xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 46f5119e40af2e51998f686b2fdcc76b5488f7f3)
1 /*	$NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *
52  *   BCM5706C A0, A1
53  *   BCM5706S A0, A1
54  *   BCM5708C A0, B0
55  *   BCM5708S A0, B0
56  *   BCM5709C A0  B0, B1, B2 (pre-production)
57  *   BCM5709S A0, B0, B1, B2 (pre-production)
58  */
59 
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62 
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65 
66 #include <dev/microcode/bnx/bnxfw.h>
67 
68 /****************************************************************************/
69 /* BNX Driver Version                                                       */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION	"v0.9.6"
72 
73 /****************************************************************************/
74 /* BNX Debug Options                                                        */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78 
79 	/*          0 = Never              */
80 	/*          1 = 1 in 2,147,483,648 */
81 	/*        256 = 1 in     8,388,608 */
82 	/*       2048 = 1 in     1,048,576 */
83 	/*      65536 = 1 in        32,768 */
84 	/*    1048576 = 1 in         2,048 */
85 	/*  268435456 =	1 in             8 */
86 	/*  536870912 = 1 in             4 */
87 	/* 1073741824 = 1 in             2 */
88 
89 	/* Controls how often the l2_fhdr frame error check will fail. */
90 	int bnx_debug_l2fhdr_status_check = 0;
91 
92 	/* Controls how often the unexpected attention check will fail. */
93 	int bnx_debug_unexpected_attention = 0;
94 
95 	/* Controls how often to simulate an mbuf allocation failure. */
96 	int bnx_debug_mbuf_allocation_failure = 0;
97 
98 	/* Controls how often to simulate a DMA mapping failure. */
99 	int bnx_debug_dma_map_addr_failure = 0;
100 
101 	/* Controls how often to simulate a bootcode failure. */
102 	int bnx_debug_bootcode_running_failure = 0;
103 #endif
104 
105 /****************************************************************************/
106 /* PCI Device ID Table                                                      */
107 /*                                                                          */
108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
109 /****************************************************************************/
110 static const struct bnx_product {
111 	pci_vendor_id_t		bp_vendor;
112 	pci_product_id_t	bp_product;
113 	pci_vendor_id_t		bp_subvendor;
114 	pci_product_id_t	bp_subproduct;
115 	const char		*bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 	{
119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 	  "HP NC370T Multifunction Gigabit Server Adapter"
122 	},
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 	{
126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 	  "HP NC370i Multifunction Gigabit Server Adapter"
129 	},
130 #endif
131 	{
132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 	  0, 0,
134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
135 	},
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 	{
138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 	  "HP NC370F Multifunction Gigabit Server Adapter"
141 	},
142 #endif
143 	{
144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 	  0, 0,
146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 	},
148 	{
149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 	  0, 0,
151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
152 	},
153 	{
154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 	  0, 0,
156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 	},
158 	{
159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 	  0, 0,
161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
162 	},
163 	{
164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 	  0, 0,
166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 	},
168 	{
169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 	  0, 0,
171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
172 	},
173 	{
174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 	  0, 0,
176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 	},
178 };
179 
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data.                                       */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
187 	/* Slow EEPROM */
188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 	 "EEPROM - slow"},
192 	/* Expansion entry 0001 */
193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 	 "Entry 0001"},
197 	/* Saifun SA25F010 (non-buffered flash) */
198 	/* strap, cfg1, & write1 need updates */
199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 	 "Non-buffered flash (128kB)"},
203 	/* Saifun SA25F020 (non-buffered flash) */
204 	/* strap, cfg1, & write1 need updates */
205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 	 "Non-buffered flash (256kB)"},
209 	/* Expansion entry 0100 */
210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 	 "Entry 0100"},
214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 	/* Saifun SA25F005 (non-buffered flash) */
225 	/* strap, cfg1, & write1 need updates */
226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 	 "Non-buffered flash (64kB)"},
230 	/* Fast EEPROM */
231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 	 "EEPROM - fast"},
235 	/* Expansion entry 1001 */
236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 	 "Entry 1001"},
240 	/* Expansion entry 1010 */
241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 	 "Entry 1010"},
245 	/* ATMEL AT45DB011B (buffered flash) */
246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 	 "Buffered flash (128kB)"},
250 	/* Expansion entry 1100 */
251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 	 "Entry 1100"},
255 	/* Expansion entry 1101 */
256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 	 "Entry 1101"},
260 	/* Ateml Expansion entry 1110 */
261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 	 "Entry 1110 (Atmel)"},
265 	/* ATMEL AT45DB021B (buffered flash) */
266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 	 "Buffered flash (256kB)"},
270 };
271 
272 /*
273  * The BCM5709 controllers transparently handle the
274  * differences between Atmel 264 byte pages and all
275  * flash devices which use 256 byte pages, so no
276  * logical-to-physical mapping is required in the
277  * driver.
278  */
279 static struct flash_spec flash_5709 = {
280 	.flags		= BNX_NV_BUFFERED,
281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
285 	.name		= "5709 buffered flash (256kB)",
286 };
287 
288 /****************************************************************************/
289 /* OpenBSD device entry points.                                             */
290 /****************************************************************************/
291 static int	bnx_probe(device_t, cfdata_t, void *);
292 void	bnx_attach(device_t, device_t, void *);
293 int	bnx_detach(device_t, int);
294 
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines                                   */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void	bnx_dump_status_block(struct bnx_softc *);
308 void	bnx_dump_stats_block(struct bnx_softc *);
309 void	bnx_dump_driver_state(struct bnx_softc *);
310 void	bnx_dump_hw_state(struct bnx_softc *);
311 void	bnx_breakpoint(struct bnx_softc *);
312 #endif
313 
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines                                      */
316 /****************************************************************************/
317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int	bnx_miibus_read_reg(device_t, int, int);
321 void	bnx_miibus_write_reg(device_t, int, int, int);
322 void	bnx_miibus_statchg(device_t);
323 
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines                                                */
326 /****************************************************************************/
327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
328 int	bnx_release_nvram_lock(struct bnx_softc *);
329 void	bnx_enable_nvram_access(struct bnx_softc *);
330 void	bnx_disable_nvram_access(struct bnx_softc *);
331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 	    u_int32_t);
333 int	bnx_init_nvram(struct bnx_softc *);
334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int	bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int	bnx_enable_nvram_write(struct bnx_softc *);
338 void	bnx_disable_nvram_write(struct bnx_softc *);
339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 	    u_int32_t);
342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344 
345 /****************************************************************************/
346 /*                                                                          */
347 /****************************************************************************/
348 void	bnx_get_media(struct bnx_softc *);
349 void	bnx_init_media(struct bnx_softc *);
350 int	bnx_dma_alloc(struct bnx_softc *);
351 void	bnx_dma_free(struct bnx_softc *);
352 void	bnx_release_resources(struct bnx_softc *);
353 
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load                                    */
356 /****************************************************************************/
357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 	    u_int32_t);
360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 	    struct fw_info *);
362 void	bnx_init_cpus(struct bnx_softc *);
363 
364 void	bnx_stop(struct ifnet *, int);
365 int	bnx_reset(struct bnx_softc *, u_int32_t);
366 int	bnx_chipinit(struct bnx_softc *);
367 int	bnx_blockinit(struct bnx_softc *);
368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 	    u_int16_t *, u_int32_t *);
370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371 
372 int	bnx_init_tx_chain(struct bnx_softc *);
373 void	bnx_init_tx_context(struct bnx_softc *);
374 int	bnx_init_rx_chain(struct bnx_softc *);
375 void	bnx_init_rx_context(struct bnx_softc *);
376 void	bnx_free_rx_chain(struct bnx_softc *);
377 void	bnx_free_tx_chain(struct bnx_softc *);
378 
379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void	bnx_start(struct ifnet *);
381 int	bnx_ioctl(struct ifnet *, u_long, void *);
382 void	bnx_watchdog(struct ifnet *);
383 int	bnx_init(struct ifnet *);
384 
385 void	bnx_init_context(struct bnx_softc *);
386 void	bnx_get_mac_addr(struct bnx_softc *);
387 void	bnx_set_mac_addr(struct bnx_softc *);
388 void	bnx_phy_intr(struct bnx_softc *);
389 void	bnx_rx_intr(struct bnx_softc *);
390 void	bnx_tx_intr(struct bnx_softc *);
391 void	bnx_disable_intr(struct bnx_softc *);
392 void	bnx_enable_intr(struct bnx_softc *);
393 
394 int	bnx_intr(void *);
395 void	bnx_iff(struct bnx_softc *);
396 void	bnx_stats_update(struct bnx_softc *);
397 void	bnx_tick(void *);
398 
399 struct pool *bnx_tx_pool = NULL;
400 int	bnx_alloc_pkts(struct bnx_softc *);
401 
402 /****************************************************************************/
403 /* OpenBSD device dispatch table.                                           */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407 
408 /****************************************************************************/
409 /* Device probe function.                                                   */
410 /*                                                                          */
411 /* Compares the device to the driver's list of supported devices and        */
412 /* reports back to the OS whether this is the right driver for the device.  */
413 /*                                                                          */
414 /* Returns:                                                                 */
415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 	int i;
421 	pcireg_t subid;
422 
423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 			continue;
427 		if (!bnx_devices[i].bp_subvendor)
428 			return &bnx_devices[i];
429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 			return &bnx_devices[i];
433 	}
434 
435 	return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441 
442 	if (bnx_lookup(pa) != NULL)
443 		return (1);
444 
445 	return (0);
446 }
447 
448 /****************************************************************************/
449 /* Device attach function.                                                  */
450 /*                                                                          */
451 /* Allocates device resources, performs secondary chip identification,      */
452 /* resets and initializes the hardware, and initializes driver instance     */
453 /* variables.                                                               */
454 /*                                                                          */
455 /* Returns:                                                                 */
456 /*   0 on success, positive value on failure.                               */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 	const struct bnx_product *bp;
462 	struct bnx_softc	*sc = device_private(self);
463 	prop_dictionary_t	dict;
464 	struct pci_attach_args	*pa = aux;
465 	pci_chipset_tag_t	pc = pa->pa_pc;
466 	pci_intr_handle_t	ih;
467 	const char 		*intrstr = NULL;
468 	u_int32_t		command;
469 	struct ifnet		*ifp;
470 	u_int32_t		val;
471 	int			mii_flags = MIIF_FORCEANEG;
472 	pcireg_t		memtype;
473 
474 	if (bnx_tx_pool == NULL) {
475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 		if (bnx_tx_pool != NULL) {
477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 		} else {
480 			aprint_error(": can't alloc bnx_tx_pool\n");
481 			return;
482 		}
483 	}
484 
485 	bp = bnx_lookup(pa);
486 	if (bp == NULL)
487 		panic("unknown device");
488 
489 	sc->bnx_dev = self;
490 
491 	aprint_naive("\n");
492 	aprint_normal(": %s\n", bp->bp_name);
493 
494 	sc->bnx_pa = *pa;
495 
496 	/*
497 	 * Map control/status registers.
498 	*/
499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503 
504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 		aprint_error_dev(sc->bnx_dev,
506 		    "failed to enable memory mapping!\n");
507 		return;
508 	}
509 
510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 		return;
515 	}
516 
517 	if (pci_intr_map(pa, &ih)) {
518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 		goto bnx_attach_fail;
520 	}
521 
522 	intrstr = pci_intr_string(pc, ih);
523 
524 	/*
525 	 * Configure byte swap and enable indirect register access.
526 	 * Rely on CPU to do target byte swapping on big endian systems.
527 	 * Access to registers outside of PCI configurtion space are not
528 	 * valid until this is done.
529 	 */
530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533 
534 	/* Save ASIC revsion info. */
535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
536 
537 	/*
538 	 * Find the base address for shared memory access.
539 	 * Newer versions of bootcode use a signature and offset
540 	 * while older versions use a fixed address.
541 	 */
542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 		    (sc->bnx_pa.pa_function << 2));
546 	else
547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548 
549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550 
551 	/* Set initial device and PHY flags */
552 	sc->bnx_flags = 0;
553 	sc->bnx_phy_flags = 0;
554 
555 	/* Get PCI bus information (speed and type). */
556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 		u_int32_t clkreg;
559 
560 		sc->bnx_flags |= BNX_PCIX_FLAG;
561 
562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563 
564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 		switch (clkreg) {
566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 			sc->bus_speed_mhz = 133;
568 			break;
569 
570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 			sc->bus_speed_mhz = 100;
572 			break;
573 
574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 			sc->bus_speed_mhz = 66;
577 			break;
578 
579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 			sc->bus_speed_mhz = 50;
582 			break;
583 
584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 			sc->bus_speed_mhz = 33;
588 			break;
589 		}
590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 			sc->bus_speed_mhz = 66;
592 		else
593 			sc->bus_speed_mhz = 33;
594 
595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597 
598 	/* Reset the controller. */
599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 		goto bnx_attach_fail;
601 
602 	/* Initialize the controller. */
603 	if (bnx_chipinit(sc)) {
604 		aprint_error_dev(sc->bnx_dev,
605 		    "Controller initialization failed!\n");
606 		goto bnx_attach_fail;
607 	}
608 
609 	/* Perform NVRAM test. */
610 	if (bnx_nvram_test(sc)) {
611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 		goto bnx_attach_fail;
613 	}
614 
615 	/* Fetch the permanent Ethernet MAC address. */
616 	bnx_get_mac_addr(sc);
617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 	    ether_sprintf(sc->eaddr));
619 
620 	/*
621 	 * Trip points control how many BDs
622 	 * should be ready before generating an
623 	 * interrupt while ticks control how long
624 	 * a BD can sit in the chain before
625 	 * generating an interrupt.  Set the default
626 	 * values for the RX and TX rings.
627 	 */
628 
629 #ifdef BNX_DEBUG
630 	/* Force more frequent interrupts. */
631 	sc->bnx_tx_quick_cons_trip_int = 1;
632 	sc->bnx_tx_quick_cons_trip     = 1;
633 	sc->bnx_tx_ticks_int           = 0;
634 	sc->bnx_tx_ticks               = 0;
635 
636 	sc->bnx_rx_quick_cons_trip_int = 1;
637 	sc->bnx_rx_quick_cons_trip     = 1;
638 	sc->bnx_rx_ticks_int           = 0;
639 	sc->bnx_rx_ticks               = 0;
640 #else
641 	sc->bnx_tx_quick_cons_trip_int = 20;
642 	sc->bnx_tx_quick_cons_trip     = 20;
643 	sc->bnx_tx_ticks_int           = 80;
644 	sc->bnx_tx_ticks               = 80;
645 
646 	sc->bnx_rx_quick_cons_trip_int = 6;
647 	sc->bnx_rx_quick_cons_trip     = 6;
648 	sc->bnx_rx_ticks_int           = 18;
649 	sc->bnx_rx_ticks               = 18;
650 #endif
651 
652 	/* Update statistics once every second. */
653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
654 
655 	/* Find the media type for the adapter. */
656 	bnx_get_media(sc);
657 
658 	/*
659 	 * Store config data needed by the PHY driver for
660 	 * backplane applications
661 	 */
662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 	    BNX_SHARED_HW_CFG_CONFIG);
664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 	    BNX_PORT_HW_CFG_CONFIG);
666 
667 	/* Allocate DMA memory resources. */
668 	sc->bnx_dmatag = pa->pa_dmat;
669 	if (bnx_dma_alloc(sc)) {
670 		aprint_error_dev(sc->bnx_dev,
671 		    "DMA resource allocation failed!\n");
672 		goto bnx_attach_fail;
673 	}
674 
675 	/* Initialize the ifnet interface. */
676 	ifp = &sc->bnx_ec.ec_if;
677 	ifp->if_softc = sc;
678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 	ifp->if_ioctl = bnx_ioctl;
680 	ifp->if_stop = bnx_stop;
681 	ifp->if_start = bnx_start;
682 	ifp->if_init = bnx_init;
683 	ifp->if_timer = 0;
684 	ifp->if_watchdog = bnx_watchdog;
685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 	IFQ_SET_READY(&ifp->if_snd);
687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688 
689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691 
692 	ifp->if_capabilities |=
693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696 
697 	/* Hookup IRQ last. */
698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 	if (sc->bnx_intrhand == NULL) {
700 		aprint_error_dev(self, "couldn't establish interrupt");
701 		if (intrstr != NULL)
702 			aprint_error(" at %s", intrstr);
703 		aprint_error("\n");
704 		goto bnx_attach_fail;
705 	}
706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707 
708 	sc->bnx_mii.mii_ifp = ifp;
709 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
710 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
711 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
712 
713 	/* Handle any special PHY initialization for SerDes PHYs. */
714 	bnx_init_media(sc);
715 
716 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
717 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
718 	    ether_mediastatus);
719 
720 	/* set phyflags and chipid before mii_attach() */
721 	dict = device_properties(self);
722 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
723 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
724 
725 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
726 		mii_flags |= MIIF_HAVEFIBER;
727 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
728 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
729 
730 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
731 		aprint_error_dev(self, "no PHY found!\n");
732 		ifmedia_add(&sc->bnx_mii.mii_media,
733 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
734 		ifmedia_set(&sc->bnx_mii.mii_media,
735 		    IFM_ETHER|IFM_MANUAL);
736 	} else {
737 		ifmedia_set(&sc->bnx_mii.mii_media,
738 		    IFM_ETHER|IFM_AUTO);
739 	}
740 
741 	/* Attach to the Ethernet interface list. */
742 	if_attach(ifp);
743 	ether_ifattach(ifp,sc->eaddr);
744 
745 	callout_init(&sc->bnx_timeout, 0);
746 
747 	if (pmf_device_register(self, NULL, NULL))
748 		pmf_class_network_register(self, ifp);
749 	else
750 		aprint_error_dev(self, "couldn't establish power handler\n");
751 
752 	/* Print some important debugging info. */
753 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
754 
755 	goto bnx_attach_exit;
756 
757 bnx_attach_fail:
758 	bnx_release_resources(sc);
759 
760 bnx_attach_exit:
761 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
762 }
763 
764 /****************************************************************************/
765 /* Device detach function.                                                  */
766 /*                                                                          */
767 /* Stops the controller, resets the controller, and releases resources.     */
768 /*                                                                          */
769 /* Returns:                                                                 */
770 /*   0 on success, positive value on failure.                               */
771 /****************************************************************************/
772 int
773 bnx_detach(device_t dev, int flags)
774 {
775 	int s;
776 	struct bnx_softc *sc;
777 	struct ifnet *ifp;
778 
779 	sc = device_private(dev);
780 	ifp = &sc->bnx_ec.ec_if;
781 
782 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
783 
784 	/* Stop and reset the controller. */
785 	s = splnet();
786 	if (ifp->if_flags & IFF_RUNNING)
787 		bnx_stop(ifp, 1);
788 	else {
789 		/* Disable the transmit/receive blocks. */
790 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
791 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
792 		DELAY(20);
793 		bnx_disable_intr(sc);
794 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
795 	}
796 
797 	splx(s);
798 
799 	pmf_device_deregister(dev);
800 	callout_destroy(&sc->bnx_timeout);
801 	ether_ifdetach(ifp);
802 
803 	/* Delete all remaining media. */
804 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
805 
806 	if_detach(ifp);
807 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
808 
809 	/* Release all remaining resources. */
810 	bnx_release_resources(sc);
811 
812 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
813 
814 	return(0);
815 }
816 
817 /****************************************************************************/
818 /* Indirect register read.                                                  */
819 /*                                                                          */
820 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
821 /* configuration space.  Using this mechanism avoids issues with posted     */
822 /* reads but is much slower than memory-mapped I/O.                         */
823 /*                                                                          */
824 /* Returns:                                                                 */
825 /*   The value of the register.                                             */
826 /****************************************************************************/
827 u_int32_t
828 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
829 {
830 	struct pci_attach_args	*pa = &(sc->bnx_pa);
831 
832 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
833 	    offset);
834 #ifdef BNX_DEBUG
835 	{
836 		u_int32_t val;
837 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
838 		    BNX_PCICFG_REG_WINDOW);
839 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
840 		    "val = 0x%08X\n", __func__, offset, val);
841 		return (val);
842 	}
843 #else
844 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
845 #endif
846 }
847 
848 /****************************************************************************/
849 /* Indirect register write.                                                 */
850 /*                                                                          */
851 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
852 /* configuration space.  Using this mechanism avoids issues with posted     */
853 /* writes but is muchh slower than memory-mapped I/O.                       */
854 /*                                                                          */
855 /* Returns:                                                                 */
856 /*   Nothing.                                                               */
857 /****************************************************************************/
858 void
859 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
860 {
861 	struct pci_attach_args  *pa = &(sc->bnx_pa);
862 
863 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
864 		__func__, offset, val);
865 
866 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
867 	    offset);
868 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
869 }
870 
871 /****************************************************************************/
872 /* Context memory write.                                                    */
873 /*                                                                          */
874 /* The NetXtreme II controller uses context memory to track connection      */
875 /* information for L2 and higher network protocols.                         */
876 /*                                                                          */
877 /* Returns:                                                                 */
878 /*   Nothing.                                                               */
879 /****************************************************************************/
880 void
881 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
882     u_int32_t ctx_val)
883 {
884 	u_int32_t idx, offset = ctx_offset + cid_addr;
885 	u_int32_t val, retry_cnt = 5;
886 
887 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
888 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
889 		REG_WR(sc, BNX_CTX_CTX_CTRL,
890 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
891 
892 		for (idx = 0; idx < retry_cnt; idx++) {
893 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
894 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
895 				break;
896 			DELAY(5);
897 		}
898 
899 #if 0
900 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
901 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
902 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
903 				__FILE__, __LINE__, cid_addr, ctx_offset);
904 #endif
905 
906 	} else {
907 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
908 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
909 	}
910 }
911 
912 /****************************************************************************/
913 /* PHY register read.                                                       */
914 /*                                                                          */
915 /* Implements register reads on the MII bus.                                */
916 /*                                                                          */
917 /* Returns:                                                                 */
918 /*   The value of the register.                                             */
919 /****************************************************************************/
920 int
921 bnx_miibus_read_reg(device_t dev, int phy, int reg)
922 {
923 	struct bnx_softc	*sc = device_private(dev);
924 	u_int32_t		val;
925 	int			i;
926 
927 	/* Make sure we are accessing the correct PHY address. */
928 	if (phy != sc->bnx_phy_addr) {
929 		DBPRINT(sc, BNX_VERBOSE,
930 		    "Invalid PHY address %d for PHY read!\n", phy);
931 		return(0);
932 	}
933 
934 	/*
935 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
936 	 * with special mappings to work with IEEE
937 	 * Clause 22 register accesses.
