajor; 2992 fw.ver_minor = bnx_COM_b06FwReleaseMinor; 2993 fw.ver_fix = bnx_COM_b06FwReleaseFix; 2994 fw.start_addr = bnx_COM_b06FwStartAddr; 2995 2996 fw.text_addr = bnx_COM_b06FwTextAddr; 2997 fw.text_len = bnx_COM_b06FwTextLen; 2998 fw.text_index = 0; 2999 fw.text = bnx_COM_b06FwText; 3000 3001 fw.data_addr = bnx_COM_b06FwDataAddr; 3002 fw.data_len = bnx_COM_b06FwDataLen; 3003 fw.data_index = 0; 3004 fw.data = bnx_COM_b06FwData; 3005 3006 fw.sbss_addr = bnx_COM_b06FwSbssAddr; 3007 fw.sbss_len = bnx_COM_b06FwSbssLen; 3008 fw.sbss_index = 0; 3009 fw.sbss = bnx_COM_b06FwSbss; 3010 3011 fw.bss_addr = bnx_COM_b06FwBssAddr; 3012 fw.bss_len = bnx_COM_b06FwBssLen; 3013 fw.bss_index = 0; 3014 fw.bss = bnx_COM_b06FwBss; 3015 3016 fw.rodata_addr = bnx_COM_b06FwRodataAddr; 3017 fw.rodata_len = bnx_COM_b06FwRodataLen; 3018 fw.rodata_index = 0; 3019 fw.rodata = bnx_COM_b06FwRodata; 3020 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n"); 3021 bnx_load_cpu_fw(sc, &cpu_reg, &fw); 3022 break; 3023 } 3024 } 3025 3026 /****************************************************************************/ 3027 /* Initialize context memory. */ 3028 /* */ 3029 /* Clears the memory associated with each Context ID (CID). */ 3030 /* */ 3031 /* Returns: */ 3032 /* Nothing. */ 3033 /****************************************************************************/ 3034 void 3035 bnx_init_context(struct bnx_softc *sc) 3036 { 3037 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3038 /* DRC: Replace this constant value with a #define. */ 3039 int i, retry_cnt = 10; 3040 u_int32_t val; 3041 3042 /* 3043 * BCM5709 context memory may be cached 3044 * in host memory so prepare the host memory 3045 * for access. 3046 */ 3047 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT 3048 | (1 << 12); 3049 val |= (BCM_PAGE_BITS - 8) << 16; 3050 REG_WR(sc, BNX_CTX_COMMAND, val); 3051 3052 /* Wait for mem init command to complete. */ 3053 for (i = 0; i < retry_cnt; i++) { 3054 val = REG_RD(sc, BNX_CTX_COMMAND); 3055 if (!(val & BNX_CTX_COMMAND_MEM_INIT)) 3056 break; 3057 DELAY(2); 3058 } 3059 3060 3061 /* ToDo: Consider returning an error here. */ 3062 3063 for (i = 0; i < sc->ctx_pages; i++) { 3064 int j; 3065 3066 3067 /* Set the physaddr of the context memory cache. */ 3068 val = (u_int32_t)(sc->ctx_segs[i].ds_addr); 3069 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val | 3070 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID); 3071 val = (u_int32_t) 3072 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32); 3073 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val); 3074 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i | 3075 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ); 3076 3077 3078 /* Verify that the context memory write was successful. */ 3079 for (j = 0; j < retry_cnt; j++) { 3080 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL); 3081 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0) 3082 break; 3083 DELAY(5); 3084 } 3085 3086 /* ToDo: Consider returning an error here. */ 3087 } 3088 } else { 3089 u_int32_t vcid_addr, offset; 3090 3091 /* 3092 * For the 5706/5708, context memory is local to 3093 * the controller, so initialize the controller 3094 * context memory. 3095 */ 3096 3097 vcid_addr = GET_CID_ADDR(96); 3098 while (vcid_addr) { 3099 3100 vcid_addr -= PHY_CTX_SIZE; 3101 3102 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0); 3103 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3104 3105 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) { 3106 CTX_WR(sc, 0x00, offset, 0); 3107 } 3108 3109 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr); 3110 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr); 3111 } 3112 } 3113 } 3114 3115 /****************************************************************************/ 3116 /* Fetch the permanent MAC address of the controller. */ 3117 /* */ 3118 /* Returns: */ 3119 /* Nothing. */ 3120 /****************************************************************************/ 3121 void 3122 bnx_get_mac_addr(struct bnx_softc *sc) 3123 { 3124 u_int32_t mac_lo = 0, mac_hi = 0; 3125 3126 /* 3127 * The NetXtreme II bootcode populates various NIC 3128 * power-on and runtime configuration items in a 3129 * shared memory area. The factory configured MAC 3130 * address is available from both NVRAM and the 3131 * shared memory area so we'll read the value from 3132 * shared memory for speed. 3133 */ 3134 3135 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER); 3136 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER); 3137 3138 if ((mac_lo == 0) && (mac_hi == 0)) { 3139 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n", 3140 __FILE__, __LINE__); 3141 } else { 3142 sc->eaddr[0] = (u_char)(mac_hi >> 8); 3143 sc->eaddr[1] = (u_char)(mac_hi >> 0); 3144 sc->eaddr[2] = (u_char)(mac_lo >> 24); 3145 sc->eaddr[3] = (u_char)(mac_lo >> 16); 3146 sc->eaddr[4] = (u_char)(mac_lo >> 8); 3147 sc->eaddr[5] = (u_char)(mac_lo >> 0); 3148 } 3149 3150 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = " 3151 "%s\n", ether_sprintf(sc->eaddr)); 3152 } 3153 3154 /****************************************************************************/ 3155 /* Program the MAC address. */ 3156 /* */ 3157 /* Returns: */ 3158 /* Nothing. */ 3159 /****************************************************************************/ 3160 void 3161 bnx_set_mac_addr(struct bnx_softc *sc) 3162 { 3163 u_int32_t val; 3164 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl); 3165 3166 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = " 3167 "%s\n", ether_sprintf(sc->eaddr)); 3168 3169 val = (mac_addr[0] << 8) | mac_addr[1]; 3170 3171 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val); 3172 3173 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) | 3174 (mac_addr[4] << 8) | mac_addr[5]; 3175 3176 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val); 3177 } 3178 3179 /****************************************************************************/ 3180 /* Stop the controller. */ 3181 /* */ 3182 /* Returns: */ 3183 /* Nothing. */ 3184 /****************************************************************************/ 3185 void 3186 bnx_stop(struct ifnet *ifp, int disable) 3187 { 3188 struct bnx_softc *sc = ifp->if_softc; 3189 3190 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3191 3192 if ((ifp->if_flags & IFF_RUNNING) == 0) 3193 return; 3194 3195 callout_stop(&sc->bnx_timeout); 3196 3197 mii_down(&sc->bnx_mii); 3198 3199 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3200 3201 /* Disable the transmit/receive blocks. */ 3202 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff); 3203 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3204 DELAY(20); 3205 3206 bnx_disable_intr(sc); 3207 3208 /* Tell firmware that the driver is going away. */ 3209 if (disable) 3210 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET); 3211 else 3212 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL); 3213 3214 /* Free RX buffers. */ 3215 bnx_free_rx_chain(sc); 3216 3217 /* Free TX buffers. */ 3218 bnx_free_tx_chain(sc); 3219 3220 ifp->if_timer = 0; 3221 3222 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3223 3224 } 3225 3226 int 3227 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code) 3228 { 3229 struct pci_attach_args *pa = &(sc->bnx_pa); 3230 u_int32_t val; 3231 int i, rc = 0; 3232 3233 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3234 3235 /* Wait for pending PCI transactions to complete. */ 3236 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 3237 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE | 3238 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE | 3239 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE | 3240 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE); 3241 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS); 3242 DELAY(5); 3243 3244 /* Disable DMA */ 3245 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3246 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3247 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3248 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3249 } 3250 3251 /* Assume bootcode is running. */ 3252 sc->bnx_fw_timed_out = 0; 3253 3254 /* Give the firmware a chance to prepare for the reset. */ 3255 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code); 3256 if (rc) 3257 goto bnx_reset_exit; 3258 3259 /* Set a firmware reminder that this is a soft reset. */ 3260 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE, 3261 BNX_DRV_RESET_SIGNATURE_MAGIC); 3262 3263 /* Dummy read to force the chip to complete all current transactions. */ 3264 val = REG_RD(sc, BNX_MISC_ID); 3265 3266 /* Chip reset. */ 3267 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3268 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET); 3269 REG_RD(sc, BNX_MISC_COMMAND); 3270 DELAY(5); 3271 3272 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3273 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3274 3275 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG, 3276 val); 3277 } else { 3278 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3279 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA | 3280 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP; 3281 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val); 3282 3283 /* Allow up to 30us for reset to complete. */ 3284 for (i = 0; i < 10; i++) { 3285 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG); 3286 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3287 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) { 3288 break; 3289 } 3290 DELAY(10); 3291 } 3292 3293 /* Check that reset completed successfully. */ 3294 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ | 3295 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) { 3296 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", 3297 __FILE__, __LINE__); 3298 rc = EBUSY; 3299 goto bnx_reset_exit; 3300 } 3301 } 3302 3303 /* Make sure byte swapping is properly configured. */ 3304 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0); 3305 if (val != 0x01020304) { 3306 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n", 3307 __FILE__, __LINE__); 3308 rc = ENODEV; 3309 goto bnx_reset_exit; 3310 } 3311 3312 /* Just completed a reset, assume that firmware is running again. */ 3313 sc->bnx_fw_timed_out = 0; 3314 3315 /* Wait for the firmware to finish its initialization. */ 3316 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code); 3317 if (rc) 3318 BNX_PRINTF(sc, "%s(%d): Firmware did not complete " 3319 "initialization!\n", __FILE__, __LINE__); 3320 3321 bnx_reset_exit: 3322 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3323 3324 return (rc); 3325 } 3326 3327 int 3328 bnx_chipinit(struct bnx_softc *sc) 3329 { 3330 struct pci_attach_args *pa = &(sc->bnx_pa); 3331 u_int32_t val; 3332 int rc = 0; 3333 3334 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3335 3336 /* Make sure the interrupt is not active. */ 3337 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 3338 3339 /* Initialize DMA byte/word swapping, configure the number of DMA */ 3340 /* channels and PCI clock compensation delay. */ 3341 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP | 3342 BNX_DMA_CONFIG_DATA_WORD_SWAP | 3343 #if BYTE_ORDER == BIG_ENDIAN 3344 BNX_DMA_CONFIG_CNTL_BYTE_SWAP | 3345 #endif 3346 BNX_DMA_CONFIG_CNTL_WORD_SWAP | 3347 DMA_READ_CHANS << 12 | 3348 DMA_WRITE_CHANS << 16; 3349 3350 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY; 3351 3352 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133)) 3353 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP; 3354 3355 /* 3356 * This setting resolves a problem observed on certain Intel PCI 3357 * chipsets that cannot handle multiple outstanding DMA operations. 3358 * See errata E9_5706A1_65. 3359 */ 3360 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 3361 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) && 3362 !