xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_bnx.c,v 1.49 2013/09/13 20:54:14 martin Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.49 2013/09/13 20:54:14 martin Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *
52  *   BCM5706C A0, A1
53  *   BCM5706S A0, A1
54  *   BCM5708C A0, B0
55  *   BCM5708S A0, B0
56  *   BCM5709C A0  B0, B1, B2 (pre-production)
57  *   BCM5709S A0, B0, B1, B2 (pre-production)
58  */
59 
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62 
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65 
66 #include <dev/microcode/bnx/bnxfw.h>
67 
68 /****************************************************************************/
69 /* BNX Driver Version                                                       */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION	"v0.9.6"
72 
73 /****************************************************************************/
74 /* BNX Debug Options                                                        */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78 
79 	/*          0 = Never              */
80 	/*          1 = 1 in 2,147,483,648 */
81 	/*        256 = 1 in     8,388,608 */
82 	/*       2048 = 1 in     1,048,576 */
83 	/*      65536 = 1 in        32,768 */
84 	/*    1048576 = 1 in         2,048 */
85 	/*  268435456 =	1 in             8 */
86 	/*  536870912 = 1 in             4 */
87 	/* 1073741824 = 1 in             2 */
88 
89 	/* Controls how often the l2_fhdr frame error check will fail. */
90 	int bnx_debug_l2fhdr_status_check = 0;
91 
92 	/* Controls how often the unexpected attention check will fail. */
93 	int bnx_debug_unexpected_attention = 0;
94 
95 	/* Controls how often to simulate an mbuf allocation failure. */
96 	int bnx_debug_mbuf_allocation_failure = 0;
97 
98 	/* Controls how often to simulate a DMA mapping failure. */
99 	int bnx_debug_dma_map_addr_failure = 0;
100 
101 	/* Controls how often to simulate a bootcode failure. */
102 	int bnx_debug_bootcode_running_failure = 0;
103 #endif
104 
105 /****************************************************************************/
106 /* PCI Device ID Table                                                      */
107 /*                                                                          */
108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
109 /****************************************************************************/
110 static const struct bnx_product {
111 	pci_vendor_id_t		bp_vendor;
112 	pci_product_id_t	bp_product;
113 	pci_vendor_id_t		bp_subvendor;
114 	pci_product_id_t	bp_subproduct;
115 	const char		*bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 	{
119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 	  "HP NC370T Multifunction Gigabit Server Adapter"
122 	},
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 	{
126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 	  "HP NC370i Multifunction Gigabit Server Adapter"
129 	},
130 #endif
131 	{
132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 	  0, 0,
134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
135 	},
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 	{
138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 	  "HP NC370F Multifunction Gigabit Server Adapter"
141 	},
142 #endif
143 	{
144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 	  0, 0,
146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 	},
148 	{
149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 	  0, 0,
151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
152 	},
153 	{
154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 	  0, 0,
156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 	},
158 	{
159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 	  0, 0,
161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
162 	},
163 	{
164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 	  0, 0,
166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 	},
168 	{
169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 	  0, 0,
171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
172 	},
173 	{
174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 	  0, 0,
176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 	},
178 };
179 
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data.                                       */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
187 	/* Slow EEPROM */
188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 	 "EEPROM - slow"},
192 	/* Expansion entry 0001 */
193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 	 "Entry 0001"},
197 	/* Saifun SA25F010 (non-buffered flash) */
198 	/* strap, cfg1, & write1 need updates */
199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 	 "Non-buffered flash (128kB)"},
203 	/* Saifun SA25F020 (non-buffered flash) */
204 	/* strap, cfg1, & write1 need updates */
205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 	 "Non-buffered flash (256kB)"},
209 	/* Expansion entry 0100 */
210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 	 "Entry 0100"},
214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 	/* Saifun SA25F005 (non-buffered flash) */
225 	/* strap, cfg1, & write1 need updates */
226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 	 "Non-buffered flash (64kB)"},
230 	/* Fast EEPROM */
231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 	 "EEPROM - fast"},
235 	/* Expansion entry 1001 */
236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 1001"},
240 	/* Expansion entry 1010 */
241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 	 "Entry 1010"},
245 	/* ATMEL AT45DB011B (buffered flash) */
246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 	 "Buffered flash (128kB)"},
250 	/* Expansion entry 1100 */
251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 	 "Entry 1100"},
255 	/* Expansion entry 1101 */
256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 	 "Entry 1101"},
260 	/* Ateml Expansion entry 1110 */
261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 	 "Entry 1110 (Atmel)"},
265 	/* ATMEL AT45DB021B (buffered flash) */
266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 	 "Buffered flash (256kB)"},
270 };
271 
272 /*
273  * The BCM5709 controllers transparently handle the
274  * differences between Atmel 264 byte pages and all
275  * flash devices which use 256 byte pages, so no
276  * logical-to-physical mapping is required in the
277  * driver.
278  */
279 static struct flash_spec flash_5709 = {
280 	.flags		= BNX_NV_BUFFERED,
281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
285 	.name		= "5709 buffered flash (256kB)",
286 };
287 
288 /****************************************************************************/
289 /* OpenBSD device entry points.                                             */
290 /****************************************************************************/
291 static int	bnx_probe(device_t, cfdata_t, void *);
292 void	bnx_attach(device_t, device_t, void *);
293 int	bnx_detach(device_t, int);
294 
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines                                   */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void	bnx_dump_status_block(struct bnx_softc *);
308 void	bnx_dump_stats_block(struct bnx_softc *);
309 void	bnx_dump_driver_state(struct bnx_softc *);
310 void	bnx_dump_hw_state(struct bnx_softc *);
311 void	bnx_breakpoint(struct bnx_softc *);
312 #endif
313 
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines                                      */
316 /****************************************************************************/
317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int	bnx_miibus_read_reg(device_t, int, int);
321 void	bnx_miibus_write_reg(device_t, int, int, int);
322 void	bnx_miibus_statchg(struct ifnet *);
323 
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines                                                */
326 /****************************************************************************/
327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
328 int	bnx_release_nvram_lock(struct bnx_softc *);
329 void	bnx_enable_nvram_access(struct bnx_softc *);
330 void	bnx_disable_nvram_access(struct bnx_softc *);
331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 	    u_int32_t);
333 int	bnx_init_nvram(struct bnx_softc *);
334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int	bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int	bnx_enable_nvram_write(struct bnx_softc *);
338 void	bnx_disable_nvram_write(struct bnx_softc *);
339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 	    u_int32_t);
342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344 
345 /****************************************************************************/
346 /*                                                                          */
347 /****************************************************************************/
348 void	bnx_get_media(struct bnx_softc *);
349 void	bnx_init_media(struct bnx_softc *);
350 int	bnx_dma_alloc(struct bnx_softc *);
351 void	bnx_dma_free(struct bnx_softc *);
352 void	bnx_release_resources(struct bnx_softc *);
353 
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load                                    */
356 /****************************************************************************/
357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 	    u_int32_t);
360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 	    struct fw_info *);
362 void	bnx_init_cpus(struct bnx_softc *);
363 
364 void	bnx_stop(struct ifnet *, int);
365 int	bnx_reset(struct bnx_softc *, u_int32_t);
366 int	bnx_chipinit(struct bnx_softc *);
367 int	bnx_blockinit(struct bnx_softc *);
368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 	    u_int16_t *, u_int32_t *);
370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371 
372 int	bnx_init_tx_chain(struct bnx_softc *);
373 void	bnx_init_tx_context(struct bnx_softc *);
374 int	bnx_init_rx_chain(struct bnx_softc *);
375 void	bnx_init_rx_context(struct bnx_softc *);
376 void	bnx_free_rx_chain(struct bnx_softc *);
377 void	bnx_free_tx_chain(struct bnx_softc *);
378 
379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void	bnx_start(struct ifnet *);
381 int	bnx_ioctl(struct ifnet *, u_long, void *);
382 void	bnx_watchdog(struct ifnet *);
383 int	bnx_init(struct ifnet *);
384 
385 void	bnx_init_context(struct bnx_softc *);
386 void	bnx_get_mac_addr(struct bnx_softc *);
387 void	bnx_set_mac_addr(struct bnx_softc *);
388 void	bnx_phy_intr(struct bnx_softc *);
389 void	bnx_rx_intr(struct bnx_softc *);
390 void	bnx_tx_intr(struct bnx_softc *);
391 void	bnx_disable_intr(struct bnx_softc *);
392 void	bnx_enable_intr(struct bnx_softc *);
393 
394 int	bnx_intr(void *);
395 void	bnx_iff(struct bnx_softc *);
396 void	bnx_stats_update(struct bnx_softc *);
397 void	bnx_tick(void *);
398 
399 struct pool *bnx_tx_pool = NULL;
400 void	bnx_alloc_pkts(struct work *, void *);
401 
402 /****************************************************************************/
403 /* OpenBSD device dispatch table.                                           */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407 
408 /****************************************************************************/
409 /* Device probe function.                                                   */
410 /*                                                                          */
411 /* Compares the device to the driver's list of supported devices and        */
412 /* reports back to the OS whether this is the right driver for the device.  */
413 /*                                                                          */
414 /* Returns:                                                                 */
415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 	int i;
421 	pcireg_t subid;
422 
423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 			continue;
427 		if (!bnx_devices[i].bp_subvendor)
428 			return &bnx_devices[i];
429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 			return &bnx_devices[i];
433 	}
434 
435 	return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441 
442 	if (bnx_lookup(pa) != NULL)
443 		return (1);
444 
445 	return (0);
446 }
447 
448 /****************************************************************************/
449 /* Device attach function.                                                  */
450 /*                                                                          */
451 /* Allocates device resources, performs secondary chip identification,      */
452 /* resets and initializes the hardware, and initializes driver instance     */
453 /* variables.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   0 on success, positive value on failure.                               */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 	const struct bnx_product *bp;
462 	struct bnx_softc	*sc = device_private(self);
463 	prop_dictionary_t	dict;
464 	struct pci_attach_args	*pa = aux;
465 	pci_chipset_tag_t	pc = pa->pa_pc;
466 	pci_intr_handle_t	ih;
467 	const char 		*intrstr = NULL;
468 	u_int32_t		command;
469 	struct ifnet		*ifp;
470 	u_int32_t		val;
471 	int			mii_flags = MIIF_FORCEANEG;
472 	pcireg_t		memtype;
473 
474 	if (bnx_tx_pool == NULL) {
475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 		if (bnx_tx_pool != NULL) {
477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 		} else {
480 			aprint_error(": can't alloc bnx_tx_pool\n");
481 			return;
482 		}
483 	}
484 
485 	bp = bnx_lookup(pa);
486 	if (bp == NULL)
487 		panic("unknown device");
488 
489 	sc->bnx_dev = self;
490 
491 	aprint_naive("\n");
492 	aprint_normal(": %s\n", bp->bp_name);
493 
494 	sc->bnx_pa = *pa;
495 
496 	/*
497 	 * Map control/status registers.
498 	*/
499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503 
504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 		aprint_error_dev(sc->bnx_dev,
506 		    "failed to enable memory mapping!\n");
507 		return;
508 	}
509 
510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 		return;
515 	}
516 
517 	if (pci_intr_map(pa, &ih)) {
518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 		goto bnx_attach_fail;
520 	}
521 
522 	intrstr = pci_intr_string(pc, ih);
523 
524 	/*
525 	 * Configure byte swap and enable indirect register access.
526 	 * Rely on CPU to do target byte swapping on big endian systems.
527 	 * Access to registers outside of PCI configurtion space are not
528 	 * valid until this is done.
529 	 */
530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533 
534 	/* Save ASIC revsion info. */
535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
536 
537 	/*
538 	 * Find the base address for shared memory access.
539 	 * Newer versions of bootcode use a signature and offset
540 	 * while older versions use a fixed address.
541 	 */
542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 		    (sc->bnx_pa.pa_function << 2));
546 	else
547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548 
549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550 
551 	/* Set initial device and PHY flags */
552 	sc->bnx_flags = 0;
553 	sc->bnx_phy_flags = 0;
554 
555 	/* Get PCI bus information (speed and type). */
556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 		u_int32_t clkreg;
559 
560 		sc->bnx_flags |= BNX_PCIX_FLAG;
561 
562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563 
564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 		switch (clkreg) {
566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 			sc->bus_speed_mhz = 133;
568 			break;
569 
570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 			sc->bus_speed_mhz = 100;
572 			break;
573 
574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 			sc->bus_speed_mhz = 66;
577 			break;
578 
579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 			sc->bus_speed_mhz = 50;
582 			break;
583 
584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 			sc->bus_speed_mhz = 33;
588 			break;
589 		}
590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 			sc->bus_speed_mhz = 66;
592 		else
593 			sc->bus_speed_mhz = 33;
594 
595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597 
598 	/* Reset the controller. */
599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 		goto bnx_attach_fail;
601 
602 	/* Initialize the controller. */
603 	if (bnx_chipinit(sc)) {
604 		aprint_error_dev(sc->bnx_dev,
605 		    "Controller initialization failed!\n");
606 		goto bnx_attach_fail;
607 	}
608 
609 	/* Perform NVRAM test. */
610 	if (bnx_nvram_test(sc)) {
611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 		goto bnx_attach_fail;
613 	}
614 
615 	/* Fetch the permanent Ethernet MAC address. */
616 	bnx_get_mac_addr(sc);
617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 	    ether_sprintf(sc->eaddr));
619 
620 	/*
621 	 * Trip points control how many BDs
622 	 * should be ready before generating an
623 	 * interrupt while ticks control how long
624 	 * a BD can sit in the chain before
625 	 * generating an interrupt.  Set the default
626 	 * values for the RX and TX rings.
627 	 */
628 
629 #ifdef BNX_DEBUG
630 	/* Force more frequent interrupts. */
631 	sc->bnx_tx_quick_cons_trip_int = 1;
632 	sc->bnx_tx_quick_cons_trip     = 1;
633 	sc->bnx_tx_ticks_int           = 0;
634 	sc->bnx_tx_ticks               = 0;
635 
636 	sc->bnx_rx_quick_cons_trip_int = 1;
637 	sc->bnx_rx_quick_cons_trip     = 1;
638 	sc->bnx_rx_ticks_int           = 0;
639 	sc->bnx_rx_ticks               = 0;
640 #else
641 	sc->bnx_tx_quick_cons_trip_int = 20;
642 	sc->bnx_tx_quick_cons_trip     = 20;
643 	sc->bnx_tx_ticks_int           = 80;
644 	sc->bnx_tx_ticks               = 80;
645 
646 	sc->bnx_rx_quick_cons_trip_int = 6;
647 	sc->bnx_rx_quick_cons_trip     = 6;
648 	sc->bnx_rx_ticks_int           = 18;
649 	sc->bnx_rx_ticks               = 18;
650 #endif
651 
652 	/* Update statistics once every second. */
653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
654 
655 	/* Find the media type for the adapter. */
656 	bnx_get_media(sc);
657 
658 	/*
659 	 * Store config data needed by the PHY driver for
660 	 * backplane applications
661 	 */
662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 	    BNX_SHARED_HW_CFG_CONFIG);
664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 	    BNX_PORT_HW_CFG_CONFIG);
666 
667 	/* Allocate DMA memory resources. */
668 	sc->bnx_dmatag = pa->pa_dmat;
669 	if (bnx_dma_alloc(sc)) {
670 		aprint_error_dev(sc->bnx_dev,
671 		    "DMA resource allocation failed!\n");
672 		goto bnx_attach_fail;
673 	}
674 
675 	/* Initialize the ifnet interface. */
676 	ifp = &sc->bnx_ec.ec_if;
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_ioctl = bnx_ioctl;
680 	ifp->if_stop = bnx_stop;
681 	ifp->if_start = bnx_start;
682 	ifp->if_init = bnx_init;
683 	ifp->if_timer = 0;
684 	ifp->if_watchdog = bnx_watchdog;
685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 	IFQ_SET_READY(&ifp->if_snd);
687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688 
689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691 
692 	ifp->if_capabilities |=
693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696 
697 	/* Hookup IRQ last. */
698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 	if (sc->bnx_intrhand == NULL) {
700 		aprint_error_dev(self, "couldn't establish interrupt");
701 		if (intrstr != NULL)
702 			aprint_error(" at %s", intrstr);
703 		aprint_error("\n");
704 		goto bnx_attach_fail;
705 	}
706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707 
708 	/* create workqueue to handle packet allocations */
709 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
710 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
711 		aprint_error_dev(self, "failed to create workqueue\n");
712 		goto bnx_attach_fail;
713 	}
714 
715 	sc->bnx_mii.mii_ifp = ifp;
716 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
717 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
718 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
719 
720 	/* Handle any special PHY initialization for SerDes PHYs. */
721 	bnx_init_media(sc);
722 
723 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
724 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
725 	    ether_mediastatus);
726 
727 	/* set phyflags and chipid before mii_attach() */
728 	dict = device_properties(self);
729 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
730 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
731 
732 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
733 		mii_flags |= MIIF_HAVEFIBER;
734 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
735 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
736 
737 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
738 		aprint_error_dev(self, "no PHY found!\n");
739 		ifmedia_add(&sc->bnx_mii.mii_media,
740 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
741 		ifmedia_set(&sc->bnx_mii.mii_media,
742 		    IFM_ETHER|IFM_MANUAL);
743 	} else {
744 		ifmedia_set(&sc->bnx_mii.mii_media,
745 		    IFM_ETHER|IFM_AUTO);
746 	}
747 
748 	/* Attach to the Ethernet interface list. */
749 	if_attach(ifp);
750 	ether_ifattach(ifp,sc->eaddr);
751 
752 	callout_init(&sc->bnx_timeout, 0);
753 
754 	if (pmf_device_register(self, NULL, NULL))
755 		pmf_class_network_register(self, ifp);
756 	else
757 		aprint_error_dev(self, "couldn't establish power handler\n");
758 
759 	/* Print some important debugging info. */
760 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
761 
762 	goto bnx_attach_exit;
763 
764 bnx_attach_fail:
765 	bnx_release_resources(sc);
766 
767 bnx_attach_exit:
768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
769 }
770 
771 /****************************************************************************/
772 /* Device detach function.                                                  */
773 /*                                                                          */
774 /* Stops the controller, resets the controller, and releases resources.     */
775 /*                                                                          */
776 /* Returns:                                                                 */
777 /*   0 on success, positive value on failure.                               */
778 /****************************************************************************/
779 int
780 bnx_detach(device_t dev, int flags)
781 {
782 	int s;
783 	struct bnx_softc *sc;
784 	struct ifnet *ifp;
785 
786 	sc = device_private(dev);
787 	ifp = &sc->bnx_ec.ec_if;
788 
789 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
790 
791 	/* Stop and reset the controller. */
792 	s = splnet();
793 	if (ifp->if_flags & IFF_RUNNING)
794 		bnx_stop(ifp, 1);
795 	else {
796 		/* Disable the transmit/receive blocks. */
797 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
798 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
799 		DELAY(20);
800 		bnx_disable_intr(sc);
801 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
802 	}
803 
804 	splx(s);
805 
806 	pmf_device_deregister(dev);
807 	callout_destroy(&sc->bnx_timeout);
808 	ether_ifdetach(ifp);
809 	workqueue_destroy(sc->bnx_wq);
810 
811 	/* Delete all remaining media. */
812 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
813 
814 	if_detach(ifp);
815 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
816 
817 	/* Release all remaining resources. */
818 	bnx_release_resources(sc);
819 
820 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
821 
822 	return(0);
823 }
824 
825 /****************************************************************************/
826 /* Indirect register read.                                                  */
827 /*                                                                          */
828 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
829 /* configuration space.  Using this mechanism avoids issues with posted     */
830 /* reads but is much slower than memory-mapped I/O.                         */
831 /*                                                                          */
832 /* Returns:                                                                 */
833 /*   The value of the register.                                             */
834 /****************************************************************************/
835 u_int32_t
836 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
837 {
838 	struct pci_attach_args	*pa = &(sc->bnx_pa);
839 
840 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
841 	    offset);
842 #ifdef BNX_DEBUG
843 	{
844 		u_int32_t val;
845 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
846 		    BNX_PCICFG_REG_WINDOW);
847 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
848 		    "val = 0x%08X\n", __func__, offset, val);
849 		return (val);
850 	}
851 #else
852 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
853 #endif
854 }
855 
856 /****************************************************************************/
857 /* Indirect register write.                                                 */
858 /*                                                                          */
859 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
860 /* configuration space.  Using this mechanism avoids issues with posted     */
861 /* writes but is muchh slower than memory-mapped I/O.                       */
862 /*                                                                          */
863 /* Returns:                                                                 */
864 /*   Nothing.                                                               */
865 /****************************************************************************/
866 void
867 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
868 {
869 	struct pci_attach_args  *pa = &(sc->bnx_pa);
870 
871 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
872 		__func__, offset, val);
873 
874 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
875 	    offset);
876 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
877 }
878 
879 /****************************************************************************/
880 /* Context memory write.                                                    */
881 /*                                                                          */
882 /* The NetXtreme II controller uses context memory to track connection      */
883 /* information for L2 and higher network protocols.                         */
884 /*                                                                          */
885 /* Returns:                                                                 */
886 /*   Nothing.                                                               */
887 /****************************************************************************/
888 void
889 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
890     u_int32_t ctx_val)
891 {
892 	u_int32_t idx, offset = ctx_offset + cid_addr;
893 	u_int32_t val, retry_cnt = 5;
894 
895 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
896 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
897 		REG_WR(sc, BNX_CTX_CTX_CTRL,
898 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
899 
900 		for (idx = 0; idx < retry_cnt; idx++) {
901 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
902 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
903 				break;
904 			DELAY(5);
905 		}
906 
907 #if 0
908 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
909 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
910 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
911 				__FILE__, __LINE__, cid_addr, ctx_offset);
912 #endif
913 
914 	} else {
915 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
916 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
917 	}
918 }
919 
920 /****************************************************************************/
921 /* PHY register read.                                                       */
922 /*                                                                          */
923 /* Implements register reads on the MII bus.                                */
924 /*                                                                          */
925 /* Returns:                                                                 */
926 /*   The value of the register.                                             */
927 /****************************************************************************/
928 int
929 bnx_miibus_read_reg(device_t dev, int phy, int reg)
930 {
931 	struct bnx_softc	*sc = device_private(dev);
932 	u_int32_t		val;
933 	int			i;
934 
935 	/* Make sure we are accessing the correct PHY address. */
936 	if (phy != sc->bnx_phy_addr) {
937 		DBPRINT(sc, BNX_VERBOSE,
938 		    "Invalid PHY address %d for PHY read!\n", phy);
939 		return(0);
940 	}
941 
942 	/*
943 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
944 	 * with special mappings to work with IEEE
945 	 * Clause 22 register accesses.
