xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 42b9e898991e23b560315a9b1da6a36a39d4351b)
1 /*	$NetBSD: if_bnx.c,v 1.105 2020/07/17 10:56:15 jdolecek Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006-2010 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.105 2020/07/17 10:56:15 jdolecek Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5706S A2, A3
44  *   BCM5708C B1, B2
45  *   BCM5708S B1, B2
46  *   BCM5709C A1, C0
47  *   BCM5709S A1, C0
48  *   BCM5716  C0
49  *
50  * The following controllers are not supported by this driver:
51  *   BCM5706C A0, A1
52  *   BCM5706S A0, A1
53  *   BCM5708C A0, B0
54  *   BCM5708S A0, B0
55  *   BCM5709C A0  B0, B1, B2 (pre-production)
56  *   BCM5709S A0, B0, B1, B2 (pre-production)
57  */
58 
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61 
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64 
65 #include <dev/microcode/bnx/bnxfw.h>
66 
67 /****************************************************************************/
68 /* BNX Driver Version                                                       */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION	"v0.9.6"
71 
72 /****************************************************************************/
73 /* BNX Debug Options                                                        */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77 
78 	/*          0 = Never              */
79 	/*          1 = 1 in 2,147,483,648 */
80 	/*        256 = 1 in     8,388,608 */
81 	/*       2048 = 1 in     1,048,576 */
82 	/*      65536 = 1 in        32,768 */
83 	/*    1048576 = 1 in         2,048 */
84 	/*  268435456 =	1 in             8 */
85 	/*  536870912 = 1 in             4 */
86 	/* 1073741824 = 1 in             2 */
87 
88 	/* Controls how often the l2_fhdr frame error check will fail. */
89 	int bnx_debug_l2fhdr_status_check = 0;
90 
91 	/* Controls how often the unexpected attention check will fail. */
92 	int bnx_debug_unexpected_attention = 0;
93 
94 	/* Controls how often to simulate an mbuf allocation failure. */
95 	int bnx_debug_mbuf_allocation_failure = 0;
96 
97 	/* Controls how often to simulate a DMA mapping failure. */
98 	int bnx_debug_dma_map_addr_failure = 0;
99 
100 	/* Controls how often to simulate a bootcode failure. */
101 	int bnx_debug_bootcode_running_failure = 0;
102 #endif
103 
104 /****************************************************************************/
105 /* PCI Device ID Table                                                      */
106 /*                                                                          */
107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
108 /****************************************************************************/
109 static const struct bnx_product {
110 	pci_vendor_id_t		bp_vendor;
111 	pci_product_id_t	bp_product;
112 	pci_vendor_id_t		bp_subvendor;
113 	pci_product_id_t	bp_subproduct;
114 	const char		*bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 	{
118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 	  "HP NC370T Multifunction Gigabit Server Adapter"
121 	},
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 	{
125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 	  "HP NC370i Multifunction Gigabit Server Adapter"
128 	},
129 #endif
130 	{
131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 	  0, 0,
133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
134 	},
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 	{
137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 	  "HP NC370F Multifunction Gigabit Server Adapter"
140 	},
141 #endif
142 	{
143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 	  0, 0,
145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 	},
147 	{
148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 	  0, 0,
150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
151 	},
152 	{
153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 	  0, 0,
155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 	},
157 	{
158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 	  0, 0,
160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
161 	},
162 	{
163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 	  0, 0,
165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 	},
167 	{
168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 	  0, 0,
170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
171 	},
172 	{
173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 	  0, 0,
175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 	},
177 };
178 
179 
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data.                                       */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
187 
188 	/* Slow EEPROM */
189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 	 "EEPROM - slow"},
193 	/* Expansion entry 0001 */
194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 	 "Entry 0001"},
198 	/* Saifun SA25F010 (non-buffered flash) */
199 	/* strap, cfg1, & write1 need updates */
200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 	 "Non-buffered flash (128kB)"},
204 	/* Saifun SA25F020 (non-buffered flash) */
205 	/* strap, cfg1, & write1 need updates */
206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 	 "Non-buffered flash (256kB)"},
210 	/* Expansion entry 0100 */
211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 	 "Entry 0100"},
215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 	/* Saifun SA25F005 (non-buffered flash) */
226 	/* strap, cfg1, & write1 need updates */
227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 	 "Non-buffered flash (64kB)"},
231 	/* Fast EEPROM */
232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 	 "EEPROM - fast"},
236 	/* Expansion entry 1001 */
237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 	 "Entry 1001"},
241 	/* Expansion entry 1010 */
242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 	 "Entry 1010"},
246 	/* ATMEL AT45DB011B (buffered flash) */
247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 	 "Buffered flash (128kB)"},
251 	/* Expansion entry 1100 */
252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 	 "Entry 1100"},
256 	/* Expansion entry 1101 */
257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 	 "Entry 1101"},
261 	/* Ateml Expansion entry 1110 */
262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 	 "Entry 1110 (Atmel)"},
266 	/* ATMEL AT45DB021B (buffered flash) */
267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 	 "Buffered flash (256kB)"},
271 };
272 
273 /*
274  * The BCM5709 controllers transparently handle the
275  * differences between Atmel 264 byte pages and all
276  * flash devices which use 256 byte pages, so no
277  * logical-to-physical mapping is required in the
278  * driver.
279  */
280 static struct flash_spec flash_5709 = {
281 	.flags		= BNX_NV_BUFFERED,
282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
286 	.name		= "5709 buffered flash (256kB)",
287 };
288 
289 /****************************************************************************/
290 /* OpenBSD device entry points.                                             */
291 /****************************************************************************/
292 static int	bnx_probe(device_t, cfdata_t, void *);
293 void	bnx_attach(device_t, device_t, void *);
294 int	bnx_detach(device_t, int);
295 
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines                                   */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void	bnx_dump_status_block(struct bnx_softc *);
309 void	bnx_dump_stats_block(struct bnx_softc *);
310 void	bnx_dump_driver_state(struct bnx_softc *);
311 void	bnx_dump_hw_state(struct bnx_softc *);
312 void	bnx_breakpoint(struct bnx_softc *);
313 #endif
314 
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines                                      */
317 /****************************************************************************/
318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void	bnx_miibus_statchg(struct ifnet *);
324 
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines                                                */
327 /****************************************************************************/
328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
329 int	bnx_release_nvram_lock(struct bnx_softc *);
330 void	bnx_enable_nvram_access(struct bnx_softc *);
331 void	bnx_disable_nvram_access(struct bnx_softc *);
332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 	    uint32_t);
334 int	bnx_init_nvram(struct bnx_softc *);
335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int	bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int	bnx_enable_nvram_write(struct bnx_softc *);
339 void	bnx_disable_nvram_write(struct bnx_softc *);
340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 	    uint32_t);
343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345 
346 /****************************************************************************/
347 /*                                                                          */
348 /****************************************************************************/
349 void	bnx_get_media(struct bnx_softc *);
350 void	bnx_init_media(struct bnx_softc *);
351 int	bnx_dma_alloc(struct bnx_softc *);
352 void	bnx_dma_free(struct bnx_softc *);
353 void	bnx_release_resources(struct bnx_softc *);
354 
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load                                    */
357 /****************************************************************************/
358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 	    struct fw_info *);
362 void	bnx_init_cpus(struct bnx_softc *);
363 
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void	bnx_stop(struct ifnet *, int);
367 int	bnx_reset(struct bnx_softc *, uint32_t);
368 int	bnx_chipinit(struct bnx_softc *);
369 int	bnx_blockinit(struct bnx_softc *);
370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 	    uint16_t *, uint32_t *);
372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373 
374 int	bnx_init_tx_chain(struct bnx_softc *);
375 void	bnx_init_tx_context(struct bnx_softc *);
376 int	bnx_init_rx_chain(struct bnx_softc *);
377 void	bnx_init_rx_context(struct bnx_softc *);
378 void	bnx_free_rx_chain(struct bnx_softc *);
379 void	bnx_free_tx_chain(struct bnx_softc *);
380 
381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void	bnx_start(struct ifnet *);
383 int	bnx_ioctl(struct ifnet *, u_long, void *);
384 void	bnx_watchdog(struct ifnet *);
385 int	bnx_ifmedia_upd(struct ifnet *);
386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int	bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389 
390 void	bnx_init_context(struct bnx_softc *);
391 void	bnx_get_mac_addr(struct bnx_softc *);
392 void	bnx_set_mac_addr(struct bnx_softc *);
393 void	bnx_phy_intr(struct bnx_softc *);
394 void	bnx_rx_intr(struct bnx_softc *);
395 void	bnx_tx_intr(struct bnx_softc *);
396 void	bnx_disable_intr(struct bnx_softc *);
397 void	bnx_enable_intr(struct bnx_softc *);
398 
399 int	bnx_intr(void *);
400 void	bnx_iff(struct bnx_softc *);
401 void	bnx_stats_update(struct bnx_softc *);
402 void	bnx_tick(void *);
403 
404 struct pool *bnx_tx_pool = NULL;
405 void	bnx_alloc_pkts(struct work *, void *);
406 
407 /****************************************************************************/
408 /* OpenBSD device dispatch table.                                           */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412 
413 /****************************************************************************/
414 /* Device probe function.                                                   */
415 /*                                                                          */
416 /* Compares the device to the driver's list of supported devices and        */
417 /* reports back to the OS whether this is the right driver for the device.  */
418 /*                                                                          */
419 /* Returns:                                                                 */
420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 	int i;
426 	pcireg_t subid;
427 
428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 			continue;
432 		if (!bnx_devices[i].bp_subvendor)
433 			return &bnx_devices[i];
434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 			return &bnx_devices[i];
438 	}
439 
440 	return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446 
447 	if (bnx_lookup(pa) != NULL)
448 		return 1;
449 
450 	return 0;
451 }
452 
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function.                                         */
455 /*                                                                          */
456 /* Walks the PCI capabiites list for the device to find what features are   */
457 /* supported.                                                               */
458 /*                                                                          */
459 /* Returns:                                                                 */
460 /*   None.                                                                  */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 	device_t dev = sc->bnx_dev;
466 	int i = 0;
467 
468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 	    ? "Serdes " : "", sc->bnx_chipid);
472 
473 	/* Bus info. */
474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 		switch (sc->link_speed) {
477 		case 1: aprint_normal("2.5GT/s\n"); break;
478 		case 2:	aprint_normal("5GT/s\n"); break;
479 		default: aprint_normal("Unknown link speed\n");
480 		}
481 	} else {
482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 		    sc->bus_speed_mhz);
486 	}
487 
488 	/* Firmware version and device features. */
489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491 
492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 		if (i > 0) aprint_normal("|");
494 		aprint_normal("2.5G"); i++;
495 	}
496 
497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 		if (i > 0) aprint_normal("|");
499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 	} else {
501 		aprint_normal(")\n");
502 	}
503 
504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 	    sc->bnx_rx_quick_cons_trip_int,
506 	    sc->bnx_rx_quick_cons_trip,
507 	    sc->bnx_rx_ticks_int,
508 	    sc->bnx_rx_ticks,
509 	    sc->bnx_tx_quick_cons_trip_int,
510 	    sc->bnx_tx_quick_cons_trip,
511 	    sc->bnx_tx_ticks_int,
512 	    sc->bnx_tx_ticks);
513 }
514 
515 
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function.                                         */
518 /*                                                                          */
519 /* Walks the PCI capabiites list for the device to find what features are   */
520 /* supported.                                                               */
521 /*                                                                          */
522 /* Returns:                                                                 */
523 /*   None.                                                                  */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 	struct pci_attach_args *pa = &(sc->bnx_pa);
529 	pcireg_t reg;
530 
531 	/* Check if PCI-X capability is enabled. */
532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
533 		NULL) != 0) {
534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 	}
536 
537 	/* Check if PCIe capability is enabled. */
538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
539 		NULL) != 0) {
540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 		    reg + PCIE_LCSR);
542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 		    "0x%08X\n",	link_status);
544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 		sc->bnx_flags |= BNX_PCIE_FLAG;
548 	}
549 
550 	/* Check if MSI capability is enabled. */
551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
552 		NULL) != 0)
553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554 
555 	/* Check if MSI-X capability is enabled. */
556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
557 		NULL) != 0)
558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560 
561 
562 /****************************************************************************/
563 /* Device attach function.                                                  */
564 /*                                                                          */
565 /* Allocates device resources, performs secondary chip identification,      */
566 /* resets and initializes the hardware, and initializes driver instance     */
567 /* variables.                                                               */
568 /*                                                                          */
569 /* Returns:                                                                 */
570 /*   0 on success, positive value on failure.                               */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 	const struct bnx_product *bp;
576 	struct bnx_softc	*sc = device_private(self);
577 	prop_dictionary_t	dict;
578 	struct pci_attach_args	*pa = aux;
579 	pci_chipset_tag_t	pc = pa->pa_pc;
580 	const char		*intrstr = NULL;
581 	uint32_t		command;
582 	struct ifnet		*ifp;
583 	struct mii_data * const mii = &sc->bnx_mii;
584 	uint32_t		val;
585 	int			mii_flags = MIIF_FORCEANEG;
586 	pcireg_t		memtype;
587 	char intrbuf[PCI_INTRSTR_LEN];
588 	int i, j;
589 
590 	if (bnx_tx_pool == NULL) {
591 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
592 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
593 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
594 	}
595 
596 	bp = bnx_lookup(pa);
597 	if (bp == NULL)
598 		panic("unknown device");
599 
600 	sc->bnx_dev = self;
601 
602 	aprint_naive("\n");
603 	aprint_normal(": %s\n", bp->bp_name);
604 
605 	sc->bnx_pa = *pa;
606 
607 	/*
608 	 * Map control/status registers.
609 	*/
610 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
611 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
612 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
613 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
614 
615 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
616 		aprint_error_dev(sc->bnx_dev,
617 		    "failed to enable memory mapping!\n");
618 		return;
619 	}
620 
621 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
622 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
623 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
624 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
625 		return;
626 	}
627 
628 	if (pci_intr_alloc(pa, &sc->bnx_ih, NULL, 0)) {
629 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
630 		goto bnx_attach_fail;
631 	}
632 	intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
633 
634 	/*
635 	 * Configure byte swap and enable indirect register access.
636 	 * Rely on CPU to do target byte swapping on big endian systems.
637 	 * Access to registers outside of PCI configurtion space are not
638 	 * valid until this is done.
639 	 */
640 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
641 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
642 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
643 
644 	/* Save ASIC revision info. */
645 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
646 
647 	/*
648 	 * Find the base address for shared memory access.
649 	 * Newer versions of bootcode use a signature and offset
650 	 * while older versions use a fixed address.
651 	 */
652 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
653 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
654 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
655 		    (sc->bnx_pa.pa_function << 2));
656 	else
657 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
658 
659 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
660 
661 	/* Set initial device and PHY flags */
662 	sc->bnx_flags = 0;
663 	sc->bnx_phy_flags = 0;
664 
665 	/* Fetch the bootcode revision. */
666 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
667 	for (i = 0, j = 0; i < 3; i++) {
668 		uint8_t num;
669 		int k, skip0;
670 
671 		num = (uint8_t)(val >> (24 - (i * 8)));
672 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
673 			if (num >= k || !skip0 || k == 1) {
674 				sc->bnx_bc_ver[j++] = (num / k) + '0';
675 				skip0 = 0;
676 			}
677 		}
678 		if (i != 2)
679 			sc->bnx_bc_ver[j++] = '.';
680 	}
681 
682 	/* Check if any management firmware is enabled. */
683 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
684 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
685 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
686 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
687 
688 		/* Allow time for firmware to enter the running state. */
689 		for (i = 0; i < 30; i++) {
690 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
691 			    BNX_BC_STATE_CONDITION);
692 			if (val & BNX_CONDITION_MFW_RUN_MASK)
693 				break;
694 			DELAY(10000);
695 		}
696 
697 		/* Check if management firmware is running. */
698 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
699 		    BNX_BC_STATE_CONDITION);
700 		val &= BNX_CONDITION_MFW_RUN_MASK;
701 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
702 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
703 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
704 			    BNX_MFW_VER_PTR);
705 
706 			/* Read the management firmware version string. */
707 			for (j = 0; j < 3; j++) {
708 				val = bnx_reg_rd_ind(sc, addr + j * 4);
709 				val = bswap32(val);
710 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
711 				i += 4;
712 			}
713 		} else {
714 			/* May cause firmware synchronization timeouts. */
715 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
716 			    "but not running!\n", __FILE__, __LINE__);
717 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
718 
719 			/* ToDo: Any action the driver should take? */
720 		}
721 	}
722 
723 	bnx_probe_pci_caps(sc);
724 
725 	/* Get PCI bus information (speed and type). */
726 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
727 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
728 		uint32_t clkreg;
729 
730 		sc->bnx_flags |= BNX_PCIX_FLAG;
731 
732 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
733 
734 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
735 		switch (clkreg) {
736 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
737 			sc->bus_speed_mhz = 133;
738 			break;
739 
740 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
741 			sc->bus_speed_mhz = 100;
742 			break;
743 
744 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
745 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
746 			sc->bus_speed_mhz = 66;
747 			break;
748 
749 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
751 			sc->bus_speed_mhz = 50;
752 			break;
753 
754 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
757 			sc->bus_speed_mhz = 33;
758 			break;
759 		}
760 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
761 			sc->bus_speed_mhz = 66;
762 		else
763 			sc->bus_speed_mhz = 33;
764 
765 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
766 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
767 
768 	/* Reset the controller. */
769 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
770 		goto bnx_attach_fail;
771 
772 	/* Initialize the controller. */
773 	if (bnx_chipinit(sc)) {
774 		aprint_error_dev(sc->bnx_dev,
775 		    "Controller initialization failed!\n");
776 		goto bnx_attach_fail;
777 	}
778 
779 	/* Perform NVRAM test. */
780 	if (bnx_nvram_test(sc)) {
781 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
782 		goto bnx_attach_fail;
783 	}
784 
785 	/* Fetch the permanent Ethernet MAC address. */
786 	bnx_get_mac_addr(sc);
787 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
788 	    ether_sprintf(sc->eaddr));
789 
790 	/*
791 	 * Trip points control how many BDs
792 	 * should be ready before generating an
793 	 * interrupt while ticks control how long
794 	 * a BD can sit in the chain before
795 	 * generating an interrupt.  Set the default
796 	 * values for the RX and TX rings.
797 	 */
798 
799 #ifdef BNX_DEBUG
800 	/* Force more frequent interrupts. */
801 	sc->bnx_tx_quick_cons_trip_int = 1;
802 	sc->bnx_tx_quick_cons_trip     = 1;
803 	sc->bnx_tx_ticks_int	       = 0;
804 	sc->bnx_tx_ticks	       = 0;
805 
806 	sc->bnx_rx_quick_cons_trip_int = 1;
807 	sc->bnx_rx_quick_cons_trip     = 1;
808 	sc->bnx_rx_ticks_int	       = 0;
809 	sc->bnx_rx_ticks	       = 0;
810 #else
811 	sc->bnx_tx_quick_cons_trip_int = 20;
812 	sc->bnx_tx_quick_cons_trip     = 20;
813 	sc->bnx_tx_ticks_int	       = 80;
814 	sc->bnx_tx_ticks	       = 80;
815 
816 	sc->bnx_rx_quick_cons_trip_int = 6;
817 	sc->bnx_rx_quick_cons_trip     = 6;
818 	sc->bnx_rx_ticks_int	       = 18;
819 	sc->bnx_rx_ticks	       = 18;
820 #endif
821 
822 	/* Update statistics once every second. */
823 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
824 
825 	/* Find the media type for the adapter. */
826 	bnx_get_media(sc);
827 
828 	/*
829 	 * Store config data needed by the PHY driver for
830 	 * backplane applications
831 	 */
832 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
833 	    BNX_SHARED_HW_CFG_CONFIG);
834 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
835 	    BNX_PORT_HW_CFG_CONFIG);
836 
837 	/* Allocate DMA memory resources. */
838 	sc->bnx_dmatag = pa->pa_dmat;
839 	if (bnx_dma_alloc(sc)) {
840 		aprint_error_dev(sc->bnx_dev,
841 		    "DMA resource allocation failed!\n");
842 		goto bnx_attach_fail;
843 	}
844 
845 	/* Initialize the ifnet interface. */
846 	ifp = &sc->bnx_ec.ec_if;
847 	ifp->if_softc = sc;
848 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
849 	ifp->if_ioctl = bnx_ioctl;
850 	ifp->if_stop = bnx_stop;
851 	ifp->if_start = bnx_start;
852 	ifp->if_init = bnx_init;
853 	ifp->if_watchdog = bnx_watchdog;
854 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
855 	IFQ_SET_READY(&ifp->if_snd);
856 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
857 
858 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
859 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
860 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
861 
862 	ifp->if_capabilities |=
863 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
864 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
865 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
866 
867 	/* create workqueue to handle packet allocations */
868 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
869 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
870 		aprint_error_dev(self, "failed to create workqueue\n");
871 		goto bnx_attach_fail;
872 	}
873 
874 	mii->mii_ifp = ifp;
875 	mii->mii_readreg = bnx_miibus_read_reg;
876 	mii->mii_writereg = bnx_miibus_write_reg;
877 	mii->mii_statchg = bnx_miibus_statchg;
878 
879 	/* Handle any special PHY initialization for SerDes PHYs. */
880 	bnx_init_media(sc);
881 
882 	sc->bnx_ec.ec_mii = mii;
883 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
884 
885 	/* set phyflags and chipid before mii_attach() */
886 	dict = device_properties(self);
887 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
888 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
889 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
890 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
891 
892 	/* Print some useful adapter info */
893 	bnx_print_adapter_info(sc);
894 
895 	mii_flags |= MIIF_DOPAUSE;
896 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
897 		mii_flags |= MIIF_HAVEFIBER;
898 	mii_attach(self, mii, 0xffffffff,
899 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
900 
901 	if (LIST_EMPTY(&mii->mii_phys)) {
902 		aprint_error_dev(self, "no PHY found!\n");
903 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
904 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
905 	} else
906 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
907 
908 	/* Attach to the Ethernet interface list. */
909 	if_attach(ifp);
910 	if_deferred_start_init(ifp, NULL);
911 	ether_ifattach(ifp, sc->eaddr);
912 
913 	callout_init(&sc->bnx_timeout, 0);
914 	callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
915 
916 	/* Hookup IRQ last. */
917 	sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
918 	    bnx_intr, sc, device_xname(self));
919 	if (sc->bnx_intrhand == NULL) {
920 		aprint_error_dev(self, "couldn't establish interrupt");
921 		if (intrstr != NULL)
922 			aprint_error(" at %s", intrstr);
923 		aprint_error("\n");
924 		goto bnx_attach_fail;
925 	}
926 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
927 
928 	if (pmf_device_register(self, NULL, NULL))
929 		pmf_class_network_register(self, ifp);
930 	else
931 		aprint_error_dev(self, "couldn't establish power handler\n");
932 
933 	/* Print some important debugging info. */
934 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
935 
936 	/* Get the firmware running so ASF still works. */
937 	bnx_mgmt_init(sc);
938 
939 	goto bnx_attach_exit;
940 
941 bnx_attach_fail:
942 	bnx_release_resources(sc);
943 
944 bnx_attach_exit:
945 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
946 }
947 
948 /****************************************************************************/
949 /* Device detach function.                                                  */
950 /*                                                                          */
951 /* Stops the controller, resets the controller, and releases resources.     */
952 /*                                                                          */
953 /* Returns:                                                                 */
954 /*   0 on success, positive value on failure.                               */
955 /****************************************************************************/
956 int
957 bnx_detach(device_t dev, int flags)
958 {
959 	int s;
960 	struct bnx_softc *sc;
961 	struct ifnet *ifp;
962 
963 	sc = device_private(dev);
964 	ifp = &sc->bnx_ec.ec_if;
965 
966 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
967 
968 	/* Stop and reset the controller. */
969 	s = splnet();
970 	bnx_stop(ifp, 1);
971 	splx(s);
972 
973 	pmf_device_deregister(dev);
974 	callout_destroy(&sc->bnx_timeout);
975 	ether_ifdetach(ifp);
976 	workqueue_destroy(sc->bnx_wq);
977 
978 	if_detach(ifp);
979 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
980 
981 	/* Delete all remaining media. */
982 	ifmedia_fini(&sc->bnx_mii.mii_media);
983 
984 	/* Release all remaining resources. */
985 	bnx_release_resources(sc);
986 
987 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
988 
989 	return 0;
990 }
991 
992 /****************************************************************************/
993 /* Indirect register read.                                                  */
994 /*                                                                          */
995 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
996 /* configuration space.  Using this mechanism avoids issues with posted     */
997 /* reads but is much slower than memory-mapped I/O.                         */
998 /*                                                                          */
999 /* Returns:                                                                 */
1000 /*   The value of the register.                                             */
1001 /****************************************************************************/
1002 uint32_t
1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1004 {
1005 	struct pci_attach_args	*pa = &(sc->bnx_pa);
1006 
1007 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1008 	    offset);
1009 #ifdef BNX_DEBUG
1010 	{
1011 		uint32_t val;
1012 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1013 		    BNX_PCICFG_REG_WINDOW);
1014 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1015 		    "val = 0x%08X\n", __func__, offset, val);
1016 		return val;
1017 	}
1018 #else
1019 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1020 #endif
1021 }
1022 
1023 /****************************************************************************/
1024 /* Indirect register write.                                                 */
1025 /*                                                                          */
1026 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1027 /* configuration space.  Using this mechanism avoids issues with posted     */
1028 /* writes but is muchh slower than memory-mapped I/O.                       */
1029 /*                                                                          */
1030 /* Returns:                                                                 */
1031 /*   Nothing.                                                               */
1032 /****************************************************************************/
1033 void
1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1035 {
1036 	struct pci_attach_args	*pa = &(sc->bnx_pa);
1037 
1038 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1039 		__func__, offset, val);
1040 
1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1042 	    offset);
1043 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1044 }
1045 
1046 /****************************************************************************/
1047 /* Context memory write.                                                    */
1048 /*                                                                          */
1049 /* The NetXtreme II controller uses context memory to track connection      */
1050 /* information for L2 and higher network protocols.                         */
1051 /*                                                                          */
1052 /* Returns:                                                                 */
1053 /*   Nothing.                                                               */
1054 /****************************************************************************/
1055 void
1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1057     uint32_t ctx_val)
1058 {
1059 	uint32_t idx, offset = ctx_offset + cid_addr;
1060 	uint32_t val, retry_cnt = 5;
1061 
1062 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1063 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1064 		REG_WR(sc, BNX_CTX_CTX_CTRL,
1065 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1066 
1067 		for (idx = 0; idx < retry_cnt; idx++) {
1068 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1069 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1070 				break;
1071 			DELAY(5);
1072 		}
1073 
1074 #if 0
1075 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1076 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1077 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
1078 				__FILE__, __LINE__, cid_addr, ctx_offset);
1079 #endif
1080 
1081 	} else {
1082 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1083 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
1084 	}
1085 }
1086 
1087 /****************************************************************************/
1088 /* PHY register read.                                                       */
1089 /*                                                                          */
1090 /* Implements register reads on the MII bus.                                */
1091 /*                                                                          */
1092 /* Returns:                                                                 */
1093 /*   The value of the register.                                             */
1094 /****************************************************************************/
1095 int
1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1097 {
1098 	struct bnx_softc	*sc = device_private(dev);
1099 	uint32_t		data;
1100 	int			i, rv = 0;
1101 
1102 	/*
1103 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1104 	 * with special mappings to work with IEEE
1105 	 * Clause 22 register accesses.