(sc->bnx_flags & BNX_PCIX_FLAG)) 3363 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA; 3364 3365 REG_WR(sc, BNX_DMA_CONFIG, val); 3366 3367 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */ 3368 if (sc->bnx_flags & BNX_PCIX_FLAG) { 3369 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD); 3370 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD, 3371 val & ~0x20000); 3372 } 3373 3374 /* Enable the RX_V2P and Context state machines before access. */ 3375 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3376 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE | 3377 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE | 3378 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE); 3379 3380 /* Initialize context mapping and zero out the quick contexts. */ 3381 bnx_init_context(sc); 3382 3383 /* Initialize the on-boards CPUs */ 3384 bnx_init_cpus(sc); 3385 3386 /* Prepare NVRAM for access. */ 3387 if (bnx_init_nvram(sc)) { 3388 rc = ENODEV; 3389 goto bnx_chipinit_exit; 3390 } 3391 3392 /* Set the kernel bypass block size */ 3393 val = REG_RD(sc, BNX_MQ_CONFIG); 3394 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE; 3395 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256; 3396 3397 /* Enable bins used on the 5709. */ 3398 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3399 val |= BNX_MQ_CONFIG_BIN_MQ_MODE; 3400 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1) 3401 val |= BNX_MQ_CONFIG_HALT_DIS; 3402 } 3403 3404 REG_WR(sc, BNX_MQ_CONFIG, val); 3405 3406 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE); 3407 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val); 3408 REG_WR(sc, BNX_MQ_KNL_WIND_END, val); 3409 3410 val = (BCM_PAGE_BITS - 8) << 24; 3411 REG_WR(sc, BNX_RV2P_CONFIG, val); 3412 3413 /* Configure page size. */ 3414 val = REG_RD(sc, BNX_TBDR_CONFIG); 3415 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE; 3416 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40; 3417 REG_WR(sc, BNX_TBDR_CONFIG, val); 3418 3419 #if 0 3420 /* Set the perfect match control register to default. */ 3421 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0); 3422 #endif 3423 3424 bnx_chipinit_exit: 3425 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3426 3427 return(rc); 3428 } 3429 3430 /****************************************************************************/ 3431 /* Initialize the controller in preparation to send/receive traffic. */ 3432 /* */ 3433 /* Returns: */ 3434 /* 0 for success, positive value for failure. */ 3435 /****************************************************************************/ 3436 int 3437 bnx_blockinit(struct bnx_softc *sc) 3438 { 3439 u_int32_t reg, val; 3440 int rc = 0; 3441 3442 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3443 3444 /* Load the hardware default MAC address. */ 3445 bnx_set_mac_addr(sc); 3446 3447 /* Set the Ethernet backoff seed value */ 3448 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) + 3449 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16); 3450 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val); 3451 3452 sc->last_status_idx = 0; 3453 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE; 3454 3455 /* Set up link change interrupt generation. */ 3456 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK); 3457 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE); 3458 3459 /* Program the physical address of the status block. */ 3460 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr)); 3461 REG_WR(sc, BNX_HC_STATUS_ADDR_H, 3462 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32)); 3463 3464 /* Program the physical address of the statistics block. */ 3465 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L, 3466 (u_int32_t)(sc->stats_block_paddr)); 3467 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H, 3468 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32)); 3469 3470 /* Program various host coalescing parameters. */ 3471 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int 3472 << 16) | sc->bnx_tx_quick_cons_trip); 3473 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int 3474 << 16) | sc->bnx_rx_quick_cons_trip); 3475 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) | 3476 sc->bnx_comp_prod_trip); 3477 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) | 3478 sc->bnx_tx_ticks); 3479 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) | 3480 sc->bnx_rx_ticks); 3481 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) | 3482 sc->bnx_com_ticks); 3483 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) | 3484 sc->bnx_cmd_ticks); 3485 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00)); 3486 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */ 3487 REG_WR(sc, BNX_HC_CONFIG, 3488 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE | 3489 BNX_HC_CONFIG_COLLECT_STATS)); 3490 3491 /* Clear the internal statistics counters. */ 3492 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW); 3493 3494 /* Verify that bootcode is running. */ 3495 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE); 3496 3497 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure), 3498 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n", 3499 __FILE__, __LINE__); reg = 0); 3500 3501 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) != 3502 BNX_DEV_INFO_SIGNATURE_MAGIC) { 3503 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, " 3504 "Expected: 08%08X\n", __FILE__, __LINE__, 3505 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK), 3506 BNX_DEV_INFO_SIGNATURE_MAGIC); 3507 rc = ENODEV; 3508 goto bnx_blockinit_exit; 3509 } 3510 3511 /* Check if any management firmware is running. */ 3512 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE); 3513 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED | 3514 BNX_PORT_FEATURE_IMD_ENABLED)) { 3515 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n"); 3516 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG; 3517 } 3518 3519 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base + 3520 BNX_DEV_INFO_BC_REV); 3521 3522 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver); 3523 3524 /* Enable DMA */ 3525 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3526 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL); 3527 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE; 3528 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val); 3529 } 3530 3531 /* Allow bootcode to apply any additional fixes before enabling MAC. */ 3532 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET); 3533 3534 /* Enable link state change interrupt generation. */ 3535 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3536 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 3537 BNX_MISC_ENABLE_DEFAULT_XI); 3538 } else 3539 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT); 3540 3541 /* Enable all remaining blocks in the MAC. */ 3542 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff); 3543 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS); 3544 DELAY(20); 3545 3546 bnx_blockinit_exit: 3547 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3548 3549 return (rc); 3550 } 3551 3552 static int 3553 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod, 3554 u_int16_t *chain_prod, u_int32_t *prod_bseq) 3555 { 3556 bus_dmamap_t map; 3557 struct rx_bd *rxbd; 3558 u_int32_t addr; 3559 int i; 3560 #ifdef BNX_DEBUG 3561 u_int16_t debug_chain_prod = *chain_prod; 3562 #endif 3563 u_int16_t first_chain_prod; 3564 3565 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size; 3566 3567 /* Map the mbuf cluster into device memory. */ 3568 map = sc->rx_mbuf_map[*chain_prod]; 3569 first_chain_prod = *chain_prod; 3570 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) { 3571 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n", 3572 __FILE__, __LINE__); 3573 3574 m_freem(m_new); 3575 3576 DBRUNIF(1, sc->rx_mbuf_alloc--); 3577 3578 return ENOBUFS; 3579 } 3580 /* Make sure there is room in the receive chain. */ 3581 if (map->dm_nsegs > sc->free_rx_bd) { 3582 bus_dmamap_unload(sc->bnx_dmatag, map); 3583 m_freem(m_new); 3584 return EFBIG; 3585 } 3586 #ifdef BNX_DEBUG 3587 /* Track the distribution of buffer segments. */ 3588 sc->rx_mbuf_segs[map->dm_nsegs]++; 3589 #endif 3590 3591 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, 3592 BUS_DMASYNC_PREREAD); 3593 3594 /* Update some debug statistics counters */ 3595 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 3596 sc->rx_low_watermark = sc->free_rx_bd); 3597 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++); 3598 3599 /* 3600 * Setup the rx_bd for the first segment 3601 */ 3602 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3603 3604 addr = (u_int32_t)(map->dm_segs[0].ds_addr); 3605 rxbd->rx_bd_haddr_lo = htole32(addr); 3606 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32); 3607 rxbd->rx_bd_haddr_hi = htole32(addr); 3608 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len); 3609 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START); 3610 *prod_bseq += map->dm_segs[0].ds_len; 3611 bus_dmamap_sync(sc->bnx_dmatag, 3612 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], 3613 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd), 3614 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3615 3616 for (i = 1; i < map->dm_nsegs; i++) { 3617 *prod = NEXT_RX_BD(*prod); 3618 *chain_prod = RX_CHAIN_IDX(*prod); 3619 3620 rxbd = 3621 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)]; 3622 3623 addr = (u_int32_t)(map->dm_segs[i].ds_addr); 3624 rxbd->rx_bd_haddr_lo = htole32(addr); 3625 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 3626 rxbd->rx_bd_haddr_hi = htole32(addr); 3627 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len); 3628 rxbd->rx_bd_flags = 0; 3629 *prod_bseq += map->dm_segs[i].ds_len; 3630 bus_dmamap_sync(sc->bnx_dmatag, 3631 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], 3632 sizeof(struct rx_bd) * RX_IDX(*chain_prod), 3633 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3634 } 3635 3636 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END); 3637 bus_dmamap_sync(sc->bnx_dmatag, 3638 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)], 3639 sizeof(struct rx_bd) * RX_IDX(*chain_prod), 3640 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3641 3642 /* 3643 * Save the mbuf, ajust the map pointer (swap map for first and 3644 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches) 3645 * and update counter. 3646 */ 3647 sc->rx_mbuf_ptr[*chain_prod] = m_new; 3648 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod]; 3649 sc->rx_mbuf_map[*chain_prod] = map; 3650 sc->free_rx_bd -= map->dm_nsegs; 3651 3652 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod, 3653 map->dm_nsegs)); 3654 *prod = NEXT_RX_BD(*prod); 3655 *chain_prod = RX_CHAIN_IDX(*prod); 3656 3657 return 0; 3658 } 3659 3660 /****************************************************************************/ 3661 /* Encapsulate an mbuf cluster into the rx_bd chain. */ 3662 /* */ 3663 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */ 3664 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */ 3665 /* necessary. */ 3666 /* */ 3667 /* Returns: */ 3668 /* 0 for success, positive value for failure. */ 3669 /****************************************************************************/ 3670 int 3671 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod, 3672 u_int16_t *chain_prod, u_int32_t *prod_bseq) 3673 { 3674 struct mbuf *m_new = NULL; 3675 int rc = 0; 3676 u_int16_t min_free_bd; 3677 3678 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n", 3679 __func__); 3680 3681 /* Make sure the inputs are valid. */ 3682 DBRUNIF((*chain_prod > MAX_RX_BD), 3683 aprint_error_dev(sc->bnx_dev, 3684 "RX producer out of range: 0x%04X > 0x%04X\n", 3685 *chain_prod, (u_int16_t)MAX_RX_BD)); 3686 3687 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = " 3688 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod, 3689 *prod_bseq); 3690 3691 /* try to get in as many mbufs as possible */ 3692 if (sc->mbuf_alloc_size == MCLBYTES) 3693 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE; 3694 else 3695 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE; 3696 while (sc->free_rx_bd >= min_free_bd) { 3697 /* Simulate an mbuf allocation failure. */ 3698 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure), 3699 aprint_error_dev(sc->bnx_dev, 3700 "Simulating mbuf allocation failure.\n"); 3701 sc->mbuf_sim_alloc_failed++; 3702 rc = ENOBUFS; 3703 goto bnx_get_buf_exit); 3704 3705 /* This is a new mbuf allocation. */ 3706 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 3707 if (m_new == NULL) { 3708 DBPRINT(sc, BNX_WARN, 3709 "%s(%d): RX mbuf header allocation failed!\n", 3710 __FILE__, __LINE__); 3711 3712 sc->mbuf_alloc_failed++; 3713 3714 rc = ENOBUFS; 3715 goto bnx_get_buf_exit; 3716 } 3717 3718 DBRUNIF(1, sc->rx_mbuf_alloc++); 3719 3720 /* Simulate an mbuf cluster allocation failure. */ 3721 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure), 3722 m_freem(m_new); 3723 sc->rx_mbuf_alloc--; 3724 sc->mbuf_alloc_failed++; 3725 sc->mbuf_sim_alloc_failed++; 3726 rc = ENOBUFS; 3727 goto bnx_get_buf_exit); 3728 3729 if (sc->mbuf_alloc_size == MCLBYTES) 3730 MCLGET(m_new, M_DONTWAIT); 3731 else 3732 MEXTMALLOC(m_new, sc->mbuf_alloc_size, 3733 M_DONTWAIT); 3734 if (!(m_new->m_flags & M_EXT)) { 3735 DBPRINT(sc, BNX_WARN, 3736 "%s(%d): RX mbuf chain allocation failed!