946 	 */
947 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
948 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
949 			reg += 0x10;
950 	}
951 
952 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
953 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
954 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
955 
956 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
957 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
958 
959 		DELAY(40);
960 	}
961 
962 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
963 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
964 	    BNX_EMAC_MDIO_COMM_START_BUSY;
965 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
966 
967 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
968 		DELAY(10);
969 
970 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
971 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
972 			DELAY(5);
973 
974 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
975 			val &= BNX_EMAC_MDIO_COMM_DATA;
976 
977 			break;
978 		}
979 	}
980 
981 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
982 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
983 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
984 		val = 0x0;
985 	} else
986 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
987 
988 	DBPRINT(sc, BNX_EXCESSIVE,
989 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
990 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
991 
992 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995 
996 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
997 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
998 
999 		DELAY(40);
1000 	}
1001 
1002 	return (val & 0xffff);
1003 }
1004 
1005 /****************************************************************************/
1006 /* PHY register write.                                                      */
1007 /*                                                                          */
1008 /* Implements register writes on the MII bus.                               */
1009 /*                                                                          */
1010 /* Returns:                                                                 */
1011 /*   The value of the register.                                             */
1012 /****************************************************************************/
1013 void
1014 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1015 {
1016 	struct bnx_softc	*sc = device_private(dev);
1017 	u_int32_t		val1;
1018 	int			i;
1019 
1020 	/* Make sure we are accessing the correct PHY address. */
1021 	if (phy != sc->bnx_phy_addr) {
1022 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1023 		    phy);
1024 		return;
1025 	}
1026 
1027 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1028 	    "val = 0x%04X\n", __func__,
1029 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1030 
1031 	/*
1032 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1033 	 * with special mappings to work with IEEE
1034 	 * Clause 22 register accesses.
1035 	 */
1036 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1037 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1038 			reg += 0x10;
1039 	}
1040 
1041 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1042 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1043 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1044 
1045 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1046 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1047 
1048 		DELAY(40);
1049 	}
1050 
1051 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1052 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1053 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1054 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1055 
1056 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1057 		DELAY(10);
1058 
1059 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1060 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1061 			DELAY(5);
1062 			break;
1063 		}
1064 	}
1065 
1066 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1067 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1068 		    __LINE__);
1069 	}
1070 
1071 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1072 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1073 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1074 
1075 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1076 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1077 
1078 		DELAY(40);
1079 	}
1080 }
1081 
1082 /****************************************************************************/
1083 /* MII bus status change.                                                   */
1084 /*                                                                          */
1085 /* Called by the MII bus driver when the PHY establishes link to set the    */
1086 /* MAC interface registers.                                                 */
1087 /*                                                                          */
1088 /* Returns:                                                                 */
1089 /*   Nothing.                                                               */
1090 /****************************************************************************/
1091 void
1092 bnx_miibus_statchg(struct ifnet *ifp)
1093 {
1094 	struct bnx_softc	*sc = ifp->if_softc;
1095 	struct mii_data		*mii = &sc->bnx_mii;
1096 	int			val;
1097 
1098 	val = REG_RD(sc, BNX_EMAC_MODE);
1099 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1100 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1101 	    BNX_EMAC_MODE_25G);
1102 
1103 	/* Set MII or GMII interface based on the speed
1104 	 * negotiated by the PHY.
1105 	 */
1106 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1107 	case IFM_10_T:
1108 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1109 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1110 			val |= BNX_EMAC_MODE_PORT_MII_10;
1111 			break;
1112 		}
1113 		/* FALLTHROUGH */
1114 	case IFM_100_TX:
1115 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1116 		val |= BNX_EMAC_MODE_PORT_MII;
1117 		break;
1118 	case IFM_2500_SX:
1119 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1120 		val |= BNX_EMAC_MODE_25G;
1121 		/* FALLTHROUGH */
1122 	case IFM_1000_T:
1123 	case IFM_1000_SX:
1124 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1125 		val |= BNX_EMAC_MODE_PORT_GMII;
1126 		break;
1127 	default:
1128 		val |= BNX_EMAC_MODE_PORT_GMII;
1129 		break;
1130 	}
1131 
1132 	/* Set half or full duplex based on the duplicity
1133 	 * negotiated by the PHY.
1134 	 */
1135 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1136 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1137 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1138 	} else {
1139 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1140 	}
1141 
1142 	REG_WR(sc, BNX_EMAC_MODE, val);
1143 }
1144 
1145 /****************************************************************************/
1146 /* Acquire NVRAM lock.                                                      */
1147 /*                                                                          */
1148 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1150 /* for use by the driver.                                                   */
1151 /*                                                                          */
1152 /* Returns:                                                                 */
1153 /*   0 on success, positive value on failure.                               */
1154 /****************************************************************************/
1155 int
1156 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1157 {
1158 	u_int32_t		val;
1159 	int			j;
1160 
1161 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1162 
1163 	/* Request access to the flash interface. */
1164 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1165 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1166 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1167 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1168 			break;
1169 
1170 		DELAY(5);
1171 	}
1172 
1173 	if (j >= NVRAM_TIMEOUT_COUNT) {
1174 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1175 		return (EBUSY);
1176 	}
1177 
1178 	return (0);
1179 }
1180 
1181 /****************************************************************************/
1182 /* Release NVRAM lock.                                                      */
1183 /*                                                                          */
1184 /* When the caller is finished accessing NVRAM the lock must be released.   */
1185 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1186 /* for use by the driver.                                                   */
1187 /*                                                                          */
1188 /* Returns:                                                                 */
1189 /*   0 on success, positive value on failure.                               */
1190 /****************************************************************************/
1191 int
1192 bnx_release_nvram_lock(struct bnx_softc *sc)
1193 {
1194 	int			j;
1195 	u_int32_t		val;
1196 
1197 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1198 
1199 	/* Relinquish nvram interface. */
1200 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1201 
1202 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1203 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1204 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1205 			break;
1206 
1207 		DELAY(5);
1208 	}
1209 
1210 	if (j >= NVRAM_TIMEOUT_COUNT) {
1211 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1212 		return (EBUSY);
1213 	}
1214 
1215 	return (0);
1216 }
1217 
1218 #ifdef BNX_NVRAM_WRITE_SUPPORT
1219 /****************************************************************************/
1220 /* Enable NVRAM write access.                                               */
1221 /*                                                                          */
1222 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1223 /*                                                                          */
1224 /* Returns:                                                                 */
1225 /*   0 on success, positive value on failure.                               */
1226 /****************************************************************************/
1227 int
1228 bnx_enable_nvram_write(struct bnx_softc *sc)
1229 {
1230 	u_int32_t		val;
1231 
1232 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1233 
1234 	val = REG_RD(sc, BNX_MISC_CFG);
1235 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1236 
1237 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1238 		int j;
1239 
1240 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1241 		REG_WR(sc, BNX_NVM_COMMAND,
1242 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1243 
1244 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1245 			DELAY(5);
1246 
1247 			val = REG_RD(sc, BNX_NVM_COMMAND);
1248 			if (val & BNX_NVM_COMMAND_DONE)
1249 				break;
1250 		}
1251 
1252 		if (j >= NVRAM_TIMEOUT_COUNT) {
1253 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1254 			return (EBUSY);
1255 		}
1256 	}
1257 
1258 	return (0);
1259 }
1260 
1261 /****************************************************************************/
1262 /* Disable NVRAM write access.                                              */
1263 /*                                                                          */
1264 /* When the caller is finished writing to NVRAM write access must be        */
1265 /* disabled.                                                                */
1266 /*                                                                          */
1267 /* Returns:                                                                 */
1268 /*   Nothing.                                                               */
1269 /****************************************************************************/
1270 void
1271 bnx_disable_nvram_write(struct bnx_softc *sc)
1272 {
1273 	u_int32_t		val;
1274 
1275 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1276 
1277 	val = REG_RD(sc, BNX_MISC_CFG);
1278 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1279 }
1280 #endif
1281 
1282 /****************************************************************************/
1283 /* Enable NVRAM access.                                                     */
1284 /*                                                                          */
1285 /* Before accessing NVRAM for read or write operations the caller must      */
1286 /* enabled NVRAM access.                                                    */
1287 /*                                                                          */
1288 /* Returns:                                                                 */
1289 /*   Nothing.                                                               */
1290 /****************************************************************************/
1291 void
1292 bnx_enable_nvram_access(struct bnx_softc *sc)
1293 {
1294 	u_int32_t		val;
1295 
1296 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1297 
1298 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1299 	/* Enable both bits, even on read. */
1300 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1301 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1302 }
1303 
1304 /****************************************************************************/
1305 /* Disable NVRAM access.                                                    */
1306 /*                                                                          */
1307 /* When the caller is finished accessing NVRAM access must be disabled.     */
1308 /*                                                                          */
1309 /* Returns:                                                                 */
1310 /*   Nothing.                                                               */
1311 /****************************************************************************/
1312 void
1313 bnx_disable_nvram_access(struct bnx_softc *sc)
1314 {
1315 	u_int32_t		val;
1316 
1317 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1318 
1319 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1320 
1321 	/* Disable both bits, even after read. */
1322 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1323 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1324 }
1325 
1326 #ifdef BNX_NVRAM_WRITE_SUPPORT
1327 /****************************************************************************/
1328 /* Erase NVRAM page before writing.                                         */
1329 /*                                                                          */
1330 /* Non-buffered flash parts require that a page be erased before it is      */
1331 /* written.                                                                 */
1332 /*                                                                          */
1333 /* Returns:                                                                 */
1334 /*   0 on success, positive value on failure.                               */
1335 /****************************************************************************/
1336 int
1337 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1338 {
1339 	u_int32_t		cmd;
1340 	int			j;
1341 
1342 	/* Buffered flash doesn't require an erase. */
1343 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1344 		return (0);
1345 
1346 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1347 
1348 	/* Build an erase command. */
1349 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1350 	    BNX_NVM_COMMAND_DOIT;
1351 
1352 	/*
1353 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1354 	 * and issue the erase command.
1355 	 */
1356 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1357 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1358 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1359 
1360 	/* Wait for completion. */
1361 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1362 		u_int32_t val;
1363 
1364 		DELAY(5);
1365 
1366 		val = REG_RD(sc, BNX_NVM_COMMAND);
1367 		if (val & BNX_NVM_COMMAND_DONE)
1368 			break;
1369 	}
1370 
1371 	if (j >= NVRAM_TIMEOUT_COUNT) {
1372 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1373 		return (EBUSY);
1374 	}
1375 
1376 	return (0);
1377 }
1378 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1379 
1380 /****************************************************************************/
1381 /* Read a dword (32 bits) from NVRAM.                                       */
1382 /*                                                                          */
1383 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1384 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1385 /*                                                                          */
1386 /* Returns:                                                                 */
1387 /*   0 on success and the 32 bit value read, positive value on failure.     */
1388 /****************************************************************************/
1389 int
1390 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1391     u_int8_t *ret_val, u_int32_t cmd_flags)
1392 {
1393 	u_int32_t		cmd;
1394 	int			i, rc = 0;
1395 
1396 	/* Build the command word. */
1397 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1398 
1399 	/* Calculate the offset for buffered flash if translation is used. */
1400 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1401 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1402 		    sc->bnx_flash_info->page_bits) +
1403 		    (offset % sc->bnx_flash_info->page_size);
1404 	}
1405 
1406 	/*
1407 	 * Clear the DONE bit separately, set the address to read,
1408 	 * and issue the read.
1409 	 */
1410 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1411 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1412 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1413 
1414 	/* Wait for completion. */
1415 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1416 		u_int32_t val;
1417 
1418 		DELAY(5);
1419 
1420 		val = REG_RD(sc, BNX_NVM_COMMAND);
1421 		if (val & BNX_NVM_COMMAND_DONE) {
1422 			val = REG_RD(sc, BNX_NVM_READ);
1423 
1424 			val = bnx_be32toh(val);
1425 			memcpy(ret_val, &val, 4);
1426 			break;
1427 		}
1428 	}
1429 
1430 	/* Check for errors. */
1431 	if (i >= NVRAM_TIMEOUT_COUNT) {
1432 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1433 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1434 		rc = EBUSY;
1435 	}
1436 
1437 	return(rc);
1438 }
1439 
1440 #ifdef BNX_NVRAM_WRITE_SUPPORT
1441 /****************************************************************************/
1442 /* Write a dword (32 bits) to NVRAM.                                        */
1443 /*                                                                          */
1444 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1445 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1446 /* enabled NVRAM write access.                                              */
1447 /*                                                                          */
1448 /* Returns:                                                                 */
1449 /*   0 on success, positive value on failure.                               */
1450 /****************************************************************************/
1451 int
1452 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1453     u_int32_t cmd_flags)
1454 {
1455 	u_int32_t		cmd, val32;
1456 	int			j;
1457 
1458 	/* Build the command word. */
1459 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1460 
1461 	/* Calculate the offset for buffered flash if translation is used. */
1462 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1463 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1464 		    sc->bnx_flash_info->page_bits) +
1465 		    (offset % sc->bnx_flash_info->page_size);
1466 	}
1467 
1468 	/*
1469 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1470 	 * set the NVRAM address to write, and issue the write command
1471 	 */
1472 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1473 	memcpy(&val32, val, 4);
1474 	val32 = htobe32(val32);
1475 	REG_WR(sc, BNX_NVM_WRITE, val32);
1476 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1477 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1478 
1479 	/* Wait for completion. */
1480 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1481 		DELAY(5);
1482 
1483 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1484 			break;
1485 	}
1486 	if (j >= NVRAM_TIMEOUT_COUNT) {
1487 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1488 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1489 		return (EBUSY);
1490 	}
1491 
1492 	return (0);
1493 }
1494 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1495 
1496 /****************************************************************************/
1497 /* Initialize NVRAM access.                                                 */
1498 /*                                                                          */
1499 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1500 /* access that device.                                                      */
1501 /*                                                                          */
1502 /* Returns:                                                                 */
1503 /*   0 on success, positive value on failure.                               */
1504 /****************************************************************************/
1505 int
1506 bnx_init_nvram(struct bnx_softc *sc)
1507 {
1508 	u_int32_t		val;
1509 	int			j, entry_count, rc = 0;
1510 	struct flash_spec	*flash;
1511 
1512 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1513 
1514 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1515 		sc->bnx_flash_info = &flash_5709;
1516 		goto bnx_init_nvram_get_flash_size;
1517 	}
1518 
1519 	/* Determine the selected interface. */
1520 	val = REG_RD(sc, BNX_NVM_CFG1);
1521 
1522 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1523 
1524 	/*
1525 	 * Flash reconfiguration is required to support additional
1526 	 * NVRAM devices not directly supported in hardware.
1527 	 * Check if the flash interface was reconfigured
1528 	 * by the bootcode.
1529 	 */
1530 
1531 	if (val & 0x40000000) {
1532 		/* Flash interface reconfigured by bootcode. */
1533 
1534 		DBPRINT(sc,BNX_INFO_LOAD,
1535 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1536 
1537 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1538 		     j++, flash++) {
1539 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1540 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1541 				sc->bnx_flash_info = flash;
1542 				break;
1543 			}
1544 		}
1545 	} else {
1546 		/* Flash interface not yet reconfigured. */
1547 		u_int32_t mask;
1548 
1549 		DBPRINT(sc,BNX_INFO_LOAD,
1550 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1551 
1552 		if (val & (1 << 23))
1553 			mask = FLASH_BACKUP_STRAP_MASK;
1554 		else
1555 			mask = FLASH_STRAP_MASK;
1556 
1557 		/* Look for the matching NVRAM device configuration data. */
1558 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1559 		    j++, flash++) {
1560 			/* Check if the dev matches any of the known devices. */
1561 			if ((val & mask) == (flash->strapping & mask)) {
1562 				/* Found a device match. */
1563 				sc->bnx_flash_info = flash;
1564 
1565 				/* Request access to the flash interface. */
1566 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1567 					return (rc);
1568 
1569 				/* Reconfigure the flash interface. */
1570 				bnx_enable_nvram_access(sc);
1571 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1572 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1573 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1574 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1575 				bnx_disable_nvram_access(sc);
1576 				bnx_release_nvram_lock(sc);
1577 
1578 				break;
1579 			}
1580 		}
1581 	}
1582 
1583 	/* Check if a matching device was found. */
1584 	if (j == entry_count) {
1585 		sc->bnx_flash_info = NULL;
1586 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1587 			__FILE__, __LINE__);
1588 		rc = ENODEV;
1589 	}
1590 
1591 bnx_init_nvram_get_flash_size:
1592 	/* Write the flash config data to the shared memory interface. */
1593 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1594 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1595 	if (val)
1596 		sc->bnx_flash_size = val;
1597 	else
1598 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1599 
1600 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1601 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1602 
1603 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1604 
1605 	return (rc);
1606 }
1607 
1608 /****************************************************************************/
1609 /* Read an arbitrary range of data from NVRAM.                              */
1610 /*                                                                          */
1611 /* Prepares the NVRAM interface for access and reads the requested data     */
1612 /* into the supplied buffer.                                                */
1613 /*                                                                          */
1614 /* Returns:                                                                 */
1615 /*   0 on success and the data read, positive value on failure.             */
1616 /****************************************************************************/
1617 int
1618 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1619     int buf_size)
1620 {
1621 	int			rc = 0;
1622 	u_int32_t		cmd_flags, offset32, len32, extra;
1623 
1624 	if (buf_size == 0)
1625 		return (0);
1626 
1627 	/* Request access to the flash interface. */
1628 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1629 		return (rc);
1630 
1631 	/* Enable access to flash interface */
1632 	bnx_enable_nvram_access(sc);
1633 
1634 	len32 = buf_size;
1635 	offset32 = offset;
1636 	extra = 0;
1637 
1638 	cmd_flags = 0;
1639 
1640 	if (offset32 & 3) {
1641 		u_int8_t buf[4];
1642 		u_int32_t pre_len;
1643 
1644 		offset32 &= ~3;
1645 		pre_len = 4 - (offset & 3);
1646 
1647 		if (pre_len >= len32) {
1648 			pre_len = len32;
1649 			cmd_flags =
1650 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1651 		} else
1652 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1653 
1654 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1655 
1656 		if (rc)
1657 			return (rc);
1658 
1659 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1660 
1661 		offset32 += 4;
1662 		ret_buf += pre_len;
1663 		len32 -= pre_len;
1664 	}
1665 
1666 	if (len32 & 3) {
1667 		extra = 4 - (len32 & 3);
1668 		len32 = (len32 + 4) & ~3;
1669 	}
1670 
1671 	if (len32 == 4) {
1672 		u_int8_t buf[4];
1673 
1674 		if (cmd_flags)
1675 			cmd_flags = BNX_NVM_COMMAND_LAST;
1676 		else
1677 			cmd_flags =
1678 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1679 
1680 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1681 
1682 		memcpy(ret_buf, buf, 4 - extra);
1683 	} else if (len32 > 0) {
1684 		u_int8_t buf[4];
1685 
1686 		/* Read the first word. */
1687 		if (cmd_flags)
1688 			cmd_flags = 0;
1689 		else
1690 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1691 
1692 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1693 
1694 		/* Advance to the next dword. */
1695 		offset32 += 4;
1696 		ret_buf += 4;
1697 		len32 -= 4;
1698 
1699 		while (len32 > 4 && rc == 0) {
1700 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1701 
1702 			/* Advance to the next dword. */
1703 			offset32 += 4;
1704 			ret_buf += 4;
1705 			len32 -= 4;
1706 		}
1707 
1708 		if (rc)
1709 			return (rc);
1710 
1711 		cmd_flags = BNX_NVM_COMMAND_LAST;
1712 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1713 
1714 		memcpy(ret_buf, buf, 4 - extra);
1715 	}
1716 
1717 	/* Disable access to flash interface and release the lock. */
1718 	bnx_disable_nvram_access(sc);
1719 	bnx_release_nvram_lock(sc);
1720 
1721 	return (rc);
1722 }
1723 
1724 #ifdef BNX_NVRAM_WRITE_SUPPORT
1725 /****************************************************************************/
1726 /* Write an arbitrary range of data from NVRAM.                             */
1727 /*                                                                          */
1728 /* Prepares the NVRAM interface for write access and writes the requested   */
1729 /* data from the supplied buffer.  The caller is responsible for            */
1730 /* calculating any appropriate CRCs.                                        */
1731 /*                                                                          */
1732 /* Returns:                                                                 */
1733 /*   0 on success, positive value on failure.                               */
1734 /****************************************************************************/
1735 int
1736 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1737     int buf_size)
1738 {
1739 	u_int32_t		written, offset32, len32;
1740 	u_int8_t		*buf, start[4], end[4];
1741 	int			rc = 0;
1742 	int			align_start, align_end;
1743 
1744 	buf = data_buf;
1745 	offset32 = offset;
1746 	len32 = buf_size;
1747 	align_start = align_end = 0;
1748 
1749 	if ((align_start = (offset32 & 3))) {
1750 		offset32 &= ~3;
1751 		len32 += align_start;
1752 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1753 			return (rc);
1754 	}
1755 
1756 	if (len32 & 3) {
1757 	       	if ((len32 > 4) || !align_start) {
1758 			align_end = 4 - (len32 & 3);
1759 			len32 += align_end;
1760 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1761 			    end, 4))) {
1762 				return (rc);
1763 			}
1764 		}
1765 	}
1766 
1767 	if (align_start || align_end) {
1768 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1769 		if (buf == 0)
1770 			return (ENOMEM);
1771 
1772 		if (align_start)
1773 			memcpy(buf, start, 4);
1774 
1775 		if (align_end)
1776 			memcpy(buf + len32 - 4, end, 4);
1777 
1778 		memcpy(buf + align_start, data_buf, buf_size);
1779 	}
1780 
1781 	written = 0;
1782 	while ((written < len32) && (rc == 0)) {
1783 		u_int32_t page_start, page_end, data_start, data_end;
1784 		u_int32_t addr, cmd_flags;
1785 		int i;
1786 		u_int8_t flash_buffer[264];
1787 
1788 	    /* Find the page_start addr */
1789 		page_start = offset32 + written;
1790 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1791 		/* Find the page_end addr */
1792 		page_end = page_start + sc->bnx_flash_info->page_size;
1793 		/* Find the data_start addr */
1794 		data_start = (written == 0) ? offset32 : page_start;
1795 		/* Find the data_end addr */
1796 		data_end = (page_end > offset32 + len32) ?