1106 	 */
1107 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1108 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1109 			reg += 0x10;
1110 	}
1111 
1112 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1113 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1114 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1115 
1116 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1117 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1118 
1119 		DELAY(40);
1120 	}
1121 
1122 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1123 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1124 	    BNX_EMAC_MDIO_COMM_START_BUSY;
1125 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1126 
1127 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1128 		DELAY(10);
1129 
1130 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1131 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1132 			DELAY(5);
1133 
1134 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1135 			data &= BNX_EMAC_MDIO_COMM_DATA;
1136 
1137 			break;
1138 		}
1139 	}
1140 
1141 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1142 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1143 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1144 		rv = ETIMEDOUT;
1145 	} else {
1146 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1147 		*val = data & 0xffff;
1148 
1149 		DBPRINT(sc, BNX_EXCESSIVE,
1150 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1151 		    phy, (uint16_t) reg & 0xffff, *val);
1152 	}
1153 
1154 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1155 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1156 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1157 
1158 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1159 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1160 
1161 		DELAY(40);
1162 	}
1163 
1164 	return rv;
1165 }
1166 
1167 /****************************************************************************/
1168 /* PHY register write.                                                      */
1169 /*                                                                          */
1170 /* Implements register writes on the MII bus.                               */
1171 /*                                                                          */
1172 /* Returns:                                                                 */
1173 /*   The value of the register.                                             */
1174 /****************************************************************************/
1175 int
1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1177 {
1178 	struct bnx_softc	*sc = device_private(dev);
1179 	uint32_t		val1;
1180 	int			i, rv = 0;
1181 
1182 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1183 	    "val = 0x%04hX\n", __func__,
1184 	    phy, (uint16_t) reg & 0xffff, val);
1185 
1186 	/*
1187 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
1188 	 * with special mappings to work with IEEE
1189 	 * Clause 22 register accesses.
1190 	 */
1191 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1192 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1193 			reg += 0x10;
1194 	}
1195 
1196 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1197 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1198 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1199 
1200 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1201 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1202 
1203 		DELAY(40);
1204 	}
1205 
1206 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1207 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1208 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1209 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1210 
1211 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1212 		DELAY(10);
1213 
1214 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1215 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1216 			DELAY(5);
1217 			break;
1218 		}
1219 	}
1220 
1221 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1222 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1223 		    __LINE__);
1224 		rv = ETIMEDOUT;
1225 	}
1226 
1227 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1228 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1229 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1230 
1231 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1232 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
1233 
1234 		DELAY(40);
1235 	}
1236 
1237 	return rv;
1238 }
1239 
1240 /****************************************************************************/
1241 /* MII bus status change.                                                   */
1242 /*                                                                          */
1243 /* Called by the MII bus driver when the PHY establishes link to set the    */
1244 /* MAC interface registers.                                                 */
1245 /*                                                                          */
1246 /* Returns:                                                                 */
1247 /*   Nothing.                                                               */
1248 /****************************************************************************/
1249 void
1250 bnx_miibus_statchg(struct ifnet *ifp)
1251 {
1252 	struct bnx_softc	*sc = ifp->if_softc;
1253 	struct mii_data		*mii = &sc->bnx_mii;
1254 	uint32_t		rx_mode = sc->rx_mode;
1255 	int			val;
1256 
1257 	val = REG_RD(sc, BNX_EMAC_MODE);
1258 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1259 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1260 	    BNX_EMAC_MODE_25G);
1261 
1262 	/*
1263 	 * Get flow control negotiation result.
1264 	 */
1265 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1266 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1267 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1268 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1269 	}
1270 
1271 	/* Set MII or GMII interface based on the speed
1272 	 * negotiated by the PHY.
1273 	 */
1274 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1275 	case IFM_10_T:
1276 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1277 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1278 			val |= BNX_EMAC_MODE_PORT_MII_10;
1279 			break;
1280 		}
1281 		/* FALLTHROUGH */
1282 	case IFM_100_TX:
1283 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1284 		val |= BNX_EMAC_MODE_PORT_MII;
1285 		break;
1286 	case IFM_2500_SX:
1287 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1288 		val |= BNX_EMAC_MODE_25G;
1289 		/* FALLTHROUGH */
1290 	case IFM_1000_T:
1291 	case IFM_1000_SX:
1292 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1293 		val |= BNX_EMAC_MODE_PORT_GMII;
1294 		break;
1295 	default:
1296 		val |= BNX_EMAC_MODE_PORT_GMII;
1297 		break;
1298 	}
1299 
1300 	/* Set half or full duplex based on the duplicity
1301 	 * negotiated by the PHY.
1302 	 */
1303 	if ((mii->mii_media_active & IFM_HDX) != 0) {
1304 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1305 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1306 	} else
1307 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1308 
1309 	REG_WR(sc, BNX_EMAC_MODE, val);
1310 
1311 	/*
1312 	 * 802.3x flow control
1313 	 */
1314 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1315 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1316 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1317 	} else {
1318 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1319 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1320 	}
1321 
1322 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1323 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1324 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1325 	} else {
1326 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1327 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1328 	}
1329 
1330 	/* Only make changes if the receive mode has actually changed. */
1331 	if (rx_mode != sc->rx_mode) {
1332 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1333 		    rx_mode);
1334 
1335 		sc->rx_mode = rx_mode;
1336 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1337 
1338 		bnx_init_rx_context(sc);
1339 	}
1340 }
1341 
1342 /****************************************************************************/
1343 /* Acquire NVRAM lock.                                                      */
1344 /*                                                                          */
1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1347 /* for use by the driver.                                                   */
1348 /*                                                                          */
1349 /* Returns:                                                                 */
1350 /*   0 on success, positive value on failure.                               */
1351 /****************************************************************************/
1352 int
1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1354 {
1355 	uint32_t		val;
1356 	int			j;
1357 
1358 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1359 
1360 	/* Request access to the flash interface. */
1361 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1362 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1363 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1364 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1365 			break;
1366 
1367 		DELAY(5);
1368 	}
1369 
1370 	if (j >= NVRAM_TIMEOUT_COUNT) {
1371 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1372 		return EBUSY;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /****************************************************************************/
1379 /* Release NVRAM lock.                                                      */
1380 /*                                                                          */
1381 /* When the caller is finished accessing NVRAM the lock must be released.   */
1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1383 /* for use by the driver.                                                   */
1384 /*                                                                          */
1385 /* Returns:                                                                 */
1386 /*   0 on success, positive value on failure.                               */
1387 /****************************************************************************/
1388 int
1389 bnx_release_nvram_lock(struct bnx_softc *sc)
1390 {
1391 	int			j;
1392 	uint32_t		val;
1393 
1394 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1395 
1396 	/* Relinquish nvram interface. */
1397 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1398 
1399 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1400 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1401 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1402 			break;
1403 
1404 		DELAY(5);
1405 	}
1406 
1407 	if (j >= NVRAM_TIMEOUT_COUNT) {
1408 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1409 		return EBUSY;
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
1416 /****************************************************************************/
1417 /* Enable NVRAM write access.                                               */
1418 /*                                                                          */
1419 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1420 /*                                                                          */
1421 /* Returns:                                                                 */
1422 /*   0 on success, positive value on failure.                               */
1423 /****************************************************************************/
1424 int
1425 bnx_enable_nvram_write(struct bnx_softc *sc)
1426 {
1427 	uint32_t		val;
1428 
1429 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1430 
1431 	val = REG_RD(sc, BNX_MISC_CFG);
1432 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1433 
1434 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1435 		int j;
1436 
1437 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1438 		REG_WR(sc, BNX_NVM_COMMAND,
1439 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1440 
1441 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1442 			DELAY(5);
1443 
1444 			val = REG_RD(sc, BNX_NVM_COMMAND);
1445 			if (val & BNX_NVM_COMMAND_DONE)
1446 				break;
1447 		}
1448 
1449 		if (j >= NVRAM_TIMEOUT_COUNT) {
1450 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1451 			return EBUSY;
1452 		}
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 /****************************************************************************/
1459 /* Disable NVRAM write access.                                              */
1460 /*                                                                          */
1461 /* When the caller is finished writing to NVRAM write access must be        */
1462 /* disabled.                                                                */
1463 /*                                                                          */
1464 /* Returns:                                                                 */
1465 /*   Nothing.                                                               */
1466 /****************************************************************************/
1467 void
1468 bnx_disable_nvram_write(struct bnx_softc *sc)
1469 {
1470 	uint32_t		val;
1471 
1472 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1473 
1474 	val = REG_RD(sc, BNX_MISC_CFG);
1475 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1476 }
1477 #endif
1478 
1479 /****************************************************************************/
1480 /* Enable NVRAM access.                                                     */
1481 /*                                                                          */
1482 /* Before accessing NVRAM for read or write operations the caller must      */
1483 /* enabled NVRAM access.                                                    */
1484 /*                                                                          */
1485 /* Returns:                                                                 */
1486 /*   Nothing.                                                               */
1487 /****************************************************************************/
1488 void
1489 bnx_enable_nvram_access(struct bnx_softc *sc)
1490 {
1491 	uint32_t		val;
1492 
1493 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1494 
1495 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1496 	/* Enable both bits, even on read. */
1497 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1498 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1499 }
1500 
1501 /****************************************************************************/
1502 /* Disable NVRAM access.                                                    */
1503 /*                                                                          */
1504 /* When the caller is finished accessing NVRAM access must be disabled.     */
1505 /*                                                                          */
1506 /* Returns:                                                                 */
1507 /*   Nothing.                                                               */
1508 /****************************************************************************/
1509 void
1510 bnx_disable_nvram_access(struct bnx_softc *sc)
1511 {
1512 	uint32_t		val;
1513 
1514 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1515 
1516 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1517 
1518 	/* Disable both bits, even after read. */
1519 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1520 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1521 }
1522 
1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
1524 /****************************************************************************/
1525 /* Erase NVRAM page before writing.                                         */
1526 /*                                                                          */
1527 /* Non-buffered flash parts require that a page be erased before it is      */
1528 /* written.                                                                 */
1529 /*                                                                          */
1530 /* Returns:                                                                 */
1531 /*   0 on success, positive value on failure.                               */
1532 /****************************************************************************/
1533 int
1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1535 {
1536 	uint32_t		cmd;
1537 	int			j;
1538 
1539 	/* Buffered flash doesn't require an erase. */
1540 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1541 		return 0;
1542 
1543 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1544 
1545 	/* Build an erase command. */
1546 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1547 	    BNX_NVM_COMMAND_DOIT;
1548 
1549 	/*
1550 	 * Clear the DONE bit separately, set the NVRAM address to erase,
1551 	 * and issue the erase command.
1552 	 */
1553 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1554 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1555 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1556 
1557 	/* Wait for completion. */
1558 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1559 		uint32_t val;
1560 
1561 		DELAY(5);
1562 
1563 		val = REG_RD(sc, BNX_NVM_COMMAND);
1564 		if (val & BNX_NVM_COMMAND_DONE)
1565 			break;
1566 	}
1567 
1568 	if (j >= NVRAM_TIMEOUT_COUNT) {
1569 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1570 		return EBUSY;
1571 	}
1572 
1573 	return 0;
1574 }
1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1576 
1577 /****************************************************************************/
1578 /* Read a dword (32 bits) from NVRAM.                                       */
1579 /*                                                                          */
1580 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1582 /*                                                                          */
1583 /* Returns:                                                                 */
1584 /*   0 on success and the 32 bit value read, positive value on failure.     */
1585 /****************************************************************************/
1586 int
1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1588     uint8_t *ret_val, uint32_t cmd_flags)
1589 {
1590 	uint32_t		cmd;
1591 	int			i, rc = 0;
1592 
1593 	/* Build the command word. */
1594 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1595 
1596 	/* Calculate the offset for buffered flash if translation is used. */
1597 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1598 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1599 		    sc->bnx_flash_info->page_bits) +
1600 		    (offset % sc->bnx_flash_info->page_size);
1601 	}
1602 
1603 	/*
1604 	 * Clear the DONE bit separately, set the address to read,
1605 	 * and issue the read.
1606 	 */
1607 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1608 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1609 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1610 
1611 	/* Wait for completion. */
1612 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1613 		uint32_t val;
1614 
1615 		DELAY(5);
1616 
1617 		val = REG_RD(sc, BNX_NVM_COMMAND);
1618 		if (val & BNX_NVM_COMMAND_DONE) {
1619 			val = REG_RD(sc, BNX_NVM_READ);
1620 
1621 			val = be32toh(val);
1622 			memcpy(ret_val, &val, 4);
1623 			break;
1624 		}
1625 	}
1626 
1627 	/* Check for errors. */
1628 	if (i >= NVRAM_TIMEOUT_COUNT) {
1629 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1630 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1631 		rc = EBUSY;
1632 	}
1633 
1634 	return rc;
1635 }
1636 
1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
1638 /****************************************************************************/
1639 /* Write a dword (32 bits) to NVRAM.                                        */
1640 /*                                                                          */
1641 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1643 /* enabled NVRAM write access.                                              */
1644 /*                                                                          */
1645 /* Returns:                                                                 */
1646 /*   0 on success, positive value on failure.                               */
1647 /****************************************************************************/
1648 int
1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1650     uint32_t cmd_flags)
1651 {
1652 	uint32_t		cmd, val32;
1653 	int			j;
1654 
1655 	/* Build the command word. */
1656 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1657 
1658 	/* Calculate the offset for buffered flash if translation is used. */
1659 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1660 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1661 		    sc->bnx_flash_info->page_bits) +
1662 		    (offset % sc->bnx_flash_info->page_size);
1663 	}
1664 
1665 	/*
1666 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1667 	 * set the NVRAM address to write, and issue the write command
1668 	 */
1669 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1670 	memcpy(&val32, val, 4);
1671 	val32 = htobe32(val32);
1672 	REG_WR(sc, BNX_NVM_WRITE, val32);
1673 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1674 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1675 
1676 	/* Wait for completion. */
1677 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1678 		DELAY(5);
1679 
1680 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1681 			break;
1682 	}
1683 	if (j >= NVRAM_TIMEOUT_COUNT) {
1684 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1685 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1686 		return EBUSY;
1687 	}
1688 
1689 	return 0;
1690 }
1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1692 
1693 /****************************************************************************/
1694 /* Initialize NVRAM access.                                                 */
1695 /*                                                                          */
1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1697 /* access that device.                                                      */
1698 /*                                                                          */
1699 /* Returns:                                                                 */
1700 /*   0 on success, positive value on failure.                               */
1701 /****************************************************************************/
1702 int
1703 bnx_init_nvram(struct bnx_softc *sc)
1704 {
1705 	uint32_t		val;
1706 	int			j, entry_count, rc = 0;
1707 	struct flash_spec	*flash;
1708 
1709 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1710 
1711 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1712 		sc->bnx_flash_info = &flash_5709;
1713 		goto bnx_init_nvram_get_flash_size;
1714 	}
1715 
1716 	/* Determine the selected interface. */
1717 	val = REG_RD(sc, BNX_NVM_CFG1);
1718 
1719 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1720 
1721 	/*
1722 	 * Flash reconfiguration is required to support additional
1723 	 * NVRAM devices not directly supported in hardware.
1724 	 * Check if the flash interface was reconfigured
1725 	 * by the bootcode.