\n", 3737 __FILE__, __LINE__); 3738 3739 m_freem(m_new); 3740 3741 DBRUNIF(1, sc->rx_mbuf_alloc--); 3742 sc->mbuf_alloc_failed++; 3743 3744 rc = ENOBUFS; 3745 goto bnx_get_buf_exit; 3746 } 3747 3748 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq); 3749 if (rc != 0) 3750 goto bnx_get_buf_exit; 3751 } 3752 3753 bnx_get_buf_exit: 3754 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod " 3755 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, 3756 *chain_prod, *prod_bseq); 3757 3758 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n", 3759 __func__); 3760 3761 return(rc); 3762 } 3763 3764 int 3765 bnx_alloc_pkts(struct bnx_softc *sc) 3766 { 3767 struct ifnet *ifp = &sc->bnx_ec.ec_if; 3768 struct bnx_pkt *pkt; 3769 int i; 3770 3771 for (i = 0; i < 4; i++) { /* magic! */ 3772 pkt = pool_get(bnx_tx_pool, PR_NOWAIT); 3773 if (pkt == NULL) 3774 break; 3775 3776 if (bus_dmamap_create(sc->bnx_dmatag, 3777 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD, 3778 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, 3779 &pkt->pkt_dmamap) != 0) 3780 goto put; 3781 3782 if (!ISSET(ifp->if_flags, IFF_UP)) 3783 goto stopping; 3784 3785 mutex_enter(&sc->tx_pkt_mtx); 3786 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 3787 sc->tx_pkt_count++; 3788 mutex_exit(&sc->tx_pkt_mtx); 3789 } 3790 3791 return (i == 0) ? ENOMEM : 0; 3792 3793 stopping: 3794 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap); 3795 put: 3796 pool_put(bnx_tx_pool, pkt); 3797 return (i == 0) ? ENOMEM : 0; 3798 } 3799 3800 /****************************************************************************/ 3801 /* Initialize the TX context memory. */ 3802 /* */ 3803 /* Returns: */ 3804 /* Nothing */ 3805 /****************************************************************************/ 3806 void 3807 bnx_init_tx_context(struct bnx_softc *sc) 3808 { 3809 u_int32_t val; 3810 3811 /* Initialize the context ID for an L2 TX chain. */ 3812 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3813 /* Set the CID type to support an L2 connection. */ 3814 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3815 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val); 3816 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3817 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val); 3818 3819 /* Point the hardware to the first page in the chain. */ 3820 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3821 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3822 BNX_L2CTX_TBDR_BHADDR_HI_XI, val); 3823 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3824 CTX_WR(sc, GET_CID_ADDR(TX_CID), 3825 BNX_L2CTX_TBDR_BHADDR_LO_XI, val); 3826 } else { 3827 /* Set the CID type to support an L2 connection. */ 3828 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2; 3829 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val); 3830 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16); 3831 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val); 3832 3833 /* Point the hardware to the first page in the chain. */ 3834 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32); 3835 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val); 3836 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]); 3837 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val); 3838 } 3839 } 3840 3841 3842 /****************************************************************************/ 3843 /* Allocate memory and initialize the TX data structures. */ 3844 /* */ 3845 /* Returns: */ 3846 /* 0 for success, positive value for failure. */ 3847 /****************************************************************************/ 3848 int 3849 bnx_init_tx_chain(struct bnx_softc *sc) 3850 { 3851 struct tx_bd *txbd; 3852 u_int32_t addr; 3853 int i, rc = 0; 3854 3855 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3856 3857 /* Force an allocation of some dmamaps for tx up front */ 3858 bnx_alloc_pkts(sc); 3859 3860 /* Set the initial TX producer/consumer indices. */ 3861 sc->tx_prod = 0; 3862 sc->tx_cons = 0; 3863 sc->tx_prod_bseq = 0; 3864 sc->used_tx_bd = 0; 3865 sc->max_tx_bd = USABLE_TX_BD; 3866 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD); 3867 DBRUNIF(1, sc->tx_full_count = 0); 3868 3869 /* 3870 * The NetXtreme II supports a linked-list structure called 3871 * a Buffer Descriptor Chain (or BD chain). A BD chain 3872 * consists of a series of 1 or more chain pages, each of which 3873 * consists of a fixed number of BD entries. 3874 * The last BD entry on each page is a pointer to the next page 3875 * in the chain, and the last pointer in the BD chain 3876 * points back to the beginning of the chain. 3877 */ 3878 3879 /* Set the TX next pointer chain entries. */ 3880 for (i = 0; i < TX_PAGES; i++) { 3881 int j; 3882 3883 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE]; 3884 3885 /* Check if we've reached the last page. */ 3886 if (i == (TX_PAGES - 1)) 3887 j = 0; 3888 else 3889 j = i + 1; 3890 3891 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]); 3892 txbd->tx_bd_haddr_lo = htole32(addr); 3893 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32); 3894 txbd->tx_bd_haddr_hi = htole32(addr); 3895 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0, 3896 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE); 3897 } 3898 3899 /* 3900 * Initialize the context ID for an L2 TX chain. 3901 */ 3902 bnx_init_tx_context(sc); 3903 3904 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3905 3906 return(rc); 3907 } 3908 3909 /****************************************************************************/ 3910 /* Free memory and clear the TX data structures. */ 3911 /* */ 3912 /* Returns: */ 3913 /* Nothing. */ 3914 /****************************************************************************/ 3915 void 3916 bnx_free_tx_chain(struct bnx_softc *sc) 3917 { 3918 struct bnx_pkt *pkt; 3919 int i; 3920 3921 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 3922 3923 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */ 3924 mutex_enter(&sc->tx_pkt_mtx); 3925 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) { 3926 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry); 3927 mutex_exit(&sc->tx_pkt_mtx); 3928 3929 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0, 3930 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3931 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap); 3932 3933 m_freem(pkt->pkt_mbuf); 3934 DBRUNIF(1, sc->tx_mbuf_alloc--); 3935 3936 mutex_enter(&sc->tx_pkt_mtx); 3937 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 3938 } 3939 3940 /* Destroy all the dmamaps we allocated for TX */ 3941 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) { 3942 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry); 3943 sc->tx_pkt_count--; 3944 mutex_exit(&sc->tx_pkt_mtx); 3945 3946 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap); 3947 pool_put(bnx_tx_pool, pkt); 3948 3949 mutex_enter(&sc->tx_pkt_mtx); 3950 } 3951 mutex_exit(&sc->tx_pkt_mtx); 3952 3953 3954 3955 /* Clear each TX chain page. */ 3956 for (i = 0; i < TX_PAGES; i++) { 3957 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ); 3958 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0, 3959 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE); 3960 } 3961 3962 sc->used_tx_bd = 0; 3963 3964 /* Check if we lost any mbufs in the process. */ 3965 DBRUNIF((sc->tx_mbuf_alloc), 3966 aprint_error_dev(sc->bnx_dev, 3967 "Memory leak! Lost %d mbufs from tx chain!\n", 3968 sc->tx_mbuf_alloc)); 3969 3970 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 3971 } 3972 3973 /****************************************************************************/ 3974 /* Initialize the RX context memory. */ 3975 /* */ 3976 /* Returns: */ 3977 /* Nothing */ 3978 /****************************************************************************/ 3979 void 3980 bnx_init_rx_context(struct bnx_softc *sc) 3981 { 3982 u_int32_t val; 3983 3984 /* Initialize the context ID for an L2 RX chain. */ 3985 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE | 3986 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8); 3987 3988 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 3989 u_int32_t lo_water, hi_water; 3990 3991 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT; 3992 hi_water = USABLE_RX_BD / 4; 3993 3994 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE; 3995 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE; 3996 3997 if (hi_water > 0xf) 3998 hi_water = 0xf; 3999 else if (hi_water == 0) 4000 lo_water = 0; 4001 val |= lo_water | 4002 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT); 4003 } 4004 4005 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val); 4006 4007 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */ 4008 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) { 4009 val = REG_RD(sc, BNX_MQ_MAP_L2_5); 4010 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM); 4011 } 4012 4013 /* Point the hardware to the first page in the chain. */ 4014 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32); 4015 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val); 4016 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]); 4017 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val); 4018 } 4019 4020 /****************************************************************************/ 4021 /* Allocate memory and initialize the RX data structures. */ 4022 /* */ 4023 /* Returns: */ 4024 /* 0 for success, positive value for failure. */ 4025 /****************************************************************************/ 4026 int 4027 bnx_init_rx_chain(struct bnx_softc *sc) 4028 { 4029 struct rx_bd *rxbd; 4030 int i, rc = 0; 4031 u_int16_t prod, chain_prod; 4032 u_int32_t prod_bseq, addr; 4033 4034 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 4035 4036 /* Initialize the RX producer and consumer indices. */ 4037 sc->rx_prod = 0; 4038 sc->rx_cons = 0; 4039 sc->rx_prod_bseq = 0; 4040 sc->free_rx_bd = USABLE_RX_BD; 4041 sc->max_rx_bd = USABLE_RX_BD; 4042 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD); 4043 DBRUNIF(1, sc->rx_empty_count = 0); 4044 4045 /* Initialize the RX next pointer chain entries. */ 4046 for (i = 0; i < RX_PAGES; i++) { 4047 int j; 4048 4049 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE]; 4050 4051 /* Check if we've reached the last page. */ 4052 if (i == (RX_PAGES - 1)) 4053 j = 0; 4054 else 4055 j = i + 1; 4056 4057 /* Setup the chain page pointers. */ 4058 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32); 4059 rxbd->rx_bd_haddr_hi = htole32(addr); 4060 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]); 4061 rxbd->rx_bd_haddr_lo = htole32(addr); 4062 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 4063 0, BNX_RX_CHAIN_PAGE_SZ, 4064 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4065 } 4066 4067 /* Allocate mbuf clusters for the rx_bd chain. */ 4068 prod = prod_bseq = 0; 4069 chain_prod = RX_CHAIN_IDX(prod); 4070 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) { 4071 BNX_PRINTF(sc, 4072 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod); 4073 } 4074 4075 /* Save the RX chain producer index. */ 4076 sc->rx_prod = prod; 4077 sc->rx_prod_bseq = prod_bseq; 4078 4079 for (i = 0; i < RX_PAGES; i++) 4080 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0, 4081 sc->rx_bd_chain_map[i]->dm_mapsize, 4082 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4083 4084 /* Tell the chip about the waiting rx_bd's. */ 4085 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); 4086 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); 4087 4088 bnx_init_rx_context(sc); 4089 4090 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD)); 4091 4092 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 4093 4094 return(rc); 4095 } 4096 4097 /****************************************************************************/ 4098 /* Free memory and clear the RX data structures. */ 4099 /* */ 4100 /* Returns: */ 4101 /* Nothing. */ 4102 /****************************************************************************/ 4103 void 4104 bnx_free_rx_chain(struct bnx_softc *sc) 4105 { 4106 int i; 4107 4108 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 4109 4110 /* Free any mbufs still in the RX mbuf chain. */ 4111 for (i = 0; i < TOTAL_RX_BD; i++) { 4112 if (sc->rx_mbuf_ptr[i] != NULL) { 4113 if (sc->rx_mbuf_map[i] != NULL) { 4114 bus_dmamap_sync(sc->bnx_dmatag, 4115 sc->rx_mbuf_map[i], 0, 4116 sc->rx_mbuf_map[i]->dm_mapsize, 4117 BUS_DMASYNC_POSTREAD); 4118 bus_dmamap_unload(sc->bnx_dmatag, 4119 sc->rx_mbuf_map[i]); 4120 } 4121 m_freem(sc->rx_mbuf_ptr[i]); 4122 sc->rx_mbuf_ptr[i] = NULL; 4123 DBRUNIF(1, sc->rx_mbuf_alloc--); 4124 } 4125 } 4126 4127 /* Clear each RX chain page. */ 4128 for (i = 0; i < RX_PAGES; i++) 4129 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ); 4130 4131 sc->free_rx_bd = sc->max_rx_bd; 4132 4133 /* Check if we lost any mbufs in the process. */ 4134 DBRUNIF((sc->rx_mbuf_alloc), 4135 aprint_error_dev(sc->bnx_dev, 4136 "Memory leak! Lost %d mbufs from rx chain!\n", 4137 sc->rx_mbuf_alloc)); 4138 4139 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 4140 } 4141 4142 /****************************************************************************/ 4143 /* Handles PHY generated interrupt events. */ 4144 /* */ 4145 /* Returns: */ 4146 /* Nothing. */ 4147 /****************************************************************************/ 4148 void 4149 bnx_phy_intr(struct bnx_softc *sc) 4150 { 4151 u_int32_t new_link_state, old_link_state; 4152 4153 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 4154 BUS_DMASYNC_POSTREAD); 4155 new_link_state = sc->status_block->status_attn_bits & 4156 STATUS_ATTN_BITS_LINK_STATE; 4157 old_link_state = sc->status_block->status_attn_bits_ack & 4158 STATUS_ATTN_BITS_LINK_STATE; 4159 4160 /* Handle any changes if the link state has changed. */ 4161 if (new_link_state != old_link_state) { 4162 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc)); 4163 4164 callout_stop(&sc->bnx_timeout); 4165 bnx_tick(sc); 4166 4167 /* Update the status_attn_bits_ack field in the status block. */ 4168 if (new_link_state) { 4169 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD, 4170 STATUS_ATTN_BITS_LINK_STATE); 4171 DBPRINT(sc, BNX_INFO, "Link is now UP.