938 	 */
939 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
940 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
941 			reg += 0x10;
942 	}
943 
944 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
945 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
946 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
947 
948 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
949 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
950 
951 		DELAY(40);
952 	}
953 
954 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
955 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
956 	    BNX_EMAC_MDIO_COMM_START_BUSY;
957 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
958 
959 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
960 		DELAY(10);
961 
962 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
963 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
964 			DELAY(5);
965 
966 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
967 			val &= BNX_EMAC_MDIO_COMM_DATA;
968 
969 			break;
970 		}
971 	}
972 
973 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
974 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
975 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
976 		val = 0x0;
977 	} else
978 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
979 
980 	DBPRINT(sc, BNX_EXCESSIVE,
981 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
982 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
983 
984 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
985 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
986 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
987 
988 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
989 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
990 
991 		DELAY(40);
992 	}
993 
994 	return (val & 0xffff);
995 }
996 
997 /****************************************************************************/
998 /* PHY register write.                                                      */
999 /*                                                                          */
1000 /* Implements register writes on the MII bus.                               */
1001 /*                                                                          */
1002 /* Returns:                                                                 */
1003 /*   The value of the register.                                             */
1004 /****************************************************************************/
1005 void
1006 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1007 {
1008 	struct bnx_softc	*sc = device_private(dev);
1009 	u_int32_t		val1;
1010 	int			i;
1011 
1012 	/* Make sure we are accessing the correct PHY address. */
1013 	if (phy != sc->bnx_phy_addr) {
1014 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1015 		    phy);
1016 		return;
1017 	}
1018 
1019 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1020 	    "val = 0x%04X\n", __func__,
1021 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1022 
1023 	/*
1024 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1025 	 * with special mappings to work with IEEE
1026 	 * Clause 22 register accesses.
1027 	 */
1028 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1029 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1030 			reg += 0x10;
1031 	}
1032 
1033 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1034 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1035 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1036 
1037 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1038 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1039 
1040 		DELAY(40);
1041 	}
1042 
1043 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1044 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1045 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1046 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1047 
1048 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1049 		DELAY(10);
1050 
1051 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1052 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1053 			DELAY(5);
1054 			break;
1055 		}
1056 	}
1057 
1058 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1059 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1060 		    __LINE__);
1061 	}
1062 
1063 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1064 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1065 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1066 
1067 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1068 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1069 
1070 		DELAY(40);
1071 	}
1072 }
1073 
1074 /****************************************************************************/
1075 /* MII bus status change.                                                   */
1076 /*                                                                          */
1077 /* Called by the MII bus driver when the PHY establishes link to set the    */
1078 /* MAC interface registers.                                                 */
1079 /*                                                                          */
1080 /* Returns:                                                                 */
1081 /*   Nothing.                                                               */
1082 /****************************************************************************/
1083 void
1084 bnx_miibus_statchg(device_t dev)
1085 {
1086 	struct bnx_softc	*sc = device_private(dev);
1087 	struct mii_data		*mii = &sc->bnx_mii;
1088 	int			val;
1089 
1090 	val = REG_RD(sc, BNX_EMAC_MODE);
1091 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1092 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1093 	    BNX_EMAC_MODE_25G);
1094 
1095 	/* Set MII or GMII interface based on the speed
1096 	 * negotiated by the PHY.
1097 	 */
1098 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1099 	case IFM_10_T:
1100 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1101 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1102 			val |= BNX_EMAC_MODE_PORT_MII_10;
1103 			break;
1104 		}
1105 		/* FALLTHROUGH */
1106 	case IFM_100_TX:
1107 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1108 		val |= BNX_EMAC_MODE_PORT_MII;
1109 		break;
1110 	case IFM_2500_SX:
1111 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1112 		val |= BNX_EMAC_MODE_25G;
1113 		/* FALLTHROUGH */
1114 	case IFM_1000_T:
1115 	case IFM_1000_SX:
1116 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1117 		val |= BNX_EMAC_MODE_PORT_GMII;
1118 		break;
1119 	default:
1120 		val |= BNX_EMAC_MODE_PORT_GMII;
1121 		break;
1122 	}
1123 
1124 	/* Set half or full duplex based on the duplicity
1125 	 * negotiated by the PHY.
1126 	 */
1127 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1128 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1129 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1130 	} else {
1131 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1132 	}
1133 
1134 	REG_WR(sc, BNX_EMAC_MODE, val);
1135 }
1136 
1137 /****************************************************************************/
1138 /* Acquire NVRAM lock.                                                      */
1139 /*                                                                          */
1140 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1141 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1142 /* for use by the driver.                                                   */
1143 /*                                                                          */
1144 /* Returns:                                                                 */
1145 /*   0 on success, positive value on failure.                               */
1146 /****************************************************************************/
1147 int
1148 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1149 {
1150 	u_int32_t		val;
1151 	int			j;
1152 
1153 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1154 
1155 	/* Request access to the flash interface. */
1156 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1157 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1158 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1159 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1160 			break;
1161 
1162 		DELAY(5);
1163 	}
1164 
1165 	if (j >= NVRAM_TIMEOUT_COUNT) {
1166 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1167 		return (EBUSY);
1168 	}
1169 
1170 	return (0);
1171 }
1172 
1173 /****************************************************************************/
1174 /* Release NVRAM lock.                                                      */
1175 /*                                                                          */
1176 /* When the caller is finished accessing NVRAM the lock must be released.   */
1177 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1178 /* for use by the driver.                                                   */
1179 /*                                                                          */
1180 /* Returns:                                                                 */
1181 /*   0 on success, positive value on failure.                               */
1182 /****************************************************************************/
1183 int
1184 bnx_release_nvram_lock(struct bnx_softc *sc)
1185 {
1186 	int			j;
1187 	u_int32_t		val;
1188 
1189 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1190 
1191 	/* Relinquish nvram interface. */
1192 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1193 
1194 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1195 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1196 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1197 			break;
1198 
1199 		DELAY(5);
1200 	}
1201 
1202 	if (j >= NVRAM_TIMEOUT_COUNT) {
1203 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1204 		return (EBUSY);
1205 	}
1206 
1207 	return (0);
1208 }
1209 
1210 #ifdef BNX_NVRAM_WRITE_SUPPORT
1211 /****************************************************************************/
1212 /* Enable NVRAM write access.                                               */
1213 /*                                                                          */
1214 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1215 /*                                                                          */
1216 /* Returns:                                                                 */
1217 /*   0 on success, positive value on failure.                               */
1218 /****************************************************************************/
1219 int
1220 bnx_enable_nvram_write(struct bnx_softc *sc)
1221 {
1222 	u_int32_t		val;
1223 
1224 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1225 
1226 	val = REG_RD(sc, BNX_MISC_CFG);
1227 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1228 
1229 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1230 		int j;
1231 
1232 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1233 		REG_WR(sc, BNX_NVM_COMMAND,
1234 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1235 
1236 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1237 			DELAY(5);
1238 
1239 			val = REG_RD(sc, BNX_NVM_COMMAND);
1240 			if (val & BNX_NVM_COMMAND_DONE)
1241 				break;
1242 		}
1243 
1244 		if (j >= NVRAM_TIMEOUT_COUNT) {
1245 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1246 			return (EBUSY);
1247 		}
1248 	}
1249 
1250 	return (0);
1251 }
1252 
1253 /****************************************************************************/
1254 /* Disable NVRAM write access.                                              */
1255 /*                                                                          */
1256 /* When the caller is finished writing to NVRAM write access must be        */
1257 /* disabled.                                                                */
1258 /*                                                                          */
1259 /* Returns:                                                                 */
1260 /*   Nothing.                                                               */
1261 /****************************************************************************/
1262 void
1263 bnx_disable_nvram_write(struct bnx_softc *sc)
1264 {
1265 	u_int32_t		val;
1266 
1267 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1268 
1269 	val = REG_RD(sc, BNX_MISC_CFG);
1270 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1271 }
1272 #endif
1273 
1274 /****************************************************************************/
1275 /* Enable NVRAM access.                                                     */
1276 /*                                                                          */
1277 /* Before accessing NVRAM for read or write operations the caller must      */
1278 /* enabled NVRAM access.                                                    */
1279 /*                                                                          */
1280 /* Returns:                                                                 */
1281 /*   Nothing.                                                               */
1282 /****************************************************************************/
1283 void
1284 bnx_enable_nvram_access(struct bnx_softc *sc)
1285 {
1286 	u_int32_t		val;
1287 
1288 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1289 
1290 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1291 	/* Enable both bits, even on read. */
1292 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1293 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1294 }
1295 
1296 /****************************************************************************/
1297 /* Disable NVRAM access.                                                    */
1298 /*                                                                          */
1299 /* When the caller is finished accessing NVRAM access must be disabled.     */
1300 /*                                                                          */
1301 /* Returns:                                                                 */
1302 /*   Nothing.                                                               */
1303 /****************************************************************************/
1304 void
1305 bnx_disable_nvram_access(struct bnx_softc *sc)
1306 {
1307 	u_int32_t		val;
1308 
1309 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1310 
1311 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1312 
1313 	/* Disable both bits, even after read. */
1314 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1315 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1316 }
1317 
1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
1319 /****************************************************************************/
1320 /* Erase NVRAM page before writing.                                         */
1321 /*                                                                          */
1322 /* Non-buffered flash parts require that a page be erased before it is      */
1323 /* written.                                                                 */
1324 /*                                                                          */
1325 /* Returns:                                                                 */
1326 /*   0 on success, positive value on failure.                               */
1327 /****************************************************************************/
1328 int
1329 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1330 {
1331 	u_int32_t		cmd;
1332 	int			j;
1333 
1334 	/* Buffered flash doesn't require an erase. */
1335 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1336 		return (0);
1337 
1338 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1339 
1340 	/* Build an erase command. */
1341 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1342 	    BNX_NVM_COMMAND_DOIT;
1343 
1344 	/*
1345 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1346 	 * and issue the erase command.
1347 	 */
1348 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1349 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1350 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1351 
1352 	/* Wait for completion. */
1353 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1354 		u_int32_t val;
1355 
1356 		DELAY(5);
1357 
1358 		val = REG_RD(sc, BNX_NVM_COMMAND);
1359 		if (val & BNX_NVM_COMMAND_DONE)
1360 			break;
1361 	}
1362 
1363 	if (j >= NVRAM_TIMEOUT_COUNT) {
1364 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1365 		return (EBUSY);
1366 	}
1367 
1368 	return (0);
1369 }
1370 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1371 
1372 /****************************************************************************/
1373 /* Read a dword (32 bits) from NVRAM.                                       */
1374 /*                                                                          */
1375 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1376 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1377 /*                                                                          */
1378 /* Returns:                                                                 */
1379 /*   0 on success and the 32 bit value read, positive value on failure.     */
1380 /****************************************************************************/
1381 int
1382 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1383     u_int8_t *ret_val, u_int32_t cmd_flags)
1384 {
1385 	u_int32_t		cmd;
1386 	int			i, rc = 0;
1387 
1388 	/* Build the command word. */
1389 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1390 
1391 	/* Calculate the offset for buffered flash if translation is used. */
1392 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1393 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1394 		    sc->bnx_flash_info->page_bits) +
1395 		    (offset % sc->bnx_flash_info->page_size);
1396 	}
1397 
1398 	/*
1399 	 * Clear the DONE bit separately, set the address to read,
1400 	 * and issue the read.
1401 	 */
1402 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1403 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1404 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1405 
1406 	/* Wait for completion. */
1407 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1408 		u_int32_t val;
1409 
1410 		DELAY(5);
1411 
1412 		val = REG_RD(sc, BNX_NVM_COMMAND);
1413 		if (val & BNX_NVM_COMMAND_DONE) {
1414 			val = REG_RD(sc, BNX_NVM_READ);
1415 
1416 			val = bnx_be32toh(val);
1417 			memcpy(ret_val, &val, 4);
1418 			break;
1419 		}
1420 	}
1421 
1422 	/* Check for errors. */
1423 	if (i >= NVRAM_TIMEOUT_COUNT) {
1424 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1425 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1426 		rc = EBUSY;
1427 	}
1428 
1429 	return(rc);
1430 }
1431 
1432 #ifdef BNX_NVRAM_WRITE_SUPPORT
1433 /****************************************************************************/
1434 /* Write a dword (32 bits) to NVRAM.                                        */
1435 /*                                                                          */
1436 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1437 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1438 /* enabled NVRAM write access.                                              */
1439 /*                                                                          */
1440 /* Returns:                                                                 */
1441 /*   0 on success, positive value on failure.                               */
1442 /****************************************************************************/
1443 int
1444 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1445     u_int32_t cmd_flags)
1446 {
1447 	u_int32_t		cmd, val32;
1448 	int			j;
1449 
1450 	/* Build the command word. */
1451 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1452 
1453 	/* Calculate the offset for buffered flash if translation is used. */
1454 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1455 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1456 		    sc->bnx_flash_info->page_bits) +
1457 		    (offset % sc->bnx_flash_info->page_size);
1458 	}
1459 
1460 	/*
1461 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1462 	 * set the NVRAM address to write, and issue the write command
1463 	 */
1464 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1465 	memcpy(&val32, val, 4);
1466 	val32 = htobe32(val32);
1467 	REG_WR(sc, BNX_NVM_WRITE, val32);
1468 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1469 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1470 
1471 	/* Wait for completion. */
1472 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1473 		DELAY(5);
1474 
1475 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1476 			break;
1477 	}
1478 	if (j >= NVRAM_TIMEOUT_COUNT) {
1479 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1480 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1481 		return (EBUSY);
1482 	}
1483 
1484 	return (0);
1485 }
1486 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1487 
1488 /****************************************************************************/
1489 /* Initialize NVRAM access.                                                 */
1490 /*                                                                          */
1491 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1492 /* access that device.                                                      */
1493 /*                                                                          */
1494 /* Returns:                                                                 */
1495 /*   0 on success, positive value on failure.                               */
1496 /****************************************************************************/
1497 int
1498 bnx_init_nvram(struct bnx_softc *sc)
1499 {
1500 	u_int32_t		val;
1501 	int			j, entry_count, rc = 0;
1502 	struct flash_spec	*flash;
1503 
1504 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1505 
1506 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1507 		sc->bnx_flash_info = &flash_5709;
1508 		goto bnx_init_nvram_get_flash_size;
1509 	}
1510 
1511 	/* Determine the selected interface. */
1512 	val = REG_RD(sc, BNX_NVM_CFG1);
1513 
1514 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1515 
1516 	/*
1517 	 * Flash reconfiguration is required to support additional
1518 	 * NVRAM devices not directly supported in hardware.
1519 	 * Check if the flash interface was reconfigured
1520 	 * by the bootcode.
1521 	 */
1522 
1523 	if (val & 0x40000000) {
1524 		/* Flash interface reconfigured by bootcode. */
1525 
1526 		DBPRINT(sc,BNX_INFO_LOAD,
1527 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1528 
1529 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1530 		     j++, flash++) {
1531 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1532 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1533 				sc->bnx_flash_info = flash;
1534 				break;
1535 			}
1536 		}
1537 	} else {
1538 		/* Flash interface not yet reconfigured. */
1539 		u_int32_t mask;
1540 
1541 		DBPRINT(sc,BNX_INFO_LOAD,
1542 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1543 
1544 		if (val & (1 << 23))
1545 			mask = FLASH_BACKUP_STRAP_MASK;
1546 		else
1547 			mask = FLASH_STRAP_MASK;
1548 
1549 		/* Look for the matching NVRAM device configuration data. */
1550 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1551 		    j++, flash++) {
1552 			/* Check if the dev matches any of the known devices. */
1553 			if ((val & mask) == (flash->strapping & mask)) {
1554 				/* Found a device match. */
1555 				sc->bnx_flash_info = flash;
1556 
1557 				/* Request access to the flash interface. */
1558 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1559 					return (rc);
1560 
1561 				/* Reconfigure the flash interface. */
1562 				bnx_enable_nvram_access(sc);
1563 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1564 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1565 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1566 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1567 				bnx_disable_nvram_access(sc);
1568 				bnx_release_nvram_lock(sc);
1569 
1570 				break;
1571 			}
1572 		}
1573 	}
1574 
1575 	/* Check if a matching device was found. */
1576 	if (j == entry_count) {
1577 		sc->bnx_flash_info = NULL;
1578 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1579 			__FILE__, __LINE__);
1580 		rc = ENODEV;
1581 	}
1582 
1583 bnx_init_nvram_get_flash_size:
1584 	/* Write the flash config data to the shared memory interface. */
1585 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1586 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1587 	if (val)
1588 		sc->bnx_flash_size = val;
1589 	else
1590 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1591 
1592 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1593 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1594 
1595 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1596 
1597 	return (rc);
1598 }
1599 
1600 /****************************************************************************/
1601 /* Read an arbitrary range of data from NVRAM.                              */
1602 /*                                                                          */
1603 /* Prepares the NVRAM interface for access and reads the requested data     */
1604 /* into the supplied buffer.                                                */
1605 /*                                                                          */
1606 /* Returns:                                                                 */
1607 /*   0 on success and the data read, positive value on failure.             */
1608 /****************************************************************************/
1609 int
1610 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1611     int buf_size)
1612 {
1613 	int			rc = 0;
1614 	u_int32_t		cmd_flags, offset32, len32, extra;
1615 
1616 	if (buf_size == 0)
1617 		return (0);
1618 
1619 	/* Request access to the flash interface. */
1620 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1621 		return (rc);
1622 
1623 	/* Enable access to flash interface */
1624 	bnx_enable_nvram_access(sc);
1625 
1626 	len32 = buf_size;
1627 	offset32 = offset;
1628 	extra = 0;
1629 
1630 	cmd_flags = 0;
1631 
1632 	if (offset32 & 3) {
1633 		u_int8_t buf[4];
1634 		u_int32_t pre_len;
1635 
1636 		offset32 &= ~3;
1637 		pre_len = 4 - (offset & 3);
1638 
1639 		if (pre_len >= len32) {
1640 			pre_len = len32;
1641 			cmd_flags =
1642 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1643 		} else
1644 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1645 
1646 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1647 
1648 		if (rc)
1649 			return (rc);
1650 
1651 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1652 
1653 		offset32 += 4;
1654 		ret_buf += pre_len;
1655 		len32 -= pre_len;
1656 	}
1657 
1658 	if (len32 & 3) {
1659 		extra = 4 - (len32 & 3);
1660 		len32 = (len32 + 4) & ~3;
1661 	}
1662 
1663 	if (len32 == 4) {
1664 		u_int8_t buf[4];
1665 
1666 		if (cmd_flags)
1667 			cmd_flags = BNX_NVM_COMMAND_LAST;
1668 		else
1669 			cmd_flags =
1670 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1671 
1672 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1673 
1674 		memcpy(ret_buf, buf, 4 - extra);
1675 	} else if (len32 > 0) {
1676 		u_int8_t buf[4];
1677 
1678 		/* Read the first word. */
1679 		if (cmd_flags)
1680 			cmd_flags = 0;
1681 		else
1682 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1683 
1684 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1685 
1686 		/* Advance to the next dword. */
1687 		offset32 += 4;
1688 		ret_buf += 4;
1689 		len32 -= 4;
1690 
1691 		while (len32 > 4 && rc == 0) {
1692 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1693 
1694 			/* Advance to the next dword. */
1695 			offset32 += 4;
1696 			ret_buf += 4;
1697 			len32 -= 4;
1698 		}
1699 
1700 		if (rc)
1701 			return (rc);
1702 
1703 		cmd_flags = BNX_NVM_COMMAND_LAST;
1704 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1705 
1706 		memcpy(ret_buf, buf, 4 - extra);
1707 	}
1708 
1709 	/* Disable access to flash interface and release the lock. */
1710 	bnx_disable_nvram_access(sc);
1711 	bnx_release_nvram_lock(sc);
1712 
1713 	return (rc);
1714 }
1715 
1716 #ifdef BNX_NVRAM_WRITE_SUPPORT
1717 /****************************************************************************/
1718 /* Write an arbitrary range of data from NVRAM.                             */
1719 /*                                                                          */
1720 /* Prepares the NVRAM interface for write access and writes the requested   */
1721 /* data from the supplied buffer.  The caller is responsible for            */
1722 /* calculating any appropriate CRCs.                                        */
1723 /*                                                                          */
1724 /* Returns:                                                                 */
1725 /*   0 on success, positive value on failure.                               */
1726 /****************************************************************************/
1727 int
1728 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1729     int buf_size)
1730 {
1731 	u_int32_t		written, offset32, len32;
1732 	u_int8_t		*buf, start[4], end[4];
1733 	int			rc = 0;
1734 	int			align_start, align_end;
1735 
1736 	buf = data_buf;
1737 	offset32 = offset;
1738 	len32 = buf_size;
1739 	align_start = align_end = 0;
1740 
1741 	if ((align_start = (offset32 & 3))) {
1742 		offset32 &= ~3;
1743 		len32 += align_start;
1744 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1745 			return (rc);
1746 	}
1747 
1748 	if (len32 & 3) {
1749 	       	if ((len32 > 4) || !align_start) {
1750 			align_end = 4 - (len32 & 3);
1751 			len32 += align_end;
1752 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1753 			    end, 4))) {
1754 				return (rc);
1755 			}
1756 		}
1757 	}
1758 
1759 	if (align_start || align_end) {
1760 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1761 		if (buf == 0)
1762 			return (ENOMEM);
1763 
1764 		if (align_start)
1765 			memcpy(buf, start, 4);
1766 
1767 		if (align_end)
1768 			memcpy(buf + len32 - 4, end, 4);
1769 
1770 		memcpy(buf + align_start, data_buf, buf_size);
1771 	}
1772 
1773 	written = 0;
1774 	while ((written < len32) && (rc == 0)) {
1775 		u_int32_t page_start, page_end, data_start, data_end;
1776 		u_int32_t addr, cmd_flags;
1777 		int i;
1778 		u_int8_t flash_buffer[264];
1779 
1780 	    /* Find the page_start addr */
1781 		page_start = offset32 + written;
1782 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1783 		/* Find the page_end addr */
1784 		page_end = page_start + sc->bnx_flash_info->page_size;
1785 		/* Find the data_start addr */
1786 		data_start = (written == 0) ? offset32 : page_start;
1787 		/* Find the data_end addr */
1788 		data_end = (page_end > offset32 + len32) ?
