xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 4817a0b0b8fe9612e8ebe21a9bf2d97b95038a97)
1 /*	$NetBSD: if_bnx.c,v 1.39 2010/12/11 14:28:38 martin Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.39 2010/12/11 14:28:38 martin Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5716  C0
48  *
49  * The following controllers are not supported by this driver:
50  *
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data.                                       */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
186 	/* Slow EEPROM */
187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 	 "EEPROM - slow"},
191 	/* Expansion entry 0001 */
192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 	 "Entry 0001"},
196 	/* Saifun SA25F010 (non-buffered flash) */
197 	/* strap, cfg1, & write1 need updates */
198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 	 "Non-buffered flash (128kB)"},
202 	/* Saifun SA25F020 (non-buffered flash) */
203 	/* strap, cfg1, & write1 need updates */
204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 	 "Non-buffered flash (256kB)"},
208 	/* Expansion entry 0100 */
209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 	 "Entry 0100"},
213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 	/* Saifun SA25F005 (non-buffered flash) */
224 	/* strap, cfg1, & write1 need updates */
225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 	 "Non-buffered flash (64kB)"},
229 	/* Fast EEPROM */
230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 	 "EEPROM - fast"},
234 	/* Expansion entry 1001 */
235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 	 "Entry 1001"},
239 	/* Expansion entry 1010 */
240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 	 "Entry 1010"},
244 	/* ATMEL AT45DB011B (buffered flash) */
245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 	 "Buffered flash (128kB)"},
249 	/* Expansion entry 1100 */
250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 	 "Entry 1100"},
254 	/* Expansion entry 1101 */
255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 	 "Entry 1101"},
259 	/* Ateml Expansion entry 1110 */
260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1110 (Atmel)"},
264 	/* ATMEL AT45DB021B (buffered flash) */
265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 	 "Buffered flash (256kB)"},
269 };
270 
271 /*
272  * The BCM5709 controllers transparently handle the
273  * differences between Atmel 264 byte pages and all
274  * flash devices which use 256 byte pages, so no
275  * logical-to-physical mapping is required in the
276  * driver.
277  */
278 static struct flash_spec flash_5709 = {
279 	.flags		= BNX_NV_BUFFERED,
280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
284 	.name		= "5709 buffered flash (256kB)",
285 };
286 
287 /****************************************************************************/
288 /* OpenBSD device entry points.                                             */
289 /****************************************************************************/
290 static int	bnx_probe(device_t, cfdata_t, void *);
291 void	bnx_attach(device_t, device_t, void *);
292 int	bnx_detach(device_t, int);
293 
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines                                   */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_status_block(struct bnx_softc *);
307 void	bnx_dump_stats_block(struct bnx_softc *);
308 void	bnx_dump_driver_state(struct bnx_softc *);
309 void	bnx_dump_hw_state(struct bnx_softc *);
310 void	bnx_breakpoint(struct bnx_softc *);
311 #endif
312 
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines                                      */
315 /****************************************************************************/
316 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
317 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
318 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
319 int	bnx_miibus_read_reg(device_t, int, int);
320 void	bnx_miibus_write_reg(device_t, int, int, int);
321 void	bnx_miibus_statchg(device_t);
322 
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines                                                */
325 /****************************************************************************/
326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
327 int	bnx_release_nvram_lock(struct bnx_softc *);
328 void	bnx_enable_nvram_access(struct bnx_softc *);
329 void	bnx_disable_nvram_access(struct bnx_softc *);
330 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
331 	    u_int32_t);
332 int	bnx_init_nvram(struct bnx_softc *);
333 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
334 int	bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int	bnx_enable_nvram_write(struct bnx_softc *);
337 void	bnx_disable_nvram_write(struct bnx_softc *);
338 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
339 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
340 	    u_int32_t);
341 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
342 #endif
343 
344 /****************************************************************************/
345 /*                                                                          */
346 /****************************************************************************/
347 void	bnx_get_media(struct bnx_softc *);
348 int	bnx_dma_alloc(struct bnx_softc *);
349 void	bnx_dma_free(struct bnx_softc *);
350 void	bnx_release_resources(struct bnx_softc *);
351 
352 /****************************************************************************/
353 /* BNX Firmware Synchronization and Load                                    */
354 /****************************************************************************/
355 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
356 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
357 	    u_int32_t);
358 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
359 	    struct fw_info *);
360 void	bnx_init_cpus(struct bnx_softc *);
361 
362 void	bnx_stop(struct ifnet *, int);
363 int	bnx_reset(struct bnx_softc *, u_int32_t);
364 int	bnx_chipinit(struct bnx_softc *);
365 int	bnx_blockinit(struct bnx_softc *);
366 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
367 	    u_int16_t *, u_int32_t *);
368 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
369 
370 int	bnx_init_tx_chain(struct bnx_softc *);
371 void	bnx_init_tx_context(struct bnx_softc *);
372 int	bnx_init_rx_chain(struct bnx_softc *);
373 void	bnx_init_rx_context(struct bnx_softc *);
374 void	bnx_free_rx_chain(struct bnx_softc *);
375 void	bnx_free_tx_chain(struct bnx_softc *);
376 
377 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
378 void	bnx_start(struct ifnet *);
379 int	bnx_ioctl(struct ifnet *, u_long, void *);
380 void	bnx_watchdog(struct ifnet *);
381 int	bnx_init(struct ifnet *);
382 
383 void	bnx_init_context(struct bnx_softc *);
384 void	bnx_get_mac_addr(struct bnx_softc *);
385 void	bnx_set_mac_addr(struct bnx_softc *);
386 void	bnx_phy_intr(struct bnx_softc *);
387 void	bnx_rx_intr(struct bnx_softc *);
388 void	bnx_tx_intr(struct bnx_softc *);
389 void	bnx_disable_intr(struct bnx_softc *);
390 void	bnx_enable_intr(struct bnx_softc *);
391 
392 int	bnx_intr(void *);
393 void	bnx_iff(struct bnx_softc *);
394 void	bnx_stats_update(struct bnx_softc *);
395 void	bnx_tick(void *);
396 
397 struct pool *bnx_tx_pool = NULL;
398 int	bnx_alloc_pkts(struct bnx_softc *);
399 
400 /****************************************************************************/
401 /* OpenBSD device dispatch table.                                           */
402 /****************************************************************************/
403 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
404     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
405 
406 /****************************************************************************/
407 /* Device probe function.                                                   */
408 /*                                                                          */
409 /* Compares the device to the driver's list of supported devices and        */
410 /* reports back to the OS whether this is the right driver for the device.  */
411 /*                                                                          */
412 /* Returns:                                                                 */
413 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
414 /****************************************************************************/
415 static const struct bnx_product *
416 bnx_lookup(const struct pci_attach_args *pa)
417 {
418 	int i;
419 	pcireg_t subid;
420 
421 	for (i = 0; i < __arraycount(bnx_devices); i++) {
422 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
423 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
424 			continue;
425 		if (!bnx_devices[i].bp_subvendor)
426 			return &bnx_devices[i];
427 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
428 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
429 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
430 			return &bnx_devices[i];
431 	}
432 
433 	return NULL;
434 }
435 static int
436 bnx_probe(device_t parent, cfdata_t match, void *aux)
437 {
438 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
439 
440 	if (bnx_lookup(pa) != NULL)
441 		return (1);
442 
443 	return (0);
444 }
445 
446 /****************************************************************************/
447 /* Device attach function.                                                  */
448 /*                                                                          */
449 /* Allocates device resources, performs secondary chip identification,      */
450 /* resets and initializes the hardware, and initializes driver instance     */
451 /* variables.                                                               */
452 /*                                                                          */
453 /* Returns:                                                                 */
454 /*   0 on success, positive value on failure.                               */
455 /****************************************************************************/
456 void
457 bnx_attach(device_t parent, device_t self, void *aux)
458 {
459 	const struct bnx_product *bp;
460 	struct bnx_softc	*sc = device_private(self);
461 	struct pci_attach_args	*pa = aux;
462 	pci_chipset_tag_t	pc = pa->pa_pc;
463 	pci_intr_handle_t	ih;
464 	const char 		*intrstr = NULL;
465 	u_int32_t		command;
466 	struct ifnet		*ifp;
467 	u_int32_t		val;
468 	int			mii_flags = MIIF_FORCEANEG;
469 	pcireg_t		memtype;
470 
471 	if (bnx_tx_pool == NULL) {
472 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
473 		if (bnx_tx_pool != NULL) {
474 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
475 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
476 		} else {
477 			aprint_error(": can't alloc bnx_tx_pool\n");
478 			return;
479 		}
480 	}
481 
482 	bp = bnx_lookup(pa);
483 	if (bp == NULL)
484 		panic("unknown device");
485 
486 	sc->bnx_dev = self;
487 
488 	aprint_naive("\n");
489 	aprint_normal(": %s\n", bp->bp_name);
490 
491 	sc->bnx_pa = *pa;
492 
493 	/*
494 	 * Map control/status registers.
495 	*/
496 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
497 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
498 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 
501 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
502 		aprint_error_dev(sc->bnx_dev,
503 		    "failed to enable memory mapping!\n");
504 		return;
505 	}
506 
507 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
508 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
509 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
510 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
511 		return;
512 	}
513 
514 	if (pci_intr_map(pa, &ih)) {
515 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
516 		goto bnx_attach_fail;
517 	}
518 
519 	intrstr = pci_intr_string(pc, ih);
520 
521 	/*
522 	 * Configure byte swap and enable indirect register access.
523 	 * Rely on CPU to do target byte swapping on big endian systems.
524 	 * Access to registers outside of PCI configurtion space are not
525 	 * valid until this is done.
526 	 */
527 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
528 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
529 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
530 
531 	/* Save ASIC revsion info. */
532 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
533 
534 	/*
535 	 * Find the base address for shared memory access.
536 	 * Newer versions of bootcode use a signature and offset
537 	 * while older versions use a fixed address.
538 	 */
539 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
540 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
541 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
542 		    (sc->bnx_pa.pa_function << 2));
543 	else
544 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
545 
546 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
547 
548 	/* Set initial device and PHY flags */
549 	sc->bnx_flags = 0;
550 	sc->bnx_phy_flags = 0;
551 
552 	/* Get PCI bus information (speed and type). */
553 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
554 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
555 		u_int32_t clkreg;
556 
557 		sc->bnx_flags |= BNX_PCIX_FLAG;
558 
559 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
560 
561 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
562 		switch (clkreg) {
563 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
564 			sc->bus_speed_mhz = 133;
565 			break;
566 
567 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
568 			sc->bus_speed_mhz = 100;
569 			break;
570 
571 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
572 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
573 			sc->bus_speed_mhz = 66;
574 			break;
575 
576 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
577 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
578 			sc->bus_speed_mhz = 50;
579 			break;
580 
581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
582 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
583 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
584 			sc->bus_speed_mhz = 33;
585 			break;
586 		}
587 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
588 			sc->bus_speed_mhz = 66;
589 		else
590 			sc->bus_speed_mhz = 33;
591 
592 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
593 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
594 
595 	/* Reset the controller. */
596 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
597 		goto bnx_attach_fail;
598 
599 	/* Initialize the controller. */
600 	if (bnx_chipinit(sc)) {
601 		aprint_error_dev(sc->bnx_dev,
602 		    "Controller initialization failed!\n");
603 		goto bnx_attach_fail;
604 	}
605 
606 	/* Perform NVRAM test. */
607 	if (bnx_nvram_test(sc)) {
608 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
609 		goto bnx_attach_fail;
610 	}
611 
612 	/* Fetch the permanent Ethernet MAC address. */
613 	bnx_get_mac_addr(sc);
614 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
615 	    ether_sprintf(sc->eaddr));
616 
617 	/*
618 	 * Trip points control how many BDs
619 	 * should be ready before generating an
620 	 * interrupt while ticks control how long
621 	 * a BD can sit in the chain before
622 	 * generating an interrupt.  Set the default
623 	 * values for the RX and TX rings.
624 	 */
625 
626 #ifdef BNX_DEBUG
627 	/* Force more frequent interrupts. */
628 	sc->bnx_tx_quick_cons_trip_int = 1;
629 	sc->bnx_tx_quick_cons_trip     = 1;
630 	sc->bnx_tx_ticks_int           = 0;
631 	sc->bnx_tx_ticks               = 0;
632 
633 	sc->bnx_rx_quick_cons_trip_int = 1;
634 	sc->bnx_rx_quick_cons_trip     = 1;
635 	sc->bnx_rx_ticks_int           = 0;
636 	sc->bnx_rx_ticks               = 0;
637 #else
638 	sc->bnx_tx_quick_cons_trip_int = 20;
639 	sc->bnx_tx_quick_cons_trip     = 20;
640 	sc->bnx_tx_ticks_int           = 80;
641 	sc->bnx_tx_ticks               = 80;
642 
643 	sc->bnx_rx_quick_cons_trip_int = 6;
644 	sc->bnx_rx_quick_cons_trip     = 6;
645 	sc->bnx_rx_ticks_int           = 18;
646 	sc->bnx_rx_ticks               = 18;
647 #endif
648 
649 	/* Update statistics once every second. */
650 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
651 
652 	/* Find the media type for the adapter. */
653 	bnx_get_media(sc);
654 
655 	/*
656 	 * Store config data needed by the PHY driver for
657 	 * backplane applications
658 	 */
659 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
660 	    BNX_SHARED_HW_CFG_CONFIG);
661 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
662 	    BNX_PORT_HW_CFG_CONFIG);
663 
664 	/* Allocate DMA memory resources. */
665 	sc->bnx_dmatag = pa->pa_dmat;
666 	if (bnx_dma_alloc(sc)) {
667 		aprint_error_dev(sc->bnx_dev,
668 		    "DMA resource allocation failed!\n");
669 		goto bnx_attach_fail;
670 	}
671 
672 	/* Initialize the ifnet interface. */
673 	ifp = &sc->bnx_ec.ec_if;
674 	ifp->if_softc = sc;
675 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
676 	ifp->if_ioctl = bnx_ioctl;
677 	ifp->if_stop = bnx_stop;
678 	ifp->if_start = bnx_start;
679 	ifp->if_init = bnx_init;
680 	ifp->if_timer = 0;
681 	ifp->if_watchdog = bnx_watchdog;
682 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
683 	IFQ_SET_READY(&ifp->if_snd);
684 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
685 
686 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
687 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
688 
689 	ifp->if_capabilities |=
690 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
691 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
692 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
693 
694 	/* Hookup IRQ last. */
695 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
696 	if (sc->bnx_intrhand == NULL) {
697 		aprint_error_dev(self, "couldn't establish interrupt");
698 		if (intrstr != NULL)
699 			aprint_error(" at %s", intrstr);
700 		aprint_error("\n");
701 		goto bnx_attach_fail;
702 	}
703 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
704 
705 	sc->bnx_mii.mii_ifp = ifp;
706 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
707 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
708 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
709 
710 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
711 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
712 	    ether_mediastatus);
713 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
714 		mii_flags |= MIIF_HAVEFIBER;
715 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
716 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
717 
718 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
719 		aprint_error_dev(self, "no PHY found!\n");
720 		ifmedia_add(&sc->bnx_mii.mii_media,
721 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
722 		ifmedia_set(&sc->bnx_mii.mii_media,
723 		    IFM_ETHER|IFM_MANUAL);
724 	} else {
725 		ifmedia_set(&sc->bnx_mii.mii_media,
726 		    IFM_ETHER|IFM_AUTO);
727 	}
728 
729 	/* Attach to the Ethernet interface list. */
730 	if_attach(ifp);
731 	ether_ifattach(ifp,sc->eaddr);
732 
733 	callout_init(&sc->bnx_timeout, 0);
734 
735 	if (pmf_device_register(self, NULL, NULL))
736 		pmf_class_network_register(self, ifp);
737 	else
738 		aprint_error_dev(self, "couldn't establish power handler\n");
739 
740 	/* Print some important debugging info. */
741 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
742 
743 	goto bnx_attach_exit;
744 
745 bnx_attach_fail:
746 	bnx_release_resources(sc);
747 
748 bnx_attach_exit:
749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
750 }
751 
752 /****************************************************************************/
753 /* Device detach function.                                                  */
754 /*                                                                          */
755 /* Stops the controller, resets the controller, and releases resources.     */
756 /*                                                                          */
757 /* Returns:                                                                 */
758 /*   0 on success, positive value on failure.                               */
759 /****************************************************************************/
760 int
761 bnx_detach(device_t dev, int flags)
762 {
763 	int s;
764 	struct bnx_softc *sc;
765 	struct ifnet *ifp;
766 
767 	sc = device_private(dev);
768 	ifp = &sc->bnx_ec.ec_if;
769 
770 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
771 
772 	/* Stop and reset the controller. */
773 	s = splnet();
774 	if (ifp->if_flags & IFF_RUNNING)
775 		bnx_stop(ifp, 1);
776 	else {
777 		/* Disable the transmit/receive blocks. */
778 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
779 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
780 		DELAY(20);
781 		bnx_disable_intr(sc);
782 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
783 	}
784 
785 	splx(s);
786 
787 	pmf_device_deregister(dev);
788 	callout_destroy(&sc->bnx_timeout);
789 	ether_ifdetach(ifp);
790 
791 	/* Delete all remaining media. */
792 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
793 
794 	if_detach(ifp);
795 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
796 
797 	/* Release all remaining resources. */
798 	bnx_release_resources(sc);
799 
800 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
801 
802 	return(0);
803 }
804 
805 /****************************************************************************/
806 /* Indirect register read.                                                  */
807 /*                                                                          */
808 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
809 /* configuration space.  Using this mechanism avoids issues with posted     */
810 /* reads but is much slower than memory-mapped I/O.                         */
811 /*                                                                          */
812 /* Returns:                                                                 */
813 /*   The value of the register.                                             */
814 /****************************************************************************/
815 u_int32_t
816 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
817 {
818 	struct pci_attach_args	*pa = &(sc->bnx_pa);
819 
820 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
821 	    offset);
822 #ifdef BNX_DEBUG
823 	{
824 		u_int32_t val;
825 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
826 		    BNX_PCICFG_REG_WINDOW);
827 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
828 		    "val = 0x%08X\n", __func__, offset, val);
829 		return (val);
830 	}
831 #else
832 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
833 #endif
834 }
835 
836 /****************************************************************************/
837 /* Indirect register write.                                                 */
838 /*                                                                          */
839 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
840 /* configuration space.  Using this mechanism avoids issues with posted     */
841 /* writes but is muchh slower than memory-mapped I/O.                       */
842 /*                                                                          */
843 /* Returns:                                                                 */
844 /*   Nothing.                                                               */
845 /****************************************************************************/
846 void
847 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
848 {
849 	struct pci_attach_args  *pa = &(sc->bnx_pa);
850 
851 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
852 		__func__, offset, val);
853 
854 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
855 	    offset);
856 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
857 }
858 
859 /****************************************************************************/
860 /* Context memory write.                                                    */
861 /*                                                                          */
862 /* The NetXtreme II controller uses context memory to track connection      */
863 /* information for L2 and higher network protocols.                         */
864 /*                                                                          */
865 /* Returns:                                                                 */
866 /*   Nothing.                                                               */
867 /****************************************************************************/
868 void
869 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
870     u_int32_t ctx_val)
871 {
872 	u_int32_t idx, offset = ctx_offset + cid_addr;
873 	u_int32_t val, retry_cnt = 5;
874 
875 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
876 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
877 		REG_WR(sc, BNX_CTX_CTX_CTRL,
878 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
879 
880 		for (idx = 0; idx < retry_cnt; idx++) {
881 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
882 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
883 				break;
884 			DELAY(5);
885 		}
886 
887 #if 0
888 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
889 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
890 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
891 				__FILE__, __LINE__, cid_addr, ctx_offset);
892 #endif
893 
894 	} else {
895 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
896 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
897 	}
898 }
899 
900 /****************************************************************************/
901 /* PHY register read.                                                       */
902 /*                                                                          */
903 /* Implements register reads on the MII bus.                                */
904 /*                                                                          */
905 /* Returns:                                                                 */
906 /*   The value of the register.                                             */
907 /****************************************************************************/
908 int
909 bnx_miibus_read_reg(device_t dev, int phy, int reg)
910 {
911 	struct bnx_softc	*sc = device_private(dev);
912 	u_int32_t		val;
913 	int			i;
914 
915 	/* Make sure we are accessing the correct PHY address. */
916 	if (phy != sc->bnx_phy_addr) {
917 		DBPRINT(sc, BNX_VERBOSE,
918 		    "Invalid PHY address %d for PHY read!\n", phy);
919 		return(0);
920 	}
921 
922 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
923 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
924 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
925 
926 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
927 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
928 
929 		DELAY(40);
930 	}
931 
932 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
933 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
934 	    BNX_EMAC_MDIO_COMM_START_BUSY;
935 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
936 
937 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
938 		DELAY(10);
939 
940 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
941 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
942 			DELAY(5);
943 
944 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
945 			val &= BNX_EMAC_MDIO_COMM_DATA;
946 
947 			break;
948 		}
949 	}
950 
951 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
952 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
953 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
954 		val = 0x0;
955 	} else
956 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
957 
958 	DBPRINT(sc, BNX_EXCESSIVE,
959 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
960 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
961 
962 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
963 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
964 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
965 
966 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
967 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
968 
969 		DELAY(40);
970 	}
971 
972 	return (val & 0xffff);
973 }
974 
975 /****************************************************************************/
976 /* PHY register write.                                                      */
977 /*                                                                          */
978 /* Implements register writes on the MII bus.                               */
979 /*                                                                          */
980 /* Returns:                                                                 */
981 /*   The value of the register.                                             */
982 /****************************************************************************/
983 void
984 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
985 {
986 	struct bnx_softc	*sc = device_private(dev);
987 	u_int32_t		val1;
988 	int			i;
989 
990 	/* Make sure we are accessing the correct PHY address. */
991 	if (phy != sc->bnx_phy_addr) {
992 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
993 		    phy);
994 		return;
995 	}
996 
997 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
998 	    "val = 0x%04X\n", __func__,
999 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1000 
1001 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1002 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1003 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1004 
1005 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1006 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1007 
1008 		DELAY(40);
1009 	}
1010 
1011 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1012 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1013 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1014 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1015 
1016 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1017 		DELAY(10);
1018 
1019 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1020 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1021 			DELAY(5);
1022 			break;
1023 		}
1024 	}
1025 
1026 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1027 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1028 		    __LINE__);
1029 	}
1030 
1031 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1032 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1033 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1034 
1035 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1036 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1037 
1038 		DELAY(40);
1039 	}
1040 }
1041 
1042 /****************************************************************************/
1043 /* MII bus status change.                                                   */
1044 /*                                                                          */
1045 /* Called by the MII bus driver when the PHY establishes link to set the    */
1046 /* MAC interface registers.                                                 */
1047 /*                                                                          */
1048 /* Returns:                                                                 */
1049 /*   Nothing.                                                               */
1050 /****************************************************************************/
1051 void
1052 bnx_miibus_statchg(device_t dev)
1053 {
1054 	struct bnx_softc	*sc = device_private(dev);
1055 	struct mii_data		*mii = &sc->bnx_mii;
1056 	int			val;
1057 
1058 	val = REG_RD(sc, BNX_EMAC_MODE);
1059 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1060 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1061 	    BNX_EMAC_MODE_25G);
1062 
1063 	/* Set MII or GMII interface based on the speed
1064 	 * negotiated by the PHY.