\n"); 4172 } else { 4173 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD, 4174 STATUS_ATTN_BITS_LINK_STATE); 4175 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n"); 4176 } 4177 } 4178 4179 /* Acknowledge the link change interrupt. */ 4180 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE); 4181 } 4182 4183 /****************************************************************************/ 4184 /* Handles received frame interrupt events. */ 4185 /* */ 4186 /* Returns: */ 4187 /* Nothing. */ 4188 /****************************************************************************/ 4189 void 4190 bnx_rx_intr(struct bnx_softc *sc) 4191 { 4192 struct status_block *sblk = sc->status_block; 4193 struct ifnet *ifp = &sc->bnx_ec.ec_if; 4194 u_int16_t hw_cons, sw_cons, sw_chain_cons; 4195 u_int16_t sw_prod, sw_chain_prod; 4196 u_int32_t sw_prod_bseq; 4197 struct l2_fhdr *l2fhdr; 4198 int i; 4199 4200 DBRUNIF(1, sc->rx_interrupts++); 4201 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 4202 BUS_DMASYNC_POSTREAD); 4203 4204 /* Prepare the RX chain pages to be accessed by the host CPU. */ 4205 for (i = 0; i < RX_PAGES; i++) 4206 bus_dmamap_sync(sc->bnx_dmatag, 4207 sc->rx_bd_chain_map[i], 0, 4208 sc->rx_bd_chain_map[i]->dm_mapsize, 4209 BUS_DMASYNC_POSTWRITE); 4210 4211 /* Get the hardware's view of the RX consumer index. */ 4212 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0; 4213 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 4214 hw_cons++; 4215 4216 /* Get working copies of the driver's view of the RX indices. */ 4217 sw_cons = sc->rx_cons; 4218 sw_prod = sc->rx_prod; 4219 sw_prod_bseq = sc->rx_prod_bseq; 4220 4221 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, " 4222 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n", 4223 __func__, sw_prod, sw_cons, sw_prod_bseq); 4224 4225 /* Prevent speculative reads from getting ahead of the status block. */ 4226 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4227 BUS_SPACE_BARRIER_READ); 4228 4229 /* Update some debug statistics counters */ 4230 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark), 4231 sc->rx_low_watermark = sc->free_rx_bd); 4232 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++); 4233 4234 /* 4235 * Scan through the receive chain as long 4236 * as there is work to do. 4237 */ 4238 while (sw_cons != hw_cons) { 4239 struct mbuf *m; 4240 struct rx_bd *rxbd; 4241 unsigned int len; 4242 u_int32_t status; 4243 4244 /* Convert the producer/consumer indices to an actual 4245 * rx_bd index. 4246 */ 4247 sw_chain_cons = RX_CHAIN_IDX(sw_cons); 4248 sw_chain_prod = RX_CHAIN_IDX(sw_prod); 4249 4250 /* Get the used rx_bd. */ 4251 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)]; 4252 sc->free_rx_bd++; 4253 4254 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__); 4255 bnx_dump_rxbd(sc, sw_chain_cons, rxbd)); 4256 4257 /* The mbuf is stored with the last rx_bd entry of a packet. */ 4258 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) { 4259 #ifdef DIAGNOSTIC 4260 /* Validate that this is the last rx_bd. */ 4261 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) { 4262 printf("%s: Unexpected mbuf found in " 4263 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev), 4264 sw_chain_cons); 4265 } 4266 #endif 4267 4268 /* DRC - ToDo: If the received packet is small, say less 4269 * than 128 bytes, allocate a new mbuf here, 4270 * copy the data to that mbuf, and recycle 4271 * the mapped jumbo frame. 4272 */ 4273 4274 /* Unmap the mbuf from DMA space. */ 4275 #ifdef DIAGNOSTIC 4276 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) { 4277 printf("invalid map sw_cons 0x%x " 4278 "sw_prod 0x%x " 4279 "sw_chain_cons 0x%x " 4280 "sw_chain_prod 0x%x " 4281 "hw_cons 0x%x " 4282 "TOTAL_RX_BD_PER_PAGE 0x%x " 4283 "TOTAL_RX_BD 0x%x\n", 4284 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod, 4285 hw_cons, 4286 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD); 4287 } 4288 #endif 4289 bus_dmamap_sync(sc->bnx_dmatag, 4290 sc->rx_mbuf_map[sw_chain_cons], 0, 4291 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize, 4292 BUS_DMASYNC_POSTREAD); 4293 bus_dmamap_unload(sc->bnx_dmatag, 4294 sc->rx_mbuf_map[sw_chain_cons]); 4295 4296 /* Remove the mbuf from the driver's chain. */ 4297 m = sc->rx_mbuf_ptr[sw_chain_cons]; 4298 sc->rx_mbuf_ptr[sw_chain_cons] = NULL; 4299 4300 /* 4301 * Frames received on the NetXteme II are prepended 4302 * with the l2_fhdr structure which provides status 4303 * information about the received frame (including 4304 * VLAN tags and checksum info) and are also 4305 * automatically adjusted to align the IP header 4306 * (i.e. two null bytes are inserted before the 4307 * Ethernet header). 4308 */ 4309 l2fhdr = mtod(m, struct l2_fhdr *); 4310 4311 len = l2fhdr->l2_fhdr_pkt_len; 4312 status = l2fhdr->l2_fhdr_status; 4313 4314 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check), 4315 aprint_error("Simulating l2_fhdr status error.\n"); 4316 status = status | L2_FHDR_ERRORS_PHY_DECODE); 4317 4318 /* Watch for unusual sized frames. */ 4319 DBRUNIF(((len < BNX_MIN_MTU) || 4320 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)), 4321 aprint_error_dev(sc->bnx_dev, 4322 "Unusual frame size found. " 4323 "Min(%d), Actual(%d), Max(%d)\n", 4324 (int)BNX_MIN_MTU, len, 4325 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN); 4326 4327 bnx_dump_mbuf(sc, m); 4328 bnx_breakpoint(sc)); 4329 4330 len -= ETHER_CRC_LEN; 4331 4332 /* Check the received frame for errors. */ 4333 if ((status & (L2_FHDR_ERRORS_BAD_CRC | 4334 L2_FHDR_ERRORS_PHY_DECODE | 4335 L2_FHDR_ERRORS_ALIGNMENT | 4336 L2_FHDR_ERRORS_TOO_SHORT | 4337 L2_FHDR_ERRORS_GIANT_FRAME)) || 4338 len < (BNX_MIN_MTU - ETHER_CRC_LEN) || 4339 len > 4340 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) { 4341 ifp->if_ierrors++; 4342 DBRUNIF(1, sc->l2fhdr_status_errors++); 4343 4344 /* Reuse the mbuf for a new frame. */ 4345 if (bnx_add_buf(sc, m, &sw_prod, 4346 &sw_chain_prod, &sw_prod_bseq)) { 4347 DBRUNIF(1, bnx_breakpoint(sc)); 4348 panic("%s: Can't reuse RX mbuf!\n", 4349 device_xname(sc->bnx_dev)); 4350 } 4351 continue; 4352 } 4353 4354 /* 4355 * Get a new mbuf for the rx_bd. If no new 4356 * mbufs are available then reuse the current mbuf, 4357 * log an ierror on the interface, and generate 4358 * an error in the system log. 4359 */ 4360 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod, 4361 &sw_prod_bseq)) { 4362 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev, 4363 "Failed to allocate " 4364 "new mbuf, incoming frame dropped!\n")); 4365 4366 ifp->if_ierrors++; 4367 4368 /* Try and reuse the exisitng mbuf. */ 4369 if (bnx_add_buf(sc, m, &sw_prod, 4370 &sw_chain_prod, &sw_prod_bseq)) { 4371 DBRUNIF(1, bnx_breakpoint(sc)); 4372 panic("%s: Double mbuf allocation " 4373 "failure!", 4374 device_xname(sc->bnx_dev)); 4375 } 4376 continue; 4377 } 4378 4379 /* Skip over the l2_fhdr when passing the data up 4380 * the stack. 4381 */ 4382 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN); 4383 4384 /* Adjust the pckt length to match the received data. */ 4385 m->m_pkthdr.len = m->m_len = len; 4386 4387 /* Send the packet to the appropriate interface. */ 4388 m->m_pkthdr.rcvif = ifp; 4389 4390 DBRUN(BNX_VERBOSE_RECV, 4391 struct ether_header *eh; 4392 eh = mtod(m, struct ether_header *); 4393 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n", 4394 __func__, ether_sprintf(eh->ether_dhost), 4395 ether_sprintf(eh->ether_shost), 4396 htons(eh->ether_type))); 4397 4398 /* Validate the checksum. */ 4399 4400 /* Check for an IP datagram. */ 4401 if (status & L2_FHDR_STATUS_IP_DATAGRAM) { 4402 /* Check if the IP checksum is valid. */ 4403 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) 4404 == 0) 4405 m->m_pkthdr.csum_flags |= 4406 M_CSUM_IPv4; 4407 #ifdef BNX_DEBUG 4408 else 4409 DBPRINT(sc, BNX_WARN_SEND, 4410 "%s(): Invalid IP checksum " 4411 "= 0x%04X!\n", 4412 __func__, 4413 l2fhdr->l2_fhdr_ip_xsum 4414 ); 4415 #endif 4416 } 4417 4418 /* Check for a valid TCP/UDP frame. */ 4419 if (status & (L2_FHDR_STATUS_TCP_SEGMENT | 4420 L2_FHDR_STATUS_UDP_DATAGRAM)) { 4421 /* Check for a good TCP/UDP checksum. */ 4422 if ((status & 4423 (L2_FHDR_ERRORS_TCP_XSUM | 4424 L2_FHDR_ERRORS_UDP_XSUM)) == 0) { 4425 m->m_pkthdr.csum_flags |= 4426 M_CSUM_TCPv4 | 4427 M_CSUM_UDPv4; 4428 } else { 4429 DBPRINT(sc, BNX_WARN_SEND, 4430 "%s(): Invalid TCP/UDP " 4431 "checksum = 0x%04X!\n", 4432 __func__, 4433 l2fhdr->l2_fhdr_tcp_udp_xsum); 4434 } 4435 } 4436 4437 /* 4438 * If we received a packet with a vlan tag, 4439 * attach that information to the packet. 4440 */ 4441 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && 4442 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) { 4443 VLAN_INPUT_TAG(ifp, m, 4444 l2fhdr->l2_fhdr_vlan_tag, 4445 continue); 4446 } 4447 4448 /* 4449 * Handle BPF listeners. Let the BPF 4450 * user see the packet. 4451 */ 4452 if (ifp->if_bpf) 4453 bpf_ops->bpf_mtap(ifp->if_bpf, m); 4454 4455 /* Pass the mbuf off to the upper layers. */ 4456 ifp->if_ipackets++; 4457 DBPRINT(sc, BNX_VERBOSE_RECV, 4458 "%s(): Passing received frame up.\n", __func__); 4459 (*ifp->if_input)(ifp, m); 4460 DBRUNIF(1, sc->rx_mbuf_alloc--); 4461 4462 } 4463 4464 sw_cons = NEXT_RX_BD(sw_cons); 4465 4466 /* Refresh hw_cons to see if there's new work */ 4467 if (sw_cons == hw_cons) { 4468 hw_cons = sc->hw_rx_cons = 4469 sblk->status_rx_quick_consumer_index0; 4470 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == 4471 USABLE_RX_BD_PER_PAGE) 4472 hw_cons++; 4473 } 4474 4475 /* Prevent speculative reads from getting ahead of 4476 * the status block. 4477 */ 4478 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4479 BUS_SPACE_BARRIER_READ); 4480 } 4481 4482 for (i = 0; i < RX_PAGES; i++) 4483 bus_dmamap_sync(sc->bnx_dmatag, 4484 sc->rx_bd_chain_map[i], 0, 4485 sc->rx_bd_chain_map[i]->dm_mapsize, 4486 BUS_DMASYNC_PREWRITE); 4487 4488 sc->rx_cons = sw_cons; 4489 sc->rx_prod = sw_prod; 4490 sc->rx_prod_bseq = sw_prod_bseq; 4491 4492 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod); 4493 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq); 4494 4495 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, " 4496 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n", 4497 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq); 4498 } 4499 4500 /****************************************************************************/ 4501 /* Handles transmit completion interrupt events. */ 4502 /* */ 4503 /* Returns: */ 4504 /* Nothing. */ 4505 /****************************************************************************/ 4506 void 4507 bnx_tx_intr(struct bnx_softc *sc) 4508 { 4509 struct status_block *sblk = sc->status_block; 4510 struct ifnet *ifp = &sc->bnx_ec.ec_if; 4511 struct bnx_pkt *pkt; 4512 bus_dmamap_t map; 4513 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons; 4514 4515 DBRUNIF(1, sc->tx_interrupts++); 4516 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 4517 BUS_DMASYNC_POSTREAD); 4518 4519 /* Get the hardware's view of the TX consumer index. */ 4520 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0; 4521 4522 /* Skip to the next entry if this is a chain page pointer. */ 4523 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 4524 hw_tx_cons++; 4525 4526 sw_tx_cons = sc->tx_cons; 4527 4528 /* Prevent speculative reads from getting ahead of the status block. */ 4529 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4530 BUS_SPACE_BARRIER_READ); 4531 4532 /* Cycle through any completed TX chain page entries. */ 4533 while (sw_tx_cons != hw_tx_cons) { 4534 #ifdef BNX_DEBUG 4535 struct tx_bd *txbd = NULL; 4536 #endif 4537 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons); 4538 4539 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, " 4540 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n", 4541 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons); 4542 4543 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD), 4544 aprint_error_dev(sc->bnx_dev, 4545 "TX chain consumer out of range! 0x%04X > 0x%04X\n", 4546 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc)); 4547 4548 DBRUNIF(1, txbd = &sc->tx_bd_chain 4549 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]); 4550 4551 DBRUNIF((txbd == NULL), 4552 aprint_error_dev(sc->bnx_dev, 4553 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons); 4554 bnx_breakpoint(sc)); 4555 4556 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__); 4557 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd)); 4558 4559 4560 mutex_enter(&sc->tx_pkt_mtx); 4561 pkt = TAILQ_FIRST(&sc->tx_used_pkts); 4562 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) { 4563 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry); 4564 mutex_exit(&sc->tx_pkt_mtx); 4565 /* 4566 * Free the associated mbuf. Remember 4567 * that only the last tx_bd of a packet 4568 * has an mbuf pointer and DMA map. 4569 */ 4570 map = pkt->pkt_dmamap; 4571 bus_dmamap_sync(sc->bnx_dmatag, map, 0, 4572 map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4573 bus_dmamap_unload(sc->bnx_dmatag, map); 4574 4575 m_freem(pkt->pkt_mbuf); 4576 DBRUNIF(1, sc->tx_mbuf_alloc--); 4577 4578 ifp->if_opackets++; 4579 4580 mutex_enter(&sc->tx_pkt_mtx); 4581 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 4582 } 4583 mutex_exit(&sc->tx_pkt_mtx); 4584 4585 sc->used_tx_bd--; 4586 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n", 4587 __FILE__, __LINE__, sc->used_tx_bd); 4588 4589 sw_tx_cons = NEXT_TX_BD(sw_tx_cons); 4590 4591 /* Refresh hw_cons to see if there's new work. */ 4592 hw_tx_cons = sc->hw_tx_cons = 4593 sblk->status_tx_quick_consumer_index0; 4594 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == 4595 USABLE_TX_BD_PER_PAGE) 4596 hw_tx_cons++; 4597 4598 /* Prevent speculative reads from getting ahead of 4599 * the status block. 