1726 	 */
1727 
1728 	if (val & 0x40000000) {
1729 		/* Flash interface reconfigured by bootcode. */
1730 
1731 		DBPRINT(sc, BNX_INFO_LOAD,
1732 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1733 
1734 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1735 		     j++, flash++) {
1736 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1737 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1738 				sc->bnx_flash_info = flash;
1739 				break;
1740 			}
1741 		}
1742 	} else {
1743 		/* Flash interface not yet reconfigured. */
1744 		uint32_t mask;
1745 
1746 		DBPRINT(sc, BNX_INFO_LOAD,
1747 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1748 
1749 		if (val & (1 << 23))
1750 			mask = FLASH_BACKUP_STRAP_MASK;
1751 		else
1752 			mask = FLASH_STRAP_MASK;
1753 
1754 		/* Look for the matching NVRAM device configuration data. */
1755 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1756 		    j++, flash++) {
1757 			/* Check if the dev matches any of the known devices. */
1758 			if ((val & mask) == (flash->strapping & mask)) {
1759 				/* Found a device match. */
1760 				sc->bnx_flash_info = flash;
1761 
1762 				/* Request access to the flash interface. */
1763 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1764 					return rc;
1765 
1766 				/* Reconfigure the flash interface. */
1767 				bnx_enable_nvram_access(sc);
1768 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1769 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1770 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1771 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1772 				bnx_disable_nvram_access(sc);
1773 				bnx_release_nvram_lock(sc);
1774 
1775 				break;
1776 			}
1777 		}
1778 	}
1779 
1780 	/* Check if a matching device was found. */
1781 	if (j == entry_count) {
1782 		sc->bnx_flash_info = NULL;
1783 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1784 			__FILE__, __LINE__);
1785 		rc = ENODEV;
1786 	}
1787 
1788 bnx_init_nvram_get_flash_size:
1789 	/* Write the flash config data to the shared memory interface. */
1790 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1791 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1792 	if (val)
1793 		sc->bnx_flash_size = val;
1794 	else
1795 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1796 
1797 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1798 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1799 
1800 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1801 
1802 	return rc;
1803 }
1804 
1805 /****************************************************************************/
1806 /* Read an arbitrary range of data from NVRAM.                              */
1807 /*                                                                          */
1808 /* Prepares the NVRAM interface for access and reads the requested data     */
1809 /* into the supplied buffer.                                                */
1810 /*                                                                          */
1811 /* Returns:                                                                 */
1812 /*   0 on success and the data read, positive value on failure.             */
1813 /****************************************************************************/
1814 int
1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1816     int buf_size)
1817 {
1818 	int			rc = 0;
1819 	uint32_t		cmd_flags, offset32, len32, extra;
1820 
1821 	if (buf_size == 0)
1822 		return 0;
1823 
1824 	/* Request access to the flash interface. */
1825 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1826 		return rc;
1827 
1828 	/* Enable access to flash interface */
1829 	bnx_enable_nvram_access(sc);
1830 
1831 	len32 = buf_size;
1832 	offset32 = offset;
1833 	extra = 0;
1834 
1835 	cmd_flags = 0;
1836 
1837 	if (offset32 & 3) {
1838 		uint8_t buf[4];
1839 		uint32_t pre_len;
1840 
1841 		offset32 &= ~3;
1842 		pre_len = 4 - (offset & 3);
1843 
1844 		if (pre_len >= len32) {
1845 			pre_len = len32;
1846 			cmd_flags =
1847 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1848 		} else
1849 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1850 
1851 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1852 
1853 		if (rc)
1854 			return rc;
1855 
1856 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1857 
1858 		offset32 += 4;
1859 		ret_buf += pre_len;
1860 		len32 -= pre_len;
1861 	}
1862 
1863 	if (len32 & 3) {
1864 		extra = 4 - (len32 & 3);
1865 		len32 = (len32 + 4) & ~3;
1866 	}
1867 
1868 	if (len32 == 4) {
1869 		uint8_t buf[4];
1870 
1871 		if (cmd_flags)
1872 			cmd_flags = BNX_NVM_COMMAND_LAST;
1873 		else
1874 			cmd_flags =
1875 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1876 
1877 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1878 
1879 		memcpy(ret_buf, buf, 4 - extra);
1880 	} else if (len32 > 0) {
1881 		uint8_t buf[4];
1882 
1883 		/* Read the first word. */
1884 		if (cmd_flags)
1885 			cmd_flags = 0;
1886 		else
1887 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1888 
1889 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1890 
1891 		/* Advance to the next dword. */
1892 		offset32 += 4;
1893 		ret_buf += 4;
1894 		len32 -= 4;
1895 
1896 		while (len32 > 4 && rc == 0) {
1897 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1898 
1899 			/* Advance to the next dword. */
1900 			offset32 += 4;
1901 			ret_buf += 4;
1902 			len32 -= 4;
1903 		}
1904 
1905 		if (rc)
1906 			return rc;
1907 
1908 		cmd_flags = BNX_NVM_COMMAND_LAST;
1909 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1910 
1911 		memcpy(ret_buf, buf, 4 - extra);
1912 	}
1913 
1914 	/* Disable access to flash interface and release the lock. */
1915 	bnx_disable_nvram_access(sc);
1916 	bnx_release_nvram_lock(sc);
1917 
1918 	return rc;
1919 }
1920 
1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
1922 /****************************************************************************/
1923 /* Write an arbitrary range of data from NVRAM.                             */
1924 /*                                                                          */
1925 /* Prepares the NVRAM interface for write access and writes the requested   */
1926 /* data from the supplied buffer.  The caller is responsible for            */
1927 /* calculating any appropriate CRCs.                                        */
1928 /*                                                                          */
1929 /* Returns:                                                                 */
1930 /*   0 on success, positive value on failure.                               */
1931 /****************************************************************************/
1932 int
1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1934     int buf_size)
1935 {
1936 	uint32_t		written, offset32, len32;
1937 	uint8_t		*buf, start[4], end[4];
1938 	int			rc = 0;
1939 	int			align_start, align_end;
1940 
1941 	buf = data_buf;
1942 	offset32 = offset;
1943 	len32 = buf_size;
1944 	align_start = align_end = 0;
1945 
1946 	if ((align_start = (offset32 & 3))) {
1947 		offset32 &= ~3;
1948 		len32 += align_start;
1949 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1950 			return rc;
1951 	}
1952 
1953 	if (len32 & 3) {
1954 		if ((len32 > 4) || !align_start) {
1955 			align_end = 4 - (len32 & 3);
1956 			len32 += align_end;
1957 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1958 			    end, 4)))
1959 				return rc;
1960 		}
1961 	}
1962 
1963 	if (align_start || align_end) {
1964 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1965 		if (buf == NULL)
1966 			return ENOMEM;
1967 
1968 		if (align_start)
1969 			memcpy(buf, start, 4);
1970 
1971 		if (align_end)
1972 			memcpy(buf + len32 - 4, end, 4);
1973 
1974 		memcpy(buf + align_start, data_buf, buf_size);
1975 	}
1976 
1977 	written = 0;
1978 	while ((written < len32) && (rc == 0)) {
1979 		uint32_t page_start, page_end, data_start, data_end;
1980 		uint32_t addr, cmd_flags;
1981 		int i;
1982 		uint8_t flash_buffer[264];
1983 
1984 	    /* Find the page_start addr */
1985 		page_start = offset32 + written;
1986 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1987 		/* Find the page_end addr */
1988 		page_end = page_start + sc->bnx_flash_info->page_size;
1989 		/* Find the data_start addr */
1990 		data_start = (written == 0) ? offset32 : page_start;
1991 		/* Find the data_end addr */
1992 		data_end = (page_end > offset32 + len32) ?
1993 		    (offset32 + len32) : page_end;
1994 
1995 		/* Request access to the flash interface. */
1996 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1997 			goto nvram_write_end;
1998 
1999 		/* Enable access to flash interface */
2000 		bnx_enable_nvram_access(sc);
2001 
2002 		cmd_flags = BNX_NVM_COMMAND_FIRST;
2003 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2004 			int j;
2005 
2006 			/* Read the whole page into the buffer
2007 			 * (non-buffer flash only) */
2008 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2009 				if (j == (sc->bnx_flash_info->page_size - 4))
2010 					cmd_flags |= BNX_NVM_COMMAND_LAST;
2011 
2012 				rc = bnx_nvram_read_dword(sc,
2013 					page_start + j,
2014 					&flash_buffer[j],
2015 					cmd_flags);
2016 
2017 				if (rc)
2018 					goto nvram_write_end;
2019 
2020 				cmd_flags = 0;
2021 			}
2022 		}
2023 
2024 		/* Enable writes to flash interface (unlock write-protect) */
2025 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
2026 			goto nvram_write_end;
2027 
2028 		/* Erase the page */
2029 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2030 			goto nvram_write_end;
2031 
2032 		/* Re-enable the write again for the actual write */
2033 		bnx_enable_nvram_write(sc);
2034 
2035 		/* Loop to write back the buffer data from page_start to
2036 		 * data_start */
2037 		i = 0;
2038 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2039 			for (addr = page_start; addr < data_start;
2040 				addr += 4, i += 4) {
2041 
2042 				rc = bnx_nvram_write_dword(sc, addr,
2043 				    &flash_buffer[i], cmd_flags);
2044 
2045 				if (rc != 0)
2046 					goto nvram_write_end;
2047 
2048 				cmd_flags = 0;
2049 			}
2050 		}
2051 
2052 		/* Loop to write the new data from data_start to data_end */
2053 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2054 			if ((addr == page_end - 4) ||
2055 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2056 			    && (addr == data_end - 4))) {
2057 
2058 				cmd_flags |= BNX_NVM_COMMAND_LAST;
2059 			}
2060 
2061 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2062 
2063 			if (rc != 0)
2064 				goto nvram_write_end;
2065 
2066 			cmd_flags = 0;
2067 			buf += 4;
2068 		}
2069 
2070 		/* Loop to write back the buffer data from data_end
2071 		 * to page_end */
2072 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2073 			for (addr = data_end; addr < page_end;
2074 			    addr += 4, i += 4) {
2075 
2076 				if (addr == page_end-4)
2077 					cmd_flags = BNX_NVM_COMMAND_LAST;
2078 
2079 				rc = bnx_nvram_write_dword(sc, addr,
2080 				    &flash_buffer[i], cmd_flags);
2081 
2082 				if (rc != 0)
2083 					goto nvram_write_end;
2084 
2085 				cmd_flags = 0;
2086 			}
2087 		}
2088 
2089 		/* Disable writes to flash interface (lock write-protect) */
2090 		bnx_disable_nvram_write(sc);
2091 
2092 		/* Disable access to flash interface */
2093 		bnx_disable_nvram_access(sc);
2094 		bnx_release_nvram_lock(sc);
2095 
2096 		/* Increment written */
2097 		written += data_end - data_start;
2098 	}
2099 
2100 nvram_write_end:
2101 	if (align_start || align_end)
2102 		free(buf, M_DEVBUF);
2103 
2104 	return rc;
2105 }
2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2107 
2108 /****************************************************************************/
2109 /* Verifies that NVRAM is accessible and contains valid data.               */
2110 /*                                                                          */
2111 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2112 /* correct.                                                                 */
2113 /*                                                                          */
2114 /* Returns:                                                                 */
2115 /*   0 on success, positive value on failure.                               */
2116 /****************************************************************************/
2117 int
2118 bnx_nvram_test(struct bnx_softc *sc)
2119 {
2120 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
2121 	uint8_t		*data = (uint8_t *) buf;
2122 	int			rc = 0;
2123 	uint32_t		magic, csum;
2124 
2125 	/*
2126 	 * Check that the device NVRAM is valid by reading
2127 	 * the magic value at offset 0.
2128 	 */
2129 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2130 		goto bnx_nvram_test_done;
2131 
2132 	magic = be32toh(buf[0]);
2133 	if (magic != BNX_NVRAM_MAGIC) {
2134 		rc = ENODEV;
2135 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2136 		    "Expected: 0x%08X, Found: 0x%08X\n",
2137 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2138 		goto bnx_nvram_test_done;
2139 	}
2140 
2141 	/*
2142 	 * Verify that the device NVRAM includes valid
2143 	 * configuration data.
2144 	 */
2145 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2146 		goto bnx_nvram_test_done;
2147 
2148 	csum = ether_crc32_le(data, 0x100);
2149 	if (csum != BNX_CRC32_RESIDUAL) {
2150 		rc = ENODEV;
2151 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2152 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2153 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2154 		goto bnx_nvram_test_done;
2155 	}
2156 
2157 	csum = ether_crc32_le(data + 0x100, 0x100);
2158 	if (csum != BNX_CRC32_RESIDUAL) {
2159 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2160 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2161 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2162 		rc = ENODEV;
2163 	}
2164 
2165 bnx_nvram_test_done:
2166 	return rc;
2167 }
2168 
2169 /****************************************************************************/
2170 /* Identifies the current media type of the controller and sets the PHY     */
2171 /* address.                                                                 */
2172 /*                                                                          */
2173 /* Returns:                                                                 */
2174 /*   Nothing.                                                               */
2175 /****************************************************************************/
2176 void
2177 bnx_get_media(struct bnx_softc *sc)
2178 {
2179 	sc->bnx_phy_addr = 1;
2180 
2181 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2182 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2183 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2184 		uint32_t strap;
2185 
2186 		/*
2187 		 * The BCM5709S is software configurable
2188 		 * for Copper or SerDes operation.
2189 		 */
2190 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2191 			DBPRINT(sc, BNX_INFO_LOAD,
2192 			    "5709 bonded for copper.\n");
2193 			goto bnx_get_media_exit;
2194 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2195 			DBPRINT(sc, BNX_INFO_LOAD,
2196 			    "5709 bonded for dual media.\n");
2197 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2198 			goto bnx_get_media_exit;
2199 		}
2200 
2201 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2202 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2203 		else {
2204 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2205 			    >> 8;
2206 		}
2207 
2208 		if (sc->bnx_pa.pa_function == 0) {
2209 			switch (strap) {
2210 			case 0x4:
2211 			case 0x5:
2212 			case 0x6:
2213 				DBPRINT(sc, BNX_INFO_LOAD,
2214 					"BCM5709 s/w configured for SerDes.\n");
2215 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2216 				break;
2217 			default:
2218 				DBPRINT(sc, BNX_INFO_LOAD,
2219 					"BCM5709 s/w configured for Copper.\n");
2220 			}
2221 		} else {
2222 			switch (strap) {
2223 			case 0x1:
2224 			case 0x2:
2225 			case 0x4:
2226 				DBPRINT(sc, BNX_INFO_LOAD,
2227 					"BCM5709 s/w configured for SerDes.\n");
2228 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2229 				break;
2230 			default:
2231 				DBPRINT(sc, BNX_INFO_LOAD,
2232 					"BCM5709 s/w configured for Copper.\n");
2233 			}
2234 		}
2235 
2236 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2237 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2238 
2239 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2240 		uint32_t val;
2241 
2242 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
2243 
2244 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2245 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2246 
2247 		/*
2248 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2249 		 * separate PHY for SerDes.
2250 		 */
2251 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2252 			sc->bnx_phy_addr = 2;
2253 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
2254 				 BNX_SHARED_HW_CFG_CONFIG);
2255 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2256 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2257 				DBPRINT(sc, BNX_INFO_LOAD,
2258 				    "Found 2.5Gb capable adapter\n");
2259 			}
2260 		}
2261 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2262 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2263 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2264 
2265 bnx_get_media_exit:
2266 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2267 		"Using PHY address %d.\n", sc->bnx_phy_addr);
2268 }
2269 
2270 /****************************************************************************/
2271 /* Performs PHY initialization required before MII drivers access the       */
2272 /* device.                                                                  */
2273 /*                                                                          */
2274 /* Returns:                                                                 */
2275 /*   Nothing.                                                               */
2276 /****************************************************************************/
2277 void
2278 bnx_init_media(struct bnx_softc *sc)
2279 {
2280 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2281 		/*
2282 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2283 		 * IEEE Clause 22 method. Otherwise we have no way to attach
2284 		 * the PHY to the mii(4) layer. PHY specific configuration
2285 		 * is done by the mii(4) layer.
2286 		 */
2287 
2288 		/* Select auto-negotiation MMD of the PHY. */
2289 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2290 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2291 
2292 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2293 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2294 
2295 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2296 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2297 	}
2298 }
2299 
2300 /****************************************************************************/
2301 /* Free any DMA memory owned by the driver.                                 */
2302 /*                                                                          */
2303 /* Scans through each data structre that requires DMA memory and frees      */
2304 /* the memory if allocated.                                                 */
2305 /*                                                                          */
2306 /* Returns:                                                                 */
2307 /*   Nothing.                                                               */
2308 /****************************************************************************/
2309 void
2310 bnx_dma_free(struct bnx_softc *sc)
2311 {
2312 	int			i;
2313 
2314 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2315 
2316 	/* Destroy the status block. */
2317 	if (sc->status_block != NULL && sc->status_map != NULL) {
2318 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2319 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2321 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2322 		    BNX_STATUS_BLK_SZ);
2323 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2324 		    sc->status_rseg);
2325 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2326 		sc->status_block = NULL;
2327 		sc->status_map = NULL;
2328 	}
2329 
2330 	/* Destroy the statistics block. */
2331 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
2332 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2333 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2334 		    BNX_STATS_BLK_SZ);
2335 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2336 		    sc->stats_rseg);
2337 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2338 		sc->stats_block = NULL;
2339 		sc->stats_map = NULL;
2340 	}
2341 
2342 	/* Free, unmap and destroy all context memory pages. */
2343 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2344 		for (i = 0; i < sc->ctx_pages; i++) {
2345 			if (sc->ctx_block[i] != NULL) {
2346 				bus_dmamap_unload(sc->bnx_dmatag,
2347 				    sc->ctx_map[i]);
2348 				bus_dmamem_unmap(sc->bnx_dmatag,
2349 				    (void *)sc->ctx_block[i],
2350 				    BCM_PAGE_SIZE);
2351 				bus_dmamem_free(sc->bnx_dmatag,
2352 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2353 				bus_dmamap_destroy(sc->bnx_dmatag,
2354 				    sc->ctx_map[i]);
2355 				sc->ctx_block[i] = NULL;
2356 			}
2357 		}
2358 	}
2359 
2360 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
2361 	for (i = 0; i < TX_PAGES; i++ ) {
2362 		if (sc->tx_bd_chain[i] != NULL &&
2363 		    sc->tx_bd_chain_map[i] != NULL) {
2364 			bus_dmamap_unload(sc->bnx_dmatag,
2365 			    sc->tx_bd_chain_map[i]);
2366 			bus_dmamem_unmap(sc->bnx_dmatag,
2367 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2368 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2369 			    sc->tx_bd_chain_rseg[i]);
2370 			bus_dmamap_destroy(sc->bnx_dmatag,
2371 			    sc->tx_bd_chain_map[i]);
2372 			sc->tx_bd_chain[i] = NULL;
2373 			sc->tx_bd_chain_map[i] = NULL;
2374 		}
2375 	}
2376 
2377 	/* Destroy the TX dmamaps. */
2378 	struct bnx_pkt *pkt;
2379 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
2380 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
2381 		sc->tx_pkt_count--;
2382 
2383 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
2384 		pool_put(bnx_tx_pool, pkt);
2385 	}
2386 
2387 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
2388 	for (i = 0; i < RX_PAGES; i++ ) {
2389 		if (sc->rx_bd_chain[i] != NULL &&
2390 		    sc->rx_bd_chain_map[i] != NULL) {
2391 			bus_dmamap_unload(sc->bnx_dmatag,
2392 			    sc->rx_bd_chain_map[i]);
2393 			bus_dmamem_unmap(sc->bnx_dmatag,
2394 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2395 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2396 			    sc->rx_bd_chain_rseg[i]);
2397 
2398 			bus_dmamap_destroy(sc->bnx_dmatag,
2399 			    sc->rx_bd_chain_map[i]);
2400 			sc->rx_bd_chain[i] = NULL;
2401 			sc->rx_bd_chain_map[i] = NULL;
2402 		}
2403 	}
2404 
2405 	/* Unload and destroy the RX mbuf maps. */
2406 	for (i = 0; i < TOTAL_RX_BD; i++) {
2407 		if (sc->rx_mbuf_map[i] != NULL) {
2408 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2409 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2410 		}
2411 	}
2412 
2413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2414 }
2415 
2416 /****************************************************************************/
2417 /* Allocate any DMA memory needed by the driver.                            */
2418 /*                                                                          */
2419 /* Allocates DMA memory needed for the various global structures needed by  */
2420 /* hardware.                                                                */
2421 /*                                                                          */
2422 /* Returns:                                                                 */
2423 /*   0 for success, positive value for failure.                             */
2424 /****************************************************************************/
2425 int
2426 bnx_dma_alloc(struct bnx_softc *sc)
2427 {
2428 	int			i, rc = 0;
2429 
2430 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2431 
2432 	/*
2433 	 * Allocate DMA memory for the status block, map the memory into DMA
2434 	 * space, and fetch the physical address of the block.
2435 	 */
2436 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2437 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2438 		aprint_error_dev(sc->bnx_dev,
2439 		    "Could not create status block DMA map!\n");
2440 		rc = ENOMEM;
2441 		goto bnx_dma_alloc_exit;
2442 	}
2443 
2444 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2445 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2446 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
2447 		aprint_error_dev(sc->bnx_dev,
2448 		    "Could not allocate status block DMA memory!\n");
2449 		rc = ENOMEM;
2450 		goto bnx_dma_alloc_exit;
2451 	}
2452 
2453 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2454 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2455 		aprint_error_dev(sc->bnx_dev,
2456 		    "Could not map status block DMA memory!\n");
2457 		rc = ENOMEM;
2458 		goto bnx_dma_alloc_exit;
2459 	}
2460 
2461 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2462 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2463 		aprint_error_dev(sc->bnx_dev,
2464 		    "Could not load status block DMA memory!\n");
2465 		rc = ENOMEM;
2466 		goto bnx_dma_alloc_exit;
2467 	}
2468 
2469 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2470 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2471 
2472 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2473 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2474 
2475 	/* DRC - Fix for 64 bit addresses. */
2476 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2477 		(uint32_t) sc->status_block_paddr);
2478 
2479 	/* BCM5709 uses host memory as cache for context memory. */
2480 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2481 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2482 		if (sc->ctx_pages == 0)
2483 			sc->ctx_pages = 1;
2484 		if (sc->ctx_pages > 4) /* XXX */
2485 			sc->ctx_pages = 4;
2486 
2487 		DBRUNIF((sc->ctx_pages > 512),
2488 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2489 				__FILE__, __LINE__, sc->ctx_pages));
2490 
2491 
2492 		for (i = 0; i < sc->ctx_pages; i++) {
2493 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2494 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2495 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2496 			    &sc->ctx_map[i]) != 0) {
2497 				rc = ENOMEM;
2498 				goto bnx_dma_alloc_exit;
2499 			}
2500 
2501 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2502 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2503 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2504 				rc = ENOMEM;
2505 				goto bnx_dma_alloc_exit;
2506 			}
2507 
2508 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2509 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2510 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2511 				rc = ENOMEM;
2512 				goto bnx_dma_alloc_exit;
2513 			}
2514 
2515 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2516 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2517 			    BUS_DMA_NOWAIT) != 0) {
2518 				rc = ENOMEM;
2519 				goto bnx_dma_alloc_exit;
2520 			}
2521 
2522 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2523 		}
2524 	}
2525 
2526 	/*
2527 	 * Allocate DMA memory for the statistics block, map the memory into
2528 	 * DMA space, and fetch the physical address of the block.
2529 	 */
2530 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2531 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2532 		aprint_error_dev(sc->bnx_dev,
2533 		    "Could not create stats block DMA map!\n");
2534 		rc = ENOMEM;
2535 		goto bnx_dma_alloc_exit;
2536 	}
2537 
2538 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2539 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2540 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2541 		aprint_error_dev(sc->bnx_dev,
2542 		    "Could not allocate stats block DMA memory!\n");
2543 		rc = ENOMEM;
2544 		goto bnx_dma_alloc_exit;
2545 	}
2546 
2547 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2548 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2549 		aprint_error_dev(sc->bnx_dev,
2550 		    "Could not map stats block DMA memory!\n");
2551 		rc = ENOMEM;
2552 		goto bnx_dma_alloc_exit;
2553 	}
2554 
2555 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2556 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2557 		aprint_error_dev(sc->bnx_dev,
2558 		    "Could not load status block DMA memory!\n");
2559 		rc = ENOMEM;
2560 		goto bnx_dma_alloc_exit;
2561 	}
2562 
2563 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2564 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2565 
2566 	/* DRC - Fix for 64 bit address. */
2567 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2568 	    (uint32_t) sc->stats_block_paddr);
2569 
2570 	/*
2571 	 * Allocate DMA memory for the TX buffer descriptor chain,
2572 	 * and fetch the physical address of the block.
2573 	 */
2574 	for (i = 0; i < TX_PAGES; i++) {
2575 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2576 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2577 		    &sc->tx_bd_chain_map[i])) {
2578 			aprint_error_dev(sc->bnx_dev,
2579 			    "Could not create Tx desc %d DMA map!\n", i);
2580 			rc = ENOMEM;
2581 			goto bnx_dma_alloc_exit;
2582 		}
2583 
2584 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2585 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2586 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2587 			aprint_error_dev(sc->bnx_dev,
2588 			    "Could not allocate TX desc %d DMA memory!\n",
2589 			    i);
2590 			rc = ENOMEM;
2591 			goto bnx_dma_alloc_exit;
2592 		}
2593 
2594 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2595 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2596 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2597 			aprint_error_dev(sc->bnx_dev,
2598 			    "Could not map TX desc %d DMA memory!\n", i);
2599 			rc = ENOMEM;
2600 			goto bnx_dma_alloc_exit;
2601 		}
2602 
2603 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2604 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2605 		    BUS_DMA_NOWAIT)) {
2606 			aprint_error_dev(sc->bnx_dev,
2607 			    "Could not load TX desc %d DMA memory!\n", i);
2608 			rc = ENOMEM;
2609 			goto bnx_dma_alloc_exit;
2610 		}
2611 
2612 		sc->tx_bd_chain_paddr[i] =
2613 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2614 
2615 		/* DRC - Fix for 64 bit systems. */
2616 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2617 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2618 	}
2619 
2620 	/*
2621 	 * Create lists to hold TX mbufs.