1065 	 */
1066 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1067 	case IFM_10_T:
1068 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1069 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1070 			val |= BNX_EMAC_MODE_PORT_MII_10;
1071 			break;
1072 		}
1073 		/* FALLTHROUGH */
1074 	case IFM_100_TX:
1075 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1076 		val |= BNX_EMAC_MODE_PORT_MII;
1077 		break;
1078 	case IFM_2500_SX:
1079 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1080 		val |= BNX_EMAC_MODE_25G;
1081 		/* FALLTHROUGH */
1082 	case IFM_1000_T:
1083 	case IFM_1000_SX:
1084 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1085 		val |= BNX_EMAC_MODE_PORT_GMII;
1086 		break;
1087 	default:
1088 		val |= BNX_EMAC_MODE_PORT_GMII;
1089 		break;
1090 	}
1091 
1092 	/* Set half or full duplex based on the duplicity
1093 	 * negotiated by the PHY.
1094 	 */
1095 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1096 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1097 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1098 	} else {
1099 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1100 	}
1101 
1102 	REG_WR(sc, BNX_EMAC_MODE, val);
1103 }
1104 
1105 /****************************************************************************/
1106 /* Acquire NVRAM lock.                                                      */
1107 /*                                                                          */
1108 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1109 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1110 /* for use by the driver.                                                   */
1111 /*                                                                          */
1112 /* Returns:                                                                 */
1113 /*   0 on success, positive value on failure.                               */
1114 /****************************************************************************/
1115 int
1116 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1117 {
1118 	u_int32_t		val;
1119 	int			j;
1120 
1121 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1122 
1123 	/* Request access to the flash interface. */
1124 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1125 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1126 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1127 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1128 			break;
1129 
1130 		DELAY(5);
1131 	}
1132 
1133 	if (j >= NVRAM_TIMEOUT_COUNT) {
1134 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1135 		return (EBUSY);
1136 	}
1137 
1138 	return (0);
1139 }
1140 
1141 /****************************************************************************/
1142 /* Release NVRAM lock.                                                      */
1143 /*                                                                          */
1144 /* When the caller is finished accessing NVRAM the lock must be released.   */
1145 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1146 /* for use by the driver.                                                   */
1147 /*                                                                          */
1148 /* Returns:                                                                 */
1149 /*   0 on success, positive value on failure.                               */
1150 /****************************************************************************/
1151 int
1152 bnx_release_nvram_lock(struct bnx_softc *sc)
1153 {
1154 	int			j;
1155 	u_int32_t		val;
1156 
1157 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1158 
1159 	/* Relinquish nvram interface. */
1160 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1161 
1162 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1163 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1164 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1165 			break;
1166 
1167 		DELAY(5);
1168 	}
1169 
1170 	if (j >= NVRAM_TIMEOUT_COUNT) {
1171 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1172 		return (EBUSY);
1173 	}
1174 
1175 	return (0);
1176 }
1177 
1178 #ifdef BNX_NVRAM_WRITE_SUPPORT
1179 /****************************************************************************/
1180 /* Enable NVRAM write access.                                               */
1181 /*                                                                          */
1182 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1183 /*                                                                          */
1184 /* Returns:                                                                 */
1185 /*   0 on success, positive value on failure.                               */
1186 /****************************************************************************/
1187 int
1188 bnx_enable_nvram_write(struct bnx_softc *sc)
1189 {
1190 	u_int32_t		val;
1191 
1192 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1193 
1194 	val = REG_RD(sc, BNX_MISC_CFG);
1195 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1196 
1197 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1198 		int j;
1199 
1200 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1201 		REG_WR(sc, BNX_NVM_COMMAND,
1202 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1203 
1204 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1205 			DELAY(5);
1206 
1207 			val = REG_RD(sc, BNX_NVM_COMMAND);
1208 			if (val & BNX_NVM_COMMAND_DONE)
1209 				break;
1210 		}
1211 
1212 		if (j >= NVRAM_TIMEOUT_COUNT) {
1213 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1214 			return (EBUSY);
1215 		}
1216 	}
1217 
1218 	return (0);
1219 }
1220 
1221 /****************************************************************************/
1222 /* Disable NVRAM write access.                                              */
1223 /*                                                                          */
1224 /* When the caller is finished writing to NVRAM write access must be        */
1225 /* disabled.                                                                */
1226 /*                                                                          */
1227 /* Returns:                                                                 */
1228 /*   Nothing.                                                               */
1229 /****************************************************************************/
1230 void
1231 bnx_disable_nvram_write(struct bnx_softc *sc)
1232 {
1233 	u_int32_t		val;
1234 
1235 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1236 
1237 	val = REG_RD(sc, BNX_MISC_CFG);
1238 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1239 }
1240 #endif
1241 
1242 /****************************************************************************/
1243 /* Enable NVRAM access.                                                     */
1244 /*                                                                          */
1245 /* Before accessing NVRAM for read or write operations the caller must      */
1246 /* enabled NVRAM access.                                                    */
1247 /*                                                                          */
1248 /* Returns:                                                                 */
1249 /*   Nothing.                                                               */
1250 /****************************************************************************/
1251 void
1252 bnx_enable_nvram_access(struct bnx_softc *sc)
1253 {
1254 	u_int32_t		val;
1255 
1256 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1257 
1258 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1259 	/* Enable both bits, even on read. */
1260 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1261 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1262 }
1263 
1264 /****************************************************************************/
1265 /* Disable NVRAM access.                                                    */
1266 /*                                                                          */
1267 /* When the caller is finished accessing NVRAM access must be disabled.     */
1268 /*                                                                          */
1269 /* Returns:                                                                 */
1270 /*   Nothing.                                                               */
1271 /****************************************************************************/
1272 void
1273 bnx_disable_nvram_access(struct bnx_softc *sc)
1274 {
1275 	u_int32_t		val;
1276 
1277 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1278 
1279 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1280 
1281 	/* Disable both bits, even after read. */
1282 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1283 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1284 }
1285 
1286 #ifdef BNX_NVRAM_WRITE_SUPPORT
1287 /****************************************************************************/
1288 /* Erase NVRAM page before writing.                                         */
1289 /*                                                                          */
1290 /* Non-buffered flash parts require that a page be erased before it is      */
1291 /* written.                                                                 */
1292 /*                                                                          */
1293 /* Returns:                                                                 */
1294 /*   0 on success, positive value on failure.                               */
1295 /****************************************************************************/
1296 int
1297 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1298 {
1299 	u_int32_t		cmd;
1300 	int			j;
1301 
1302 	/* Buffered flash doesn't require an erase. */
1303 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1304 		return (0);
1305 
1306 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1307 
1308 	/* Build an erase command. */
1309 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1310 	    BNX_NVM_COMMAND_DOIT;
1311 
1312 	/*
1313 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1314 	 * and issue the erase command.
1315 	 */
1316 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1317 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1318 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1319 
1320 	/* Wait for completion. */
1321 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1322 		u_int32_t val;
1323 
1324 		DELAY(5);
1325 
1326 		val = REG_RD(sc, BNX_NVM_COMMAND);
1327 		if (val & BNX_NVM_COMMAND_DONE)
1328 			break;
1329 	}
1330 
1331 	if (j >= NVRAM_TIMEOUT_COUNT) {
1332 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1333 		return (EBUSY);
1334 	}
1335 
1336 	return (0);
1337 }
1338 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1339 
1340 /****************************************************************************/
1341 /* Read a dword (32 bits) from NVRAM.                                       */
1342 /*                                                                          */
1343 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1344 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1345 /*                                                                          */
1346 /* Returns:                                                                 */
1347 /*   0 on success and the 32 bit value read, positive value on failure.     */
1348 /****************************************************************************/
1349 int
1350 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1351     u_int8_t *ret_val, u_int32_t cmd_flags)
1352 {
1353 	u_int32_t		cmd;
1354 	int			i, rc = 0;
1355 
1356 	/* Build the command word. */
1357 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1358 
1359 	/* Calculate the offset for buffered flash if translation is used. */
1360 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1361 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1362 		    sc->bnx_flash_info->page_bits) +
1363 		    (offset % sc->bnx_flash_info->page_size);
1364 	}
1365 
1366 	/*
1367 	 * Clear the DONE bit separately, set the address to read,
1368 	 * and issue the read.
1369 	 */
1370 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1371 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1372 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1373 
1374 	/* Wait for completion. */
1375 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1376 		u_int32_t val;
1377 
1378 		DELAY(5);
1379 
1380 		val = REG_RD(sc, BNX_NVM_COMMAND);
1381 		if (val & BNX_NVM_COMMAND_DONE) {
1382 			val = REG_RD(sc, BNX_NVM_READ);
1383 
1384 			val = bnx_be32toh(val);
1385 			memcpy(ret_val, &val, 4);
1386 			break;
1387 		}
1388 	}
1389 
1390 	/* Check for errors. */
1391 	if (i >= NVRAM_TIMEOUT_COUNT) {
1392 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1393 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1394 		rc = EBUSY;
1395 	}
1396 
1397 	return(rc);
1398 }
1399 
1400 #ifdef BNX_NVRAM_WRITE_SUPPORT
1401 /****************************************************************************/
1402 /* Write a dword (32 bits) to NVRAM.                                        */
1403 /*                                                                          */
1404 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1405 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1406 /* enabled NVRAM write access.                                              */
1407 /*                                                                          */
1408 /* Returns:                                                                 */
1409 /*   0 on success, positive value on failure.                               */
1410 /****************************************************************************/
1411 int
1412 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1413     u_int32_t cmd_flags)
1414 {
1415 	u_int32_t		cmd, val32;
1416 	int			j;
1417 
1418 	/* Build the command word. */
1419 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1420 
1421 	/* Calculate the offset for buffered flash if translation is used. */
1422 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1423 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1424 		    sc->bnx_flash_info->page_bits) +
1425 		    (offset % sc->bnx_flash_info->page_size);
1426 	}
1427 
1428 	/*
1429 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1430 	 * set the NVRAM address to write, and issue the write command
1431 	 */
1432 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1433 	memcpy(&val32, val, 4);
1434 	val32 = htobe32(val32);
1435 	REG_WR(sc, BNX_NVM_WRITE, val32);
1436 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1437 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1438 
1439 	/* Wait for completion. */
1440 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1441 		DELAY(5);
1442 
1443 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1444 			break;
1445 	}
1446 	if (j >= NVRAM_TIMEOUT_COUNT) {
1447 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1448 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1449 		return (EBUSY);
1450 	}
1451 
1452 	return (0);
1453 }
1454 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1455 
1456 /****************************************************************************/
1457 /* Initialize NVRAM access.                                                 */
1458 /*                                                                          */
1459 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1460 /* access that device.                                                      */
1461 /*                                                                          */
1462 /* Returns:                                                                 */
1463 /*   0 on success, positive value on failure.                               */
1464 /****************************************************************************/
1465 int
1466 bnx_init_nvram(struct bnx_softc *sc)
1467 {
1468 	u_int32_t		val;
1469 	int			j, entry_count, rc = 0;
1470 	struct flash_spec	*flash;
1471 
1472 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1473 
1474 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1475 		sc->bnx_flash_info = &flash_5709;
1476 		goto bnx_init_nvram_get_flash_size;
1477 	}
1478 
1479 	/* Determine the selected interface. */
1480 	val = REG_RD(sc, BNX_NVM_CFG1);
1481 
1482 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1483 
1484 	/*
1485 	 * Flash reconfiguration is required to support additional
1486 	 * NVRAM devices not directly supported in hardware.
1487 	 * Check if the flash interface was reconfigured
1488 	 * by the bootcode.
1489 	 */
1490 
1491 	if (val & 0x40000000) {
1492 		/* Flash interface reconfigured by bootcode. */
1493 
1494 		DBPRINT(sc,BNX_INFO_LOAD,
1495 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1496 
1497 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1498 		     j++, flash++) {
1499 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1500 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1501 				sc->bnx_flash_info = flash;
1502 				break;
1503 			}
1504 		}
1505 	} else {
1506 		/* Flash interface not yet reconfigured. */
1507 		u_int32_t mask;
1508 
1509 		DBPRINT(sc,BNX_INFO_LOAD,
1510 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1511 
1512 		if (val & (1 << 23))
1513 			mask = FLASH_BACKUP_STRAP_MASK;
1514 		else
1515 			mask = FLASH_STRAP_MASK;
1516 
1517 		/* Look for the matching NVRAM device configuration data. */
1518 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1519 		    j++, flash++) {
1520 			/* Check if the dev matches any of the known devices. */
1521 			if ((val & mask) == (flash->strapping & mask)) {
1522 				/* Found a device match. */
1523 				sc->bnx_flash_info = flash;
1524 
1525 				/* Request access to the flash interface. */
1526 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1527 					return (rc);
1528 
1529 				/* Reconfigure the flash interface. */
1530 				bnx_enable_nvram_access(sc);
1531 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1532 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1533 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1534 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1535 				bnx_disable_nvram_access(sc);
1536 				bnx_release_nvram_lock(sc);
1537 
1538 				break;
1539 			}
1540 		}
1541 	}
1542 
1543 	/* Check if a matching device was found. */
1544 	if (j == entry_count) {
1545 		sc->bnx_flash_info = NULL;
1546 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1547 			__FILE__, __LINE__);
1548 		rc = ENODEV;
1549 	}
1550 
1551 bnx_init_nvram_get_flash_size:
1552 	/* Write the flash config data to the shared memory interface. */
1553 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1554 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1555 	if (val)
1556 		sc->bnx_flash_size = val;
1557 	else
1558 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1559 
1560 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1561 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1562 
1563 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1564 
1565 	return (rc);
1566 }
1567 
1568 /****************************************************************************/
1569 /* Read an arbitrary range of data from NVRAM.                              */
1570 /*                                                                          */
1571 /* Prepares the NVRAM interface for access and reads the requested data     */
1572 /* into the supplied buffer.                                                */
1573 /*                                                                          */
1574 /* Returns:                                                                 */
1575 /*   0 on success and the data read, positive value on failure.             */
1576 /****************************************************************************/
1577 int
1578 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1579     int buf_size)
1580 {
1581 	int			rc = 0;
1582 	u_int32_t		cmd_flags, offset32, len32, extra;
1583 
1584 	if (buf_size == 0)
1585 		return (0);
1586 
1587 	/* Request access to the flash interface. */
1588 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1589 		return (rc);
1590 
1591 	/* Enable access to flash interface */
1592 	bnx_enable_nvram_access(sc);
1593 
1594 	len32 = buf_size;
1595 	offset32 = offset;
1596 	extra = 0;
1597 
1598 	cmd_flags = 0;
1599 
1600 	if (offset32 & 3) {
1601 		u_int8_t buf[4];
1602 		u_int32_t pre_len;
1603 
1604 		offset32 &= ~3;
1605 		pre_len = 4 - (offset & 3);
1606 
1607 		if (pre_len >= len32) {
1608 			pre_len = len32;
1609 			cmd_flags =
1610 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1611 		} else
1612 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1613 
1614 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1615 
1616 		if (rc)
1617 			return (rc);
1618 
1619 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1620 
1621 		offset32 += 4;
1622 		ret_buf += pre_len;
1623 		len32 -= pre_len;
1624 	}
1625 
1626 	if (len32 & 3) {
1627 		extra = 4 - (len32 & 3);
1628 		len32 = (len32 + 4) & ~3;
1629 	}
1630 
1631 	if (len32 == 4) {
1632 		u_int8_t buf[4];
1633 
1634 		if (cmd_flags)
1635 			cmd_flags = BNX_NVM_COMMAND_LAST;
1636 		else
1637 			cmd_flags =
1638 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1639 
1640 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1641 
1642 		memcpy(ret_buf, buf, 4 - extra);
1643 	} else if (len32 > 0) {
1644 		u_int8_t buf[4];
1645 
1646 		/* Read the first word. */
1647 		if (cmd_flags)
1648 			cmd_flags = 0;
1649 		else
1650 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1651 
1652 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1653 
1654 		/* Advance to the next dword. */
1655 		offset32 += 4;
1656 		ret_buf += 4;
1657 		len32 -= 4;
1658 
1659 		while (len32 > 4 && rc == 0) {
1660 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1661 
1662 			/* Advance to the next dword. */
1663 			offset32 += 4;
1664 			ret_buf += 4;
1665 			len32 -= 4;
1666 		}
1667 
1668 		if (rc)
1669 			return (rc);
1670 
1671 		cmd_flags = BNX_NVM_COMMAND_LAST;
1672 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1673 
1674 		memcpy(ret_buf, buf, 4 - extra);
1675 	}
1676 
1677 	/* Disable access to flash interface and release the lock. */
1678 	bnx_disable_nvram_access(sc);
1679 	bnx_release_nvram_lock(sc);
1680 
1681 	return (rc);
1682 }
1683 
1684 #ifdef BNX_NVRAM_WRITE_SUPPORT
1685 /****************************************************************************/
1686 /* Write an arbitrary range of data from NVRAM.                             */
1687 /*                                                                          */
1688 /* Prepares the NVRAM interface for write access and writes the requested   */
1689 /* data from the supplied buffer.  The caller is responsible for            */
1690 /* calculating any appropriate CRCs.                                        */
1691 /*                                                                          */
1692 /* Returns:                                                                 */
1693 /*   0 on success, positive value on failure.                               */
1694 /****************************************************************************/
1695 int
1696 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1697     int buf_size)
1698 {
1699 	u_int32_t		written, offset32, len32;
1700 	u_int8_t		*buf, start[4], end[4];
1701 	int			rc = 0;
1702 	int			align_start, align_end;
1703 
1704 	buf = data_buf;
1705 	offset32 = offset;
1706 	len32 = buf_size;
1707 	align_start = align_end = 0;
1708 
1709 	if ((align_start = (offset32 & 3))) {
1710 		offset32 &= ~3;
1711 		len32 += align_start;
1712 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1713 			return (rc);
1714 	}
1715 
1716 	if (len32 & 3) {
1717 	       	if ((len32 > 4) || !align_start) {
1718 			align_end = 4 - (len32 & 3);
1719 			len32 += align_end;
1720 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1721 			    end, 4))) {
1722 				return (rc);
1723 			}
1724 		}
1725 	}
1726 
1727 	if (align_start || align_end) {
1728 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1729 		if (buf == 0)
1730 			return (ENOMEM);
1731 
1732 		if (align_start)
1733 			memcpy(buf, start, 4);
1734 
1735 		if (align_end)
1736 			memcpy(buf + len32 - 4, end, 4);
1737 
1738 		memcpy(buf + align_start, data_buf, buf_size);
1739 	}
1740 
1741 	written = 0;
1742 	while ((written < len32) && (rc == 0)) {
1743 		u_int32_t page_start, page_end, data_start, data_end;
1744 		u_int32_t addr, cmd_flags;
1745 		int i;
1746 		u_int8_t flash_buffer[264];
1747 
1748 	    /* Find the page_start addr */
1749 		page_start = offset32 + written;
1750 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1751 		/* Find the page_end addr */
1752 		page_end = page_start + sc->bnx_flash_info->page_size;
1753 		/* Find the data_start addr */
1754 		data_start = (written == 0) ? offset32 : page_start;
1755 		/* Find the data_end addr */
1756 		data_end = (page_end > offset32 + len32) ?