4600 */ 4601 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 4602 BUS_SPACE_BARRIER_READ); 4603 } 4604 4605 /* Clear the TX timeout timer. */ 4606 ifp->if_timer = 0; 4607 4608 /* Clear the tx hardware queue full flag. */ 4609 if (sc->used_tx_bd < sc->max_tx_bd) { 4610 DBRUNIF((ifp->if_flags & IFF_OACTIVE), 4611 aprint_debug_dev(sc->bnx_dev, 4612 "Open TX chain! %d/%d (used/total)\n", 4613 sc->used_tx_bd, sc->max_tx_bd)); 4614 ifp->if_flags &= ~IFF_OACTIVE; 4615 } 4616 4617 sc->tx_cons = sw_tx_cons; 4618 } 4619 4620 /****************************************************************************/ 4621 /* Disables interrupt generation. */ 4622 /* */ 4623 /* Returns: */ 4624 /* Nothing. */ 4625 /****************************************************************************/ 4626 void 4627 bnx_disable_intr(struct bnx_softc *sc) 4628 { 4629 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT); 4630 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD); 4631 } 4632 4633 /****************************************************************************/ 4634 /* Enables interrupt generation. */ 4635 /* */ 4636 /* Returns: */ 4637 /* Nothing. */ 4638 /****************************************************************************/ 4639 void 4640 bnx_enable_intr(struct bnx_softc *sc) 4641 { 4642 u_int32_t val; 4643 4644 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4645 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx); 4646 4647 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | 4648 sc->last_status_idx); 4649 4650 val = REG_RD(sc, BNX_HC_COMMAND); 4651 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW); 4652 } 4653 4654 /****************************************************************************/ 4655 /* Handles controller initialization. */ 4656 /* */ 4657 /****************************************************************************/ 4658 int 4659 bnx_init(struct ifnet *ifp) 4660 { 4661 struct bnx_softc *sc = ifp->if_softc; 4662 u_int32_t ether_mtu; 4663 int s, error = 0; 4664 4665 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__); 4666 4667 s = splnet(); 4668 4669 bnx_stop(ifp, 0); 4670 4671 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) { 4672 aprint_error_dev(sc->bnx_dev, 4673 "Controller reset failed!\n"); 4674 goto bnx_init_exit; 4675 } 4676 4677 if ((error = bnx_chipinit(sc)) != 0) { 4678 aprint_error_dev(sc->bnx_dev, 4679 "Controller initialization failed!\n"); 4680 goto bnx_init_exit; 4681 } 4682 4683 if ((error = bnx_blockinit(sc)) != 0) { 4684 aprint_error_dev(sc->bnx_dev, 4685 "Block initialization failed!\n"); 4686 goto bnx_init_exit; 4687 } 4688 4689 /* Calculate and program the Ethernet MRU size. */ 4690 if (ifp->if_mtu <= ETHERMTU) { 4691 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN; 4692 sc->mbuf_alloc_size = MCLBYTES; 4693 } else { 4694 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN; 4695 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU; 4696 } 4697 4698 4699 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", 4700 __func__, ether_mtu); 4701 4702 /* 4703 * Program the MRU and enable Jumbo frame 4704 * support. 4705 */ 4706 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu | 4707 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA); 4708 4709 /* Calculate the RX Ethernet frame size for rx_bd's. */ 4710 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8; 4711 4712 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, " 4713 "max_frame_size = %d\n", __func__, (int)MCLBYTES, 4714 sc->mbuf_alloc_size, sc->max_frame_size); 4715 4716 /* Program appropriate promiscuous/multicast filtering. */ 4717 bnx_iff(sc); 4718 4719 /* Init RX buffer descriptor chain. */ 4720 bnx_init_rx_chain(sc); 4721 4722 /* Init TX buffer descriptor chain. */ 4723 bnx_init_tx_chain(sc); 4724 4725 /* Enable host interrupts. */ 4726 bnx_enable_intr(sc); 4727 4728 if ((error = ether_mediachange(ifp)) != 0) 4729 goto bnx_init_exit; 4730 4731 ifp->if_flags |= IFF_RUNNING; 4732 ifp->if_flags &= ~IFF_OACTIVE; 4733 4734 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc); 4735 4736 bnx_init_exit: 4737 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__); 4738 4739 splx(s); 4740 4741 return(error); 4742 } 4743 4744 /****************************************************************************/ 4745 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */ 4746 /* memory visible to the controller. */ 4747 /* */ 4748 /* Returns: */ 4749 /* 0 for success, positive value for failure. */ 4750 /****************************************************************************/ 4751 int 4752 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m) 4753 { 4754 struct bnx_pkt *pkt; 4755 bus_dmamap_t map; 4756 struct tx_bd *txbd = NULL; 4757 u_int16_t vlan_tag = 0, flags = 0; 4758 u_int16_t chain_prod, prod; 4759 #ifdef BNX_DEBUG 4760 u_int16_t debug_prod; 4761 #endif 4762 u_int32_t addr, prod_bseq; 4763 int i, error; 4764 struct m_tag *mtag; 4765 4766 again: 4767 mutex_enter(&sc->tx_pkt_mtx); 4768 pkt = TAILQ_FIRST(&sc->tx_free_pkts); 4769 if (pkt == NULL) { 4770 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) { 4771 mutex_exit(&sc->tx_pkt_mtx); 4772 return ENETDOWN; 4773 } 4774 if (sc->tx_pkt_count <= TOTAL_TX_BD) { 4775 mutex_exit(&sc->tx_pkt_mtx); 4776 if (bnx_alloc_pkts(sc) == 0) 4777 goto again; 4778 } else { 4779 mutex_exit(&sc->tx_pkt_mtx); 4780 } 4781 return (ENOMEM); 4782 } 4783 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry); 4784 mutex_exit(&sc->tx_pkt_mtx); 4785 4786 /* Transfer any checksum offload flags to the bd. */ 4787 if (m->m_pkthdr.csum_flags) { 4788 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4789 flags |= TX_BD_FLAGS_IP_CKSUM; 4790 if (m->m_pkthdr.csum_flags & 4791 (M_CSUM_TCPv4 | M_CSUM_UDPv4)) 4792 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM; 4793 } 4794 4795 /* Transfer any VLAN tags to the bd. */ 4796 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m); 4797 if (mtag != NULL) { 4798 flags |= TX_BD_FLAGS_VLAN_TAG; 4799 vlan_tag = VLAN_TAG_VALUE(mtag); 4800 } 4801 4802 /* Map the mbuf into DMAable memory. */ 4803 prod = sc->tx_prod; 4804 chain_prod = TX_CHAIN_IDX(prod); 4805 map = pkt->pkt_dmamap; 4806 4807 /* Map the mbuf into our DMA address space. */ 4808 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT); 4809 if (error != 0) { 4810 aprint_error_dev(sc->bnx_dev, 4811 "Error mapping mbuf into TX chain!\n"); 4812 sc->tx_dma_map_failures++; 4813 goto maperr; 4814 } 4815 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize, 4816 BUS_DMASYNC_PREWRITE); 4817 /* Make sure there's room in the chain */ 4818 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd)) 4819 goto nospace; 4820 4821 /* prod points to an empty tx_bd at this point. */ 4822 prod_bseq = sc->tx_prod_bseq; 4823 #ifdef BNX_DEBUG 4824 debug_prod = chain_prod; 4825 #endif 4826 DBPRINT(sc, BNX_INFO_SEND, 4827 "%s(): Start: prod = 0x%04X, chain_prod = %04X, " 4828 "prod_bseq = 0x%08X\n", 4829 __func__, prod, chain_prod, prod_bseq); 4830 4831 /* 4832 * Cycle through each mbuf segment that makes up 4833 * the outgoing frame, gathering the mapping info 4834 * for that segment and creating a tx_bd for the 4835 * mbuf. 4836 */ 4837 for (i = 0; i < map->dm_nsegs ; i++) { 4838 chain_prod = TX_CHAIN_IDX(prod); 4839 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)]; 4840 4841 addr = (u_int32_t)(map->dm_segs[i].ds_addr); 4842 txbd->tx_bd_haddr_lo = htole32(addr); 4843 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32); 4844 txbd->tx_bd_haddr_hi = htole32(addr); 4845 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len); 4846 txbd->tx_bd_vlan_tag = htole16(vlan_tag); 4847 txbd->tx_bd_flags = htole16(flags); 4848 prod_bseq += map->dm_segs[i].ds_len; 4849 if (i == 0) 4850 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START); 4851 prod = NEXT_TX_BD(prod); 4852 } 4853 /* Set the END flag on the last TX buffer descriptor. */ 4854 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END); 4855 4856 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs)); 4857 4858 DBPRINT(sc, BNX_INFO_SEND, 4859 "%s(): End: prod = 0x%04X, chain_prod = %04X, " 4860 "prod_bseq = 0x%08X\n", 4861 __func__, prod, chain_prod, prod_bseq); 4862 4863 pkt->pkt_mbuf = m; 4864 pkt->pkt_end_desc = chain_prod; 4865 4866 mutex_enter(&sc->tx_pkt_mtx); 4867 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry); 4868 mutex_exit(&sc->tx_pkt_mtx); 4869 4870 sc->used_tx_bd += map->dm_nsegs; 4871 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n", 4872 __FILE__, __LINE__, sc->used_tx_bd); 4873 4874 /* Update some debug statistics counters */ 4875 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark), 4876 sc->tx_hi_watermark = sc->used_tx_bd); 4877 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++); 4878 DBRUNIF(1, sc->tx_mbuf_alloc++); 4879 4880 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod, 4881 map->dm_nsegs)); 4882 4883 /* prod points to the next free tx_bd at this point. */ 4884 sc->tx_prod = prod; 4885 sc->tx_prod_bseq = prod_bseq; 4886 4887 return (0); 4888 4889 4890 nospace: 4891 bus_dmamap_unload(sc->bnx_dmatag, map); 4892 maperr: 4893 mutex_enter(&sc->tx_pkt_mtx); 4894 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry); 4895 mutex_exit(&sc->tx_pkt_mtx); 4896 4897 return (ENOMEM); 4898 } 4899 4900 /****************************************************************************/ 4901 /* Main transmit routine. */ 4902 /* */ 4903 /* Returns: */ 4904 /* Nothing. */ 4905 /****************************************************************************/ 4906 void 4907 bnx_start(struct ifnet *ifp) 4908 { 4909 struct bnx_softc *sc = ifp->if_softc; 4910 struct mbuf *m_head = NULL; 4911 int count = 0; 4912 u_int16_t tx_prod, tx_chain_prod; 4913 4914 /* If there's no link or the transmit queue is empty then just exit. */ 4915 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) { 4916 DBPRINT(sc, BNX_INFO_SEND, 4917 "%s(): output active or device not running.\n", __func__); 4918 goto bnx_start_exit; 4919 } 4920 4921 /* prod points to the next free tx_bd. */ 4922 tx_prod = sc->tx_prod; 4923 tx_chain_prod = TX_CHAIN_IDX(tx_prod); 4924 4925 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, " 4926 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, " 4927 "used_tx %d max_tx %d\n", 4928 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq, 4929 sc->used_tx_bd, sc->max_tx_bd); 4930 4931 /* 4932 * Keep adding entries while there is space in the ring. 4933 */ 4934 while (sc->used_tx_bd < sc->max_tx_bd) { 4935 /* Check for any frames to send. */ 4936 IFQ_POLL(&ifp->if_snd, m_head); 4937 if (m_head == NULL) 4938 break; 4939 4940 /* 4941 * Pack the data into the transmit ring. If we 4942 * don't have room, set the OACTIVE flag to wait 4943 * for the NIC to drain the chain. 4944 */ 4945 if (bnx_tx_encap(sc, m_head)) { 4946 ifp->if_flags |= IFF_OACTIVE; 4947 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for " 4948 "business! Total tx_bd used = %d\n", 4949 sc->used_tx_bd); 4950 break; 4951 } 4952 4953 IFQ_DEQUEUE(&ifp->if_snd, m_head); 4954 count++; 4955 4956 /* Send a copy of the frame to any BPF listeners. */ 4957 if (ifp->if_bpf) 4958 bpf_ops->bpf_mtap(ifp->if_bpf, m_head); 4959 } 4960 4961 if (count == 0) { 4962 /* no packets were dequeued */ 4963 DBPRINT(sc, BNX_VERBOSE_SEND, 4964 "%s(): No packets were dequeued\n", __func__); 4965 goto bnx_start_exit; 4966 } 4967 4968 /* Update the driver's counters. */ 4969 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod); 4970 4971 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod " 4972 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod, 4973 tx_chain_prod, sc->tx_prod_bseq); 4974 4975 /* Start the transmit. */ 4976 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod); 4977 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq); 4978 4979 /* Set the tx timeout. */ 4980 ifp->if_timer = BNX_TX_TIMEOUT; 4981 4982 bnx_start_exit: 4983 return; 4984 } 4985 4986 /****************************************************************************/ 4987 /* Handles any IOCTL calls from the operating system. */ 4988 /* */ 4989 /* Returns: */ 4990 /* 0 for success, positive value for failure. */ 4991 /****************************************************************************/ 4992 int 4993 bnx_ioctl(struct ifnet *ifp, u_long command, void *data) 4994 { 4995 struct bnx_softc *sc = ifp->if_softc; 4996 struct ifreq *ifr = (struct ifreq *) data; 4997 struct mii_data *mii = &sc->bnx_mii; 4998 int s, error = 0; 4999 5000 s = splnet(); 5001 5002 switch (command) { 5003 case SIOCSIFFLAGS: 5004 if ((error = ifioctl_common(ifp, command, data)) != 0) 5005 break; 5006 /* XXX set an ifflags callback and let ether_ioctl 5007 * handle all of this. 5008 */ 5009 if (ifp->if_flags & IFF_UP) { 5010 if (ifp->if_flags & IFF_RUNNING) 5011 error = ENETRESET; 5012 else 5013 bnx_init(ifp); 5014 } else if (ifp->if_flags & IFF_RUNNING) 5015 bnx_stop(ifp, 1); 5016 break; 5017 5018 case SIOCSIFMEDIA: 5019 case SIOCGIFMEDIA: 5020 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n", 5021 sc->bnx_phy_flags); 5022 5023 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 5024 break; 5025 5026 default: 5027 error = ether_ioctl(ifp, command, data); 5028 } 5029 5030 if (error == ENETRESET) { 5031 if (ifp->if_flags & IFF_RUNNING) 5032 bnx_iff(sc); 5033 error = 0; 5034 } 5035 5036 splx(s); 5037 return (error); 5038 } 5039 5040 /****************************************************************************/ 5041 /* Transmit timeout handler. */ 5042 /* */ 5043 /* Returns: */ 5044 /* Nothing. */ 5045 /****************************************************************************/ 5046 void 5047 bnx_watchdog(struct ifnet *ifp) 5048 { 5049 struct bnx_softc *sc = ifp->if_softc; 5050 5051 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc); 5052 bnx_dump_status_block(sc)); 5053 /* 5054 * If we are in this routine because of pause frames, then 5055 * don't reset the hardware. 5056 */ 5057 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED) 5058 return; 5059 5060 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n"); 5061 5062 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */ 5063 5064 bnx_init(ifp); 5065 5066 ifp->if_oerrors++; 5067 } 5068 5069 /* 5070 * Interrupt handler. 