2622 	 */
2623 	TAILQ_INIT(&sc->tx_free_pkts);
2624 	TAILQ_INIT(&sc->tx_used_pkts);
2625 	sc->tx_pkt_count = 0;
2626 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2627 
2628 	/*
2629 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2630 	 * and fetch the physical address of the block.
2631 	 */
2632 	for (i = 0; i < RX_PAGES; i++) {
2633 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2634 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2635 		    &sc->rx_bd_chain_map[i])) {
2636 			aprint_error_dev(sc->bnx_dev,
2637 			    "Could not create Rx desc %d DMA map!\n", i);
2638 			rc = ENOMEM;
2639 			goto bnx_dma_alloc_exit;
2640 		}
2641 
2642 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2643 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2644 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2645 			aprint_error_dev(sc->bnx_dev,
2646 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2647 			rc = ENOMEM;
2648 			goto bnx_dma_alloc_exit;
2649 		}
2650 
2651 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2652 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2653 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2654 			aprint_error_dev(sc->bnx_dev,
2655 			    "Could not map Rx desc %d DMA memory!\n", i);
2656 			rc = ENOMEM;
2657 			goto bnx_dma_alloc_exit;
2658 		}
2659 
2660 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2661 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2662 		    BUS_DMA_NOWAIT)) {
2663 			aprint_error_dev(sc->bnx_dev,
2664 			    "Could not load Rx desc %d DMA memory!\n", i);
2665 			rc = ENOMEM;
2666 			goto bnx_dma_alloc_exit;
2667 		}
2668 
2669 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2670 		sc->rx_bd_chain_paddr[i] =
2671 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2672 
2673 		/* DRC - Fix for 64 bit systems. */
2674 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2675 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2676 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2677 		    0, BNX_RX_CHAIN_PAGE_SZ,
2678 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2679 	}
2680 
2681 	/*
2682 	 * Create DMA maps for the Rx buffer mbufs.
2683 	 */
2684 	for (i = 0; i < TOTAL_RX_BD; i++) {
2685 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2686 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2687 		    &sc->rx_mbuf_map[i])) {
2688 			aprint_error_dev(sc->bnx_dev,
2689 			    "Could not create Rx mbuf %d DMA map!\n", i);
2690 			rc = ENOMEM;
2691 			goto bnx_dma_alloc_exit;
2692 		}
2693 	}
2694 
2695  bnx_dma_alloc_exit:
2696 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2697 
2698 	return rc;
2699 }
2700 
2701 /****************************************************************************/
2702 /* Release all resources used by the driver.                                */
2703 /*                                                                          */
2704 /* Releases all resources acquired by the driver including interrupts,      */
2705 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2706 /*                                                                          */
2707 /* Returns:                                                                 */
2708 /*   Nothing.                                                               */
2709 /****************************************************************************/
2710 void
2711 bnx_release_resources(struct bnx_softc *sc)
2712 {
2713 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2714 
2715 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2716 
2717 	bnx_dma_free(sc);
2718 
2719 	if (sc->bnx_intrhand != NULL)
2720 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2721 
2722 	if (sc->bnx_ih != NULL)
2723 		pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
2724 
2725 	if (sc->bnx_size)
2726 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2727 
2728 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2729 }
2730 
2731 /****************************************************************************/
2732 /* Firmware synchronization.                                                */
2733 /*                                                                          */
2734 /* Before performing certain events such as a chip reset, synchronize with  */
2735 /* the firmware first.                                                      */
2736 /*                                                                          */
2737 /* Returns:                                                                 */
2738 /*   0 for success, positive value for failure.                             */
2739 /****************************************************************************/
2740 int
2741 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2742 {
2743 	int			i, rc = 0;
2744 	uint32_t		val;
2745 
2746 	/* Don't waste any time if we've timed out before. */
2747 	if (sc->bnx_fw_timed_out) {
2748 		rc = EBUSY;
2749 		goto bnx_fw_sync_exit;
2750 	}
2751 
2752 	/* Increment the message sequence number. */
2753 	sc->bnx_fw_wr_seq++;
2754 	msg_data |= sc->bnx_fw_wr_seq;
2755 
2756 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2757 	    msg_data);
2758 
2759 	/* Send the message to the bootcode driver mailbox. */
2760 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2761 
2762 	/* Wait for the bootcode to acknowledge the message. */
2763 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2764 		/* Check for a response in the bootcode firmware mailbox. */
2765 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2766 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2767 			break;
2768 		DELAY(1000);
2769 	}
2770 
2771 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2772 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2773 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2774 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2775 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2776 
2777 		msg_data &= ~BNX_DRV_MSG_CODE;
2778 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2779 
2780 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2781 
2782 		sc->bnx_fw_timed_out = 1;
2783 		rc = EBUSY;
2784 	}
2785 
2786 bnx_fw_sync_exit:
2787 	return rc;
2788 }
2789 
2790 /****************************************************************************/
2791 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2792 /*                                                                          */
2793 /* Returns:                                                                 */
2794 /*   Nothing.                                                               */
2795 /****************************************************************************/
2796 void
2797 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2798     uint32_t rv2p_code_len, uint32_t rv2p_proc)
2799 {
2800 	int			i;
2801 	uint32_t		val;
2802 
2803 	/* Set the page size used by RV2P. */
2804 	if (rv2p_proc == RV2P_PROC2) {
2805 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2806 		    USABLE_RX_BD_PER_PAGE);
2807 	}
2808 
2809 	for (i = 0; i < rv2p_code_len; i += 8) {
2810 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2811 		rv2p_code++;
2812 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2813 		rv2p_code++;
2814 
2815 		if (rv2p_proc == RV2P_PROC1) {
2816 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2817 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2818 		} else {
2819 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2820 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2821 		}
2822 	}
2823 
2824 	/* Reset the processor, un-stall is done later. */
2825 	if (rv2p_proc == RV2P_PROC1)
2826 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2827 	else
2828 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2829 }
2830 
2831 /****************************************************************************/
2832 /* Load RISC processor firmware.                                            */
2833 /*                                                                          */
2834 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2835 /* associated with a particular processor.                                  */
2836 /*                                                                          */
2837 /* Returns:                                                                 */
2838 /*   Nothing.                                                               */
2839 /****************************************************************************/
2840 void
2841 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2842     struct fw_info *fw)
2843 {
2844 	uint32_t		offset;
2845 	uint32_t		val;
2846 
2847 	/* Halt the CPU. */
2848 	val = REG_RD_IND(sc, cpu_reg->mode);
2849 	val |= cpu_reg->mode_value_halt;
2850 	REG_WR_IND(sc, cpu_reg->mode, val);
2851 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2852 
2853 	/* Load the Text area. */
2854 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2855 	if (fw->text) {
2856 		int j;
2857 
2858 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2859 			REG_WR_IND(sc, offset, fw->text[j]);
2860 	}
2861 
2862 	/* Load the Data area. */
2863 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2864 	if (fw->data) {
2865 		int j;
2866 
2867 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2868 			REG_WR_IND(sc, offset, fw->data[j]);
2869 	}
2870 
2871 	/* Load the SBSS area. */
2872 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2873 	if (fw->sbss) {
2874 		int j;
2875 
2876 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2877 			REG_WR_IND(sc, offset, fw->sbss[j]);
2878 	}
2879 
2880 	/* Load the BSS area. */
2881 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2882 	if (fw->bss) {
2883 		int j;
2884 
2885 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2886 			REG_WR_IND(sc, offset, fw->bss[j]);
2887 	}
2888 
2889 	/* Load the Read-Only area. */
2890 	offset = cpu_reg->spad_base +
2891 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2892 	if (fw->rodata) {
2893 		int j;
2894 
2895 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2896 			REG_WR_IND(sc, offset, fw->rodata[j]);
2897 	}
2898 
2899 	/* Clear the pre-fetch instruction. */
2900 	REG_WR_IND(sc, cpu_reg->inst, 0);
2901 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2902 
2903 	/* Start the CPU. */
2904 	val = REG_RD_IND(sc, cpu_reg->mode);
2905 	val &= ~cpu_reg->mode_value_halt;
2906 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2907 	REG_WR_IND(sc, cpu_reg->mode, val);
2908 }
2909 
2910 /****************************************************************************/
2911 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2912 /*                                                                          */
2913 /* Loads the firmware for each CPU and starts the CPU.                      */
2914 /*                                                                          */
2915 /* Returns:                                                                 */
2916 /*   Nothing.                                                               */
2917 /****************************************************************************/
2918 void
2919 bnx_init_cpus(struct bnx_softc *sc)
2920 {
2921 	struct cpu_reg cpu_reg;
2922 	struct fw_info fw;
2923 
2924 	switch (BNX_CHIP_NUM(sc)) {
2925 	case BNX_CHIP_NUM_5709:
2926 		/* Initialize the RV2P processor. */
2927 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2928 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2929 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2930 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2931 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2932 		} else {
2933 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2934 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2935 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2936 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2937 		}
2938 
2939 		/* Initialize the RX Processor. */
2940 		cpu_reg.mode = BNX_RXP_CPU_MODE;
2941 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2942 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2943 		cpu_reg.state = BNX_RXP_CPU_STATE;
2944 		cpu_reg.state_value_clear = 0xffffff;
2945 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2946 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2947 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2948 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2949 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2950 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
2951 		cpu_reg.mips_view_base = 0x8000000;
2952 
2953 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2954 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2955 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2956 		fw.start_addr = bnx_RXP_b09FwStartAddr;
2957 
2958 		fw.text_addr = bnx_RXP_b09FwTextAddr;
2959 		fw.text_len = bnx_RXP_b09FwTextLen;
2960 		fw.text_index = 0;
2961 		fw.text = bnx_RXP_b09FwText;
2962 
2963 		fw.data_addr = bnx_RXP_b09FwDataAddr;
2964 		fw.data_len = bnx_RXP_b09FwDataLen;
2965 		fw.data_index = 0;
2966 		fw.data = bnx_RXP_b09FwData;
2967 
2968 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2969 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
2970 		fw.sbss_index = 0;
2971 		fw.sbss = bnx_RXP_b09FwSbss;
2972 
2973 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
2974 		fw.bss_len = bnx_RXP_b09FwBssLen;
2975 		fw.bss_index = 0;
2976 		fw.bss = bnx_RXP_b09FwBss;
2977 
2978 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2979 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
2980 		fw.rodata_index = 0;
2981 		fw.rodata = bnx_RXP_b09FwRodata;
2982 
2983 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2984 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2985 
2986 		/* Initialize the TX Processor. */
2987 		cpu_reg.mode = BNX_TXP_CPU_MODE;
2988 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2989 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2990 		cpu_reg.state = BNX_TXP_CPU_STATE;
2991 		cpu_reg.state_value_clear = 0xffffff;
2992 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2993 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2994 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2995 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2996 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2997 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
2998 		cpu_reg.mips_view_base = 0x8000000;
2999 
3000 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
3001 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
3002 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
3003 		fw.start_addr = bnx_TXP_b09FwStartAddr;
3004 
3005 		fw.text_addr = bnx_TXP_b09FwTextAddr;
3006 		fw.text_len = bnx_TXP_b09FwTextLen;
3007 		fw.text_index = 0;
3008 		fw.text = bnx_TXP_b09FwText;
3009 
3010 		fw.data_addr = bnx_TXP_b09FwDataAddr;
3011 		fw.data_len = bnx_TXP_b09FwDataLen;
3012 		fw.data_index = 0;
3013 		fw.data = bnx_TXP_b09FwData;
3014 
3015 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3016 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
3017 		fw.sbss_index = 0;
3018 		fw.sbss = bnx_TXP_b09FwSbss;
3019 
3020 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
3021 		fw.bss_len = bnx_TXP_b09FwBssLen;
3022 		fw.bss_index = 0;
3023 		fw.bss = bnx_TXP_b09FwBss;
3024 
3025 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3026 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
3027 		fw.rodata_index = 0;
3028 		fw.rodata = bnx_TXP_b09FwRodata;
3029 
3030 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3031 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3032 
3033 		/* Initialize the TX Patch-up Processor. */
3034 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3035 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3036 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3037 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3038 		cpu_reg.state_value_clear = 0xffffff;
3039 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3040 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3041 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3042 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3043 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3044 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3045 		cpu_reg.mips_view_base = 0x8000000;
3046 
3047 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3048 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3049 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3050 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
3051 
3052 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
3053 		fw.text_len = bnx_TPAT_b09FwTextLen;
3054 		fw.text_index = 0;
3055 		fw.text = bnx_TPAT_b09FwText;
3056 
3057 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
3058 		fw.data_len = bnx_TPAT_b09FwDataLen;
3059 		fw.data_index = 0;
3060 		fw.data = bnx_TPAT_b09FwData;
3061 
3062 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3063 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3064 		fw.sbss_index = 0;
3065 		fw.sbss = bnx_TPAT_b09FwSbss;
3066 
3067 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3068 		fw.bss_len = bnx_TPAT_b09FwBssLen;
3069 		fw.bss_index = 0;
3070 		fw.bss = bnx_TPAT_b09FwBss;
3071 
3072 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3073 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3074 		fw.rodata_index = 0;
3075 		fw.rodata = bnx_TPAT_b09FwRodata;
3076 
3077 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3078 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3079 
3080 		/* Initialize the Completion Processor. */
3081 		cpu_reg.mode = BNX_COM_CPU_MODE;
3082 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3083 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3084 		cpu_reg.state = BNX_COM_CPU_STATE;
3085 		cpu_reg.state_value_clear = 0xffffff;
3086 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3087 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3088 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3089 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3090 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3091 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3092 		cpu_reg.mips_view_base = 0x8000000;
3093 
3094 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
3095 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3096 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
3097 		fw.start_addr = bnx_COM_b09FwStartAddr;
3098 
3099 		fw.text_addr = bnx_COM_b09FwTextAddr;
3100 		fw.text_len = bnx_COM_b09FwTextLen;
3101 		fw.text_index = 0;
3102 		fw.text = bnx_COM_b09FwText;
3103 
3104 		fw.data_addr = bnx_COM_b09FwDataAddr;
3105 		fw.data_len = bnx_COM_b09FwDataLen;
3106 		fw.data_index = 0;
3107 		fw.data = bnx_COM_b09FwData;
3108 
3109 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3110 		fw.sbss_len = bnx_COM_b09FwSbssLen;
3111 		fw.sbss_index = 0;
3112 		fw.sbss = bnx_COM_b09FwSbss;
3113 
3114 		fw.bss_addr = bnx_COM_b09FwBssAddr;
3115 		fw.bss_len = bnx_COM_b09FwBssLen;
3116 		fw.bss_index = 0;
3117 		fw.bss = bnx_COM_b09FwBss;
3118 
3119 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3120 		fw.rodata_len = bnx_COM_b09FwRodataLen;
3121 		fw.rodata_index = 0;
3122 		fw.rodata = bnx_COM_b09FwRodata;
3123 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3124 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3125 		break;
3126 	default:
3127 		/* Initialize the RV2P processor. */
3128 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3129 		    RV2P_PROC1);
3130 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3131 		    RV2P_PROC2);
3132 
3133 		/* Initialize the RX Processor. */
3134 		cpu_reg.mode = BNX_RXP_CPU_MODE;
3135 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3136 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3137 		cpu_reg.state = BNX_RXP_CPU_STATE;
3138 		cpu_reg.state_value_clear = 0xffffff;
3139 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3140 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3141 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3142 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3143 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3144 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
3145 		cpu_reg.mips_view_base = 0x8000000;
3146 
3147 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3148 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3149 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3150 		fw.start_addr = bnx_RXP_b06FwStartAddr;
3151 
3152 		fw.text_addr = bnx_RXP_b06FwTextAddr;
3153 		fw.text_len = bnx_RXP_b06FwTextLen;
3154 		fw.text_index = 0;
3155 		fw.text = bnx_RXP_b06FwText;
3156 
3157 		fw.data_addr = bnx_RXP_b06FwDataAddr;
3158 		fw.data_len = bnx_RXP_b06FwDataLen;
3159 		fw.data_index = 0;
3160 		fw.data = bnx_RXP_b06FwData;
3161 
3162 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3163 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
3164 		fw.sbss_index = 0;
3165 		fw.sbss = bnx_RXP_b06FwSbss;
3166 
3167 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
3168 		fw.bss_len = bnx_RXP_b06FwBssLen;
3169 		fw.bss_index = 0;
3170 		fw.bss = bnx_RXP_b06FwBss;
3171 
3172 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3173 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
3174 		fw.rodata_index = 0;
3175 		fw.rodata = bnx_RXP_b06FwRodata;
3176 
3177 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3178 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3179 
3180 		/* Initialize the TX Processor. */
3181 		cpu_reg.mode = BNX_TXP_CPU_MODE;
3182 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3183 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3184 		cpu_reg.state = BNX_TXP_CPU_STATE;
3185 		cpu_reg.state_value_clear = 0xffffff;
3186 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3187 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3188 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3189 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3190 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3191 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
3192 		cpu_reg.mips_view_base = 0x8000000;
3193 
3194 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3195 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3196 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3197 		fw.start_addr = bnx_TXP_b06FwStartAddr;
3198 
3199 		fw.text_addr = bnx_TXP_b06FwTextAddr;
3200 		fw.text_len = bnx_TXP_b06FwTextLen;
3201 		fw.text_index = 0;
3202 		fw.text = bnx_TXP_b06FwText;
3203 
3204 		fw.data_addr = bnx_TXP_b06FwDataAddr;
3205 		fw.data_len = bnx_TXP_b06FwDataLen;
3206 		fw.data_index = 0;
3207 		fw.data = bnx_TXP_b06FwData;
3208 
3209 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3210 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
3211 		fw.sbss_index = 0;
3212 		fw.sbss = bnx_TXP_b06FwSbss;
3213 
3214 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
3215 		fw.bss_len = bnx_TXP_b06FwBssLen;
3216 		fw.bss_index = 0;
3217 		fw.bss = bnx_TXP_b06FwBss;
3218 
3219 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3220 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
3221 		fw.rodata_index = 0;
3222 		fw.rodata = bnx_TXP_b06FwRodata;
3223 
3224 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3225 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3226 
3227 		/* Initialize the TX Patch-up Processor. */
3228 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
3229 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3230 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3231 		cpu_reg.state = BNX_TPAT_CPU_STATE;
3232 		cpu_reg.state_value_clear = 0xffffff;
3233 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3234 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3235 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3236 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3237 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3238 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3239 		cpu_reg.mips_view_base = 0x8000000;
3240 
3241 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3242 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3243 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3244 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
3245 
3246 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
3247 		fw.text_len = bnx_TPAT_b06FwTextLen;
3248 		fw.text_index = 0;
3249 		fw.text = bnx_TPAT_b06FwText;
3250 
3251 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
3252 		fw.data_len = bnx_TPAT_b06FwDataLen;
3253 		fw.data_index = 0;
3254 		fw.data = bnx_TPAT_b06FwData;
3255 
3256 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3257 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3258 		fw.sbss_index = 0;
3259 		fw.sbss = bnx_TPAT_b06FwSbss;
3260 
3261 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3262 		fw.bss_len = bnx_TPAT_b06FwBssLen;
3263 		fw.bss_index = 0;
3264 		fw.bss = bnx_TPAT_b06FwBss;
3265 
3266 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3267 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3268 		fw.rodata_index = 0;
3269 		fw.rodata = bnx_TPAT_b06FwRodata;
3270 
3271 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3272 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3273 
3274 		/* Initialize the Completion Processor. */
3275 		cpu_reg.mode = BNX_COM_CPU_MODE;
3276 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3277 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3278 		cpu_reg.state = BNX_COM_CPU_STATE;
3279 		cpu_reg.state_value_clear = 0xffffff;
3280 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3281 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3282 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3283 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3284 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3285 		cpu_reg.spad_base = BNX_COM_SCRATCH;
3286 		cpu_reg.mips_view_base = 0x8000000;
3287 
3288 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
3289 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3290 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
3291 		fw.start_addr = bnx_COM_b06FwStartAddr;
3292 
3293 		fw.text_addr = bnx_COM_b06FwTextAddr;
3294 		fw.text_len = bnx_COM_b06FwTextLen;
3295 		fw.text_index = 0;
3296 		fw.text = bnx_COM_b06FwText;
3297 
3298 		fw.data_addr = bnx_COM_b06FwDataAddr;
3299 		fw.data_len = bnx_COM_b06FwDataLen;
3300 		fw.data_index = 0;
3301 		fw.data = bnx_COM_b06FwData;
3302 
3303 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3304 		fw.sbss_len = bnx_COM_b06FwSbssLen;
3305 		fw.sbss_index = 0;
3306 		fw.sbss = bnx_COM_b06FwSbss;
3307 
3308 		fw.bss_addr = bnx_COM_b06FwBssAddr;
3309 		fw.bss_len = bnx_COM_b06FwBssLen;
3310 		fw.bss_index = 0;
3311 		fw.bss = bnx_COM_b06FwBss;
3312 
3313 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3314 		fw.rodata_len = bnx_COM_b06FwRodataLen;
3315 		fw.rodata_index = 0;
3316 		fw.rodata = bnx_COM_b06FwRodata;
3317 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3318 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3319 		break;
3320 	}
3321 }
3322 
3323 /****************************************************************************/
3324 /* Initialize context memory.                                               */
3325 /*                                                                          */
3326 /* Clears the memory associated with each Context ID (CID).                 */
3327 /*                                                                          */
3328 /* Returns:                                                                 */
3329 /*   Nothing.                                                               */
3330 /****************************************************************************/
3331 void
3332 bnx_init_context(struct bnx_softc *sc)
3333 {
3334 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3335 		/* DRC: Replace this constant value with a #define. */
3336 		int i, retry_cnt = 10;
3337 		uint32_t val;
3338 
3339 		/*
3340 		 * BCM5709 context memory may be cached
3341 		 * in host memory so prepare the host memory
3342 		 * for access.
3343 		 */
3344 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3345 		    | (1 << 12);
3346 		val |= (BCM_PAGE_BITS - 8) << 16;
3347 		REG_WR(sc, BNX_CTX_COMMAND, val);
3348 
3349 		/* Wait for mem init command to complete. */
3350 		for (i = 0; i < retry_cnt; i++) {
3351 			val = REG_RD(sc, BNX_CTX_COMMAND);
3352 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3353 				break;
3354 			DELAY(2);
3355 		}
3356 
3357 		/* ToDo: Consider returning an error here. */
3358 
3359 		for (i = 0; i < sc->ctx_pages; i++) {
3360 			int j;
3361 
3362 			/* Set the physaddr of the context memory cache. */
3363 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3364 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3365 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3366 			val = (uint32_t)
3367 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3368 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3369 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3370 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3371 
3372 			/* Verify that the context memory write was successful. */
3373 			for (j = 0; j < retry_cnt; j++) {
3374 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3375 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3376 					break;
3377 				DELAY(5);
3378 			}
3379 
3380 			/* ToDo: Consider returning an error here. */
3381 		}
3382 	} else {
3383 		uint32_t vcid_addr, offset;
3384 
3385 		/*
3386 		 * For the 5706/5708, context memory is local to the
3387 		 * controller, so initialize the controller context memory.