1757 		    (offset32 + len32) : page_end;
1758 
1759 		/* Request access to the flash interface. */
1760 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1761 			goto nvram_write_end;
1762 
1763 		/* Enable access to flash interface */
1764 		bnx_enable_nvram_access(sc);
1765 
1766 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1767 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1768 			int j;
1769 
1770 			/* Read the whole page into the buffer
1771 			 * (non-buffer flash only) */
1772 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1773 				if (j == (sc->bnx_flash_info->page_size - 4))
1774 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1775 
1776 				rc = bnx_nvram_read_dword(sc,
1777 					page_start + j,
1778 					&flash_buffer[j],
1779 					cmd_flags);
1780 
1781 				if (rc)
1782 					goto nvram_write_end;
1783 
1784 				cmd_flags = 0;
1785 			}
1786 		}
1787 
1788 		/* Enable writes to flash interface (unlock write-protect) */
1789 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1790 			goto nvram_write_end;
1791 
1792 		/* Erase the page */
1793 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1794 			goto nvram_write_end;
1795 
1796 		/* Re-enable the write again for the actual write */
1797 		bnx_enable_nvram_write(sc);
1798 
1799 		/* Loop to write back the buffer data from page_start to
1800 		 * data_start */
1801 		i = 0;
1802 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1803 			for (addr = page_start; addr < data_start;
1804 				addr += 4, i += 4) {
1805 
1806 				rc = bnx_nvram_write_dword(sc, addr,
1807 				    &flash_buffer[i], cmd_flags);
1808 
1809 				if (rc != 0)
1810 					goto nvram_write_end;
1811 
1812 				cmd_flags = 0;
1813 			}
1814 		}
1815 
1816 		/* Loop to write the new data from data_start to data_end */
1817 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1818 			if ((addr == page_end - 4) ||
1819 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1820 			    && (addr == data_end - 4))) {
1821 
1822 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1823 			}
1824 
1825 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1826 
1827 			if (rc != 0)
1828 				goto nvram_write_end;
1829 
1830 			cmd_flags = 0;
1831 			buf += 4;
1832 		}
1833 
1834 		/* Loop to write back the buffer data from data_end
1835 		 * to page_end */
1836 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1837 			for (addr = data_end; addr < page_end;
1838 			    addr += 4, i += 4) {
1839 
1840 				if (addr == page_end-4)
1841 					cmd_flags = BNX_NVM_COMMAND_LAST;
1842 
1843 				rc = bnx_nvram_write_dword(sc, addr,
1844 				    &flash_buffer[i], cmd_flags);
1845 
1846 				if (rc != 0)
1847 					goto nvram_write_end;
1848 
1849 				cmd_flags = 0;
1850 			}
1851 		}
1852 
1853 		/* Disable writes to flash interface (lock write-protect) */
1854 		bnx_disable_nvram_write(sc);
1855 
1856 		/* Disable access to flash interface */
1857 		bnx_disable_nvram_access(sc);
1858 		bnx_release_nvram_lock(sc);
1859 
1860 		/* Increment written */
1861 		written += data_end - data_start;
1862 	}
1863 
1864 nvram_write_end:
1865 	if (align_start || align_end)
1866 		free(buf, M_DEVBUF);
1867 
1868 	return (rc);
1869 }
1870 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1871 
1872 /****************************************************************************/
1873 /* Verifies that NVRAM is accessible and contains valid data.               */
1874 /*                                                                          */
1875 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1876 /* correct.                                                                 */
1877 /*                                                                          */
1878 /* Returns:                                                                 */
1879 /*   0 on success, positive value on failure.                               */
1880 /****************************************************************************/
1881 int
1882 bnx_nvram_test(struct bnx_softc *sc)
1883 {
1884 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1885 	u_int8_t		*data = (u_int8_t *) buf;
1886 	int			rc = 0;
1887 	u_int32_t		magic, csum;
1888 
1889 	/*
1890 	 * Check that the device NVRAM is valid by reading
1891 	 * the magic value at offset 0.
1892 	 */
1893 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1894 		goto bnx_nvram_test_done;
1895 
1896 	magic = bnx_be32toh(buf[0]);
1897 	if (magic != BNX_NVRAM_MAGIC) {
1898 		rc = ENODEV;
1899 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1900 		    "Expected: 0x%08X, Found: 0x%08X\n",
1901 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1902 		goto bnx_nvram_test_done;
1903 	}
1904 
1905 	/*
1906 	 * Verify that the device NVRAM includes valid
1907 	 * configuration data.
1908 	 */
1909 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1910 		goto bnx_nvram_test_done;
1911 
1912 	csum = ether_crc32_le(data, 0x100);
1913 	if (csum != BNX_CRC32_RESIDUAL) {
1914 		rc = ENODEV;
1915 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1916 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1917 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1918 		goto bnx_nvram_test_done;
1919 	}
1920 
1921 	csum = ether_crc32_le(data + 0x100, 0x100);
1922 	if (csum != BNX_CRC32_RESIDUAL) {
1923 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1924 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1925 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1926 		rc = ENODEV;
1927 	}
1928 
1929 bnx_nvram_test_done:
1930 	return (rc);
1931 }
1932 
1933 /****************************************************************************/
1934 /* Identifies the current media type of the controller and sets the PHY     */
1935 /* address.                                                                 */
1936 /*                                                                          */
1937 /* Returns:                                                                 */
1938 /*   Nothing.                                                               */
1939 /****************************************************************************/
1940 void
1941 bnx_get_media(struct bnx_softc *sc)
1942 {
1943 	sc->bnx_phy_addr = 1;
1944 
1945 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1946 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1947 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1948 		u_int32_t strap;
1949 
1950 		/*
1951 		 * The BCM5709S is software configurable
1952 		 * for Copper or SerDes operation.
1953 		 */
1954 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1955 			DBPRINT(sc, BNX_INFO_LOAD,
1956 			    "5709 bonded for copper.\n");
1957 			goto bnx_get_media_exit;
1958 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1959 			DBPRINT(sc, BNX_INFO_LOAD,
1960 			    "5709 bonded for dual media.\n");
1961 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1962 			goto bnx_get_media_exit;
1963 		}
1964 
1965 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1966 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1967 		else {
1968 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
1969 			    >> 8;
1970 		}
1971 
1972 		if (sc->bnx_pa.pa_function == 0) {
1973 			switch (strap) {
1974 			case 0x4:
1975 			case 0x5:
1976 			case 0x6:
1977 				DBPRINT(sc, BNX_INFO_LOAD,
1978 					"BCM5709 s/w configured for SerDes.\n");
1979 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1980 				break;
1981 			default:
1982 				DBPRINT(sc, BNX_INFO_LOAD,
1983 					"BCM5709 s/w configured for Copper.\n");
1984 			}
1985 		} else {
1986 			switch (strap) {
1987 			case 0x1:
1988 			case 0x2:
1989 			case 0x4:
1990 				DBPRINT(sc, BNX_INFO_LOAD,
1991 					"BCM5709 s/w configured for SerDes.\n");
1992 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1993 				break;
1994 			default:
1995 				DBPRINT(sc, BNX_INFO_LOAD,
1996 					"BCM5709 s/w configured for Copper.\n");
1997 			}
1998 		}
1999 
2000 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2001 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2002 
2003 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2004 		u_int32_t val;
2005 
2006 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2007 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2008 			sc->bnx_phy_addr = 2;
2009 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2010 				 BNX_SHARED_HW_CFG_CONFIG);
2011 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2012 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2013 				DBPRINT(sc, BNX_INFO_LOAD,
2014 				    "Found 2.5Gb capable adapter\n");
2015 			}
2016 		}
2017 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2018 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2019 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2020 
2021 bnx_get_media_exit:
2022 	DBPRINT(sc, (BNX_INFO_LOAD),
2023 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2024 }
2025 
2026 /****************************************************************************/
2027 /* Free any DMA memory owned by the driver.                                 */
2028 /*                                                                          */
2029 /* Scans through each data structre that requires DMA memory and frees      */
2030 /* the memory if allocated.                                                 */
2031 /*                                                                          */
2032 /* Returns:                                                                 */
2033 /*   Nothing.                                                               */
2034 /****************************************************************************/
2035 void
2036 bnx_dma_free(struct bnx_softc *sc)
2037 {
2038 	int			i;
2039 
2040 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2041 
2042 	/* Destroy the status block. */
2043 	if (sc->status_block != NULL && sc->status_map != NULL) {
2044 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2045 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2046 		    BNX_STATUS_BLK_SZ);
2047 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2048 		    sc->status_rseg);
2049 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2050 		sc->status_block = NULL;
2051 		sc->status_map = NULL;
2052 	}
2053 
2054 	/* Destroy the statistics block. */
2055 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2056 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2057 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2058 		    BNX_STATS_BLK_SZ);
2059 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2060 		    sc->stats_rseg);
2061 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2062 		sc->stats_block = NULL;
2063 		sc->stats_map = NULL;
2064 	}
2065 
2066 	/* Free, unmap and destroy all context memory pages. */
2067 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2068 		for (i = 0; i < sc->ctx_pages; i++) {
2069 			if (sc->ctx_block[i] != NULL) {
2070 				bus_dmamap_unload(sc->bnx_dmatag,
2071 				    sc->ctx_map[i]);
2072 				bus_dmamem_unmap(sc->bnx_dmatag,
2073 				    (void *)sc->ctx_block[i],
2074 				    BCM_PAGE_SIZE);
2075 				bus_dmamem_free(sc->bnx_dmatag,
2076 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2077 				bus_dmamap_destroy(sc->bnx_dmatag,
2078 				    sc->ctx_map[i]);
2079 				sc->ctx_block[i] = NULL;
2080 			}
2081 		}
2082 	}
2083 
2084 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2085 	for (i = 0; i < TX_PAGES; i++ ) {
2086 		if (sc->tx_bd_chain[i] != NULL &&
2087 		    sc->tx_bd_chain_map[i] != NULL) {
2088 			bus_dmamap_unload(sc->bnx_dmatag,
2089 			    sc->tx_bd_chain_map[i]);
2090 			bus_dmamem_unmap(sc->bnx_dmatag,
2091 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2092 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2093 			    sc->tx_bd_chain_rseg[i]);
2094 			bus_dmamap_destroy(sc->bnx_dmatag,
2095 			    sc->tx_bd_chain_map[i]);
2096 			sc->tx_bd_chain[i] = NULL;
2097 			sc->tx_bd_chain_map[i] = NULL;
2098 		}
2099 	}
2100 
2101 	/* Destroy the TX dmamaps. */
2102 	/* This isn't necessary since we dont allocate them up front */
2103 
2104 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2105 	for (i = 0; i < RX_PAGES; i++ ) {
2106 		if (sc->rx_bd_chain[i] != NULL &&
2107 		    sc->rx_bd_chain_map[i] != NULL) {
2108 			bus_dmamap_unload(sc->bnx_dmatag,
2109 			    sc->rx_bd_chain_map[i]);
2110 			bus_dmamem_unmap(sc->bnx_dmatag,
2111 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2112 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2113 			    sc->rx_bd_chain_rseg[i]);
2114 
2115 			bus_dmamap_destroy(sc->bnx_dmatag,
2116 			    sc->rx_bd_chain_map[i]);
2117 			sc->rx_bd_chain[i] = NULL;
2118 			sc->rx_bd_chain_map[i] = NULL;
2119 		}
2120 	}
2121 
2122 	/* Unload and destroy the RX mbuf maps. */
2123 	for (i = 0; i < TOTAL_RX_BD; i++) {
2124 		if (sc->rx_mbuf_map[i] != NULL) {
2125 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2126 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2127 		}
2128 	}
2129 
2130 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2131 }
2132 
2133 /****************************************************************************/
2134 /* Allocate any DMA memory needed by the driver.                            */
2135 /*                                                                          */
2136 /* Allocates DMA memory needed for the various global structures needed by  */
2137 /* hardware.                                                                */
2138 /*                                                                          */
2139 /* Returns:                                                                 */
2140 /*   0 for success, positive value for failure.                             */
2141 /****************************************************************************/
2142 int
2143 bnx_dma_alloc(struct bnx_softc *sc)
2144 {
2145 	int			i, rc = 0;
2146 
2147 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2148 
2149 	/*
2150 	 * Allocate DMA memory for the status block, map the memory into DMA
2151 	 * space, and fetch the physical address of the block.
2152 	 */
2153 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2154 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2155 		aprint_error_dev(sc->bnx_dev,
2156 		    "Could not create status block DMA map!\n");
2157 		rc = ENOMEM;
2158 		goto bnx_dma_alloc_exit;
2159 	}
2160 
2161 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2162 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2163 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2164 		aprint_error_dev(sc->bnx_dev,
2165 		    "Could not allocate status block DMA memory!\n");
2166 		rc = ENOMEM;
2167 		goto bnx_dma_alloc_exit;
2168 	}
2169 
2170 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2171 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2172 		aprint_error_dev(sc->bnx_dev,
2173 		    "Could not map status block DMA memory!\n");
2174 		rc = ENOMEM;
2175 		goto bnx_dma_alloc_exit;
2176 	}
2177 
2178 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2179 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2180 		aprint_error_dev(sc->bnx_dev,
2181 		    "Could not load status block DMA memory!\n");
2182 		rc = ENOMEM;
2183 		goto bnx_dma_alloc_exit;
2184 	}
2185 
2186 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2187 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2188 
2189 	/* DRC - Fix for 64 bit addresses. */
2190 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2191 		(u_int32_t) sc->status_block_paddr);
2192 
2193 	/* BCM5709 uses host memory as cache for context memory. */
2194 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2195 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2196 		if (sc->ctx_pages == 0)
2197 			sc->ctx_pages = 1;
2198 		if (sc->ctx_pages > 4) /* XXX */
2199 			sc->ctx_pages = 4;
2200 
2201 		DBRUNIF((sc->ctx_pages > 512),
2202 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2203 				__FILE__, __LINE__, sc->ctx_pages));
2204 
2205 
2206 		for (i = 0; i < sc->ctx_pages; i++) {
2207 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2208 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2209 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2210 			    &sc->ctx_map[i]) != 0) {
2211 				rc = ENOMEM;
2212 				goto bnx_dma_alloc_exit;
2213 			}
2214 
2215 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2216 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2217 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2218 				rc = ENOMEM;
2219 				goto bnx_dma_alloc_exit;
2220 			}
2221 
2222 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2223 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2224 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2225 				rc = ENOMEM;
2226 				goto bnx_dma_alloc_exit;
2227 			}
2228 
2229 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2230 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2231 			    BUS_DMA_NOWAIT) != 0) {
2232 				rc = ENOMEM;
2233 				goto bnx_dma_alloc_exit;
2234 			}
2235 
2236 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2237 		}
2238 	}
2239 
2240 	/*
2241 	 * Allocate DMA memory for the statistics block, map the memory into
2242 	 * DMA space, and fetch the physical address of the block.
2243 	 */
2244 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2245 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2246 		aprint_error_dev(sc->bnx_dev,
2247 		    "Could not create stats block DMA map!\n");
2248 		rc = ENOMEM;
2249 		goto bnx_dma_alloc_exit;
2250 	}
2251 
2252 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2253 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2254 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2255 		aprint_error_dev(sc->bnx_dev,
2256 		    "Could not allocate stats block DMA memory!\n");
2257 		rc = ENOMEM;
2258 		goto bnx_dma_alloc_exit;
2259 	}
2260 
2261 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2262 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2263 		aprint_error_dev(sc->bnx_dev,
2264 		    "Could not map stats block DMA memory!\n");
2265 		rc = ENOMEM;
2266 		goto bnx_dma_alloc_exit;
2267 	}
2268 
2269 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2270 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2271 		aprint_error_dev(sc->bnx_dev,
2272 		    "Could not load status block DMA memory!\n");
2273 		rc = ENOMEM;
2274 		goto bnx_dma_alloc_exit;
2275 	}
2276 
2277 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2278 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2279 
2280 	/* DRC - Fix for 64 bit address. */
2281 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2282 	    (u_int32_t) sc->stats_block_paddr);
2283 
2284 	/*
2285 	 * Allocate DMA memory for the TX buffer descriptor chain,
2286 	 * and fetch the physical address of the block.
2287 	 */
2288 	for (i = 0; i < TX_PAGES; i++) {
2289 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2290 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2291 		    &sc->tx_bd_chain_map[i])) {
2292 			aprint_error_dev(sc->bnx_dev,
2293 			    "Could not create Tx desc %d DMA map!\n", i);
2294 			rc = ENOMEM;
2295 			goto bnx_dma_alloc_exit;
2296 		}
2297 
2298 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2299 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2300 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2301 			aprint_error_dev(sc->bnx_dev,
2302 			    "Could not allocate TX desc %d DMA memory!\n",
2303 			    i);
2304 			rc = ENOMEM;
2305 			goto bnx_dma_alloc_exit;
2306 		}
2307 
2308 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2309 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2310 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2311 			aprint_error_dev(sc->bnx_dev,
2312 			    "Could not map TX desc %d DMA memory!\n", i);
2313 			rc = ENOMEM;
2314 			goto bnx_dma_alloc_exit;
2315 		}
2316 
2317 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2318 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2319 		    BUS_DMA_NOWAIT)) {
2320 			aprint_error_dev(sc->bnx_dev,
2321 			    "Could not load TX desc %d DMA memory!\n", i);
2322 			rc = ENOMEM;
2323 			goto bnx_dma_alloc_exit;
2324 		}
2325 
2326 		sc->tx_bd_chain_paddr[i] =
2327 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2328 
2329 		/* DRC - Fix for 64 bit systems. */
2330 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2331 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2332 	}
2333 
2334 	/*
2335 	 * Create lists to hold TX mbufs.
2336 	 */
2337 	TAILQ_INIT(&sc->tx_free_pkts);
2338 	TAILQ_INIT(&sc->tx_used_pkts);
2339 	sc->tx_pkt_count = 0;
2340 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2341 
2342 	/*
2343 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2344 	 * and fetch the physical address of the block.
2345 	 */
2346 	for (i = 0; i < RX_PAGES; i++) {
2347 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2348 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2349 		    &sc->rx_bd_chain_map[i])) {
2350 			aprint_error_dev(sc->bnx_dev,
2351 			    "Could not create Rx desc %d DMA map!\n", i);
2352 			rc = ENOMEM;
2353 			goto bnx_dma_alloc_exit;
2354 		}
2355 
2356 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2357 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2358 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2359 			aprint_error_dev(sc->bnx_dev,
2360 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2361 			rc = ENOMEM;
2362 			goto bnx_dma_alloc_exit;
2363 		}
2364 
2365 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2366 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2367 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2368 			aprint_error_dev(sc->bnx_dev,
2369 			    "Could not map Rx desc %d DMA memory!\n", i);
2370 			rc = ENOMEM;
2371 			goto bnx_dma_alloc_exit;
2372 		}
2373 
2374 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2375 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2376 		    BUS_DMA_NOWAIT)) {
2377 			aprint_error_dev(sc->bnx_dev,
2378 			    "Could not load Rx desc %d DMA memory!\n", i);
2379 			rc = ENOMEM;
2380 			goto bnx_dma_alloc_exit;
2381 		}
2382 
2383 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2384 		sc->rx_bd_chain_paddr[i] =
2385 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2386 
2387 		/* DRC - Fix for 64 bit systems. */
2388 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2389 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2390 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2391 		    0, BNX_RX_CHAIN_PAGE_SZ,
2392 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2393 	}
2394 
2395 	/*
2396 	 * Create DMA maps for the Rx buffer mbufs.