5071 */ 5072 /****************************************************************************/ 5073 /* Main interrupt entry point. Verifies that the controller generated the */ 5074 /* interrupt and then calls a separate routine for handle the various */ 5075 /* interrupt causes (PHY, TX, RX). */ 5076 /* */ 5077 /* Returns: */ 5078 /* 0 for success, positive value for failure. */ 5079 /****************************************************************************/ 5080 int 5081 bnx_intr(void *xsc) 5082 { 5083 struct bnx_softc *sc; 5084 struct ifnet *ifp; 5085 u_int32_t status_attn_bits; 5086 const struct status_block *sblk; 5087 5088 sc = xsc; 5089 if (!device_is_active(sc->bnx_dev)) 5090 return 0; 5091 5092 ifp = &sc->bnx_ec.ec_if; 5093 5094 DBRUNIF(1, sc->interrupts_generated++); 5095 5096 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5097 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); 5098 5099 /* 5100 * If the hardware status block index 5101 * matches the last value read by the 5102 * driver and we haven't asserted our 5103 * interrupt then there's nothing to do. 5104 */ 5105 if ((sc->status_block->status_idx == sc->last_status_idx) && 5106 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) & 5107 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) 5108 return (0); 5109 5110 /* Ack the interrupt and stop others from occuring. */ 5111 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, 5112 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM | 5113 BNX_PCICFG_INT_ACK_CMD_MASK_INT); 5114 5115 /* Keep processing data as long as there is work to do. */ 5116 for (;;) { 5117 sblk = sc->status_block; 5118 status_attn_bits = sblk->status_attn_bits; 5119 5120 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention), 5121 aprint_debug("Simulating unexpected status attention bit set."); 5122 status_attn_bits = status_attn_bits | 5123 STATUS_ATTN_BITS_PARITY_ERROR); 5124 5125 /* Was it a link change interrupt? */ 5126 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 5127 (sblk->status_attn_bits_ack & 5128 STATUS_ATTN_BITS_LINK_STATE)) 5129 bnx_phy_intr(sc); 5130 5131 /* If any other attention is asserted then the chip is toast. */ 5132 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) != 5133 (sblk->status_attn_bits_ack & 5134 ~STATUS_ATTN_BITS_LINK_STATE))) { 5135 DBRUN(1, sc->unexpected_attentions++); 5136 5137 BNX_PRINTF(sc, 5138 "Fatal attention detected: 0x%08X\n", 5139 sblk->status_attn_bits); 5140 5141 DBRUN(BNX_FATAL, 5142 if (bnx_debug_unexpected_attention == 0) 5143 bnx_breakpoint(sc)); 5144 5145 bnx_init(ifp); 5146 return (1); 5147 } 5148 5149 /* Check for any completed RX frames. */ 5150 if (sblk->status_rx_quick_consumer_index0 != 5151 sc->hw_rx_cons) 5152 bnx_rx_intr(sc); 5153 5154 /* Check for any completed TX frames. */ 5155 if (sblk->status_tx_quick_consumer_index0 != 5156 sc->hw_tx_cons) 5157 bnx_tx_intr(sc); 5158 5159 /* Save the status block index value for use during the 5160 * next interrupt. 5161 */ 5162 sc->last_status_idx = sblk->status_idx; 5163 5164 /* Prevent speculative reads from getting ahead of the 5165 * status block. 5166 */ 5167 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0, 5168 BUS_SPACE_BARRIER_READ); 5169 5170 /* If there's no work left then exit the isr. */ 5171 if ((sblk->status_rx_quick_consumer_index0 == 5172 sc->hw_rx_cons) && 5173 (sblk->status_tx_quick_consumer_index0 == 5174 sc->hw_tx_cons)) 5175 break; 5176 } 5177 5178 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, 5179 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 5180 5181 /* Re-enable interrupts. */ 5182 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, 5183 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx | 5184 BNX_PCICFG_INT_ACK_CMD_MASK_INT); 5185 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, 5186 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx); 5187 5188 /* Handle any frames that arrived while handling the interrupt. */ 5189 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 5190 bnx_start(ifp); 5191 5192 return (1); 5193 } 5194 5195 /****************************************************************************/ 5196 /* Programs the various packet receive modes (broadcast and multicast). */ 5197 /* */ 5198 /* Returns: */ 5199 /* Nothing. */ 5200 /****************************************************************************/ 5201 void 5202 bnx_iff(struct bnx_softc *sc) 5203 { 5204 struct ethercom *ec = &sc->bnx_ec; 5205 struct ifnet *ifp = &ec->ec_if; 5206 struct ether_multi *enm; 5207 struct ether_multistep step; 5208 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 5209 u_int32_t rx_mode, sort_mode; 5210 int h, i; 5211 5212 /* Initialize receive mode default settings. */ 5213 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS | 5214 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG); 5215 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN; 5216 ifp->if_flags &= ~IFF_ALLMULTI; 5217 5218 /* 5219 * ASF/IPMI/UMP firmware requires that VLAN tag stripping 5220 * be enbled. 5221 */ 5222 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG)) 5223 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG; 5224 5225 /* 5226 * Check for promiscuous, all multicast, or selected 5227 * multicast address filtering. 5228 */ 5229 if (ifp->if_flags & IFF_PROMISC) { 5230 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n"); 5231 5232 ifp->if_flags |= IFF_ALLMULTI; 5233 /* Enable promiscuous mode. */ 5234 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS; 5235 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN; 5236 } else if (ifp->if_flags & IFF_ALLMULTI) { 5237 allmulti: 5238 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n"); 5239 5240 ifp->if_flags |= IFF_ALLMULTI; 5241 /* Enable all multicast addresses. */ 5242 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5243 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5244 0xffffffff); 5245 sort_mode |= BNX_RPM_SORT_USER0_MC_EN; 5246 } else { 5247 /* Accept one or more multicast(s). */ 5248 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n"); 5249 5250 ETHER_FIRST_MULTI(step, ec, enm); 5251 while (enm != NULL) { 5252 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 5253 ETHER_ADDR_LEN)) { 5254 goto allmulti; 5255 } 5256 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 5257 0xFF; 5258 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F); 5259 ETHER_NEXT_MULTI(step, enm); 5260 } 5261 5262 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) 5263 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4), 5264 hashes[i]); 5265 5266 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN; 5267 } 5268 5269 /* Only make changes if the recive mode has actually changed. */ 5270 if (rx_mode != sc->rx_mode) { 5271 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n", 5272 rx_mode); 5273 5274 sc->rx_mode = rx_mode; 5275 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode); 5276 } 5277 5278 /* Disable and clear the exisitng sort before enabling a new sort. */ 5279 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0); 5280 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode); 5281 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA); 5282 } 5283 5284 /****************************************************************************/ 5285 /* Called periodically to updates statistics from the controllers */ 5286 /* statistics block. */ 5287 /* */ 5288 /* Returns: */ 5289 /* Nothing. */ 5290 /****************************************************************************/ 5291 void 5292 bnx_stats_update(struct bnx_softc *sc) 5293 { 5294 struct ifnet *ifp = &sc->bnx_ec.ec_if; 5295 struct statistics_block *stats; 5296 5297 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__); 5298 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 5299 BUS_DMASYNC_POSTREAD); 5300 5301 stats = (struct statistics_block *)sc->stats_block; 5302 5303 /* 5304 * Update the interface statistics from the 5305 * hardware statistics. 5306 */ 5307 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions; 5308 5309 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts + 5310 (u_long)stats->stat_EtherStatsOverrsizePkts + 5311 (u_long)stats->stat_IfInMBUFDiscards + 5312 (u_long)stats->stat_Dot3StatsAlignmentErrors + 5313 (u_long)stats->stat_Dot3StatsFCSErrors; 5314 5315 ifp->if_oerrors = (u_long) 5316 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + 5317 (u_long)stats->stat_Dot3StatsExcessiveCollisions + 5318 (u_long)stats->stat_Dot3StatsLateCollisions; 5319 5320 /* 5321 * Certain controllers don't report 5322 * carrier sense errors correctly. 5323 * See errata E11_5708CA0_1165. 5324 */ 5325 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) && 5326 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) 5327 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors; 5328 5329 /* 5330 * Update the sysctl statistics from the 5331 * hardware statistics. 5332 */ 5333 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) + 5334 (u_int64_t) stats->stat_IfHCInOctets_lo; 5335 5336 sc->stat_IfHCInBadOctets = 5337 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) + 5338 (u_int64_t) stats->stat_IfHCInBadOctets_lo; 5339 5340 sc->stat_IfHCOutOctets = 5341 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) + 5342 (u_int64_t) stats->stat_IfHCOutOctets_lo; 5343 5344 sc->stat_IfHCOutBadOctets = 5345 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) + 5346 (u_int64_t) stats->stat_IfHCOutBadOctets_lo; 5347 5348 sc->stat_IfHCInUcastPkts = 5349 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) + 5350 (u_int64_t) stats->stat_IfHCInUcastPkts_lo; 5351 5352 sc->stat_IfHCInMulticastPkts = 5353 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) + 5354 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo; 5355 5356 sc->stat_IfHCInBroadcastPkts = 5357 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) + 5358 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo; 5359 5360 sc->stat_IfHCOutUcastPkts = 5361 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) + 5362 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo; 5363 5364 sc->stat_IfHCOutMulticastPkts = 5365 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) + 5366 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo; 5367 5368 sc->stat_IfHCOutBroadcastPkts = 5369 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) + 5370 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo; 5371 5372 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors = 5373 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors; 5374 5375 sc->stat_Dot3StatsCarrierSenseErrors = 5376 stats->stat_Dot3StatsCarrierSenseErrors; 5377 5378 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors; 5379 5380 sc->stat_Dot3StatsAlignmentErrors = 5381 stats->stat_Dot3StatsAlignmentErrors; 5382 5383 sc->stat_Dot3StatsSingleCollisionFrames = 5384 stats->stat_Dot3StatsSingleCollisionFrames; 5385 5386 sc->stat_Dot3StatsMultipleCollisionFrames = 5387 stats->stat_Dot3StatsMultipleCollisionFrames; 5388 5389 sc->stat_Dot3StatsDeferredTransmissions = 5390 stats->stat_Dot3StatsDeferredTransmissions; 5391 5392 sc->stat_Dot3StatsExcessiveCollisions = 5393 stats->stat_Dot3StatsExcessiveCollisions; 5394 5395 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions; 5396 5397 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions; 5398 5399 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments; 5400 5401 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers; 5402 5403 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts; 5404 5405 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts; 5406 5407 sc->stat_EtherStatsPktsRx64Octets = 5408 stats->stat_EtherStatsPktsRx64Octets; 5409 5410 sc->stat_EtherStatsPktsRx65Octetsto127Octets = 5411 stats->stat_EtherStatsPktsRx65Octetsto127Octets; 5412 5413 sc->stat_EtherStatsPktsRx128Octetsto255Octets = 5414 stats->stat_EtherStatsPktsRx128Octetsto255Octets; 5415 5416 sc->stat_EtherStatsPktsRx256Octetsto511Octets = 5417 stats->stat_EtherStatsPktsRx256Octetsto511Octets; 5418 5419 sc->stat_EtherStatsPktsRx512Octetsto1023Octets = 5420 stats->stat_EtherStatsPktsRx512Octetsto1023Octets; 5421 5422 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets = 5423 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets; 5424 5425 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets = 5426 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets; 5427 5428 sc->stat_EtherStatsPktsTx64Octets = 5429 stats->stat_EtherStatsPktsTx64Octets; 5430 5431 sc->stat_EtherStatsPktsTx65Octetsto127Octets = 5432 stats->stat_EtherStatsPktsTx65Octetsto127Octets; 5433 5434 sc->stat_EtherStatsPktsTx128Octetsto255Octets = 5435 stats->stat_EtherStatsPktsTx128Octetsto255Octets; 5436 5437 sc->stat_EtherStatsPktsTx256Octetsto511Octets = 5438 stats->stat_EtherStatsPktsTx256Octetsto511Octets; 5439 5440 sc->stat_EtherStatsPktsTx512Octetsto1023Octets = 5441 stats->stat_EtherStatsPktsTx512Octetsto1023Octets; 5442 5443 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets = 5444 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets; 5445 5446 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets = 5447 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets; 5448 5449 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived; 5450 5451 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived; 5452 5453 sc->stat_OutXonSent = stats->stat_OutXonSent; 5454 5455 sc->stat_OutXoffSent = stats->stat_OutXoffSent; 5456 5457 sc->stat_FlowControlDone = stats->stat_FlowControlDone; 5458 5459 sc->stat_MacControlFramesReceived = 5460 stats->stat_MacControlFramesReceived; 5461 5462 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered; 5463 5464 sc->stat_IfInFramesL2FilterDiscards = 5465 stats->stat_IfInFramesL2FilterDiscards; 5466 5467 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards; 5468 5469 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards; 