3388 		 */
3389 
3390 		vcid_addr = GET_CID_ADDR(96);
3391 		while (vcid_addr) {
3392 
3393 			vcid_addr -= BNX_PHY_CTX_SIZE;
3394 
3395 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3396 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3397 
3398 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3399 			     offset += 4)
3400 				CTX_WR(sc, 0x00, offset, 0);
3401 
3402 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3403 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3404 		}
3405 	}
3406 }
3407 
3408 /****************************************************************************/
3409 /* Fetch the permanent MAC address of the controller.                       */
3410 /*                                                                          */
3411 /* Returns:                                                                 */
3412 /*   Nothing.                                                               */
3413 /****************************************************************************/
3414 void
3415 bnx_get_mac_addr(struct bnx_softc *sc)
3416 {
3417 	uint32_t		mac_lo = 0, mac_hi = 0;
3418 
3419 	/*
3420 	 * The NetXtreme II bootcode populates various NIC
3421 	 * power-on and runtime configuration items in a
3422 	 * shared memory area.  The factory configured MAC
3423 	 * address is available from both NVRAM and the
3424 	 * shared memory area so we'll read the value from
3425 	 * shared memory for speed.
3426 	 */
3427 
3428 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3429 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3430 
3431 	if ((mac_lo == 0) && (mac_hi == 0)) {
3432 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3433 		    __FILE__, __LINE__);
3434 	} else {
3435 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
3436 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
3437 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
3438 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
3439 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
3440 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
3441 	}
3442 
3443 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3444 	    "%s\n", ether_sprintf(sc->eaddr));
3445 }
3446 
3447 /****************************************************************************/
3448 /* Program the MAC address.                                                 */
3449 /*                                                                          */
3450 /* Returns:                                                                 */
3451 /*   Nothing.                                                               */
3452 /****************************************************************************/
3453 void
3454 bnx_set_mac_addr(struct bnx_softc *sc)
3455 {
3456 	uint32_t		val;
3457 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3458 
3459 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3460 	    "%s\n", ether_sprintf(sc->eaddr));
3461 
3462 	val = (mac_addr[0] << 8) | mac_addr[1];
3463 
3464 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3465 
3466 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3467 		(mac_addr[4] << 8) | mac_addr[5];
3468 
3469 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3470 }
3471 
3472 /****************************************************************************/
3473 /* Stop the controller.                                                     */
3474 /*                                                                          */
3475 /* Returns:                                                                 */
3476 /*   Nothing.                                                               */
3477 /****************************************************************************/
3478 void
3479 bnx_stop(struct ifnet *ifp, int disable)
3480 {
3481 	struct bnx_softc *sc = ifp->if_softc;
3482 
3483 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3484 
3485 	if (disable) {
3486 		sc->bnx_detaching = 1;
3487 		callout_halt(&sc->bnx_timeout, NULL);
3488 	} else
3489 		callout_stop(&sc->bnx_timeout);
3490 
3491 	mii_down(&sc->bnx_mii);
3492 
3493 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3494 
3495 	/* Disable the transmit/receive blocks. */
3496 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3497 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3498 	DELAY(20);
3499 
3500 	bnx_disable_intr(sc);
3501 
3502 	/* Tell firmware that the driver is going away. */
3503 	if (disable)
3504 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3505 	else
3506 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3507 
3508 	/* Free RX buffers. */
3509 	bnx_free_rx_chain(sc);
3510 
3511 	/* Free TX buffers. */
3512 	bnx_free_tx_chain(sc);
3513 
3514 	ifp->if_timer = 0;
3515 
3516 	sc->bnx_link = 0;
3517 
3518 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3519 
3520 	bnx_mgmt_init(sc);
3521 }
3522 
3523 int
3524 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3525 {
3526 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3527 	uint32_t		val;
3528 	int			i, rc = 0;
3529 
3530 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3531 
3532 	/* Wait for pending PCI transactions to complete. */
3533 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3534 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3535 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3536 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3537 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3538 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3539 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3540 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3541 		DELAY(5);
3542 	} else {
3543 		/* Disable DMA */
3544 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3545 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3546 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3547 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3548 
3549 		for (i = 0; i < 100; i++) {
3550 			delay(1 * 1000);
3551 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3552 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3553 				break;
3554 		}
3555 	}
3556 
3557 	/* Assume bootcode is running. */
3558 	sc->bnx_fw_timed_out = 0;
3559 
3560 	/* Give the firmware a chance to prepare for the reset. */
3561 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3562 	if (rc)
3563 		goto bnx_reset_exit;
3564 
3565 	/* Set a firmware reminder that this is a soft reset. */
3566 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3567 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
3568 
3569 	/* Dummy read to force the chip to complete all current transactions. */
3570 	val = REG_RD(sc, BNX_MISC_ID);
3571 
3572 	/* Chip reset. */
3573 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3574 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3575 		REG_RD(sc, BNX_MISC_COMMAND);
3576 		DELAY(5);
3577 
3578 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3579 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3580 
3581 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3582 		    val);
3583 	} else {
3584 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3585 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3586 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3587 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3588 
3589 		/* Allow up to 30us for reset to complete. */
3590 		for (i = 0; i < 10; i++) {
3591 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3592 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3593 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3594 				break;
3595 			}
3596 			DELAY(10);
3597 		}
3598 
3599 		/* Check that reset completed successfully. */
3600 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3601 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3602 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3603 			    __FILE__, __LINE__);
3604 			rc = EBUSY;
3605 			goto bnx_reset_exit;
3606 		}
3607 	}
3608 
3609 	/* Make sure byte swapping is properly configured. */
3610 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3611 	if (val != 0x01020304) {
3612 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3613 		    __FILE__, __LINE__);
3614 		rc = ENODEV;
3615 		goto bnx_reset_exit;
3616 	}
3617 
3618 	/* Just completed a reset, assume that firmware is running again. */
3619 	sc->bnx_fw_timed_out = 0;
3620 
3621 	/* Wait for the firmware to finish its initialization. */
3622 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3623 	if (rc)
3624 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3625 		    "initialization!\n", __FILE__, __LINE__);
3626 
3627 bnx_reset_exit:
3628 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3629 
3630 	return rc;
3631 }
3632 
3633 int
3634 bnx_chipinit(struct bnx_softc *sc)
3635 {
3636 	struct pci_attach_args	*pa = &(sc->bnx_pa);
3637 	uint32_t		val;
3638 	int			rc = 0;
3639 
3640 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3641 
3642 	/* Make sure the interrupt is not active. */
3643 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3644 
3645 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
3646 	/* channels and PCI clock compensation delay.                      */
3647 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3648 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
3649 #if BYTE_ORDER == BIG_ENDIAN
3650 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3651 #endif
3652 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3653 	    DMA_READ_CHANS << 12 |
3654 	    DMA_WRITE_CHANS << 16;
3655 
3656 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3657 
3658 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3659 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3660 
3661 	/*
3662 	 * This setting resolves a problem observed on certain Intel PCI
3663 	 * chipsets that cannot handle multiple outstanding DMA operations.
3664 	 * See errata E9_5706A1_65.
3665 	 */
3666 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3667 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3668 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
3669 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3670 
3671 	REG_WR(sc, BNX_DMA_CONFIG, val);
3672 
3673 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3674 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
3675 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3676 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3677 		    val & ~0x20000);
3678 	}
3679 
3680 	/* Enable the RX_V2P and Context state machines before access. */
3681 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3682 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3683 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3684 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3685 
3686 	/* Initialize context mapping and zero out the quick contexts. */
3687 	bnx_init_context(sc);
3688 
3689 	/* Initialize the on-boards CPUs */
3690 	bnx_init_cpus(sc);
3691 
3692 	/* Enable management frames (NC-SI) to flow to the MCP. */
3693 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3694 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3695 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3696 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3697 	}
3698 
3699 	/* Prepare NVRAM for access. */
3700 	if (bnx_init_nvram(sc)) {
3701 		rc = ENODEV;
3702 		goto bnx_chipinit_exit;
3703 	}
3704 
3705 	/* Set the kernel bypass block size */
3706 	val = REG_RD(sc, BNX_MQ_CONFIG);
3707 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3708 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3709 
3710 	/* Enable bins used on the 5709. */
3711 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3712 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3713 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3714 			val |= BNX_MQ_CONFIG_HALT_DIS;
3715 	}
3716 
3717 	REG_WR(sc, BNX_MQ_CONFIG, val);
3718 
3719 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3720 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3721 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3722 
3723 	val = (BCM_PAGE_BITS - 8) << 24;
3724 	REG_WR(sc, BNX_RV2P_CONFIG, val);
3725 
3726 	/* Configure page size. */
3727 	val = REG_RD(sc, BNX_TBDR_CONFIG);
3728 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3729 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3730 	REG_WR(sc, BNX_TBDR_CONFIG, val);
3731 
3732 #if 0
3733 	/* Set the perfect match control register to default. */
3734 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3735 #endif
3736 
3737 bnx_chipinit_exit:
3738 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3739 
3740 	return rc;
3741 }
3742 
3743 /****************************************************************************/
3744 /* Initialize the controller in preparation to send/receive traffic.        */
3745 /*                                                                          */
3746 /* Returns:                                                                 */
3747 /*   0 for success, positive value for failure.                             */
3748 /****************************************************************************/
3749 int
3750 bnx_blockinit(struct bnx_softc *sc)
3751 {
3752 	uint32_t		reg, val;
3753 	int			rc = 0;
3754 
3755 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3756 
3757 	/* Load the hardware default MAC address. */
3758 	bnx_set_mac_addr(sc);
3759 
3760 	/* Set the Ethernet backoff seed value */
3761 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3762 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3763 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3764 
3765 	sc->last_status_idx = 0;
3766 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3767 
3768 	/* Set up link change interrupt generation. */
3769 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3770 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3771 
3772 	/* Program the physical address of the status block. */
3773 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3774 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3775 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3776 
3777 	/* Program the physical address of the statistics block. */
3778 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3779 	    (uint32_t)(sc->stats_block_paddr));
3780 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3781 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3782 
3783 	/* Program various host coalescing parameters. */
3784 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3785 	    << 16) | sc->bnx_tx_quick_cons_trip);
3786 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3787 	    << 16) | sc->bnx_rx_quick_cons_trip);
3788 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3789 	    sc->bnx_comp_prod_trip);
3790 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3791 	    sc->bnx_tx_ticks);
3792 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3793 	    sc->bnx_rx_ticks);
3794 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3795 	    sc->bnx_com_ticks);
3796 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3797 	    sc->bnx_cmd_ticks);
3798 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3799 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
3800 	REG_WR(sc, BNX_HC_CONFIG,
3801 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3802 	    BNX_HC_CONFIG_COLLECT_STATS));
3803 
3804 	/* Clear the internal statistics counters. */
3805 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3806 
3807 	/* Verify that bootcode is running. */
3808 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3809 
3810 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3811 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3812 	    __FILE__, __LINE__); reg = 0);
3813 
3814 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3815 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
3816 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3817 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3818 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3819 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3820 		rc = ENODEV;
3821 		goto bnx_blockinit_exit;
3822 	}
3823 
3824 	/* Enable DMA */
3825 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3826 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3827 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3828 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3829 	}
3830 
3831 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3832 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3833 
3834 	/* Disable management frames (NC-SI) from flowing to the MCP. */
3835 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3836 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3837 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3838 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3839 	}
3840 
3841 	/* Enable all remaining blocks in the MAC. */
3842 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3843 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3844 		    BNX_MISC_ENABLE_DEFAULT_XI);
3845 	} else
3846 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3847 
3848 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3849 	DELAY(20);
3850 
3851 bnx_blockinit_exit:
3852 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3853 
3854 	return rc;
3855 }
3856 
3857 static int
3858 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3859     uint16_t *chain_prod, uint32_t *prod_bseq)
3860 {
3861 	bus_dmamap_t		map;
3862 	struct rx_bd		*rxbd;
3863 	uint32_t		addr;
3864 	int i;
3865 #ifdef BNX_DEBUG
3866 	uint16_t debug_chain_prod =	*chain_prod;
3867 #endif
3868 	uint16_t first_chain_prod;
3869 
3870 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3871 
3872 	/* Map the mbuf cluster into device memory. */
3873 	map = sc->rx_mbuf_map[*chain_prod];
3874 	first_chain_prod = *chain_prod;
3875 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3876 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3877 		    __FILE__, __LINE__);
3878 
3879 		m_freem(m_new);
3880 
3881 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3882 
3883 		return ENOBUFS;
3884 	}
3885 	/* Make sure there is room in the receive chain. */
3886 	if (map->dm_nsegs > sc->free_rx_bd) {
3887 		bus_dmamap_unload(sc->bnx_dmatag, map);
3888 		m_freem(m_new);
3889 		return EFBIG;
3890 	}
3891 #ifdef BNX_DEBUG
3892 	/* Track the distribution of buffer segments. */
3893 	sc->rx_mbuf_segs[map->dm_nsegs]++;
3894 #endif
3895 
3896 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3897 	    BUS_DMASYNC_PREREAD);
3898 
3899 	/* Update some debug statistics counters */
3900 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3901 	    sc->rx_low_watermark = sc->free_rx_bd);
3902 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3903 
3904 	/*
3905 	 * Setup the rx_bd for the first segment
3906 	 */
3907 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3908 
3909 	addr = (uint32_t)map->dm_segs[0].ds_addr;
3910 	rxbd->rx_bd_haddr_lo = addr;
3911 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3912 	rxbd->rx_bd_haddr_hi = addr;
3913 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3914 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3915 	*prod_bseq += map->dm_segs[0].ds_len;
3916 	bus_dmamap_sync(sc->bnx_dmatag,
3917 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3918 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3919 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3920 
3921 	for (i = 1; i < map->dm_nsegs; i++) {
3922 		*prod = NEXT_RX_BD(*prod);
3923 		*chain_prod = RX_CHAIN_IDX(*prod);
3924 
3925 		rxbd =
3926 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3927 
3928 		addr = (uint32_t)map->dm_segs[i].ds_addr;
3929 		rxbd->rx_bd_haddr_lo = addr;
3930 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3931 		rxbd->rx_bd_haddr_hi = addr;
3932 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3933 		rxbd->rx_bd_flags = 0;
3934 		*prod_bseq += map->dm_segs[i].ds_len;
3935 		bus_dmamap_sync(sc->bnx_dmatag,
3936 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3937 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3938 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3939 	}
3940 
3941 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3942 	bus_dmamap_sync(sc->bnx_dmatag,
3943 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3944 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3945 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3946 
3947 	/*
3948 	 * Save the mbuf, adjust the map pointer (swap map for first and
3949 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3950 	 * and update our counter.
3951 	 */
3952 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3953 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3954 	sc->rx_mbuf_map[*chain_prod] = map;
3955 	sc->free_rx_bd -= map->dm_nsegs;
3956 
3957 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3958 	    map->dm_nsegs));
3959 	*prod = NEXT_RX_BD(*prod);
3960 	*chain_prod = RX_CHAIN_IDX(*prod);
3961 
3962 	return 0;
3963 }
3964 
3965 /****************************************************************************/
3966 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3967 /*                                                                          */
3968 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3969 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3970 /* necessary.                                                               */
3971 /*                                                                          */
3972 /* Returns:                                                                 */
3973 /*   0 for success, positive value for failure.                             */
3974 /****************************************************************************/
3975 int
3976 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3977     uint16_t *chain_prod, uint32_t *prod_bseq)
3978 {
3979 	struct mbuf		*m_new = NULL;
3980 	int			rc = 0;
3981 	uint16_t min_free_bd;
3982 
3983 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3984 	    __func__);
3985 
3986 	/* Make sure the inputs are valid. */
3987 	DBRUNIF((*chain_prod > MAX_RX_BD),
3988 	    aprint_error_dev(sc->bnx_dev,
3989 		"RX producer out of range: 0x%04X > 0x%04X\n",
3990 		*chain_prod, (uint16_t)MAX_RX_BD));
3991 
3992 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3993 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3994 	    *prod_bseq);
3995 
3996 	/* try to get in as many mbufs as possible */
3997 	if (sc->mbuf_alloc_size == MCLBYTES)
3998 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3999 	else
4000 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
4001 	while (sc->free_rx_bd >= min_free_bd) {
4002 		/* Simulate an mbuf allocation failure. */
4003 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4004 		    aprint_error_dev(sc->bnx_dev,
4005 		    "Simulating mbuf allocation failure.\n");
4006 			sc->mbuf_sim_alloc_failed++;
4007 			rc = ENOBUFS;
4008 			goto bnx_get_buf_exit);
4009 
4010 		/* This is a new mbuf allocation. */
4011 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4012 		if (m_new == NULL) {
4013 			DBPRINT(sc, BNX_WARN,
4014 			    "%s(%d): RX mbuf header allocation failed!\n",
4015 			    __FILE__, __LINE__);
4016 
4017 			sc->mbuf_alloc_failed++;
4018 
4019 			rc = ENOBUFS;
4020 			goto bnx_get_buf_exit;
4021 		}
4022 
4023 		DBRUNIF(1, sc->rx_mbuf_alloc++);
4024 
4025 		/* Simulate an mbuf cluster allocation failure. */
4026 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4027 			m_freem(m_new);
4028 			sc->rx_mbuf_alloc--;
4029 			sc->mbuf_alloc_failed++;
4030 			sc->mbuf_sim_alloc_failed++;
4031 			rc = ENOBUFS;
4032 			goto bnx_get_buf_exit);
4033 
4034 		if (sc->mbuf_alloc_size == MCLBYTES)
4035 			MCLGET(m_new, M_DONTWAIT);
4036 		else
4037 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4038 			    M_DONTWAIT);
4039 		if (!(m_new->m_flags & M_EXT)) {
4040 			DBPRINT(sc, BNX_WARN,
4041 			    "%s(%d): RX mbuf chain allocation failed!\n",
4042 			    __FILE__, __LINE__);
4043 
4044 			m_freem(m_new);
4045 
4046 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4047 			sc->mbuf_alloc_failed++;
4048 
4049 			rc = ENOBUFS;
4050 			goto bnx_get_buf_exit;
4051 		}
4052 
4053 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4054 		if (rc != 0)
4055 			goto bnx_get_buf_exit;
4056 	}
4057 
4058 bnx_get_buf_exit:
4059 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4060 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4061 	    *chain_prod, *prod_bseq);
4062 
4063 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4064 	    __func__);
4065 
4066 	return rc;
4067 }
4068 
4069 void
4070 bnx_alloc_pkts(struct work * unused, void * arg)
4071 {
4072 	struct bnx_softc *sc = arg;
4073 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
4074 	struct bnx_pkt *pkt;
4075 	int i, s;
4076 
4077 	for (i = 0; i < 4; i++) { /* magic! */
4078 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4079 		if (pkt == NULL)
4080 			break;
4081 
4082 		if (bus_dmamap_create(sc->bnx_dmatag,
4083 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4084 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4085 		    &pkt->pkt_dmamap) != 0) {
4086 			pool_put(bnx_tx_pool, pkt);
4087 			break;
4088 		}
4089 
4090 		mutex_enter(&sc->tx_pkt_mtx);
4091 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4092 		sc->tx_pkt_count++;
4093 		mutex_exit(&sc->tx_pkt_mtx);
4094 	}
4095 
4096 	mutex_enter(&sc->tx_pkt_mtx);
4097 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4098 	mutex_exit(&sc->tx_pkt_mtx);
4099 
4100 	/* fire-up TX now that allocations have been done */
4101 	s = splnet();
4102 	CLR(ifp->if_flags, IFF_OACTIVE);
4103 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
4104 		bnx_start(ifp);
4105 	splx(s);
4106 }
4107 
4108 /****************************************************************************/
4109 /* Initialize the TX context memory.                                        */
4110 /*                                                                          */
4111 /* Returns:                                                                 */
4112 /*   Nothing                                                                */
4113 /****************************************************************************/
4114 void
4115 bnx_init_tx_context(struct bnx_softc *sc)
4116 {
4117 	uint32_t val;
4118 
4119 	/* Initialize the context ID for an L2 TX chain. */
4120 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4121 		/* Set the CID type to support an L2 connection. */
4122 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4123 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4124 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4125 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4126 
4127 		/* Point the hardware to the first page in the chain. */
4128 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4129 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4130 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4131 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4132 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
4133 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4134 	} else {
4135 		/* Set the CID type to support an L2 connection. */
4136 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4137 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4138 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4139 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4140 
4141 		/* Point the hardware to the first page in the chain. */
4142 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4143 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4144 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4145 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4146 	}
4147 }
4148 
4149 
4150 /****************************************************************************/
4151 /* Allocate memory and initialize the TX data structures.                   */
4152 /*                                                                          */
4153 /* Returns:                                                                 */
4154 /*   0 for success, positive value for failure.                             */
4155 /****************************************************************************/
4156 int
4157 bnx_init_tx_chain(struct bnx_softc *sc)
4158 {
4159 	struct tx_bd		*txbd;
4160 	uint32_t		addr;
4161 	int			i, rc = 0;
4162 
4163 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4164 
4165 	/* Set the initial TX producer/consumer indices. */
4166 	sc->tx_prod = 0;
4167 	sc->tx_cons = 0;
4168 	sc->tx_prod_bseq = 0;
4169 	sc->used_tx_bd = 0;
4170 	sc->max_tx_bd = USABLE_TX_BD;
4171 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4172 	DBRUNIF(1, sc->tx_full_count = 0);
4173 
4174 	/*
4175 	 * The NetXtreme II supports a linked-list structure called
4176 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
4177 	 * consists of a series of 1 or more chain pages, each of which
4178 	 * consists of a fixed number of BD entries.
4179 	 * The last BD entry on each page is a pointer to the next page
4180 	 * in the chain, and the last pointer in the BD chain
4181 	 * points back to the beginning of the chain.
4182 	 */
4183 
4184 	/* Set the TX next pointer chain entries. */
4185 	for (i = 0; i < TX_PAGES; i++) {
4186 		int j;
4187 
4188 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4189 
4190 		/* Check if we've reached the last page. */
4191 		if (i == (TX_PAGES - 1))
4192 			j = 0;
4193 		else
4194 			j = i + 1;
4195 
4196 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4197 		txbd->tx_bd_haddr_lo = addr;
4198 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4199 		txbd->tx_bd_haddr_hi = addr;
4200 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4201 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4202 	}
4203 
4204 	/*
4205 	 * Initialize the context ID for an L2 TX chain.