1789 		    (offset32 + len32) : page_end;
1790 
1791 		/* Request access to the flash interface. */
1792 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1793 			goto nvram_write_end;
1794 
1795 		/* Enable access to flash interface */
1796 		bnx_enable_nvram_access(sc);
1797 
1798 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1799 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1800 			int j;
1801 
1802 			/* Read the whole page into the buffer
1803 			 * (non-buffer flash only) */
1804 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1805 				if (j == (sc->bnx_flash_info->page_size - 4))
1806 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1807 
1808 				rc = bnx_nvram_read_dword(sc,
1809 					page_start + j,
1810 					&flash_buffer[j],
1811 					cmd_flags);
1812 
1813 				if (rc)
1814 					goto nvram_write_end;
1815 
1816 				cmd_flags = 0;
1817 			}
1818 		}
1819 
1820 		/* Enable writes to flash interface (unlock write-protect) */
1821 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1822 			goto nvram_write_end;
1823 
1824 		/* Erase the page */
1825 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1826 			goto nvram_write_end;
1827 
1828 		/* Re-enable the write again for the actual write */
1829 		bnx_enable_nvram_write(sc);
1830 
1831 		/* Loop to write back the buffer data from page_start to
1832 		 * data_start */
1833 		i = 0;
1834 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1835 			for (addr = page_start; addr < data_start;
1836 				addr += 4, i += 4) {
1837 
1838 				rc = bnx_nvram_write_dword(sc, addr,
1839 				    &flash_buffer[i], cmd_flags);
1840 
1841 				if (rc != 0)
1842 					goto nvram_write_end;
1843 
1844 				cmd_flags = 0;
1845 			}
1846 		}
1847 
1848 		/* Loop to write the new data from data_start to data_end */
1849 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1850 			if ((addr == page_end - 4) ||
1851 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1852 			    && (addr == data_end - 4))) {
1853 
1854 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1855 			}
1856 
1857 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1858 
1859 			if (rc != 0)
1860 				goto nvram_write_end;
1861 
1862 			cmd_flags = 0;
1863 			buf += 4;
1864 		}
1865 
1866 		/* Loop to write back the buffer data from data_end
1867 		 * to page_end */
1868 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1869 			for (addr = data_end; addr < page_end;
1870 			    addr += 4, i += 4) {
1871 
1872 				if (addr == page_end-4)
1873 					cmd_flags = BNX_NVM_COMMAND_LAST;
1874 
1875 				rc = bnx_nvram_write_dword(sc, addr,
1876 				    &flash_buffer[i], cmd_flags);
1877 
1878 				if (rc != 0)
1879 					goto nvram_write_end;
1880 
1881 				cmd_flags = 0;
1882 			}
1883 		}
1884 
1885 		/* Disable writes to flash interface (lock write-protect) */
1886 		bnx_disable_nvram_write(sc);
1887 
1888 		/* Disable access to flash interface */
1889 		bnx_disable_nvram_access(sc);
1890 		bnx_release_nvram_lock(sc);
1891 
1892 		/* Increment written */
1893 		written += data_end - data_start;
1894 	}
1895 
1896 nvram_write_end:
1897 	if (align_start || align_end)
1898 		free(buf, M_DEVBUF);
1899 
1900 	return (rc);
1901 }
1902 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1903 
1904 /****************************************************************************/
1905 /* Verifies that NVRAM is accessible and contains valid data.               */
1906 /*                                                                          */
1907 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1908 /* correct.                                                                 */
1909 /*                                                                          */
1910 /* Returns:                                                                 */
1911 /*   0 on success, positive value on failure.                               */
1912 /****************************************************************************/
1913 int
1914 bnx_nvram_test(struct bnx_softc *sc)
1915 {
1916 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1917 	u_int8_t		*data = (u_int8_t *) buf;
1918 	int			rc = 0;
1919 	u_int32_t		magic, csum;
1920 
1921 	/*
1922 	 * Check that the device NVRAM is valid by reading
1923 	 * the magic value at offset 0.
1924 	 */
1925 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1926 		goto bnx_nvram_test_done;
1927 
1928 	magic = bnx_be32toh(buf[0]);
1929 	if (magic != BNX_NVRAM_MAGIC) {
1930 		rc = ENODEV;
1931 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1932 		    "Expected: 0x%08X, Found: 0x%08X\n",
1933 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1934 		goto bnx_nvram_test_done;
1935 	}
1936 
1937 	/*
1938 	 * Verify that the device NVRAM includes valid
1939 	 * configuration data.
1940 	 */
1941 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1942 		goto bnx_nvram_test_done;
1943 
1944 	csum = ether_crc32_le(data, 0x100);
1945 	if (csum != BNX_CRC32_RESIDUAL) {
1946 		rc = ENODEV;
1947 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1948 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1949 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1950 		goto bnx_nvram_test_done;
1951 	}
1952 
1953 	csum = ether_crc32_le(data + 0x100, 0x100);
1954 	if (csum != BNX_CRC32_RESIDUAL) {
1955 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1956 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1957 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1958 		rc = ENODEV;
1959 	}
1960 
1961 bnx_nvram_test_done:
1962 	return (rc);
1963 }
1964 
1965 /****************************************************************************/
1966 /* Identifies the current media type of the controller and sets the PHY     */
1967 /* address.                                                                 */
1968 /*                                                                          */
1969 /* Returns:                                                                 */
1970 /*   Nothing.                                                               */
1971 /****************************************************************************/
1972 void
1973 bnx_get_media(struct bnx_softc *sc)
1974 {
1975 	sc->bnx_phy_addr = 1;
1976 
1977 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1978 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1979 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1980 		u_int32_t strap;
1981 
1982 		/*
1983 		 * The BCM5709S is software configurable
1984 		 * for Copper or SerDes operation.
1985 		 */
1986 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1987 			DBPRINT(sc, BNX_INFO_LOAD,
1988 			    "5709 bonded for copper.\n");
1989 			goto bnx_get_media_exit;
1990 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1991 			DBPRINT(sc, BNX_INFO_LOAD,
1992 			    "5709 bonded for dual media.\n");
1993 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1994 			goto bnx_get_media_exit;
1995 		}
1996 
1997 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1998 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1999 		else {
2000 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2001 			    >> 8;
2002 		}
2003 
2004 		if (sc->bnx_pa.pa_function == 0) {
2005 			switch (strap) {
2006 			case 0x4:
2007 			case 0x5:
2008 			case 0x6:
2009 				DBPRINT(sc, BNX_INFO_LOAD,
2010 					"BCM5709 s/w configured for SerDes.\n");
2011 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2012 				break;
2013 			default:
2014 				DBPRINT(sc, BNX_INFO_LOAD,
2015 					"BCM5709 s/w configured for Copper.\n");
2016 			}
2017 		} else {
2018 			switch (strap) {
2019 			case 0x1:
2020 			case 0x2:
2021 			case 0x4:
2022 				DBPRINT(sc, BNX_INFO_LOAD,
2023 					"BCM5709 s/w configured for SerDes.\n");
2024 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2025 				break;
2026 			default:
2027 				DBPRINT(sc, BNX_INFO_LOAD,
2028 					"BCM5709 s/w configured for Copper.\n");
2029 			}
2030 		}
2031 
2032 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2033 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2034 
2035 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2036 		u_int32_t val;
2037 
2038 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2039 
2040 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2041 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2042 
2043 		/*
2044 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2045 		 * separate PHY for SerDes.
2046 		 */
2047 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2048 			sc->bnx_phy_addr = 2;
2049 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2050 				 BNX_SHARED_HW_CFG_CONFIG);
2051 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2052 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2053 				DBPRINT(sc, BNX_INFO_LOAD,
2054 				    "Found 2.5Gb capable adapter\n");
2055 			}
2056 		}
2057 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2058 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2059 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2060 
2061 bnx_get_media_exit:
2062 	DBPRINT(sc, (BNX_INFO_LOAD),
2063 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2064 }
2065 
2066 /****************************************************************************/
2067 /* Performs PHY initialization required before MII drivers access the       */
2068 /* device.                                                                  */
2069 /*                                                                          */
2070 /* Returns:                                                                 */
2071 /*   Nothing.                                                               */
2072 /****************************************************************************/
2073 void
2074 bnx_init_media(struct bnx_softc *sc)
2075 {
2076 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2077 		/*
2078 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2079 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2080 		 * the PHY to the mii(4) layer. PHY specific configuration
2081 		 * is done by the mii(4) layer.
2082 		 */
2083 
2084 		/* Select auto-negotiation MMD of the PHY. */
2085 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2086 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2087 
2088 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2089 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2090 
2091 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2092 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2093 	}
2094 }
2095 
2096 /****************************************************************************/
2097 /* Free any DMA memory owned by the driver.                                 */
2098 /*                                                                          */
2099 /* Scans through each data structre that requires DMA memory and frees      */
2100 /* the memory if allocated.                                                 */
2101 /*                                                                          */
2102 /* Returns:                                                                 */
2103 /*   Nothing.                                                               */
2104 /****************************************************************************/
2105 void
2106 bnx_dma_free(struct bnx_softc *sc)
2107 {
2108 	int			i;
2109 
2110 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2111 
2112 	/* Destroy the status block. */
2113 	if (sc->status_block != NULL && sc->status_map != NULL) {
2114 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2115 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2116 		    BNX_STATUS_BLK_SZ);
2117 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2118 		    sc->status_rseg);
2119 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2120 		sc->status_block = NULL;
2121 		sc->status_map = NULL;
2122 	}
2123 
2124 	/* Destroy the statistics block. */
2125 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2126 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2127 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2128 		    BNX_STATS_BLK_SZ);
2129 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2130 		    sc->stats_rseg);
2131 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2132 		sc->stats_block = NULL;
2133 		sc->stats_map = NULL;
2134 	}
2135 
2136 	/* Free, unmap and destroy all context memory pages. */
2137 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2138 		for (i = 0; i < sc->ctx_pages; i++) {
2139 			if (sc->ctx_block[i] != NULL) {
2140 				bus_dmamap_unload(sc->bnx_dmatag,
2141 				    sc->ctx_map[i]);
2142 				bus_dmamem_unmap(sc->bnx_dmatag,
2143 				    (void *)sc->ctx_block[i],
2144 				    BCM_PAGE_SIZE);
2145 				bus_dmamem_free(sc->bnx_dmatag,
2146 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2147 				bus_dmamap_destroy(sc->bnx_dmatag,
2148 				    sc->ctx_map[i]);
2149 				sc->ctx_block[i] = NULL;
2150 			}
2151 		}
2152 	}
2153 
2154 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2155 	for (i = 0; i < TX_PAGES; i++ ) {
2156 		if (sc->tx_bd_chain[i] != NULL &&
2157 		    sc->tx_bd_chain_map[i] != NULL) {
2158 			bus_dmamap_unload(sc->bnx_dmatag,
2159 			    sc->tx_bd_chain_map[i]);
2160 			bus_dmamem_unmap(sc->bnx_dmatag,
2161 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2162 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2163 			    sc->tx_bd_chain_rseg[i]);
2164 			bus_dmamap_destroy(sc->bnx_dmatag,
2165 			    sc->tx_bd_chain_map[i]);
2166 			sc->tx_bd_chain[i] = NULL;
2167 			sc->tx_bd_chain_map[i] = NULL;
2168 		}
2169 	}
2170 
2171 	/* Destroy the TX dmamaps. */
2172 	/* This isn't necessary since we dont allocate them up front */
2173 
2174 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2175 	for (i = 0; i < RX_PAGES; i++ ) {
2176 		if (sc->rx_bd_chain[i] != NULL &&
2177 		    sc->rx_bd_chain_map[i] != NULL) {
2178 			bus_dmamap_unload(sc->bnx_dmatag,
2179 			    sc->rx_bd_chain_map[i]);
2180 			bus_dmamem_unmap(sc->bnx_dmatag,
2181 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2182 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2183 			    sc->rx_bd_chain_rseg[i]);
2184 
2185 			bus_dmamap_destroy(sc->bnx_dmatag,
2186 			    sc->rx_bd_chain_map[i]);
2187 			sc->rx_bd_chain[i] = NULL;
2188 			sc->rx_bd_chain_map[i] = NULL;
2189 		}
2190 	}
2191 
2192 	/* Unload and destroy the RX mbuf maps. */
2193 	for (i = 0; i < TOTAL_RX_BD; i++) {
2194 		if (sc->rx_mbuf_map[i] != NULL) {
2195 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2196 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2197 		}
2198 	}
2199 
2200 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2201 }
2202 
2203 /****************************************************************************/
2204 /* Allocate any DMA memory needed by the driver.                            */
2205 /*                                                                          */
2206 /* Allocates DMA memory needed for the various global structures needed by  */
2207 /* hardware.                                                                */
2208 /*                                                                          */
2209 /* Returns:                                                                 */
2210 /*   0 for success, positive value for failure.                             */
2211 /****************************************************************************/
2212 int
2213 bnx_dma_alloc(struct bnx_softc *sc)
2214 {
2215 	int			i, rc = 0;
2216 
2217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2218 
2219 	/*
2220 	 * Allocate DMA memory for the status block, map the memory into DMA
2221 	 * space, and fetch the physical address of the block.
2222 	 */
2223 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2224 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2225 		aprint_error_dev(sc->bnx_dev,
2226 		    "Could not create status block DMA map!\n");
2227 		rc = ENOMEM;
2228 		goto bnx_dma_alloc_exit;
2229 	}
2230 
2231 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2232 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2233 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2234 		aprint_error_dev(sc->bnx_dev,
2235 		    "Could not allocate status block DMA memory!\n");
2236 		rc = ENOMEM;
2237 		goto bnx_dma_alloc_exit;
2238 	}
2239 
2240 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2241 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2242 		aprint_error_dev(sc->bnx_dev,
2243 		    "Could not map status block DMA memory!\n");
2244 		rc = ENOMEM;
2245 		goto bnx_dma_alloc_exit;
2246 	}
2247 
2248 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2249 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2250 		aprint_error_dev(sc->bnx_dev,
2251 		    "Could not load status block DMA memory!\n");
2252 		rc = ENOMEM;
2253 		goto bnx_dma_alloc_exit;
2254 	}
2255 
2256 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2257 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2258 
2259 	/* DRC - Fix for 64 bit addresses. */
2260 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2261 		(u_int32_t) sc->status_block_paddr);
2262 
2263 	/* BCM5709 uses host memory as cache for context memory. */
2264 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2265 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2266 		if (sc->ctx_pages == 0)
2267 			sc->ctx_pages = 1;
2268 		if (sc->ctx_pages > 4) /* XXX */
2269 			sc->ctx_pages = 4;
2270 
2271 		DBRUNIF((sc->ctx_pages > 512),
2272 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2273 				__FILE__, __LINE__, sc->ctx_pages));
2274 
2275 
2276 		for (i = 0; i < sc->ctx_pages; i++) {
2277 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2278 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2279 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2280 			    &sc->ctx_map[i]) != 0) {
2281 				rc = ENOMEM;
2282 				goto bnx_dma_alloc_exit;
2283 			}
2284 
2285 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2286 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2287 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2288 				rc = ENOMEM;
2289 				goto bnx_dma_alloc_exit;
2290 			}
2291 
2292 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2293 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2294 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2295 				rc = ENOMEM;
2296 				goto bnx_dma_alloc_exit;
2297 			}
2298 
2299 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2300 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2301 			    BUS_DMA_NOWAIT) != 0) {
2302 				rc = ENOMEM;
2303 				goto bnx_dma_alloc_exit;
2304 			}
2305 
2306 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2307 		}
2308 	}
2309 
2310 	/*
2311 	 * Allocate DMA memory for the statistics block, map the memory into
2312 	 * DMA space, and fetch the physical address of the block.
2313 	 */
2314 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2315 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2316 		aprint_error_dev(sc->bnx_dev,
2317 		    "Could not create stats block DMA map!\n");
2318 		rc = ENOMEM;
2319 		goto bnx_dma_alloc_exit;
2320 	}
2321 
2322 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2323 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2324 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2325 		aprint_error_dev(sc->bnx_dev,
2326 		    "Could not allocate stats block DMA memory!\n");
2327 		rc = ENOMEM;
2328 		goto bnx_dma_alloc_exit;
2329 	}
2330 
2331 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2332 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2333 		aprint_error_dev(sc->bnx_dev,
2334 		    "Could not map stats block DMA memory!\n");
2335 		rc = ENOMEM;
2336 		goto bnx_dma_alloc_exit;
2337 	}
2338 
2339 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2340 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2341 		aprint_error_dev(sc->bnx_dev,
2342 		    "Could not load status block DMA memory!\n");
2343 		rc = ENOMEM;
2344 		goto bnx_dma_alloc_exit;
2345 	}
2346 
2347 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2348 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2349 
2350 	/* DRC - Fix for 64 bit address. */
2351 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2352 	    (u_int32_t) sc->stats_block_paddr);
2353 
2354 	/*
2355 	 * Allocate DMA memory for the TX buffer descriptor chain,
2356 	 * and fetch the physical address of the block.
2357 	 */
2358 	for (i = 0; i < TX_PAGES; i++) {
2359 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2360 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2361 		    &sc->tx_bd_chain_map[i])) {
2362 			aprint_error_dev(sc->bnx_dev,
2363 			    "Could not create Tx desc %d DMA map!\n", i);
2364 			rc = ENOMEM;
2365 			goto bnx_dma_alloc_exit;
2366 		}
2367 
2368 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2369 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2370 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2371 			aprint_error_dev(sc->bnx_dev,
2372 			    "Could not allocate TX desc %d DMA memory!\n",
2373 			    i);
2374 			rc = ENOMEM;
2375 			goto bnx_dma_alloc_exit;
2376 		}
2377 
2378 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2379 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2380 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2381 			aprint_error_dev(sc->bnx_dev,
2382 			    "Could not map TX desc %d DMA memory!\n", i);
2383 			rc = ENOMEM;
2384 			goto bnx_dma_alloc_exit;
2385 		}
2386 
2387 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2388 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2389 		    BUS_DMA_NOWAIT)) {
2390 			aprint_error_dev(sc->bnx_dev,
2391 			    "Could not load TX desc %d DMA memory!\n", i);
2392 			rc = ENOMEM;
2393 			goto bnx_dma_alloc_exit;
2394 		}
2395 
2396 		sc->tx_bd_chain_paddr[i] =
2397 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2398 
2399 		/* DRC - Fix for 64 bit systems. */
2400 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2401 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2402 	}
2403 
2404 	/*
2405 	 * Create lists to hold TX mbufs.
2406 	 */
2407 	TAILQ_INIT(&sc->tx_free_pkts);
2408 	TAILQ_INIT(&sc->tx_used_pkts);
2409 	sc->tx_pkt_count = 0;
2410 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2411 
2412 	/*
2413 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2414 	 * and fetch the physical address of the block.
2415 	 */
2416 	for (i = 0; i < RX_PAGES; i++) {
2417 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2418 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2419 		    &sc->rx_bd_chain_map[i])) {
2420 			aprint_error_dev(sc->bnx_dev,
2421 			    "Could not create Rx desc %d DMA map!\n", i);
2422 			rc = ENOMEM;
2423 			goto bnx_dma_alloc_exit;
2424 		}
2425 
2426 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2427 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2428 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2429 			aprint_error_dev(sc->bnx_dev,
2430 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2431 			rc = ENOMEM;
2432 			goto bnx_dma_alloc_exit;
2433 		}
2434 
2435 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2436 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2437 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2438 			aprint_error_dev(sc->bnx_dev,
2439 			    "Could not map Rx desc %d DMA memory!\n", i);
2440 			rc = ENOMEM;
2441 			goto bnx_dma_alloc_exit;
2442 		}
2443 
2444 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2445 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2446 		    BUS_DMA_NOWAIT)) {
2447 			aprint_error_dev(sc->bnx_dev,
2448 			    "Could not load Rx desc %d DMA memory!\n", i);
2449 			rc = ENOMEM;
2450 			goto bnx_dma_alloc_exit;
2451 		}
2452 
2453 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2454 		sc->rx_bd_chain_paddr[i] =
2455 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2456 
2457 		/* DRC - Fix for 64 bit systems. */
2458 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2459 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2460 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2461 		    0, BNX_RX_CHAIN_PAGE_SZ,
2462 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463 	}
2464 
2465 	/*
2466 	 * Create DMA maps for the Rx buffer mbufs.