2397 	 */
2398 	for (i = 0; i < TOTAL_RX_BD; i++) {
2399 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2400 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2401 		    &sc->rx_mbuf_map[i])) {
2402 			aprint_error_dev(sc->bnx_dev,
2403 			    "Could not create Rx mbuf %d DMA map!\n", i);
2404 			rc = ENOMEM;
2405 			goto bnx_dma_alloc_exit;
2406 		}
2407 	}
2408 
2409  bnx_dma_alloc_exit:
2410 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2411 
2412 	return(rc);
2413 }
2414 
2415 /****************************************************************************/
2416 /* Release all resources used by the driver.                                */
2417 /*                                                                          */
2418 /* Releases all resources acquired by the driver including interrupts,      */
2419 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2420 /*                                                                          */
2421 /* Returns:                                                                 */
2422 /*   Nothing.                                                               */
2423 /****************************************************************************/
2424 void
2425 bnx_release_resources(struct bnx_softc *sc)
2426 {
2427 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2428 
2429 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2430 
2431 	bnx_dma_free(sc);
2432 
2433 	if (sc->bnx_intrhand != NULL)
2434 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2435 
2436 	if (sc->bnx_size)
2437 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2438 
2439 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2440 }
2441 
2442 /****************************************************************************/
2443 /* Firmware synchronization.                                                */
2444 /*                                                                          */
2445 /* Before performing certain events such as a chip reset, synchronize with  */
2446 /* the firmware first.                                                      */
2447 /*                                                                          */
2448 /* Returns:                                                                 */
2449 /*   0 for success, positive value for failure.                             */
2450 /****************************************************************************/
2451 int
2452 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2453 {
2454 	int			i, rc = 0;
2455 	u_int32_t		val;
2456 
2457 	/* Don't waste any time if we've timed out before. */
2458 	if (sc->bnx_fw_timed_out) {
2459 		rc = EBUSY;
2460 		goto bnx_fw_sync_exit;
2461 	}
2462 
2463 	/* Increment the message sequence number. */
2464 	sc->bnx_fw_wr_seq++;
2465 	msg_data |= sc->bnx_fw_wr_seq;
2466 
2467  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2468 	    msg_data);
2469 
2470 	/* Send the message to the bootcode driver mailbox. */
2471 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2472 
2473 	/* Wait for the bootcode to acknowledge the message. */
2474 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2475 		/* Check for a response in the bootcode firmware mailbox. */
2476 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2477 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2478 			break;
2479 		DELAY(1000);
2480 	}
2481 
2482 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2483 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2484 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2485 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2486 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2487 
2488 		msg_data &= ~BNX_DRV_MSG_CODE;
2489 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2490 
2491 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2492 
2493 		sc->bnx_fw_timed_out = 1;
2494 		rc = EBUSY;
2495 	}
2496 
2497 bnx_fw_sync_exit:
2498 	return (rc);
2499 }
2500 
2501 /****************************************************************************/
2502 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2503 /*                                                                          */
2504 /* Returns:                                                                 */
2505 /*   Nothing.                                                               */
2506 /****************************************************************************/
2507 void
2508 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2509     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2510 {
2511 	int			i;
2512 	u_int32_t		val;
2513 
2514 	/* Set the page size used by RV2P. */
2515 	if (rv2p_proc == RV2P_PROC2) {
2516 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2517 		    USABLE_RX_BD_PER_PAGE);
2518 	}
2519 
2520 	for (i = 0; i < rv2p_code_len; i += 8) {
2521 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2522 		rv2p_code++;
2523 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2524 		rv2p_code++;
2525 
2526 		if (rv2p_proc == RV2P_PROC1) {
2527 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2528 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2529 		} else {
2530 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2531 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2532 		}
2533 	}
2534 
2535 	/* Reset the processor, un-stall is done later. */
2536 	if (rv2p_proc == RV2P_PROC1)
2537 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2538 	else
2539 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2540 }
2541 
2542 /****************************************************************************/
2543 /* Load RISC processor firmware.                                            */
2544 /*                                                                          */
2545 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2546 /* associated with a particular processor.                                  */
2547 /*                                                                          */
2548 /* Returns:                                                                 */
2549 /*   Nothing.                                                               */
2550 /****************************************************************************/
2551 void
2552 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2553     struct fw_info *fw)
2554 {
2555 	u_int32_t		offset;
2556 	u_int32_t		val;
2557 
2558 	/* Halt the CPU. */
2559 	val = REG_RD_IND(sc, cpu_reg->mode);
2560 	val |= cpu_reg->mode_value_halt;
2561 	REG_WR_IND(sc, cpu_reg->mode, val);
2562 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2563 
2564 	/* Load the Text area. */
2565 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2566 	if (fw->text) {
2567 		int j;
2568 
2569 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2570 			REG_WR_IND(sc, offset, fw->text[j]);
2571 	}
2572 
2573 	/* Load the Data area. */
2574 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2575 	if (fw->data) {
2576 		int j;
2577 
2578 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2579 			REG_WR_IND(sc, offset, fw->data[j]);
2580 	}
2581 
2582 	/* Load the SBSS area. */
2583 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2584 	if (fw->sbss) {
2585 		int j;
2586 
2587 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2588 			REG_WR_IND(sc, offset, fw->sbss[j]);
2589 	}
2590 
2591 	/* Load the BSS area. */
2592 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2593 	if (fw->bss) {
2594 		int j;
2595 
2596 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2597 			REG_WR_IND(sc, offset, fw->bss[j]);
2598 	}
2599 
2600 	/* Load the Read-Only area. */
2601 	offset = cpu_reg->spad_base +
2602 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2603 	if (fw->rodata) {
2604 		int j;
2605 
2606 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2607 			REG_WR_IND(sc, offset, fw->rodata[j]);
2608 	}
2609 
2610 	/* Clear the pre-fetch instruction. */
2611 	REG_WR_IND(sc, cpu_reg->inst, 0);
2612 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2613 
2614 	/* Start the CPU. */
2615 	val = REG_RD_IND(sc, cpu_reg->mode);
2616 	val &= ~cpu_reg->mode_value_halt;
2617 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2618 	REG_WR_IND(sc, cpu_reg->mode, val);
2619 }
2620 
2621 /****************************************************************************/
2622 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2623 /*                                                                          */
2624 /* Loads the firmware for each CPU and starts the CPU.                      */
2625 /*                                                                          */
2626 /* Returns:                                                                 */
2627 /*   Nothing.                                                               */
2628 /****************************************************************************/
2629 void
2630 bnx_init_cpus(struct bnx_softc *sc)
2631 {
2632 	struct cpu_reg cpu_reg;
2633 	struct fw_info fw;
2634 
2635 	switch(BNX_CHIP_NUM(sc)) {
2636 	case BNX_CHIP_NUM_5709:
2637 		/* Initialize the RV2P processor. */
2638 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2639 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2640 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2641 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2642 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2643 		} else {
2644 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2645 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2646 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2647 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2648 		}
2649 
2650 		/* Initialize the RX Processor. */
2651 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2652 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2653 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2654 		cpu_reg.state = BNX_RXP_CPU_STATE;
2655 		cpu_reg.state_value_clear = 0xffffff;
2656 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2657 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2658 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2659 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2660 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2661 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2662 		cpu_reg.mips_view_base = 0x8000000;
2663 
2664 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2665 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2666 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2667 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2668 
2669 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2670 		fw.text_len = bnx_RXP_b09FwTextLen;
2671 		fw.text_index = 0;
2672 		fw.text = bnx_RXP_b09FwText;
2673 
2674 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2675 		fw.data_len = bnx_RXP_b09FwDataLen;
2676 		fw.data_index = 0;
2677 		fw.data = bnx_RXP_b09FwData;
2678 
2679 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2680 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2681 		fw.sbss_index = 0;
2682 		fw.sbss = bnx_RXP_b09FwSbss;
2683 
2684 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2685 		fw.bss_len = bnx_RXP_b09FwBssLen;
2686 		fw.bss_index = 0;
2687 		fw.bss = bnx_RXP_b09FwBss;
2688 
2689 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2690 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2691 		fw.rodata_index = 0;
2692 		fw.rodata = bnx_RXP_b09FwRodata;
2693 
2694 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2695 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2696 
2697 		/* Initialize the TX Processor. */
2698 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2699 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2700 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2701 		cpu_reg.state = BNX_TXP_CPU_STATE;
2702 		cpu_reg.state_value_clear = 0xffffff;
2703 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2704 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2705 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2706 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2707 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2708 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2709 		cpu_reg.mips_view_base = 0x8000000;
2710 
2711 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2712 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2713 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2714 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2715 
2716 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2717 		fw.text_len = bnx_TXP_b09FwTextLen;
2718 		fw.text_index = 0;
2719 		fw.text = bnx_TXP_b09FwText;
2720 
2721 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2722 		fw.data_len = bnx_TXP_b09FwDataLen;
2723 		fw.data_index = 0;
2724 		fw.data = bnx_TXP_b09FwData;
2725 
2726 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2727 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2728 		fw.sbss_index = 0;
2729 		fw.sbss = bnx_TXP_b09FwSbss;
2730 
2731 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2732 		fw.bss_len = bnx_TXP_b09FwBssLen;
2733 		fw.bss_index = 0;
2734 		fw.bss = bnx_TXP_b09FwBss;
2735 
2736 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2737 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2738 		fw.rodata_index = 0;
2739 		fw.rodata = bnx_TXP_b09FwRodata;
2740 
2741 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2742 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2743 
2744 		/* Initialize the TX Patch-up Processor. */
2745 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2746 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2747 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2748 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2749 		cpu_reg.state_value_clear = 0xffffff;
2750 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2751 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2752 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2753 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2754 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2755 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2756 		cpu_reg.mips_view_base = 0x8000000;
2757 
2758 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2759 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2760 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2761 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2762 
2763 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2764 		fw.text_len = bnx_TPAT_b09FwTextLen;
2765 		fw.text_index = 0;
2766 		fw.text = bnx_TPAT_b09FwText;
2767 
2768 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2769 		fw.data_len = bnx_TPAT_b09FwDataLen;
2770 		fw.data_index = 0;
2771 		fw.data = bnx_TPAT_b09FwData;
2772 
2773 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2774 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2775 		fw.sbss_index = 0;
2776 		fw.sbss = bnx_TPAT_b09FwSbss;
2777 
2778 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2779 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2780 		fw.bss_index = 0;
2781 		fw.bss = bnx_TPAT_b09FwBss;
2782 
2783 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2784 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2785 		fw.rodata_index = 0;
2786 		fw.rodata = bnx_TPAT_b09FwRodata;
2787 
2788 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2789 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2790 
2791 		/* Initialize the Completion Processor. */
2792 		cpu_reg.mode = BNX_COM_CPU_MODE;
2793 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2794 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2795 		cpu_reg.state = BNX_COM_CPU_STATE;
2796 		cpu_reg.state_value_clear = 0xffffff;
2797 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2798 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2799 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2800 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2801 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2802 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2803 		cpu_reg.mips_view_base = 0x8000000;
2804 
2805 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2806 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2807 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2808 		fw.start_addr = bnx_COM_b09FwStartAddr;
2809 
2810 		fw.text_addr = bnx_COM_b09FwTextAddr;
2811 		fw.text_len = bnx_COM_b09FwTextLen;
2812 		fw.text_index = 0;
2813 		fw.text = bnx_COM_b09FwText;
2814 
2815 		fw.data_addr = bnx_COM_b09FwDataAddr;
2816 		fw.data_len = bnx_COM_b09FwDataLen;
2817 		fw.data_index = 0;
2818 		fw.data = bnx_COM_b09FwData;
2819 
2820 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2821 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2822 		fw.sbss_index = 0;
2823 		fw.sbss = bnx_COM_b09FwSbss;
2824 
2825 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2826 		fw.bss_len = bnx_COM_b09FwBssLen;
2827 		fw.bss_index = 0;
2828 		fw.bss = bnx_COM_b09FwBss;
2829 
2830 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2831 		fw.rodata_len = bnx_COM_b09FwRodataLen;
2832 		fw.rodata_index = 0;
2833 		fw.rodata = bnx_COM_b09FwRodata;
2834 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2835 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2836 		break;
2837 	default:
2838 		/* Initialize the RV2P processor. */
2839 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2840 		    RV2P_PROC1);
2841 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2842 		    RV2P_PROC2);
2843 
2844 		/* Initialize the RX Processor. */
2845 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2846 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2847 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2848 		cpu_reg.state = BNX_RXP_CPU_STATE;
2849 		cpu_reg.state_value_clear = 0xffffff;
2850 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2851 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2852 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2853 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2854 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2855 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2856 		cpu_reg.mips_view_base = 0x8000000;
2857 
2858 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2859 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2860 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2861 		fw.start_addr = bnx_RXP_b06FwStartAddr;
2862 
2863 		fw.text_addr = bnx_RXP_b06FwTextAddr;
2864 		fw.text_len = bnx_RXP_b06FwTextLen;
2865 		fw.text_index = 0;
2866 		fw.text = bnx_RXP_b06FwText;
2867 
2868 		fw.data_addr = bnx_RXP_b06FwDataAddr;
2869 		fw.data_len = bnx_RXP_b06FwDataLen;
2870 		fw.data_index = 0;
2871 		fw.data = bnx_RXP_b06FwData;
2872 
2873 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2874 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2875 		fw.sbss_index = 0;
2876 		fw.sbss = bnx_RXP_b06FwSbss;
2877 
2878 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2879 		fw.bss_len = bnx_RXP_b06FwBssLen;
2880 		fw.bss_index = 0;
2881 		fw.bss = bnx_RXP_b06FwBss;
2882 
2883 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2884 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2885 		fw.rodata_index = 0;
2886 		fw.rodata = bnx_RXP_b06FwRodata;
2887 
2888 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2889 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2890 
2891 		/* Initialize the TX Processor. */
2892 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2893 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2894 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2895 		cpu_reg.state = BNX_TXP_CPU_STATE;
2896 		cpu_reg.state_value_clear = 0xffffff;
2897 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2898 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2899 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2900 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2901 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2902 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2903 		cpu_reg.mips_view_base = 0x8000000;
2904 
2905 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2906 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2907 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2908 		fw.start_addr = bnx_TXP_b06FwStartAddr;
2909 
2910 		fw.text_addr = bnx_TXP_b06FwTextAddr;
2911 		fw.text_len = bnx_TXP_b06FwTextLen;
2912 		fw.text_index = 0;
2913 		fw.text = bnx_TXP_b06FwText;
2914 
2915 		fw.data_addr = bnx_TXP_b06FwDataAddr;
2916 		fw.data_len = bnx_TXP_b06FwDataLen;
2917 		fw.data_index = 0;
2918 		fw.data = bnx_TXP_b06FwData;
2919 
2920 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2921 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
2922 		fw.sbss_index = 0;
2923 		fw.sbss = bnx_TXP_b06FwSbss;
2924 
2925 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
2926 		fw.bss_len = bnx_TXP_b06FwBssLen;
2927 		fw.bss_index = 0;
2928 		fw.bss = bnx_TXP_b06FwBss;
2929 
2930 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2931 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
2932 		fw.rodata_index = 0;
2933 		fw.rodata = bnx_TXP_b06FwRodata;
2934 
2935 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2936 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2937 
2938 		/* Initialize the TX Patch-up Processor. */
2939 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2940 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2941 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2942 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2943 		cpu_reg.state_value_clear = 0xffffff;
2944 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2945 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2946 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2947 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2948 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2949 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2950 		cpu_reg.mips_view_base = 0x8000000;
2951 
2952 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2953 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2954 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2955 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
2956 
2957 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
2958 		fw.text_len = bnx_TPAT_b06FwTextLen;
2959 		fw.text_index = 0;
2960 		fw.text = bnx_TPAT_b06FwText;
2961 
2962 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
2963 		fw.data_len = bnx_TPAT_b06FwDataLen;
2964 		fw.data_index = 0;
2965 		fw.data = bnx_TPAT_b06FwData;
2966 
2967 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2968 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2969 		fw.sbss_index = 0;
2970 		fw.sbss = bnx_TPAT_b06FwSbss;
2971 
2972 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2973 		fw.bss_len = bnx_TPAT_b06FwBssLen;
2974 		fw.bss_index = 0;
2975 		fw.bss = bnx_TPAT_b06FwBss;
2976 
2977 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2978 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2979 		fw.rodata_index = 0;
2980 		fw.rodata = bnx_TPAT_b06FwRodata;
2981 
2982 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2983 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2984 
2985 		/* Initialize the Completion Processor. */
2986 		cpu_reg.mode = BNX_COM_CPU_MODE;
2987 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2988 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2989 		cpu_reg.state = BNX_COM_CPU_STATE;
2990 		cpu_reg.state_value_clear = 0xffffff;
2991 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2992 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2993 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2994 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2995 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2996 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2997 		cpu_reg.mips_view_base = 0x8000000;
2998 
2999 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3000 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3001 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3002 		fw.start_addr = bnx_COM_b06FwStartAddr;
3003 
3004 		fw.text_addr = bnx_COM_b06FwTextAddr;
3005 		fw.text_len = bnx_COM_b06FwTextLen;
3006 		fw.text_index = 0;
3007 		fw.text = bnx_COM_b06FwText;
3008 
3009 		fw.data_addr = bnx_COM_b06FwDataAddr;
3010 		fw.data_len = bnx_COM_b06FwDataLen;
3011 		fw.data_index = 0;
3012 		fw.data = bnx_COM_b06FwData;
3013 
3014 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3015 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3016 		fw.sbss_index = 0;
3017 		fw.sbss = bnx_COM_b06FwSbss;
3018 
3019 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3020 		fw.bss_len = bnx_COM_b06FwBssLen;
3021 		fw.bss_index = 0;
3022 		fw.bss = bnx_COM_b06FwBss;
3023 
3024 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3025 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3026 		fw.rodata_index = 0;
3027 		fw.rodata = bnx_COM_b06FwRodata;
3028 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3029 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3030 		break;
3031 	}
3032 }
3033 
3034 /****************************************************************************/
3035 /* Initialize context memory.                                               */
3036 /*                                                                          */
3037 /* Clears the memory associated with each Context ID (CID).                 */
3038 /*                                                                          */
3039 /* Returns:                                                                 */
3040 /*   Nothing.                                                               */
3041 /****************************************************************************/
3042 void
3043 bnx_init_context(struct bnx_softc *sc)
3044 {
3045 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3046 		/* DRC: Replace this constant value with a #define. */
3047 		int i, retry_cnt = 10;
3048 		u_int32_t val;
3049 
3050 		/*
3051 		 * BCM5709 context memory may be cached
3052 		 * in host memory so prepare the host memory
3053 		 * for access.
3054 		 */
3055 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3056 		    | (1 << 12);
3057 		val |= (BCM_PAGE_BITS - 8) << 16;
3058 		REG_WR(sc, BNX_CTX_COMMAND, val);
3059 
3060 		/* Wait for mem init command to complete. */
3061 		for (i = 0; i < retry_cnt; i++) {
3062 			val = REG_RD(sc, BNX_CTX_COMMAND);
3063 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3064 				break;
3065 			DELAY(2);
3066 		}
3067 
3068 
3069 		/* ToDo: Consider returning an error here. */
3070 
3071 		for (i = 0; i < sc->ctx_pages; i++) {
3072 			int j;
3073 
3074 
3075 			/* Set the physaddr of the context memory cache. */
3076 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3077 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3078 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3079 			val = (u_int32_t)
3080 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3081 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3082 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3083 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3084 
3085 
3086 			/* Verify that the context memory write was successful. */
3087 			for (j = 0; j < retry_cnt; j++) {
3088 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3089 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3090 					break;
3091 				DELAY(5);
3092 			}
3093 
3094 			/* ToDo: Consider returning an error here. */
3095 		}
3096 	} else {
3097 		u_int32_t vcid_addr, offset;
3098 
3099 		/*
3100 		 * For the 5706/5708, context memory is local to
3101 		 * the controller, so initialize the controller
3102 		 * context memory.
3103 		 */
3104 
3105 		vcid_addr = GET_CID_ADDR(96);
3106 		while (vcid_addr) {
3107 
3108 			vcid_addr -= BNX_PHY_CTX_SIZE;
3109 
3110 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3111 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3112 
3113 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3114 				CTX_WR(sc, 0x00, offset, 0);
3115 			}
3116 
3117 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3118 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3119 		}
3120 	}
3121 }
3122 
3123 /****************************************************************************/
3124 /* Fetch the permanent MAC address of the controller.                       */
3125 /*                                                                          */
3126 /* Returns:                                                                 */
3127 /*   Nothing.                                                               */
3128 /****************************************************************************/
3129 void
3130 bnx_get_mac_addr(struct bnx_softc *sc)
3131 {
3132 	u_int32_t		mac_lo = 0, mac_hi = 0;
3133 
3134 	/*
3135 	 * The NetXtreme II bootcode populates various NIC
3136 	 * power-on and runtime configuration items in a
3137 	 * shared memory area.  The factory configured MAC
3138 	 * address is available from both NVRAM and the
3139 	 * shared memory area so we'll read the value from
3140 	 * shared memory for speed.
3141 	 */
3142 
3143 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3144 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3145 
3146 	if ((mac_lo == 0) && (mac_hi == 0)) {
3147 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3148 		    __FILE__, __LINE__);
3149 	} else {
3150 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3151 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3152 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3153 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3154 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3155 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3156 	}
3157 
3158 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3159 	    "%s\n", ether_sprintf(sc->eaddr));
3160 }
3161 
3162 /****************************************************************************/
3163 /* Program the MAC address.                                                 */
3164 /*                                                                          */
3165 /* Returns:                                                                 */
3166 /*   Nothing.                                                               */
3167 /****************************************************************************/
3168 void
3169 bnx_set_mac_addr(struct bnx_softc *sc)
3170 {
3171 	u_int32_t		val;
3172 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3173 
3174 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3175 	    "%s\n", ether_sprintf(sc->eaddr));
3176 
3177 	val = (mac_addr[0] << 8) | mac_addr[1];
3178 
3179 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3180 
3181 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3182 		(mac_addr[4] << 8) | mac_addr[5];
3183 
3184 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3185 }
3186 
3187 /****************************************************************************/
3188 /* Stop the controller.                                                     */
3189 /*                                                                          */
3190 /* Returns:                                                                 */
3191 /*   Nothing.                                                               */
3192 /****************************************************************************/
3193 void
3194 bnx_stop(struct ifnet *ifp, int disable)
3195 {
3196 	struct bnx_softc *sc = ifp->if_softc;
3197 
3198 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3199 
3200 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3201 		return;
3202 
3203 	callout_stop(&sc->bnx_timeout);
3204 
3205 	mii_down(&sc->bnx_mii);
3206 
3207 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3208 
3209 	/* Disable the transmit/receive blocks. */
3210 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3211 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3212 	DELAY(20);
3213 
3214 	bnx_disable_intr(sc);
3215 
3216 	/* Tell firmware that the driver is going away. */
3217 	if (disable)
3218 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3219 	else
3220 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3221 
3222 	/* Free RX buffers. */
3223 	bnx_free_rx_chain(sc);
3224 
3225 	/* Free TX buffers. */
3226 	bnx_free_tx_chain(sc);
3227 
3228 	ifp->if_timer = 0;
3229 
3230 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3231 
3232 }
3233 
3234 int
3235 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3236 {
3237 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3238 	u_int32_t		val;
3239 	int			i, rc = 0;
3240 
3241 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3242 
3243 	/* Wait for pending PCI transactions to complete. */
3244 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3245 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3246 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3247 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3248 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3249 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3250 	DELAY(5);
3251 
3252 	/* Disable DMA */
3253 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3254 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3255 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3256 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3257 	}
3258 
3259 	/* Assume bootcode is running. */
3260 	sc->bnx_fw_timed_out = 0;
3261 
3262 	/* Give the firmware a chance to prepare for the reset. */
3263 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3264 	if (rc)
3265 		goto bnx_reset_exit;
3266 
3267 	/* Set a firmware reminder that this is a soft reset. */
3268 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3269 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3270 
3271 	/* Dummy read to force the chip to complete all current transactions. */
3272 	val = REG_RD(sc, BNX_MISC_ID);
3273 
3274 	/* Chip reset. */
3275 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3276 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3277 		REG_RD(sc, BNX_MISC_COMMAND);
3278 		DELAY(5);
3279 
3280 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3281 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3282 
3283 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3284 		    val);
3285 	} else {
3286 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3287 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3288 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3289 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3290 
3291 		/* Allow up to 30us for reset to complete. */
3292 		for (i = 0; i < 10; i++) {
3293 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3294 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3295 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3296 				break;
3297 			}
3298 			DELAY(10);
3299 		}
3300 
3301 		/* Check that reset completed successfully. */
3302 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3303 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3304 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3305 			    __FILE__, __LINE__);
3306 			rc = EBUSY;
3307 			goto bnx_reset_exit;
3308 		}
3309 	}
3310 
3311 	/* Make sure byte swapping is properly configured. */
3312 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3313 	if (val != 0x01020304) {
3314 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3315 		    __FILE__, __LINE__);
3316 		rc = ENODEV;
3317 		goto bnx_reset_exit;
3318 	}
3319 
3320 	/* Just completed a reset, assume that firmware is running again. */
3321 	sc->bnx_fw_timed_out = 0;
3322 
3323 	/* Wait for the firmware to finish its initialization. */
3324 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3325 	if (rc)
3326 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3327 		    "initialization!\n", __FILE__, __LINE__);
3328 
3329 bnx_reset_exit:
3330 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3331 
3332 	return (rc);
3333 }
3334 
3335 int
3336 bnx_chipinit(struct bnx_softc *sc)
3337 {
3338 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3339 	u_int32_t		val;
3340 	int			rc = 0;
3341 
3342 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3343 
3344 	/* Make sure the interrupt is not active. */
3345 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3346 
3347 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3348 	/* channels and PCI clock compensation delay.                      */
3349 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3350 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3351 #if BYTE_ORDER == BIG_ENDIAN
3352 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3353 #endif
3354 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3355 	    DMA_READ_CHANS << 12 |
3356 	    DMA_WRITE_CHANS << 16;
3357 
3358 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3359 
3360 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3361 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3362 
3363 	/*
3364 	 * This setting resolves a problem observed on certain Intel PCI
3365 	 * chipsets that cannot handle multiple outstanding DMA operations.