4206 	 */
4207 	bnx_init_tx_context(sc);
4208 
4209 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4210 
4211 	return rc;
4212 }
4213 
4214 /****************************************************************************/
4215 /* Free memory and clear the TX data structures.                            */
4216 /*                                                                          */
4217 /* Returns:                                                                 */
4218 /*   Nothing.                                                               */
4219 /****************************************************************************/
4220 void
4221 bnx_free_tx_chain(struct bnx_softc *sc)
4222 {
4223 	struct bnx_pkt		*pkt;
4224 	int			i;
4225 
4226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4227 
4228 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4229 	mutex_enter(&sc->tx_pkt_mtx);
4230 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4231 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4232 		mutex_exit(&sc->tx_pkt_mtx);
4233 
4234 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4235 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4236 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4237 
4238 		m_freem(pkt->pkt_mbuf);
4239 		DBRUNIF(1, sc->tx_mbuf_alloc--);
4240 
4241 		mutex_enter(&sc->tx_pkt_mtx);
4242 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4243 	}
4244 	mutex_exit(&sc->tx_pkt_mtx);
4245 
4246 	/* Clear each TX chain page. */
4247 	for (i = 0; i < TX_PAGES; i++) {
4248 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4249 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4250 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4251 	}
4252 
4253 	sc->used_tx_bd = 0;
4254 
4255 	/* Check if we lost any mbufs in the process. */
4256 	DBRUNIF((sc->tx_mbuf_alloc),
4257 	    aprint_error_dev(sc->bnx_dev,
4258 		"Memory leak! Lost %d mbufs from tx chain!\n",
4259 		sc->tx_mbuf_alloc));
4260 
4261 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4262 }
4263 
4264 /****************************************************************************/
4265 /* Initialize the RX context memory.                                        */
4266 /*                                                                          */
4267 /* Returns:                                                                 */
4268 /*   Nothing                                                                */
4269 /****************************************************************************/
4270 void
4271 bnx_init_rx_context(struct bnx_softc *sc)
4272 {
4273 	uint32_t val;
4274 
4275 	/* Initialize the context ID for an L2 RX chain. */
4276 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4277 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4278 
4279 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4280 		val |= 0x000000ff;
4281 
4282 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4283 
4284 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4285 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4286 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4287 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4288 	}
4289 
4290 	/* Point the hardware to the first page in the chain. */
4291 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4292 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4293 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4294 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4295 }
4296 
4297 /****************************************************************************/
4298 /* Allocate memory and initialize the RX data structures.                   */
4299 /*                                                                          */
4300 /* Returns:                                                                 */
4301 /*   0 for success, positive value for failure.                             */
4302 /****************************************************************************/
4303 int
4304 bnx_init_rx_chain(struct bnx_softc *sc)
4305 {
4306 	struct rx_bd		*rxbd;
4307 	int			i, rc = 0;
4308 	uint16_t		prod, chain_prod;
4309 	uint32_t		prod_bseq, addr;
4310 
4311 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4312 
4313 	/* Initialize the RX producer and consumer indices. */
4314 	sc->rx_prod = 0;
4315 	sc->rx_cons = 0;
4316 	sc->rx_prod_bseq = 0;
4317 	sc->free_rx_bd = USABLE_RX_BD;
4318 	sc->max_rx_bd = USABLE_RX_BD;
4319 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4320 	DBRUNIF(1, sc->rx_empty_count = 0);
4321 
4322 	/* Initialize the RX next pointer chain entries. */
4323 	for (i = 0; i < RX_PAGES; i++) {
4324 		int j;
4325 
4326 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4327 
4328 		/* Check if we've reached the last page. */
4329 		if (i == (RX_PAGES - 1))
4330 			j = 0;
4331 		else
4332 			j = i + 1;
4333 
4334 		/* Setup the chain page pointers. */
4335 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4336 		rxbd->rx_bd_haddr_hi = addr;
4337 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4338 		rxbd->rx_bd_haddr_lo = addr;
4339 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4340 		    0, BNX_RX_CHAIN_PAGE_SZ,
4341 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4342 	}
4343 
4344 	/* Allocate mbuf clusters for the rx_bd chain. */
4345 	prod = prod_bseq = 0;
4346 	chain_prod = RX_CHAIN_IDX(prod);
4347 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4348 		BNX_PRINTF(sc,
4349 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4350 	}
4351 
4352 	/* Save the RX chain producer index. */
4353 	sc->rx_prod = prod;
4354 	sc->rx_prod_bseq = prod_bseq;
4355 
4356 	for (i = 0; i < RX_PAGES; i++)
4357 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4358 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4359 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4360 
4361 	/* Tell the chip about the waiting rx_bd's. */
4362 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4363 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4364 
4365 	bnx_init_rx_context(sc);
4366 
4367 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4368 
4369 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4370 
4371 	return rc;
4372 }
4373 
4374 /****************************************************************************/
4375 /* Free memory and clear the RX data structures.                            */
4376 /*                                                                          */
4377 /* Returns:                                                                 */
4378 /*   Nothing.                                                               */
4379 /****************************************************************************/
4380 void
4381 bnx_free_rx_chain(struct bnx_softc *sc)
4382 {
4383 	int			i;
4384 
4385 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4386 
4387 	/* Free any mbufs still in the RX mbuf chain. */
4388 	for (i = 0; i < TOTAL_RX_BD; i++) {
4389 		if (sc->rx_mbuf_ptr[i] != NULL) {
4390 			if (sc->rx_mbuf_map[i] != NULL) {
4391 				bus_dmamap_sync(sc->bnx_dmatag,
4392 				    sc->rx_mbuf_map[i],	0,
4393 				    sc->rx_mbuf_map[i]->dm_mapsize,
4394 				    BUS_DMASYNC_POSTREAD);
4395 				bus_dmamap_unload(sc->bnx_dmatag,
4396 				    sc->rx_mbuf_map[i]);
4397 			}
4398 			m_freem(sc->rx_mbuf_ptr[i]);
4399 			sc->rx_mbuf_ptr[i] = NULL;
4400 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4401 		}
4402 	}
4403 
4404 	/* Clear each RX chain page. */
4405 	for (i = 0; i < RX_PAGES; i++)
4406 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4407 
4408 	sc->free_rx_bd = sc->max_rx_bd;
4409 
4410 	/* Check if we lost any mbufs in the process. */
4411 	DBRUNIF((sc->rx_mbuf_alloc),
4412 	    aprint_error_dev(sc->bnx_dev,
4413 		"Memory leak! Lost %d mbufs from rx chain!\n",
4414 		sc->rx_mbuf_alloc));
4415 
4416 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4417 }
4418 
4419 /****************************************************************************/
4420 /* Set media options.                                                       */
4421 /*                                                                          */
4422 /* Returns:                                                                 */
4423 /*   0 for success, positive value for failure.                             */
4424 /****************************************************************************/
4425 int
4426 bnx_ifmedia_upd(struct ifnet *ifp)
4427 {
4428 	struct bnx_softc	*sc;
4429 	struct mii_data		*mii;
4430 	int			rc = 0;
4431 
4432 	sc = ifp->if_softc;
4433 
4434 	mii = &sc->bnx_mii;
4435 	sc->bnx_link = 0;
4436 	if (mii->mii_instance) {
4437 		struct mii_softc *miisc;
4438 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4439 			mii_phy_reset(miisc);
4440 	}
4441 	mii_mediachg(mii);
4442 
4443 	return rc;
4444 }
4445 
4446 /****************************************************************************/
4447 /* Reports current media status.                                            */
4448 /*                                                                          */
4449 /* Returns:                                                                 */
4450 /*   Nothing.                                                               */
4451 /****************************************************************************/
4452 void
4453 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4454 {
4455 	struct bnx_softc	*sc;
4456 	struct mii_data		*mii;
4457 	int			s;
4458 
4459 	sc = ifp->if_softc;
4460 
4461 	s = splnet();
4462 
4463 	mii = &sc->bnx_mii;
4464 
4465 	mii_pollstat(mii);
4466 	ifmr->ifm_status = mii->mii_media_status;
4467 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4468 	    sc->bnx_flowflags;
4469 
4470 	splx(s);
4471 }
4472 
4473 /****************************************************************************/
4474 /* Handles PHY generated interrupt events.                                  */
4475 /*                                                                          */
4476 /* Returns:                                                                 */
4477 /*   Nothing.                                                               */
4478 /****************************************************************************/
4479 void
4480 bnx_phy_intr(struct bnx_softc *sc)
4481 {
4482 	uint32_t		new_link_state, old_link_state;
4483 
4484 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4485 	    BUS_DMASYNC_POSTREAD);
4486 	new_link_state = sc->status_block->status_attn_bits &
4487 	    STATUS_ATTN_BITS_LINK_STATE;
4488 	old_link_state = sc->status_block->status_attn_bits_ack &
4489 	    STATUS_ATTN_BITS_LINK_STATE;
4490 
4491 	/* Handle any changes if the link state has changed. */
4492 	if (new_link_state != old_link_state) {
4493 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4494 
4495 		sc->bnx_link = 0;
4496 		callout_stop(&sc->bnx_timeout);
4497 		bnx_tick(sc);
4498 
4499 		/* Update the status_attn_bits_ack field in the status block. */
4500 		if (new_link_state) {
4501 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4502 			    STATUS_ATTN_BITS_LINK_STATE);
4503 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4504 		} else {
4505 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4506 			    STATUS_ATTN_BITS_LINK_STATE);
4507 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4508 		}
4509 	}
4510 
4511 	/* Acknowledge the link change interrupt. */
4512 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4513 }
4514 
4515 /****************************************************************************/
4516 /* Handles received frame interrupt events.                                 */
4517 /*                                                                          */
4518 /* Returns:                                                                 */
4519 /*   Nothing.                                                               */
4520 /****************************************************************************/
4521 void
4522 bnx_rx_intr(struct bnx_softc *sc)
4523 {
4524 	struct status_block	*sblk = sc->status_block;
4525 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4526 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
4527 	uint16_t		sw_prod, sw_chain_prod;
4528 	uint32_t		sw_prod_bseq;
4529 	struct l2_fhdr		*l2fhdr;
4530 	int			i;
4531 
4532 	DBRUNIF(1, sc->rx_interrupts++);
4533 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4534 	    BUS_DMASYNC_POSTREAD);
4535 
4536 	/* Prepare the RX chain pages to be accessed by the host CPU. */
4537 	for (i = 0; i < RX_PAGES; i++)
4538 		bus_dmamap_sync(sc->bnx_dmatag,
4539 		    sc->rx_bd_chain_map[i], 0,
4540 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4541 		    BUS_DMASYNC_POSTWRITE);
4542 
4543 	/* Get the hardware's view of the RX consumer index. */
4544 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4545 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4546 		hw_cons++;
4547 
4548 	/* Get working copies of the driver's view of the RX indices. */
4549 	sw_cons = sc->rx_cons;
4550 	sw_prod = sc->rx_prod;
4551 	sw_prod_bseq = sc->rx_prod_bseq;
4552 
4553 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4554 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4555 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
4556 
4557 	/* Prevent speculative reads from getting ahead of the status block. */
4558 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4559 	    BUS_SPACE_BARRIER_READ);
4560 
4561 	/* Update some debug statistics counters */
4562 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4563 	    sc->rx_low_watermark = sc->free_rx_bd);
4564 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4565 
4566 	/*
4567 	 * Scan through the receive chain as long
4568 	 * as there is work to do.
4569 	 */
4570 	while (sw_cons != hw_cons) {
4571 		struct mbuf *m;
4572 		struct rx_bd *rxbd __diagused;
4573 		unsigned int len;
4574 		uint32_t status;
4575 
4576 		/* Convert the producer/consumer indices to an actual
4577 		 * rx_bd index.
4578 		 */
4579 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4580 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4581 
4582 		/* Get the used rx_bd. */
4583 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4584 		sc->free_rx_bd++;
4585 
4586 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4587 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4588 
4589 		/* The mbuf is stored with the last rx_bd entry of a packet. */
4590 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4591 #ifdef DIAGNOSTIC
4592 			/* Validate that this is the last rx_bd. */
4593 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4594 			    printf("%s: Unexpected mbuf found in "
4595 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4596 				sw_chain_cons);
4597 			}
4598 #endif
4599 
4600 			/* DRC - ToDo: If the received packet is small, say
4601 			 *             less than 128 bytes, allocate a new mbuf
4602 			 *             here, copy the data to that mbuf, and
4603 			 *             recycle the mapped jumbo frame.
4604 			 */
4605 
4606 			/* Unmap the mbuf from DMA space. */
4607 #ifdef DIAGNOSTIC
4608 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4609 				printf("invalid map sw_cons 0x%x "
4610 				"sw_prod 0x%x "
4611 				"sw_chain_cons 0x%x "
4612 				"sw_chain_prod 0x%x "
4613 				"hw_cons 0x%x "
4614 				"TOTAL_RX_BD_PER_PAGE 0x%x "
4615 				"TOTAL_RX_BD 0x%x\n",
4616 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4617 				hw_cons,
4618 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4619 			}
4620 #endif
4621 			bus_dmamap_sync(sc->bnx_dmatag,
4622 			    sc->rx_mbuf_map[sw_chain_cons], 0,
4623 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4624 			    BUS_DMASYNC_POSTREAD);
4625 			bus_dmamap_unload(sc->bnx_dmatag,
4626 			    sc->rx_mbuf_map[sw_chain_cons]);
4627 
4628 			/* Remove the mbuf from the driver's chain. */
4629 			m = sc->rx_mbuf_ptr[sw_chain_cons];
4630 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4631 
4632 			/*
4633 			 * Frames received on the NetXteme II are prepended
4634 			 * with the l2_fhdr structure which provides status
4635 			 * information about the received frame (including
4636 			 * VLAN tags and checksum info) and are also
4637 			 * automatically adjusted to align the IP header
4638 			 * (i.e. two null bytes are inserted before the
4639 			 * Ethernet header).
4640 			 */
4641 			l2fhdr = mtod(m, struct l2_fhdr *);
4642 
4643 			len    = l2fhdr->l2_fhdr_pkt_len;
4644 			status = l2fhdr->l2_fhdr_status;
4645 
4646 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4647 			    aprint_error("Simulating l2_fhdr status error.\n");
4648 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
4649 
4650 			/* Watch for unusual sized frames. */
4651 			DBRUNIF(((len < BNX_MIN_MTU) ||
4652 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4653 			    aprint_error_dev(sc->bnx_dev,
4654 				"Unusual frame size found. "
4655 				"Min(%d), Actual(%d), Max(%d)\n",
4656 				(int)BNX_MIN_MTU, len,
4657 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4658 
4659 			bnx_dump_mbuf(sc, m);
4660 			bnx_breakpoint(sc));
4661 
4662 			len -= ETHER_CRC_LEN;
4663 
4664 			/* Check the received frame for errors. */
4665 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
4666 			    L2_FHDR_ERRORS_PHY_DECODE |
4667 			    L2_FHDR_ERRORS_ALIGNMENT |
4668 			    L2_FHDR_ERRORS_TOO_SHORT |
4669 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
4670 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4671 			    len >
4672 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4673 				if_statinc(ifp, if_ierrors);
4674 				DBRUNIF(1, sc->l2fhdr_status_errors++);
4675 
4676 				/* Reuse the mbuf for a new frame. */
4677 				if (bnx_add_buf(sc, m, &sw_prod,
4678 				    &sw_chain_prod, &sw_prod_bseq)) {
4679 					DBRUNIF(1, bnx_breakpoint(sc));
4680 					panic("%s: Can't reuse RX mbuf!\n",
4681 					    device_xname(sc->bnx_dev));
4682 				}
4683 				continue;
4684 			}
4685 
4686 			/*
4687 			 * Get a new mbuf for the rx_bd.   If no new
4688 			 * mbufs are available then reuse the current mbuf,
4689 			 * log an ierror on the interface, and generate
4690 			 * an error in the system log.
4691 			 */
4692 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4693 			    &sw_prod_bseq)) {
4694 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4695 				    "Failed to allocate "
4696 				    "new mbuf, incoming frame dropped!\n"));
4697 
4698 				if_statinc(ifp, if_ierrors);
4699 
4700 				/* Try and reuse the exisitng mbuf. */
4701 				if (bnx_add_buf(sc, m, &sw_prod,
4702 				    &sw_chain_prod, &sw_prod_bseq)) {
4703 					DBRUNIF(1, bnx_breakpoint(sc));
4704 					panic("%s: Double mbuf allocation "
4705 					    "failure!",
4706 					    device_xname(sc->bnx_dev));
4707 				}
4708 				continue;
4709 			}
4710 
4711 			/* Skip over the l2_fhdr when passing the data up
4712 			 * the stack.
4713 			 */
4714 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4715 
4716 			/* Adjust the pckt length to match the received data. */
4717 			m->m_pkthdr.len = m->m_len = len;
4718 
4719 			/* Send the packet to the appropriate interface. */
4720 			m_set_rcvif(m, ifp);
4721 
4722 			DBRUN(BNX_VERBOSE_RECV,
4723 			    struct ether_header *eh;
4724 			    eh = mtod(m, struct ether_header *);
4725 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4726 			    __func__, ether_sprintf(eh->ether_dhost),
4727 			    ether_sprintf(eh->ether_shost),
4728 			    htons(eh->ether_type)));
4729 
4730 			/* Validate the checksum. */
4731 
4732 			/* Check for an IP datagram. */
4733 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4734 				/* Check if the IP checksum is valid. */
4735 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4736 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4737 #ifdef BNX_DEBUG
4738 				else
4739 					DBPRINT(sc, BNX_WARN_SEND,
4740 					    "%s(): Invalid IP checksum "
4741 						"= 0x%04X!\n",
4742 						__func__,
4743 						l2fhdr->l2_fhdr_ip_xsum
4744 						);
4745 #endif
4746 			}
4747 
4748 			/* Check for a valid TCP/UDP frame. */
4749 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4750 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
4751 				/* Check for a good TCP/UDP checksum. */
4752 				if ((status &
4753 				    (L2_FHDR_ERRORS_TCP_XSUM |
4754 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4755 					m->m_pkthdr.csum_flags |=
4756 					    M_CSUM_TCPv4 |
4757 					    M_CSUM_UDPv4;
4758 				} else {
4759 					DBPRINT(sc, BNX_WARN_SEND,
4760 					    "%s(): Invalid TCP/UDP "
4761 					    "checksum = 0x%04X!\n",
4762 					    __func__,
4763 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
4764 				}
4765 			}
4766 
4767 			/*
4768 			 * If we received a packet with a vlan tag,
4769 			 * attach that information to the packet.
4770 			 */
4771 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4772 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4773 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4774 			}
4775 
4776 			/* Pass the mbuf off to the upper layers. */
4777 
4778 			DBPRINT(sc, BNX_VERBOSE_RECV,
4779 			    "%s(): Passing received frame up.\n", __func__);
4780 			if_percpuq_enqueue(ifp->if_percpuq, m);
4781 			DBRUNIF(1, sc->rx_mbuf_alloc--);
4782 
4783 		}
4784 
4785 		sw_cons = NEXT_RX_BD(sw_cons);
4786 
4787 		/* Refresh hw_cons to see if there's new work */
4788 		if (sw_cons == hw_cons) {
4789 			hw_cons = sc->hw_rx_cons =
4790 			    sblk->status_rx_quick_consumer_index0;
4791 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4792 			    USABLE_RX_BD_PER_PAGE)
4793 				hw_cons++;
4794 		}
4795 
4796 		/* Prevent speculative reads from getting ahead of
4797 		 * the status block.
4798 		 */
4799 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4800 		    BUS_SPACE_BARRIER_READ);
4801 	}
4802 
4803 	for (i = 0; i < RX_PAGES; i++)
4804 		bus_dmamap_sync(sc->bnx_dmatag,
4805 		    sc->rx_bd_chain_map[i], 0,
4806 		    sc->rx_bd_chain_map[i]->dm_mapsize,
4807 		    BUS_DMASYNC_PREWRITE);
4808 
4809 	sc->rx_cons = sw_cons;
4810 	sc->rx_prod = sw_prod;
4811 	sc->rx_prod_bseq = sw_prod_bseq;
4812 
4813 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4814 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4815 
4816 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4817 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4818 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4819 }
4820 
4821 /****************************************************************************/
4822 /* Handles transmit completion interrupt events.                            */
4823 /*                                                                          */
4824 /* Returns:                                                                 */
4825 /*   Nothing.                                                               */
4826 /****************************************************************************/
4827 void
4828 bnx_tx_intr(struct bnx_softc *sc)
4829 {
4830 	struct status_block	*sblk = sc->status_block;
4831 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4832 	struct bnx_pkt		*pkt;
4833 	bus_dmamap_t		map;
4834 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4835 
4836 	DBRUNIF(1, sc->tx_interrupts++);
4837 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4838 	    BUS_DMASYNC_POSTREAD);
4839 
4840 	/* Get the hardware's view of the TX consumer index. */
4841 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4842 
4843 	/* Skip to the next entry if this is a chain page pointer. */
4844 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4845 		hw_tx_cons++;
4846 
4847 	sw_tx_cons = sc->tx_cons;
4848 
4849 	/* Prevent speculative reads from getting ahead of the status block. */
4850 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4851 	    BUS_SPACE_BARRIER_READ);
4852 
4853 	/* Cycle through any completed TX chain page entries. */
4854 	while (sw_tx_cons != hw_tx_cons) {
4855 #ifdef BNX_DEBUG
4856 		struct tx_bd *txbd = NULL;
4857 #endif
4858 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4859 
4860 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4861 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4862 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4863 
4864 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4865 		    aprint_error_dev(sc->bnx_dev,
4866 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
4867 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4868 
4869 		DBRUNIF(1, txbd = &sc->tx_bd_chain
4870 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4871 
4872 		DBRUNIF((txbd == NULL),
4873 		    aprint_error_dev(sc->bnx_dev,
4874 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4875 		    bnx_breakpoint(sc));
4876 
4877 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4878 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4879 
4880 
4881 		mutex_enter(&sc->tx_pkt_mtx);
4882 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4883 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4884 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4885 			mutex_exit(&sc->tx_pkt_mtx);
4886 			/*
4887 			 * Free the associated mbuf. Remember
4888 			 * that only the last tx_bd of a packet
4889 			 * has an mbuf pointer and DMA map.
4890 			 */
4891 			map = pkt->pkt_dmamap;
4892 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4893 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4894 			bus_dmamap_unload(sc->bnx_dmatag, map);
4895 
4896 			m_freem(pkt->pkt_mbuf);
4897 			DBRUNIF(1, sc->tx_mbuf_alloc--);
4898 
4899 			if_statinc(ifp, if_opackets);
4900 
4901 			mutex_enter(&sc->tx_pkt_mtx);
4902 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4903 		}
4904 		mutex_exit(&sc->tx_pkt_mtx);
4905 
4906 		sc->used_tx_bd--;
4907 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4908 			__FILE__, __LINE__, sc->used_tx_bd);
4909 
4910 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4911 
4912 		/* Refresh hw_cons to see if there's new work. */
4913 		hw_tx_cons = sc->hw_tx_cons =
4914 		    sblk->status_tx_quick_consumer_index0;
4915 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4916 		    USABLE_TX_BD_PER_PAGE)
4917 			hw_tx_cons++;
4918 
4919 		/* Prevent speculative reads from getting ahead of
4920 		 * the status block.