1797 		    (offset32 + len32) : page_end;
1798 
1799 		/* Request access to the flash interface. */
1800 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1801 			goto nvram_write_end;
1802 
1803 		/* Enable access to flash interface */
1804 		bnx_enable_nvram_access(sc);
1805 
1806 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1807 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1808 			int j;
1809 
1810 			/* Read the whole page into the buffer
1811 			 * (non-buffer flash only) */
1812 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1813 				if (j == (sc->bnx_flash_info->page_size - 4))
1814 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1815 
1816 				rc = bnx_nvram_read_dword(sc,
1817 					page_start + j,
1818 					&flash_buffer[j],
1819 					cmd_flags);
1820 
1821 				if (rc)
1822 					goto nvram_write_end;
1823 
1824 				cmd_flags = 0;
1825 			}
1826 		}
1827 
1828 		/* Enable writes to flash interface (unlock write-protect) */
1829 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1830 			goto nvram_write_end;
1831 
1832 		/* Erase the page */
1833 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1834 			goto nvram_write_end;
1835 
1836 		/* Re-enable the write again for the actual write */
1837 		bnx_enable_nvram_write(sc);
1838 
1839 		/* Loop to write back the buffer data from page_start to
1840 		 * data_start */
1841 		i = 0;
1842 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1843 			for (addr = page_start; addr < data_start;
1844 				addr += 4, i += 4) {
1845 
1846 				rc = bnx_nvram_write_dword(sc, addr,
1847 				    &flash_buffer[i], cmd_flags);
1848 
1849 				if (rc != 0)
1850 					goto nvram_write_end;
1851 
1852 				cmd_flags = 0;
1853 			}
1854 		}
1855 
1856 		/* Loop to write the new data from data_start to data_end */
1857 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1858 			if ((addr == page_end - 4) ||
1859 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1860 			    && (addr == data_end - 4))) {
1861 
1862 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1863 			}
1864 
1865 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1866 
1867 			if (rc != 0)
1868 				goto nvram_write_end;
1869 
1870 			cmd_flags = 0;
1871 			buf += 4;
1872 		}
1873 
1874 		/* Loop to write back the buffer data from data_end
1875 		 * to page_end */
1876 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1877 			for (addr = data_end; addr < page_end;
1878 			    addr += 4, i += 4) {
1879 
1880 				if (addr == page_end-4)
1881 					cmd_flags = BNX_NVM_COMMAND_LAST;
1882 
1883 				rc = bnx_nvram_write_dword(sc, addr,
1884 				    &flash_buffer[i], cmd_flags);
1885 
1886 				if (rc != 0)
1887 					goto nvram_write_end;
1888 
1889 				cmd_flags = 0;
1890 			}
1891 		}
1892 
1893 		/* Disable writes to flash interface (lock write-protect) */
1894 		bnx_disable_nvram_write(sc);
1895 
1896 		/* Disable access to flash interface */
1897 		bnx_disable_nvram_access(sc);
1898 		bnx_release_nvram_lock(sc);
1899 
1900 		/* Increment written */
1901 		written += data_end - data_start;
1902 	}
1903 
1904 nvram_write_end:
1905 	if (align_start || align_end)
1906 		free(buf, M_DEVBUF);
1907 
1908 	return (rc);
1909 }
1910 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1911 
1912 /****************************************************************************/
1913 /* Verifies that NVRAM is accessible and contains valid data.               */
1914 /*                                                                          */
1915 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1916 /* correct.                                                                 */
1917 /*                                                                          */
1918 /* Returns:                                                                 */
1919 /*   0 on success, positive value on failure.                               */
1920 /****************************************************************************/
1921 int
1922 bnx_nvram_test(struct bnx_softc *sc)
1923 {
1924 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1925 	u_int8_t		*data = (u_int8_t *) buf;
1926 	int			rc = 0;
1927 	u_int32_t		magic, csum;
1928 
1929 	/*
1930 	 * Check that the device NVRAM is valid by reading
1931 	 * the magic value at offset 0.
1932 	 */
1933 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1934 		goto bnx_nvram_test_done;
1935 
1936 	magic = bnx_be32toh(buf[0]);
1937 	if (magic != BNX_NVRAM_MAGIC) {
1938 		rc = ENODEV;
1939 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1940 		    "Expected: 0x%08X, Found: 0x%08X\n",
1941 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1942 		goto bnx_nvram_test_done;
1943 	}
1944 
1945 	/*
1946 	 * Verify that the device NVRAM includes valid
1947 	 * configuration data.
1948 	 */
1949 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1950 		goto bnx_nvram_test_done;
1951 
1952 	csum = ether_crc32_le(data, 0x100);
1953 	if (csum != BNX_CRC32_RESIDUAL) {
1954 		rc = ENODEV;
1955 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1956 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1957 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1958 		goto bnx_nvram_test_done;
1959 	}
1960 
1961 	csum = ether_crc32_le(data + 0x100, 0x100);
1962 	if (csum != BNX_CRC32_RESIDUAL) {
1963 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1964 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1965 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1966 		rc = ENODEV;
1967 	}
1968 
1969 bnx_nvram_test_done:
1970 	return (rc);
1971 }
1972 
1973 /****************************************************************************/
1974 /* Identifies the current media type of the controller and sets the PHY     */
1975 /* address.                                                                 */
1976 /*                                                                          */
1977 /* Returns:                                                                 */
1978 /*   Nothing.                                                               */
1979 /****************************************************************************/
1980 void
1981 bnx_get_media(struct bnx_softc *sc)
1982 {
1983 	sc->bnx_phy_addr = 1;
1984 
1985 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1986 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1987 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1988 		u_int32_t strap;
1989 
1990 		/*
1991 		 * The BCM5709S is software configurable
1992 		 * for Copper or SerDes operation.
1993 		 */
1994 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1995 			DBPRINT(sc, BNX_INFO_LOAD,
1996 			    "5709 bonded for copper.\n");
1997 			goto bnx_get_media_exit;
1998 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1999 			DBPRINT(sc, BNX_INFO_LOAD,
2000 			    "5709 bonded for dual media.\n");
2001 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2002 			goto bnx_get_media_exit;
2003 		}
2004 
2005 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2006 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2007 		else {
2008 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2009 			    >> 8;
2010 		}
2011 
2012 		if (sc->bnx_pa.pa_function == 0) {
2013 			switch (strap) {
2014 			case 0x4:
2015 			case 0x5:
2016 			case 0x6:
2017 				DBPRINT(sc, BNX_INFO_LOAD,
2018 					"BCM5709 s/w configured for SerDes.\n");
2019 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2020 				break;
2021 			default:
2022 				DBPRINT(sc, BNX_INFO_LOAD,
2023 					"BCM5709 s/w configured for Copper.\n");
2024 			}
2025 		} else {
2026 			switch (strap) {
2027 			case 0x1:
2028 			case 0x2:
2029 			case 0x4:
2030 				DBPRINT(sc, BNX_INFO_LOAD,
2031 					"BCM5709 s/w configured for SerDes.\n");
2032 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2033 				break;
2034 			default:
2035 				DBPRINT(sc, BNX_INFO_LOAD,
2036 					"BCM5709 s/w configured for Copper.\n");
2037 			}
2038 		}
2039 
2040 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2041 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2042 
2043 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2044 		u_int32_t val;
2045 
2046 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2047 
2048 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2049 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2050 
2051 		/*
2052 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2053 		 * separate PHY for SerDes.
2054 		 */
2055 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2056 			sc->bnx_phy_addr = 2;
2057 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2058 				 BNX_SHARED_HW_CFG_CONFIG);
2059 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2060 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2061 				DBPRINT(sc, BNX_INFO_LOAD,
2062 				    "Found 2.5Gb capable adapter\n");
2063 			}
2064 		}
2065 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2066 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2067 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2068 
2069 bnx_get_media_exit:
2070 	DBPRINT(sc, (BNX_INFO_LOAD),
2071 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2072 }
2073 
2074 /****************************************************************************/
2075 /* Performs PHY initialization required before MII drivers access the       */
2076 /* device.                                                                  */
2077 /*                                                                          */
2078 /* Returns:                                                                 */
2079 /*   Nothing.                                                               */
2080 /****************************************************************************/
2081 void
2082 bnx_init_media(struct bnx_softc *sc)
2083 {
2084 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2085 		/*
2086 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2087 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2088 		 * the PHY to the mii(4) layer. PHY specific configuration
2089 		 * is done by the mii(4) layer.
2090 		 */
2091 
2092 		/* Select auto-negotiation MMD of the PHY. */
2093 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2094 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2095 
2096 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2097 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2098 
2099 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2100 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2101 	}
2102 }
2103 
2104 /****************************************************************************/
2105 /* Free any DMA memory owned by the driver.                                 */
2106 /*                                                                          */
2107 /* Scans through each data structre that requires DMA memory and frees      */
2108 /* the memory if allocated.                                                 */
2109 /*                                                                          */
2110 /* Returns:                                                                 */
2111 /*   Nothing.                                                               */
2112 /****************************************************************************/
2113 void
2114 bnx_dma_free(struct bnx_softc *sc)
2115 {
2116 	int			i;
2117 
2118 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2119 
2120 	/* Destroy the status block. */
2121 	if (sc->status_block != NULL && sc->status_map != NULL) {
2122 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2123 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2124 		    BNX_STATUS_BLK_SZ);
2125 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2126 		    sc->status_rseg);
2127 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2128 		sc->status_block = NULL;
2129 		sc->status_map = NULL;
2130 	}
2131 
2132 	/* Destroy the statistics block. */
2133 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2134 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2135 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2136 		    BNX_STATS_BLK_SZ);
2137 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2138 		    sc->stats_rseg);
2139 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2140 		sc->stats_block = NULL;
2141 		sc->stats_map = NULL;
2142 	}
2143 
2144 	/* Free, unmap and destroy all context memory pages. */
2145 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2146 		for (i = 0; i < sc->ctx_pages; i++) {
2147 			if (sc->ctx_block[i] != NULL) {
2148 				bus_dmamap_unload(sc->bnx_dmatag,
2149 				    sc->ctx_map[i]);
2150 				bus_dmamem_unmap(sc->bnx_dmatag,
2151 				    (void *)sc->ctx_block[i],
2152 				    BCM_PAGE_SIZE);
2153 				bus_dmamem_free(sc->bnx_dmatag,
2154 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2155 				bus_dmamap_destroy(sc->bnx_dmatag,
2156 				    sc->ctx_map[i]);
2157 				sc->ctx_block[i] = NULL;
2158 			}
2159 		}
2160 	}
2161 
2162 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2163 	for (i = 0; i < TX_PAGES; i++ ) {
2164 		if (sc->tx_bd_chain[i] != NULL &&
2165 		    sc->tx_bd_chain_map[i] != NULL) {
2166 			bus_dmamap_unload(sc->bnx_dmatag,
2167 			    sc->tx_bd_chain_map[i]);
2168 			bus_dmamem_unmap(sc->bnx_dmatag,
2169 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2170 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2171 			    sc->tx_bd_chain_rseg[i]);
2172 			bus_dmamap_destroy(sc->bnx_dmatag,
2173 			    sc->tx_bd_chain_map[i]);
2174 			sc->tx_bd_chain[i] = NULL;
2175 			sc->tx_bd_chain_map[i] = NULL;
2176 		}
2177 	}
2178 
2179 	/* Destroy the TX dmamaps. */
2180 	/* This isn't necessary since we dont allocate them up front */
2181 
2182 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2183 	for (i = 0; i < RX_PAGES; i++ ) {
2184 		if (sc->rx_bd_chain[i] != NULL &&
2185 		    sc->rx_bd_chain_map[i] != NULL) {
2186 			bus_dmamap_unload(sc->bnx_dmatag,
2187 			    sc->rx_bd_chain_map[i]);
2188 			bus_dmamem_unmap(sc->bnx_dmatag,
2189 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2190 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2191 			    sc->rx_bd_chain_rseg[i]);
2192 
2193 			bus_dmamap_destroy(sc->bnx_dmatag,
2194 			    sc->rx_bd_chain_map[i]);
2195 			sc->rx_bd_chain[i] = NULL;
2196 			sc->rx_bd_chain_map[i] = NULL;
2197 		}
2198 	}
2199 
2200 	/* Unload and destroy the RX mbuf maps. */
2201 	for (i = 0; i < TOTAL_RX_BD; i++) {
2202 		if (sc->rx_mbuf_map[i] != NULL) {
2203 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2204 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2205 		}
2206 	}
2207 
2208 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2209 }
2210 
2211 /****************************************************************************/
2212 /* Allocate any DMA memory needed by the driver.                            */
2213 /*                                                                          */
2214 /* Allocates DMA memory needed for the various global structures needed by  */
2215 /* hardware.                                                                */
2216 /*                                                                          */
2217 /* Returns:                                                                 */
2218 /*   0 for success, positive value for failure.                             */
2219 /****************************************************************************/
2220 int
2221 bnx_dma_alloc(struct bnx_softc *sc)
2222 {
2223 	int			i, rc = 0;
2224 
2225 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2226 
2227 	/*
2228 	 * Allocate DMA memory for the status block, map the memory into DMA
2229 	 * space, and fetch the physical address of the block.
2230 	 */
2231 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2232 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2233 		aprint_error_dev(sc->bnx_dev,
2234 		    "Could not create status block DMA map!\n");
2235 		rc = ENOMEM;
2236 		goto bnx_dma_alloc_exit;
2237 	}
2238 
2239 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2240 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2241 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2242 		aprint_error_dev(sc->bnx_dev,
2243 		    "Could not allocate status block DMA memory!\n");
2244 		rc = ENOMEM;
2245 		goto bnx_dma_alloc_exit;
2246 	}
2247 
2248 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2249 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2250 		aprint_error_dev(sc->bnx_dev,
2251 		    "Could not map status block DMA memory!\n");
2252 		rc = ENOMEM;
2253 		goto bnx_dma_alloc_exit;
2254 	}
2255 
2256 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2257 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2258 		aprint_error_dev(sc->bnx_dev,
2259 		    "Could not load status block DMA memory!\n");
2260 		rc = ENOMEM;
2261 		goto bnx_dma_alloc_exit;
2262 	}
2263 
2264 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2265 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2266 
2267 	/* DRC - Fix for 64 bit addresses. */
2268 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2269 		(u_int32_t) sc->status_block_paddr);
2270 
2271 	/* BCM5709 uses host memory as cache for context memory. */
2272 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2273 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2274 		if (sc->ctx_pages == 0)
2275 			sc->ctx_pages = 1;
2276 		if (sc->ctx_pages > 4) /* XXX */
2277 			sc->ctx_pages = 4;
2278 
2279 		DBRUNIF((sc->ctx_pages > 512),
2280 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2281 				__FILE__, __LINE__, sc->ctx_pages));
2282 
2283 
2284 		for (i = 0; i < sc->ctx_pages; i++) {
2285 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2286 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2287 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2288 			    &sc->ctx_map[i]) != 0) {
2289 				rc = ENOMEM;
2290 				goto bnx_dma_alloc_exit;
2291 			}
2292 
2293 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2294 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2295 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2296 				rc = ENOMEM;
2297 				goto bnx_dma_alloc_exit;
2298 			}
2299 
2300 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2301 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2302 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2303 				rc = ENOMEM;
2304 				goto bnx_dma_alloc_exit;
2305 			}
2306 
2307 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2308 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2309 			    BUS_DMA_NOWAIT) != 0) {
2310 				rc = ENOMEM;
2311 				goto bnx_dma_alloc_exit;
2312 			}
2313 
2314 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2315 		}
2316 	}
2317 
2318 	/*
2319 	 * Allocate DMA memory for the statistics block, map the memory into
2320 	 * DMA space, and fetch the physical address of the block.
2321 	 */
2322 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2323 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2324 		aprint_error_dev(sc->bnx_dev,
2325 		    "Could not create stats block DMA map!\n");
2326 		rc = ENOMEM;
2327 		goto bnx_dma_alloc_exit;
2328 	}
2329 
2330 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2331 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2332 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2333 		aprint_error_dev(sc->bnx_dev,
2334 		    "Could not allocate stats block DMA memory!\n");
2335 		rc = ENOMEM;
2336 		goto bnx_dma_alloc_exit;
2337 	}
2338 
2339 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2340 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2341 		aprint_error_dev(sc->bnx_dev,
2342 		    "Could not map stats block DMA memory!\n");
2343 		rc = ENOMEM;
2344 		goto bnx_dma_alloc_exit;
2345 	}
2346 
2347 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2348 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2349 		aprint_error_dev(sc->bnx_dev,
2350 		    "Could not load status block DMA memory!\n");
2351 		rc = ENOMEM;
2352 		goto bnx_dma_alloc_exit;
2353 	}
2354 
2355 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2356 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2357 
2358 	/* DRC - Fix for 64 bit address. */
2359 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2360 	    (u_int32_t) sc->stats_block_paddr);
2361 
2362 	/*
2363 	 * Allocate DMA memory for the TX buffer descriptor chain,
2364 	 * and fetch the physical address of the block.
2365 	 */
2366 	for (i = 0; i < TX_PAGES; i++) {
2367 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2368 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2369 		    &sc->tx_bd_chain_map[i])) {
2370 			aprint_error_dev(sc->bnx_dev,
2371 			    "Could not create Tx desc %d DMA map!\n", i);
2372 			rc = ENOMEM;
2373 			goto bnx_dma_alloc_exit;
2374 		}
2375 
2376 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2377 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2378 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2379 			aprint_error_dev(sc->bnx_dev,
2380 			    "Could not allocate TX desc %d DMA memory!\n",
2381 			    i);
2382 			rc = ENOMEM;
2383 			goto bnx_dma_alloc_exit;
2384 		}
2385 
2386 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2387 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2388 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2389 			aprint_error_dev(sc->bnx_dev,
2390 			    "Could not map TX desc %d DMA memory!\n", i);
2391 			rc = ENOMEM;
2392 			goto bnx_dma_alloc_exit;
2393 		}
2394 
2395 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2396 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2397 		    BUS_DMA_NOWAIT)) {
2398 			aprint_error_dev(sc->bnx_dev,
2399 			    "Could not load TX desc %d DMA memory!\n", i);
2400 			rc = ENOMEM;
2401 			goto bnx_dma_alloc_exit;
2402 		}
2403 
2404 		sc->tx_bd_chain_paddr[i] =
2405 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2406 
2407 		/* DRC - Fix for 64 bit systems. */
2408 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2409 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2410 	}
2411 
2412 	/*
2413 	 * Create lists to hold TX mbufs.
2414 	 */
2415 	TAILQ_INIT(&sc->tx_free_pkts);
2416 	TAILQ_INIT(&sc->tx_used_pkts);
2417 	sc->tx_pkt_count = 0;
2418 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2419 
2420 	/*
2421 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2422 	 * and fetch the physical address of the block.
2423 	 */
2424 	for (i = 0; i < RX_PAGES; i++) {
2425 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2426 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2427 		    &sc->rx_bd_chain_map[i])) {
2428 			aprint_error_dev(sc->bnx_dev,
2429 			    "Could not create Rx desc %d DMA map!\n", i);
2430 			rc = ENOMEM;
2431 			goto bnx_dma_alloc_exit;
2432 		}
2433 
2434 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2435 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2436 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2437 			aprint_error_dev(sc->bnx_dev,
2438 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2439 			rc = ENOMEM;
2440 			goto bnx_dma_alloc_exit;
2441 		}
2442 
2443 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2444 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2445 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2446 			aprint_error_dev(sc->bnx_dev,
2447 			    "Could not map Rx desc %d DMA memory!\n", i);
2448 			rc = ENOMEM;
2449 			goto bnx_dma_alloc_exit;
2450 		}
2451 
2452 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2453 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2454 		    BUS_DMA_NOWAIT)) {
2455 			aprint_error_dev(sc->bnx_dev,
2456 			    "Could not load Rx desc %d DMA memory!\n", i);
2457 			rc = ENOMEM;
2458 			goto bnx_dma_alloc_exit;
2459 		}
2460 
2461 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2462 		sc->rx_bd_chain_paddr[i] =
2463 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2464 
2465 		/* DRC - Fix for 64 bit systems. */
2466 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2467 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2468 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2469 		    0, BNX_RX_CHAIN_PAGE_SZ,
2470 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2471 	}
2472 
2473 	/*
2474 	 * Create DMA maps for the Rx buffer mbufs.