2467 	 */
2468 	for (i = 0; i < TOTAL_RX_BD; i++) {
2469 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2470 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2471 		    &sc->rx_mbuf_map[i])) {
2472 			aprint_error_dev(sc->bnx_dev,
2473 			    "Could not create Rx mbuf %d DMA map!\n", i);
2474 			rc = ENOMEM;
2475 			goto bnx_dma_alloc_exit;
2476 		}
2477 	}
2478 
2479  bnx_dma_alloc_exit:
2480 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2481 
2482 	return(rc);
2483 }
2484 
2485 /****************************************************************************/
2486 /* Release all resources used by the driver.                                */
2487 /*                                                                          */
2488 /* Releases all resources acquired by the driver including interrupts,      */
2489 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2490 /*                                                                          */
2491 /* Returns:                                                                 */
2492 /*   Nothing.                                                               */
2493 /****************************************************************************/
2494 void
2495 bnx_release_resources(struct bnx_softc *sc)
2496 {
2497 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2498 
2499 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2500 
2501 	bnx_dma_free(sc);
2502 
2503 	if (sc->bnx_intrhand != NULL)
2504 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2505 
2506 	if (sc->bnx_size)
2507 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2508 
2509 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2510 }
2511 
2512 /****************************************************************************/
2513 /* Firmware synchronization.                                                */
2514 /*                                                                          */
2515 /* Before performing certain events such as a chip reset, synchronize with  */
2516 /* the firmware first.                                                      */
2517 /*                                                                          */
2518 /* Returns:                                                                 */
2519 /*   0 for success, positive value for failure.                             */
2520 /****************************************************************************/
2521 int
2522 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2523 {
2524 	int			i, rc = 0;
2525 	u_int32_t		val;
2526 
2527 	/* Don't waste any time if we've timed out before. */
2528 	if (sc->bnx_fw_timed_out) {
2529 		rc = EBUSY;
2530 		goto bnx_fw_sync_exit;
2531 	}
2532 
2533 	/* Increment the message sequence number. */
2534 	sc->bnx_fw_wr_seq++;
2535 	msg_data |= sc->bnx_fw_wr_seq;
2536 
2537  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2538 	    msg_data);
2539 
2540 	/* Send the message to the bootcode driver mailbox. */
2541 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2542 
2543 	/* Wait for the bootcode to acknowledge the message. */
2544 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2545 		/* Check for a response in the bootcode firmware mailbox. */
2546 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2547 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2548 			break;
2549 		DELAY(1000);
2550 	}
2551 
2552 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2553 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2554 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2555 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2556 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2557 
2558 		msg_data &= ~BNX_DRV_MSG_CODE;
2559 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2560 
2561 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2562 
2563 		sc->bnx_fw_timed_out = 1;
2564 		rc = EBUSY;
2565 	}
2566 
2567 bnx_fw_sync_exit:
2568 	return (rc);
2569 }
2570 
2571 /****************************************************************************/
2572 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2573 /*                                                                          */
2574 /* Returns:                                                                 */
2575 /*   Nothing.                                                               */
2576 /****************************************************************************/
2577 void
2578 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2579     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2580 {
2581 	int			i;
2582 	u_int32_t		val;
2583 
2584 	/* Set the page size used by RV2P. */
2585 	if (rv2p_proc == RV2P_PROC2) {
2586 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2587 		    USABLE_RX_BD_PER_PAGE);
2588 	}
2589 
2590 	for (i = 0; i < rv2p_code_len; i += 8) {
2591 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2592 		rv2p_code++;
2593 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2594 		rv2p_code++;
2595 
2596 		if (rv2p_proc == RV2P_PROC1) {
2597 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2598 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2599 		} else {
2600 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2601 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2602 		}
2603 	}
2604 
2605 	/* Reset the processor, un-stall is done later. */
2606 	if (rv2p_proc == RV2P_PROC1)
2607 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2608 	else
2609 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2610 }
2611 
2612 /****************************************************************************/
2613 /* Load RISC processor firmware.                                            */
2614 /*                                                                          */
2615 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2616 /* associated with a particular processor.                                  */
2617 /*                                                                          */
2618 /* Returns:                                                                 */
2619 /*   Nothing.                                                               */
2620 /****************************************************************************/
2621 void
2622 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2623     struct fw_info *fw)
2624 {
2625 	u_int32_t		offset;
2626 	u_int32_t		val;
2627 
2628 	/* Halt the CPU. */
2629 	val = REG_RD_IND(sc, cpu_reg->mode);
2630 	val |= cpu_reg->mode_value_halt;
2631 	REG_WR_IND(sc, cpu_reg->mode, val);
2632 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2633 
2634 	/* Load the Text area. */
2635 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2636 	if (fw->text) {
2637 		int j;
2638 
2639 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2640 			REG_WR_IND(sc, offset, fw->text[j]);
2641 	}
2642 
2643 	/* Load the Data area. */
2644 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2645 	if (fw->data) {
2646 		int j;
2647 
2648 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2649 			REG_WR_IND(sc, offset, fw->data[j]);
2650 	}
2651 
2652 	/* Load the SBSS area. */
2653 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2654 	if (fw->sbss) {
2655 		int j;
2656 
2657 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2658 			REG_WR_IND(sc, offset, fw->sbss[j]);
2659 	}
2660 
2661 	/* Load the BSS area. */
2662 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2663 	if (fw->bss) {
2664 		int j;
2665 
2666 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2667 			REG_WR_IND(sc, offset, fw->bss[j]);
2668 	}
2669 
2670 	/* Load the Read-Only area. */
2671 	offset = cpu_reg->spad_base +
2672 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2673 	if (fw->rodata) {
2674 		int j;
2675 
2676 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2677 			REG_WR_IND(sc, offset, fw->rodata[j]);
2678 	}
2679 
2680 	/* Clear the pre-fetch instruction. */
2681 	REG_WR_IND(sc, cpu_reg->inst, 0);
2682 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2683 
2684 	/* Start the CPU. */
2685 	val = REG_RD_IND(sc, cpu_reg->mode);
2686 	val &= ~cpu_reg->mode_value_halt;
2687 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2688 	REG_WR_IND(sc, cpu_reg->mode, val);
2689 }
2690 
2691 /****************************************************************************/
2692 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2693 /*                                                                          */
2694 /* Loads the firmware for each CPU and starts the CPU.                      */
2695 /*                                                                          */
2696 /* Returns:                                                                 */
2697 /*   Nothing.                                                               */
2698 /****************************************************************************/
2699 void
2700 bnx_init_cpus(struct bnx_softc *sc)
2701 {
2702 	struct cpu_reg cpu_reg;
2703 	struct fw_info fw;
2704 
2705 	switch(BNX_CHIP_NUM(sc)) {
2706 	case BNX_CHIP_NUM_5709:
2707 		/* Initialize the RV2P processor. */
2708 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2709 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2710 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2711 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2712 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2713 		} else {
2714 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2715 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2716 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2717 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2718 		}
2719 
2720 		/* Initialize the RX Processor. */
2721 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2722 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2723 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2724 		cpu_reg.state = BNX_RXP_CPU_STATE;
2725 		cpu_reg.state_value_clear = 0xffffff;
2726 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2727 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2728 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2729 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2730 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2731 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2732 		cpu_reg.mips_view_base = 0x8000000;
2733 
2734 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2735 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2736 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2737 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2738 
2739 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2740 		fw.text_len = bnx_RXP_b09FwTextLen;
2741 		fw.text_index = 0;
2742 		fw.text = bnx_RXP_b09FwText;
2743 
2744 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2745 		fw.data_len = bnx_RXP_b09FwDataLen;
2746 		fw.data_index = 0;
2747 		fw.data = bnx_RXP_b09FwData;
2748 
2749 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2750 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2751 		fw.sbss_index = 0;
2752 		fw.sbss = bnx_RXP_b09FwSbss;
2753 
2754 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2755 		fw.bss_len = bnx_RXP_b09FwBssLen;
2756 		fw.bss_index = 0;
2757 		fw.bss = bnx_RXP_b09FwBss;
2758 
2759 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2760 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2761 		fw.rodata_index = 0;
2762 		fw.rodata = bnx_RXP_b09FwRodata;
2763 
2764 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2765 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2766 
2767 		/* Initialize the TX Processor. */
2768 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2769 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2770 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2771 		cpu_reg.state = BNX_TXP_CPU_STATE;
2772 		cpu_reg.state_value_clear = 0xffffff;
2773 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2774 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2775 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2776 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2777 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2778 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2779 		cpu_reg.mips_view_base = 0x8000000;
2780 
2781 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2782 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2783 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2784 		fw.start_addr = bnx_TXP_b09FwStartAddr;
2785 
2786 		fw.text_addr = bnx_TXP_b09FwTextAddr;
2787 		fw.text_len = bnx_TXP_b09FwTextLen;
2788 		fw.text_index = 0;
2789 		fw.text = bnx_TXP_b09FwText;
2790 
2791 		fw.data_addr = bnx_TXP_b09FwDataAddr;
2792 		fw.data_len = bnx_TXP_b09FwDataLen;
2793 		fw.data_index = 0;
2794 		fw.data = bnx_TXP_b09FwData;
2795 
2796 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2797 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
2798 		fw.sbss_index = 0;
2799 		fw.sbss = bnx_TXP_b09FwSbss;
2800 
2801 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
2802 		fw.bss_len = bnx_TXP_b09FwBssLen;
2803 		fw.bss_index = 0;
2804 		fw.bss = bnx_TXP_b09FwBss;
2805 
2806 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2807 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
2808 		fw.rodata_index = 0;
2809 		fw.rodata = bnx_TXP_b09FwRodata;
2810 
2811 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2812 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2813 
2814 		/* Initialize the TX Patch-up Processor. */
2815 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
2816 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2817 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2818 		cpu_reg.state = BNX_TPAT_CPU_STATE;
2819 		cpu_reg.state_value_clear = 0xffffff;
2820 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2821 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2822 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2823 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2824 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2825 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2826 		cpu_reg.mips_view_base = 0x8000000;
2827 
2828 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2829 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2830 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2831 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
2832 
2833 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
2834 		fw.text_len = bnx_TPAT_b09FwTextLen;
2835 		fw.text_index = 0;
2836 		fw.text = bnx_TPAT_b09FwText;
2837 
2838 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
2839 		fw.data_len = bnx_TPAT_b09FwDataLen;
2840 		fw.data_index = 0;
2841 		fw.data = bnx_TPAT_b09FwData;
2842 
2843 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2844 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2845 		fw.sbss_index = 0;
2846 		fw.sbss = bnx_TPAT_b09FwSbss;
2847 
2848 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2849 		fw.bss_len = bnx_TPAT_b09FwBssLen;
2850 		fw.bss_index = 0;
2851 		fw.bss = bnx_TPAT_b09FwBss;
2852 
2853 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2854 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2855 		fw.rodata_index = 0;
2856 		fw.rodata = bnx_TPAT_b09FwRodata;
2857 
2858 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2859 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2860 
2861 		/* Initialize the Completion Processor. */
2862 		cpu_reg.mode = BNX_COM_CPU_MODE;
2863 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2864 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2865 		cpu_reg.state = BNX_COM_CPU_STATE;
2866 		cpu_reg.state_value_clear = 0xffffff;
2867 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2868 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2869 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2870 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2871 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2872 		cpu_reg.spad_base = BNX_COM_SCRATCH;
2873 		cpu_reg.mips_view_base = 0x8000000;
2874 
2875 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
2876 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2877 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
2878 		fw.start_addr = bnx_COM_b09FwStartAddr;
2879 
2880 		fw.text_addr = bnx_COM_b09FwTextAddr;
2881 		fw.text_len = bnx_COM_b09FwTextLen;
2882 		fw.text_index = 0;
2883 		fw.text = bnx_COM_b09FwText;
2884 
2885 		fw.data_addr = bnx_COM_b09FwDataAddr;
2886 		fw.data_len = bnx_COM_b09FwDataLen;
2887 		fw.data_index = 0;
2888 		fw.data = bnx_COM_b09FwData;
2889 
2890 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2891 		fw.sbss_len = bnx_COM_b09FwSbssLen;
2892 		fw.sbss_index = 0;
2893 		fw.sbss = bnx_COM_b09FwSbss;
2894 
2895 		fw.bss_addr = bnx_COM_b09FwBssAddr;
2896 		fw.bss_len = bnx_COM_b09FwBssLen;
2897 		fw.bss_index = 0;
2898 		fw.bss = bnx_COM_b09FwBss;
2899 
2900 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2901 		fw.rodata_len = bnx_COM_b09FwRodataLen;
2902 		fw.rodata_index = 0;
2903 		fw.rodata = bnx_COM_b09FwRodata;
2904 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2905 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2906 		break;
2907 	default:
2908 		/* Initialize the RV2P processor. */
2909 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2910 		    RV2P_PROC1);
2911 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2912 		    RV2P_PROC2);
2913 
2914 		/* Initialize the RX Processor. */
2915 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2916 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2917 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2918 		cpu_reg.state = BNX_RXP_CPU_STATE;
2919 		cpu_reg.state_value_clear = 0xffffff;
2920 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2921 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2922 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2923 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2924 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2925 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2926 		cpu_reg.mips_view_base = 0x8000000;
2927 
2928 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2929 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2930 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2931 		fw.start_addr = bnx_RXP_b06FwStartAddr;
2932 
2933 		fw.text_addr = bnx_RXP_b06FwTextAddr;
2934 		fw.text_len = bnx_RXP_b06FwTextLen;
2935 		fw.text_index = 0;
2936 		fw.text = bnx_RXP_b06FwText;
2937 
2938 		fw.data_addr = bnx_RXP_b06FwDataAddr;
2939 		fw.data_len = bnx_RXP_b06FwDataLen;
2940 		fw.data_index = 0;
2941 		fw.data = bnx_RXP_b06FwData;
2942 
2943 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2944 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
2945 		fw.sbss_index = 0;
2946 		fw.sbss = bnx_RXP_b06FwSbss;
2947 
2948 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
2949 		fw.bss_len = bnx_RXP_b06FwBssLen;
2950 		fw.bss_index = 0;
2951 		fw.bss = bnx_RXP_b06FwBss;
2952 
2953 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2954 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
2955 		fw.rodata_index = 0;
2956 		fw.rodata = bnx_RXP_b06FwRodata;
2957 
2958 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2959 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2960 
2961 		/* Initialize the TX Processor. */
2962 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2963 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2964 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2965 		cpu_reg.state = BNX_TXP_CPU_STATE;
2966 		cpu_reg.state_value_clear = 0xffffff;
2967 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2968 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2969 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2970 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2971 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2972 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2973 		cpu_reg.mips_view_base = 0x8000000;
2974 
2975 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2976 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2977 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2978 		fw.start_addr = bnx_TXP_b06FwStartAddr;
2979 
2980 		fw.text_addr = bnx_TXP_b06FwTextAddr;
2981 		fw.text_len = bnx_TXP_b06FwTextLen;
2982 		fw.text_index = 0;
2983 		fw.text = bnx_TXP_b06FwText;
2984 
2985 		fw.data_addr = bnx_TXP_b06FwDataAddr;
2986 		fw.data_len = bnx_TXP_b06FwDataLen;
2987 		fw.data_index = 0;
2988 		fw.data = bnx_TXP_b06FwData;
2989 
2990 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2991 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
2992 		fw.sbss_index = 0;
2993 		fw.sbss = bnx_TXP_b06FwSbss;
2994 
2995 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
2996 		fw.bss_len = bnx_TXP_b06FwBssLen;
2997 		fw.bss_index = 0;
2998 		fw.bss = bnx_TXP_b06FwBss;
2999 
3000 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3001 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3002 		fw.rodata_index = 0;
3003 		fw.rodata = bnx_TXP_b06FwRodata;
3004 
3005 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3006 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3007 
3008 		/* Initialize the TX Patch-up Processor. */
3009 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3010 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3011 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3012 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3013 		cpu_reg.state_value_clear = 0xffffff;
3014 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3015 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3016 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3017 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3018 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3019 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3020 		cpu_reg.mips_view_base = 0x8000000;
3021 
3022 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3023 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3024 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3025 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3026 
3027 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3028 		fw.text_len = bnx_TPAT_b06FwTextLen;
3029 		fw.text_index = 0;
3030 		fw.text = bnx_TPAT_b06FwText;
3031 
3032 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3033 		fw.data_len = bnx_TPAT_b06FwDataLen;
3034 		fw.data_index = 0;
3035 		fw.data = bnx_TPAT_b06FwData;
3036 
3037 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3038 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3039 		fw.sbss_index = 0;
3040 		fw.sbss = bnx_TPAT_b06FwSbss;
3041 
3042 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3043 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3044 		fw.bss_index = 0;
3045 		fw.bss = bnx_TPAT_b06FwBss;
3046 
3047 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3048 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3049 		fw.rodata_index = 0;
3050 		fw.rodata = bnx_TPAT_b06FwRodata;
3051 
3052 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3053 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3054 
3055 		/* Initialize the Completion Processor. */
3056 		cpu_reg.mode = BNX_COM_CPU_MODE;
3057 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3058 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3059 		cpu_reg.state = BNX_COM_CPU_STATE;
3060 		cpu_reg.state_value_clear = 0xffffff;
3061 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3062 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3063 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3064 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3065 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3066 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3067 		cpu_reg.mips_view_base = 0x8000000;
3068 
3069 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3070 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3071 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3072 		fw.start_addr = bnx_COM_b06FwStartAddr;
3073 
3074 		fw.text_addr = bnx_COM_b06FwTextAddr;
3075 		fw.text_len = bnx_COM_b06FwTextLen;
3076 		fw.text_index = 0;
3077 		fw.text = bnx_COM_b06FwText;
3078 
3079 		fw.data_addr = bnx_COM_b06FwDataAddr;
3080 		fw.data_len = bnx_COM_b06FwDataLen;
3081 		fw.data_index = 0;
3082 		fw.data = bnx_COM_b06FwData;
3083 
3084 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3085 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3086 		fw.sbss_index = 0;
3087 		fw.sbss = bnx_COM_b06FwSbss;
3088 
3089 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3090 		fw.bss_len = bnx_COM_b06FwBssLen;
3091 		fw.bss_index = 0;
3092 		fw.bss = bnx_COM_b06FwBss;
3093 
3094 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3095 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3096 		fw.rodata_index = 0;
3097 		fw.rodata = bnx_COM_b06FwRodata;
3098 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3099 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3100 		break;
3101 	}
3102 }
3103 
3104 /****************************************************************************/
3105 /* Initialize context memory.                                               */
3106 /*                                                                          */
3107 /* Clears the memory associated with each Context ID (CID).                 */
3108 /*                                                                          */
3109 /* Returns:                                                                 */
3110 /*   Nothing.                                                               */
3111 /****************************************************************************/
3112 void
3113 bnx_init_context(struct bnx_softc *sc)
3114 {
3115 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3116 		/* DRC: Replace this constant value with a #define. */
3117 		int i, retry_cnt = 10;
3118 		u_int32_t val;
3119 
3120 		/*
3121 		 * BCM5709 context memory may be cached
3122 		 * in host memory so prepare the host memory
3123 		 * for access.
3124 		 */
3125 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3126 		    | (1 << 12);
3127 		val |= (BCM_PAGE_BITS - 8) << 16;
3128 		REG_WR(sc, BNX_CTX_COMMAND, val);
3129 
3130 		/* Wait for mem init command to complete. */
3131 		for (i = 0; i < retry_cnt; i++) {
3132 			val = REG_RD(sc, BNX_CTX_COMMAND);
3133 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3134 				break;
3135 			DELAY(2);
3136 		}
3137 
3138 
3139 		/* ToDo: Consider returning an error here. */
3140 
3141 		for (i = 0; i < sc->ctx_pages; i++) {
3142 			int j;
3143 
3144 
3145 			/* Set the physaddr of the context memory cache. */
3146 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3147 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3148 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3149 			val = (u_int32_t)
3150 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3151 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3152 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3153 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3154 
3155 
3156 			/* Verify that the context memory write was successful. */
3157 			for (j = 0; j < retry_cnt; j++) {
3158 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3159 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3160 					break;
3161 				DELAY(5);
3162 			}
3163 
3164 			/* ToDo: Consider returning an error here. */
3165 		}
3166 	} else {
3167 		u_int32_t vcid_addr, offset;
3168 
3169 		/*
3170 		 * For the 5706/5708, context memory is local to
3171 		 * the controller, so initialize the controller
3172 		 * context memory.
3173 		 */
3174 
3175 		vcid_addr = GET_CID_ADDR(96);
3176 		while (vcid_addr) {
3177 
3178 			vcid_addr -= BNX_PHY_CTX_SIZE;
3179 
3180 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3181 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3182 
3183 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3184 				CTX_WR(sc, 0x00, offset, 0);
3185 			}
3186 
3187 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3188 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3189 		}
3190 	}
3191 }
3192 
3193 /****************************************************************************/
3194 /* Fetch the permanent MAC address of the controller.                       */
3195 /*                                                                          */
3196 /* Returns:                                                                 */
3197 /*   Nothing.                                                               */
3198 /****************************************************************************/
3199 void
3200 bnx_get_mac_addr(struct bnx_softc *sc)
3201 {
3202 	u_int32_t		mac_lo = 0, mac_hi = 0;
3203 
3204 	/*
3205 	 * The NetXtreme II bootcode populates various NIC
3206 	 * power-on and runtime configuration items in a
3207 	 * shared memory area.  The factory configured MAC
3208 	 * address is available from both NVRAM and the
3209 	 * shared memory area so we'll read the value from
3210 	 * shared memory for speed.