4921 		 */
4922 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4923 		    BUS_SPACE_BARRIER_READ);
4924 	}
4925 
4926 	/* Clear the TX timeout timer. */
4927 	ifp->if_timer = 0;
4928 
4929 	/* Clear the tx hardware queue full flag. */
4930 	if (sc->used_tx_bd < sc->max_tx_bd) {
4931 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4932 		    aprint_debug_dev(sc->bnx_dev,
4933 			"Open TX chain! %d/%d (used/total)\n",
4934 			sc->used_tx_bd, sc->max_tx_bd));
4935 		ifp->if_flags &= ~IFF_OACTIVE;
4936 	}
4937 
4938 	sc->tx_cons = sw_tx_cons;
4939 }
4940 
4941 /****************************************************************************/
4942 /* Disables interrupt generation.                                           */
4943 /*                                                                          */
4944 /* Returns:                                                                 */
4945 /*   Nothing.                                                               */
4946 /****************************************************************************/
4947 void
4948 bnx_disable_intr(struct bnx_softc *sc)
4949 {
4950 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4951 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4952 }
4953 
4954 /****************************************************************************/
4955 /* Enables interrupt generation.                                            */
4956 /*                                                                          */
4957 /* Returns:                                                                 */
4958 /*   Nothing.                                                               */
4959 /****************************************************************************/
4960 void
4961 bnx_enable_intr(struct bnx_softc *sc)
4962 {
4963 	uint32_t		val;
4964 
4965 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4966 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4967 
4968 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4969 	    sc->last_status_idx);
4970 
4971 	val = REG_RD(sc, BNX_HC_COMMAND);
4972 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4973 }
4974 
4975 /****************************************************************************/
4976 /* Handles controller initialization.                                       */
4977 /*                                                                          */
4978 /****************************************************************************/
4979 int
4980 bnx_init(struct ifnet *ifp)
4981 {
4982 	struct bnx_softc	*sc = ifp->if_softc;
4983 	uint32_t		ether_mtu;
4984 	int			s, error = 0;
4985 
4986 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4987 
4988 	s = splnet();
4989 
4990 	bnx_stop(ifp, 0);
4991 
4992 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4993 		aprint_error_dev(sc->bnx_dev,
4994 		    "Controller reset failed!\n");
4995 		goto bnx_init_exit;
4996 	}
4997 
4998 	if ((error = bnx_chipinit(sc)) != 0) {
4999 		aprint_error_dev(sc->bnx_dev,
5000 		    "Controller initialization failed!\n");
5001 		goto bnx_init_exit;
5002 	}
5003 
5004 	if ((error = bnx_blockinit(sc)) != 0) {
5005 		aprint_error_dev(sc->bnx_dev,
5006 		    "Block initialization failed!\n");
5007 		goto bnx_init_exit;
5008 	}
5009 
5010 	/* Calculate and program the Ethernet MRU size. */
5011 	if (ifp->if_mtu <= ETHERMTU) {
5012 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5013 		sc->mbuf_alloc_size = MCLBYTES;
5014 	} else {
5015 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5016 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5017 	}
5018 
5019 
5020 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5021 
5022 	/*
5023 	 * Program the MRU and enable Jumbo frame
5024 	 * support.
5025 	 */
5026 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5027 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5028 
5029 	/* Calculate the RX Ethernet frame size for rx_bd's. */
5030 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5031 
5032 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5033 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5034 	    sc->mbuf_alloc_size, sc->max_frame_size);
5035 
5036 	/* Program appropriate promiscuous/multicast filtering. */
5037 	bnx_iff(sc);
5038 
5039 	/* Init RX buffer descriptor chain. */
5040 	bnx_init_rx_chain(sc);
5041 
5042 	/* Init TX buffer descriptor chain. */
5043 	bnx_init_tx_chain(sc);
5044 
5045 	/* Enable host interrupts. */
5046 	bnx_enable_intr(sc);
5047 
5048 	mii_ifmedia_change(&sc->bnx_mii);
5049 
5050 	SET(ifp->if_flags, IFF_RUNNING);
5051 	CLR(ifp->if_flags, IFF_OACTIVE);
5052 
5053 	callout_schedule(&sc->bnx_timeout, hz);
5054 
5055 bnx_init_exit:
5056 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5057 
5058 	splx(s);
5059 
5060 	return error;
5061 }
5062 
5063 void
5064 bnx_mgmt_init(struct bnx_softc *sc)
5065 {
5066 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
5067 	uint32_t	val;
5068 
5069 	/* Check if the driver is still running and bail out if it is. */
5070 	if (ifp->if_flags & IFF_RUNNING)
5071 		goto bnx_mgmt_init_exit;
5072 
5073 	/* Initialize the on-boards CPUs */
5074 	bnx_init_cpus(sc);
5075 
5076 	val = (BCM_PAGE_BITS - 8) << 24;
5077 	REG_WR(sc, BNX_RV2P_CONFIG, val);
5078 
5079 	/* Enable all critical blocks in the MAC. */
5080 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5081 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5082 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5083 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5084 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5085 	DELAY(20);
5086 
5087 	mii_ifmedia_change(&sc->bnx_mii);
5088 
5089 bnx_mgmt_init_exit:
5090 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5091 }
5092 
5093 /****************************************************************************/
5094 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5095 /* memory visible to the controller.                                        */
5096 /*                                                                          */
5097 /* Returns:                                                                 */
5098 /*   0 for success, positive value for failure.                             */
5099 /****************************************************************************/
5100 int
5101 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5102 {
5103 	struct bnx_pkt		*pkt;
5104 	bus_dmamap_t		map;
5105 	struct tx_bd		*txbd = NULL;
5106 	uint16_t		vlan_tag = 0, flags = 0;
5107 	uint16_t		chain_prod, prod;
5108 #ifdef BNX_DEBUG
5109 	uint16_t		debug_prod;
5110 #endif
5111 	uint32_t		addr, prod_bseq;
5112 	int			i, error;
5113 	bool			remap = true;
5114 
5115 	mutex_enter(&sc->tx_pkt_mtx);
5116 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5117 	if (pkt == NULL) {
5118 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5119 			mutex_exit(&sc->tx_pkt_mtx);
5120 			return ENETDOWN;
5121 		}
5122 
5123 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5124 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5125 			workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
5126 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5127 		}
5128 
5129 		mutex_exit(&sc->tx_pkt_mtx);
5130 		return ENOMEM;
5131 	}
5132 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5133 	mutex_exit(&sc->tx_pkt_mtx);
5134 
5135 	/* Transfer any checksum offload flags to the bd. */
5136 	if (m->m_pkthdr.csum_flags) {
5137 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5138 			flags |= TX_BD_FLAGS_IP_CKSUM;
5139 		if (m->m_pkthdr.csum_flags &
5140 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5141 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5142 	}
5143 
5144 	/* Transfer any VLAN tags to the bd. */
5145 	if (vlan_has_tag(m)) {
5146 		flags |= TX_BD_FLAGS_VLAN_TAG;
5147 		vlan_tag = vlan_get_tag(m);
5148 	}
5149 
5150 	/* Map the mbuf into DMAable memory. */
5151 	prod = sc->tx_prod;
5152 	chain_prod = TX_CHAIN_IDX(prod);
5153 	map = pkt->pkt_dmamap;
5154 
5155 	/* Map the mbuf into our DMA address space. */
5156 retry:
5157 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5158 	if (__predict_false(error)) {
5159 		if (error == EFBIG) {
5160 			if (remap == true) {
5161 				struct mbuf *newm;
5162 
5163 				remap = false;
5164 				newm = m_defrag(m, M_NOWAIT);
5165 				if (newm != NULL) {
5166 					m = newm;
5167 					goto retry;
5168 				}
5169 			}
5170 		}
5171 		sc->tx_dma_map_failures++;
5172 		goto maperr;
5173 	}
5174 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5175 	    BUS_DMASYNC_PREWRITE);
5176 	/* Make sure there's room in the chain */
5177 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
5178 		error = ENOMEM;
5179 		goto nospace;
5180 	}
5181 
5182 	/* prod points to an empty tx_bd at this point. */
5183 	prod_bseq = sc->tx_prod_bseq;
5184 #ifdef BNX_DEBUG
5185 	debug_prod = chain_prod;
5186 #endif
5187 	DBPRINT(sc, BNX_INFO_SEND,
5188 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5189 		"prod_bseq = 0x%08X\n",
5190 		__func__, prod, chain_prod, prod_bseq);
5191 
5192 	/*
5193 	 * Cycle through each mbuf segment that makes up
5194 	 * the outgoing frame, gathering the mapping info
5195 	 * for that segment and creating a tx_bd for the
5196 	 * mbuf.
5197 	 */
5198 	for (i = 0; i < map->dm_nsegs ; i++) {
5199 		chain_prod = TX_CHAIN_IDX(prod);
5200 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5201 
5202 		addr = (uint32_t)map->dm_segs[i].ds_addr;
5203 		txbd->tx_bd_haddr_lo = addr;
5204 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5205 		txbd->tx_bd_haddr_hi = addr;
5206 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5207 		txbd->tx_bd_vlan_tag = vlan_tag;
5208 		txbd->tx_bd_flags = flags;
5209 		prod_bseq += map->dm_segs[i].ds_len;
5210 		if (i == 0)
5211 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5212 		prod = NEXT_TX_BD(prod);
5213 	}
5214 
5215 	/* Set the END flag on the last TX buffer descriptor. */
5216 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5217 
5218 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5219 
5220 	DBPRINT(sc, BNX_INFO_SEND,
5221 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
5222 		"prod_bseq = 0x%08X\n",
5223 		__func__, prod, chain_prod, prod_bseq);
5224 
5225 	pkt->pkt_mbuf = m;
5226 	pkt->pkt_end_desc = chain_prod;
5227 
5228 	mutex_enter(&sc->tx_pkt_mtx);
5229 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5230 	mutex_exit(&sc->tx_pkt_mtx);
5231 
5232 	sc->used_tx_bd += map->dm_nsegs;
5233 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5234 		__FILE__, __LINE__, sc->used_tx_bd);
5235 
5236 	/* Update some debug statistics counters */
5237 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5238 	    sc->tx_hi_watermark = sc->used_tx_bd);
5239 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5240 	DBRUNIF(1, sc->tx_mbuf_alloc++);
5241 
5242 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5243 	    map->dm_nsegs));
5244 
5245 	/* prod points to the next free tx_bd at this point. */
5246 	sc->tx_prod = prod;
5247 	sc->tx_prod_bseq = prod_bseq;
5248 
5249 	return 0;
5250 
5251 
5252 nospace:
5253 	bus_dmamap_unload(sc->bnx_dmatag, map);
5254 maperr:
5255 	mutex_enter(&sc->tx_pkt_mtx);
5256 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5257 	mutex_exit(&sc->tx_pkt_mtx);
5258 
5259 	return error;
5260 }
5261 
5262 /****************************************************************************/
5263 /* Main transmit routine.                                                   */
5264 /*                                                                          */
5265 /* Returns:                                                                 */
5266 /*   Nothing.                                                               */
5267 /****************************************************************************/
5268 void
5269 bnx_start(struct ifnet *ifp)
5270 {
5271 	struct bnx_softc	*sc = ifp->if_softc;
5272 	struct mbuf		*m_head = NULL;
5273 	int			count = 0, error;
5274 #ifdef BNX_DEBUG
5275 	uint16_t		tx_chain_prod;
5276 #endif
5277 
5278 	/* If there's no link or the transmit queue is empty then just exit. */
5279 	if (!sc->bnx_link
5280 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5281 		DBPRINT(sc, BNX_INFO_SEND,
5282 		    "%s(): output active or device not running.\n", __func__);
5283 		goto bnx_start_exit;
5284 	}
5285 
5286 	/* prod points to the next free tx_bd. */
5287 #ifdef BNX_DEBUG
5288 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5289 #endif
5290 
5291 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5292 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5293 	    "used_tx %d max_tx %d\n",
5294 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5295 	    sc->used_tx_bd, sc->max_tx_bd);
5296 
5297 	/*
5298 	 * Keep adding entries while there is space in the ring.
5299 	 */
5300 	while (sc->used_tx_bd < sc->max_tx_bd) {
5301 		/* Check for any frames to send. */
5302 		IFQ_POLL(&ifp->if_snd, m_head);
5303 		if (m_head == NULL)
5304 			break;
5305 
5306 		/*
5307 		 * Pack the data into the transmit ring. If we
5308 		 * don't have room, set the OACTIVE flag to wait
5309 		 * for the NIC to drain the chain.
5310 		 */
5311 		if ((error = bnx_tx_encap(sc, m_head))) {
5312 			if (error == ENOMEM) {
5313 				ifp->if_flags |= IFF_OACTIVE;
5314 				DBPRINT(sc, BNX_INFO_SEND,
5315 				    "TX chain is closed for "
5316 				    "business! Total tx_bd used = %d\n",
5317 				    sc->used_tx_bd);
5318 				break;
5319 			} else {
5320 				/* Permanent error for the mbuf, drop it */
5321 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
5322 				m_freem(m_head);
5323 				DBPRINT(sc, BNX_INFO_SEND,
5324 				    "mbuf load error %d, dropped\n", error);
5325 				continue;
5326 			}
5327 		}
5328 
5329 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5330 		count++;
5331 
5332 		/* Send a copy of the frame to any BPF listeners. */
5333 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5334 	}
5335 
5336 	if (count == 0) {
5337 		/* no packets were dequeued */
5338 		DBPRINT(sc, BNX_VERBOSE_SEND,
5339 		    "%s(): No packets were dequeued\n", __func__);
5340 		goto bnx_start_exit;
5341 	}
5342 
5343 	/* Update the driver's counters. */
5344 #ifdef BNX_DEBUG
5345 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5346 #endif
5347 
5348 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5349 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5350 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5351 
5352 	/* Start the transmit. */
5353 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5354 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5355 
5356 	/* Set the tx timeout. */
5357 	ifp->if_timer = BNX_TX_TIMEOUT;
5358 
5359 bnx_start_exit:
5360 	return;
5361 }
5362 
5363 /****************************************************************************/
5364 /* Handles any IOCTL calls from the operating system.                       */
5365 /*                                                                          */
5366 /* Returns:                                                                 */
5367 /*   0 for success, positive value for failure.                             */
5368 /****************************************************************************/
5369 int
5370 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5371 {
5372 	struct bnx_softc	*sc = ifp->if_softc;
5373 	struct ifreq		*ifr = (struct ifreq *) data;
5374 	struct mii_data		*mii = &sc->bnx_mii;
5375 	int			s, error = 0;
5376 
5377 	s = splnet();
5378 
5379 	switch (command) {
5380 	case SIOCSIFFLAGS:
5381 		if ((error = ifioctl_common(ifp, command, data)) != 0)
5382 			break;
5383 		/* XXX set an ifflags callback and let ether_ioctl
5384 		 * handle all of this.
5385 		 */
5386 		if (ISSET(ifp->if_flags, IFF_UP)) {
5387 			if (ifp->if_flags & IFF_RUNNING)
5388 				error = ENETRESET;
5389 			else
5390 				bnx_init(ifp);
5391 		} else if (ifp->if_flags & IFF_RUNNING)
5392 			bnx_stop(ifp, 1);
5393 		break;
5394 
5395 	case SIOCSIFMEDIA:
5396 		/* Flow control requires full-duplex mode. */
5397 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5398 		    (ifr->ifr_media & IFM_FDX) == 0)
5399 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5400 
5401 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5402 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5403 				/* We can do both TXPAUSE and RXPAUSE. */
5404 				ifr->ifr_media |=
5405 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5406 			}
5407 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5408 		}
5409 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5410 		    sc->bnx_phy_flags);
5411 
5412 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5413 		break;
5414 
5415 	default:
5416 		error = ether_ioctl(ifp, command, data);
5417 	}
5418 
5419 	if (error == ENETRESET) {
5420 		if (ifp->if_flags & IFF_RUNNING)
5421 			bnx_iff(sc);
5422 		error = 0;
5423 	}
5424 
5425 	splx(s);
5426 	return error;
5427 }
5428 
5429 /****************************************************************************/
5430 /* Transmit timeout handler.                                                */
5431 /*                                                                          */
5432 /* Returns:                                                                 */
5433 /*   Nothing.                                                               */
5434 /****************************************************************************/
5435 void
5436 bnx_watchdog(struct ifnet *ifp)
5437 {
5438 	struct bnx_softc	*sc = ifp->if_softc;
5439 
5440 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5441 	    bnx_dump_status_block(sc));
5442 	/*
5443 	 * If we are in this routine because of pause frames, then
5444 	 * don't reset the hardware.
5445 	 */
5446 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5447 		return;
5448 
5449 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5450 
5451 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5452 
5453 	bnx_init(ifp);
5454 
5455 	if_statinc(ifp, if_oerrors);
5456 }
5457 
5458 /*
5459  * Interrupt handler.
5460  */
5461 /****************************************************************************/
5462 /* Main interrupt entry point.  Verifies that the controller generated the  */
5463 /* interrupt and then calls a separate routine for handle the various       */
5464 /* interrupt causes (PHY, TX, RX).                                          */
5465 /*                                                                          */
5466 /* Returns:                                                                 */
5467 /*   0 for success, positive value for failure.                             */
5468 /****************************************************************************/
5469 int
5470 bnx_intr(void *xsc)
5471 {
5472 	struct bnx_softc	*sc = xsc;
5473 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5474 	uint32_t		status_attn_bits;
5475 	uint16_t		status_idx;
5476 	const struct status_block *sblk;
5477 	int			rv = 0;
5478 
5479 	if (!device_is_active(sc->bnx_dev) ||
5480 	    (ifp->if_flags & IFF_RUNNING) == 0)
5481 		return 0;
5482 
5483 	DBRUNIF(1, sc->interrupts_generated++);
5484 
5485 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5486 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5487 
5488 	sblk = sc->status_block;
5489 	/*
5490 	 * If the hardware status block index
5491 	 * matches the last value read by the
5492 	 * driver and we haven't asserted our
5493 	 * interrupt then there's nothing to do.
5494 	 */
5495 	status_idx = sblk->status_idx;
5496 	if ((status_idx != sc->last_status_idx) ||
5497 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5498 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5499 		rv = 1;
5500 
5501 		/* Ack the interrupt */
5502 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5503 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5504 
5505 		status_attn_bits = sblk->status_attn_bits;
5506 
5507 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5508 		    aprint_debug("Simulating unexpected status attention bit set.");
5509 		    status_attn_bits = status_attn_bits |
5510 		    STATUS_ATTN_BITS_PARITY_ERROR);
5511 
5512 		/* Was it a link change interrupt? */
5513 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5514 		    (sblk->status_attn_bits_ack &
5515 		    STATUS_ATTN_BITS_LINK_STATE))
5516 			bnx_phy_intr(sc);
5517 
5518 		/* If any other attention is asserted then the chip is toast. */
5519 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5520 		    (sblk->status_attn_bits_ack &
5521 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
5522 			DBRUN(sc->unexpected_attentions++);
5523 
5524 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5525 			    sblk->status_attn_bits);
5526 
5527 			DBRUNIF((bnx_debug_unexpected_attention == 0),
5528 				    bnx_breakpoint(sc));
5529 
5530 			bnx_init(ifp);
5531 			goto out;
5532 		}
5533 
5534 		/* Check for any completed RX frames. */
5535 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5536 			bnx_rx_intr(sc);
5537 
5538 		/* Check for any completed TX frames. */
5539 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5540 			bnx_tx_intr(sc);
5541 
5542 		/*
5543 		 * Save the status block index value for use during the
5544 		 * next interrupt.
5545 		 */
5546 		sc->last_status_idx = status_idx;
5547 
5548 		/* Start moving packets again */
5549 		if (ifp->if_flags & IFF_RUNNING)
5550 			if_schedule_deferred_start(ifp);
5551 	}
5552 
5553 out:
5554 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5555 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5556 
5557 	return rv;
5558 }
5559 
5560 /****************************************************************************/
5561 /* Programs the various packet receive modes (broadcast and multicast).     */
5562 /*                                                                          */
5563 /* Returns:                                                                 */
5564 /*   Nothing.                                                               */
5565 /****************************************************************************/
5566 void
5567 bnx_iff(struct bnx_softc *sc)
5568 {
5569 	struct ethercom		*ec = &sc->bnx_ec;
5570 	struct ifnet		*ifp = &ec->ec_if;
5571 	struct ether_multi	*enm;
5572 	struct ether_multistep	step;
5573 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5574 	uint32_t		rx_mode, sort_mode;
5575 	int			h, i;
5576 
5577 	/* Initialize receive mode default settings. */
5578 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5579 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5580 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5581 	ifp->if_flags &= ~IFF_ALLMULTI;
5582 
5583 	/*
5584 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5585 	 * be enbled.
5586 	 */
5587 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5588 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5589 
5590 	/*
5591 	 * Check for promiscuous, all multicast, or selected
5592 	 * multicast address filtering.
5593 	 */
5594 	if (ifp->if_flags & IFF_PROMISC) {
5595 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5596 
5597 		ifp->if_flags |= IFF_ALLMULTI;
5598 		/* Enable promiscuous mode. */
5599 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5600 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5601 	} else if (ifp->if_flags & IFF_ALLMULTI) {
5602 allmulti:
5603 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5604 
5605 		ifp->if_flags |= IFF_ALLMULTI;
5606 		/* Enable all multicast addresses. */
5607 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5608 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5609 			    0xffffffff);
5610 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5611 	} else {
5612 		/* Accept one or more multicast(s). */
5613 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5614 
5615 		ETHER_LOCK(ec);
5616 		ETHER_FIRST_MULTI(step, ec, enm);
5617 		while (enm != NULL) {
5618 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5619 			    ETHER_ADDR_LEN)) {
5620 				ETHER_UNLOCK(ec);
5621 				goto allmulti;
5622 			}
5623 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5624 			    0xFF;
5625 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5626 			ETHER_NEXT_MULTI(step, enm);
5627 		}
5628 		ETHER_UNLOCK(ec);
5629 
5630 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5631 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5632 			    hashes[i]);
5633 
5634 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5635 	}
5636 
5637 	/* Only make changes if the receive mode has actually changed. */
5638 	if (rx_mode != sc->rx_mode) {
5639 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5640 		    rx_mode);
5641 
5642 		sc->rx_mode = rx_mode;
5643 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5644 	}
5645 
5646 	/* Disable and clear the exisitng sort before enabling a new sort. */
5647 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5648 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5649 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5650 }
5651 
5652 /****************************************************************************/
5653 /* Called periodically to updates statistics from the controllers           */
5654 /* statistics block.                                                        */
5655 /*                                                                          */
5656 /* Returns:                                                                 */
5657 /*   Nothing.                                                               */
5658 /****************************************************************************/
5659 void
5660 bnx_stats_update(struct bnx_softc *sc)
5661 {
5662 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5663 	struct statistics_block	*stats;
5664 
5665 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5666 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5667 	    BUS_DMASYNC_POSTREAD);
5668 
5669 	stats = (struct statistics_block *)sc->stats_block;
5670 
5671 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
5672 	uint64_t value;
5673 
5674 	/*
5675 	 * Update the interface statistics from the
5676 	 * hardware statistics.