2475 	 */
2476 	for (i = 0; i < TOTAL_RX_BD; i++) {
2477 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2478 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2479 		    &sc->rx_mbuf_map[i])) {
2480 			aprint_error_dev(sc->bnx_dev,
2481 			    "Could not create Rx mbuf %d DMA map!\n", i);
2482 			rc = ENOMEM;
2483 			goto bnx_dma_alloc_exit;
2484 		}
2485 	}
2486 
2487  bnx_dma_alloc_exit:
2488 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2489 
2490 	return(rc);
2491 }
2492 
2493 /****************************************************************************/
2494 /* Release all resources used by the driver.                                */
2495 /*                                                                          */
2496 /* Releases all resources acquired by the driver including interrupts,      */
2497 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2498 /*                                                                          */
2499 /* Returns:                                                                 */
2500 /*   Nothing.                                                               */
2501 /****************************************************************************/
2502 void
2503 bnx_release_resources(struct bnx_softc *sc)
2504 {
2505 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2506 
2507 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2508 
2509 	bnx_dma_free(sc);
2510 
2511 	if (sc->bnx_intrhand != NULL)
2512 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2513 
2514 	if (sc->bnx_size)
2515 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2516 
2517 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2518 }
2519 
2520 /****************************************************************************/
2521 /* Firmware synchronization.                                                */
2522 /*                                                                          */
2523 /* Before performing certain events such as a chip reset, synchronize with  */
2524 /* the firmware first.                                                      */
2525 /*                                                                          */
2526 /* Returns:                                                                 */
2527 /*   0 for success, positive value for failure.                             */
2528 /****************************************************************************/
2529 int
2530 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2531 {
2532 	int			i, rc = 0;
2533 	u_int32_t		val;
2534 
2535 	/* Don't waste any time if we've timed out before. */
2536 	if (sc->bnx_fw_timed_out) {
2537 		rc = EBUSY;
2538 		goto bnx_fw_sync_exit;
2539 	}
2540 
2541 	/* Increment the message sequence number. */
2542 	sc->bnx_fw_wr_seq++;
2543 	msg_data |= sc->bnx_fw_wr_seq;
2544 
2545  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2546 	    msg_data);
2547 
2548 	/* Send the message to the bootcode driver mailbox. */
2549 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2550 
2551 	/* Wait for the bootcode to acknowledge the message. */
2552 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2553 		/* Check for a response in the bootcode firmware mailbox. */
2554 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2555 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2556 			break;
2557 		DELAY(1000);
2558 	}
2559 
2560 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2561 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2562 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2563 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2564 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2565 
2566 		msg_data &= ~BNX_DRV_MSG_CODE;
2567 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2568 
2569 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2570 
2571 		sc->bnx_fw_timed_out = 1;
2572 		rc = EBUSY;
2573 	}
2574 
2575 bnx_fw_sync_exit:
2576 	return (rc);
2577 }
2578 
2579 /****************************************************************************/
2580 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2581 /*                                                                          */
2582 /* Returns:                                                                 */
2583 /*   Nothing.                                                               */
2584 /****************************************************************************/
2585 void
2586 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2587     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2588 {
2589 	int			i;
2590 	u_int32_t		val;
2591 
2592 	/* Set the page size used by RV2P. */
2593 	if (rv2p_proc == RV2P_PROC2) {
2594 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2595 		    USABLE_RX_BD_PER_PAGE);
2596 	}
2597 
2598 	for (i = 0; i < rv2p_code_len; i += 8) {
2599 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2600 		rv2p_code++;
2601 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2602 		rv2p_code++;
2603 
2604 		if (rv2p_proc == RV2P_PROC1) {
2605 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2606 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2607 		} else {
2608 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2609 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2610 		}
2611 	}
2612 
2613 	/* Reset the processor, un-stall is done later. */
2614 	if (rv2p_proc == RV2P_PROC1)
2615 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2616 	else
2617 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2618 }
2619 
2620 /****************************************************************************/
2621 /* Load RISC processor firmware.                                            */
2622 /*                                                                          */
2623 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2624 /* associated with a particular processor.                                  */
2625 /*                                                                          */
2626 /* Returns:                                                                 */
2627 /*   Nothing.                                                               */
2628 /****************************************************************************/
2629 void
2630 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2631     struct fw_info *fw)
2632 {
2633 	u_int32_t		offset;
2634 	u_int32_t		val;
2635 
2636 	/* Halt the CPU. */
2637 	val = REG_RD_IND(sc, cpu_reg->mode);
2638 	val |= cpu_reg->mode_value_halt;
2639 	REG_WR_IND(sc, cpu_reg->mode, val);
2640 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2641 
2642 	/* Load the Text area. */
2643 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2644 	if (fw->text) {
2645 		int j;
2646 
2647 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2648 			REG_WR_IND(sc, offset, fw->text[j]);
2649 	}
2650 
2651 	/* Load the Data area. */
2652 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2653 	if (fw->data) {
2654 		int j;
2655 
2656 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2657 			REG_WR_IND(sc, offset, fw->data[j]);
2658 	}
2659 
2660 	/* Load the SBSS area. */
2661 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2662 	if (fw->sbss) {
2663 		int j;
2664 
2665 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2666 			REG_WR_IND(sc, offset, fw->sbss[j]);
2667 	}
2668 
2669 	/* Load the BSS area. */
2670 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2671 	if (fw->bss) {
2672 		int j;
2673 
2674 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2675 			REG_WR_IND(sc, offset, fw->bss[j]);
2676 	}
2677 
2678 	/* Load the Read-Only area. */
2679 	offset = cpu_reg->spad_base +
2680 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2681 	if (fw->rodata) {
2682 		int j;
2683 
2684 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2685 			REG_WR_IND(sc, offset, fw->rodata[j]);
2686 	}
2687 
2688 	/* Clear the pre-fetch instruction. */
2689 	REG_WR_IND(sc, cpu_reg->inst, 0);
2690 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2691 
2692 	/* Start the CPU. */
2693 	val = REG_RD_IND(sc, cpu_reg->mode);
2694 	val &= ~cpu_reg->mode_value_halt;
2695 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2696 	REG_WR_IND(sc, cpu_reg->mode, val);
2697 }
2698 
2699 /****************************************************************************/
2700 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2701 /*                                                                          */
2702 /* Loads the firmware for each CPU and starts the CPU.                      */
2703 /*                                                                          */
2704 /* Returns:                                                                 */
2705 /*   Nothing.                                                               */
2706 /****************************************************************************/
2707 void
2708 bnx_init_cpus(struct bnx_softc *sc)
2709 {
2710 	struct cpu_reg cpu_reg;
2711 	struct fw_info fw;
2712 
2713 	switch(BNX_CHIP_NUM(sc)) {
2714 	case BNX_CHIP_NUM_5709:
2715 		/* Initialize the RV2P processor. */
2716 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2717 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2718 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2719 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2720 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2721 		} else {
2722 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2723 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2724 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2725 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2726 		}
2727 
2728 		/* Initialize the RX Processor. */
2729 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2730 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2731 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2732 		cpu_reg.state = BNX_RXP_CPU_STATE;
2733 		cpu_reg.state_value_clear = 0xffffff;
2734 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2735 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2736 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2737 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2738 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2739 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2740 		cpu_reg.mips_view_base = 0x8000000;
2741 
2742 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2743 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2744 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2745 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2746 
2747 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2748 		fw.text_len = bnx_RXP_b09FwTextLen;
2749 		fw.text_index = 0;
2750 		fw.text = bnx_RXP_b09FwText;
2751 
2752 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2753 		fw.data_len = bnx_RXP_b09FwDataLen;
2754 		fw.data_index = 0;
2755 		fw.data = bnx_RXP_b09FwData;
2756 
2757 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2758 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2759 		fw.sbss_index = 0;
2760 		fw.sbss = bnx_RXP_b09FwSbss;
2761 
2762 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2763 		fw.bss_len = bnx_RXP_b09FwBssLen;
2764 		fw.bss_index = 0;
2765 		fw.bss = bnx_RXP_b09FwBss;
2766 
2767 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2768 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2769 		fw.rodata_index = 0;
2770 		fw.rodata = bnx_RXP_b09FwRodata;
2771 
2772 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2773 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2774 
2775 		/* Initialize the TX Processor. */
2776 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2777 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2778 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2779 		cpu_reg.state = BNX_TXP_CPU_STATE;
2780 		cpu_reg.state_value_clear = 0xffffff;
2781 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2782 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2783 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2784 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2785 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2786 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2787 		cpu_reg.mips_view_base = 0x8000000;
2788 
2789 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2790 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2791 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2792 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2793 
2794 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2795 		fw.text_len = bnx_TXP_b09FwTextLen;
2796 		fw.text_index = 0;
2797 		fw.text = bnx_TXP_b09FwText;
2798 
2799 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2800 		fw.data_len = bnx_TXP_b09FwDataLen;
2801 		fw.data_index = 0;
2802 		fw.data = bnx_TXP_b09FwData;
2803 
2804 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2805 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2806 		fw.sbss_index = 0;
2807 		fw.sbss = bnx_TXP_b09FwSbss;
2808 
2809 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2810 		fw.bss_len = bnx_TXP_b09FwBssLen;
2811 		fw.bss_index = 0;
2812 		fw.bss = bnx_TXP_b09FwBss;
2813 
2814 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2815 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2816 		fw.rodata_index = 0;
2817 		fw.rodata = bnx_TXP_b09FwRodata;
2818 
2819 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2820 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2821 
2822 		/* Initialize the TX Patch-up Processor. */
2823 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2824 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2825 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2826 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2827 		cpu_reg.state_value_clear = 0xffffff;
2828 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2829 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2830 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2831 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2832 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2833 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2834 		cpu_reg.mips_view_base = 0x8000000;
2835 
2836 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2837 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2838 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2839 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2840 
2841 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2842 		fw.text_len = bnx_TPAT_b09FwTextLen;
2843 		fw.text_index = 0;
2844 		fw.text = bnx_TPAT_b09FwText;
2845 
2846 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2847 		fw.data_len = bnx_TPAT_b09FwDataLen;
2848 		fw.data_index = 0;
2849 		fw.data = bnx_TPAT_b09FwData;
2850 
2851 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2852 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2853 		fw.sbss_index = 0;
2854 		fw.sbss = bnx_TPAT_b09FwSbss;
2855 
2856 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2857 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2858 		fw.bss_index = 0;
2859 		fw.bss = bnx_TPAT_b09FwBss;
2860 
2861 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2862 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2863 		fw.rodata_index = 0;
2864 		fw.rodata = bnx_TPAT_b09FwRodata;
2865 
2866 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2867 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2868 
2869 		/* Initialize the Completion Processor. */
2870 		cpu_reg.mode = BNX_COM_CPU_MODE;
2871 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2872 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2873 		cpu_reg.state = BNX_COM_CPU_STATE;
2874 		cpu_reg.state_value_clear = 0xffffff;
2875 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2876 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2877 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2878 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2879 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2880 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2881 		cpu_reg.mips_view_base = 0x8000000;
2882 
2883 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2884 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2885 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2886 		fw.start_addr = bnx_COM_b09FwStartAddr;
2887 
2888 		fw.text_addr = bnx_COM_b09FwTextAddr;
2889 		fw.text_len = bnx_COM_b09FwTextLen;
2890 		fw.text_index = 0;
2891 		fw.text = bnx_COM_b09FwText;
2892 
2893 		fw.data_addr = bnx_COM_b09FwDataAddr;
2894 		fw.data_len = bnx_COM_b09FwDataLen;
2895 		fw.data_index = 0;
2896 		fw.data = bnx_COM_b09FwData;
2897 
2898 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2899 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2900 		fw.sbss_index = 0;
2901 		fw.sbss = bnx_COM_b09FwSbss;
2902 
2903 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2904 		fw.bss_len = bnx_COM_b09FwBssLen;
2905 		fw.bss_index = 0;
2906 		fw.bss = bnx_COM_b09FwBss;
2907 
2908 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2909 		fw.rodata_len = bnx_COM_b09FwRodataLen;
2910 		fw.rodata_index = 0;
2911 		fw.rodata = bnx_COM_b09FwRodata;
2912 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2913 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2914 		break;
2915 	default:
2916 		/* Initialize the RV2P processor. */
2917 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2918 		    RV2P_PROC1);
2919 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2920 		    RV2P_PROC2);
2921 
2922 		/* Initialize the RX Processor. */
2923 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2924 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2925 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2926 		cpu_reg.state = BNX_RXP_CPU_STATE;
2927 		cpu_reg.state_value_clear = 0xffffff;
2928 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2929 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2930 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2931 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2932 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2933 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2934 		cpu_reg.mips_view_base = 0x8000000;
2935 
2936 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2937 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2938 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2939 		fw.start_addr = bnx_RXP_b06FwStartAddr;
2940 
2941 		fw.text_addr = bnx_RXP_b06FwTextAddr;
2942 		fw.text_len = bnx_RXP_b06FwTextLen;
2943 		fw.text_index = 0;
2944 		fw.text = bnx_RXP_b06FwText;
2945 
2946 		fw.data_addr = bnx_RXP_b06FwDataAddr;
2947 		fw.data_len = bnx_RXP_b06FwDataLen;
2948 		fw.data_index = 0;
2949 		fw.data = bnx_RXP_b06FwData;
2950 
2951 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2952 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2953 		fw.sbss_index = 0;
2954 		fw.sbss = bnx_RXP_b06FwSbss;
2955 
2956 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2957 		fw.bss_len = bnx_RXP_b06FwBssLen;
2958 		fw.bss_index = 0;
2959 		fw.bss = bnx_RXP_b06FwBss;
2960 
2961 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2962 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2963 		fw.rodata_index = 0;
2964 		fw.rodata = bnx_RXP_b06FwRodata;
2965 
2966 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2967 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2968 
2969 		/* Initialize the TX Processor. */
2970 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2971 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2972 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2973 		cpu_reg.state = BNX_TXP_CPU_STATE;
2974 		cpu_reg.state_value_clear = 0xffffff;
2975 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2976 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2977 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2978 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2979 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2980 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2981 		cpu_reg.mips_view_base = 0x8000000;
2982 
2983 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2984 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2985 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2986 		fw.start_addr = bnx_TXP_b06FwStartAddr;
2987 
2988 		fw.text_addr = bnx_TXP_b06FwTextAddr;
2989 		fw.text_len = bnx_TXP_b06FwTextLen;
2990 		fw.text_index = 0;
2991 		fw.text = bnx_TXP_b06FwText;
2992 
2993 		fw.data_addr = bnx_TXP_b06FwDataAddr;
2994 		fw.data_len = bnx_TXP_b06FwDataLen;
2995 		fw.data_index = 0;
2996 		fw.data = bnx_TXP_b06FwData;
2997 
2998 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2999 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3000 		fw.sbss_index = 0;
3001 		fw.sbss = bnx_TXP_b06FwSbss;
3002 
3003 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3004 		fw.bss_len = bnx_TXP_b06FwBssLen;
3005 		fw.bss_index = 0;
3006 		fw.bss = bnx_TXP_b06FwBss;
3007 
3008 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3009 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3010 		fw.rodata_index = 0;
3011 		fw.rodata = bnx_TXP_b06FwRodata;
3012 
3013 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3014 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3015 
3016 		/* Initialize the TX Patch-up Processor. */
3017 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3018 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3019 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3020 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3021 		cpu_reg.state_value_clear = 0xffffff;
3022 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3023 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3024 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3025 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3026 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3027 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3028 		cpu_reg.mips_view_base = 0x8000000;
3029 
3030 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3031 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3032 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3033 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3034 
3035 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3036 		fw.text_len = bnx_TPAT_b06FwTextLen;
3037 		fw.text_index = 0;
3038 		fw.text = bnx_TPAT_b06FwText;
3039 
3040 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3041 		fw.data_len = bnx_TPAT_b06FwDataLen;
3042 		fw.data_index = 0;
3043 		fw.data = bnx_TPAT_b06FwData;
3044 
3045 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3046 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3047 		fw.sbss_index = 0;
3048 		fw.sbss = bnx_TPAT_b06FwSbss;
3049 
3050 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3051 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3052 		fw.bss_index = 0;
3053 		fw.bss = bnx_TPAT_b06FwBss;
3054 
3055 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3056 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3057 		fw.rodata_index = 0;
3058 		fw.rodata = bnx_TPAT_b06FwRodata;
3059 
3060 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3061 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3062 
3063 		/* Initialize the Completion Processor. */
3064 		cpu_reg.mode = BNX_COM_CPU_MODE;
3065 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3066 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3067 		cpu_reg.state = BNX_COM_CPU_STATE;
3068 		cpu_reg.state_value_clear = 0xffffff;
3069 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3070 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3071 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3072 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3073 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3074 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3075 		cpu_reg.mips_view_base = 0x8000000;
3076 
3077 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3078 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3079 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3080 		fw.start_addr = bnx_COM_b06FwStartAddr;
3081 
3082 		fw.text_addr = bnx_COM_b06FwTextAddr;
3083 		fw.text_len = bnx_COM_b06FwTextLen;
3084 		fw.text_index = 0;
3085 		fw.text = bnx_COM_b06FwText;
3086 
3087 		fw.data_addr = bnx_COM_b06FwDataAddr;
3088 		fw.data_len = bnx_COM_b06FwDataLen;
3089 		fw.data_index = 0;
3090 		fw.data = bnx_COM_b06FwData;
3091 
3092 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3093 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3094 		fw.sbss_index = 0;
3095 		fw.sbss = bnx_COM_b06FwSbss;
3096 
3097 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3098 		fw.bss_len = bnx_COM_b06FwBssLen;
3099 		fw.bss_index = 0;
3100 		fw.bss = bnx_COM_b06FwBss;
3101 
3102 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3103 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3104 		fw.rodata_index = 0;
3105 		fw.rodata = bnx_COM_b06FwRodata;
3106 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3107 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3108 		break;
3109 	}
3110 }
3111 
3112 /****************************************************************************/
3113 /* Initialize context memory.                                               */
3114 /*                                                                          */
3115 /* Clears the memory associated with each Context ID (CID).                 */
3116 /*                                                                          */
3117 /* Returns:                                                                 */
3118 /*   Nothing.                                                               */
3119 /****************************************************************************/
3120 void
3121 bnx_init_context(struct bnx_softc *sc)
3122 {
3123 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3124 		/* DRC: Replace this constant value with a #define. */
3125 		int i, retry_cnt = 10;
3126 		u_int32_t val;
3127 
3128 		/*
3129 		 * BCM5709 context memory may be cached
3130 		 * in host memory so prepare the host memory
3131 		 * for access.
3132 		 */
3133 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3134 		    | (1 << 12);
3135 		val |= (BCM_PAGE_BITS - 8) << 16;
3136 		REG_WR(sc, BNX_CTX_COMMAND, val);
3137 
3138 		/* Wait for mem init command to complete. */
3139 		for (i = 0; i < retry_cnt; i++) {
3140 			val = REG_RD(sc, BNX_CTX_COMMAND);
3141 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3142 				break;
3143 			DELAY(2);
3144 		}
3145 
3146 
3147 		/* ToDo: Consider returning an error here. */
3148 
3149 		for (i = 0; i < sc->ctx_pages; i++) {
3150 			int j;
3151 
3152 
3153 			/* Set the physaddr of the context memory cache. */
3154 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3155 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3156 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3157 			val = (u_int32_t)
3158 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3159 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3160 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3161 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3162 
3163 
3164 			/* Verify that the context memory write was successful. */
3165 			for (j = 0; j < retry_cnt; j++) {
3166 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3167 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3168 					break;
3169 				DELAY(5);
3170 			}
3171 
3172 			/* ToDo: Consider returning an error here. */
3173 		}
3174 	} else {
3175 		u_int32_t vcid_addr, offset;
3176 
3177 		/*
3178 		 * For the 5706/5708, context memory is local to
3179 		 * the controller, so initialize the controller
3180 		 * context memory.
3181 		 */
3182 
3183 		vcid_addr = GET_CID_ADDR(96);
3184 		while (vcid_addr) {
3185 
3186 			vcid_addr -= BNX_PHY_CTX_SIZE;
3187 
3188 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3189 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3190 
3191 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3192 				CTX_WR(sc, 0x00, offset, 0);
3193 			}
3194 
3195 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3196 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3197 		}
3198 	}
3199 }
3200 
3201 /****************************************************************************/
3202 /* Fetch the permanent MAC address of the controller.                       */
3203 /*                                                                          */
3204 /* Returns:                                                                 */
3205 /*   Nothing.                                                               */
3206 /****************************************************************************/
3207 void
3208 bnx_get_mac_addr(struct bnx_softc *sc)
3209 {
3210 	u_int32_t		mac_lo = 0, mac_hi = 0;
3211 
3212 	/*
3213 	 * The NetXtreme II bootcode populates various NIC
3214 	 * power-on and runtime configuration items in a
3215 	 * shared memory area.  The factory configured MAC
3216 	 * address is available from both NVRAM and the
3217 	 * shared memory area so we'll read the value from
3218 	 * shared memory for speed.