3211 	 */
3212 
3213 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3214 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3215 
3216 	if ((mac_lo == 0) && (mac_hi == 0)) {
3217 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3218 		    __FILE__, __LINE__);
3219 	} else {
3220 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3221 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3222 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3223 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3224 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3225 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3226 	}
3227 
3228 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3229 	    "%s\n", ether_sprintf(sc->eaddr));
3230 }
3231 
3232 /****************************************************************************/
3233 /* Program the MAC address.                                                 */
3234 /*                                                                          */
3235 /* Returns:                                                                 */
3236 /*   Nothing.                                                               */
3237 /****************************************************************************/
3238 void
3239 bnx_set_mac_addr(struct bnx_softc *sc)
3240 {
3241 	u_int32_t		val;
3242 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3243 
3244 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3245 	    "%s\n", ether_sprintf(sc->eaddr));
3246 
3247 	val = (mac_addr[0] << 8) | mac_addr[1];
3248 
3249 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3250 
3251 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3252 		(mac_addr[4] << 8) | mac_addr[5];
3253 
3254 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3255 }
3256 
3257 /****************************************************************************/
3258 /* Stop the controller.                                                     */
3259 /*                                                                          */
3260 /* Returns:                                                                 */
3261 /*   Nothing.                                                               */
3262 /****************************************************************************/
3263 void
3264 bnx_stop(struct ifnet *ifp, int disable)
3265 {
3266 	struct bnx_softc *sc = ifp->if_softc;
3267 
3268 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3269 
3270 	if ((ifp->if_flags & IFF_RUNNING) == 0)
3271 		return;
3272 
3273 	callout_stop(&sc->bnx_timeout);
3274 
3275 	mii_down(&sc->bnx_mii);
3276 
3277 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3278 
3279 	/* Disable the transmit/receive blocks. */
3280 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3281 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3282 	DELAY(20);
3283 
3284 	bnx_disable_intr(sc);
3285 
3286 	/* Tell firmware that the driver is going away. */
3287 	if (disable)
3288 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3289 	else
3290 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3291 
3292 	/* Free RX buffers. */
3293 	bnx_free_rx_chain(sc);
3294 
3295 	/* Free TX buffers. */
3296 	bnx_free_tx_chain(sc);
3297 
3298 	ifp->if_timer = 0;
3299 
3300 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3301 
3302 }
3303 
3304 int
3305 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3306 {
3307 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3308 	u_int32_t		val;
3309 	int			i, rc = 0;
3310 
3311 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3312 
3313 	/* Wait for pending PCI transactions to complete. */
3314 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3315 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3316 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3317 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3318 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3319 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3320 	DELAY(5);
3321 
3322 	/* Disable DMA */
3323 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3324 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3325 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3326 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3327 	}
3328 
3329 	/* Assume bootcode is running. */
3330 	sc->bnx_fw_timed_out = 0;
3331 
3332 	/* Give the firmware a chance to prepare for the reset. */
3333 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3334 	if (rc)
3335 		goto bnx_reset_exit;
3336 
3337 	/* Set a firmware reminder that this is a soft reset. */
3338 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3339 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3340 
3341 	/* Dummy read to force the chip to complete all current transactions. */
3342 	val = REG_RD(sc, BNX_MISC_ID);
3343 
3344 	/* Chip reset. */
3345 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3346 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3347 		REG_RD(sc, BNX_MISC_COMMAND);
3348 		DELAY(5);
3349 
3350 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3351 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3352 
3353 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3354 		    val);
3355 	} else {
3356 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3357 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3358 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3359 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3360 
3361 		/* Allow up to 30us for reset to complete. */
3362 		for (i = 0; i < 10; i++) {
3363 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3364 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3365 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3366 				break;
3367 			}
3368 			DELAY(10);
3369 		}
3370 
3371 		/* Check that reset completed successfully. */
3372 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3373 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3374 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3375 			    __FILE__, __LINE__);
3376 			rc = EBUSY;
3377 			goto bnx_reset_exit;
3378 		}
3379 	}
3380 
3381 	/* Make sure byte swapping is properly configured. */
3382 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3383 	if (val != 0x01020304) {
3384 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3385 		    __FILE__, __LINE__);
3386 		rc = ENODEV;
3387 		goto bnx_reset_exit;
3388 	}
3389 
3390 	/* Just completed a reset, assume that firmware is running again. */
3391 	sc->bnx_fw_timed_out = 0;
3392 
3393 	/* Wait for the firmware to finish its initialization. */
3394 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3395 	if (rc)
3396 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3397 		    "initialization!\n", __FILE__, __LINE__);
3398 
3399 bnx_reset_exit:
3400 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3401 
3402 	return (rc);
3403 }
3404 
3405 int
3406 bnx_chipinit(struct bnx_softc *sc)
3407 {
3408 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3409 	u_int32_t		val;
3410 	int			rc = 0;
3411 
3412 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3413 
3414 	/* Make sure the interrupt is not active. */
3415 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3416 
3417 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3418 	/* channels and PCI clock compensation delay.                      */
3419 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3420 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3421 #if BYTE_ORDER == BIG_ENDIAN
3422 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3423 #endif
3424 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3425 	    DMA_READ_CHANS << 12 |
3426 	    DMA_WRITE_CHANS << 16;
3427 
3428 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3429 
3430 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3431 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3432 
3433 	/*
3434 	 * This setting resolves a problem observed on certain Intel PCI
3435 	 * chipsets that cannot handle multiple outstanding DMA operations.
3436 	 * See errata E9_5706A1_65.
3437 	 */
3438 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3439 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3440 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3441 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3442 
3443 	REG_WR(sc, BNX_DMA_CONFIG, val);
3444 
3445 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3446 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3447 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3448 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3449 		    val & ~0x20000);
3450 	}
3451 
3452 	/* Enable the RX_V2P and Context state machines before access. */
3453 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3454 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3455 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3456 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3457 
3458 	/* Initialize context mapping and zero out the quick contexts. */
3459 	bnx_init_context(sc);
3460 
3461 	/* Initialize the on-boards CPUs */
3462 	bnx_init_cpus(sc);
3463 
3464 	/* Prepare NVRAM for access. */
3465 	if (bnx_init_nvram(sc)) {
3466 		rc = ENODEV;
3467 		goto bnx_chipinit_exit;
3468 	}
3469 
3470 	/* Set the kernel bypass block size */
3471 	val = REG_RD(sc, BNX_MQ_CONFIG);
3472 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3473 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3474 
3475 	/* Enable bins used on the 5709. */
3476 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3477 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3478 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3479 			val |= BNX_MQ_CONFIG_HALT_DIS;
3480 	}
3481 
3482 	REG_WR(sc, BNX_MQ_CONFIG, val);
3483 
3484 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3485 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3486 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3487 
3488 	val = (BCM_PAGE_BITS - 8) << 24;
3489 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3490 
3491 	/* Configure page size. */
3492 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3493 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3494 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3495 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3496 
3497 #if 0
3498 	/* Set the perfect match control register to default. */
3499 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3500 #endif
3501 
3502 bnx_chipinit_exit:
3503 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3504 
3505 	return(rc);
3506 }
3507 
3508 /****************************************************************************/
3509 /* Initialize the controller in preparation to send/receive traffic.        */
3510 /*                                                                          */
3511 /* Returns:                                                                 */
3512 /*   0 for success, positive value for failure.                             */
3513 /****************************************************************************/
3514 int
3515 bnx_blockinit(struct bnx_softc *sc)
3516 {
3517 	u_int32_t		reg, val;
3518 	int 			rc = 0;
3519 
3520 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3521 
3522 	/* Load the hardware default MAC address. */
3523 	bnx_set_mac_addr(sc);
3524 
3525 	/* Set the Ethernet backoff seed value */
3526 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3527 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3528 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3529 
3530 	sc->last_status_idx = 0;
3531 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3532 
3533 	/* Set up link change interrupt generation. */
3534 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3535 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3536 
3537 	/* Program the physical address of the status block. */
3538 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3539 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3540 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3541 
3542 	/* Program the physical address of the statistics block. */
3543 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3544 	    (u_int32_t)(sc->stats_block_paddr));
3545 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3546 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3547 
3548 	/* Program various host coalescing parameters. */
3549 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3550 	    << 16) | sc->bnx_tx_quick_cons_trip);
3551 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3552 	    << 16) | sc->bnx_rx_quick_cons_trip);
3553 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3554 	    sc->bnx_comp_prod_trip);
3555 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3556 	    sc->bnx_tx_ticks);
3557 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3558 	    sc->bnx_rx_ticks);
3559 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3560 	    sc->bnx_com_ticks);
3561 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3562 	    sc->bnx_cmd_ticks);
3563 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3564 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3565 	REG_WR(sc, BNX_HC_CONFIG,
3566 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3567 	    BNX_HC_CONFIG_COLLECT_STATS));
3568 
3569 	/* Clear the internal statistics counters. */
3570 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3571 
3572 	/* Verify that bootcode is running. */
3573 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3574 
3575 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3576 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3577 	    __FILE__, __LINE__); reg = 0);
3578 
3579 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3580 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3581 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3582 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3583 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3584 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3585 		rc = ENODEV;
3586 		goto bnx_blockinit_exit;
3587 	}
3588 
3589 	/* Check if any management firmware is running. */
3590 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3591 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3592 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3593 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3594 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3595 	}
3596 
3597 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3598 	    BNX_DEV_INFO_BC_REV);
3599 
3600 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3601 
3602 	/* Enable DMA */
3603 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3604 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3605 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3606 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3607 	}
3608 
3609 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3610 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3611 
3612 	/* Enable link state change interrupt generation. */
3613 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3614 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3615 		    BNX_MISC_ENABLE_DEFAULT_XI);
3616 	} else
3617 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3618 
3619 	/* Enable all remaining blocks in the MAC. */
3620 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3621 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3622 	DELAY(20);
3623 
3624 bnx_blockinit_exit:
3625 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3626 
3627 	return (rc);
3628 }
3629 
3630 static int
3631 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3632     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3633 {
3634 	bus_dmamap_t		map;
3635 	struct rx_bd		*rxbd;
3636 	u_int32_t		addr;
3637 	int i;
3638 #ifdef BNX_DEBUG
3639 	u_int16_t debug_chain_prod =	*chain_prod;
3640 #endif
3641 	u_int16_t first_chain_prod;
3642 
3643 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3644 
3645 	/* Map the mbuf cluster into device memory. */
3646 	map = sc->rx_mbuf_map[*chain_prod];
3647 	first_chain_prod = *chain_prod;
3648 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3649 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3650 		    __FILE__, __LINE__);
3651 
3652 		m_freem(m_new);
3653 
3654 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3655 
3656 		return ENOBUFS;
3657 	}
3658 	/* Make sure there is room in the receive chain. */
3659 	if (map->dm_nsegs > sc->free_rx_bd) {
3660 		bus_dmamap_unload(sc->bnx_dmatag, map);
3661 		m_freem(m_new);
3662 		return EFBIG;
3663 	}
3664 #ifdef BNX_DEBUG
3665 	/* Track the distribution of buffer segments. */
3666 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3667 #endif
3668 
3669 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3670 	    BUS_DMASYNC_PREREAD);
3671 
3672 	/* Update some debug statistics counters */
3673 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3674 	    sc->rx_low_watermark = sc->free_rx_bd);
3675 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3676 
3677 	/*
3678 	 * Setup the rx_bd for the first segment
3679 	 */
3680 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3681 
3682 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
3683 	rxbd->rx_bd_haddr_lo = addr;
3684 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3685 	rxbd->rx_bd_haddr_hi = addr;
3686 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3687 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3688 	*prod_bseq += map->dm_segs[0].ds_len;
3689 	bus_dmamap_sync(sc->bnx_dmatag,
3690 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3691 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3692 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3693 
3694 	for (i = 1; i < map->dm_nsegs; i++) {
3695 		*prod = NEXT_RX_BD(*prod);
3696 		*chain_prod = RX_CHAIN_IDX(*prod);
3697 
3698 		rxbd =
3699 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3700 
3701 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
3702 		rxbd->rx_bd_haddr_lo = addr;
3703 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3704 		rxbd->rx_bd_haddr_hi = addr;
3705 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3706 		rxbd->rx_bd_flags = 0;
3707 		*prod_bseq += map->dm_segs[i].ds_len;
3708 		bus_dmamap_sync(sc->bnx_dmatag,
3709 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3710 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3711 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3712 	}
3713 
3714 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3715 	bus_dmamap_sync(sc->bnx_dmatag,
3716 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3717 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3718 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3719 
3720 	/*
3721 	 * Save the mbuf, ajust the map pointer (swap map for first and
3722 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3723 	 * and update counter.
3724 	 */
3725 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3726 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3727 	sc->rx_mbuf_map[*chain_prod] = map;
3728 	sc->free_rx_bd -= map->dm_nsegs;
3729 
3730 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3731 	    map->dm_nsegs));
3732 	*prod = NEXT_RX_BD(*prod);
3733 	*chain_prod = RX_CHAIN_IDX(*prod);
3734 
3735 	return 0;
3736 }
3737 
3738 /****************************************************************************/
3739 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3740 /*                                                                          */
3741 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3742 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3743 /* necessary.                                                               */
3744 /*                                                                          */
3745 /* Returns:                                                                 */
3746 /*   0 for success, positive value for failure.                             */
3747 /****************************************************************************/
3748 int
3749 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3750     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3751 {
3752 	struct mbuf 		*m_new = NULL;
3753 	int			rc = 0;
3754 	u_int16_t min_free_bd;
3755 
3756 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3757 	    __func__);
3758 
3759 	/* Make sure the inputs are valid. */
3760 	DBRUNIF((*chain_prod > MAX_RX_BD),
3761 	    aprint_error_dev(sc->bnx_dev,
3762 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3763 		*chain_prod, (u_int16_t)MAX_RX_BD));
3764 
3765 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3766 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3767 	    *prod_bseq);
3768 
3769 	/* try to get in as many mbufs as possible */
3770 	if (sc->mbuf_alloc_size == MCLBYTES)
3771 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3772 	else
3773 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3774 	while (sc->free_rx_bd >= min_free_bd) {
3775 		/* Simulate an mbuf allocation failure. */
3776 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3777 		    aprint_error_dev(sc->bnx_dev,
3778 		    "Simulating mbuf allocation failure.\n");
3779 			sc->mbuf_sim_alloc_failed++;
3780 			rc = ENOBUFS;
3781 			goto bnx_get_buf_exit);
3782 
3783 		/* This is a new mbuf allocation. */
3784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3785 		if (m_new == NULL) {
3786 			DBPRINT(sc, BNX_WARN,
3787 			    "%s(%d): RX mbuf header allocation failed!\n",
3788 			    __FILE__, __LINE__);
3789 
3790 			sc->mbuf_alloc_failed++;
3791 
3792 			rc = ENOBUFS;
3793 			goto bnx_get_buf_exit;
3794 		}
3795 
3796 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3797 
3798 		/* Simulate an mbuf cluster allocation failure. */
3799 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3800 			m_freem(m_new);
3801 			sc->rx_mbuf_alloc--;
3802 			sc->mbuf_alloc_failed++;
3803 			sc->mbuf_sim_alloc_failed++;
3804 			rc = ENOBUFS;
3805 			goto bnx_get_buf_exit);
3806 
3807 		if (sc->mbuf_alloc_size == MCLBYTES)
3808 			MCLGET(m_new, M_DONTWAIT);
3809 		else
3810 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3811 			    M_DONTWAIT);
3812 		if (!(m_new->m_flags & M_EXT)) {
3813 			DBPRINT(sc, BNX_WARN,
3814 			    "%s(%d): RX mbuf chain allocation failed!\n",
3815 			    __FILE__, __LINE__);
3816 
3817 			m_freem(m_new);
3818 
3819 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3820 			sc->mbuf_alloc_failed++;
3821 
3822 			rc = ENOBUFS;
3823 			goto bnx_get_buf_exit;
3824 		}
3825 
3826 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3827 		if (rc != 0)
3828 			goto bnx_get_buf_exit;
3829 	}
3830 
3831 bnx_get_buf_exit:
3832 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3833 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3834 	    *chain_prod, *prod_bseq);
3835 
3836 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3837 	    __func__);
3838 
3839 	return(rc);
3840 }
3841 
3842 int
3843 bnx_alloc_pkts(struct bnx_softc *sc)
3844 {
3845 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
3846 	struct bnx_pkt *pkt;
3847 	int i;
3848 
3849 	for (i = 0; i < 4; i++) { /* magic! */
3850 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3851 		if (pkt == NULL)
3852 			break;
3853 
3854 		if (bus_dmamap_create(sc->bnx_dmatag,
3855 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3856 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3857 		    &pkt->pkt_dmamap) != 0)
3858 			goto put;
3859 
3860 		if (!ISSET(ifp->if_flags, IFF_UP))
3861 			goto stopping;
3862 
3863 		mutex_enter(&sc->tx_pkt_mtx);
3864 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3865 		sc->tx_pkt_count++;
3866 		mutex_exit(&sc->tx_pkt_mtx);
3867 	}
3868 
3869 	return (i == 0) ? ENOMEM : 0;
3870 
3871 stopping:
3872 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3873 put:
3874 	pool_put(bnx_tx_pool, pkt);
3875 	return (i == 0) ? ENOMEM : 0;
3876 }
3877 
3878 /****************************************************************************/
3879 /* Initialize the TX context memory.                                        */
3880 /*                                                                          */
3881 /* Returns:                                                                 */
3882 /*   Nothing                                                                */
3883 /****************************************************************************/
3884 void
3885 bnx_init_tx_context(struct bnx_softc *sc)
3886 {
3887 	u_int32_t val;
3888 
3889 	/* Initialize the context ID for an L2 TX chain. */
3890 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3891 		/* Set the CID type to support an L2 connection. */
3892 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3893 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3894 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3895 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3896 
3897 		/* Point the hardware to the first page in the chain. */
3898 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3899 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3900 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3901 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3902 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
3903 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3904 	} else {
3905 		/* Set the CID type to support an L2 connection. */
3906 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3907 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3908 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3909 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3910 
3911 		/* Point the hardware to the first page in the chain. */
3912 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3913 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3914 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3915 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3916 	}
3917 }
3918 
3919 
3920 /****************************************************************************/
3921 /* Allocate memory and initialize the TX data structures.                   */
3922 /*                                                                          */
3923 /* Returns:                                                                 */
3924 /*   0 for success, positive value for failure.                             */
3925 /****************************************************************************/
3926 int
3927 bnx_init_tx_chain(struct bnx_softc *sc)
3928 {
3929 	struct tx_bd		*txbd;
3930 	u_int32_t		addr;
3931 	int			i, rc = 0;
3932 
3933 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3934 
3935 	/* Force an allocation of some dmamaps for tx up front */
3936 	bnx_alloc_pkts(sc);
3937 
3938 	/* Set the initial TX producer/consumer indices. */
3939 	sc->tx_prod = 0;
3940 	sc->tx_cons = 0;
3941 	sc->tx_prod_bseq = 0;
3942 	sc->used_tx_bd = 0;
3943 	sc->max_tx_bd = USABLE_TX_BD;
3944 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3945 	DBRUNIF(1, sc->tx_full_count = 0);
3946 
3947 	/*
3948 	 * The NetXtreme II supports a linked-list structure called
3949 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3950 	 * consists of a series of 1 or more chain pages, each of which
3951 	 * consists of a fixed number of BD entries.
3952 	 * The last BD entry on each page is a pointer to the next page
3953 	 * in the chain, and the last pointer in the BD chain
3954 	 * points back to the beginning of the chain.
3955 	 */
3956 
3957 	/* Set the TX next pointer chain entries. */
3958 	for (i = 0; i < TX_PAGES; i++) {
3959 		int j;
3960 
3961 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3962 
3963 		/* Check if we've reached the last page. */
3964 		if (i == (TX_PAGES - 1))
3965 			j = 0;
3966 		else
3967 			j = i + 1;
3968 
3969 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3970 		txbd->tx_bd_haddr_lo = addr;
3971 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3972 		txbd->tx_bd_haddr_hi = addr;
3973 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3974 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3975 	}
3976 
3977 	/*
3978 	 * Initialize the context ID for an L2 TX chain.