3366 	 * See errata E9_5706A1_65.
3367 	 */
3368 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3369 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3370 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3371 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3372 
3373 	REG_WR(sc, BNX_DMA_CONFIG, val);
3374 
3375 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3376 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3377 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3378 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3379 		    val & ~0x20000);
3380 	}
3381 
3382 	/* Enable the RX_V2P and Context state machines before access. */
3383 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3384 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3385 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3386 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3387 
3388 	/* Initialize context mapping and zero out the quick contexts. */
3389 	bnx_init_context(sc);
3390 
3391 	/* Initialize the on-boards CPUs */
3392 	bnx_init_cpus(sc);
3393 
3394 	/* Prepare NVRAM for access. */
3395 	if (bnx_init_nvram(sc)) {
3396 		rc = ENODEV;
3397 		goto bnx_chipinit_exit;
3398 	}
3399 
3400 	/* Set the kernel bypass block size */
3401 	val = REG_RD(sc, BNX_MQ_CONFIG);
3402 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3403 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3404 
3405 	/* Enable bins used on the 5709. */
3406 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3407 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3408 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3409 			val |= BNX_MQ_CONFIG_HALT_DIS;
3410 	}
3411 
3412 	REG_WR(sc, BNX_MQ_CONFIG, val);
3413 
3414 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3415 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3416 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3417 
3418 	val = (BCM_PAGE_BITS - 8) << 24;
3419 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3420 
3421 	/* Configure page size. */
3422 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3423 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3424 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3425 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3426 
3427 #if 0
3428 	/* Set the perfect match control register to default. */
3429 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3430 #endif
3431 
3432 bnx_chipinit_exit:
3433 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3434 
3435 	return(rc);
3436 }
3437 
3438 /****************************************************************************/
3439 /* Initialize the controller in preparation to send/receive traffic.        */
3440 /*                                                                          */
3441 /* Returns:                                                                 */
3442 /*   0 for success, positive value for failure.                             */
3443 /****************************************************************************/
3444 int
3445 bnx_blockinit(struct bnx_softc *sc)
3446 {
3447 	u_int32_t		reg, val;
3448 	int 			rc = 0;
3449 
3450 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3451 
3452 	/* Load the hardware default MAC address. */
3453 	bnx_set_mac_addr(sc);
3454 
3455 	/* Set the Ethernet backoff seed value */
3456 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3457 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3458 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3459 
3460 	sc->last_status_idx = 0;
3461 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3462 
3463 	/* Set up link change interrupt generation. */
3464 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3465 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3466 
3467 	/* Program the physical address of the status block. */
3468 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3469 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3470 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3471 
3472 	/* Program the physical address of the statistics block. */
3473 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3474 	    (u_int32_t)(sc->stats_block_paddr));
3475 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3476 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3477 
3478 	/* Program various host coalescing parameters. */
3479 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3480 	    << 16) | sc->bnx_tx_quick_cons_trip);
3481 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3482 	    << 16) | sc->bnx_rx_quick_cons_trip);
3483 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3484 	    sc->bnx_comp_prod_trip);
3485 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3486 	    sc->bnx_tx_ticks);
3487 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3488 	    sc->bnx_rx_ticks);
3489 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3490 	    sc->bnx_com_ticks);
3491 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3492 	    sc->bnx_cmd_ticks);
3493 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3494 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3495 	REG_WR(sc, BNX_HC_CONFIG,
3496 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3497 	    BNX_HC_CONFIG_COLLECT_STATS));
3498 
3499 	/* Clear the internal statistics counters. */
3500 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3501 
3502 	/* Verify that bootcode is running. */
3503 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3504 
3505 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3506 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3507 	    __FILE__, __LINE__); reg = 0);
3508 
3509 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3510 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3511 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3512 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3513 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3514 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3515 		rc = ENODEV;
3516 		goto bnx_blockinit_exit;
3517 	}
3518 
3519 	/* Check if any management firmware is running. */
3520 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3521 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3522 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3523 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3524 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3525 	}
3526 
3527 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3528 	    BNX_DEV_INFO_BC_REV);
3529 
3530 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3531 
3532 	/* Enable DMA */
3533 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3534 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3535 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3536 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3537 	}
3538 
3539 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3540 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3541 
3542 	/* Enable link state change interrupt generation. */
3543 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3544 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3545 		    BNX_MISC_ENABLE_DEFAULT_XI);
3546 	} else
3547 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3548 
3549 	/* Enable all remaining blocks in the MAC. */
3550 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3551 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3552 	DELAY(20);
3553 
3554 bnx_blockinit_exit:
3555 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3556 
3557 	return (rc);
3558 }
3559 
3560 static int
3561 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3562     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3563 {
3564 	bus_dmamap_t		map;
3565 	struct rx_bd		*rxbd;
3566 	u_int32_t		addr;
3567 	int i;
3568 #ifdef BNX_DEBUG
3569 	u_int16_t debug_chain_prod =	*chain_prod;
3570 #endif
3571 	u_int16_t first_chain_prod;
3572 
3573 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3574 
3575 	/* Map the mbuf cluster into device memory. */
3576 	map = sc->rx_mbuf_map[*chain_prod];
3577 	first_chain_prod = *chain_prod;
3578 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3579 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3580 		    __FILE__, __LINE__);
3581 
3582 		m_freem(m_new);
3583 
3584 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3585 
3586 		return ENOBUFS;
3587 	}
3588 	/* Make sure there is room in the receive chain. */
3589 	if (map->dm_nsegs > sc->free_rx_bd) {
3590 		bus_dmamap_unload(sc->bnx_dmatag, map);
3591 		m_freem(m_new);
3592 		return EFBIG;
3593 	}
3594 #ifdef BNX_DEBUG
3595 	/* Track the distribution of buffer segments. */
3596 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3597 #endif
3598 
3599 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3600 	    BUS_DMASYNC_PREREAD);
3601 
3602 	/* Update some debug statistics counters */
3603 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3604 	    sc->rx_low_watermark = sc->free_rx_bd);
3605 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3606 
3607 	/*
3608 	 * Setup the rx_bd for the first segment
3609 	 */
3610 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3611 
3612 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3613 	rxbd->rx_bd_haddr_lo = addr;
3614 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3615 	rxbd->rx_bd_haddr_hi = addr;
3616 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3617 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3618 	*prod_bseq += map->dm_segs[0].ds_len;
3619 	bus_dmamap_sync(sc->bnx_dmatag,
3620 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3621 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3622 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3623 
3624 	for (i = 1; i < map->dm_nsegs; i++) {
3625 		*prod = NEXT_RX_BD(*prod);
3626 		*chain_prod = RX_CHAIN_IDX(*prod);
3627 
3628 		rxbd =
3629 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3630 
3631 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3632 		rxbd->rx_bd_haddr_lo = addr;
3633 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3634 		rxbd->rx_bd_haddr_hi = addr;
3635 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3636 		rxbd->rx_bd_flags = 0;
3637 		*prod_bseq += map->dm_segs[i].ds_len;
3638 		bus_dmamap_sync(sc->bnx_dmatag,
3639 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3640 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3641 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3642 	}
3643 
3644 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3645 	bus_dmamap_sync(sc->bnx_dmatag,
3646 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3647 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3648 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3649 
3650 	/*
3651 	 * Save the mbuf, ajust the map pointer (swap map for first and
3652 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3653 	 * and update counter.
3654 	 */
3655 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3656 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3657 	sc->rx_mbuf_map[*chain_prod] = map;
3658 	sc->free_rx_bd -= map->dm_nsegs;
3659 
3660 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3661 	    map->dm_nsegs));
3662 	*prod = NEXT_RX_BD(*prod);
3663 	*chain_prod = RX_CHAIN_IDX(*prod);
3664 
3665 	return 0;
3666 }
3667 
3668 /****************************************************************************/
3669 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3670 /*                                                                          */
3671 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3672 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3673 /* necessary.                                                               */
3674 /*                                                                          */
3675 /* Returns:                                                                 */
3676 /*   0 for success, positive value for failure.                             */
3677 /****************************************************************************/
3678 int
3679 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3680     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3681 {
3682 	struct mbuf 		*m_new = NULL;
3683 	int			rc = 0;
3684 	u_int16_t min_free_bd;
3685 
3686 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3687 	    __func__);
3688 
3689 	/* Make sure the inputs are valid. */
3690 	DBRUNIF((*chain_prod > MAX_RX_BD),
3691 	    aprint_error_dev(sc->bnx_dev,
3692 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3693 		*chain_prod, (u_int16_t)MAX_RX_BD));
3694 
3695 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3696 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3697 	    *prod_bseq);
3698 
3699 	/* try to get in as many mbufs as possible */
3700 	if (sc->mbuf_alloc_size == MCLBYTES)
3701 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3702 	else
3703 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3704 	while (sc->free_rx_bd >= min_free_bd) {
3705 		/* Simulate an mbuf allocation failure. */
3706 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3707 		    aprint_error_dev(sc->bnx_dev,
3708 		    "Simulating mbuf allocation failure.\n");
3709 			sc->mbuf_sim_alloc_failed++;
3710 			rc = ENOBUFS;
3711 			goto bnx_get_buf_exit);
3712 
3713 		/* This is a new mbuf allocation. */
3714 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3715 		if (m_new == NULL) {
3716 			DBPRINT(sc, BNX_WARN,
3717 			    "%s(%d): RX mbuf header allocation failed!\n",
3718 			    __FILE__, __LINE__);
3719 
3720 			sc->mbuf_alloc_failed++;
3721 
3722 			rc = ENOBUFS;
3723 			goto bnx_get_buf_exit;
3724 		}
3725 
3726 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3727 
3728 		/* Simulate an mbuf cluster allocation failure. */
3729 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3730 			m_freem(m_new);
3731 			sc->rx_mbuf_alloc--;
3732 			sc->mbuf_alloc_failed++;
3733 			sc->mbuf_sim_alloc_failed++;
3734 			rc = ENOBUFS;
3735 			goto bnx_get_buf_exit);
3736 
3737 		if (sc->mbuf_alloc_size == MCLBYTES)
3738 			MCLGET(m_new, M_DONTWAIT);
3739 		else
3740 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3741 			    M_DONTWAIT);
3742 		if (!(m_new->m_flags & M_EXT)) {
3743 			DBPRINT(sc, BNX_WARN,
3744 			    "%s(%d): RX mbuf chain allocation failed!\n",
3745 			    __FILE__, __LINE__);
3746 
3747 			m_freem(m_new);
3748 
3749 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3750 			sc->mbuf_alloc_failed++;
3751 
3752 			rc = ENOBUFS;
3753 			goto bnx_get_buf_exit;
3754 		}
3755 
3756 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3757 		if (rc != 0)
3758 			goto bnx_get_buf_exit;
3759 	}
3760 
3761 bnx_get_buf_exit:
3762 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3763 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3764 	    *chain_prod, *prod_bseq);
3765 
3766 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3767 	    __func__);
3768 
3769 	return(rc);
3770 }
3771 
3772 int
3773 bnx_alloc_pkts(struct bnx_softc *sc)
3774 {
3775 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3776 	struct bnx_pkt *pkt;
3777 	int i;
3778 
3779 	for (i = 0; i < 4; i++) { /* magic! */
3780 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3781 		if (pkt == NULL)
3782 			break;
3783 
3784 		if (bus_dmamap_create(sc->bnx_dmatag,
3785 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3786 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3787 		    &pkt->pkt_dmamap) != 0)
3788 			goto put;
3789 
3790 		if (!ISSET(ifp->if_flags, IFF_UP))
3791 			goto stopping;
3792 
3793 		mutex_enter(&sc->tx_pkt_mtx);
3794 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3795 		sc->tx_pkt_count++;
3796 		mutex_exit(&sc->tx_pkt_mtx);
3797 	}
3798 
3799 	return (i == 0) ? ENOMEM : 0;
3800 
3801 stopping:
3802 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3803 put:
3804 	pool_put(bnx_tx_pool, pkt);
3805 	return (i == 0) ? ENOMEM : 0;
3806 }
3807 
3808 /****************************************************************************/
3809 /* Initialize the TX context memory.                                        */
3810 /*                                                                          */
3811 /* Returns:                                                                 */
3812 /*   Nothing                                                                */
3813 /****************************************************************************/
3814 void
3815 bnx_init_tx_context(struct bnx_softc *sc)
3816 {
3817 	u_int32_t val;
3818 
3819 	/* Initialize the context ID for an L2 TX chain. */
3820 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3821 		/* Set the CID type to support an L2 connection. */
3822 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3823 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3824 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3825 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3826 
3827 		/* Point the hardware to the first page in the chain. */
3828 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3829 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3830 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3831 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3832 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3833 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3834 	} else {
3835 		/* Set the CID type to support an L2 connection. */
3836 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3837 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3838 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3839 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3840 
3841 		/* Point the hardware to the first page in the chain. */
3842 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3843 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3844 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3845 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3846 	}
3847 }
3848 
3849 
3850 /****************************************************************************/
3851 /* Allocate memory and initialize the TX data structures.                   */
3852 /*                                                                          */
3853 /* Returns:                                                                 */
3854 /*   0 for success, positive value for failure.                             */
3855 /****************************************************************************/
3856 int
3857 bnx_init_tx_chain(struct bnx_softc *sc)
3858 {
3859 	struct tx_bd		*txbd;
3860 	u_int32_t		addr;
3861 	int			i, rc = 0;
3862 
3863 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3864 
3865 	/* Force an allocation of some dmamaps for tx up front */
3866 	bnx_alloc_pkts(sc);
3867 
3868 	/* Set the initial TX producer/consumer indices. */
3869 	sc->tx_prod = 0;
3870 	sc->tx_cons = 0;
3871 	sc->tx_prod_bseq = 0;
3872 	sc->used_tx_bd = 0;
3873 	sc->max_tx_bd = USABLE_TX_BD;
3874 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3875 	DBRUNIF(1, sc->tx_full_count = 0);
3876 
3877 	/*
3878 	 * The NetXtreme II supports a linked-list structure called
3879 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3880 	 * consists of a series of 1 or more chain pages, each of which
3881 	 * consists of a fixed number of BD entries.
3882 	 * The last BD entry on each page is a pointer to the next page
3883 	 * in the chain, and the last pointer in the BD chain
3884 	 * points back to the beginning of the chain.
3885 	 */
3886 
3887 	/* Set the TX next pointer chain entries. */
3888 	for (i = 0; i < TX_PAGES; i++) {
3889 		int j;
3890 
3891 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3892 
3893 		/* Check if we've reached the last page. */
3894 		if (i == (TX_PAGES - 1))
3895 			j = 0;
3896 		else
3897 			j = i + 1;
3898 
3899 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3900 		txbd->tx_bd_haddr_lo = addr;
3901 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3902 		txbd->tx_bd_haddr_hi = addr;
3903 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3904 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3905 	}
3906 
3907 	/*
3908 	 * Initialize the context ID for an L2 TX chain.
3909 	 */
3910 	bnx_init_tx_context(sc);
3911 
3912 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3913 
3914 	return(rc);
3915 }
3916 
3917 /****************************************************************************/
3918 /* Free memory and clear the TX data structures.                            */
3919 /*                                                                          */
3920 /* Returns:                                                                 */
3921 /*   Nothing.                                                               */
3922 /****************************************************************************/
3923 void
3924 bnx_free_tx_chain(struct bnx_softc *sc)
3925 {
3926 	struct bnx_pkt		*pkt;
3927 	int			i;
3928 
3929 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3930 
3931 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3932 	mutex_enter(&sc->tx_pkt_mtx);
3933 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
3934 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
3935 		mutex_exit(&sc->tx_pkt_mtx);
3936 
3937 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
3938 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3939 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
3940 
3941 		m_freem(pkt->pkt_mbuf);
3942 		DBRUNIF(1, sc->tx_mbuf_alloc--);
3943 
3944 		mutex_enter(&sc->tx_pkt_mtx);
3945 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3946         }
3947 
3948 	/* Destroy all the dmamaps we allocated for TX */
3949 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
3950 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
3951 		sc->tx_pkt_count--;
3952 		mutex_exit(&sc->tx_pkt_mtx);
3953 
3954 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3955 		pool_put(bnx_tx_pool, pkt);
3956 
3957 		mutex_enter(&sc->tx_pkt_mtx);
3958 	}
3959 	mutex_exit(&sc->tx_pkt_mtx);
3960 
3961 
3962 
3963 	/* Clear each TX chain page. */
3964 	for (i = 0; i < TX_PAGES; i++) {
3965 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3966 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3967 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3968 	}
3969 
3970 	sc->used_tx_bd = 0;
3971 
3972 	/* Check if we lost any mbufs in the process. */
3973 	DBRUNIF((sc->tx_mbuf_alloc),
3974 	    aprint_error_dev(sc->bnx_dev,
3975 	        "Memory leak! Lost %d mbufs from tx chain!\n",
3976 		sc->tx_mbuf_alloc));
3977 
3978 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3979 }
3980 
3981 /****************************************************************************/
3982 /* Initialize the RX context memory.                                        */
3983 /*                                                                          */
3984 /* Returns:                                                                 */
3985 /*   Nothing                                                                */
3986 /****************************************************************************/
3987 void
3988 bnx_init_rx_context(struct bnx_softc *sc)
3989 {
3990 	u_int32_t val;
3991 
3992 	/* Initialize the context ID for an L2 RX chain. */
3993 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3994 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3995 
3996 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3997 		u_int32_t lo_water, hi_water;
3998 
3999 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4000 		hi_water = USABLE_RX_BD / 4;
4001 
4002 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4003 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4004 
4005 		if (hi_water > 0xf)
4006 			hi_water = 0xf;
4007 		else if (hi_water == 0)
4008 			lo_water = 0;
4009 		val |= lo_water |
4010 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4011 	}
4012 
4013  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4014 
4015 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4016 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4017 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4018 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4019 	}
4020 
4021 	/* Point the hardware to the first page in the chain. */
4022 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4023 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4024 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4025 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4026 }
4027 
4028 /****************************************************************************/
4029 /* Allocate memory and initialize the RX data structures.                   */
4030 /*                                                                          */
4031 /* Returns:                                                                 */
4032 /*   0 for success, positive value for failure.                             */
4033 /****************************************************************************/
4034 int
4035 bnx_init_rx_chain(struct bnx_softc *sc)
4036 {
4037 	struct rx_bd		*rxbd;
4038 	int			i, rc = 0;
4039 	u_int16_t		prod, chain_prod;
4040 	u_int32_t		prod_bseq, addr;
4041 
4042 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4043 
4044 	/* Initialize the RX producer and consumer indices. */
4045 	sc->rx_prod = 0;
4046 	sc->rx_cons = 0;
4047 	sc->rx_prod_bseq = 0;
4048 	sc->free_rx_bd = USABLE_RX_BD;
4049 	sc->max_rx_bd = USABLE_RX_BD;
4050 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4051 	DBRUNIF(1, sc->rx_empty_count = 0);
4052 
4053 	/* Initialize the RX next pointer chain entries. */
4054 	for (i = 0; i < RX_PAGES; i++) {
4055 		int j;
4056 
4057 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4058 
4059 		/* Check if we've reached the last page. */
4060 		if (i == (RX_PAGES - 1))
4061 			j = 0;
4062 		else
4063 			j = i + 1;
4064 
4065 		/* Setup the chain page pointers. */
4066 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4067 		rxbd->rx_bd_haddr_hi = addr;
4068 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4069 		rxbd->rx_bd_haddr_lo = addr;
4070 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4071 		    0, BNX_RX_CHAIN_PAGE_SZ,
4072 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4073 	}
4074 
4075 	/* Allocate mbuf clusters for the rx_bd chain. */
4076 	prod = prod_bseq = 0;
4077 	chain_prod = RX_CHAIN_IDX(prod);
4078 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4079 		BNX_PRINTF(sc,
4080 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4081 	}
4082 
4083 	/* Save the RX chain producer index. */
4084 	sc->rx_prod = prod;
4085 	sc->rx_prod_bseq = prod_bseq;
4086 
4087 	for (i = 0; i < RX_PAGES; i++)
4088 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4089 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4090 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4091 
4092 	/* Tell the chip about the waiting rx_bd's. */
4093 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4094 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4095 
4096 	bnx_init_rx_context(sc);
4097 
4098 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4099 
4100 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4101 
4102 	return(rc);
4103 }
4104 
4105 /****************************************************************************/
4106 /* Free memory and clear the RX data structures.                            */
4107 /*                                                                          */
4108 /* Returns:                                                                 */
4109 /*   Nothing.                                                               */
4110 /****************************************************************************/
4111 void
4112 bnx_free_rx_chain(struct bnx_softc *sc)
4113 {
4114 	int			i;
4115 
4116 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4117 
4118 	/* Free any mbufs still in the RX mbuf chain. */
4119 	for (i = 0; i < TOTAL_RX_BD; i++) {
4120 		if (sc->rx_mbuf_ptr[i] != NULL) {
4121 			if (sc->rx_mbuf_map[i] != NULL) {
4122 				bus_dmamap_sync(sc->bnx_dmatag,
4123 				    sc->rx_mbuf_map[i],	0,
4124 				    sc->rx_mbuf_map[i]->dm_mapsize,
4125 				    BUS_DMASYNC_POSTREAD);
4126 				bus_dmamap_unload(sc->bnx_dmatag,
4127 				    sc->rx_mbuf_map[i]);
4128 			}
4129 			m_freem(sc->rx_mbuf_ptr[i]);
4130 			sc->rx_mbuf_ptr[i] = NULL;
4131 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4132 		}
4133 	}
4134 
4135 	/* Clear each RX chain page. */
4136 	for (i = 0; i < RX_PAGES; i++)
4137 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4138 
4139 	sc->free_rx_bd = sc->max_rx_bd;
4140 
4141 	/* Check if we lost any mbufs in the process. */
4142 	DBRUNIF((sc->rx_mbuf_alloc),
4143 	    aprint_error_dev(sc->bnx_dev,
4144 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4145 		sc->rx_mbuf_alloc));
4146 
4147 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4148 }
4149 
4150 /****************************************************************************/
4151 /* Handles PHY generated interrupt events.                                  */
4152 /*                                                                          */
4153 /* Returns:                                                                 */
4154 /*   Nothing.                                                               */
4155 /****************************************************************************/
4156 void
4157 bnx_phy_intr(struct bnx_softc *sc)
4158 {
4159 	u_int32_t		new_link_state, old_link_state;
4160 
4161 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4162 	    BUS_DMASYNC_POSTREAD);
4163 	new_link_state = sc->status_block->status_attn_bits &
4164 	    STATUS_ATTN_BITS_LINK_STATE;
4165 	old_link_state = sc->status_block->status_attn_bits_ack &
4166 	    STATUS_ATTN_BITS_LINK_STATE;
4167 
4168 	/* Handle any changes if the link state has changed. */
4169 	if (new_link_state != old_link_state) {
4170 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4171 
4172 		callout_stop(&sc->bnx_timeout);
4173 		bnx_tick(sc);
4174 
4175 		/* Update the status_attn_bits_ack field in the status block. */
4176 		if (new_link_state) {
4177 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4178 			    STATUS_ATTN_BITS_LINK_STATE);
4179 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4180 		} else {
4181 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4182 			    STATUS_ATTN_BITS_LINK_STATE);
4183 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4184 		}
4185 	}
4186 
4187 	/* Acknowledge the link change interrupt. */
4188 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4189 }
4190 
4191 /****************************************************************************/
4192 /* Handles received frame interrupt events.                                 */
4193 /*                                                                          */
4194 /* Returns:                                                                 */
4195 /*   Nothing.                                                               */
4196 /****************************************************************************/
4197 void
4198 bnx_rx_intr(struct bnx_softc *sc)
4199 {
4200 	struct status_block	*sblk = sc->status_block;
4201 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4202 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4203 	u_int16_t		sw_prod, sw_chain_prod;
4204 	u_int32_t		sw_prod_bseq;
4205 	struct l2_fhdr		*l2fhdr;
4206 	int			i;
4207 
4208 	DBRUNIF(1, sc->rx_interrupts++);
4209 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4210 	    BUS_DMASYNC_POSTREAD);
4211 
4212 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4213 	for (i = 0; i < RX_PAGES; i++)
4214 		bus_dmamap_sync(sc->bnx_dmatag,
4215 		    sc->rx_bd_chain_map[i], 0,
4216 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4217 		    BUS_DMASYNC_POSTWRITE);
4218 
4219 	/* Get the hardware's view of the RX consumer index. */
4220 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4221 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4222 		hw_cons++;
4223 
4224 	/* Get working copies of the driver's view of the RX indices. */
4225 	sw_cons = sc->rx_cons;
4226 	sw_prod = sc->rx_prod;
4227 	sw_prod_bseq = sc->rx_prod_bseq;
4228 
4229 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4230 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4231 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4232 
4233 	/* Prevent speculative reads from getting ahead of the status block. */
4234 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4235 	    BUS_SPACE_BARRIER_READ);
4236 
4237 	/* Update some debug statistics counters */
4238 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4239 	    sc->rx_low_watermark = sc->free_rx_bd);
4240 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4241 
4242 	/*
4243 	 * Scan through the receive chain as long
4244 	 * as there is work to do.