3219 	 */
3220 
3221 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3222 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3223 
3224 	if ((mac_lo == 0) && (mac_hi == 0)) {
3225 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3226 		    __FILE__, __LINE__);
3227 	} else {
3228 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3229 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3230 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3231 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3232 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3233 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3234 	}
3235 
3236 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3237 	    "%s\n", ether_sprintf(sc->eaddr));
3238 }
3239 
3240 /****************************************************************************/
3241 /* Program the MAC address.                                                 */
3242 /*                                                                          */
3243 /* Returns:                                                                 */
3244 /*   Nothing.                                                               */
3245 /****************************************************************************/
3246 void
3247 bnx_set_mac_addr(struct bnx_softc *sc)
3248 {
3249 	u_int32_t		val;
3250 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3251 
3252 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3253 	    "%s\n", ether_sprintf(sc->eaddr));
3254 
3255 	val = (mac_addr[0] << 8) | mac_addr[1];
3256 
3257 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3258 
3259 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3260 		(mac_addr[4] << 8) | mac_addr[5];
3261 
3262 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3263 }
3264 
3265 /****************************************************************************/
3266 /* Stop the controller.                                                     */
3267 /*                                                                          */
3268 /* Returns:                                                                 */
3269 /*   Nothing.                                                               */
3270 /****************************************************************************/
3271 void
3272 bnx_stop(struct ifnet *ifp, int disable)
3273 {
3274 	struct bnx_softc *sc = ifp->if_softc;
3275 
3276 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3277 
3278 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3279 		return;
3280 
3281 	callout_stop(&sc->bnx_timeout);
3282 
3283 	mii_down(&sc->bnx_mii);
3284 
3285 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3286 
3287 	/* Disable the transmit/receive blocks. */
3288 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3289 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3290 	DELAY(20);
3291 
3292 	bnx_disable_intr(sc);
3293 
3294 	/* Tell firmware that the driver is going away. */
3295 	if (disable)
3296 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3297 	else
3298 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3299 
3300 	/* Free RX buffers. */
3301 	bnx_free_rx_chain(sc);
3302 
3303 	/* Free TX buffers. */
3304 	bnx_free_tx_chain(sc);
3305 
3306 	ifp->if_timer = 0;
3307 
3308 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3309 
3310 }
3311 
3312 int
3313 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3314 {
3315 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3316 	u_int32_t		val;
3317 	int			i, rc = 0;
3318 
3319 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3320 
3321 	/* Wait for pending PCI transactions to complete. */
3322 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3323 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3324 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3325 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3326 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3327 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3328 	DELAY(5);
3329 
3330 	/* Disable DMA */
3331 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3332 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3333 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3334 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3335 	}
3336 
3337 	/* Assume bootcode is running. */
3338 	sc->bnx_fw_timed_out = 0;
3339 
3340 	/* Give the firmware a chance to prepare for the reset. */
3341 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3342 	if (rc)
3343 		goto bnx_reset_exit;
3344 
3345 	/* Set a firmware reminder that this is a soft reset. */
3346 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3347 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3348 
3349 	/* Dummy read to force the chip to complete all current transactions. */
3350 	val = REG_RD(sc, BNX_MISC_ID);
3351 
3352 	/* Chip reset. */
3353 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3354 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3355 		REG_RD(sc, BNX_MISC_COMMAND);
3356 		DELAY(5);
3357 
3358 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3359 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3360 
3361 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3362 		    val);
3363 	} else {
3364 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3365 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3366 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3367 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3368 
3369 		/* Allow up to 30us for reset to complete. */
3370 		for (i = 0; i < 10; i++) {
3371 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3372 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3373 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3374 				break;
3375 			}
3376 			DELAY(10);
3377 		}
3378 
3379 		/* Check that reset completed successfully. */
3380 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3381 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3382 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3383 			    __FILE__, __LINE__);
3384 			rc = EBUSY;
3385 			goto bnx_reset_exit;
3386 		}
3387 	}
3388 
3389 	/* Make sure byte swapping is properly configured. */
3390 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3391 	if (val != 0x01020304) {
3392 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3393 		    __FILE__, __LINE__);
3394 		rc = ENODEV;
3395 		goto bnx_reset_exit;
3396 	}
3397 
3398 	/* Just completed a reset, assume that firmware is running again. */
3399 	sc->bnx_fw_timed_out = 0;
3400 
3401 	/* Wait for the firmware to finish its initialization. */
3402 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3403 	if (rc)
3404 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3405 		    "initialization!\n", __FILE__, __LINE__);
3406 
3407 bnx_reset_exit:
3408 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3409 
3410 	return (rc);
3411 }
3412 
3413 int
3414 bnx_chipinit(struct bnx_softc *sc)
3415 {
3416 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3417 	u_int32_t		val;
3418 	int			rc = 0;
3419 
3420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3421 
3422 	/* Make sure the interrupt is not active. */
3423 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3424 
3425 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3426 	/* channels and PCI clock compensation delay.                      */
3427 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3428 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3429 #if BYTE_ORDER == BIG_ENDIAN
3430 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3431 #endif
3432 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3433 	    DMA_READ_CHANS << 12 |
3434 	    DMA_WRITE_CHANS << 16;
3435 
3436 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3437 
3438 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3439 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3440 
3441 	/*
3442 	 * This setting resolves a problem observed on certain Intel PCI
3443 	 * chipsets that cannot handle multiple outstanding DMA operations.
3444 	 * See errata E9_5706A1_65.
3445 	 */
3446 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3447 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3448 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3449 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3450 
3451 	REG_WR(sc, BNX_DMA_CONFIG, val);
3452 
3453 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3454 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3455 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3456 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3457 		    val & ~0x20000);
3458 	}
3459 
3460 	/* Enable the RX_V2P and Context state machines before access. */
3461 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3462 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3463 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3464 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3465 
3466 	/* Initialize context mapping and zero out the quick contexts. */
3467 	bnx_init_context(sc);
3468 
3469 	/* Initialize the on-boards CPUs */
3470 	bnx_init_cpus(sc);
3471 
3472 	/* Prepare NVRAM for access. */
3473 	if (bnx_init_nvram(sc)) {
3474 		rc = ENODEV;
3475 		goto bnx_chipinit_exit;
3476 	}
3477 
3478 	/* Set the kernel bypass block size */
3479 	val = REG_RD(sc, BNX_MQ_CONFIG);
3480 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3481 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3482 
3483 	/* Enable bins used on the 5709. */
3484 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3485 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3486 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3487 			val |= BNX_MQ_CONFIG_HALT_DIS;
3488 	}
3489 
3490 	REG_WR(sc, BNX_MQ_CONFIG, val);
3491 
3492 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3493 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3494 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3495 
3496 	val = (BCM_PAGE_BITS - 8) << 24;
3497 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3498 
3499 	/* Configure page size. */
3500 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3501 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3502 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3503 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3504 
3505 #if 0
3506 	/* Set the perfect match control register to default. */
3507 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3508 #endif
3509 
3510 bnx_chipinit_exit:
3511 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3512 
3513 	return(rc);
3514 }
3515 
3516 /****************************************************************************/
3517 /* Initialize the controller in preparation to send/receive traffic.        */
3518 /*                                                                          */
3519 /* Returns:                                                                 */
3520 /*   0 for success, positive value for failure.                             */
3521 /****************************************************************************/
3522 int
3523 bnx_blockinit(struct bnx_softc *sc)
3524 {
3525 	u_int32_t		reg, val;
3526 	int 			rc = 0;
3527 
3528 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3529 
3530 	/* Load the hardware default MAC address. */
3531 	bnx_set_mac_addr(sc);
3532 
3533 	/* Set the Ethernet backoff seed value */
3534 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3535 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3536 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3537 
3538 	sc->last_status_idx = 0;
3539 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3540 
3541 	/* Set up link change interrupt generation. */
3542 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3543 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3544 
3545 	/* Program the physical address of the status block. */
3546 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3547 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3548 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3549 
3550 	/* Program the physical address of the statistics block. */
3551 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3552 	    (u_int32_t)(sc->stats_block_paddr));
3553 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3554 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3555 
3556 	/* Program various host coalescing parameters. */
3557 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3558 	    << 16) | sc->bnx_tx_quick_cons_trip);
3559 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3560 	    << 16) | sc->bnx_rx_quick_cons_trip);
3561 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3562 	    sc->bnx_comp_prod_trip);
3563 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3564 	    sc->bnx_tx_ticks);
3565 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3566 	    sc->bnx_rx_ticks);
3567 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3568 	    sc->bnx_com_ticks);
3569 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3570 	    sc->bnx_cmd_ticks);
3571 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3572 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3573 	REG_WR(sc, BNX_HC_CONFIG,
3574 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3575 	    BNX_HC_CONFIG_COLLECT_STATS));
3576 
3577 	/* Clear the internal statistics counters. */
3578 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3579 
3580 	/* Verify that bootcode is running. */
3581 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3582 
3583 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3584 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3585 	    __FILE__, __LINE__); reg = 0);
3586 
3587 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3588 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3589 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3590 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3591 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3592 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3593 		rc = ENODEV;
3594 		goto bnx_blockinit_exit;
3595 	}
3596 
3597 	/* Check if any management firmware is running. */
3598 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3599 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3600 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3601 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3602 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3603 	}
3604 
3605 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3606 	    BNX_DEV_INFO_BC_REV);
3607 
3608 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3609 
3610 	/* Enable DMA */
3611 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3612 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3613 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3614 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3615 	}
3616 
3617 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3618 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3619 
3620 	/* Enable link state change interrupt generation. */
3621 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3622 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3623 		    BNX_MISC_ENABLE_DEFAULT_XI);
3624 	} else
3625 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3626 
3627 	/* Enable all remaining blocks in the MAC. */
3628 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3629 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3630 	DELAY(20);
3631 
3632 bnx_blockinit_exit:
3633 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3634 
3635 	return (rc);
3636 }
3637 
3638 static int
3639 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3640     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3641 {
3642 	bus_dmamap_t		map;
3643 	struct rx_bd		*rxbd;
3644 	u_int32_t		addr;
3645 	int i;
3646 #ifdef BNX_DEBUG
3647 	u_int16_t debug_chain_prod =	*chain_prod;
3648 #endif
3649 	u_int16_t first_chain_prod;
3650 
3651 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3652 
3653 	/* Map the mbuf cluster into device memory. */
3654 	map = sc->rx_mbuf_map[*chain_prod];
3655 	first_chain_prod = *chain_prod;
3656 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3657 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3658 		    __FILE__, __LINE__);
3659 
3660 		m_freem(m_new);
3661 
3662 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3663 
3664 		return ENOBUFS;
3665 	}
3666 	/* Make sure there is room in the receive chain. */
3667 	if (map->dm_nsegs > sc->free_rx_bd) {
3668 		bus_dmamap_unload(sc->bnx_dmatag, map);
3669 		m_freem(m_new);
3670 		return EFBIG;
3671 	}
3672 #ifdef BNX_DEBUG
3673 	/* Track the distribution of buffer segments. */
3674 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3675 #endif
3676 
3677 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3678 	    BUS_DMASYNC_PREREAD);
3679 
3680 	/* Update some debug statistics counters */
3681 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3682 	    sc->rx_low_watermark = sc->free_rx_bd);
3683 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3684 
3685 	/*
3686 	 * Setup the rx_bd for the first segment
3687 	 */
3688 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3689 
3690 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3691 	rxbd->rx_bd_haddr_lo = addr;
3692 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3693 	rxbd->rx_bd_haddr_hi = addr;
3694 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3695 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3696 	*prod_bseq += map->dm_segs[0].ds_len;
3697 	bus_dmamap_sync(sc->bnx_dmatag,
3698 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3699 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3700 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3701 
3702 	for (i = 1; i < map->dm_nsegs; i++) {
3703 		*prod = NEXT_RX_BD(*prod);
3704 		*chain_prod = RX_CHAIN_IDX(*prod);
3705 
3706 		rxbd =
3707 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3708 
3709 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3710 		rxbd->rx_bd_haddr_lo = addr;
3711 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3712 		rxbd->rx_bd_haddr_hi = addr;
3713 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3714 		rxbd->rx_bd_flags = 0;
3715 		*prod_bseq += map->dm_segs[i].ds_len;
3716 		bus_dmamap_sync(sc->bnx_dmatag,
3717 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3718 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3719 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3720 	}
3721 
3722 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3723 	bus_dmamap_sync(sc->bnx_dmatag,
3724 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3725 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3726 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3727 
3728 	/*
3729 	 * Save the mbuf, ajust the map pointer (swap map for first and
3730 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3731 	 * and update counter.
3732 	 */
3733 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3734 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3735 	sc->rx_mbuf_map[*chain_prod] = map;
3736 	sc->free_rx_bd -= map->dm_nsegs;
3737 
3738 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3739 	    map->dm_nsegs));
3740 	*prod = NEXT_RX_BD(*prod);
3741 	*chain_prod = RX_CHAIN_IDX(*prod);
3742 
3743 	return 0;
3744 }
3745 
3746 /****************************************************************************/
3747 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3748 /*                                                                          */
3749 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3750 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3751 /* necessary.                                                               */
3752 /*                                                                          */
3753 /* Returns:                                                                 */
3754 /*   0 for success, positive value for failure.                             */
3755 /****************************************************************************/
3756 int
3757 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3758     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3759 {
3760 	struct mbuf 		*m_new = NULL;
3761 	int			rc = 0;
3762 	u_int16_t min_free_bd;
3763 
3764 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3765 	    __func__);
3766 
3767 	/* Make sure the inputs are valid. */
3768 	DBRUNIF((*chain_prod > MAX_RX_BD),
3769 	    aprint_error_dev(sc->bnx_dev,
3770 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3771 		*chain_prod, (u_int16_t)MAX_RX_BD));
3772 
3773 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3774 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3775 	    *prod_bseq);
3776 
3777 	/* try to get in as many mbufs as possible */
3778 	if (sc->mbuf_alloc_size == MCLBYTES)
3779 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3780 	else
3781 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3782 	while (sc->free_rx_bd >= min_free_bd) {
3783 		/* Simulate an mbuf allocation failure. */
3784 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3785 		    aprint_error_dev(sc->bnx_dev,
3786 		    "Simulating mbuf allocation failure.\n");
3787 			sc->mbuf_sim_alloc_failed++;
3788 			rc = ENOBUFS;
3789 			goto bnx_get_buf_exit);
3790 
3791 		/* This is a new mbuf allocation. */
3792 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3793 		if (m_new == NULL) {
3794 			DBPRINT(sc, BNX_WARN,
3795 			    "%s(%d): RX mbuf header allocation failed!\n",
3796 			    __FILE__, __LINE__);
3797 
3798 			sc->mbuf_alloc_failed++;
3799 
3800 			rc = ENOBUFS;
3801 			goto bnx_get_buf_exit;
3802 		}
3803 
3804 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3805 
3806 		/* Simulate an mbuf cluster allocation failure. */
3807 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3808 			m_freem(m_new);
3809 			sc->rx_mbuf_alloc--;
3810 			sc->mbuf_alloc_failed++;
3811 			sc->mbuf_sim_alloc_failed++;
3812 			rc = ENOBUFS;
3813 			goto bnx_get_buf_exit);
3814 
3815 		if (sc->mbuf_alloc_size == MCLBYTES)
3816 			MCLGET(m_new, M_DONTWAIT);
3817 		else
3818 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3819 			    M_DONTWAIT);
3820 		if (!(m_new->m_flags & M_EXT)) {
3821 			DBPRINT(sc, BNX_WARN,
3822 			    "%s(%d): RX mbuf chain allocation failed!\n",
3823 			    __FILE__, __LINE__);
3824 
3825 			m_freem(m_new);
3826 
3827 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3828 			sc->mbuf_alloc_failed++;
3829 
3830 			rc = ENOBUFS;
3831 			goto bnx_get_buf_exit;
3832 		}
3833 
3834 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3835 		if (rc != 0)
3836 			goto bnx_get_buf_exit;
3837 	}
3838 
3839 bnx_get_buf_exit:
3840 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3841 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3842 	    *chain_prod, *prod_bseq);
3843 
3844 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3845 	    __func__);
3846 
3847 	return(rc);
3848 }
3849 
3850 void
3851 bnx_alloc_pkts(struct work * unused, void * arg)
3852 {
3853 	struct bnx_softc *sc = arg;
3854 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3855 	struct bnx_pkt *pkt;
3856 	int i, s;
3857 
3858 	for (i = 0; i < 4; i++) { /* magic! */
3859 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3860 		if (pkt == NULL)
3861 			break;
3862 
3863 		if (bus_dmamap_create(sc->bnx_dmatag,
3864 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3865 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3866 		    &pkt->pkt_dmamap) != 0)
3867 			goto put;
3868 
3869 		if (!ISSET(ifp->if_flags, IFF_UP))
3870 			goto stopping;
3871 
3872 		mutex_enter(&sc->tx_pkt_mtx);
3873 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3874 		sc->tx_pkt_count++;
3875 		mutex_exit(&sc->tx_pkt_mtx);
3876 	}
3877 
3878 	mutex_enter(&sc->tx_pkt_mtx);
3879 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3880 	mutex_exit(&sc->tx_pkt_mtx);
3881 
3882 	/* fire-up TX now that allocations have been done */
3883 	s = splnet();
3884 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
3885 		bnx_start(ifp);
3886 	splx(s);
3887 
3888 	return;
3889 
3890 stopping:
3891 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3892 put:
3893 	pool_put(bnx_tx_pool, pkt);
3894 	return;
3895 }
3896 
3897 /****************************************************************************/
3898 /* Initialize the TX context memory.                                        */
3899 /*                                                                          */
3900 /* Returns:                                                                 */
3901 /*   Nothing                                                                */
3902 /****************************************************************************/
3903 void
3904 bnx_init_tx_context(struct bnx_softc *sc)
3905 {
3906 	u_int32_t val;
3907 
3908 	/* Initialize the context ID for an L2 TX chain. */
3909 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3910 		/* Set the CID type to support an L2 connection. */
3911 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3912 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3913 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3914 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3915 
3916 		/* Point the hardware to the first page in the chain. */
3917 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3918 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3919 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3920 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3921 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3922 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3923 	} else {
3924 		/* Set the CID type to support an L2 connection. */
3925 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3926 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3927 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3928 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3929 
3930 		/* Point the hardware to the first page in the chain. */
3931 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3932 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3933 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3934 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3935 	}
3936 }
3937 
3938 
3939 /****************************************************************************/
3940 /* Allocate memory and initialize the TX data structures.                   */
3941 /*                                                                          */
3942 /* Returns:                                                                 */
3943 /*   0 for success, positive value for failure.                             */
3944 /****************************************************************************/
3945 int
3946 bnx_init_tx_chain(struct bnx_softc *sc)
3947 {
3948 	struct tx_bd		*txbd;
3949 	u_int32_t		addr;
3950 	int			i, rc = 0;
3951 
3952 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3953 
3954 	/* Force an allocation of some dmamaps for tx up front */
3955 	bnx_alloc_pkts(NULL, sc);
3956 
3957 	/* Set the initial TX producer/consumer indices. */
3958 	sc->tx_prod = 0;
3959 	sc->tx_cons = 0;
3960 	sc->tx_prod_bseq = 0;
3961 	sc->used_tx_bd = 0;
3962 	sc->max_tx_bd = USABLE_TX_BD;
3963 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3964 	DBRUNIF(1, sc->tx_full_count = 0);
3965 
3966 	/*
3967 	 * The NetXtreme II supports a linked-list structure called
3968 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3969 	 * consists of a series of 1 or more chain pages, each of which
3970 	 * consists of a fixed number of BD entries.
3971 	 * The last BD entry on each page is a pointer to the next page
3972 	 * in the chain, and the last pointer in the BD chain
3973 	 * points back to the beginning of the chain.
3974 	 */
3975 
3976 	/* Set the TX next pointer chain entries. */
3977 	for (i = 0; i < TX_PAGES; i++) {
3978 		int j;
3979 
3980 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3981 
3982 		/* Check if we've reached the last page. */
3983 		if (i == (TX_PAGES - 1))
3984 			j = 0;
3985 		else
3986 			j = i + 1;
3987 
3988 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3989 		txbd->tx_bd_haddr_lo = addr;
3990 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3991 		txbd->tx_bd_haddr_hi = addr;
3992 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3993 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3994 	}
3995 
3996 	/*
3997 	 * Initialize the context ID for an L2 TX chain.