3979 	 */
3980 	bnx_init_tx_context(sc);
3981 
3982 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3983 
3984 	return(rc);
3985 }
3986 
3987 /****************************************************************************/
3988 /* Free memory and clear the TX data structures.                            */
3989 /*                                                                          */
3990 /* Returns:                                                                 */
3991 /*   Nothing.                                                               */
3992 /****************************************************************************/
3993 void
3994 bnx_free_tx_chain(struct bnx_softc *sc)
3995 {
3996 	struct bnx_pkt		*pkt;
3997 	int			i;
3998 
3999 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4000 
4001 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4002 	mutex_enter(&sc->tx_pkt_mtx);
4003 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4004 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4005 		mutex_exit(&sc->tx_pkt_mtx);
4006 
4007 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4008 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4009 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4010 
4011 		m_freem(pkt->pkt_mbuf);
4012 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4013 
4014 		mutex_enter(&sc->tx_pkt_mtx);
4015 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4016         }
4017 
4018 	/* Destroy all the dmamaps we allocated for TX */
4019 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4020 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4021 		sc->tx_pkt_count--;
4022 		mutex_exit(&sc->tx_pkt_mtx);
4023 
4024 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4025 		pool_put(bnx_tx_pool, pkt);
4026 
4027 		mutex_enter(&sc->tx_pkt_mtx);
4028 	}
4029 	mutex_exit(&sc->tx_pkt_mtx);
4030 
4031 
4032 
4033 	/* Clear each TX chain page. */
4034 	for (i = 0; i < TX_PAGES; i++) {
4035 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4036 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4037 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4038 	}
4039 
4040 	sc->used_tx_bd = 0;
4041 
4042 	/* Check if we lost any mbufs in the process. */
4043 	DBRUNIF((sc->tx_mbuf_alloc),
4044 	    aprint_error_dev(sc->bnx_dev,
4045 	        "Memory leak! Lost %d mbufs from tx chain!\n",
4046 		sc->tx_mbuf_alloc));
4047 
4048 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4049 }
4050 
4051 /****************************************************************************/
4052 /* Initialize the RX context memory.                                        */
4053 /*                                                                          */
4054 /* Returns:                                                                 */
4055 /*   Nothing                                                                */
4056 /****************************************************************************/
4057 void
4058 bnx_init_rx_context(struct bnx_softc *sc)
4059 {
4060 	u_int32_t val;
4061 
4062 	/* Initialize the context ID for an L2 RX chain. */
4063 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4064 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4065 
4066 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4067 		u_int32_t lo_water, hi_water;
4068 
4069 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4070 		hi_water = USABLE_RX_BD / 4;
4071 
4072 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4073 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4074 
4075 		if (hi_water > 0xf)
4076 			hi_water = 0xf;
4077 		else if (hi_water == 0)
4078 			lo_water = 0;
4079 		val |= lo_water |
4080 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4081 	}
4082 
4083  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4084 
4085 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4086 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4087 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4088 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4089 	}
4090 
4091 	/* Point the hardware to the first page in the chain. */
4092 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4093 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4094 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4095 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4096 }
4097 
4098 /****************************************************************************/
4099 /* Allocate memory and initialize the RX data structures.                   */
4100 /*                                                                          */
4101 /* Returns:                                                                 */
4102 /*   0 for success, positive value for failure.                             */
4103 /****************************************************************************/
4104 int
4105 bnx_init_rx_chain(struct bnx_softc *sc)
4106 {
4107 	struct rx_bd		*rxbd;
4108 	int			i, rc = 0;
4109 	u_int16_t		prod, chain_prod;
4110 	u_int32_t		prod_bseq, addr;
4111 
4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4113 
4114 	/* Initialize the RX producer and consumer indices. */
4115 	sc->rx_prod = 0;
4116 	sc->rx_cons = 0;
4117 	sc->rx_prod_bseq = 0;
4118 	sc->free_rx_bd = USABLE_RX_BD;
4119 	sc->max_rx_bd = USABLE_RX_BD;
4120 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4121 	DBRUNIF(1, sc->rx_empty_count = 0);
4122 
4123 	/* Initialize the RX next pointer chain entries. */
4124 	for (i = 0; i < RX_PAGES; i++) {
4125 		int j;
4126 
4127 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4128 
4129 		/* Check if we've reached the last page. */
4130 		if (i == (RX_PAGES - 1))
4131 			j = 0;
4132 		else
4133 			j = i + 1;
4134 
4135 		/* Setup the chain page pointers. */
4136 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4137 		rxbd->rx_bd_haddr_hi = addr;
4138 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4139 		rxbd->rx_bd_haddr_lo = addr;
4140 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4141 		    0, BNX_RX_CHAIN_PAGE_SZ,
4142 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4143 	}
4144 
4145 	/* Allocate mbuf clusters for the rx_bd chain. */
4146 	prod = prod_bseq = 0;
4147 	chain_prod = RX_CHAIN_IDX(prod);
4148 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4149 		BNX_PRINTF(sc,
4150 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4151 	}
4152 
4153 	/* Save the RX chain producer index. */
4154 	sc->rx_prod = prod;
4155 	sc->rx_prod_bseq = prod_bseq;
4156 
4157 	for (i = 0; i < RX_PAGES; i++)
4158 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4159 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4160 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4161 
4162 	/* Tell the chip about the waiting rx_bd's. */
4163 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4164 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4165 
4166 	bnx_init_rx_context(sc);
4167 
4168 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4169 
4170 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4171 
4172 	return(rc);
4173 }
4174 
4175 /****************************************************************************/
4176 /* Free memory and clear the RX data structures.                            */
4177 /*                                                                          */
4178 /* Returns:                                                                 */
4179 /*   Nothing.                                                               */
4180 /****************************************************************************/
4181 void
4182 bnx_free_rx_chain(struct bnx_softc *sc)
4183 {
4184 	int			i;
4185 
4186 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4187 
4188 	/* Free any mbufs still in the RX mbuf chain. */
4189 	for (i = 0; i < TOTAL_RX_BD; i++) {
4190 		if (sc->rx_mbuf_ptr[i] != NULL) {
4191 			if (sc->rx_mbuf_map[i] != NULL) {
4192 				bus_dmamap_sync(sc->bnx_dmatag,
4193 				    sc->rx_mbuf_map[i],	0,
4194 				    sc->rx_mbuf_map[i]->dm_mapsize,
4195 				    BUS_DMASYNC_POSTREAD);
4196 				bus_dmamap_unload(sc->bnx_dmatag,
4197 				    sc->rx_mbuf_map[i]);
4198 			}
4199 			m_freem(sc->rx_mbuf_ptr[i]);
4200 			sc->rx_mbuf_ptr[i] = NULL;
4201 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4202 		}
4203 	}
4204 
4205 	/* Clear each RX chain page. */
4206 	for (i = 0; i < RX_PAGES; i++)
4207 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4208 
4209 	sc->free_rx_bd = sc->max_rx_bd;
4210 
4211 	/* Check if we lost any mbufs in the process. */
4212 	DBRUNIF((sc->rx_mbuf_alloc),
4213 	    aprint_error_dev(sc->bnx_dev,
4214 	        "Memory leak! Lost %d mbufs from rx chain!\n",
4215 		sc->rx_mbuf_alloc));
4216 
4217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4218 }
4219 
4220 /****************************************************************************/
4221 /* Handles PHY generated interrupt events.                                  */
4222 /*                                                                          */
4223 /* Returns:                                                                 */
4224 /*   Nothing.                                                               */
4225 /****************************************************************************/
4226 void
4227 bnx_phy_intr(struct bnx_softc *sc)
4228 {
4229 	u_int32_t		new_link_state, old_link_state;
4230 
4231 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4232 	    BUS_DMASYNC_POSTREAD);
4233 	new_link_state = sc->status_block->status_attn_bits &
4234 	    STATUS_ATTN_BITS_LINK_STATE;
4235 	old_link_state = sc->status_block->status_attn_bits_ack &
4236 	    STATUS_ATTN_BITS_LINK_STATE;
4237 
4238 	/* Handle any changes if the link state has changed. */
4239 	if (new_link_state != old_link_state) {
4240 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4241 
4242 		callout_stop(&sc->bnx_timeout);
4243 		bnx_tick(sc);
4244 
4245 		/* Update the status_attn_bits_ack field in the status block. */
4246 		if (new_link_state) {
4247 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4248 			    STATUS_ATTN_BITS_LINK_STATE);
4249 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4250 		} else {
4251 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4252 			    STATUS_ATTN_BITS_LINK_STATE);
4253 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4254 		}
4255 	}
4256 
4257 	/* Acknowledge the link change interrupt. */
4258 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4259 }
4260 
4261 /****************************************************************************/
4262 /* Handles received frame interrupt events.                                 */
4263 /*                                                                          */
4264 /* Returns:                                                                 */
4265 /*   Nothing.                                                               */
4266 /****************************************************************************/
4267 void
4268 bnx_rx_intr(struct bnx_softc *sc)
4269 {
4270 	struct status_block	*sblk = sc->status_block;
4271 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4272 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
4273 	u_int16_t		sw_prod, sw_chain_prod;
4274 	u_int32_t		sw_prod_bseq;
4275 	struct l2_fhdr		*l2fhdr;
4276 	int			i;
4277 
4278 	DBRUNIF(1, sc->rx_interrupts++);
4279 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4280 	    BUS_DMASYNC_POSTREAD);
4281 
4282 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4283 	for (i = 0; i < RX_PAGES; i++)
4284 		bus_dmamap_sync(sc->bnx_dmatag,
4285 		    sc->rx_bd_chain_map[i], 0,
4286 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4287 		    BUS_DMASYNC_POSTWRITE);
4288 
4289 	/* Get the hardware's view of the RX consumer index. */
4290 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4291 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4292 		hw_cons++;
4293 
4294 	/* Get working copies of the driver's view of the RX indices. */
4295 	sw_cons = sc->rx_cons;
4296 	sw_prod = sc->rx_prod;
4297 	sw_prod_bseq = sc->rx_prod_bseq;
4298 
4299 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4300 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4301 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4302 
4303 	/* Prevent speculative reads from getting ahead of the status block. */
4304 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4305 	    BUS_SPACE_BARRIER_READ);
4306 
4307 	/* Update some debug statistics counters */
4308 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4309 	    sc->rx_low_watermark = sc->free_rx_bd);
4310 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4311 
4312 	/*
4313 	 * Scan through the receive chain as long
4314 	 * as there is work to do.
4315 	 */
4316 	while (sw_cons != hw_cons) {
4317 		struct mbuf *m;
4318 		struct rx_bd *rxbd;
4319 		unsigned int len;
4320 		u_int32_t status;
4321 
4322 		/* Convert the producer/consumer indices to an actual
4323 		 * rx_bd index.
4324 		 */
4325 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4326 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4327 
4328 		/* Get the used rx_bd. */
4329 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4330 		sc->free_rx_bd++;
4331 
4332 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4333 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4334 
4335 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4336 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4337 #ifdef DIAGNOSTIC
4338 			/* Validate that this is the last rx_bd. */
4339 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4340 			    printf("%s: Unexpected mbuf found in "
4341 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4342 			        sw_chain_cons);
4343 			}
4344 #endif
4345 
4346 			/* DRC - ToDo: If the received packet is small, say less
4347 			 *             than 128 bytes, allocate a new mbuf here,
4348 			 *             copy the data to that mbuf, and recycle
4349 			 *             the mapped jumbo frame.
4350 			 */
4351 
4352 			/* Unmap the mbuf from DMA space. */
4353 #ifdef DIAGNOSTIC
4354 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4355 				printf("invalid map sw_cons 0x%x "
4356 				"sw_prod 0x%x "
4357 				"sw_chain_cons 0x%x "
4358 				"sw_chain_prod 0x%x "
4359 				"hw_cons 0x%x "
4360 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4361 				"TOTAL_RX_BD 0x%x\n",
4362 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4363 				hw_cons,
4364 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4365 			}
4366 #endif
4367 			bus_dmamap_sync(sc->bnx_dmatag,
4368 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4369 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4370 			    BUS_DMASYNC_POSTREAD);
4371 			bus_dmamap_unload(sc->bnx_dmatag,
4372 			    sc->rx_mbuf_map[sw_chain_cons]);
4373 
4374 			/* Remove the mbuf from the driver's chain. */
4375 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4376 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4377 
4378 			/*
4379 			 * Frames received on the NetXteme II are prepended
4380 			 * with the l2_fhdr structure which provides status
4381 			 * information about the received frame (including
4382 			 * VLAN tags and checksum info) and are also
4383 			 * automatically adjusted to align the IP header
4384 			 * (i.e. two null bytes are inserted before the
4385 			 * Ethernet header).
4386 			 */
4387 			l2fhdr = mtod(m, struct l2_fhdr *);
4388 
4389 			len    = l2fhdr->l2_fhdr_pkt_len;
4390 			status = l2fhdr->l2_fhdr_status;
4391 
4392 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4393 			    aprint_error("Simulating l2_fhdr status error.\n");
4394 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4395 
4396 			/* Watch for unusual sized frames. */
4397 			DBRUNIF(((len < BNX_MIN_MTU) ||
4398 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4399 			    aprint_error_dev(sc->bnx_dev,
4400 			        "Unusual frame size found. "
4401 				"Min(%d), Actual(%d), Max(%d)\n",
4402 				(int)BNX_MIN_MTU, len,
4403 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4404 
4405 			bnx_dump_mbuf(sc, m);
4406 			bnx_breakpoint(sc));
4407 
4408 			len -= ETHER_CRC_LEN;
4409 
4410 			/* Check the received frame for errors. */
4411 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4412 			    L2_FHDR_ERRORS_PHY_DECODE |
4413 			    L2_FHDR_ERRORS_ALIGNMENT |
4414 			    L2_FHDR_ERRORS_TOO_SHORT |
4415 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4416 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4417 			    len >
4418 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4419 				ifp->if_ierrors++;
4420 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4421 
4422 				/* Reuse the mbuf for a new frame. */
4423 				if (bnx_add_buf(sc, m, &sw_prod,
4424 				    &sw_chain_prod, &sw_prod_bseq)) {
4425 					DBRUNIF(1, bnx_breakpoint(sc));
4426 					panic("%s: Can't reuse RX mbuf!\n",
4427 					    device_xname(sc->bnx_dev));
4428 				}
4429 				continue;
4430 			}
4431 
4432 			/*
4433 			 * Get a new mbuf for the rx_bd.   If no new
4434 			 * mbufs are available then reuse the current mbuf,
4435 			 * log an ierror on the interface, and generate
4436 			 * an error in the system log.
4437 			 */
4438 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4439 			    &sw_prod_bseq)) {
4440 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4441 				    "Failed to allocate "
4442 				    "new mbuf, incoming frame dropped!\n"));
4443 
4444 				ifp->if_ierrors++;
4445 
4446 				/* Try and reuse the exisitng mbuf. */
4447 				if (bnx_add_buf(sc, m, &sw_prod,
4448 				    &sw_chain_prod, &sw_prod_bseq)) {
4449 					DBRUNIF(1, bnx_breakpoint(sc));
4450 					panic("%s: Double mbuf allocation "
4451 					    "failure!",
4452 					    device_xname(sc->bnx_dev));
4453 				}
4454 				continue;
4455 			}
4456 
4457 			/* Skip over the l2_fhdr when passing the data up
4458 			 * the stack.
4459 			 */
4460 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4461 
4462 			/* Adjust the pckt length to match the received data. */
4463 			m->m_pkthdr.len = m->m_len = len;
4464 
4465 			/* Send the packet to the appropriate interface. */
4466 			m->m_pkthdr.rcvif = ifp;
4467 
4468 			DBRUN(BNX_VERBOSE_RECV,
4469 			    struct ether_header *eh;
4470 			    eh = mtod(m, struct ether_header *);
4471 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4472 			    __func__, ether_sprintf(eh->ether_dhost),
4473 			    ether_sprintf(eh->ether_shost),
4474 			    htons(eh->ether_type)));
4475 
4476 			/* Validate the checksum. */
4477 
4478 			/* Check for an IP datagram. */
4479 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4480 				/* Check if the IP checksum is valid. */
4481 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4482 				    == 0)
4483 					m->m_pkthdr.csum_flags |=
4484 					    M_CSUM_IPv4;
4485 #ifdef BNX_DEBUG
4486 				else
4487 					DBPRINT(sc, BNX_WARN_SEND,
4488 					    "%s(): Invalid IP checksum "
4489 					        "= 0x%04X!\n",
4490 						__func__,
4491 						l2fhdr->l2_fhdr_ip_xsum
4492 						);
4493 #endif
4494 			}
4495 
4496 			/* Check for a valid TCP/UDP frame. */
4497 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4498 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4499 				/* Check for a good TCP/UDP checksum. */
4500 				if ((status &
4501 				    (L2_FHDR_ERRORS_TCP_XSUM |
4502 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4503 					m->m_pkthdr.csum_flags |=
4504 					    M_CSUM_TCPv4 |
4505 					    M_CSUM_UDPv4;
4506 				} else {
4507 					DBPRINT(sc, BNX_WARN_SEND,
4508 					    "%s(): Invalid TCP/UDP "
4509 					    "checksum = 0x%04X!\n",
4510 					    __func__,
4511 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4512 				}
4513 			}
4514 
4515 			/*
4516 			 * If we received a packet with a vlan tag,
4517 			 * attach that information to the packet.
4518 			 */
4519 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4520 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4521 				VLAN_INPUT_TAG(ifp, m,
4522 				    l2fhdr->l2_fhdr_vlan_tag,
4523 				    continue);
4524 			}
4525 
4526 			/*
4527 			 * Handle BPF listeners. Let the BPF
4528 			 * user see the packet.
4529 			 */
4530 			bpf_mtap(ifp, m);
4531 
4532 			/* Pass the mbuf off to the upper layers. */
4533 			ifp->if_ipackets++;
4534 			DBPRINT(sc, BNX_VERBOSE_RECV,
4535 			    "%s(): Passing received frame up.\n", __func__);
4536 			(*ifp->if_input)(ifp, m);
4537 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4538 
4539 		}
4540 
4541 		sw_cons = NEXT_RX_BD(sw_cons);
4542 
4543 		/* Refresh hw_cons to see if there's new work */
4544 		if (sw_cons == hw_cons) {
4545 			hw_cons = sc->hw_rx_cons =
4546 			    sblk->status_rx_quick_consumer_index0;
4547 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4548 			    USABLE_RX_BD_PER_PAGE)
4549 				hw_cons++;
4550 		}
4551 
4552 		/* Prevent speculative reads from getting ahead of
4553 		 * the status block.
4554 		 */
4555 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4556 		    BUS_SPACE_BARRIER_READ);
4557 	}
4558 
4559 	for (i = 0; i < RX_PAGES; i++)
4560 		bus_dmamap_sync(sc->bnx_dmatag,
4561 		    sc->rx_bd_chain_map[i], 0,
4562 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4563 		    BUS_DMASYNC_PREWRITE);
4564 
4565 	sc->rx_cons = sw_cons;
4566 	sc->rx_prod = sw_prod;
4567 	sc->rx_prod_bseq = sw_prod_bseq;
4568 
4569 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4570 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4571 
4572 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4573 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4574 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4575 }
4576 
4577 /****************************************************************************/
4578 /* Handles transmit completion interrupt events.                            */
4579 /*                                                                          */
4580 /* Returns:                                                                 */
4581 /*   Nothing.                                                               */
4582 /****************************************************************************/
4583 void
4584 bnx_tx_intr(struct bnx_softc *sc)
4585 {
4586 	struct status_block	*sblk = sc->status_block;
4587 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4588 	struct bnx_pkt		*pkt;
4589 	bus_dmamap_t		map;
4590 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4591 
4592 	DBRUNIF(1, sc->tx_interrupts++);
4593 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4594 	    BUS_DMASYNC_POSTREAD);
4595 
4596 	/* Get the hardware's view of the TX consumer index. */
4597 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4598 
4599 	/* Skip to the next entry if this is a chain page pointer. */
4600 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4601 		hw_tx_cons++;
4602 
4603 	sw_tx_cons = sc->tx_cons;
4604 
4605 	/* Prevent speculative reads from getting ahead of the status block. */
4606 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4607 	    BUS_SPACE_BARRIER_READ);
4608 
4609 	/* Cycle through any completed TX chain page entries. */
4610 	while (sw_tx_cons != hw_tx_cons) {
4611 #ifdef BNX_DEBUG
4612 		struct tx_bd *txbd = NULL;
4613 #endif
4614 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4615 
4616 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4617 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4618 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4619 
4620 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4621 		    aprint_error_dev(sc->bnx_dev,
4622 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4623 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4624 
4625 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4626 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4627 
4628 		DBRUNIF((txbd == NULL),
4629 		    aprint_error_dev(sc->bnx_dev,
4630 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4631 		    bnx_breakpoint(sc));
4632 
4633 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4634 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4635 
4636 
4637 		mutex_enter(&sc->tx_pkt_mtx);
4638 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4639 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4640 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4641 			mutex_exit(&sc->tx_pkt_mtx);
4642 			/*
4643 			 * Free the associated mbuf. Remember
4644 			 * that only the last tx_bd of a packet
4645 			 * has an mbuf pointer and DMA map.
4646 			 */
4647 			map = pkt->pkt_dmamap;
4648 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4649 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4650 			bus_dmamap_unload(sc->bnx_dmatag, map);
4651 
4652 			m_freem(pkt->pkt_mbuf);
4653 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4654 
4655 			ifp->if_opackets++;
4656 
4657 			mutex_enter(&sc->tx_pkt_mtx);
4658 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4659 		}
4660 		mutex_exit(&sc->tx_pkt_mtx);
4661 
4662 		sc->used_tx_bd--;
4663 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4664 			__FILE__, __LINE__, sc->used_tx_bd);
4665 
4666 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4667 
4668 		/* Refresh hw_cons to see if there's new work. */
4669 		hw_tx_cons = sc->hw_tx_cons =
4670 		    sblk->status_tx_quick_consumer_index0;
4671 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4672 		    USABLE_TX_BD_PER_PAGE)
4673 			hw_tx_cons++;
4674 
4675 		/* Prevent speculative reads from getting ahead of
4676 		 * the status block.
4677 		 */
4678 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4679 		    BUS_SPACE_BARRIER_READ);
4680 	}
4681 
4682 	/* Clear the TX timeout timer. */
4683 	ifp->if_timer = 0;
4684 
4685 	/* Clear the tx hardware queue full flag. */
4686 	if (sc->used_tx_bd < sc->max_tx_bd) {
4687 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4688 		    aprint_debug_dev(sc->bnx_dev,
4689 		        "Open TX chain! %d/%d (used/total)\n",
4690 			sc->used_tx_bd, sc->max_tx_bd));
4691 		ifp->if_flags &= ~IFF_OACTIVE;
4692 	}
4693 
4694 	sc->tx_cons = sw_tx_cons;
4695 }
4696 
4697 /****************************************************************************/
4698 /* Disables interrupt generation.                                           */
4699 /*                                                                          */
4700 /* Returns:                                                                 */
4701 /*   Nothing.                                                               */
4702 /****************************************************************************/
4703 void
4704 bnx_disable_intr(struct bnx_softc *sc)
4705 {
4706 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4707 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4708 }
4709 
4710 /****************************************************************************/
4711 /* Enables interrupt generation.                                            */
4712 /*                                                                          */
4713 /* Returns:                                                                 */
4714 /*   Nothing.                                                               */
4715 /****************************************************************************/
4716 void
4717 bnx_enable_intr(struct bnx_softc *sc)
4718 {
4719 	u_int32_t		val;
4720 
4721 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4722 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4723 
4724 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4725 	    sc->last_status_idx);
4726 
4727 	val = REG_RD(sc, BNX_HC_COMMAND);
4728 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4729 }
4730 
4731 /****************************************************************************/
4732 /* Handles controller initialization.                                       */
4733 /*                                                                          */
4734 /****************************************************************************/
4735 int
4736 bnx_init(struct ifnet *ifp)
4737 {
4738 	struct bnx_softc	*sc = ifp->if_softc;
4739 	u_int32_t		ether_mtu;
4740 	int			s, error = 0;
4741 
4742 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4743 
4744 	s = splnet();
4745 
4746 	bnx_stop(ifp, 0);
4747 
4748 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4749 		aprint_error_dev(sc->bnx_dev,
4750 		    "Controller reset failed!\n");
4751 		goto bnx_init_exit;
4752 	}
4753 
4754 	if ((error = bnx_chipinit(sc)) != 0) {
4755 		aprint_error_dev(sc->bnx_dev,
4756 		    "Controller initialization failed!\n");
4757 		goto bnx_init_exit;
4758 	}
4759 
4760 	if ((error = bnx_blockinit(sc)) != 0) {
4761 		aprint_error_dev(sc->bnx_dev,
4762 		    "Block initialization failed!\n");
4763 		goto bnx_init_exit;
4764 	}
4765 
4766 	/* Calculate and program the Ethernet MRU size. */
4767 	if (ifp->if_mtu <= ETHERMTU) {
4768 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4769 		sc->mbuf_alloc_size = MCLBYTES;
4770 	} else {
4771 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4772 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4773 	}
4774 
4775 
4776 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4777 	    __func__, ether_mtu);
4778 
4779 	/*
4780 	 * Program the MRU and enable Jumbo frame
4781 	 * support.