4245 	 */
4246 	while (sw_cons != hw_cons) {
4247 		struct mbuf *m;
4248 		struct rx_bd *rxbd;
4249 		unsigned int len;
4250 		u_int32_t status;
4251 
4252 		/* Convert the producer/consumer indices to an actual
4253 		 * rx_bd index.
4254 		 */
4255 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4256 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4257 
4258 		/* Get the used rx_bd. */
4259 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4260 		sc->free_rx_bd++;
4261 
4262 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4263 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4264 
4265 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4266 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4267 #ifdef DIAGNOSTIC
4268 			/* Validate that this is the last rx_bd. */
4269 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4270 			    printf("%s: Unexpected mbuf found in "
4271 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4272 			        sw_chain_cons);
4273 			}
4274 #endif
4275 
4276 			/* DRC - ToDo: If the received packet is small, say less
4277 			 *             than 128 bytes, allocate a new mbuf here,
4278 			 *             copy the data to that mbuf, and recycle
4279 			 *             the mapped jumbo frame.
4280 			 */
4281 
4282 			/* Unmap the mbuf from DMA space. */
4283 #ifdef DIAGNOSTIC
4284 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4285 				printf("invalid map sw_cons 0x%x "
4286 				"sw_prod 0x%x "
4287 				"sw_chain_cons 0x%x "
4288 				"sw_chain_prod 0x%x "
4289 				"hw_cons 0x%x "
4290 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4291 				"TOTAL_RX_BD 0x%x\n",
4292 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4293 				hw_cons,
4294 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4295 			}
4296 #endif
4297 			bus_dmamap_sync(sc->bnx_dmatag,
4298 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4299 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4300 			    BUS_DMASYNC_POSTREAD);
4301 			bus_dmamap_unload(sc->bnx_dmatag,
4302 			    sc->rx_mbuf_map[sw_chain_cons]);
4303 
4304 			/* Remove the mbuf from the driver's chain. */
4305 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4306 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4307 
4308 			/*
4309 			 * Frames received on the NetXteme II are prepended
4310 			 * with the l2_fhdr structure which provides status
4311 			 * information about the received frame (including
4312 			 * VLAN tags and checksum info) and are also
4313 			 * automatically adjusted to align the IP header
4314 			 * (i.e. two null bytes are inserted before the
4315 			 * Ethernet header).
4316 			 */
4317 			l2fhdr = mtod(m, struct l2_fhdr *);
4318 
4319 			len    = l2fhdr->l2_fhdr_pkt_len;
4320 			status = l2fhdr->l2_fhdr_status;
4321 
4322 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4323 			    aprint_error("Simulating l2_fhdr status error.\n");
4324 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4325 
4326 			/* Watch for unusual sized frames. */
4327 			DBRUNIF(((len < BNX_MIN_MTU) ||
4328 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4329 			    aprint_error_dev(sc->bnx_dev,
4330 			        "Unusual frame size found. "
4331 				"Min(%d), Actual(%d), Max(%d)\n",
4332 				(int)BNX_MIN_MTU, len,
4333 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4334 
4335 			bnx_dump_mbuf(sc, m);
4336 			bnx_breakpoint(sc));
4337 
4338 			len -= ETHER_CRC_LEN;
4339 
4340 			/* Check the received frame for errors. */
4341 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4342 			    L2_FHDR_ERRORS_PHY_DECODE |
4343 			    L2_FHDR_ERRORS_ALIGNMENT |
4344 			    L2_FHDR_ERRORS_TOO_SHORT |
4345 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4346 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4347 			    len >
4348 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4349 				ifp->if_ierrors++;
4350 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4351 
4352 				/* Reuse the mbuf for a new frame. */
4353 				if (bnx_add_buf(sc, m, &sw_prod,
4354 				    &sw_chain_prod, &sw_prod_bseq)) {
4355 					DBRUNIF(1, bnx_breakpoint(sc));
4356 					panic("%s: Can't reuse RX mbuf!\n",
4357 					    device_xname(sc->bnx_dev));
4358 				}
4359 				continue;
4360 			}
4361 
4362 			/*
4363 			 * Get a new mbuf for the rx_bd.   If no new
4364 			 * mbufs are available then reuse the current mbuf,
4365 			 * log an ierror on the interface, and generate
4366 			 * an error in the system log.
4367 			 */
4368 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4369 			    &sw_prod_bseq)) {
4370 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4371 				    "Failed to allocate "
4372 				    "new mbuf, incoming frame dropped!\n"));
4373 
4374 				ifp->if_ierrors++;
4375 
4376 				/* Try and reuse the exisitng mbuf. */
4377 				if (bnx_add_buf(sc, m, &sw_prod,
4378 				    &sw_chain_prod, &sw_prod_bseq)) {
4379 					DBRUNIF(1, bnx_breakpoint(sc));
4380 					panic("%s: Double mbuf allocation "
4381 					    "failure!",
4382 					    device_xname(sc->bnx_dev));
4383 				}
4384 				continue;
4385 			}
4386 
4387 			/* Skip over the l2_fhdr when passing the data up
4388 			 * the stack.
4389 			 */
4390 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4391 
4392 			/* Adjust the pckt length to match the received data. */
4393 			m->m_pkthdr.len = m->m_len = len;
4394 
4395 			/* Send the packet to the appropriate interface. */
4396 			m->m_pkthdr.rcvif = ifp;
4397 
4398 			DBRUN(BNX_VERBOSE_RECV,
4399 			    struct ether_header *eh;
4400 			    eh = mtod(m, struct ether_header *);
4401 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4402 			    __func__, ether_sprintf(eh->ether_dhost),
4403 			    ether_sprintf(eh->ether_shost),
4404 			    htons(eh->ether_type)));
4405 
4406 			/* Validate the checksum. */
4407 
4408 			/* Check for an IP datagram. */
4409 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4410 				/* Check if the IP checksum is valid. */
4411 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4412 				    == 0)
4413 					m->m_pkthdr.csum_flags |=
4414 					    M_CSUM_IPv4;
4415 #ifdef BNX_DEBUG
4416 				else
4417 					DBPRINT(sc, BNX_WARN_SEND,
4418 					    "%s(): Invalid IP checksum "
4419 					        "= 0x%04X!\n",
4420 						__func__,
4421 						l2fhdr->l2_fhdr_ip_xsum
4422 						);
4423 #endif
4424 			}
4425 
4426 			/* Check for a valid TCP/UDP frame. */
4427 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4428 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4429 				/* Check for a good TCP/UDP checksum. */
4430 				if ((status &
4431 				    (L2_FHDR_ERRORS_TCP_XSUM |
4432 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4433 					m->m_pkthdr.csum_flags |=
4434 					    M_CSUM_TCPv4 |
4435 					    M_CSUM_UDPv4;
4436 				} else {
4437 					DBPRINT(sc, BNX_WARN_SEND,
4438 					    "%s(): Invalid TCP/UDP "
4439 					    "checksum = 0x%04X!\n",
4440 					    __func__,
4441 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4442 				}
4443 			}
4444 
4445 			/*
4446 			 * If we received a packet with a vlan tag,
4447 			 * attach that information to the packet.
4448 			 */
4449 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4450 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4451 				VLAN_INPUT_TAG(ifp, m,
4452 				    l2fhdr->l2_fhdr_vlan_tag,
4453 				    continue);
4454 			}
4455 
4456 			/*
4457 			 * Handle BPF listeners. Let the BPF
4458 			 * user see the packet.
4459 			 */
4460 			bpf_mtap(ifp, m);
4461 
4462 			/* Pass the mbuf off to the upper layers. */
4463 			ifp->if_ipackets++;
4464 			DBPRINT(sc, BNX_VERBOSE_RECV,
4465 			    "%s(): Passing received frame up.\n", __func__);
4466 			(*ifp->if_input)(ifp, m);
4467 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4468 
4469 		}
4470 
4471 		sw_cons = NEXT_RX_BD(sw_cons);
4472 
4473 		/* Refresh hw_cons to see if there's new work */
4474 		if (sw_cons == hw_cons) {
4475 			hw_cons = sc->hw_rx_cons =
4476 			    sblk->status_rx_quick_consumer_index0;
4477 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4478 			    USABLE_RX_BD_PER_PAGE)
4479 				hw_cons++;
4480 		}
4481 
4482 		/* Prevent speculative reads from getting ahead of
4483 		 * the status block.
4484 		 */
4485 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4486 		    BUS_SPACE_BARRIER_READ);
4487 	}
4488 
4489 	for (i = 0; i < RX_PAGES; i++)
4490 		bus_dmamap_sync(sc->bnx_dmatag,
4491 		    sc->rx_bd_chain_map[i], 0,
4492 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4493 		    BUS_DMASYNC_PREWRITE);
4494 
4495 	sc->rx_cons = sw_cons;
4496 	sc->rx_prod = sw_prod;
4497 	sc->rx_prod_bseq = sw_prod_bseq;
4498 
4499 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4500 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4501 
4502 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4503 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4504 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4505 }
4506 
4507 /****************************************************************************/
4508 /* Handles transmit completion interrupt events.                            */
4509 /*                                                                          */
4510 /* Returns:                                                                 */
4511 /*   Nothing.                                                               */
4512 /****************************************************************************/
4513 void
4514 bnx_tx_intr(struct bnx_softc *sc)
4515 {
4516 	struct status_block	*sblk = sc->status_block;
4517 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4518 	struct bnx_pkt		*pkt;
4519 	bus_dmamap_t		map;
4520 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4521 
4522 	DBRUNIF(1, sc->tx_interrupts++);
4523 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4524 	    BUS_DMASYNC_POSTREAD);
4525 
4526 	/* Get the hardware's view of the TX consumer index. */
4527 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4528 
4529 	/* Skip to the next entry if this is a chain page pointer. */
4530 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4531 		hw_tx_cons++;
4532 
4533 	sw_tx_cons = sc->tx_cons;
4534 
4535 	/* Prevent speculative reads from getting ahead of the status block. */
4536 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4537 	    BUS_SPACE_BARRIER_READ);
4538 
4539 	/* Cycle through any completed TX chain page entries. */
4540 	while (sw_tx_cons != hw_tx_cons) {
4541 #ifdef BNX_DEBUG
4542 		struct tx_bd *txbd = NULL;
4543 #endif
4544 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4545 
4546 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4547 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4548 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4549 
4550 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4551 		    aprint_error_dev(sc->bnx_dev,
4552 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4553 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4554 
4555 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4556 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4557 
4558 		DBRUNIF((txbd == NULL),
4559 		    aprint_error_dev(sc->bnx_dev,
4560 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4561 		    bnx_breakpoint(sc));
4562 
4563 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4564 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4565 
4566 
4567 		mutex_enter(&sc->tx_pkt_mtx);
4568 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4569 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4570 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4571 			mutex_exit(&sc->tx_pkt_mtx);
4572 			/*
4573 			 * Free the associated mbuf. Remember
4574 			 * that only the last tx_bd of a packet
4575 			 * has an mbuf pointer and DMA map.
4576 			 */
4577 			map = pkt->pkt_dmamap;
4578 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4579 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4580 			bus_dmamap_unload(sc->bnx_dmatag, map);
4581 
4582 			m_freem(pkt->pkt_mbuf);
4583 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4584 
4585 			ifp->if_opackets++;
4586 
4587 			mutex_enter(&sc->tx_pkt_mtx);
4588 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4589 		}
4590 		mutex_exit(&sc->tx_pkt_mtx);
4591 
4592 		sc->used_tx_bd--;
4593 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4594 			__FILE__, __LINE__, sc->used_tx_bd);
4595 
4596 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4597 
4598 		/* Refresh hw_cons to see if there's new work. */
4599 		hw_tx_cons = sc->hw_tx_cons =
4600 		    sblk->status_tx_quick_consumer_index0;
4601 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4602 		    USABLE_TX_BD_PER_PAGE)
4603 			hw_tx_cons++;
4604 
4605 		/* Prevent speculative reads from getting ahead of
4606 		 * the status block.
4607 		 */
4608 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4609 		    BUS_SPACE_BARRIER_READ);
4610 	}
4611 
4612 	/* Clear the TX timeout timer. */
4613 	ifp->if_timer = 0;
4614 
4615 	/* Clear the tx hardware queue full flag. */
4616 	if (sc->used_tx_bd < sc->max_tx_bd) {
4617 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4618 		    aprint_debug_dev(sc->bnx_dev,
4619 		        "Open TX chain! %d/%d (used/total)\n",
4620 			sc->used_tx_bd, sc->max_tx_bd));
4621 		ifp->if_flags &= ~IFF_OACTIVE;
4622 	}
4623 
4624 	sc->tx_cons = sw_tx_cons;
4625 }
4626 
4627 /****************************************************************************/
4628 /* Disables interrupt generation.                                           */
4629 /*                                                                          */
4630 /* Returns:                                                                 */
4631 /*   Nothing.                                                               */
4632 /****************************************************************************/
4633 void
4634 bnx_disable_intr(struct bnx_softc *sc)
4635 {
4636 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4637 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4638 }
4639 
4640 /****************************************************************************/
4641 /* Enables interrupt generation.                                            */
4642 /*                                                                          */
4643 /* Returns:                                                                 */
4644 /*   Nothing.                                                               */
4645 /****************************************************************************/
4646 void
4647 bnx_enable_intr(struct bnx_softc *sc)
4648 {
4649 	u_int32_t		val;
4650 
4651 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4652 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4653 
4654 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4655 	    sc->last_status_idx);
4656 
4657 	val = REG_RD(sc, BNX_HC_COMMAND);
4658 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4659 }
4660 
4661 /****************************************************************************/
4662 /* Handles controller initialization.                                       */
4663 /*                                                                          */
4664 /****************************************************************************/
4665 int
4666 bnx_init(struct ifnet *ifp)
4667 {
4668 	struct bnx_softc	*sc = ifp->if_softc;
4669 	u_int32_t		ether_mtu;
4670 	int			s, error = 0;
4671 
4672 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4673 
4674 	s = splnet();
4675 
4676 	bnx_stop(ifp, 0);
4677 
4678 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4679 		aprint_error_dev(sc->bnx_dev,
4680 		    "Controller reset failed!\n");
4681 		goto bnx_init_exit;
4682 	}
4683 
4684 	if ((error = bnx_chipinit(sc)) != 0) {
4685 		aprint_error_dev(sc->bnx_dev,
4686 		    "Controller initialization failed!\n");
4687 		goto bnx_init_exit;
4688 	}
4689 
4690 	if ((error = bnx_blockinit(sc)) != 0) {
4691 		aprint_error_dev(sc->bnx_dev,
4692 		    "Block initialization failed!\n");
4693 		goto bnx_init_exit;
4694 	}
4695 
4696 	/* Calculate and program the Ethernet MRU size. */
4697 	if (ifp->if_mtu <= ETHERMTU) {
4698 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4699 		sc->mbuf_alloc_size = MCLBYTES;
4700 	} else {
4701 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4702 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4703 	}
4704 
4705 
4706 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4707 	    __func__, ether_mtu);
4708 
4709 	/*
4710 	 * Program the MRU and enable Jumbo frame
4711 	 * support.