5470 5471 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards; 5472 5473 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit; 5474 5475 sc->stat_CatchupInRuleCheckerDiscards = 5476 stats->stat_CatchupInRuleCheckerDiscards; 5477 5478 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards; 5479 5480 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards; 5481 5482 sc->stat_CatchupInRuleCheckerP4Hit = 5483 stats->stat_CatchupInRuleCheckerP4Hit; 5484 5485 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__); 5486 } 5487 5488 void 5489 bnx_tick(void *xsc) 5490 { 5491 struct bnx_softc *sc = xsc; 5492 struct mii_data *mii; 5493 u_int32_t msg; 5494 u_int16_t prod, chain_prod; 5495 u_int32_t prod_bseq; 5496 int s = splnet(); 5497 5498 /* Tell the firmware that the driver is still running. */ 5499 #ifdef BNX_DEBUG 5500 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE; 5501 #else 5502 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq; 5503 #endif 5504 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg); 5505 5506 /* Update the statistics from the hardware statistics block. */ 5507 bnx_stats_update(sc); 5508 5509 /* Schedule the next tick. */ 5510 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc); 5511 5512 mii = &sc->bnx_mii; 5513 mii_tick(mii); 5514 5515 /* try to get more RX buffers, just in case */ 5516 prod = sc->rx_prod; 5517 prod_bseq = sc->rx_prod_bseq; 5518 chain_prod = RX_CHAIN_IDX(prod); 5519 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq); 5520 sc->rx_prod = prod; 5521 sc->rx_prod_bseq = prod_bseq; 5522 splx(s); 5523 return; 5524 } 5525 5526 /****************************************************************************/ 5527 /* BNX Debug Routines */ 5528 /****************************************************************************/ 5529 #ifdef BNX_DEBUG 5530 5531 /****************************************************************************/ 5532 /* Prints out information about an mbuf. */ 5533 /* */ 5534 /* Returns: */ 5535 /* Nothing. */ 5536 /****************************************************************************/ 5537 void 5538 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m) 5539 { 5540 struct mbuf *mp = m; 5541 5542 if (m == NULL) { 5543 /* Index out of range. */ 5544 aprint_error("mbuf ptr is null!\n"); 5545 return; 5546 } 5547 5548 while (mp) { 5549 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ", 5550 mp, mp->m_len); 5551 5552 if (mp->m_flags & M_EXT) 5553 aprint_debug("M_EXT "); 5554 if (mp->m_flags & M_PKTHDR) 5555 aprint_debug("M_PKTHDR "); 5556 aprint_debug("\n"); 5557 5558 if (mp->m_flags & M_EXT) 5559 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n", 5560 mp, mp->m_ext.ext_size); 5561 5562 mp = mp->m_next; 5563 } 5564 } 5565 5566 /****************************************************************************/ 5567 /* Prints out the mbufs in the TX mbuf chain. */ 5568 /* */ 5569 /* Returns: */ 5570 /* Nothing. */ 5571 /****************************************************************************/ 5572 void 5573 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5574 { 5575 #if 0 5576 struct mbuf *m; 5577 int i; 5578 5579 aprint_debug_dev(sc->bnx_dev, 5580 "----------------------------" 5581 " tx mbuf data " 5582 "----------------------------\n"); 5583 5584 for (i = 0; i < count; i++) { 5585 m = sc->tx_mbuf_ptr[chain_prod]; 5586 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod); 5587 bnx_dump_mbuf(sc, m); 5588 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod)); 5589 } 5590 5591 aprint_debug_dev(sc->bnx_dev, 5592 "--------------------------------------------" 5593 "----------------------------\n"); 5594 #endif 5595 } 5596 5597 /* 5598 * This routine prints the RX mbuf chain. 5599 */ 5600 void 5601 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count) 5602 { 5603 struct mbuf *m; 5604 int i; 5605 5606 aprint_debug_dev(sc->bnx_dev, 5607 "----------------------------" 5608 " rx mbuf data " 5609 "----------------------------\n"); 5610 5611 for (i = 0; i < count; i++) { 5612 m = sc->rx_mbuf_ptr[chain_prod]; 5613 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod); 5614 bnx_dump_mbuf(sc, m); 5615 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod)); 5616 } 5617 5618 5619 aprint_debug_dev(sc->bnx_dev, 5620 "--------------------------------------------" 5621 "----------------------------\n"); 5622 } 5623 5624 void 5625 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd) 5626 { 5627 if (idx > MAX_TX_BD) 5628 /* Index out of range. */ 5629 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx); 5630 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE) 5631 /* TX Chain page pointer. */ 5632 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain " 5633 "page pointer\n", idx, txbd->tx_bd_haddr_hi, 5634 txbd->tx_bd_haddr_lo); 5635 else 5636 /* Normal tx_bd entry. */ 5637 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5638 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx, 5639 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo, 5640 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag, 5641 txbd->tx_bd_flags); 5642 } 5643 5644 void 5645 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd) 5646 { 5647 if (idx > MAX_RX_BD) 5648 /* Index out of range. */ 5649 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx); 5650 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE) 5651 /* TX Chain page pointer. */ 5652 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page " 5653 "pointer\n", idx, rxbd->rx_bd_haddr_hi, 5654 rxbd->rx_bd_haddr_lo); 5655 else 5656 /* Normal tx_bd entry. */ 5657 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = " 5658 "0x%08X, flags = 0x%08X\n", idx, 5659 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo, 5660 rxbd->rx_bd_len, rxbd->rx_bd_flags); 5661 } 5662 5663 void 5664 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr) 5665 { 5666 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, " 5667 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, " 5668 "tcp_udp_xsum = 0x%04X\n", idx, 5669 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len, 5670 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum, 5671 l2fhdr->l2_fhdr_tcp_udp_xsum); 5672 } 5673 5674 /* 5675 * This routine prints the TX chain. 5676 */ 5677 void 5678 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count) 5679 { 5680 struct tx_bd *txbd; 5681 int i; 5682 5683 /* First some info about the tx_bd chain structure. */ 5684 aprint_debug_dev(sc->bnx_dev, 5685 "----------------------------" 5686 " tx_bd chain " 5687 "----------------------------\n"); 5688 5689 BNX_PRINTF(sc, 5690 "page size = 0x%08X, tx chain pages = 0x%08X\n", 5691 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES); 5692 5693 BNX_PRINTF(sc, 5694 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n", 5695 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE); 5696 5697 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD); 5698 5699 aprint_error_dev(sc->bnx_dev, "" 5700 "-----------------------------" 5701 " tx_bd data " 5702 "-----------------------------\n"); 5703 5704 /* Now print out the tx_bd's themselves. */ 5705 for (i = 0; i < count; i++) { 5706 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)]; 5707 bnx_dump_txbd(sc, tx_prod, txbd); 5708 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod)); 5709 } 5710 5711 aprint_debug_dev(sc->bnx_dev, 5712 "-----------------------------" 5713 "--------------" 5714 "-----------------------------\n"); 5715 } 5716 5717 /* 5718 * This routine prints the RX chain. 5719 */ 5720 void 5721 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count) 5722 { 5723 struct rx_bd *rxbd; 5724 int i; 5725 5726 /* First some info about the tx_bd chain structure. */ 5727 aprint_debug_dev(sc->bnx_dev, 5728 "----------------------------" 5729 " rx_bd chain " 5730 "----------------------------\n"); 5731 5732 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n"); 5733 5734 BNX_PRINTF(sc, 5735 "page size = 0x%08X, rx chain pages = 0x%08X\n", 5736 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES); 5737 5738 BNX_PRINTF(sc, 5739 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n", 5740 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE); 5741 5742 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD); 5743 5744 aprint_error_dev(sc->bnx_dev, 5745 "----------------------------" 5746 " rx_bd data " 5747 "----------------------------\n"); 5748 5749 /* Now print out the rx_bd's themselves. */ 5750 for (i = 0; i < count; i++) { 5751 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)]; 5752 bnx_dump_rxbd(sc, rx_prod, rxbd); 5753 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod)); 5754 } 5755 5756 aprint_debug_dev(sc->bnx_dev, 5757 "----------------------------" 5758 "--------------" 5759 "----------------------------\n"); 5760 } 5761 5762 /* 5763 * This routine prints the status block. 5764 */ 5765 void 5766 bnx_dump_status_block(struct bnx_softc *sc) 5767 { 5768 struct status_block *sblk; 5769 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 5770 BUS_DMASYNC_POSTREAD); 5771 5772 sblk = sc->status_block; 5773 5774 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block " 5775 "-----------------------------\n"); 5776 5777 BNX_PRINTF(sc, 5778 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n", 5779 sblk->status_attn_bits, sblk->status_attn_bits_ack, 5780 sblk->status_idx); 5781 5782 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n", 5783 sblk->status_rx_quick_consumer_index0, 5784 sblk->status_tx_quick_consumer_index0); 5785 5786 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx); 5787 5788 /* Theses indices are not used for normal L2 drivers. */ 5789 if (sblk->status_rx_quick_consumer_index1 || 5790 sblk->status_tx_quick_consumer_index1) 5791 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n", 5792 sblk->status_rx_quick_consumer_index1, 5793 sblk->status_tx_quick_consumer_index1); 5794 5795 if (sblk->status_rx_quick_consumer_index2 || 5796 sblk->status_tx_quick_consumer_index2) 5797 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n", 5798 sblk->status_rx_quick_consumer_index2, 5799 sblk->status_tx_quick_consumer_index2); 5800 5801 if (sblk->status_rx_quick_consumer_index3 || 5802 sblk->status_tx_quick_consumer_index3) 5803 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n", 5804 sblk->status_rx_quick_consumer_index3, 5805 sblk->status_tx_quick_consumer_index3); 5806 5807 if (sblk->status_rx_quick_consumer_index4 || 5808 sblk->status_rx_quick_consumer_index5) 5809 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n", 5810 sblk->status_rx_quick_consumer_index4, 5811 sblk->status_rx_quick_consumer_index5); 5812 5813 if (sblk->status_rx_quick_consumer_index6 || 5814 sblk->status_rx_quick_consumer_index7) 5815 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n", 5816 sblk->status_rx_quick_consumer_index6, 5817 sblk->status_rx_quick_consumer_index7); 5818 5819 if (sblk->status_rx_quick_consumer_index8 || 5820 sblk->status_rx_quick_consumer_index9) 5821 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n", 5822 sblk->status_rx_quick_consumer_index8, 5823 sblk->status_rx_quick_consumer_index9); 5824 5825 if (sblk->status_rx_quick_consumer_index10 || 5826 sblk->status_rx_quick_consumer_index11) 5827 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n", 5828 sblk->status_rx_quick_consumer_index10, 5829 sblk->status_rx_quick_consumer_index11); 5830 5831 if (sblk->status_rx_quick_consumer_index12 || 5832 sblk->status_rx_quick_consumer_index13) 5833 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n", 5834 sblk->status_rx_quick_consumer_index12, 5835 sblk->status_rx_quick_consumer_index13); 5836 5837 if (sblk->status_rx_quick_consumer_index14 || 5838 sblk->status_rx_quick_consumer_index15) 5839 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n", 5840 sblk->status_rx_quick_consumer_index14, 5841 sblk->status_rx_quick_consumer_index15); 5842 5843 if (sblk->status_completion_producer_index || 5844 sblk->status_cmd_consumer_index) 5845 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n", 5846 sblk->status_completion_producer_index, 5847 sblk->status_cmd_consumer_index); 5848 5849 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------" 5850 "-----------------------------\n"); 5851 } 5852 5853 /* 5854 * This routine prints the statistics block. 