4782 	 */
4783 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4784 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4785 
4786 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4787 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4788 
4789 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4790 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4791 	    sc->mbuf_alloc_size, sc->max_frame_size);
4792 
4793 	/* Program appropriate promiscuous/multicast filtering. */
4794 	bnx_iff(sc);
4795 
4796 	/* Init RX buffer descriptor chain. */
4797 	bnx_init_rx_chain(sc);
4798 
4799 	/* Init TX buffer descriptor chain. */
4800 	bnx_init_tx_chain(sc);
4801 
4802 	/* Enable host interrupts. */
4803 	bnx_enable_intr(sc);
4804 
4805 	if ((error = ether_mediachange(ifp)) != 0)
4806 		goto bnx_init_exit;
4807 
4808 	ifp->if_flags |= IFF_RUNNING;
4809 	ifp->if_flags &= ~IFF_OACTIVE;
4810 
4811 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4812 
4813 bnx_init_exit:
4814 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4815 
4816 	splx(s);
4817 
4818 	return(error);
4819 }
4820 
4821 /****************************************************************************/
4822 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4823 /* memory visible to the controller.                                        */
4824 /*                                                                          */
4825 /* Returns:                                                                 */
4826 /*   0 for success, positive value for failure.                             */
4827 /****************************************************************************/
4828 int
4829 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4830 {
4831 	struct bnx_pkt		*pkt;
4832 	bus_dmamap_t		map;
4833 	struct tx_bd		*txbd = NULL;
4834 	u_int16_t		vlan_tag = 0, flags = 0;
4835 	u_int16_t		chain_prod, prod;
4836 #ifdef BNX_DEBUG
4837 	u_int16_t		debug_prod;
4838 #endif
4839 	u_int32_t		addr, prod_bseq;
4840 	int			i, error;
4841 	struct m_tag		*mtag;
4842 
4843 again:
4844 	mutex_enter(&sc->tx_pkt_mtx);
4845 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4846 	if (pkt == NULL) {
4847 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4848 			mutex_exit(&sc->tx_pkt_mtx);
4849 			return ENETDOWN;
4850 		}
4851 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4852 			mutex_exit(&sc->tx_pkt_mtx);
4853 			if (bnx_alloc_pkts(sc) == 0)
4854 				goto again;
4855 		} else {
4856 			mutex_exit(&sc->tx_pkt_mtx);
4857 		}
4858 		return (ENOMEM);
4859 	}
4860 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4861 	mutex_exit(&sc->tx_pkt_mtx);
4862 
4863 	/* Transfer any checksum offload flags to the bd. */
4864 	if (m->m_pkthdr.csum_flags) {
4865 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4866 			flags |= TX_BD_FLAGS_IP_CKSUM;
4867 		if (m->m_pkthdr.csum_flags &
4868 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4869 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4870 	}
4871 
4872 	/* Transfer any VLAN tags to the bd. */
4873 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4874 	if (mtag != NULL) {
4875 		flags |= TX_BD_FLAGS_VLAN_TAG;
4876 		vlan_tag = VLAN_TAG_VALUE(mtag);
4877 	}
4878 
4879 	/* Map the mbuf into DMAable memory. */
4880 	prod = sc->tx_prod;
4881 	chain_prod = TX_CHAIN_IDX(prod);
4882 	map = pkt->pkt_dmamap;
4883 
4884 	/* Map the mbuf into our DMA address space. */
4885 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4886 	if (error != 0) {
4887 		aprint_error_dev(sc->bnx_dev,
4888 		    "Error mapping mbuf into TX chain!\n");
4889 		sc->tx_dma_map_failures++;
4890 		goto maperr;
4891 	}
4892 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4893 	    BUS_DMASYNC_PREWRITE);
4894         /* Make sure there's room in the chain */
4895 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4896                 goto nospace;
4897 
4898 	/* prod points to an empty tx_bd at this point. */
4899 	prod_bseq = sc->tx_prod_bseq;
4900 #ifdef BNX_DEBUG
4901 	debug_prod = chain_prod;
4902 #endif
4903 	DBPRINT(sc, BNX_INFO_SEND,
4904 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4905 		"prod_bseq = 0x%08X\n",
4906 		__func__, prod, chain_prod, prod_bseq);
4907 
4908 	/*
4909 	 * Cycle through each mbuf segment that makes up
4910 	 * the outgoing frame, gathering the mapping info
4911 	 * for that segment and creating a tx_bd for the
4912 	 * mbuf.
4913 	 */
4914 	for (i = 0; i < map->dm_nsegs ; i++) {
4915 		chain_prod = TX_CHAIN_IDX(prod);
4916 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4917 
4918 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
4919 		txbd->tx_bd_haddr_lo = addr;
4920 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4921 		txbd->tx_bd_haddr_hi = addr;
4922 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4923 		txbd->tx_bd_vlan_tag = vlan_tag;
4924 		txbd->tx_bd_flags = flags;
4925 		prod_bseq += map->dm_segs[i].ds_len;
4926 		if (i == 0)
4927 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4928 		prod = NEXT_TX_BD(prod);
4929 	}
4930 	/* Set the END flag on the last TX buffer descriptor. */
4931 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4932 
4933 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4934 
4935 	DBPRINT(sc, BNX_INFO_SEND,
4936 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4937 		"prod_bseq = 0x%08X\n",
4938 		__func__, prod, chain_prod, prod_bseq);
4939 
4940 	pkt->pkt_mbuf = m;
4941 	pkt->pkt_end_desc = chain_prod;
4942 
4943 	mutex_enter(&sc->tx_pkt_mtx);
4944 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4945 	mutex_exit(&sc->tx_pkt_mtx);
4946 
4947 	sc->used_tx_bd += map->dm_nsegs;
4948 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4949 		__FILE__, __LINE__, sc->used_tx_bd);
4950 
4951 	/* Update some debug statistics counters */
4952 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4953 	    sc->tx_hi_watermark = sc->used_tx_bd);
4954 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4955 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4956 
4957 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4958 	    map->dm_nsegs));
4959 
4960 	/* prod points to the next free tx_bd at this point. */
4961 	sc->tx_prod = prod;
4962 	sc->tx_prod_bseq = prod_bseq;
4963 
4964 	return (0);
4965 
4966 
4967 nospace:
4968 	bus_dmamap_unload(sc->bnx_dmatag, map);
4969 maperr:
4970 	mutex_enter(&sc->tx_pkt_mtx);
4971 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4972 	mutex_exit(&sc->tx_pkt_mtx);
4973 
4974 	return (ENOMEM);
4975 }
4976 
4977 /****************************************************************************/
4978 /* Main transmit routine.                                                   */
4979 /*                                                                          */
4980 /* Returns:                                                                 */
4981 /*   Nothing.                                                               */
4982 /****************************************************************************/
4983 void
4984 bnx_start(struct ifnet *ifp)
4985 {
4986 	struct bnx_softc	*sc = ifp->if_softc;
4987 	struct mbuf		*m_head = NULL;
4988 	int			count = 0;
4989 	u_int16_t		tx_prod, tx_chain_prod;
4990 
4991 	/* If there's no link or the transmit queue is empty then just exit. */
4992 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4993 		DBPRINT(sc, BNX_INFO_SEND,
4994 		    "%s(): output active or device not running.\n", __func__);
4995 		goto bnx_start_exit;
4996 	}
4997 
4998 	/* prod points to the next free tx_bd. */
4999 	tx_prod = sc->tx_prod;
5000 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5001 
5002 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5003 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5004 	    "used_tx %d max_tx %d\n",
5005 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5006 	    sc->used_tx_bd, sc->max_tx_bd);
5007 
5008 	/*
5009 	 * Keep adding entries while there is space in the ring.
5010 	 */
5011 	while (sc->used_tx_bd < sc->max_tx_bd) {
5012 		/* Check for any frames to send. */
5013 		IFQ_POLL(&ifp->if_snd, m_head);
5014 		if (m_head == NULL)
5015 			break;
5016 
5017 		/*
5018 		 * Pack the data into the transmit ring. If we
5019 		 * don't have room, set the OACTIVE flag to wait
5020 		 * for the NIC to drain the chain.
5021 		 */
5022 		if (bnx_tx_encap(sc, m_head)) {
5023 			ifp->if_flags |= IFF_OACTIVE;
5024 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5025 			    "business! Total tx_bd used = %d\n",
5026 			    sc->used_tx_bd);
5027 			break;
5028 		}
5029 
5030 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5031 		count++;
5032 
5033 		/* Send a copy of the frame to any BPF listeners. */
5034 		bpf_mtap(ifp, m_head);
5035 	}
5036 
5037 	if (count == 0) {
5038 		/* no packets were dequeued */
5039 		DBPRINT(sc, BNX_VERBOSE_SEND,
5040 		    "%s(): No packets were dequeued\n", __func__);
5041 		goto bnx_start_exit;
5042 	}
5043 
5044 	/* Update the driver's counters. */
5045 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5046 
5047 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5048 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5049 	    tx_chain_prod, sc->tx_prod_bseq);
5050 
5051 	/* Start the transmit. */
5052 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5053 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5054 
5055 	/* Set the tx timeout. */
5056 	ifp->if_timer = BNX_TX_TIMEOUT;
5057 
5058 bnx_start_exit:
5059 	return;
5060 }
5061 
5062 /****************************************************************************/
5063 /* Handles any IOCTL calls from the operating system.                       */
5064 /*                                                                          */
5065 /* Returns:                                                                 */
5066 /*   0 for success, positive value for failure.                             */
5067 /****************************************************************************/
5068 int
5069 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5070 {
5071 	struct bnx_softc	*sc = ifp->if_softc;
5072 	struct ifreq		*ifr = (struct ifreq *) data;
5073 	struct mii_data		*mii = &sc->bnx_mii;
5074 	int			s, error = 0;
5075 
5076 	s = splnet();
5077 
5078 	switch (command) {
5079 	case SIOCSIFFLAGS:
5080 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5081 			break;
5082 		/* XXX set an ifflags callback and let ether_ioctl
5083 		 * handle all of this.
5084 		 */
5085 		if (ifp->if_flags & IFF_UP) {
5086 			if (ifp->if_flags & IFF_RUNNING)
5087 				error = ENETRESET;
5088 			else
5089 				bnx_init(ifp);
5090 		} else if (ifp->if_flags & IFF_RUNNING)
5091 			bnx_stop(ifp, 1);
5092 		break;
5093 
5094 	case SIOCSIFMEDIA:
5095 	case SIOCGIFMEDIA:
5096 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5097 		    sc->bnx_phy_flags);
5098 
5099 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5100 		break;
5101 
5102 	default:
5103 		error = ether_ioctl(ifp, command, data);
5104 	}
5105 
5106 	if (error == ENETRESET) {
5107 		if (ifp->if_flags & IFF_RUNNING)
5108 			bnx_iff(sc);
5109 		error = 0;
5110 	}
5111 
5112 	splx(s);
5113 	return (error);
5114 }
5115 
5116 /****************************************************************************/
5117 /* Transmit timeout handler.                                                */
5118 /*                                                                          */
5119 /* Returns:                                                                 */
5120 /*   Nothing.                                                               */
5121 /****************************************************************************/
5122 void
5123 bnx_watchdog(struct ifnet *ifp)
5124 {
5125 	struct bnx_softc	*sc = ifp->if_softc;
5126 
5127 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5128 	    bnx_dump_status_block(sc));
5129 	/*
5130 	 * If we are in this routine because of pause frames, then
5131 	 * don't reset the hardware.
5132 	 */
5133 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5134 		return;
5135 
5136 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5137 
5138 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5139 
5140 	bnx_init(ifp);
5141 
5142 	ifp->if_oerrors++;
5143 }
5144 
5145 /*
5146  * Interrupt handler.
5147  */
5148 /****************************************************************************/
5149 /* Main interrupt entry point.  Verifies that the controller generated the  */
5150 /* interrupt and then calls a separate routine for handle the various       */
5151 /* interrupt causes (PHY, TX, RX).                                          */
5152 /*                                                                          */
5153 /* Returns:                                                                 */
5154 /*   0 for success, positive value for failure.                             */
5155 /****************************************************************************/
5156 int
5157 bnx_intr(void *xsc)
5158 {
5159 	struct bnx_softc	*sc;
5160 	struct ifnet		*ifp;
5161 	u_int32_t		status_attn_bits;
5162 	const struct status_block *sblk;
5163 
5164 	sc = xsc;
5165 
5166 	ifp = &sc->bnx_ec.ec_if;
5167 
5168 	if (!device_is_active(sc->bnx_dev) ||
5169 	    (ifp->if_flags & IFF_RUNNING) == 0)
5170 		return 0;
5171 
5172 	DBRUNIF(1, sc->interrupts_generated++);
5173 
5174 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5175 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5176 
5177 	/*
5178 	 * If the hardware status block index
5179 	 * matches the last value read by the
5180 	 * driver and we haven't asserted our
5181 	 * interrupt then there's nothing to do.
5182 	 */
5183 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
5184 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5185 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5186 		return (0);
5187 
5188 	/* Ack the interrupt and stop others from occuring. */
5189 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5190 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5191 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5192 
5193 	/* Keep processing data as long as there is work to do. */
5194 	for (;;) {
5195 		sblk = sc->status_block;
5196 		status_attn_bits = sblk->status_attn_bits;
5197 
5198 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5199 		    aprint_debug("Simulating unexpected status attention bit set.");
5200 		    status_attn_bits = status_attn_bits |
5201 		    STATUS_ATTN_BITS_PARITY_ERROR);
5202 
5203 		/* Was it a link change interrupt? */
5204 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5205 		    (sblk->status_attn_bits_ack &
5206 		    STATUS_ATTN_BITS_LINK_STATE))
5207 			bnx_phy_intr(sc);
5208 
5209 		/* If any other attention is asserted then the chip is toast. */
5210 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5211 		    (sblk->status_attn_bits_ack &
5212 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5213 			DBRUN(1, sc->unexpected_attentions++);
5214 
5215 			BNX_PRINTF(sc,
5216 			    "Fatal attention detected: 0x%08X\n",
5217 			    sblk->status_attn_bits);
5218 
5219 			DBRUN(BNX_FATAL,
5220 			    if (bnx_debug_unexpected_attention == 0)
5221 			    bnx_breakpoint(sc));
5222 
5223 			bnx_init(ifp);
5224 			return (1);
5225 		}
5226 
5227 		/* Check for any completed RX frames. */
5228 		if (sblk->status_rx_quick_consumer_index0 !=
5229 		    sc->hw_rx_cons)
5230 			bnx_rx_intr(sc);
5231 
5232 		/* Check for any completed TX frames. */
5233 		if (sblk->status_tx_quick_consumer_index0 !=
5234 		    sc->hw_tx_cons)
5235 			bnx_tx_intr(sc);
5236 
5237 		/* Save the status block index value for use during the
5238 		 * next interrupt.
5239 		 */
5240 		sc->last_status_idx = sblk->status_idx;
5241 
5242 		/* Prevent speculative reads from getting ahead of the
5243 		 * status block.
5244 		 */
5245 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5246 		    BUS_SPACE_BARRIER_READ);
5247 
5248 		/* If there's no work left then exit the isr. */
5249 		if ((sblk->status_rx_quick_consumer_index0 ==
5250 		    sc->hw_rx_cons) &&
5251 		    (sblk->status_tx_quick_consumer_index0 ==
5252 		    sc->hw_tx_cons))
5253 			break;
5254 	}
5255 
5256 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5257 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5258 
5259 	/* Re-enable interrupts. */
5260 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5261 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5262 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5263 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5264 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5265 
5266 	/* Handle any frames that arrived while handling the interrupt. */
5267 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
5268 		bnx_start(ifp);
5269 
5270 	return (1);
5271 }
5272 
5273 /****************************************************************************/
5274 /* Programs the various packet receive modes (broadcast and multicast).     */
5275 /*                                                                          */
5276 /* Returns:                                                                 */
5277 /*   Nothing.                                                               */
5278 /****************************************************************************/
5279 void
5280 bnx_iff(struct bnx_softc *sc)
5281 {
5282 	struct ethercom		*ec = &sc->bnx_ec;
5283 	struct ifnet		*ifp = &ec->ec_if;
5284 	struct ether_multi	*enm;
5285 	struct ether_multistep	step;
5286 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5287 	u_int32_t		rx_mode, sort_mode;
5288 	int			h, i;
5289 
5290 	/* Initialize receive mode default settings. */
5291 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5292 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5293 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5294 	ifp->if_flags &= ~IFF_ALLMULTI;
5295 
5296 	/*
5297 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5298 	 * be enbled.
5299 	 */
5300 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5301 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5302 
5303 	/*
5304 	 * Check for promiscuous, all multicast, or selected
5305 	 * multicast address filtering.
5306 	 */
5307 	if (ifp->if_flags & IFF_PROMISC) {
5308 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5309 
5310 		ifp->if_flags |= IFF_ALLMULTI;
5311 		/* Enable promiscuous mode. */
5312 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5313 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5314 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5315 allmulti:
5316 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5317 
5318 		ifp->if_flags |= IFF_ALLMULTI;
5319 		/* Enable all multicast addresses. */
5320 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5321 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5322 			    0xffffffff);
5323 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5324 	} else {
5325 		/* Accept one or more multicast(s). */
5326 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5327 
5328 		ETHER_FIRST_MULTI(step, ec, enm);
5329 		while (enm != NULL) {
5330 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5331 			    ETHER_ADDR_LEN)) {
5332 				goto allmulti;
5333 			}
5334 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5335 			    0xFF;
5336 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5337 			ETHER_NEXT_MULTI(step, enm);
5338 		}
5339 
5340 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5341 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5342 			    hashes[i]);
5343 
5344 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5345 	}
5346 
5347 	/* Only make changes if the recive mode has actually changed. */
5348 	if (rx_mode != sc->rx_mode) {
5349 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5350 		    rx_mode);
5351 
5352 		sc->rx_mode = rx_mode;
5353 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5354 	}
5355 
5356 	/* Disable and clear the exisitng sort before enabling a new sort. */
5357 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5358 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5359 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5360 }
5361 
5362 /****************************************************************************/
5363 /* Called periodically to updates statistics from the controllers           */
5364 /* statistics block.                                                        */
5365 /*                                                                          */
5366 /* Returns:                                                                 */
5367 /*   Nothing.                                                               */
5368 /****************************************************************************/
5369 void
5370 bnx_stats_update(struct bnx_softc *sc)
5371 {
5372 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5373 	struct statistics_block	*stats;
5374 
5375 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5376 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5377 	    BUS_DMASYNC_POSTREAD);
5378 
5379 	stats = (struct statistics_block *)sc->stats_block;
5380 
5381 	/*
5382 	 * Update the interface statistics from the
5383 	 * hardware statistics.
5384 	 */
5385 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5386 
5387 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5388 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5389 	    (u_long)stats->stat_IfInMBUFDiscards +
5390 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5391 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5392 
5393 	ifp->if_oerrors = (u_long)
5394 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5395 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5396 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5397 
5398 	/*
5399 	 * Certain controllers don't report
5400 	 * carrier sense errors correctly.
5401 	 * See errata E11_5708CA0_1165.
5402 	 */
5403 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5404 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5405 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5406 
5407 	/*
5408 	 * Update the sysctl statistics from the
5409 	 * hardware statistics.
5410 	 */
5411 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5412 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
5413 
5414 	sc->stat_IfHCInBadOctets =
5415 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5416 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5417 
5418 	sc->stat_IfHCOutOctets =
5419 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5420 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
5421 
5422 	sc->stat_IfHCOutBadOctets =
5423 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5424 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5425 
5426 	sc->stat_IfHCInUcastPkts =
5427 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5428 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5429 
5430 	sc->stat_IfHCInMulticastPkts =
5431 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5432 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5433 
5434 	sc->stat_IfHCInBroadcastPkts =
5435 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5436 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5437 
5438 	sc->stat_IfHCOutUcastPkts =
5439 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5440 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5441 
5442 	sc->stat_IfHCOutMulticastPkts =
5443 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5444 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5445 
5446 	sc->stat_IfHCOutBroadcastPkts =
5447 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5448 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5449 
5450 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5451 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5452 
5453 	sc->stat_Dot3StatsCarrierSenseErrors =
5454 	    stats->stat_Dot3StatsCarrierSenseErrors;
5455 
5456 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5457 
5458 	sc->stat_Dot3StatsAlignmentErrors =
5459 	    stats->stat_Dot3StatsAlignmentErrors;
5460 
5461 	sc->stat_Dot3StatsSingleCollisionFrames =
5462 	    stats->stat_Dot3StatsSingleCollisionFrames;
5463 
5464 	sc->stat_Dot3StatsMultipleCollisionFrames =
5465 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5466 
5467 	sc->stat_Dot3StatsDeferredTransmissions =
5468 	    stats->stat_Dot3StatsDeferredTransmissions;
5469 
5470 	sc->stat_Dot3StatsExcessiveCollisions =
5471 	    stats->stat_Dot3StatsExcessiveCollisions;
5472 
5473 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5474 
5475 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5476 
5477 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5478 
5479 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5480 
5481 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5482 
5483 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5484 
5485 	sc->stat_EtherStatsPktsRx64Octets =
5486 	    stats->stat_EtherStatsPktsRx64Octets;
5487 
5488 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5489 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5490 
5491 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5492 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5493 
5494 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5495 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5496 
5497 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5498 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5499 
5500 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5501 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5502 
5503 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5504 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5505 
5506 	sc->stat_EtherStatsPktsTx64Octets =
5507 	    stats->stat_EtherStatsPktsTx64Octets;
5508 
5509 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5510 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5511 
5512 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5513 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5514 
5515 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5516 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5517 
5518 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5519 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5520 
5521 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5522 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5523 
5524 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5525 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5526 
5527 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5528 
5529 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5530 
5531 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5532 
5533 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5534 
5535 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5536 
5537 	sc->stat_MacControlFramesReceived =
5538 	    stats->stat_MacControlFramesReceived;
5539 
5540 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5541 
5542 	sc->stat_IfInFramesL2FilterDiscards =
5543 	    stats->stat_IfInFramesL2FilterDiscards;
5544 
5545 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5546 
5547 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5548 
5549 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5550 
5551 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5552 
5553 	sc->stat_CatchupInRuleCheckerDiscards =
5554 	    stats->stat_CatchupInRuleCheckerDiscards;
5555 
5556 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5557 
5558 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5559 
5560 	sc->stat_CatchupInRuleCheckerP4Hit =
5561 	    stats->stat_CatchupInRuleCheckerP4Hit;
5562 
5563 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5564 }
5565 
5566 void
5567 bnx_tick(void *xsc)
5568 {
5569 	struct bnx_softc	*sc = xsc;
5570 	struct mii_data		*mii;
5571 	u_int32_t		msg;
5572 	u_int16_t		prod, chain_prod;
5573 	u_int32_t		prod_bseq;
5574 	int s = splnet();
5575 
5576 	/* Tell the firmware that the driver is still running. */
5577 #ifdef BNX_DEBUG
5578 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5579 #else
5580 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5581 #endif
5582 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5583 
5584 	/* Update the statistics from the hardware statistics block. */
5585 	bnx_stats_update(sc);
5586 
5587 	/* Schedule the next tick. */
5588 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5589 
5590 	mii = &sc->bnx_mii;
5591 	mii_tick(mii);
5592 
5593 	/* try to get more RX buffers, just in case */
5594 	prod = sc->rx_prod;
5595 	prod_bseq = sc->rx_prod_bseq;
5596 	chain_prod = RX_CHAIN_IDX(prod);
5597 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5598 	sc->rx_prod = prod;
5599 	sc->rx_prod_bseq = prod_bseq;
5600 	splx(s);
5601 	return;
5602 }
5603 
5604 /****************************************************************************/
5605 /* BNX Debug Routines                                                       */
5606 /****************************************************************************/
5607 #ifdef BNX_DEBUG
5608 
5609 /****************************************************************************/
5610 /* Prints out information about an mbuf.                                    */
5611 /*                                                                          */
5612 /* Returns:                                                                 */
5613 /*   Nothing.                                                               */
5614 /****************************************************************************/
5615 void
5616 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5617 {
5618 	struct mbuf		*mp = m;
5619 
5620 	if (m == NULL) {
5621 		/* Index out of range. */
5622 		aprint_error("mbuf ptr is null!\n");
5623 		return;
5624 	}
5625 
5626 	while (mp) {
5627 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5628 		    mp, mp->m_len);
5629 
5630 		if (mp->m_flags & M_EXT)
5631 			aprint_debug("M_EXT ");
5632 		if (mp->m_flags & M_PKTHDR)
5633 			aprint_debug("M_PKTHDR ");
5634 		aprint_debug("\n");
5635 
5636 		if (mp->m_flags & M_EXT)
5637 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5638 			    mp, mp->m_ext.ext_size);
5639 
5640 		mp = mp->m_next;
5641 	}
5642 }
5643 
5644 /****************************************************************************/
5645 /* Prints out the mbufs in the TX mbuf chain.                               */
5646 /*                                                                          */
5647 /* Returns:                                                                 */
5648 /*   Nothing.                                                               */
5649 /****************************************************************************/
5650 void
5651 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5652 {
5653 #if 0
5654 	struct mbuf		*m;
5655 	int			i;
5656 
5657 	aprint_debug_dev(sc->bnx_dev,
5658 	    "----------------------------"
5659 	    "  tx mbuf data  "
5660 	    "----------------------------\n");
5661 
5662 	for (i = 0; i < count; i++) {
5663 	 	m = sc->tx_mbuf_ptr[chain_prod];
5664 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5665 		bnx_dump_mbuf(sc, m);
5666 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5667 	}
5668 
5669 	aprint_debug_dev(sc->bnx_dev,
5670 	    "--------------------------------------------"
5671 	    "----------------------------\n");
5672 #endif
5673 }
5674 
5675 /*
5676  * This routine prints the RX mbuf chain.