4712 	 */
4713 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4714 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4715 
4716 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4717 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4718 
4719 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4720 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4721 	    sc->mbuf_alloc_size, sc->max_frame_size);
4722 
4723 	/* Program appropriate promiscuous/multicast filtering. */
4724 	bnx_iff(sc);
4725 
4726 	/* Init RX buffer descriptor chain. */
4727 	bnx_init_rx_chain(sc);
4728 
4729 	/* Init TX buffer descriptor chain. */
4730 	bnx_init_tx_chain(sc);
4731 
4732 	/* Enable host interrupts. */
4733 	bnx_enable_intr(sc);
4734 
4735 	if ((error = ether_mediachange(ifp)) != 0)
4736 		goto bnx_init_exit;
4737 
4738 	ifp->if_flags |= IFF_RUNNING;
4739 	ifp->if_flags &= ~IFF_OACTIVE;
4740 
4741 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4742 
4743 bnx_init_exit:
4744 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4745 
4746 	splx(s);
4747 
4748 	return(error);
4749 }
4750 
4751 /****************************************************************************/
4752 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4753 /* memory visible to the controller.                                        */
4754 /*                                                                          */
4755 /* Returns:                                                                 */
4756 /*   0 for success, positive value for failure.                             */
4757 /****************************************************************************/
4758 int
4759 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4760 {
4761 	struct bnx_pkt		*pkt;
4762 	bus_dmamap_t		map;
4763 	struct tx_bd		*txbd = NULL;
4764 	u_int16_t		vlan_tag = 0, flags = 0;
4765 	u_int16_t		chain_prod, prod;
4766 #ifdef BNX_DEBUG
4767 	u_int16_t		debug_prod;
4768 #endif
4769 	u_int32_t		addr, prod_bseq;
4770 	int			i, error;
4771 	struct m_tag		*mtag;
4772 
4773 again:
4774 	mutex_enter(&sc->tx_pkt_mtx);
4775 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4776 	if (pkt == NULL) {
4777 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4778 			mutex_exit(&sc->tx_pkt_mtx);
4779 			return ENETDOWN;
4780 		}
4781 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4782 			mutex_exit(&sc->tx_pkt_mtx);
4783 			if (bnx_alloc_pkts(sc) == 0)
4784 				goto again;
4785 		} else {
4786 			mutex_exit(&sc->tx_pkt_mtx);
4787 		}
4788 		return (ENOMEM);
4789 	}
4790 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4791 	mutex_exit(&sc->tx_pkt_mtx);
4792 
4793 	/* Transfer any checksum offload flags to the bd. */
4794 	if (m->m_pkthdr.csum_flags) {
4795 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4796 			flags |= TX_BD_FLAGS_IP_CKSUM;
4797 		if (m->m_pkthdr.csum_flags &
4798 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4799 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4800 	}
4801 
4802 	/* Transfer any VLAN tags to the bd. */
4803 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4804 	if (mtag != NULL) {
4805 		flags |= TX_BD_FLAGS_VLAN_TAG;
4806 		vlan_tag = VLAN_TAG_VALUE(mtag);
4807 	}
4808 
4809 	/* Map the mbuf into DMAable memory. */
4810 	prod = sc->tx_prod;
4811 	chain_prod = TX_CHAIN_IDX(prod);
4812 	map = pkt->pkt_dmamap;
4813 
4814 	/* Map the mbuf into our DMA address space. */
4815 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4816 	if (error != 0) {
4817 		aprint_error_dev(sc->bnx_dev,
4818 		    "Error mapping mbuf into TX chain!\n");
4819 		sc->tx_dma_map_failures++;
4820 		goto maperr;
4821 	}
4822 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4823 	    BUS_DMASYNC_PREWRITE);
4824         /* Make sure there's room in the chain */
4825 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4826                 goto nospace;
4827 
4828 	/* prod points to an empty tx_bd at this point. */
4829 	prod_bseq = sc->tx_prod_bseq;
4830 #ifdef BNX_DEBUG
4831 	debug_prod = chain_prod;
4832 #endif
4833 	DBPRINT(sc, BNX_INFO_SEND,
4834 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4835 		"prod_bseq = 0x%08X\n",
4836 		__func__, prod, chain_prod, prod_bseq);
4837 
4838 	/*
4839 	 * Cycle through each mbuf segment that makes up
4840 	 * the outgoing frame, gathering the mapping info
4841 	 * for that segment and creating a tx_bd for the
4842 	 * mbuf.
4843 	 */
4844 	for (i = 0; i < map->dm_nsegs ; i++) {
4845 		chain_prod = TX_CHAIN_IDX(prod);
4846 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4847 
4848 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4849 		txbd->tx_bd_haddr_lo = addr;
4850 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4851 		txbd->tx_bd_haddr_hi = addr;
4852 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4853 		txbd->tx_bd_vlan_tag = vlan_tag;
4854 		txbd->tx_bd_flags = flags;
4855 		prod_bseq += map->dm_segs[i].ds_len;
4856 		if (i == 0)
4857 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4858 		prod = NEXT_TX_BD(prod);
4859 	}
4860 	/* Set the END flag on the last TX buffer descriptor. */
4861 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4862 
4863 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4864 
4865 	DBPRINT(sc, BNX_INFO_SEND,
4866 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4867 		"prod_bseq = 0x%08X\n",
4868 		__func__, prod, chain_prod, prod_bseq);
4869 
4870 	pkt->pkt_mbuf = m;
4871 	pkt->pkt_end_desc = chain_prod;
4872 
4873 	mutex_enter(&sc->tx_pkt_mtx);
4874 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4875 	mutex_exit(&sc->tx_pkt_mtx);
4876 
4877 	sc->used_tx_bd += map->dm_nsegs;
4878 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4879 		__FILE__, __LINE__, sc->used_tx_bd);
4880 
4881 	/* Update some debug statistics counters */
4882 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4883 	    sc->tx_hi_watermark = sc->used_tx_bd);
4884 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4885 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4886 
4887 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4888 	    map->dm_nsegs));
4889 
4890 	/* prod points to the next free tx_bd at this point. */
4891 	sc->tx_prod = prod;
4892 	sc->tx_prod_bseq = prod_bseq;
4893 
4894 	return (0);
4895 
4896 
4897 nospace:
4898 	bus_dmamap_unload(sc->bnx_dmatag, map);
4899 maperr:
4900 	mutex_enter(&sc->tx_pkt_mtx);
4901 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4902 	mutex_exit(&sc->tx_pkt_mtx);
4903 
4904 	return (ENOMEM);
4905 }
4906 
4907 /****************************************************************************/
4908 /* Main transmit routine.                                                   */
4909 /*                                                                          */
4910 /* Returns:                                                                 */
4911 /*   Nothing.                                                               */
4912 /****************************************************************************/
4913 void
4914 bnx_start(struct ifnet *ifp)
4915 {
4916 	struct bnx_softc	*sc = ifp->if_softc;
4917 	struct mbuf		*m_head = NULL;
4918 	int			count = 0;
4919 	u_int16_t		tx_prod, tx_chain_prod;
4920 
4921 	/* If there's no link or the transmit queue is empty then just exit. */
4922 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4923 		DBPRINT(sc, BNX_INFO_SEND,
4924 		    "%s(): output active or device not running.\n", __func__);
4925 		goto bnx_start_exit;
4926 	}
4927 
4928 	/* prod points to the next free tx_bd. */
4929 	tx_prod = sc->tx_prod;
4930 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4931 
4932 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4933 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
4934 	    "used_tx %d max_tx %d\n",
4935 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
4936 	    sc->used_tx_bd, sc->max_tx_bd);
4937 
4938 	/*
4939 	 * Keep adding entries while there is space in the ring.
4940 	 */
4941 	while (sc->used_tx_bd < sc->max_tx_bd) {
4942 		/* Check for any frames to send. */
4943 		IFQ_POLL(&ifp->if_snd, m_head);
4944 		if (m_head == NULL)
4945 			break;
4946 
4947 		/*
4948 		 * Pack the data into the transmit ring. If we
4949 		 * don't have room, set the OACTIVE flag to wait
4950 		 * for the NIC to drain the chain.
4951 		 */
4952 		if (bnx_tx_encap(sc, m_head)) {
4953 			ifp->if_flags |= IFF_OACTIVE;
4954 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4955 			    "business! Total tx_bd used = %d\n",
4956 			    sc->used_tx_bd);
4957 			break;
4958 		}
4959 
4960 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4961 		count++;
4962 
4963 		/* Send a copy of the frame to any BPF listeners. */
4964 		bpf_mtap(ifp, m_head);
4965 	}
4966 
4967 	if (count == 0) {
4968 		/* no packets were dequeued */
4969 		DBPRINT(sc, BNX_VERBOSE_SEND,
4970 		    "%s(): No packets were dequeued\n", __func__);
4971 		goto bnx_start_exit;
4972 	}
4973 
4974 	/* Update the driver's counters. */
4975 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4976 
4977 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4978 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4979 	    tx_chain_prod, sc->tx_prod_bseq);
4980 
4981 	/* Start the transmit. */
4982 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4983 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4984 
4985 	/* Set the tx timeout. */
4986 	ifp->if_timer = BNX_TX_TIMEOUT;
4987 
4988 bnx_start_exit:
4989 	return;
4990 }
4991 
4992 /****************************************************************************/
4993 /* Handles any IOCTL calls from the operating system.                       */
4994 /*                                                                          */
4995 /* Returns:                                                                 */
4996 /*   0 for success, positive value for failure.                             */
4997 /****************************************************************************/
4998 int
4999 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5000 {
5001 	struct bnx_softc	*sc = ifp->if_softc;
5002 	struct ifreq		*ifr = (struct ifreq *) data;
5003 	struct mii_data		*mii = &sc->bnx_mii;
5004 	int			s, error = 0;
5005 
5006 	s = splnet();
5007 
5008 	switch (command) {
5009 	case SIOCSIFFLAGS:
5010 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5011 			break;
5012 		/* XXX set an ifflags callback and let ether_ioctl
5013 		 * handle all of this.
5014 		 */
5015 		if (ifp->if_flags & IFF_UP) {
5016 			if (ifp->if_flags & IFF_RUNNING)
5017 				error = ENETRESET;
5018 			else
5019 				bnx_init(ifp);
5020 		} else if (ifp->if_flags & IFF_RUNNING)
5021 			bnx_stop(ifp, 1);
5022 		break;
5023 
5024 	case SIOCSIFMEDIA:
5025 	case SIOCGIFMEDIA:
5026 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5027 		    sc->bnx_phy_flags);
5028 
5029 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5030 		break;
5031 
5032 	default:
5033 		error = ether_ioctl(ifp, command, data);
5034 	}
5035 
5036 	if (error == ENETRESET) {
5037 		if (ifp->if_flags & IFF_RUNNING)
5038 			bnx_iff(sc);
5039 		error = 0;
5040 	}
5041 
5042 	splx(s);
5043 	return (error);
5044 }
5045 
5046 /****************************************************************************/
5047 /* Transmit timeout handler.                                                */
5048 /*                                                                          */
5049 /* Returns:                                                                 */
5050 /*   Nothing.                                                               */
5051 /****************************************************************************/
5052 void
5053 bnx_watchdog(struct ifnet *ifp)
5054 {
5055 	struct bnx_softc	*sc = ifp->if_softc;
5056 
5057 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5058 	    bnx_dump_status_block(sc));
5059 	/*
5060 	 * If we are in this routine because of pause frames, then
5061 	 * don't reset the hardware.
5062 	 */
5063 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5064 		return;
5065 
5066 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5067 
5068 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5069 
5070 	bnx_init(ifp);
5071 
5072 	ifp->if_oerrors++;
5073 }
5074 
5075 /*
5076  * Interrupt handler.
5077  */
5078 /****************************************************************************/
5079 /* Main interrupt entry point.  Verifies that the controller generated the  */
5080 /* interrupt and then calls a separate routine for handle the various       */
5081 /* interrupt causes (PHY, TX, RX).                                          */
5082 /*                                                                          */
5083 /* Returns:                                                                 */
5084 /*   0 for success, positive value for failure.                             */
5085 /****************************************************************************/
5086 int
5087 bnx_intr(void *xsc)
5088 {
5089 	struct bnx_softc	*sc;
5090 	struct ifnet		*ifp;
5091 	u_int32_t		status_attn_bits;
5092 	const struct status_block *sblk;
5093 
5094 	sc = xsc;
5095 	if (!device_is_active(sc->bnx_dev))
5096 		return 0;
5097 
5098 	ifp = &sc->bnx_ec.ec_if;
5099 
5100 	DBRUNIF(1, sc->interrupts_generated++);
5101 
5102 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5103 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5104 
5105 	/*
5106 	 * If the hardware status block index
5107 	 * matches the last value read by the
5108 	 * driver and we haven't asserted our
5109 	 * interrupt then there's nothing to do.
5110 	 */
5111 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5112 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5113 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5114 		return (0);
5115 
5116 	/* Ack the interrupt and stop others from occuring. */
5117 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5118 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5119 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5120 
5121 	/* Keep processing data as long as there is work to do. */
5122 	for (;;) {
5123 		sblk = sc->status_block;
5124 		status_attn_bits = sblk->status_attn_bits;
5125 
5126 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5127 		    aprint_debug("Simulating unexpected status attention bit set.");
5128 		    status_attn_bits = status_attn_bits |
5129 		    STATUS_ATTN_BITS_PARITY_ERROR);
5130 
5131 		/* Was it a link change interrupt? */
5132 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5133 		    (sblk->status_attn_bits_ack &
5134 		    STATUS_ATTN_BITS_LINK_STATE))
5135 			bnx_phy_intr(sc);
5136 
5137 		/* If any other attention is asserted then the chip is toast. */
5138 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5139 		    (sblk->status_attn_bits_ack &
5140 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5141 			DBRUN(1, sc->unexpected_attentions++);
5142 
5143 			BNX_PRINTF(sc,
5144 			    "Fatal attention detected: 0x%08X\n",
5145 			    sblk->status_attn_bits);
5146 
5147 			DBRUN(BNX_FATAL,
5148 			    if (bnx_debug_unexpected_attention == 0)
5149 			    bnx_breakpoint(sc));
5150 
5151 			bnx_init(ifp);
5152 			return (1);
5153 		}
5154 
5155 		/* Check for any completed RX frames. */
5156 		if (sblk->status_rx_quick_consumer_index0 !=
5157 		    sc->hw_rx_cons)
5158 			bnx_rx_intr(sc);
5159 
5160 		/* Check for any completed TX frames. */
5161 		if (sblk->status_tx_quick_consumer_index0 !=
5162 		    sc->hw_tx_cons)
5163 			bnx_tx_intr(sc);
5164 
5165 		/* Save the status block index value for use during the
5166 		 * next interrupt.
5167 		 */
5168 		sc->last_status_idx = sblk->status_idx;
5169 
5170 		/* Prevent speculative reads from getting ahead of the
5171 		 * status block.
5172 		 */
5173 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5174 		    BUS_SPACE_BARRIER_READ);
5175 
5176 		/* If there's no work left then exit the isr. */
5177 		if ((sblk->status_rx_quick_consumer_index0 ==
5178 		    sc->hw_rx_cons) &&
5179 		    (sblk->status_tx_quick_consumer_index0 ==
5180 		    sc->hw_tx_cons))
5181 			break;
5182 	}
5183 
5184 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5185 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5186 
5187 	/* Re-enable interrupts. */
5188 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5189 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5190 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5191 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5192 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5193 
5194 	/* Handle any frames that arrived while handling the interrupt. */
5195 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5196 		bnx_start(ifp);
5197 
5198 	return (1);
5199 }
5200 
5201 /****************************************************************************/
5202 /* Programs the various packet receive modes (broadcast and multicast).     */
5203 /*                                                                          */
5204 /* Returns:                                                                 */
5205 /*   Nothing.                                                               */
5206 /****************************************************************************/
5207 void
5208 bnx_iff(struct bnx_softc *sc)
5209 {
5210 	struct ethercom		*ec = &sc->bnx_ec;
5211 	struct ifnet		*ifp = &ec->ec_if;
5212 	struct ether_multi	*enm;
5213 	struct ether_multistep	step;
5214 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5215 	u_int32_t		rx_mode, sort_mode;
5216 	int			h, i;
5217 
5218 	/* Initialize receive mode default settings. */
5219 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5220 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5221 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5222 	ifp->if_flags &= ~IFF_ALLMULTI;
5223 
5224 	/*
5225 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5226 	 * be enbled.
5227 	 */
5228 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5229 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5230 
5231 	/*
5232 	 * Check for promiscuous, all multicast, or selected
5233 	 * multicast address filtering.
5234 	 */
5235 	if (ifp->if_flags & IFF_PROMISC) {
5236 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5237 
5238 		ifp->if_flags |= IFF_ALLMULTI;
5239 		/* Enable promiscuous mode. */
5240 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5241 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5242 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5243 allmulti:
5244 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5245 
5246 		ifp->if_flags |= IFF_ALLMULTI;
5247 		/* Enable all multicast addresses. */
5248 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5249 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5250 			    0xffffffff);
5251 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5252 	} else {
5253 		/* Accept one or more multicast(s). */
5254 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5255 
5256 		ETHER_FIRST_MULTI(step, ec, enm);
5257 		while (enm != NULL) {
5258 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5259 			    ETHER_ADDR_LEN)) {
5260 				goto allmulti;
5261 			}
5262 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5263 			    0xFF;
5264 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5265 			ETHER_NEXT_MULTI(step, enm);
5266 		}
5267 
5268 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5269 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5270 			    hashes[i]);
5271 
5272 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5273 	}
5274 
5275 	/* Only make changes if the recive mode has actually changed. */
5276 	if (rx_mode != sc->rx_mode) {
5277 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5278 		    rx_mode);
5279 
5280 		sc->rx_mode = rx_mode;
5281 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5282 	}
5283 
5284 	/* Disable and clear the exisitng sort before enabling a new sort. */
5285 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5286 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5287 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5288 }
5289 
5290 /****************************************************************************/
5291 /* Called periodically to updates statistics from the controllers           */
5292 /* statistics block.                                                        */
5293 /*                                                                          */
5294 /* Returns:                                                                 */
5295 /*   Nothing.                                                               */
5296 /****************************************************************************/
5297 void
5298 bnx_stats_update(struct bnx_softc *sc)
5299 {
5300 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5301 	struct statistics_block	*stats;
5302 
5303 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5304 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5305 	    BUS_DMASYNC_POSTREAD);
5306 
5307 	stats = (struct statistics_block *)sc->stats_block;
5308 
5309 	/*
5310 	 * Update the interface statistics from the
5311 	 * hardware statistics.
5312 	 */
5313 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5314 
5315 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5316 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5317 	    (u_long)stats->stat_IfInMBUFDiscards +
5318 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5319 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5320 
5321 	ifp->if_oerrors = (u_long)
5322 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5323 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5324 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5325 
5326 	/*
5327 	 * Certain controllers don't report
5328 	 * carrier sense errors correctly.
5329 	 * See errata E11_5708CA0_1165.
5330 	 */
5331 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5332 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5333 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5334 
5335 	/*
5336 	 * Update the sysctl statistics from the
5337 	 * hardware statistics.
5338 	 */
5339 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5340 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5341 
5342 	sc->stat_IfHCInBadOctets =
5343 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5344 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5345 
5346 	sc->stat_IfHCOutOctets =
5347 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5348 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5349 
5350 	sc->stat_IfHCOutBadOctets =
5351 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5352 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5353 
5354 	sc->stat_IfHCInUcastPkts =
5355 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5356 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5357 
5358 	sc->stat_IfHCInMulticastPkts =
5359 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5360 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5361 
5362 	sc->stat_IfHCInBroadcastPkts =
5363 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5364 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5365 
5366 	sc->stat_IfHCOutUcastPkts =
5367 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5368 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5369 
5370 	sc->stat_IfHCOutMulticastPkts =
5371 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5372 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5373 
5374 	sc->stat_IfHCOutBroadcastPkts =
5375 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5376 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5377 
5378 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5379 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5380 
5381 	sc->stat_Dot3StatsCarrierSenseErrors =
5382 	    stats->stat_Dot3StatsCarrierSenseErrors;
5383 
5384 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5385 
5386 	sc->stat_Dot3StatsAlignmentErrors =
5387 	    stats->stat_Dot3StatsAlignmentErrors;
5388 
5389 	sc->stat_Dot3StatsSingleCollisionFrames =
5390 	    stats->stat_Dot3StatsSingleCollisionFrames;
5391 
5392 	sc->stat_Dot3StatsMultipleCollisionFrames =
5393 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5394 
5395 	sc->stat_Dot3StatsDeferredTransmissions =
5396 	    stats->stat_Dot3StatsDeferredTransmissions;
5397 
5398 	sc->stat_Dot3StatsExcessiveCollisions =
5399 	    stats->stat_Dot3StatsExcessiveCollisions;
5400 
5401 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5402 
5403 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5404 
5405 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5406 
5407 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5408 
5409 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5410 
5411 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5412 
5413 	sc->stat_EtherStatsPktsRx64Octets =
5414 	    stats->stat_EtherStatsPktsRx64Octets;
5415 
5416 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5417 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5418 
5419 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5420 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5421 
5422 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5423 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5424 
5425 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5426 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5427 
5428 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5429 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5430 
5431 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5432 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5433 
5434 	sc->stat_EtherStatsPktsTx64Octets =
5435 	    stats->stat_EtherStatsPktsTx64Octets;
5436 
5437 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5438 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5439 
5440 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5441 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5442 
5443 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5444 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5445 
5446 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5447 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5448 
5449 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5450 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5451 
5452 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5453 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5454 
5455 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5456 
5457 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5458 
5459 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5460 
5461 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5462 
5463 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5464 
5465 	sc->stat_MacControlFramesReceived =
5466 	    stats->stat_MacControlFramesReceived;
5467 
5468 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5469 
5470 	sc->stat_IfInFramesL2FilterDiscards =
5471 	    stats->stat_IfInFramesL2FilterDiscards;
5472 
5473 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5474 
5475 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5476 
5477 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5478 
5479 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5480 
5481 	sc->stat_CatchupInRuleCheckerDiscards =
5482 	    stats->stat_CatchupInRuleCheckerDiscards;
5483 
5484 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5485 
5486 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5487 
5488 	sc->stat_CatchupInRuleCheckerP4Hit =
5489 	    stats->stat_CatchupInRuleCheckerP4Hit;
5490 
5491 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5492 }
5493 
5494 void
5495 bnx_tick(void *xsc)
5496 {
5497 	struct bnx_softc	*sc = xsc;
5498 	struct mii_data		*mii;
5499 	u_int32_t		msg;
5500 	u_int16_t		prod, chain_prod;
5501 	u_int32_t		prod_bseq;
5502 	int s = splnet();
5503 
5504 	/* Tell the firmware that the driver is still running. */
5505 #ifdef BNX_DEBUG
5506 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5507 #else
5508 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5509 #endif
5510 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5511 
5512 	/* Update the statistics from the hardware statistics block. */
5513 	bnx_stats_update(sc);
5514 
5515 	/* Schedule the next tick. */
5516 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5517 
5518 	mii = &sc->bnx_mii;
5519 	mii_tick(mii);
5520 
5521 	/* try to get more RX buffers, just in case */
5522 	prod = sc->rx_prod;
5523 	prod_bseq = sc->rx_prod_bseq;
5524 	chain_prod = RX_CHAIN_IDX(prod);
5525 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5526 	sc->rx_prod = prod;
5527 	sc->rx_prod_bseq = prod_bseq;
5528 	splx(s);
5529 	return;
5530 }
5531 
5532 /****************************************************************************/
5533 /* BNX Debug Routines                                                       */
5534 /****************************************************************************/
5535 #ifdef BNX_DEBUG
5536 
5537 /****************************************************************************/
5538 /* Prints out information about an mbuf.                                    */
5539 /*                                                                          */
5540 /* Returns:                                                                 */
5541 /*   Nothing.                                                               */
5542 /****************************************************************************/
5543 void
5544 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5545 {
5546 	struct mbuf		*mp = m;
5547 
5548 	if (m == NULL) {
5549 		/* Index out of range. */
5550 		aprint_error("mbuf ptr is null!\n");
5551 		return;
5552 	}
5553 
5554 	while (mp) {
5555 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5556 		    mp, mp->m_len);
5557 
5558 		if (mp->m_flags & M_EXT)
5559 			aprint_debug("M_EXT ");
5560 		if (mp->m_flags & M_PKTHDR)
5561 			aprint_debug("M_PKTHDR ");
5562 		aprint_debug("\n");
5563 
5564 		if (mp->m_flags & M_EXT)
5565 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5566 			    mp, mp->m_ext.ext_size);
5567 
5568 		mp = mp->m_next;
5569 	}
5570 }
5571 
5572 /****************************************************************************/
5573 /* Prints out the mbufs in the TX mbuf chain.                               */
5574 /*                                                                          */
5575 /* Returns:                                                                 */
5576 /*   Nothing.                                                               */
5577 /****************************************************************************/
5578 void
5579 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5580 {
5581 #if 0
5582 	struct mbuf		*m;
5583 	int			i;
5584 
5585 	aprint_debug_dev(sc->bnx_dev,
5586 	    "----------------------------"
5587 	    "  tx mbuf data  "
5588 	    "----------------------------\n");
5589 
5590 	for (i = 0; i < count; i++) {
5591 	 	m = sc->tx_mbuf_ptr[chain_prod];
5592 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5593 		bnx_dump_mbuf(sc, m);
5594 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5595 	}
5596 
5597 	aprint_debug_dev(sc->bnx_dev,
5598 	    "--------------------------------------------"
5599 	    "----------------------------\n");
5600 #endif
5601 }
5602 
5603 /*
5604  * This routine prints the RX mbuf chain.