3998 	 */
3999 	bnx_init_tx_context(sc);
4000 
4001 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4002 
4003 	return(rc);
4004 }
4005 
4006 /****************************************************************************/
4007 /* Free memory and clear the TX data structures.                            */
4008 /*                                                                          */
4009 /* Returns:                                                                 */
4010 /*   Nothing.                                                               */
4011 /****************************************************************************/
4012 void
4013 bnx_free_tx_chain(struct bnx_softc *sc)
4014 {
4015 	struct bnx_pkt		*pkt;
4016 	int			i;
4017 
4018 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4019 
4020 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4021 	mutex_enter(&sc->tx_pkt_mtx);
4022 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4023 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4024 		mutex_exit(&sc->tx_pkt_mtx);
4025 
4026 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4027 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4028 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4029 
4030 		m_freem(pkt->pkt_mbuf);
4031 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4032 
4033 		mutex_enter(&sc->tx_pkt_mtx);
4034 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4035         }
4036 
4037 	/* Destroy all the dmamaps we allocated for TX */
4038 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4039 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4040 		sc->tx_pkt_count--;
4041 		mutex_exit(&sc->tx_pkt_mtx);
4042 
4043 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4044 		pool_put(bnx_tx_pool, pkt);
4045 
4046 		mutex_enter(&sc->tx_pkt_mtx);
4047 	}
4048 	mutex_exit(&sc->tx_pkt_mtx);
4049 
4050 
4051 
4052 	/* Clear each TX chain page. */
4053 	for (i = 0; i < TX_PAGES; i++) {
4054 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4055 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4056 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4057 	}
4058 
4059 	sc->used_tx_bd = 0;
4060 
4061 	/* Check if we lost any mbufs in the process. */
4062 	DBRUNIF((sc->tx_mbuf_alloc),
4063 	    aprint_error_dev(sc->bnx_dev,
4064 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4065 		sc->tx_mbuf_alloc));
4066 
4067 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4068 }
4069 
4070 /****************************************************************************/
4071 /* Initialize the RX context memory.                                        */
4072 /*                                                                          */
4073 /* Returns:                                                                 */
4074 /*   Nothing                                                                */
4075 /****************************************************************************/
4076 void
4077 bnx_init_rx_context(struct bnx_softc *sc)
4078 {
4079 	u_int32_t val;
4080 
4081 	/* Initialize the context ID for an L2 RX chain. */
4082 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4083 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4084 
4085 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4086 		u_int32_t lo_water, hi_water;
4087 
4088 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4089 		hi_water = USABLE_RX_BD / 4;
4090 
4091 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4092 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4093 
4094 		if (hi_water > 0xf)
4095 			hi_water = 0xf;
4096 		else if (hi_water == 0)
4097 			lo_water = 0;
4098 		val |= lo_water |
4099 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4100 	}
4101 
4102  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4103 
4104 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4105 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4106 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4107 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4108 	}
4109 
4110 	/* Point the hardware to the first page in the chain. */
4111 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4112 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4113 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4114 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4115 }
4116 
4117 /****************************************************************************/
4118 /* Allocate memory and initialize the RX data structures.                   */
4119 /*                                                                          */
4120 /* Returns:                                                                 */
4121 /*   0 for success, positive value for failure.                             */
4122 /****************************************************************************/
4123 int
4124 bnx_init_rx_chain(struct bnx_softc *sc)
4125 {
4126 	struct rx_bd		*rxbd;
4127 	int			i, rc = 0;
4128 	u_int16_t		prod, chain_prod;
4129 	u_int32_t		prod_bseq, addr;
4130 
4131 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4132 
4133 	/* Initialize the RX producer and consumer indices. */
4134 	sc->rx_prod = 0;
4135 	sc->rx_cons = 0;
4136 	sc->rx_prod_bseq = 0;
4137 	sc->free_rx_bd = USABLE_RX_BD;
4138 	sc->max_rx_bd = USABLE_RX_BD;
4139 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4140 	DBRUNIF(1, sc->rx_empty_count = 0);
4141 
4142 	/* Initialize the RX next pointer chain entries. */
4143 	for (i = 0; i < RX_PAGES; i++) {
4144 		int j;
4145 
4146 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4147 
4148 		/* Check if we've reached the last page. */
4149 		if (i == (RX_PAGES - 1))
4150 			j = 0;
4151 		else
4152 			j = i + 1;
4153 
4154 		/* Setup the chain page pointers. */
4155 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4156 		rxbd->rx_bd_haddr_hi = addr;
4157 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4158 		rxbd->rx_bd_haddr_lo = addr;
4159 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4160 		    0, BNX_RX_CHAIN_PAGE_SZ,
4161 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4162 	}
4163 
4164 	/* Allocate mbuf clusters for the rx_bd chain. */
4165 	prod = prod_bseq = 0;
4166 	chain_prod = RX_CHAIN_IDX(prod);
4167 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4168 		BNX_PRINTF(sc,
4169 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4170 	}
4171 
4172 	/* Save the RX chain producer index. */
4173 	sc->rx_prod = prod;
4174 	sc->rx_prod_bseq = prod_bseq;
4175 
4176 	for (i = 0; i < RX_PAGES; i++)
4177 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4178 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4179 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4180 
4181 	/* Tell the chip about the waiting rx_bd's. */
4182 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4183 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4184 
4185 	bnx_init_rx_context(sc);
4186 
4187 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4188 
4189 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4190 
4191 	return(rc);
4192 }
4193 
4194 /****************************************************************************/
4195 /* Free memory and clear the RX data structures.                            */
4196 /*                                                                          */
4197 /* Returns:                                                                 */
4198 /*   Nothing.                                                               */
4199 /****************************************************************************/
4200 void
4201 bnx_free_rx_chain(struct bnx_softc *sc)
4202 {
4203 	int			i;
4204 
4205 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4206 
4207 	/* Free any mbufs still in the RX mbuf chain. */
4208 	for (i = 0; i < TOTAL_RX_BD; i++) {
4209 		if (sc->rx_mbuf_ptr[i] != NULL) {
4210 			if (sc->rx_mbuf_map[i] != NULL) {
4211 				bus_dmamap_sync(sc->bnx_dmatag,
4212 				    sc->rx_mbuf_map[i],	0,
4213 				    sc->rx_mbuf_map[i]->dm_mapsize,
4214 				    BUS_DMASYNC_POSTREAD);
4215 				bus_dmamap_unload(sc->bnx_dmatag,
4216 				    sc->rx_mbuf_map[i]);
4217 			}
4218 			m_freem(sc->rx_mbuf_ptr[i]);
4219 			sc->rx_mbuf_ptr[i] = NULL;
4220 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4221 		}
4222 	}
4223 
4224 	/* Clear each RX chain page. */
4225 	for (i = 0; i < RX_PAGES; i++)
4226 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4227 
4228 	sc->free_rx_bd = sc->max_rx_bd;
4229 
4230 	/* Check if we lost any mbufs in the process. */
4231 	DBRUNIF((sc->rx_mbuf_alloc),
4232 	    aprint_error_dev(sc->bnx_dev,
4233 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4234 		sc->rx_mbuf_alloc));
4235 
4236 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4237 }
4238 
4239 /****************************************************************************/
4240 /* Handles PHY generated interrupt events.                                  */
4241 /*                                                                          */
4242 /* Returns:                                                                 */
4243 /*   Nothing.                                                               */
4244 /****************************************************************************/
4245 void
4246 bnx_phy_intr(struct bnx_softc *sc)
4247 {
4248 	u_int32_t		new_link_state, old_link_state;
4249 
4250 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4251 	    BUS_DMASYNC_POSTREAD);
4252 	new_link_state = sc->status_block->status_attn_bits &
4253 	    STATUS_ATTN_BITS_LINK_STATE;
4254 	old_link_state = sc->status_block->status_attn_bits_ack &
4255 	    STATUS_ATTN_BITS_LINK_STATE;
4256 
4257 	/* Handle any changes if the link state has changed. */
4258 	if (new_link_state != old_link_state) {
4259 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4260 
4261 		callout_stop(&sc->bnx_timeout);
4262 		bnx_tick(sc);
4263 
4264 		/* Update the status_attn_bits_ack field in the status block. */
4265 		if (new_link_state) {
4266 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4267 			    STATUS_ATTN_BITS_LINK_STATE);
4268 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4269 		} else {
4270 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4271 			    STATUS_ATTN_BITS_LINK_STATE);
4272 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4273 		}
4274 	}
4275 
4276 	/* Acknowledge the link change interrupt. */
4277 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4278 }
4279 
4280 /****************************************************************************/
4281 /* Handles received frame interrupt events.                                 */
4282 /*                                                                          */
4283 /* Returns:                                                                 */
4284 /*   Nothing.                                                               */
4285 /****************************************************************************/
4286 void
4287 bnx_rx_intr(struct bnx_softc *sc)
4288 {
4289 	struct status_block	*sblk = sc->status_block;
4290 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4291 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4292 	u_int16_t		sw_prod, sw_chain_prod;
4293 	u_int32_t		sw_prod_bseq;
4294 	struct l2_fhdr		*l2fhdr;
4295 	int			i;
4296 
4297 	DBRUNIF(1, sc->rx_interrupts++);
4298 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4299 	    BUS_DMASYNC_POSTREAD);
4300 
4301 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4302 	for (i = 0; i < RX_PAGES; i++)
4303 		bus_dmamap_sync(sc->bnx_dmatag,
4304 		    sc->rx_bd_chain_map[i], 0,
4305 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4306 		    BUS_DMASYNC_POSTWRITE);
4307 
4308 	/* Get the hardware's view of the RX consumer index. */
4309 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4310 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4311 		hw_cons++;
4312 
4313 	/* Get working copies of the driver's view of the RX indices. */
4314 	sw_cons = sc->rx_cons;
4315 	sw_prod = sc->rx_prod;
4316 	sw_prod_bseq = sc->rx_prod_bseq;
4317 
4318 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4319 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4320 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4321 
4322 	/* Prevent speculative reads from getting ahead of the status block. */
4323 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4324 	    BUS_SPACE_BARRIER_READ);
4325 
4326 	/* Update some debug statistics counters */
4327 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4328 	    sc->rx_low_watermark = sc->free_rx_bd);
4329 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4330 
4331 	/*
4332 	 * Scan through the receive chain as long
4333 	 * as there is work to do.
4334 	 */
4335 	while (sw_cons != hw_cons) {
4336 		struct mbuf *m;
4337 		struct rx_bd *rxbd;
4338 		unsigned int len;
4339 		u_int32_t status;
4340 
4341 		/* Convert the producer/consumer indices to an actual
4342 		 * rx_bd index.
4343 		 */
4344 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4345 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4346 
4347 		/* Get the used rx_bd. */
4348 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4349 		sc->free_rx_bd++;
4350 
4351 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4352 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4353 
4354 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4355 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4356 #ifdef DIAGNOSTIC
4357 			/* Validate that this is the last rx_bd. */
4358 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4359 			    printf("%s: Unexpected mbuf found in "
4360 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4361 			        sw_chain_cons);
4362 			}
4363 #endif
4364 
4365 			/* DRC - ToDo: If the received packet is small, say less
4366 			 *             than 128 bytes, allocate a new mbuf here,
4367 			 *             copy the data to that mbuf, and recycle
4368 			 *             the mapped jumbo frame.
4369 			 */
4370 
4371 			/* Unmap the mbuf from DMA space. */
4372 #ifdef DIAGNOSTIC
4373 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4374 				printf("invalid map sw_cons 0x%x "
4375 				"sw_prod 0x%x "
4376 				"sw_chain_cons 0x%x "
4377 				"sw_chain_prod 0x%x "
4378 				"hw_cons 0x%x "
4379 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4380 				"TOTAL_RX_BD 0x%x\n",
4381 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4382 				hw_cons,
4383 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4384 			}
4385 #endif
4386 			bus_dmamap_sync(sc->bnx_dmatag,
4387 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4388 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4389 			    BUS_DMASYNC_POSTREAD);
4390 			bus_dmamap_unload(sc->bnx_dmatag,
4391 			    sc->rx_mbuf_map[sw_chain_cons]);
4392 
4393 			/* Remove the mbuf from the driver's chain. */
4394 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4395 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4396 
4397 			/*
4398 			 * Frames received on the NetXteme II are prepended
4399 			 * with the l2_fhdr structure which provides status
4400 			 * information about the received frame (including
4401 			 * VLAN tags and checksum info) and are also
4402 			 * automatically adjusted to align the IP header
4403 			 * (i.e. two null bytes are inserted before the
4404 			 * Ethernet header).
4405 			 */
4406 			l2fhdr = mtod(m, struct l2_fhdr *);
4407 
4408 			len    = l2fhdr->l2_fhdr_pkt_len;
4409 			status = l2fhdr->l2_fhdr_status;
4410 
4411 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4412 			    aprint_error("Simulating l2_fhdr status error.\n");
4413 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4414 
4415 			/* Watch for unusual sized frames. */
4416 			DBRUNIF(((len < BNX_MIN_MTU) ||
4417 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4418 			    aprint_error_dev(sc->bnx_dev,
4419 			        "Unusual frame size found. "
4420 				"Min(%d), Actual(%d), Max(%d)\n",
4421 				(int)BNX_MIN_MTU, len,
4422 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4423 
4424 			bnx_dump_mbuf(sc, m);
4425 			bnx_breakpoint(sc));
4426 
4427 			len -= ETHER_CRC_LEN;
4428 
4429 			/* Check the received frame for errors. */
4430 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4431 			    L2_FHDR_ERRORS_PHY_DECODE |
4432 			    L2_FHDR_ERRORS_ALIGNMENT |
4433 			    L2_FHDR_ERRORS_TOO_SHORT |
4434 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4435 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4436 			    len >
4437 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4438 				ifp->if_ierrors++;
4439 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4440 
4441 				/* Reuse the mbuf for a new frame. */
4442 				if (bnx_add_buf(sc, m, &sw_prod,
4443 				    &sw_chain_prod, &sw_prod_bseq)) {
4444 					DBRUNIF(1, bnx_breakpoint(sc));
4445 					panic("%s: Can't reuse RX mbuf!\n",
4446 					    device_xname(sc->bnx_dev));
4447 				}
4448 				continue;
4449 			}
4450 
4451 			/*
4452 			 * Get a new mbuf for the rx_bd.   If no new
4453 			 * mbufs are available then reuse the current mbuf,
4454 			 * log an ierror on the interface, and generate
4455 			 * an error in the system log.
4456 			 */
4457 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4458 			    &sw_prod_bseq)) {
4459 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4460 				    "Failed to allocate "
4461 				    "new mbuf, incoming frame dropped!\n"));
4462 
4463 				ifp->if_ierrors++;
4464 
4465 				/* Try and reuse the exisitng mbuf. */
4466 				if (bnx_add_buf(sc, m, &sw_prod,
4467 				    &sw_chain_prod, &sw_prod_bseq)) {
4468 					DBRUNIF(1, bnx_breakpoint(sc));
4469 					panic("%s: Double mbuf allocation "
4470 					    "failure!",
4471 					    device_xname(sc->bnx_dev));
4472 				}
4473 				continue;
4474 			}
4475 
4476 			/* Skip over the l2_fhdr when passing the data up
4477 			 * the stack.
4478 			 */
4479 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4480 
4481 			/* Adjust the pckt length to match the received data. */
4482 			m->m_pkthdr.len = m->m_len = len;
4483 
4484 			/* Send the packet to the appropriate interface. */
4485 			m->m_pkthdr.rcvif = ifp;
4486 
4487 			DBRUN(BNX_VERBOSE_RECV,
4488 			    struct ether_header *eh;
4489 			    eh = mtod(m, struct ether_header *);
4490 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4491 			    __func__, ether_sprintf(eh->ether_dhost),
4492 			    ether_sprintf(eh->ether_shost),
4493 			    htons(eh->ether_type)));
4494 
4495 			/* Validate the checksum. */
4496 
4497 			/* Check for an IP datagram. */
4498 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4499 				/* Check if the IP checksum is valid. */
4500 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4501 				    == 0)
4502 					m->m_pkthdr.csum_flags |=
4503 					    M_CSUM_IPv4;
4504 #ifdef BNX_DEBUG
4505 				else
4506 					DBPRINT(sc, BNX_WARN_SEND,
4507 					    "%s(): Invalid IP checksum "
4508 					        "= 0x%04X!\n",
4509 						__func__,
4510 						l2fhdr->l2_fhdr_ip_xsum
4511 						);
4512 #endif
4513 			}
4514 
4515 			/* Check for a valid TCP/UDP frame. */
4516 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4517 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4518 				/* Check for a good TCP/UDP checksum. */
4519 				if ((status &
4520 				    (L2_FHDR_ERRORS_TCP_XSUM |
4521 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4522 					m->m_pkthdr.csum_flags |=
4523 					    M_CSUM_TCPv4 |
4524 					    M_CSUM_UDPv4;
4525 				} else {
4526 					DBPRINT(sc, BNX_WARN_SEND,
4527 					    "%s(): Invalid TCP/UDP "
4528 					    "checksum = 0x%04X!\n",
4529 					    __func__,
4530 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4531 				}
4532 			}
4533 
4534 			/*
4535 			 * If we received a packet with a vlan tag,
4536 			 * attach that information to the packet.
4537 			 */
4538 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4539 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4540 				VLAN_INPUT_TAG(ifp, m,
4541 				    l2fhdr->l2_fhdr_vlan_tag,
4542 				    continue);
4543 			}
4544 
4545 			/*
4546 			 * Handle BPF listeners. Let the BPF
4547 			 * user see the packet.
4548 			 */
4549 			bpf_mtap(ifp, m);
4550 
4551 			/* Pass the mbuf off to the upper layers. */
4552 			ifp->if_ipackets++;
4553 			DBPRINT(sc, BNX_VERBOSE_RECV,
4554 			    "%s(): Passing received frame up.\n", __func__);
4555 			(*ifp->if_input)(ifp, m);
4556 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4557 
4558 		}
4559 
4560 		sw_cons = NEXT_RX_BD(sw_cons);
4561 
4562 		/* Refresh hw_cons to see if there's new work */
4563 		if (sw_cons == hw_cons) {
4564 			hw_cons = sc->hw_rx_cons =
4565 			    sblk->status_rx_quick_consumer_index0;
4566 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4567 			    USABLE_RX_BD_PER_PAGE)
4568 				hw_cons++;
4569 		}
4570 
4571 		/* Prevent speculative reads from getting ahead of
4572 		 * the status block.
4573 		 */
4574 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4575 		    BUS_SPACE_BARRIER_READ);
4576 	}
4577 
4578 	for (i = 0; i < RX_PAGES; i++)
4579 		bus_dmamap_sync(sc->bnx_dmatag,
4580 		    sc->rx_bd_chain_map[i], 0,
4581 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4582 		    BUS_DMASYNC_PREWRITE);
4583 
4584 	sc->rx_cons = sw_cons;
4585 	sc->rx_prod = sw_prod;
4586 	sc->rx_prod_bseq = sw_prod_bseq;
4587 
4588 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4589 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4590 
4591 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4592 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4593 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4594 }
4595 
4596 /****************************************************************************/
4597 /* Handles transmit completion interrupt events.                            */
4598 /*                                                                          */
4599 /* Returns:                                                                 */
4600 /*   Nothing.                                                               */
4601 /****************************************************************************/
4602 void
4603 bnx_tx_intr(struct bnx_softc *sc)
4604 {
4605 	struct status_block	*sblk = sc->status_block;
4606 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4607 	struct bnx_pkt		*pkt;
4608 	bus_dmamap_t		map;
4609 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4610 
4611 	DBRUNIF(1, sc->tx_interrupts++);
4612 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4613 	    BUS_DMASYNC_POSTREAD);
4614 
4615 	/* Get the hardware's view of the TX consumer index. */
4616 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4617 
4618 	/* Skip to the next entry if this is a chain page pointer. */
4619 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4620 		hw_tx_cons++;
4621 
4622 	sw_tx_cons = sc->tx_cons;
4623 
4624 	/* Prevent speculative reads from getting ahead of the status block. */
4625 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4626 	    BUS_SPACE_BARRIER_READ);
4627 
4628 	/* Cycle through any completed TX chain page entries. */
4629 	while (sw_tx_cons != hw_tx_cons) {
4630 #ifdef BNX_DEBUG
4631 		struct tx_bd *txbd = NULL;
4632 #endif
4633 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4634 
4635 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4636 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4637 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4638 
4639 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4640 		    aprint_error_dev(sc->bnx_dev,
4641 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4642 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4643 
4644 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4645 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4646 
4647 		DBRUNIF((txbd == NULL),
4648 		    aprint_error_dev(sc->bnx_dev,
4649 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4650 		    bnx_breakpoint(sc));
4651 
4652 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4653 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4654 
4655 
4656 		mutex_enter(&sc->tx_pkt_mtx);
4657 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4658 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4659 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4660 			mutex_exit(&sc->tx_pkt_mtx);
4661 			/*
4662 			 * Free the associated mbuf. Remember
4663 			 * that only the last tx_bd of a packet
4664 			 * has an mbuf pointer and DMA map.
4665 			 */
4666 			map = pkt->pkt_dmamap;
4667 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4668 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4669 			bus_dmamap_unload(sc->bnx_dmatag, map);
4670 
4671 			m_freem(pkt->pkt_mbuf);
4672 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4673 
4674 			ifp->if_opackets++;
4675 
4676 			mutex_enter(&sc->tx_pkt_mtx);
4677 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4678 		}
4679 		mutex_exit(&sc->tx_pkt_mtx);
4680 
4681 		sc->used_tx_bd--;
4682 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4683 			__FILE__, __LINE__, sc->used_tx_bd);
4684 
4685 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4686 
4687 		/* Refresh hw_cons to see if there's new work. */
4688 		hw_tx_cons = sc->hw_tx_cons =
4689 		    sblk->status_tx_quick_consumer_index0;
4690 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4691 		    USABLE_TX_BD_PER_PAGE)
4692 			hw_tx_cons++;
4693 
4694 		/* Prevent speculative reads from getting ahead of
4695 		 * the status block.
4696 		 */
4697 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4698 		    BUS_SPACE_BARRIER_READ);
4699 	}
4700 
4701 	/* Clear the TX timeout timer. */
4702 	ifp->if_timer = 0;
4703 
4704 	/* Clear the tx hardware queue full flag. */
4705 	if (sc->used_tx_bd < sc->max_tx_bd) {
4706 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4707 		    aprint_debug_dev(sc->bnx_dev,
4708 		        "Open TX chain! %d/%d (used/total)\n",
4709 			sc->used_tx_bd, sc->max_tx_bd));
4710 		ifp->if_flags &= ~IFF_OACTIVE;
4711 	}
4712 
4713 	sc->tx_cons = sw_tx_cons;
4714 }
4715 
4716 /****************************************************************************/
4717 /* Disables interrupt generation.                                           */
4718 /*                                                                          */
4719 /* Returns:                                                                 */
4720 /*   Nothing.                                                               */
4721 /****************************************************************************/
4722 void
4723 bnx_disable_intr(struct bnx_softc *sc)
4724 {
4725 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4726 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4727 }
4728 
4729 /****************************************************************************/
4730 /* Enables interrupt generation.                                            */
4731 /*                                                                          */
4732 /* Returns:                                                                 */
4733 /*   Nothing.                                                               */
4734 /****************************************************************************/
4735 void
4736 bnx_enable_intr(struct bnx_softc *sc)
4737 {
4738 	u_int32_t		val;
4739 
4740 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4741 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4742 
4743 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4744 	    sc->last_status_idx);
4745 
4746 	val = REG_RD(sc, BNX_HC_COMMAND);
4747 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4748 }
4749 
4750 /****************************************************************************/
4751 /* Handles controller initialization.                                       */
4752 /*                                                                          */
4753 /****************************************************************************/
4754 int
4755 bnx_init(struct ifnet *ifp)
4756 {
4757 	struct bnx_softc	*sc = ifp->if_softc;
4758 	u_int32_t		ether_mtu;
4759 	int			s, error = 0;
4760 
4761 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4762 
4763 	s = splnet();
4764 
4765 	bnx_stop(ifp, 0);
4766 
4767 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4768 		aprint_error_dev(sc->bnx_dev,
4769 		    "Controller reset failed!\n");
4770 		goto bnx_init_exit;
4771 	}
4772 
4773 	if ((error = bnx_chipinit(sc)) != 0) {
4774 		aprint_error_dev(sc->bnx_dev,
4775 		    "Controller initialization failed!\n");
4776 		goto bnx_init_exit;
4777 	}
4778 
4779 	if ((error = bnx_blockinit(sc)) != 0) {
4780 		aprint_error_dev(sc->bnx_dev,
4781 		    "Block initialization failed!\n");
4782 		goto bnx_init_exit;
4783 	}
4784 
4785 	/* Calculate and program the Ethernet MRU size. */
4786 	if (ifp->if_mtu <= ETHERMTU) {
4787 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4788 		sc->mbuf_alloc_size = MCLBYTES;
4789 	} else {
4790 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4791 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4792 	}
4793 
4794 
4795 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4796 	    __func__, ether_mtu);
4797 
4798 	/*
4799 	 * Program the MRU and enable Jumbo frame
4800 	 * support.