5677  */
5678 void
5679 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5680 {
5681 	struct mbuf		*m;
5682 	int			i;
5683 
5684 	aprint_debug_dev(sc->bnx_dev,
5685 	    "----------------------------"
5686 	    "  rx mbuf data  "
5687 	    "----------------------------\n");
5688 
5689 	for (i = 0; i < count; i++) {
5690 	 	m = sc->rx_mbuf_ptr[chain_prod];
5691 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5692 		bnx_dump_mbuf(sc, m);
5693 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5694 	}
5695 
5696 
5697 	aprint_debug_dev(sc->bnx_dev,
5698 	    "--------------------------------------------"
5699 	    "----------------------------\n");
5700 }
5701 
5702 void
5703 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5704 {
5705 	if (idx > MAX_TX_BD)
5706 		/* Index out of range. */
5707 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5708 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5709 		/* TX Chain page pointer. */
5710 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5711 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5712 		    txbd->tx_bd_haddr_lo);
5713 	else
5714 		/* Normal tx_bd entry. */
5715 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5716 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5717 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5718 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5719 		    txbd->tx_bd_flags);
5720 }
5721 
5722 void
5723 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5724 {
5725 	if (idx > MAX_RX_BD)
5726 		/* Index out of range. */
5727 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5728 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5729 		/* TX Chain page pointer. */
5730 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5731 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5732 		    rxbd->rx_bd_haddr_lo);
5733 	else
5734 		/* Normal tx_bd entry. */
5735 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5736 		    "0x%08X, flags = 0x%08X\n", idx,
5737 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5738 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
5739 }
5740 
5741 void
5742 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5743 {
5744 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5745 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5746 	    "tcp_udp_xsum = 0x%04X\n", idx,
5747 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5748 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5749 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5750 }
5751 
5752 /*
5753  * This routine prints the TX chain.
5754  */
5755 void
5756 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5757 {
5758 	struct tx_bd		*txbd;
5759 	int			i;
5760 
5761 	/* First some info about the tx_bd chain structure. */
5762 	aprint_debug_dev(sc->bnx_dev,
5763 	    "----------------------------"
5764 	    "  tx_bd  chain  "
5765 	    "----------------------------\n");
5766 
5767 	BNX_PRINTF(sc,
5768 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5769 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5770 
5771 	BNX_PRINTF(sc,
5772 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5773 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5774 
5775 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
5776 
5777 	aprint_error_dev(sc->bnx_dev, ""
5778 	    "-----------------------------"
5779 	    "   tx_bd data   "
5780 	    "-----------------------------\n");
5781 
5782 	/* Now print out the tx_bd's themselves. */
5783 	for (i = 0; i < count; i++) {
5784 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5785 		bnx_dump_txbd(sc, tx_prod, txbd);
5786 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5787 	}
5788 
5789 	aprint_debug_dev(sc->bnx_dev,
5790 	    "-----------------------------"
5791 	    "--------------"
5792 	    "-----------------------------\n");
5793 }
5794 
5795 /*
5796  * This routine prints the RX chain.
5797  */
5798 void
5799 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5800 {
5801 	struct rx_bd		*rxbd;
5802 	int			i;
5803 
5804 	/* First some info about the tx_bd chain structure. */
5805 	aprint_debug_dev(sc->bnx_dev,
5806 	    "----------------------------"
5807 	    "  rx_bd  chain  "
5808 	    "----------------------------\n");
5809 
5810 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5811 
5812 	BNX_PRINTF(sc,
5813 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5814 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5815 
5816 	BNX_PRINTF(sc,
5817 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5818 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5819 
5820 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
5821 
5822 	aprint_error_dev(sc->bnx_dev,
5823 	    "----------------------------"
5824 	    "   rx_bd data   "
5825 	    "----------------------------\n");
5826 
5827 	/* Now print out the rx_bd's themselves. */
5828 	for (i = 0; i < count; i++) {
5829 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5830 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5831 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5832 	}
5833 
5834 	aprint_debug_dev(sc->bnx_dev,
5835 	    "----------------------------"
5836 	    "--------------"
5837 	    "----------------------------\n");
5838 }
5839 
5840 /*
5841  * This routine prints the status block.
5842  */
5843 void
5844 bnx_dump_status_block(struct bnx_softc *sc)
5845 {
5846 	struct status_block	*sblk;
5847 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5848 	    BUS_DMASYNC_POSTREAD);
5849 
5850 	sblk = sc->status_block;
5851 
5852    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5853 	    "-----------------------------\n");
5854 
5855 	BNX_PRINTF(sc,
5856 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5857 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5858 	    sblk->status_idx);
5859 
5860 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5861 	    sblk->status_rx_quick_consumer_index0,
5862 	    sblk->status_tx_quick_consumer_index0);
5863 
5864 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5865 
5866 	/* Theses indices are not used for normal L2 drivers. */
5867 	if (sblk->status_rx_quick_consumer_index1 ||
5868 		sblk->status_tx_quick_consumer_index1)
5869 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5870 		    sblk->status_rx_quick_consumer_index1,
5871 		    sblk->status_tx_quick_consumer_index1);
5872 
5873 	if (sblk->status_rx_quick_consumer_index2 ||
5874 		sblk->status_tx_quick_consumer_index2)
5875 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5876 		    sblk->status_rx_quick_consumer_index2,
5877 		    sblk->status_tx_quick_consumer_index2);
5878 
5879 	if (sblk->status_rx_quick_consumer_index3 ||
5880 		sblk->status_tx_quick_consumer_index3)
5881 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5882 		    sblk->status_rx_quick_consumer_index3,
5883 		    sblk->status_tx_quick_consumer_index3);
5884 
5885 	if (sblk->status_rx_quick_consumer_index4 ||
5886 		sblk->status_rx_quick_consumer_index5)
5887 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5888 		    sblk->status_rx_quick_consumer_index4,
5889 		    sblk->status_rx_quick_consumer_index5);
5890 
5891 	if (sblk->status_rx_quick_consumer_index6 ||
5892 		sblk->status_rx_quick_consumer_index7)
5893 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5894 		    sblk->status_rx_quick_consumer_index6,
5895 		    sblk->status_rx_quick_consumer_index7);
5896 
5897 	if (sblk->status_rx_quick_consumer_index8 ||
5898 		sblk->status_rx_quick_consumer_index9)
5899 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5900 		    sblk->status_rx_quick_consumer_index8,
5901 		    sblk->status_rx_quick_consumer_index9);
5902 
5903 	if (sblk->status_rx_quick_consumer_index10 ||
5904 		sblk->status_rx_quick_consumer_index11)
5905 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5906 		    sblk->status_rx_quick_consumer_index10,
5907 		    sblk->status_rx_quick_consumer_index11);
5908 
5909 	if (sblk->status_rx_quick_consumer_index12 ||
5910 		sblk->status_rx_quick_consumer_index13)
5911 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5912 		    sblk->status_rx_quick_consumer_index12,
5913 		    sblk->status_rx_quick_consumer_index13);
5914 
5915 	if (sblk->status_rx_quick_consumer_index14 ||
5916 		sblk->status_rx_quick_consumer_index15)
5917 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5918 		    sblk->status_rx_quick_consumer_index14,
5919 		    sblk->status_rx_quick_consumer_index15);
5920 
5921 	if (sblk->status_completion_producer_index ||
5922 		sblk->status_cmd_consumer_index)
5923 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5924 		    sblk->status_completion_producer_index,
5925 		    sblk->status_cmd_consumer_index);
5926 
5927 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5928 	    "-----------------------------\n");
5929 }
5930 
5931 /*
5932  * This routine prints the statistics block.
5933  */
5934 void
5935 bnx_dump_stats_block(struct bnx_softc *sc)
5936 {
5937 	struct statistics_block	*sblk;
5938 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5939 	    BUS_DMASYNC_POSTREAD);
5940 
5941 	sblk = sc->stats_block;
5942 
5943 	aprint_debug_dev(sc->bnx_dev, ""
5944 	    "-----------------------------"
5945 	    " Stats  Block "
5946 	    "-----------------------------\n");
5947 
5948 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5949 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5950 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5951 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5952 
5953 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5954 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5955 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5956 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5957 
5958 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5959 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5960 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5961 	    sblk->stat_IfHCInMulticastPkts_hi,
5962 	    sblk->stat_IfHCInMulticastPkts_lo);
5963 
5964 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5965 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5966 	    sblk->stat_IfHCInBroadcastPkts_hi,
5967 	    sblk->stat_IfHCInBroadcastPkts_lo,
5968 	    sblk->stat_IfHCOutUcastPkts_hi,
5969 	    sblk->stat_IfHCOutUcastPkts_lo);
5970 
5971 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5972 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5973 	    sblk->stat_IfHCOutMulticastPkts_hi,
5974 	    sblk->stat_IfHCOutMulticastPkts_lo,
5975 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5976 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5977 
5978 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5979 		BNX_PRINTF(sc, "0x%08X : "
5980 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5981 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5982 
5983 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5984 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5985 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5986 
5987 	if (sblk->stat_Dot3StatsFCSErrors)
5988 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5989 		    sblk->stat_Dot3StatsFCSErrors);
5990 
5991 	if (sblk->stat_Dot3StatsAlignmentErrors)
5992 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5993 		    sblk->stat_Dot3StatsAlignmentErrors);
5994 
5995 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5996 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5997 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5998 
5999 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6000 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6001 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6002 
6003 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6004 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6005 		    sblk->stat_Dot3StatsDeferredTransmissions);
6006 
6007 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6008 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6009 		    sblk->stat_Dot3StatsExcessiveCollisions);
6010 
6011 	if (sblk->stat_Dot3StatsLateCollisions)
6012 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6013 		    sblk->stat_Dot3StatsLateCollisions);
6014 
6015 	if (sblk->stat_EtherStatsCollisions)
6016 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6017 		    sblk->stat_EtherStatsCollisions);
6018 
6019 	if (sblk->stat_EtherStatsFragments)
6020 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6021 		    sblk->stat_EtherStatsFragments);
6022 
6023 	if (sblk->stat_EtherStatsJabbers)
6024 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6025 		    sblk->stat_EtherStatsJabbers);
6026 
6027 	if (sblk->stat_EtherStatsUndersizePkts)
6028 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6029 		    sblk->stat_EtherStatsUndersizePkts);
6030 
6031 	if (sblk->stat_EtherStatsOverrsizePkts)
6032 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6033 		    sblk->stat_EtherStatsOverrsizePkts);
6034 
6035 	if (sblk->stat_EtherStatsPktsRx64Octets)
6036 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6037 		    sblk->stat_EtherStatsPktsRx64Octets);
6038 
6039 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6040 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6041 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6042 
6043 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6044 		BNX_PRINTF(sc, "0x%08X : "
6045 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6046 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6047 
6048 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6049 		BNX_PRINTF(sc, "0x%08X : "
6050 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6051 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6052 
6053 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6054 		BNX_PRINTF(sc, "0x%08X : "
6055 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6056 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6057 
6058 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6059 		BNX_PRINTF(sc, "0x%08X : "
6060 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6061 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6062 
6063 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6064 		BNX_PRINTF(sc, "0x%08X : "
6065 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6066 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6067 
6068 	if (sblk->stat_EtherStatsPktsTx64Octets)
6069 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6070 		    sblk->stat_EtherStatsPktsTx64Octets);
6071 
6072 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6073 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6074 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6075 
6076 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6077 		BNX_PRINTF(sc, "0x%08X : "
6078 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6079 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6080 
6081 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6082 		BNX_PRINTF(sc, "0x%08X : "
6083 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6084 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6085 
6086 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6087 		BNX_PRINTF(sc, "0x%08X : "
6088 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6089 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6090 
6091 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6092 		BNX_PRINTF(sc, "0x%08X : "
6093 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6094 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6095 
6096 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6097 		BNX_PRINTF(sc, "0x%08X : "
6098 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6099 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6100 
6101 	if (sblk->stat_XonPauseFramesReceived)
6102 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6103 		    sblk->stat_XonPauseFramesReceived);
6104 
6105 	if (sblk->stat_XoffPauseFramesReceived)
6106 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6107 		    sblk->stat_XoffPauseFramesReceived);
6108 
6109 	if (sblk->stat_OutXonSent)
6110 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6111 		    sblk->stat_OutXonSent);
6112 
6113 	if (sblk->stat_OutXoffSent)
6114 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6115 		    sblk->stat_OutXoffSent);
6116 
6117 	if (sblk->stat_FlowControlDone)
6118 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6119 		    sblk->stat_FlowControlDone);
6120 
6121 	if (sblk->stat_MacControlFramesReceived)
6122 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6123 		    sblk->stat_MacControlFramesReceived);
6124 
6125 	if (sblk->stat_XoffStateEntered)
6126 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6127 		    sblk->stat_XoffStateEntered);
6128 
6129 	if (sblk->stat_IfInFramesL2FilterDiscards)
6130 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6131 		    sblk->stat_IfInFramesL2FilterDiscards);
6132 
6133 	if (sblk->stat_IfInRuleCheckerDiscards)
6134 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6135 		    sblk->stat_IfInRuleCheckerDiscards);
6136 
6137 	if (sblk->stat_IfInFTQDiscards)
6138 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6139 		    sblk->stat_IfInFTQDiscards);
6140 
6141 	if (sblk->stat_IfInMBUFDiscards)
6142 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6143 		    sblk->stat_IfInMBUFDiscards);
6144 
6145 	if (sblk->stat_IfInRuleCheckerP4Hit)
6146 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6147 		    sblk->stat_IfInRuleCheckerP4Hit);
6148 
6149 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6150 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6151 		    sblk->stat_CatchupInRuleCheckerDiscards);
6152 
6153 	if (sblk->stat_CatchupInFTQDiscards)
6154 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6155 		    sblk->stat_CatchupInFTQDiscards);
6156 
6157 	if (sblk->stat_CatchupInMBUFDiscards)
6158 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6159 		    sblk->stat_CatchupInMBUFDiscards);
6160 
6161 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6162 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6163 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6164 
6165 	aprint_debug_dev(sc->bnx_dev,
6166 	    "-----------------------------"
6167 	    "--------------"
6168 	    "-----------------------------\n");
6169 }
6170 
6171 void
6172 bnx_dump_driver_state(struct bnx_softc *sc)
6173 {
6174 	aprint_debug_dev(sc->bnx_dev,
6175 	    "-----------------------------"
6176 	    " Driver State "
6177 	    "-----------------------------\n");
6178 
6179 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6180 	    "address\n", sc);
6181 
6182 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6183 	    sc->status_block);
6184 
6185 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6186 	    "address\n", sc->stats_block);
6187 
6188 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6189 	    "adddress\n", sc->tx_bd_chain);
6190 
6191 #if 0
6192 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6193 	    sc->rx_bd_chain);
6194 
6195 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6196 	    sc->tx_mbuf_ptr);
6197 #endif
6198 
6199 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6200 	    sc->rx_mbuf_ptr);
6201 
6202 	BNX_PRINTF(sc,
6203 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6204 	    sc->interrupts_generated);
6205 
6206 	BNX_PRINTF(sc,
6207 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6208 	    sc->rx_interrupts);
6209 
6210 	BNX_PRINTF(sc,
6211 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6212 	    sc->tx_interrupts);
6213 
6214 	BNX_PRINTF(sc,
6215 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6216 	    sc->last_status_idx);
6217 
6218 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6219 	    sc->tx_prod);
6220 
6221 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6222 	    sc->tx_cons);
6223 
6224 	BNX_PRINTF(sc,
6225 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6226 	    sc->tx_prod_bseq);
6227 	BNX_PRINTF(sc,
6228 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6229 	    sc->tx_mbuf_alloc);
6230 
6231 	BNX_PRINTF(sc,
6232 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6233 	    sc->used_tx_bd);
6234 
6235 	BNX_PRINTF(sc,
6236 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6237 	    sc->tx_hi_watermark, sc->max_tx_bd);
6238 
6239 
6240 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6241 	    sc->rx_prod);
6242 
6243 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6244 	    sc->rx_cons);
6245 
6246 	BNX_PRINTF(sc,
6247 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6248 	    sc->rx_prod_bseq);
6249 
6250 	BNX_PRINTF(sc,
6251 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6252 	    sc->rx_mbuf_alloc);
6253 
6254 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6255 	    sc->free_rx_bd);
6256 
6257 	BNX_PRINTF(sc,
6258 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6259 	    sc->rx_low_watermark, sc->max_rx_bd);
6260 
6261 	BNX_PRINTF(sc,
6262 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6263 	    "mbuf alloc failures\n",
6264 	    sc->mbuf_alloc_failed);
6265 
6266 	BNX_PRINTF(sc,
6267 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6268 	    "simulated mbuf alloc failures\n",
6269 	    sc->mbuf_sim_alloc_failed);
6270 
6271 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6272 	    "-----------------------------\n");
6273 }
6274 
6275 void
6276 bnx_dump_hw_state(struct bnx_softc *sc)
6277 {
6278 	u_int32_t		val1;
6279 	int			i;
6280 
6281 	aprint_debug_dev(sc->bnx_dev,
6282 	    "----------------------------"
6283 	    " Hardware State "
6284 	    "----------------------------\n");
6285 
6286 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6287 
6288 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6289 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6290 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6291 
6292 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6293 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6294 
6295 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6296 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6297 
6298 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6299 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6300 	    BNX_EMAC_STATUS);
6301 
6302 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6303 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6304 
6305 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6306 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6307 	    BNX_TBDR_STATUS);
6308 
6309 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6310 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6311 	    BNX_TDMA_STATUS);
6312 
6313 	val1 = REG_RD(sc, BNX_HC_STATUS);
6314 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6315 
6316 	aprint_debug_dev(sc->bnx_dev,
6317 	    "----------------------------"
6318 	    "----------------"
6319 	    "----------------------------\n");
6320 
6321 	aprint_debug_dev(sc->bnx_dev,
6322 	    "----------------------------"
6323 	    " Register  Dump "
6324 	    "----------------------------\n");
6325 
6326 	for (i = 0x400; i < 0x8000; i += 0x10)
6327 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6328 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6329 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6330 
6331 	aprint_debug_dev(sc->bnx_dev,
6332 	    "----------------------------"
6333 	    "----------------"
6334 	    "----------------------------\n");
6335 }
6336 
6337 void
6338 bnx_breakpoint(struct bnx_softc *sc)
6339 {
6340 	/* Unreachable code to shut the compiler up about unused functions. */
6341 	if (0) {
6342    		bnx_dump_txbd(sc, 0, NULL);
6343 		bnx_dump_rxbd(sc, 0, NULL);
6344 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6345 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6346 		bnx_dump_l2fhdr(sc, 0, NULL);
6347 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6348 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6349 		bnx_dump_status_block(sc);
6350 		bnx_dump_stats_block(sc);
6351 		bnx_dump_driver_state(sc);
6352 		bnx_dump_hw_state(sc);
6353 	}
6354 
6355 	bnx_dump_driver_state(sc);
6356 	/* Print the important status block fields. */
6357 	bnx_dump_status_block(sc);
6358 
6359 #if 0
6360 	/* Call the debugger. */
6361 	breakpoint();
6362 #endif
6363 
6364 	return;
6365 }
6366 #endif
6367