5855 */ 5856 void 5857 bnx_dump_stats_block(struct bnx_softc *sc) 5858 { 5859 struct statistics_block *sblk; 5860 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ, 5861 BUS_DMASYNC_POSTREAD); 5862 5863 sblk = sc->stats_block; 5864 5865 aprint_debug_dev(sc->bnx_dev, "" 5866 "-----------------------------" 5867 " Stats Block " 5868 "-----------------------------\n"); 5869 5870 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, " 5871 "IfHcInBadOctets = 0x%08X:%08X\n", 5872 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo, 5873 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo); 5874 5875 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, " 5876 "IfHcOutBadOctets = 0x%08X:%08X\n", 5877 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo, 5878 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo); 5879 5880 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, " 5881 "IfHcInMulticastPkts = 0x%08X:%08X\n", 5882 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo, 5883 sblk->stat_IfHCInMulticastPkts_hi, 5884 sblk->stat_IfHCInMulticastPkts_lo); 5885 5886 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, " 5887 "IfHcOutUcastPkts = 0x%08X:%08X\n", 5888 sblk->stat_IfHCInBroadcastPkts_hi, 5889 sblk->stat_IfHCInBroadcastPkts_lo, 5890 sblk->stat_IfHCOutUcastPkts_hi, 5891 sblk->stat_IfHCOutUcastPkts_lo); 5892 5893 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, " 5894 "IfHcOutBroadcastPkts = 0x%08X:%08X\n", 5895 sblk->stat_IfHCOutMulticastPkts_hi, 5896 sblk->stat_IfHCOutMulticastPkts_lo, 5897 sblk->stat_IfHCOutBroadcastPkts_hi, 5898 sblk->stat_IfHCOutBroadcastPkts_lo); 5899 5900 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) 5901 BNX_PRINTF(sc, "0x%08X : " 5902 "emac_tx_stat_dot3statsinternalmactransmiterrors\n", 5903 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors); 5904 5905 if (sblk->stat_Dot3StatsCarrierSenseErrors) 5906 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n", 5907 sblk->stat_Dot3StatsCarrierSenseErrors); 5908 5909 if (sblk->stat_Dot3StatsFCSErrors) 5910 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n", 5911 sblk->stat_Dot3StatsFCSErrors); 5912 5913 if (sblk->stat_Dot3StatsAlignmentErrors) 5914 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n", 5915 sblk->stat_Dot3StatsAlignmentErrors); 5916 5917 if (sblk->stat_Dot3StatsSingleCollisionFrames) 5918 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n", 5919 sblk->stat_Dot3StatsSingleCollisionFrames); 5920 5921 if (sblk->stat_Dot3StatsMultipleCollisionFrames) 5922 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n", 5923 sblk->stat_Dot3StatsMultipleCollisionFrames); 5924 5925 if (sblk->stat_Dot3StatsDeferredTransmissions) 5926 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n", 5927 sblk->stat_Dot3StatsDeferredTransmissions); 5928 5929 if (sblk->stat_Dot3StatsExcessiveCollisions) 5930 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n", 5931 sblk->stat_Dot3StatsExcessiveCollisions); 5932 5933 if (sblk->stat_Dot3StatsLateCollisions) 5934 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n", 5935 sblk->stat_Dot3StatsLateCollisions); 5936 5937 if (sblk->stat_EtherStatsCollisions) 5938 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n", 5939 sblk->stat_EtherStatsCollisions); 5940 5941 if (sblk->stat_EtherStatsFragments) 5942 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n", 5943 sblk->stat_EtherStatsFragments); 5944 5945 if (sblk->stat_EtherStatsJabbers) 5946 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n", 5947 sblk->stat_EtherStatsJabbers); 5948 5949 if (sblk->stat_EtherStatsUndersizePkts) 5950 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n", 5951 sblk->stat_EtherStatsUndersizePkts); 5952 5953 if (sblk->stat_EtherStatsOverrsizePkts) 5954 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n", 5955 sblk->stat_EtherStatsOverrsizePkts); 5956 5957 if (sblk->stat_EtherStatsPktsRx64Octets) 5958 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n", 5959 sblk->stat_EtherStatsPktsRx64Octets); 5960 5961 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets) 5962 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n", 5963 sblk->stat_EtherStatsPktsRx65Octetsto127Octets); 5964 5965 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets) 5966 BNX_PRINTF(sc, "0x%08X : " 5967 "EtherStatsPktsRx128Octetsto255Octets\n", 5968 sblk->stat_EtherStatsPktsRx128Octetsto255Octets); 5969 5970 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets) 5971 BNX_PRINTF(sc, "0x%08X : " 5972 "EtherStatsPktsRx256Octetsto511Octets\n", 5973 sblk->stat_EtherStatsPktsRx256Octetsto511Octets); 5974 5975 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets) 5976 BNX_PRINTF(sc, "0x%08X : " 5977 "EtherStatsPktsRx512Octetsto1023Octets\n", 5978 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets); 5979 5980 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets) 5981 BNX_PRINTF(sc, "0x%08X : " 5982 "EtherStatsPktsRx1024Octetsto1522Octets\n", 5983 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets); 5984 5985 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets) 5986 BNX_PRINTF(sc, "0x%08X : " 5987 "EtherStatsPktsRx1523Octetsto9022Octets\n", 5988 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets); 5989 5990 if (sblk->stat_EtherStatsPktsTx64Octets) 5991 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n", 5992 sblk->stat_EtherStatsPktsTx64Octets); 5993 5994 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets) 5995 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n", 5996 sblk->stat_EtherStatsPktsTx65Octetsto127Octets); 5997 5998 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets) 5999 BNX_PRINTF(sc, "0x%08X : " 6000 "EtherStatsPktsTx128Octetsto255Octets\n", 6001 sblk->stat_EtherStatsPktsTx128Octetsto255Octets); 6002 6003 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets) 6004 BNX_PRINTF(sc, "0x%08X : " 6005 "EtherStatsPktsTx256Octetsto511Octets\n", 6006 sblk->stat_EtherStatsPktsTx256Octetsto511Octets); 6007 6008 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets) 6009 BNX_PRINTF(sc, "0x%08X : " 6010 "EtherStatsPktsTx512Octetsto1023Octets\n", 6011 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets); 6012 6013 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets) 6014 BNX_PRINTF(sc, "0x%08X : " 6015 "EtherStatsPktsTx1024Octetsto1522Octets\n", 6016 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets); 6017 6018 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets) 6019 BNX_PRINTF(sc, "0x%08X : " 6020 "EtherStatsPktsTx1523Octetsto9022Octets\n", 6021 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets); 6022 6023 if (sblk->stat_XonPauseFramesReceived) 6024 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n", 6025 sblk->stat_XonPauseFramesReceived); 6026 6027 if (sblk->stat_XoffPauseFramesReceived) 6028 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n", 6029 sblk->stat_XoffPauseFramesReceived); 6030 6031 if (sblk->stat_OutXonSent) 6032 BNX_PRINTF(sc, "0x%08X : OutXonSent\n", 6033 sblk->stat_OutXonSent); 6034 6035 if (sblk->stat_OutXoffSent) 6036 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n", 6037 sblk->stat_OutXoffSent); 6038 6039 if (sblk->stat_FlowControlDone) 6040 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n", 6041 sblk->stat_FlowControlDone); 6042 6043 if (sblk->stat_MacControlFramesReceived) 6044 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n", 6045 sblk->stat_MacControlFramesReceived); 6046 6047 if (sblk->stat_XoffStateEntered) 6048 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n", 6049 sblk->stat_XoffStateEntered); 6050 6051 if (sblk->stat_IfInFramesL2FilterDiscards) 6052 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n", 6053 sblk->stat_IfInFramesL2FilterDiscards); 6054 6055 if (sblk->stat_IfInRuleCheckerDiscards) 6056 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n", 6057 sblk->stat_IfInRuleCheckerDiscards); 6058 6059 if (sblk->stat_IfInFTQDiscards) 6060 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n", 6061 sblk->stat_IfInFTQDiscards); 6062 6063 if (sblk->stat_IfInMBUFDiscards) 6064 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n", 6065 sblk->stat_IfInMBUFDiscards); 6066 6067 if (sblk->stat_IfInRuleCheckerP4Hit) 6068 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n", 6069 sblk->stat_IfInRuleCheckerP4Hit); 6070 6071 if (sblk->stat_CatchupInRuleCheckerDiscards) 6072 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n", 6073 sblk->stat_CatchupInRuleCheckerDiscards); 6074 6075 if (sblk->stat_CatchupInFTQDiscards) 6076 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n", 6077 sblk->stat_CatchupInFTQDiscards); 6078 6079 if (sblk->stat_CatchupInMBUFDiscards) 6080 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n", 6081 sblk->stat_CatchupInMBUFDiscards); 6082 6083 if (sblk->stat_CatchupInRuleCheckerP4Hit) 6084 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n", 6085 sblk->stat_CatchupInRuleCheckerP4Hit); 6086 6087 aprint_debug_dev(sc->bnx_dev, 6088 "-----------------------------" 6089 "--------------" 6090 "-----------------------------\n"); 6091 } 6092 6093 void 6094 bnx_dump_driver_state(struct bnx_softc *sc) 6095 { 6096 aprint_debug_dev(sc->bnx_dev, 6097 "-----------------------------" 6098 " Driver State " 6099 "-----------------------------\n"); 6100 6101 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual " 6102 "address\n", sc); 6103 6104 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n", 6105 sc->status_block); 6106 6107 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual " 6108 "address\n", sc->stats_block); 6109 6110 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual " 6111 "adddress\n", sc->tx_bd_chain); 6112 6113 #if 0 6114 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n", 6115 sc->rx_bd_chain); 6116 6117 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n", 6118 sc->tx_mbuf_ptr); 6119 #endif 6120 6121 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n", 6122 sc->rx_mbuf_ptr); 6123 6124 BNX_PRINTF(sc, 6125 " 0x%08X - (sc->interrupts_generated) h/w intrs\n", 6126 sc->interrupts_generated); 6127 6128 BNX_PRINTF(sc, 6129 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n", 6130 sc->rx_interrupts); 6131 6132 BNX_PRINTF(sc, 6133 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n", 6134 sc->tx_interrupts); 6135 6136 BNX_PRINTF(sc, 6137 " 0x%08X - (sc->last_status_idx) status block index\n", 6138 sc->last_status_idx); 6139 6140 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n", 6141 sc->tx_prod); 6142 6143 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n", 6144 sc->tx_cons); 6145 6146 BNX_PRINTF(sc, 6147 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n", 6148 sc->tx_prod_bseq); 6149 BNX_PRINTF(sc, 6150 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n", 6151 sc->tx_mbuf_alloc); 6152 6153 BNX_PRINTF(sc, 6154 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n", 6155 sc->used_tx_bd); 6156 6157 BNX_PRINTF(sc, 6158 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n", 6159 sc->tx_hi_watermark, sc->max_tx_bd); 6160 6161 6162 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n", 6163 sc->rx_prod); 6164 6165 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n", 6166 sc->rx_cons); 6167 6168 BNX_PRINTF(sc, 6169 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n", 6170 sc->rx_prod_bseq); 6171 6172 BNX_PRINTF(sc, 6173 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n", 6174 sc->rx_mbuf_alloc); 6175 6176 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n", 6177 sc->free_rx_bd); 6178 6179 BNX_PRINTF(sc, 6180 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n", 6181 sc->rx_low_watermark, sc->max_rx_bd); 6182 6183 BNX_PRINTF(sc, 6184 " 0x%08X - (sc->mbuf_alloc_failed) " 6185 "mbuf alloc failures\n", 6186 sc->mbuf_alloc_failed); 6187 6188 BNX_PRINTF(sc, 6189 " 0x%0X - (sc->mbuf_sim_allocated_failed) " 6190 "simulated mbuf alloc failures\n", 6191 sc->mbuf_sim_alloc_failed); 6192 6193 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------" 6194 "-----------------------------\n"); 6195 } 6196 6197 void 6198 bnx_dump_hw_state(struct bnx_softc *sc) 6199 { 6200 u_int32_t val1; 6201 int i; 6202 6203 aprint_debug_dev(sc->bnx_dev, 6204 "----------------------------" 6205 " Hardware State " 6206 "----------------------------\n"); 6207 6208 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver); 6209 6210 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS); 6211 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n", 6212 val1, BNX_MISC_ENABLE_STATUS_BITS); 6213 6214 val1 = REG_RD(sc, BNX_DMA_STATUS); 6215 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS); 6216 6217 val1 = REG_RD(sc, BNX_CTX_STATUS); 6218 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS); 6219 6220 val1 = REG_RD(sc, BNX_EMAC_STATUS); 6221 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, 6222 BNX_EMAC_STATUS); 6223 6224 val1 = REG_RD(sc, BNX_RPM_STATUS); 6225 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS); 6226 6227 val1 = REG_RD(sc, BNX_TBDR_STATUS); 6228 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, 6229 BNX_TBDR_STATUS); 6230 6231 val1 = REG_RD(sc, BNX_TDMA_STATUS); 6232 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, 6233 BNX_TDMA_STATUS); 6234 6235 val1 = REG_RD(sc, BNX_HC_STATUS); 6236 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS); 6237 6238 aprint_debug_dev(sc->bnx_dev, 6239 "----------------------------" 6240 "----------------" 6241 "----------------------------\n"); 6242 6243 aprint_debug_dev(sc->bnx_dev, 6244 "----------------------------" 6245 " Register Dump " 6246 "----------------------------\n"); 6247 6248 for (i = 0x400; i < 0x8000; i += 0x10) 6249 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", 6250 i, REG_RD(sc, i), REG_RD(sc, i + 0x4), 6251 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC)); 6252 6253 aprint_debug_dev(sc->bnx_dev, 6254 "----------------------------" 6255 "----------------" 6256 "----------------------------\n"); 6257 } 6258 6259 void 6260 bnx_breakpoint(struct bnx_softc *sc) 6261 { 6262 /* Unreachable code to shut the compiler up about unused functions. */ 6263 if (0) { 6264 bnx_dump_txbd(sc, 0, NULL); 6265 bnx_dump_rxbd(sc, 0, NULL); 6266 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD); 6267 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd); 6268 bnx_dump_l2fhdr(sc, 0, NULL); 6269 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD); 6270 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd); 6271 bnx_dump_status_block(sc); 6272 bnx_dump_stats_block(sc); 6273 bnx_dump_driver_state(sc); 6274 bnx_dump_hw_state(sc); 6275 } 6276 6277 bnx_dump_driver_state(sc); 6278 /* Print the important status block fields. */ 6279 bnx_dump_status_block(sc); 6280 6281 #if 0 6282 /* Call the debugger. */ 6283 breakpoint(); 6284 #endif 6285 6286 return; 6287 } 6288 #endif 6289