5605  */
5606 void
5607 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5608 {
5609 	struct mbuf		*m;
5610 	int			i;
5611 
5612 	aprint_debug_dev(sc->bnx_dev,
5613 	    "----------------------------"
5614 	    "  rx mbuf data  "
5615 	    "----------------------------\n");
5616 
5617 	for (i = 0; i < count; i++) {
5618 	 	m = sc->rx_mbuf_ptr[chain_prod];
5619 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5620 		bnx_dump_mbuf(sc, m);
5621 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5622 	}
5623 
5624 
5625 	aprint_debug_dev(sc->bnx_dev,
5626 	    "--------------------------------------------"
5627 	    "----------------------------\n");
5628 }
5629 
5630 void
5631 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5632 {
5633 	if (idx > MAX_TX_BD)
5634 		/* Index out of range. */
5635 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5636 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5637 		/* TX Chain page pointer. */
5638 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5639 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5640 		    txbd->tx_bd_haddr_lo);
5641 	else
5642 		/* Normal tx_bd entry. */
5643 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5644 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5645 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5646 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5647 		    txbd->tx_bd_flags);
5648 }
5649 
5650 void
5651 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5652 {
5653 	if (idx > MAX_RX_BD)
5654 		/* Index out of range. */
5655 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5656 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5657 		/* TX Chain page pointer. */
5658 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5659 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5660 		    rxbd->rx_bd_haddr_lo);
5661 	else
5662 		/* Normal tx_bd entry. */
5663 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5664 		    "0x%08X, flags = 0x%08X\n", idx,
5665 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5666 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5667 }
5668 
5669 void
5670 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5671 {
5672 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5673 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5674 	    "tcp_udp_xsum = 0x%04X\n", idx,
5675 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5676 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5677 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5678 }
5679 
5680 /*
5681  * This routine prints the TX chain.
5682  */
5683 void
5684 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5685 {
5686 	struct tx_bd		*txbd;
5687 	int			i;
5688 
5689 	/* First some info about the tx_bd chain structure. */
5690 	aprint_debug_dev(sc->bnx_dev,
5691 	    "----------------------------"
5692 	    "  tx_bd  chain  "
5693 	    "----------------------------\n");
5694 
5695 	BNX_PRINTF(sc,
5696 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5697 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5698 
5699 	BNX_PRINTF(sc,
5700 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5701 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5702 
5703 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5704 
5705 	aprint_error_dev(sc->bnx_dev, ""
5706 	    "-----------------------------"
5707 	    "   tx_bd data   "
5708 	    "-----------------------------\n");
5709 
5710 	/* Now print out the tx_bd's themselves. */
5711 	for (i = 0; i < count; i++) {
5712 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5713 		bnx_dump_txbd(sc, tx_prod, txbd);
5714 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5715 	}
5716 
5717 	aprint_debug_dev(sc->bnx_dev,
5718 	    "-----------------------------"
5719 	    "--------------"
5720 	    "-----------------------------\n");
5721 }
5722 
5723 /*
5724  * This routine prints the RX chain.
5725  */
5726 void
5727 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5728 {
5729 	struct rx_bd		*rxbd;
5730 	int			i;
5731 
5732 	/* First some info about the tx_bd chain structure. */
5733 	aprint_debug_dev(sc->bnx_dev,
5734 	    "----------------------------"
5735 	    "  rx_bd  chain  "
5736 	    "----------------------------\n");
5737 
5738 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5739 
5740 	BNX_PRINTF(sc,
5741 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5742 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5743 
5744 	BNX_PRINTF(sc,
5745 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5746 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5747 
5748 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5749 
5750 	aprint_error_dev(sc->bnx_dev,
5751 	    "----------------------------"
5752 	    "   rx_bd data   "
5753 	    "----------------------------\n");
5754 
5755 	/* Now print out the rx_bd's themselves. */
5756 	for (i = 0; i < count; i++) {
5757 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5758 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5759 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5760 	}
5761 
5762 	aprint_debug_dev(sc->bnx_dev,
5763 	    "----------------------------"
5764 	    "--------------"
5765 	    "----------------------------\n");
5766 }
5767 
5768 /*
5769  * This routine prints the status block.
5770  */
5771 void
5772 bnx_dump_status_block(struct bnx_softc *sc)
5773 {
5774 	struct status_block	*sblk;
5775 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5776 	    BUS_DMASYNC_POSTREAD);
5777 
5778 	sblk = sc->status_block;
5779 
5780    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5781 	    "-----------------------------\n");
5782 
5783 	BNX_PRINTF(sc,
5784 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5785 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5786 	    sblk->status_idx);
5787 
5788 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5789 	    sblk->status_rx_quick_consumer_index0,
5790 	    sblk->status_tx_quick_consumer_index0);
5791 
5792 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5793 
5794 	/* Theses indices are not used for normal L2 drivers. */
5795 	if (sblk->status_rx_quick_consumer_index1 ||
5796 		sblk->status_tx_quick_consumer_index1)
5797 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5798 		    sblk->status_rx_quick_consumer_index1,
5799 		    sblk->status_tx_quick_consumer_index1);
5800 
5801 	if (sblk->status_rx_quick_consumer_index2 ||
5802 		sblk->status_tx_quick_consumer_index2)
5803 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5804 		    sblk->status_rx_quick_consumer_index2,
5805 		    sblk->status_tx_quick_consumer_index2);
5806 
5807 	if (sblk->status_rx_quick_consumer_index3 ||
5808 		sblk->status_tx_quick_consumer_index3)
5809 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5810 		    sblk->status_rx_quick_consumer_index3,
5811 		    sblk->status_tx_quick_consumer_index3);
5812 
5813 	if (sblk->status_rx_quick_consumer_index4 ||
5814 		sblk->status_rx_quick_consumer_index5)
5815 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5816 		    sblk->status_rx_quick_consumer_index4,
5817 		    sblk->status_rx_quick_consumer_index5);
5818 
5819 	if (sblk->status_rx_quick_consumer_index6 ||
5820 		sblk->status_rx_quick_consumer_index7)
5821 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5822 		    sblk->status_rx_quick_consumer_index6,
5823 		    sblk->status_rx_quick_consumer_index7);
5824 
5825 	if (sblk->status_rx_quick_consumer_index8 ||
5826 		sblk->status_rx_quick_consumer_index9)
5827 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5828 		    sblk->status_rx_quick_consumer_index8,
5829 		    sblk->status_rx_quick_consumer_index9);
5830 
5831 	if (sblk->status_rx_quick_consumer_index10 ||
5832 		sblk->status_rx_quick_consumer_index11)
5833 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5834 		    sblk->status_rx_quick_consumer_index10,
5835 		    sblk->status_rx_quick_consumer_index11);
5836 
5837 	if (sblk->status_rx_quick_consumer_index12 ||
5838 		sblk->status_rx_quick_consumer_index13)
5839 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5840 		    sblk->status_rx_quick_consumer_index12,
5841 		    sblk->status_rx_quick_consumer_index13);
5842 
5843 	if (sblk->status_rx_quick_consumer_index14 ||
5844 		sblk->status_rx_quick_consumer_index15)
5845 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5846 		    sblk->status_rx_quick_consumer_index14,
5847 		    sblk->status_rx_quick_consumer_index15);
5848 
5849 	if (sblk->status_completion_producer_index ||
5850 		sblk->status_cmd_consumer_index)
5851 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5852 		    sblk->status_completion_producer_index,
5853 		    sblk->status_cmd_consumer_index);
5854 
5855 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5856 	    "-----------------------------\n");
5857 }
5858 
5859 /*
5860  * This routine prints the statistics block.
5861  */
5862 void
5863 bnx_dump_stats_block(struct bnx_softc *sc)
5864 {
5865 	struct statistics_block	*sblk;
5866 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5867 	    BUS_DMASYNC_POSTREAD);
5868 
5869 	sblk = sc->stats_block;
5870 
5871 	aprint_debug_dev(sc->bnx_dev, ""
5872 	    "-----------------------------"
5873 	    " Stats  Block "
5874 	    "-----------------------------\n");
5875 
5876 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5877 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5878 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5879 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5880 
5881 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5882 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5883 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5884 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5885 
5886 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5887 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5888 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5889 	    sblk->stat_IfHCInMulticastPkts_hi,
5890 	    sblk->stat_IfHCInMulticastPkts_lo);
5891 
5892 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5893 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5894 	    sblk->stat_IfHCInBroadcastPkts_hi,
5895 	    sblk->stat_IfHCInBroadcastPkts_lo,
5896 	    sblk->stat_IfHCOutUcastPkts_hi,
5897 	    sblk->stat_IfHCOutUcastPkts_lo);
5898 
5899 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5900 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5901 	    sblk->stat_IfHCOutMulticastPkts_hi,
5902 	    sblk->stat_IfHCOutMulticastPkts_lo,
5903 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5904 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5905 
5906 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5907 		BNX_PRINTF(sc, "0x%08X : "
5908 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5909 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5910 
5911 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5912 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5913 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5914 
5915 	if (sblk->stat_Dot3StatsFCSErrors)
5916 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5917 		    sblk->stat_Dot3StatsFCSErrors);
5918 
5919 	if (sblk->stat_Dot3StatsAlignmentErrors)
5920 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5921 		    sblk->stat_Dot3StatsAlignmentErrors);
5922 
5923 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5924 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5925 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5926 
5927 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5928 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5929 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
5930 
5931 	if (sblk->stat_Dot3StatsDeferredTransmissions)
5932 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5933 		    sblk->stat_Dot3StatsDeferredTransmissions);
5934 
5935 	if (sblk->stat_Dot3StatsExcessiveCollisions)
5936 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5937 		    sblk->stat_Dot3StatsExcessiveCollisions);
5938 
5939 	if (sblk->stat_Dot3StatsLateCollisions)
5940 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5941 		    sblk->stat_Dot3StatsLateCollisions);
5942 
5943 	if (sblk->stat_EtherStatsCollisions)
5944 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5945 		    sblk->stat_EtherStatsCollisions);
5946 
5947 	if (sblk->stat_EtherStatsFragments)
5948 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5949 		    sblk->stat_EtherStatsFragments);
5950 
5951 	if (sblk->stat_EtherStatsJabbers)
5952 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5953 		    sblk->stat_EtherStatsJabbers);
5954 
5955 	if (sblk->stat_EtherStatsUndersizePkts)
5956 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5957 		    sblk->stat_EtherStatsUndersizePkts);
5958 
5959 	if (sblk->stat_EtherStatsOverrsizePkts)
5960 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5961 		    sblk->stat_EtherStatsOverrsizePkts);
5962 
5963 	if (sblk->stat_EtherStatsPktsRx64Octets)
5964 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5965 		    sblk->stat_EtherStatsPktsRx64Octets);
5966 
5967 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5968 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5969 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5970 
5971 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5972 		BNX_PRINTF(sc, "0x%08X : "
5973 		    "EtherStatsPktsRx128Octetsto255Octets\n",
5974 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5975 
5976 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5977 		BNX_PRINTF(sc, "0x%08X : "
5978 		    "EtherStatsPktsRx256Octetsto511Octets\n",
5979 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5980 
5981 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5982 		BNX_PRINTF(sc, "0x%08X : "
5983 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
5984 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5985 
5986 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5987 		BNX_PRINTF(sc, "0x%08X : "
5988 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
5989 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5990 
5991 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5992 		BNX_PRINTF(sc, "0x%08X : "
5993 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
5994 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5995 
5996 	if (sblk->stat_EtherStatsPktsTx64Octets)
5997 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5998 		    sblk->stat_EtherStatsPktsTx64Octets);
5999 
6000 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6001 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6002 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6003 
6004 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6005 		BNX_PRINTF(sc, "0x%08X : "
6006 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6007 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6008 
6009 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6010 		BNX_PRINTF(sc, "0x%08X : "
6011 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6012 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6013 
6014 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6015 		BNX_PRINTF(sc, "0x%08X : "
6016 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6017 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6018 
6019 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6020 		BNX_PRINTF(sc, "0x%08X : "
6021 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6022 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6023 
6024 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6025 		BNX_PRINTF(sc, "0x%08X : "
6026 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6027 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6028 
6029 	if (sblk->stat_XonPauseFramesReceived)
6030 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6031 		    sblk->stat_XonPauseFramesReceived);
6032 
6033 	if (sblk->stat_XoffPauseFramesReceived)
6034 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6035 		    sblk->stat_XoffPauseFramesReceived);
6036 
6037 	if (sblk->stat_OutXonSent)
6038 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6039 		    sblk->stat_OutXonSent);
6040 
6041 	if (sblk->stat_OutXoffSent)
6042 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6043 		    sblk->stat_OutXoffSent);
6044 
6045 	if (sblk->stat_FlowControlDone)
6046 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6047 		    sblk->stat_FlowControlDone);
6048 
6049 	if (sblk->stat_MacControlFramesReceived)
6050 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6051 		    sblk->stat_MacControlFramesReceived);
6052 
6053 	if (sblk->stat_XoffStateEntered)
6054 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6055 		    sblk->stat_XoffStateEntered);
6056 
6057 	if (sblk->stat_IfInFramesL2FilterDiscards)
6058 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6059 		    sblk->stat_IfInFramesL2FilterDiscards);
6060 
6061 	if (sblk->stat_IfInRuleCheckerDiscards)
6062 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6063 		    sblk->stat_IfInRuleCheckerDiscards);
6064 
6065 	if (sblk->stat_IfInFTQDiscards)
6066 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6067 		    sblk->stat_IfInFTQDiscards);
6068 
6069 	if (sblk->stat_IfInMBUFDiscards)
6070 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6071 		    sblk->stat_IfInMBUFDiscards);
6072 
6073 	if (sblk->stat_IfInRuleCheckerP4Hit)
6074 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6075 		    sblk->stat_IfInRuleCheckerP4Hit);
6076 
6077 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6078 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6079 		    sblk->stat_CatchupInRuleCheckerDiscards);
6080 
6081 	if (sblk->stat_CatchupInFTQDiscards)
6082 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6083 		    sblk->stat_CatchupInFTQDiscards);
6084 
6085 	if (sblk->stat_CatchupInMBUFDiscards)
6086 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6087 		    sblk->stat_CatchupInMBUFDiscards);
6088 
6089 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6090 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6091 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6092 
6093 	aprint_debug_dev(sc->bnx_dev,
6094 	    "-----------------------------"
6095 	    "--------------"
6096 	    "-----------------------------\n");
6097 }
6098 
6099 void
6100 bnx_dump_driver_state(struct bnx_softc *sc)
6101 {
6102 	aprint_debug_dev(sc->bnx_dev,
6103 	    "-----------------------------"
6104 	    " Driver State "
6105 	    "-----------------------------\n");
6106 
6107 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6108 	    "address\n", sc);
6109 
6110 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6111 	    sc->status_block);
6112 
6113 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6114 	    "address\n", sc->stats_block);
6115 
6116 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6117 	    "adddress\n", sc->tx_bd_chain);
6118 
6119 #if 0
6120 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6121 	    sc->rx_bd_chain);
6122 
6123 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6124 	    sc->tx_mbuf_ptr);
6125 #endif
6126 
6127 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6128 	    sc->rx_mbuf_ptr);
6129 
6130 	BNX_PRINTF(sc,
6131 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6132 	    sc->interrupts_generated);
6133 
6134 	BNX_PRINTF(sc,
6135 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6136 	    sc->rx_interrupts);
6137 
6138 	BNX_PRINTF(sc,
6139 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6140 	    sc->tx_interrupts);
6141 
6142 	BNX_PRINTF(sc,
6143 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6144 	    sc->last_status_idx);
6145 
6146 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6147 	    sc->tx_prod);
6148 
6149 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6150 	    sc->tx_cons);
6151 
6152 	BNX_PRINTF(sc,
6153 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6154 	    sc->tx_prod_bseq);
6155 	BNX_PRINTF(sc,
6156 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6157 	    sc->tx_mbuf_alloc);
6158 
6159 	BNX_PRINTF(sc,
6160 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6161 	    sc->used_tx_bd);
6162 
6163 	BNX_PRINTF(sc,
6164 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6165 	    sc->tx_hi_watermark, sc->max_tx_bd);
6166 
6167 
6168 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6169 	    sc->rx_prod);
6170 
6171 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6172 	    sc->rx_cons);
6173 
6174 	BNX_PRINTF(sc,
6175 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6176 	    sc->rx_prod_bseq);
6177 
6178 	BNX_PRINTF(sc,
6179 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6180 	    sc->rx_mbuf_alloc);
6181 
6182 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6183 	    sc->free_rx_bd);
6184 
6185 	BNX_PRINTF(sc,
6186 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6187 	    sc->rx_low_watermark, sc->max_rx_bd);
6188 
6189 	BNX_PRINTF(sc,
6190 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6191 	    "mbuf alloc failures\n",
6192 	    sc->mbuf_alloc_failed);
6193 
6194 	BNX_PRINTF(sc,
6195 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6196 	    "simulated mbuf alloc failures\n",
6197 	    sc->mbuf_sim_alloc_failed);
6198 
6199 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6200 	    "-----------------------------\n");
6201 }
6202 
6203 void
6204 bnx_dump_hw_state(struct bnx_softc *sc)
6205 {
6206 	u_int32_t		val1;
6207 	int			i;
6208 
6209 	aprint_debug_dev(sc->bnx_dev,
6210 	    "----------------------------"
6211 	    " Hardware State "
6212 	    "----------------------------\n");
6213 
6214 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6215 
6216 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6217 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6218 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6219 
6220 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6221 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6222 
6223 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6224 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6225 
6226 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6227 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6228 	    BNX_EMAC_STATUS);
6229 
6230 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6231 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6232 
6233 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6234 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6235 	    BNX_TBDR_STATUS);
6236 
6237 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6238 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6239 	    BNX_TDMA_STATUS);
6240 
6241 	val1 = REG_RD(sc, BNX_HC_STATUS);
6242 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6243 
6244 	aprint_debug_dev(sc->bnx_dev,
6245 	    "----------------------------"
6246 	    "----------------"
6247 	    "----------------------------\n");
6248 
6249 	aprint_debug_dev(sc->bnx_dev,
6250 	    "----------------------------"
6251 	    " Register  Dump "
6252 	    "----------------------------\n");
6253 
6254 	for (i = 0x400; i < 0x8000; i += 0x10)
6255 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6256 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6257 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6258 
6259 	aprint_debug_dev(sc->bnx_dev,
6260 	    "----------------------------"
6261 	    "----------------"
6262 	    "----------------------------\n");
6263 }
6264 
6265 void
6266 bnx_breakpoint(struct bnx_softc *sc)
6267 {
6268 	/* Unreachable code to shut the compiler up about unused functions. */
6269 	if (0) {
6270    		bnx_dump_txbd(sc, 0, NULL);
6271 		bnx_dump_rxbd(sc, 0, NULL);
6272 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6273 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6274 		bnx_dump_l2fhdr(sc, 0, NULL);
6275 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6276 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6277 		bnx_dump_status_block(sc);
6278 		bnx_dump_stats_block(sc);
6279 		bnx_dump_driver_state(sc);
6280 		bnx_dump_hw_state(sc);
6281 	}
6282 
6283 	bnx_dump_driver_state(sc);
6284 	/* Print the important status block fields. */
6285 	bnx_dump_status_block(sc);
6286 
6287 #if 0
6288 	/* Call the debugger. */
6289 	breakpoint();
6290 #endif
6291 
6292 	return;
6293 }
6294 #endif
6295