4801 	 */
4802 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4803 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4804 
4805 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4806 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4807 
4808 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4809 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4810 	    sc->mbuf_alloc_size, sc->max_frame_size);
4811 
4812 	/* Program appropriate promiscuous/multicast filtering. */
4813 	bnx_iff(sc);
4814 
4815 	/* Init RX buffer descriptor chain. */
4816 	bnx_init_rx_chain(sc);
4817 
4818 	/* Init TX buffer descriptor chain. */
4819 	bnx_init_tx_chain(sc);
4820 
4821 	/* Enable host interrupts. */
4822 	bnx_enable_intr(sc);
4823 
4824 	if ((error = ether_mediachange(ifp)) != 0)
4825 		goto bnx_init_exit;
4826 
4827 	SET(ifp->if_flags, IFF_RUNNING);
4828 	CLR(ifp->if_flags, IFF_OACTIVE);
4829 
4830 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4831 
4832 bnx_init_exit:
4833 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4834 
4835 	splx(s);
4836 
4837 	return(error);
4838 }
4839 
4840 /****************************************************************************/
4841 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4842 /* memory visible to the controller.                                        */
4843 /*                                                                          */
4844 /* Returns:                                                                 */
4845 /*   0 for success, positive value for failure.                             */
4846 /****************************************************************************/
4847 int
4848 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4849 {
4850 	struct bnx_pkt		*pkt;
4851 	bus_dmamap_t		map;
4852 	struct tx_bd		*txbd = NULL;
4853 	u_int16_t		vlan_tag = 0, flags = 0;
4854 	u_int16_t		chain_prod, prod;
4855 #ifdef BNX_DEBUG
4856 	u_int16_t		debug_prod;
4857 #endif
4858 	u_int32_t		addr, prod_bseq;
4859 	int			i, error;
4860 	struct m_tag		*mtag;
4861 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
4862 
4863 	mutex_enter(&sc->tx_pkt_mtx);
4864 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4865 	if (pkt == NULL) {
4866 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4867 			mutex_exit(&sc->tx_pkt_mtx);
4868 			return ENETDOWN;
4869 		}
4870 
4871 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4872 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4873 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4874 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4875 		}
4876 
4877 		mutex_exit(&sc->tx_pkt_mtx);
4878 		return ENOMEM;
4879 	}
4880 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4881 	mutex_exit(&sc->tx_pkt_mtx);
4882 
4883 	/* Transfer any checksum offload flags to the bd. */
4884 	if (m->m_pkthdr.csum_flags) {
4885 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4886 			flags |= TX_BD_FLAGS_IP_CKSUM;
4887 		if (m->m_pkthdr.csum_flags &
4888 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4889 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4890 	}
4891 
4892 	/* Transfer any VLAN tags to the bd. */
4893 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4894 	if (mtag != NULL) {
4895 		flags |= TX_BD_FLAGS_VLAN_TAG;
4896 		vlan_tag = VLAN_TAG_VALUE(mtag);
4897 	}
4898 
4899 	/* Map the mbuf into DMAable memory. */
4900 	prod = sc->tx_prod;
4901 	chain_prod = TX_CHAIN_IDX(prod);
4902 	map = pkt->pkt_dmamap;
4903 
4904 	/* Map the mbuf into our DMA address space. */
4905 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4906 	if (error != 0) {
4907 		aprint_error_dev(sc->bnx_dev,
4908 		    "Error mapping mbuf into TX chain!\n");
4909 		sc->tx_dma_map_failures++;
4910 		goto maperr;
4911 	}
4912 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4913 	    BUS_DMASYNC_PREWRITE);
4914         /* Make sure there's room in the chain */
4915 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4916                 goto nospace;
4917 
4918 	/* prod points to an empty tx_bd at this point. */
4919 	prod_bseq = sc->tx_prod_bseq;
4920 #ifdef BNX_DEBUG
4921 	debug_prod = chain_prod;
4922 #endif
4923 	DBPRINT(sc, BNX_INFO_SEND,
4924 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4925 		"prod_bseq = 0x%08X\n",
4926 		__func__, prod, chain_prod, prod_bseq);
4927 
4928 	/*
4929 	 * Cycle through each mbuf segment that makes up
4930 	 * the outgoing frame, gathering the mapping info
4931 	 * for that segment and creating a tx_bd for the
4932 	 * mbuf.
4933 	 */
4934 	for (i = 0; i < map->dm_nsegs ; i++) {
4935 		chain_prod = TX_CHAIN_IDX(prod);
4936 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4937 
4938 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4939 		txbd->tx_bd_haddr_lo = addr;
4940 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4941 		txbd->tx_bd_haddr_hi = addr;
4942 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4943 		txbd->tx_bd_vlan_tag = vlan_tag;
4944 		txbd->tx_bd_flags = flags;
4945 		prod_bseq += map->dm_segs[i].ds_len;
4946 		if (i == 0)
4947 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4948 		prod = NEXT_TX_BD(prod);
4949 	}
4950 	/* Set the END flag on the last TX buffer descriptor. */
4951 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4952 
4953 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4954 
4955 	DBPRINT(sc, BNX_INFO_SEND,
4956 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4957 		"prod_bseq = 0x%08X\n",
4958 		__func__, prod, chain_prod, prod_bseq);
4959 
4960 	pkt->pkt_mbuf = m;
4961 	pkt->pkt_end_desc = chain_prod;
4962 
4963 	mutex_enter(&sc->tx_pkt_mtx);
4964 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4965 	mutex_exit(&sc->tx_pkt_mtx);
4966 
4967 	sc->used_tx_bd += map->dm_nsegs;
4968 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4969 		__FILE__, __LINE__, sc->used_tx_bd);
4970 
4971 	/* Update some debug statistics counters */
4972 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4973 	    sc->tx_hi_watermark = sc->used_tx_bd);
4974 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4975 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4976 
4977 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4978 	    map->dm_nsegs));
4979 
4980 	/* prod points to the next free tx_bd at this point. */
4981 	sc->tx_prod = prod;
4982 	sc->tx_prod_bseq = prod_bseq;
4983 
4984 	return (0);
4985 
4986 
4987 nospace:
4988 	bus_dmamap_unload(sc->bnx_dmatag, map);
4989 maperr:
4990 	mutex_enter(&sc->tx_pkt_mtx);
4991 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4992 	mutex_exit(&sc->tx_pkt_mtx);
4993 
4994 	return (ENOMEM);
4995 }
4996 
4997 /****************************************************************************/
4998 /* Main transmit routine.                                                   */
4999 /*                                                                          */
5000 /* Returns:                                                                 */
5001 /*   Nothing.                                                               */
5002 /****************************************************************************/
5003 void
5004 bnx_start(struct ifnet *ifp)
5005 {
5006 	struct bnx_softc	*sc = ifp->if_softc;
5007 	struct mbuf		*m_head = NULL;
5008 	int			count = 0;
5009 #ifdef BNX_DEBUG
5010 	u_int16_t		tx_chain_prod;
5011 #endif
5012 
5013 	/* If there's no link or the transmit queue is empty then just exit. */
5014 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5015 		DBPRINT(sc, BNX_INFO_SEND,
5016 		    "%s(): output active or device not running.\n", __func__);
5017 		goto bnx_start_exit;
5018 	}
5019 
5020 	/* prod points to the next free tx_bd. */
5021 #ifdef BNX_DEBUG
5022 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5023 #endif
5024 
5025 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5026 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5027 	    "used_tx %d max_tx %d\n",
5028 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5029 	    sc->used_tx_bd, sc->max_tx_bd);
5030 
5031 	/*
5032 	 * Keep adding entries while there is space in the ring.
5033 	 */
5034 	while (sc->used_tx_bd < sc->max_tx_bd) {
5035 		/* Check for any frames to send. */
5036 		IFQ_POLL(&ifp->if_snd, m_head);
5037 		if (m_head == NULL)
5038 			break;
5039 
5040 		/*
5041 		 * Pack the data into the transmit ring. If we
5042 		 * don't have room, set the OACTIVE flag to wait
5043 		 * for the NIC to drain the chain.
5044 		 */
5045 		if (bnx_tx_encap(sc, m_head)) {
5046 			ifp->if_flags |= IFF_OACTIVE;
5047 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5048 			    "business! Total tx_bd used = %d\n",
5049 			    sc->used_tx_bd);
5050 			break;
5051 		}
5052 
5053 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5054 		count++;
5055 
5056 		/* Send a copy of the frame to any BPF listeners. */
5057 		bpf_mtap(ifp, m_head);
5058 	}
5059 
5060 	if (count == 0) {
5061 		/* no packets were dequeued */
5062 		DBPRINT(sc, BNX_VERBOSE_SEND,
5063 		    "%s(): No packets were dequeued\n", __func__);
5064 		goto bnx_start_exit;
5065 	}
5066 
5067 	/* Update the driver's counters. */
5068 #ifdef BNX_DEBUG
5069 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5070 #endif
5071 
5072 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5073 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5074 	    tx_chain_prod, sc->tx_prod_bseq);
5075 
5076 	/* Start the transmit. */
5077 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5078 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5079 
5080 	/* Set the tx timeout. */
5081 	ifp->if_timer = BNX_TX_TIMEOUT;
5082 
5083 bnx_start_exit:
5084 	return;
5085 }
5086 
5087 /****************************************************************************/
5088 /* Handles any IOCTL calls from the operating system.                       */
5089 /*                                                                          */
5090 /* Returns:                                                                 */
5091 /*   0 for success, positive value for failure.                             */
5092 /****************************************************************************/
5093 int
5094 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5095 {
5096 	struct bnx_softc	*sc = ifp->if_softc;
5097 	struct ifreq		*ifr = (struct ifreq *) data;
5098 	struct mii_data		*mii = &sc->bnx_mii;
5099 	int			s, error = 0;
5100 
5101 	s = splnet();
5102 
5103 	switch (command) {
5104 	case SIOCSIFFLAGS:
5105 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5106 			break;
5107 		/* XXX set an ifflags callback and let ether_ioctl
5108 		 * handle all of this.
5109 		 */
5110 		if (ISSET(ifp->if_flags, IFF_UP)) {
5111 			if (ifp->if_flags & IFF_RUNNING)
5112 				error = ENETRESET;
5113 			else
5114 				bnx_init(ifp);
5115 		} else if (ifp->if_flags & IFF_RUNNING)
5116 			bnx_stop(ifp, 1);
5117 		break;
5118 
5119 	case SIOCSIFMEDIA:
5120 	case SIOCGIFMEDIA:
5121 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5122 		    sc->bnx_phy_flags);
5123 
5124 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5125 		break;
5126 
5127 	default:
5128 		error = ether_ioctl(ifp, command, data);
5129 	}
5130 
5131 	if (error == ENETRESET) {
5132 		if (ifp->if_flags & IFF_RUNNING)
5133 			bnx_iff(sc);
5134 		error = 0;
5135 	}
5136 
5137 	splx(s);
5138 	return (error);
5139 }
5140 
5141 /****************************************************************************/
5142 /* Transmit timeout handler.                                                */
5143 /*                                                                          */
5144 /* Returns:                                                                 */
5145 /*   Nothing.                                                               */
5146 /****************************************************************************/
5147 void
5148 bnx_watchdog(struct ifnet *ifp)
5149 {
5150 	struct bnx_softc	*sc = ifp->if_softc;
5151 
5152 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5153 	    bnx_dump_status_block(sc));
5154 	/*
5155 	 * If we are in this routine because of pause frames, then
5156 	 * don't reset the hardware.
5157 	 */
5158 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5159 		return;
5160 
5161 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5162 
5163 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5164 
5165 	bnx_init(ifp);
5166 
5167 	ifp->if_oerrors++;
5168 }
5169 
5170 /*
5171  * Interrupt handler.
5172  */
5173 /****************************************************************************/
5174 /* Main interrupt entry point.  Verifies that the controller generated the  */
5175 /* interrupt and then calls a separate routine for handle the various       */
5176 /* interrupt causes (PHY, TX, RX).                                          */
5177 /*                                                                          */
5178 /* Returns:                                                                 */
5179 /*   0 for success, positive value for failure.                             */
5180 /****************************************************************************/
5181 int
5182 bnx_intr(void *xsc)
5183 {
5184 	struct bnx_softc	*sc;
5185 	struct ifnet		*ifp;
5186 	u_int32_t		status_attn_bits;
5187 	const struct status_block *sblk;
5188 
5189 	sc = xsc;
5190 
5191 	ifp = &sc->bnx_ec.ec_if;
5192 
5193 	if (!device_is_active(sc->bnx_dev) ||
5194 	    (ifp->if_flags & IFF_RUNNING) == 0)
5195 		return 0;
5196 
5197 	DBRUNIF(1, sc->interrupts_generated++);
5198 
5199 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5200 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5201 
5202 	/*
5203 	 * If the hardware status block index
5204 	 * matches the last value read by the
5205 	 * driver and we haven't asserted our
5206 	 * interrupt then there's nothing to do.
5207 	 */
5208 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5209 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5210 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5211 		return (0);
5212 
5213 	/* Ack the interrupt and stop others from occuring. */
5214 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5215 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5216 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5217 
5218 	/* Keep processing data as long as there is work to do. */
5219 	for (;;) {
5220 		sblk = sc->status_block;
5221 		status_attn_bits = sblk->status_attn_bits;
5222 
5223 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5224 		    aprint_debug("Simulating unexpected status attention bit set.");
5225 		    status_attn_bits = status_attn_bits |
5226 		    STATUS_ATTN_BITS_PARITY_ERROR);
5227 
5228 		/* Was it a link change interrupt? */
5229 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5230 		    (sblk->status_attn_bits_ack &
5231 		    STATUS_ATTN_BITS_LINK_STATE))
5232 			bnx_phy_intr(sc);
5233 
5234 		/* If any other attention is asserted then the chip is toast. */
5235 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5236 		    (sblk->status_attn_bits_ack &
5237 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5238 			DBRUN(1, sc->unexpected_attentions++);
5239 
5240 			BNX_PRINTF(sc,
5241 			    "Fatal attention detected: 0x%08X\n",
5242 			    sblk->status_attn_bits);
5243 
5244 			DBRUN(BNX_FATAL,
5245 			    if (bnx_debug_unexpected_attention == 0)
5246 			    bnx_breakpoint(sc));
5247 
5248 			bnx_init(ifp);
5249 			return (1);
5250 		}
5251 
5252 		/* Check for any completed RX frames. */
5253 		if (sblk->status_rx_quick_consumer_index0 !=
5254 		    sc->hw_rx_cons)
5255 			bnx_rx_intr(sc);
5256 
5257 		/* Check for any completed TX frames. */
5258 		if (sblk->status_tx_quick_consumer_index0 !=
5259 		    sc->hw_tx_cons)
5260 			bnx_tx_intr(sc);
5261 
5262 		/* Save the status block index value for use during the
5263 		 * next interrupt.
5264 		 */
5265 		sc->last_status_idx = sblk->status_idx;
5266 
5267 		/* Prevent speculative reads from getting ahead of the
5268 		 * status block.
5269 		 */
5270 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5271 		    BUS_SPACE_BARRIER_READ);
5272 
5273 		/* If there's no work left then exit the isr. */
5274 		if ((sblk->status_rx_quick_consumer_index0 ==
5275 		    sc->hw_rx_cons) &&
5276 		    (sblk->status_tx_quick_consumer_index0 ==
5277 		    sc->hw_tx_cons))
5278 			break;
5279 	}
5280 
5281 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5282 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5283 
5284 	/* Re-enable interrupts. */
5285 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5286 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5287 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5288 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5289 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5290 
5291 	/* Handle any frames that arrived while handling the interrupt. */
5292 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5293 		bnx_start(ifp);
5294 
5295 	return (1);
5296 }
5297 
5298 /****************************************************************************/
5299 /* Programs the various packet receive modes (broadcast and multicast).     */
5300 /*                                                                          */
5301 /* Returns:                                                                 */
5302 /*   Nothing.                                                               */
5303 /****************************************************************************/
5304 void
5305 bnx_iff(struct bnx_softc *sc)
5306 {
5307 	struct ethercom		*ec = &sc->bnx_ec;
5308 	struct ifnet		*ifp = &ec->ec_if;
5309 	struct ether_multi	*enm;
5310 	struct ether_multistep	step;
5311 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5312 	u_int32_t		rx_mode, sort_mode;
5313 	int			h, i;
5314 
5315 	/* Initialize receive mode default settings. */
5316 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5317 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5318 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5319 	ifp->if_flags &= ~IFF_ALLMULTI;
5320 
5321 	/*
5322 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5323 	 * be enbled.
5324 	 */
5325 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5326 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5327 
5328 	/*
5329 	 * Check for promiscuous, all multicast, or selected
5330 	 * multicast address filtering.
5331 	 */
5332 	if (ifp->if_flags & IFF_PROMISC) {
5333 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5334 
5335 		ifp->if_flags |= IFF_ALLMULTI;
5336 		/* Enable promiscuous mode. */
5337 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5338 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5339 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5340 allmulti:
5341 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5342 
5343 		ifp->if_flags |= IFF_ALLMULTI;
5344 		/* Enable all multicast addresses. */
5345 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5346 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5347 			    0xffffffff);
5348 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5349 	} else {
5350 		/* Accept one or more multicast(s). */
5351 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5352 
5353 		ETHER_FIRST_MULTI(step, ec, enm);
5354 		while (enm != NULL) {
5355 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5356 			    ETHER_ADDR_LEN)) {
5357 				goto allmulti;
5358 			}
5359 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5360 			    0xFF;
5361 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5362 			ETHER_NEXT_MULTI(step, enm);
5363 		}
5364 
5365 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5366 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5367 			    hashes[i]);
5368 
5369 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5370 	}
5371 
5372 	/* Only make changes if the recive mode has actually changed. */
5373 	if (rx_mode != sc->rx_mode) {
5374 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5375 		    rx_mode);
5376 
5377 		sc->rx_mode = rx_mode;
5378 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5379 	}
5380 
5381 	/* Disable and clear the exisitng sort before enabling a new sort. */
5382 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5383 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5384 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5385 }
5386 
5387 /****************************************************************************/
5388 /* Called periodically to updates statistics from the controllers           */
5389 /* statistics block.                                                        */
5390 /*                                                                          */
5391 /* Returns:                                                                 */
5392 /*   Nothing.                                                               */
5393 /****************************************************************************/
5394 void
5395 bnx_stats_update(struct bnx_softc *sc)
5396 {
5397 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5398 	struct statistics_block	*stats;
5399 
5400 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5401 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5402 	    BUS_DMASYNC_POSTREAD);
5403 
5404 	stats = (struct statistics_block *)sc->stats_block;
5405 
5406 	/*
5407 	 * Update the interface statistics from the
5408 	 * hardware statistics.
5409 	 */
5410 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5411 
5412 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5413 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5414 	    (u_long)stats->stat_IfInMBUFDiscards +
5415 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5416 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5417 
5418 	ifp->if_oerrors = (u_long)
5419 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5420 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5421 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5422 
5423 	/*
5424 	 * Certain controllers don't report
5425 	 * carrier sense errors correctly.
5426 	 * See errata E11_5708CA0_1165.
5427 	 */
5428 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5429 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5430 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5431 
5432 	/*
5433 	 * Update the sysctl statistics from the
5434 	 * hardware statistics.
5435 	 */
5436 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5437 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5438 
5439 	sc->stat_IfHCInBadOctets =
5440 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5441 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5442 
5443 	sc->stat_IfHCOutOctets =
5444 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5445 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5446 
5447 	sc->stat_IfHCOutBadOctets =
5448 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5449 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5450 
5451 	sc->stat_IfHCInUcastPkts =
5452 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5453 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5454 
5455 	sc->stat_IfHCInMulticastPkts =
5456 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5457 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5458 
5459 	sc->stat_IfHCInBroadcastPkts =
5460 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5461 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5462 
5463 	sc->stat_IfHCOutUcastPkts =
5464 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5465 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5466 
5467 	sc->stat_IfHCOutMulticastPkts =
5468 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5469 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5470 
5471 	sc->stat_IfHCOutBroadcastPkts =
5472 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5473 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5474 
5475 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5476 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5477 
5478 	sc->stat_Dot3StatsCarrierSenseErrors =
5479 	    stats->stat_Dot3StatsCarrierSenseErrors;
5480 
5481 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5482 
5483 	sc->stat_Dot3StatsAlignmentErrors =
5484 	    stats->stat_Dot3StatsAlignmentErrors;
5485 
5486 	sc->stat_Dot3StatsSingleCollisionFrames =
5487 	    stats->stat_Dot3StatsSingleCollisionFrames;
5488 
5489 	sc->stat_Dot3StatsMultipleCollisionFrames =
5490 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5491 
5492 	sc->stat_Dot3StatsDeferredTransmissions =
5493 	    stats->stat_Dot3StatsDeferredTransmissions;
5494 
5495 	sc->stat_Dot3StatsExcessiveCollisions =
5496 	    stats->stat_Dot3StatsExcessiveCollisions;
5497 
5498 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5499 
5500 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5501 
5502 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5503 
5504 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5505 
5506 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5507 
5508 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5509 
5510 	sc->stat_EtherStatsPktsRx64Octets =
5511 	    stats->stat_EtherStatsPktsRx64Octets;
5512 
5513 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5514 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5515 
5516 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5517 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5518 
5519 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5520 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5521 
5522 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5523 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5524 
5525 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5526 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5527 
5528 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5529 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5530 
5531 	sc->stat_EtherStatsPktsTx64Octets =
5532 	    stats->stat_EtherStatsPktsTx64Octets;
5533 
5534 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5535 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5536 
5537 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5538 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5539 
5540 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5541 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5542 
5543 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5544 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5545 
5546 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5547 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5548 
5549 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5550 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5551 
5552 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5553 
5554 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5555 
5556 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5557 
5558 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5559 
5560 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5561 
5562 	sc->stat_MacControlFramesReceived =
5563 	    stats->stat_MacControlFramesReceived;
5564 
5565 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5566 
5567 	sc->stat_IfInFramesL2FilterDiscards =
5568 	    stats->stat_IfInFramesL2FilterDiscards;
5569 
5570 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5571 
5572 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5573 
5574 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5575 
5576 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5577 
5578 	sc->stat_CatchupInRuleCheckerDiscards =
5579 	    stats->stat_CatchupInRuleCheckerDiscards;
5580 
5581 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5582 
5583 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5584 
5585 	sc->stat_CatchupInRuleCheckerP4Hit =
5586 	    stats->stat_CatchupInRuleCheckerP4Hit;
5587 
5588 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5589 }
5590 
5591 void
5592 bnx_tick(void *xsc)
5593 {
5594 	struct bnx_softc	*sc = xsc;
5595 	struct mii_data		*mii;
5596 	u_int32_t		msg;
5597 	u_int16_t		prod, chain_prod;
5598 	u_int32_t		prod_bseq;
5599 	int s = splnet();
5600 
5601 	/* Tell the firmware that the driver is still running. */
5602 #ifdef BNX_DEBUG
5603 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5604 #else
5605 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5606 #endif
5607 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5608 
5609 	/* Update the statistics from the hardware statistics block. */
5610 	bnx_stats_update(sc);
5611 
5612 	/* Schedule the next tick. */
5613 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5614 
5615 	mii = &sc->bnx_mii;
5616 	mii_tick(mii);
5617 
5618 	/* try to get more RX buffers, just in case */
5619 	prod = sc->rx_prod;
5620 	prod_bseq = sc->rx_prod_bseq;
5621 	chain_prod = RX_CHAIN_IDX(prod);
5622 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5623 	sc->rx_prod = prod;
5624 	sc->rx_prod_bseq = prod_bseq;
5625 	splx(s);
5626 	return;
5627 }
5628 
5629 /****************************************************************************/
5630 /* BNX Debug Routines                                                       */
5631 /****************************************************************************/
5632 #ifdef BNX_DEBUG
5633 
5634 /****************************************************************************/
5635 /* Prints out information about an mbuf.                                    */
5636 /*                                                                          */
5637 /* Returns:                                                                 */
5638 /*   Nothing.                                                               */
5639 /****************************************************************************/
5640 void
5641 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5642 {
5643 	struct mbuf		*mp = m;
5644 
5645 	if (m == NULL) {
5646 		/* Index out of range. */
5647 		aprint_error("mbuf ptr is null!\n");
5648 		return;
5649 	}
5650 
5651 	while (mp) {
5652 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5653 		    mp, mp->m_len);
5654 
5655 		if (mp->m_flags & M_EXT)
5656 			aprint_debug("M_EXT ");
5657 		if (mp->m_flags & M_PKTHDR)
5658 			aprint_debug("M_PKTHDR ");
5659 		aprint_debug("\n");
5660 
5661 		if (mp->m_flags & M_EXT)
5662 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5663 			    mp, mp->m_ext.ext_size);
5664 
5665 		mp = mp->m_next;
5666 	}
5667 }
5668 
5669 /****************************************************************************/
5670 /* Prints out the mbufs in the TX mbuf chain.                               */
5671 /*                                                                          */
5672 /* Returns:                                                                 */
5673 /*   Nothing.                                                               */
5674 /****************************************************************************/
5675 void
5676 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5677 {
5678 #if 0
5679 	struct mbuf		*m;
5680 	int			i;
5681 
5682 	aprint_debug_dev(sc->bnx_dev,
5683 	    "----------------------------"
5684 	    "  tx mbuf data  "
5685 	    "----------------------------\n");
5686 
5687 	for (i = 0; i < count; i++) {
5688 	 	m = sc->tx_mbuf_ptr[chain_prod];
5689 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5690 		bnx_dump_mbuf(sc, m);
5691 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5692 	}
5693 
5694 	aprint_debug_dev(sc->bnx_dev,
5695 	    "--------------------------------------------"
5696 	    "----------------------------\n");
5697 #endif
5698 }
5699 
5700 /*
5701  * This routine prints the RX mbuf chain.
5702  */
5703 void
5704 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5705 {
5706 	struct mbuf		*m;
5707 	int			i;
5708 
5709 	aprint_debug_dev(sc->bnx_dev,
5710 	    "----------------------------"
5711 	    "  rx mbuf data  "
5712 	    "----------------------------\n");
5713 
5714 	for (i = 0; i < count; i++) {
5715 	 	m = sc->rx_mbuf_ptr[chain_prod];
5716 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5717 		bnx_dump_mbuf(sc, m);
5718 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5719 	}
5720 
5721 
5722 	aprint_debug_dev(sc->bnx_dev,
5723 	    "--------------------------------------------"
5724 	    "----------------------------\n");
5725 }
5726 
5727 void
5728 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5729 {
5730 	if (idx > MAX_TX_BD)
5731 		/* Index out of range. */
5732 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5733 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5734 		/* TX Chain page pointer. */
5735 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5736 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5737 		    txbd->tx_bd_haddr_lo);
5738 	else
5739 		/* Normal tx_bd entry. */
5740 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5741 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5742 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5743 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5744 		    txbd->tx_bd_flags);
5745 }
5746 
5747 void
5748 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5749 {
5750 	if (idx > MAX_RX_BD)
5751 		/* Index out of range. */
5752 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5753 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5754 		/* TX Chain page pointer. */
5755 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5756 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5757 		    rxbd->rx_bd_haddr_lo);
5758 	else
5759 		/* Normal tx_bd entry. */
5760 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5761 		    "0x%08X, flags = 0x%08X\n", idx,
5762 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5763 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5764 }
5765 
5766 void
5767 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5768 {
5769 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5770 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5771 	    "tcp_udp_xsum = 0x%04X\n", idx,
5772 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5773 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5774 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5775 }
5776 
5777 /*
5778  * This routine prints the TX chain.
5779  */
5780 void
5781 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5782 {
5783 	struct tx_bd		*txbd;
5784 	int			i;
5785 
5786 	/* First some info about the tx_bd chain structure. */
5787 	aprint_debug_dev(sc->bnx_dev,
5788 	    "----------------------------"
5789 	    "  tx_bd  chain  "
5790 	    "----------------------------\n");
5791 
5792 	BNX_PRINTF(sc,
5793 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5794 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5795 
5796 	BNX_PRINTF(sc,
5797 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5798 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5799 
5800 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5801 
5802 	aprint_error_dev(sc->bnx_dev, ""
5803 	    "-----------------------------"
5804 	    "   tx_bd data   "
5805 	    "-----------------------------\n");
5806 
5807 	/* Now print out the tx_bd's themselves. */
5808 	for (i = 0; i < count; i++) {
5809 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5810 		bnx_dump_txbd(sc, tx_prod, txbd);
5811 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5812 	}
5813 
5814 	aprint_debug_dev(sc->bnx_dev,
5815 	    "-----------------------------"
5816 	    "--------------"
5817 	    "-----------------------------\n");
5818 }
5819 
5820 /*
5821  * This routine prints the RX chain.
5822  */
5823 void
5824 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5825 {
5826 	struct rx_bd		*rxbd;
5827 	int			i;
5828 
5829 	/* First some info about the tx_bd chain structure. */
5830 	aprint_debug_dev(sc->bnx_dev,
5831 	    "----------------------------"
5832 	    "  rx_bd  chain  "
5833 	    "----------------------------\n");
5834 
5835 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5836 
5837 	BNX_PRINTF(sc,
5838 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5839 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5840 
5841 	BNX_PRINTF(sc,
5842 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5843 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5844 
5845 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5846 
5847 	aprint_error_dev(sc->bnx_dev,
5848 	    "----------------------------"
5849 	    "   rx_bd data   "
5850 	    "----------------------------\n");
5851 
5852 	/* Now print out the rx_bd's themselves. */
5853 	for (i = 0; i < count; i++) {
5854 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5855 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5856 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5857 	}
5858 
5859 	aprint_debug_dev(sc->bnx_dev,
5860 	    "----------------------------"
5861 	    "--------------"
5862 	    "----------------------------\n");
5863 }
5864 
5865 /*
5866  * This routine prints the status block.
5867  */
5868 void
5869 bnx_dump_status_block(struct bnx_softc *sc)
5870 {
5871 	struct status_block	*sblk;
5872 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5873 	    BUS_DMASYNC_POSTREAD);
5874 
5875 	sblk = sc->status_block;
5876 
5877    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5878 	    "-----------------------------\n");
5879 
5880 	BNX_PRINTF(sc,
5881 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5882 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5883 	    sblk->status_idx);
5884 
5885 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5886 	    sblk->status_rx_quick_consumer_index0,
5887 	    sblk->status_tx_quick_consumer_index0);
5888 
5889 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5890 
5891 	/* Theses indices are not used for normal L2 drivers. */
5892 	if (sblk->status_rx_quick_consumer_index1 ||
5893 		sblk->status_tx_quick_consumer_index1)
5894 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5895 		    sblk->status_rx_quick_consumer_index1,
5896 		    sblk->status_tx_quick_consumer_index1);
5897 
5898 	if (sblk->status_rx_quick_consumer_index2 ||
5899 		sblk->status_tx_quick_consumer_index2)
5900 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5901 		    sblk->status_rx_quick_consumer_index2,
5902 		    sblk->status_tx_quick_consumer_index2);
5903 
5904 	if (sblk->status_rx_quick_consumer_index3 ||
5905 		sblk->status_tx_quick_consumer_index3)
5906 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5907 		    sblk->status_rx_quick_consumer_index3,
5908 		    sblk->status_tx_quick_consumer_index3);
5909 
5910 	if (sblk->status_rx_quick_consumer_index4 ||
5911 		sblk->status_rx_quick_consumer_index5)
5912 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5913 		    sblk->status_rx_quick_consumer_index4,
5914 		    sblk->status_rx_quick_consumer_index5);
5915 
5916 	if (sblk->status_rx_quick_consumer_index6 ||
5917 		sblk->status_rx_quick_consumer_index7)
5918 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5919 		    sblk->status_rx_quick_consumer_index6,
5920 		    sblk->status_rx_quick_consumer_index7);
5921 
5922 	if (sblk->status_rx_quick_consumer_index8 ||
5923 		sblk->status_rx_quick_consumer_index9)
5924 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5925 		    sblk->status_rx_quick_consumer_index8,
5926 		    sblk->status_rx_quick_consumer_index9);
5927 
5928 	if (sblk->status_rx_quick_consumer_index10 ||
5929 		sblk->status_rx_quick_consumer_index11)
5930 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5931 		    sblk->status_rx_quick_consumer_index10,
5932 		    sblk->status_rx_quick_consumer_index11);
5933 
5934 	if (sblk->status_rx_quick_consumer_index12 ||
5935 		sblk->status_rx_quick_consumer_index13)
5936 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5937 		    sblk->status_rx_quick_consumer_index12,
5938 		    sblk->status_rx_quick_consumer_index13);
5939 
5940 	if (sblk->status_rx_quick_consumer_index14 ||
5941 		sblk->status_rx_quick_consumer_index15)
5942 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5943 		    sblk->status_rx_quick_consumer_index14,
5944 		    sblk->status_rx_quick_consumer_index15);
5945 
5946 	if (sblk->status_completion_producer_index ||
5947 		sblk->status_cmd_consumer_index)
5948 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5949 		    sblk->status_completion_producer_index,
5950 		    sblk->status_cmd_consumer_index);
5951 
5952 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5953 	    "-----------------------------\n");
5954 }
5955 
5956 /*
5957  * This routine prints the statistics block.
5958  */
5959 void
5960 bnx_dump_stats_block(struct bnx_softc *sc)
5961 {
5962 	struct statistics_block	*sblk;
5963 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5964 	    BUS_DMASYNC_POSTREAD);
5965 
5966 	sblk = sc->stats_block;
5967 
5968 	aprint_debug_dev(sc->bnx_dev, ""
5969 	    "-----------------------------"
5970 	    " Stats  Block "
5971 	    "-----------------------------\n");
5972 
5973 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5974 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5975 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5976 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5977 
5978 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5979 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5980 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5981 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5982 
5983 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5984 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5985 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5986 	    sblk->stat_IfHCInMulticastPkts_hi,
5987 	    sblk->stat_IfHCInMulticastPkts_lo);
5988 
5989 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5990 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5991 	    sblk->stat_IfHCInBroadcastPkts_hi,
5992 	    sblk->stat_IfHCInBroadcastPkts_lo,
5993 	    sblk->stat_IfHCOutUcastPkts_hi,
5994 	    sblk->stat_IfHCOutUcastPkts_lo);
5995 
5996 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5997 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5998 	    sblk->stat_IfHCOutMulticastPkts_hi,
5999 	    sblk->stat_IfHCOutMulticastPkts_lo,
6000 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6001 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6002 
6003 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6004 		BNX_PRINTF(sc, "0x%08X : "
6005 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6006 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6007 
6008 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6009 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6010 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6011 
6012 	if (sblk->stat_Dot3StatsFCSErrors)
6013 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6014 		    sblk->stat_Dot3StatsFCSErrors);
6015 
6016 	if (sblk->stat_Dot3StatsAlignmentErrors)
6017 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6018 		    sblk->stat_Dot3StatsAlignmentErrors);
6019 
6020 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6021 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6022 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6023 
6024 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6025 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6026 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6027 
6028 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6029 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6030 		    sblk->stat_Dot3StatsDeferredTransmissions);
6031 
6032 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6033 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6034 		    sblk->stat_Dot3StatsExcessiveCollisions);
6035 
6036 	if (sblk->stat_Dot3StatsLateCollisions)
6037 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6038 		    sblk->stat_Dot3StatsLateCollisions);
6039 
6040 	if (sblk->stat_EtherStatsCollisions)
6041 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6042 		    sblk->stat_EtherStatsCollisions);
6043 
6044 	if (sblk->stat_EtherStatsFragments)
6045 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6046 		    sblk->stat_EtherStatsFragments);
6047 
6048 	if (sblk->stat_EtherStatsJabbers)
6049 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6050 		    sblk->stat_EtherStatsJabbers);
6051 
6052 	if (sblk->stat_EtherStatsUndersizePkts)
6053 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6054 		    sblk->stat_EtherStatsUndersizePkts);
6055 
6056 	if (sblk->stat_EtherStatsOverrsizePkts)
6057 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6058 		    sblk->stat_EtherStatsOverrsizePkts);
6059 
6060 	if (sblk->stat_EtherStatsPktsRx64Octets)
6061 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6062 		    sblk->stat_EtherStatsPktsRx64Octets);
6063 
6064 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6065 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6066 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6067 
6068 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6069 		BNX_PRINTF(sc, "0x%08X : "
6070 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6071 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6072 
6073 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6074 		BNX_PRINTF(sc, "0x%08X : "
6075 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6076 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6077 
6078 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6079 		BNX_PRINTF(sc, "0x%08X : "
6080 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6081 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6082 
6083 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6084 		BNX_PRINTF(sc, "0x%08X : "
6085 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6086 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6087 
6088 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6089 		BNX_PRINTF(sc, "0x%08X : "
6090 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6091 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6092 
6093 	if (sblk->stat_EtherStatsPktsTx64Octets)
6094 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6095 		    sblk->stat_EtherStatsPktsTx64Octets);
6096 
6097 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6098 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6099 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6100 
6101 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6102 		BNX_PRINTF(sc, "0x%08X : "
6103 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6104 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6105 
6106 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6107 		BNX_PRINTF(sc, "0x%08X : "
6108 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6109 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6110 
6111 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6112 		BNX_PRINTF(sc, "0x%08X : "
6113 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6114 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6115 
6116 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6117 		BNX_PRINTF(sc, "0x%08X : "
6118 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6119 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6120 
6121 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6122 		BNX_PRINTF(sc, "0x%08X : "
6123 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6124 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6125 
6126 	if (sblk->stat_XonPauseFramesReceived)
6127 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6128 		    sblk->stat_XonPauseFramesReceived);
6129 
6130 	if (sblk->stat_XoffPauseFramesReceived)
6131 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6132 		    sblk->stat_XoffPauseFramesReceived);
6133 
6134 	if (sblk->stat_OutXonSent)
6135 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6136 		    sblk->stat_OutXonSent);
6137 
6138 	if (sblk->stat_OutXoffSent)
6139 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6140 		    sblk->stat_OutXoffSent);
6141 
6142 	if (sblk->stat_FlowControlDone)
6143 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6144 		    sblk->stat_FlowControlDone);
6145 
6146 	if (sblk->stat_MacControlFramesReceived)
6147 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6148 		    sblk->stat_MacControlFramesReceived);
6149 
6150 	if (sblk->stat_XoffStateEntered)
6151 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6152 		    sblk->stat_XoffStateEntered);
6153 
6154 	if (sblk->stat_IfInFramesL2FilterDiscards)
6155 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6156 		    sblk->stat_IfInFramesL2FilterDiscards);
6157 
6158 	if (sblk->stat_IfInRuleCheckerDiscards)
6159 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6160 		    sblk->stat_IfInRuleCheckerDiscards);
6161 
6162 	if (sblk->stat_IfInFTQDiscards)
6163 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6164 		    sblk->stat_IfInFTQDiscards);
6165 
6166 	if (sblk->stat_IfInMBUFDiscards)
6167 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6168 		    sblk->stat_IfInMBUFDiscards);
6169 
6170 	if (sblk->stat_IfInRuleCheckerP4Hit)
6171 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6172 		    sblk->stat_IfInRuleCheckerP4Hit);
6173 
6174 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6175 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6176 		    sblk->stat_CatchupInRuleCheckerDiscards);
6177 
6178 	if (sblk->stat_CatchupInFTQDiscards)
6179 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6180 		    sblk->stat_CatchupInFTQDiscards);
6181 
6182 	if (sblk->stat_CatchupInMBUFDiscards)
6183 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6184 		    sblk->stat_CatchupInMBUFDiscards);
6185 
6186 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6187 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6188 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6189 
6190 	aprint_debug_dev(sc->bnx_dev,
6191 	    "-----------------------------"
6192 	    "--------------"
6193 	    "-----------------------------\n");
6194 }
6195 
6196 void
6197 bnx_dump_driver_state(struct bnx_softc *sc)
6198 {
6199 	aprint_debug_dev(sc->bnx_dev,
6200 	    "-----------------------------"
6201 	    " Driver State "
6202 	    "-----------------------------\n");
6203 
6204 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6205 	    "address\n", sc);
6206 
6207 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6208 	    sc->status_block);
6209 
6210 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6211 	    "address\n", sc->stats_block);
6212 
6213 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6214 	    "adddress\n", sc->tx_bd_chain);
6215 
6216 #if 0
6217 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6218 	    sc->rx_bd_chain);
6219 
6220 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6221 	    sc->tx_mbuf_ptr);
6222 #endif
6223 
6224 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6225 	    sc->rx_mbuf_ptr);
6226 
6227 	BNX_PRINTF(sc,
6228 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6229 	    sc->interrupts_generated);
6230 
6231 	BNX_PRINTF(sc,
6232 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6233 	    sc->rx_interrupts);
6234 
6235 	BNX_PRINTF(sc,
6236 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6237 	    sc->tx_interrupts);
6238 
6239 	BNX_PRINTF(sc,
6240 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6241 	    sc->last_status_idx);
6242 
6243 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6244 	    sc->tx_prod);
6245 
6246 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6247 	    sc->tx_cons);
6248 
6249 	BNX_PRINTF(sc,
6250 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6251 	    sc->tx_prod_bseq);
6252 	BNX_PRINTF(sc,
6253 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6254 	    sc->tx_mbuf_alloc);
6255 
6256 	BNX_PRINTF(sc,
6257 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6258 	    sc->used_tx_bd);
6259 
6260 	BNX_PRINTF(sc,
6261 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6262 	    sc->tx_hi_watermark, sc->max_tx_bd);
6263 
6264 
6265 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6266 	    sc->rx_prod);
6267 
6268 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6269 	    sc->rx_cons);
6270 
6271 	BNX_PRINTF(sc,
6272 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6273 	    sc->rx_prod_bseq);
6274 
6275 	BNX_PRINTF(sc,
6276 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6277 	    sc->rx_mbuf_alloc);
6278 
6279 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6280 	    sc->free_rx_bd);
6281 
6282 	BNX_PRINTF(sc,
6283 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6284 	    sc->rx_low_watermark, sc->max_rx_bd);
6285 
6286 	BNX_PRINTF(sc,
6287 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6288 	    "mbuf alloc failures\n",
6289 	    sc->mbuf_alloc_failed);
6290 
6291 	BNX_PRINTF(sc,
6292 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6293 	    "simulated mbuf alloc failures\n",
6294 	    sc->mbuf_sim_alloc_failed);
6295 
6296 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6297 	    "-----------------------------\n");
6298 }
6299 
6300 void
6301 bnx_dump_hw_state(struct bnx_softc *sc)
6302 {
6303 	u_int32_t		val1;
6304 	int			i;
6305 
6306 	aprint_debug_dev(sc->bnx_dev,
6307 	    "----------------------------"
6308 	    " Hardware State "
6309 	    "----------------------------\n");
6310 
6311 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6312 
6313 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6314 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6315 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6316 
6317 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6318 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6319 
6320 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6321 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6322 
6323 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6324 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6325 	    BNX_EMAC_STATUS);
6326 
6327 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6328 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6329 
6330 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6331 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6332 	    BNX_TBDR_STATUS);
6333 
6334 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6335 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6336 	    BNX_TDMA_STATUS);
6337 
6338 	val1 = REG_RD(sc, BNX_HC_STATUS);
6339 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6340 
6341 	aprint_debug_dev(sc->bnx_dev,
6342 	    "----------------------------"
6343 	    "----------------"
6344 	    "----------------------------\n");
6345 
6346 	aprint_debug_dev(sc->bnx_dev,
6347 	    "----------------------------"
6348 	    " Register  Dump "
6349 	    "----------------------------\n");
6350 
6351 	for (i = 0x400; i < 0x8000; i += 0x10)
6352 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6353 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6354 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6355 
6356 	aprint_debug_dev(sc->bnx_dev,
6357 	    "----------------------------"
6358 	    "----------------"
6359 	    "----------------------------\n");
6360 }
6361 
6362 void
6363 bnx_breakpoint(struct bnx_softc *sc)
6364 {
6365 	/* Unreachable code to shut the compiler up about unused functions. */
6366 	if (0) {
6367    		bnx_dump_txbd(sc, 0, NULL);
6368 		bnx_dump_rxbd(sc, 0, NULL);
6369 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6370 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6371 		bnx_dump_l2fhdr(sc, 0, NULL);
6372 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6373 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6374 		bnx_dump_status_block(sc);
6375 		bnx_dump_stats_block(sc);
6376 		bnx_dump_driver_state(sc);
6377 		bnx_dump_hw_state(sc);
6378 	}
6379 
6380 	bnx_dump_driver_state(sc);
6381 	/* Print the important status block fields. */
6382 	bnx_dump_status_block(sc);
6383 
6384 #if 0
6385 	/* Call the debugger. */
6386 	breakpoint();
6387 #endif
6388 
6389 	return;
6390 }
6391 #endif
6392