5677 	 */
5678 	value = (u_long)stats->stat_EtherStatsCollisions;
5679 	if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
5680 	sc->if_stat_collisions = value;
5681 
5682 	value = (u_long)stats->stat_EtherStatsUndersizePkts +
5683 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
5684 	    (u_long)stats->stat_IfInMBUFDiscards +
5685 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
5686 	    (u_long)stats->stat_Dot3StatsFCSErrors;
5687 	if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
5688 	sc->if_stat_ierrors = value;
5689 
5690 	value = (u_long)
5691 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5692 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5693 	    (u_long)stats->stat_Dot3StatsLateCollisions;
5694 	if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
5695 	sc->if_stat_oerrors = value;
5696 
5697 	/*
5698 	 * Certain controllers don't report
5699 	 * carrier sense errors correctly.
5700 	 * See errata E11_5708CA0_1165.
5701 	 */
5702 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5703 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
5704 		if_statadd_ref(nsr, if_oerrors,
5705 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
5706 	}
5707 
5708 	IF_STAT_PUTREF(ifp);
5709 
5710 	/*
5711 	 * Update the sysctl statistics from the
5712 	 * hardware statistics.
5713 	 */
5714 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5715 	    (uint64_t) stats->stat_IfHCInOctets_lo;
5716 
5717 	sc->stat_IfHCInBadOctets =
5718 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5719 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
5720 
5721 	sc->stat_IfHCOutOctets =
5722 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5723 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
5724 
5725 	sc->stat_IfHCOutBadOctets =
5726 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5727 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5728 
5729 	sc->stat_IfHCInUcastPkts =
5730 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5731 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5732 
5733 	sc->stat_IfHCInMulticastPkts =
5734 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5735 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5736 
5737 	sc->stat_IfHCInBroadcastPkts =
5738 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5739 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5740 
5741 	sc->stat_IfHCOutUcastPkts =
5742 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5743 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5744 
5745 	sc->stat_IfHCOutMulticastPkts =
5746 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5747 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5748 
5749 	sc->stat_IfHCOutBroadcastPkts =
5750 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5751 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5752 
5753 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5754 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5755 
5756 	sc->stat_Dot3StatsCarrierSenseErrors =
5757 	    stats->stat_Dot3StatsCarrierSenseErrors;
5758 
5759 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5760 
5761 	sc->stat_Dot3StatsAlignmentErrors =
5762 	    stats->stat_Dot3StatsAlignmentErrors;
5763 
5764 	sc->stat_Dot3StatsSingleCollisionFrames =
5765 	    stats->stat_Dot3StatsSingleCollisionFrames;
5766 
5767 	sc->stat_Dot3StatsMultipleCollisionFrames =
5768 	    stats->stat_Dot3StatsMultipleCollisionFrames;
5769 
5770 	sc->stat_Dot3StatsDeferredTransmissions =
5771 	    stats->stat_Dot3StatsDeferredTransmissions;
5772 
5773 	sc->stat_Dot3StatsExcessiveCollisions =
5774 	    stats->stat_Dot3StatsExcessiveCollisions;
5775 
5776 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5777 
5778 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5779 
5780 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5781 
5782 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5783 
5784 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5785 
5786 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5787 
5788 	sc->stat_EtherStatsPktsRx64Octets =
5789 	    stats->stat_EtherStatsPktsRx64Octets;
5790 
5791 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5792 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5793 
5794 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5795 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5796 
5797 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5798 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5799 
5800 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5801 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5802 
5803 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5804 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5805 
5806 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5807 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5808 
5809 	sc->stat_EtherStatsPktsTx64Octets =
5810 	    stats->stat_EtherStatsPktsTx64Octets;
5811 
5812 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5813 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5814 
5815 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5816 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5817 
5818 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5819 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5820 
5821 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5822 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5823 
5824 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5825 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5826 
5827 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5828 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5829 
5830 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5831 
5832 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5833 
5834 	sc->stat_OutXonSent = stats->stat_OutXonSent;
5835 
5836 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5837 
5838 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5839 
5840 	sc->stat_MacControlFramesReceived =
5841 	    stats->stat_MacControlFramesReceived;
5842 
5843 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5844 
5845 	sc->stat_IfInFramesL2FilterDiscards =
5846 	    stats->stat_IfInFramesL2FilterDiscards;
5847 
5848 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5849 
5850 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5851 
5852 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5853 
5854 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5855 
5856 	sc->stat_CatchupInRuleCheckerDiscards =
5857 	    stats->stat_CatchupInRuleCheckerDiscards;
5858 
5859 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5860 
5861 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5862 
5863 	sc->stat_CatchupInRuleCheckerP4Hit =
5864 	    stats->stat_CatchupInRuleCheckerP4Hit;
5865 
5866 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5867 }
5868 
5869 void
5870 bnx_tick(void *xsc)
5871 {
5872 	struct bnx_softc	*sc = xsc;
5873 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
5874 	struct mii_data		*mii;
5875 	uint32_t		msg;
5876 	uint16_t		prod, chain_prod;
5877 	uint32_t		prod_bseq;
5878 	int s = splnet();
5879 
5880 	/* Tell the firmware that the driver is still running. */
5881 #ifdef BNX_DEBUG
5882 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5883 #else
5884 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5885 #endif
5886 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5887 
5888 	/* Update the statistics from the hardware statistics block. */
5889 	bnx_stats_update(sc);
5890 
5891 	/* Schedule the next tick. */
5892 	if (!sc->bnx_detaching)
5893 		callout_schedule(&sc->bnx_timeout, hz);
5894 
5895 	if (sc->bnx_link)
5896 		goto bnx_tick_exit;
5897 
5898 	mii = &sc->bnx_mii;
5899 	mii_tick(mii);
5900 
5901 	/* Check if the link has come up. */
5902 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5903 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5904 		sc->bnx_link++;
5905 		/* Now that link is up, handle any outstanding TX traffic. */
5906 		if_schedule_deferred_start(ifp);
5907 	}
5908 
5909 bnx_tick_exit:
5910 	/* try to get more RX buffers, just in case */
5911 	prod = sc->rx_prod;
5912 	prod_bseq = sc->rx_prod_bseq;
5913 	chain_prod = RX_CHAIN_IDX(prod);
5914 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5915 	sc->rx_prod = prod;
5916 	sc->rx_prod_bseq = prod_bseq;
5917 
5918 	splx(s);
5919 	return;
5920 }
5921 
5922 /****************************************************************************/
5923 /* BNX Debug Routines                                                       */
5924 /****************************************************************************/
5925 #ifdef BNX_DEBUG
5926 
5927 /****************************************************************************/
5928 /* Prints out information about an mbuf.                                    */
5929 /*                                                                          */
5930 /* Returns:                                                                 */
5931 /*   Nothing.                                                               */
5932 /****************************************************************************/
5933 void
5934 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5935 {
5936 	struct mbuf		*mp = m;
5937 
5938 	if (m == NULL) {
5939 		/* Index out of range. */
5940 		aprint_error("mbuf ptr is null!\n");
5941 		return;
5942 	}
5943 
5944 	while (mp) {
5945 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5946 		    mp, mp->m_len);
5947 
5948 		if (mp->m_flags & M_EXT)
5949 			aprint_debug("M_EXT ");
5950 		if (mp->m_flags & M_PKTHDR)
5951 			aprint_debug("M_PKTHDR ");
5952 		aprint_debug("\n");
5953 
5954 		if (mp->m_flags & M_EXT)
5955 			aprint_debug("- m_ext: vaddr = %p, "
5956 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5957 
5958 		mp = mp->m_next;
5959 	}
5960 }
5961 
5962 /****************************************************************************/
5963 /* Prints out the mbufs in the TX mbuf chain.                               */
5964 /*                                                                          */
5965 /* Returns:                                                                 */
5966 /*   Nothing.                                                               */
5967 /****************************************************************************/
5968 void
5969 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5970 {
5971 #if 0
5972 	struct mbuf		*m;
5973 	int			i;
5974 
5975 	aprint_debug_dev(sc->bnx_dev,
5976 	    "----------------------------"
5977 	    "  tx mbuf data  "
5978 	    "----------------------------\n");
5979 
5980 	for (i = 0; i < count; i++) {
5981 		m = sc->tx_mbuf_ptr[chain_prod];
5982 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5983 		bnx_dump_mbuf(sc, m);
5984 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5985 	}
5986 
5987 	aprint_debug_dev(sc->bnx_dev,
5988 	    "--------------------------------------------"
5989 	    "----------------------------\n");
5990 #endif
5991 }
5992 
5993 /*
5994  * This routine prints the RX mbuf chain.
5995  */
5996 void
5997 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5998 {
5999 	struct mbuf		*m;
6000 	int			i;
6001 
6002 	aprint_debug_dev(sc->bnx_dev,
6003 	    "----------------------------"
6004 	    "  rx mbuf data  "
6005 	    "----------------------------\n");
6006 
6007 	for (i = 0; i < count; i++) {
6008 		m = sc->rx_mbuf_ptr[chain_prod];
6009 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6010 		bnx_dump_mbuf(sc, m);
6011 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6012 	}
6013 
6014 
6015 	aprint_debug_dev(sc->bnx_dev,
6016 	    "--------------------------------------------"
6017 	    "----------------------------\n");
6018 }
6019 
6020 void
6021 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6022 {
6023 	if (idx > MAX_TX_BD)
6024 		/* Index out of range. */
6025 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6026 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6027 		/* TX Chain page pointer. */
6028 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6029 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6030 		    txbd->tx_bd_haddr_lo);
6031 	else
6032 		/* Normal tx_bd entry. */
6033 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6034 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6035 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6036 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6037 		    txbd->tx_bd_flags);
6038 }
6039 
6040 void
6041 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6042 {
6043 	if (idx > MAX_RX_BD)
6044 		/* Index out of range. */
6045 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6046 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6047 		/* TX Chain page pointer. */
6048 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6049 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6050 		    rxbd->rx_bd_haddr_lo);
6051 	else
6052 		/* Normal tx_bd entry. */
6053 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6054 		    "0x%08X, flags = 0x%08X\n", idx,
6055 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6056 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
6057 }
6058 
6059 void
6060 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6061 {
6062 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6063 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6064 	    "tcp_udp_xsum = 0x%04X\n", idx,
6065 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6066 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6067 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
6068 }
6069 
6070 /*
6071  * This routine prints the TX chain.
6072  */
6073 void
6074 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6075 {
6076 	struct tx_bd		*txbd;
6077 	int			i;
6078 
6079 	/* First some info about the tx_bd chain structure. */
6080 	aprint_debug_dev(sc->bnx_dev,
6081 	    "----------------------------"
6082 	    "  tx_bd  chain  "
6083 	    "----------------------------\n");
6084 
6085 	BNX_PRINTF(sc,
6086 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
6087 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6088 
6089 	BNX_PRINTF(sc,
6090 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6091 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6092 
6093 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6094 
6095 	aprint_error_dev(sc->bnx_dev, ""
6096 	    "-----------------------------"
6097 	    "   tx_bd data   "
6098 	    "-----------------------------\n");
6099 
6100 	/* Now print out the tx_bd's themselves. */
6101 	for (i = 0; i < count; i++) {
6102 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6103 		bnx_dump_txbd(sc, tx_prod, txbd);
6104 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6105 	}
6106 
6107 	aprint_debug_dev(sc->bnx_dev,
6108 	    "-----------------------------"
6109 	    "--------------"
6110 	    "-----------------------------\n");
6111 }
6112 
6113 /*
6114  * This routine prints the RX chain.
6115  */
6116 void
6117 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6118 {
6119 	struct rx_bd		*rxbd;
6120 	int			i;
6121 
6122 	/* First some info about the tx_bd chain structure. */
6123 	aprint_debug_dev(sc->bnx_dev,
6124 	    "----------------------------"
6125 	    "  rx_bd  chain  "
6126 	    "----------------------------\n");
6127 
6128 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6129 
6130 	BNX_PRINTF(sc,
6131 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
6132 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6133 
6134 	BNX_PRINTF(sc,
6135 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6136 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6137 
6138 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6139 
6140 	aprint_error_dev(sc->bnx_dev,
6141 	    "----------------------------"
6142 	    "   rx_bd data   "
6143 	    "----------------------------\n");
6144 
6145 	/* Now print out the rx_bd's themselves. */
6146 	for (i = 0; i < count; i++) {
6147 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6148 		bnx_dump_rxbd(sc, rx_prod, rxbd);
6149 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6150 	}
6151 
6152 	aprint_debug_dev(sc->bnx_dev,
6153 	    "----------------------------"
6154 	    "--------------"
6155 	    "----------------------------\n");
6156 }
6157 
6158 /*
6159  * This routine prints the status block.
6160  */
6161 void
6162 bnx_dump_status_block(struct bnx_softc *sc)
6163 {
6164 	struct status_block	*sblk;
6165 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6166 	    BUS_DMASYNC_POSTREAD);
6167 
6168 	sblk = sc->status_block;
6169 
6170 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6171 	    "Status Block -----------------------------\n");
6172 
6173 	BNX_PRINTF(sc,
6174 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6175 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
6176 	    sblk->status_idx);
6177 
6178 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
6179 	    sblk->status_rx_quick_consumer_index0,
6180 	    sblk->status_tx_quick_consumer_index0);
6181 
6182 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6183 
6184 	/* Theses indices are not used for normal L2 drivers. */
6185 	if (sblk->status_rx_quick_consumer_index1 ||
6186 		sblk->status_tx_quick_consumer_index1)
6187 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
6188 		    sblk->status_rx_quick_consumer_index1,
6189 		    sblk->status_tx_quick_consumer_index1);
6190 
6191 	if (sblk->status_rx_quick_consumer_index2 ||
6192 		sblk->status_tx_quick_consumer_index2)
6193 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
6194 		    sblk->status_rx_quick_consumer_index2,
6195 		    sblk->status_tx_quick_consumer_index2);
6196 
6197 	if (sblk->status_rx_quick_consumer_index3 ||
6198 		sblk->status_tx_quick_consumer_index3)
6199 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
6200 		    sblk->status_rx_quick_consumer_index3,
6201 		    sblk->status_tx_quick_consumer_index3);
6202 
6203 	if (sblk->status_rx_quick_consumer_index4 ||
6204 		sblk->status_rx_quick_consumer_index5)
6205 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
6206 		    sblk->status_rx_quick_consumer_index4,
6207 		    sblk->status_rx_quick_consumer_index5);
6208 
6209 	if (sblk->status_rx_quick_consumer_index6 ||
6210 		sblk->status_rx_quick_consumer_index7)
6211 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
6212 		    sblk->status_rx_quick_consumer_index6,
6213 		    sblk->status_rx_quick_consumer_index7);
6214 
6215 	if (sblk->status_rx_quick_consumer_index8 ||
6216 		sblk->status_rx_quick_consumer_index9)
6217 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
6218 		    sblk->status_rx_quick_consumer_index8,
6219 		    sblk->status_rx_quick_consumer_index9);
6220 
6221 	if (sblk->status_rx_quick_consumer_index10 ||
6222 		sblk->status_rx_quick_consumer_index11)
6223 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
6224 		    sblk->status_rx_quick_consumer_index10,
6225 		    sblk->status_rx_quick_consumer_index11);
6226 
6227 	if (sblk->status_rx_quick_consumer_index12 ||
6228 		sblk->status_rx_quick_consumer_index13)
6229 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
6230 		    sblk->status_rx_quick_consumer_index12,
6231 		    sblk->status_rx_quick_consumer_index13);
6232 
6233 	if (sblk->status_rx_quick_consumer_index14 ||
6234 		sblk->status_rx_quick_consumer_index15)
6235 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
6236 		    sblk->status_rx_quick_consumer_index14,
6237 		    sblk->status_rx_quick_consumer_index15);
6238 
6239 	if (sblk->status_completion_producer_index ||
6240 		sblk->status_cmd_consumer_index)
6241 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
6242 		    sblk->status_completion_producer_index,
6243 		    sblk->status_cmd_consumer_index);
6244 
6245 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6246 	    "-----------------------------\n");
6247 }
6248 
6249 /*
6250  * This routine prints the statistics block.
6251  */
6252 void
6253 bnx_dump_stats_block(struct bnx_softc *sc)
6254 {
6255 	struct statistics_block	*sblk;
6256 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6257 	    BUS_DMASYNC_POSTREAD);
6258 
6259 	sblk = sc->stats_block;
6260 
6261 	aprint_debug_dev(sc->bnx_dev, ""
6262 	    "-----------------------------"
6263 	    " Stats  Block "
6264 	    "-----------------------------\n");
6265 
6266 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
6267 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
6268 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6269 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6270 
6271 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
6272 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
6273 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6274 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6275 
6276 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
6277 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
6278 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6279 	    sblk->stat_IfHCInMulticastPkts_hi,
6280 	    sblk->stat_IfHCInMulticastPkts_lo);
6281 
6282 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
6283 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
6284 	    sblk->stat_IfHCInBroadcastPkts_hi,
6285 	    sblk->stat_IfHCInBroadcastPkts_lo,
6286 	    sblk->stat_IfHCOutUcastPkts_hi,
6287 	    sblk->stat_IfHCOutUcastPkts_lo);
6288 
6289 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6290 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6291 	    sblk->stat_IfHCOutMulticastPkts_hi,
6292 	    sblk->stat_IfHCOutMulticastPkts_lo,
6293 	    sblk->stat_IfHCOutBroadcastPkts_hi,
6294 	    sblk->stat_IfHCOutBroadcastPkts_lo);
6295 
6296 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6297 		BNX_PRINTF(sc, "0x%08X : "
6298 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6299 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6300 
6301 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
6302 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6303 		    sblk->stat_Dot3StatsCarrierSenseErrors);
6304 
6305 	if (sblk->stat_Dot3StatsFCSErrors)
6306 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6307 		    sblk->stat_Dot3StatsFCSErrors);
6308 
6309 	if (sblk->stat_Dot3StatsAlignmentErrors)
6310 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6311 		    sblk->stat_Dot3StatsAlignmentErrors);
6312 
6313 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
6314 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6315 		    sblk->stat_Dot3StatsSingleCollisionFrames);
6316 
6317 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6318 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6319 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
6320 
6321 	if (sblk->stat_Dot3StatsDeferredTransmissions)
6322 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6323 		    sblk->stat_Dot3StatsDeferredTransmissions);
6324 
6325 	if (sblk->stat_Dot3StatsExcessiveCollisions)
6326 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6327 		    sblk->stat_Dot3StatsExcessiveCollisions);
6328 
6329 	if (sblk->stat_Dot3StatsLateCollisions)
6330 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6331 		    sblk->stat_Dot3StatsLateCollisions);
6332 
6333 	if (sblk->stat_EtherStatsCollisions)
6334 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6335 		    sblk->stat_EtherStatsCollisions);
6336 
6337 	if (sblk->stat_EtherStatsFragments)
6338 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6339 		    sblk->stat_EtherStatsFragments);
6340 
6341 	if (sblk->stat_EtherStatsJabbers)
6342 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6343 		    sblk->stat_EtherStatsJabbers);
6344 
6345 	if (sblk->stat_EtherStatsUndersizePkts)
6346 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6347 		    sblk->stat_EtherStatsUndersizePkts);
6348 
6349 	if (sblk->stat_EtherStatsOverrsizePkts)
6350 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6351 		    sblk->stat_EtherStatsOverrsizePkts);
6352 
6353 	if (sblk->stat_EtherStatsPktsRx64Octets)
6354 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6355 		    sblk->stat_EtherStatsPktsRx64Octets);
6356 
6357 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6358 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6359 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6360 
6361 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6362 		BNX_PRINTF(sc, "0x%08X : "
6363 		    "EtherStatsPktsRx128Octetsto255Octets\n",
6364 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6365 
6366 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6367 		BNX_PRINTF(sc, "0x%08X : "
6368 		    "EtherStatsPktsRx256Octetsto511Octets\n",
6369 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6370 
6371 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6372 		BNX_PRINTF(sc, "0x%08X : "
6373 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
6374 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6375 
6376 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6377 		BNX_PRINTF(sc, "0x%08X : "
6378 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
6379 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6380 
6381 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6382 		BNX_PRINTF(sc, "0x%08X : "
6383 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
6384 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6385 
6386 	if (sblk->stat_EtherStatsPktsTx64Octets)
6387 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6388 		    sblk->stat_EtherStatsPktsTx64Octets);
6389 
6390 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6391 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6392 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6393 
6394 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6395 		BNX_PRINTF(sc, "0x%08X : "
6396 		    "EtherStatsPktsTx128Octetsto255Octets\n",
6397 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6398 
6399 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6400 		BNX_PRINTF(sc, "0x%08X : "
6401 		    "EtherStatsPktsTx256Octetsto511Octets\n",
6402 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6403 
6404 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6405 		BNX_PRINTF(sc, "0x%08X : "
6406 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
6407 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6408 
6409 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6410 		BNX_PRINTF(sc, "0x%08X : "
6411 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
6412 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6413 
6414 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6415 		BNX_PRINTF(sc, "0x%08X : "
6416 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
6417 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6418 
6419 	if (sblk->stat_XonPauseFramesReceived)
6420 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6421 		    sblk->stat_XonPauseFramesReceived);
6422 
6423 	if (sblk->stat_XoffPauseFramesReceived)
6424 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6425 		    sblk->stat_XoffPauseFramesReceived);
6426 
6427 	if (sblk->stat_OutXonSent)
6428 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6429 		    sblk->stat_OutXonSent);
6430 
6431 	if (sblk->stat_OutXoffSent)
6432 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6433 		    sblk->stat_OutXoffSent);
6434 
6435 	if (sblk->stat_FlowControlDone)
6436 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6437 		    sblk->stat_FlowControlDone);
6438 
6439 	if (sblk->stat_MacControlFramesReceived)
6440 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6441 		    sblk->stat_MacControlFramesReceived);
6442 
6443 	if (sblk->stat_XoffStateEntered)
6444 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6445 		    sblk->stat_XoffStateEntered);
6446 
6447 	if (sblk->stat_IfInFramesL2FilterDiscards)
6448 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6449 		    sblk->stat_IfInFramesL2FilterDiscards);
6450 
6451 	if (sblk->stat_IfInRuleCheckerDiscards)
6452 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6453 		    sblk->stat_IfInRuleCheckerDiscards);
6454 
6455 	if (sblk->stat_IfInFTQDiscards)
6456 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6457 		    sblk->stat_IfInFTQDiscards);
6458 
6459 	if (sblk->stat_IfInMBUFDiscards)
6460 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6461 		    sblk->stat_IfInMBUFDiscards);
6462 
6463 	if (sblk->stat_IfInRuleCheckerP4Hit)
6464 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6465 		    sblk->stat_IfInRuleCheckerP4Hit);
6466 
6467 	if (sblk->stat_CatchupInRuleCheckerDiscards)
6468 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6469 		    sblk->stat_CatchupInRuleCheckerDiscards);
6470 
6471 	if (sblk->stat_CatchupInFTQDiscards)
6472 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6473 		    sblk->stat_CatchupInFTQDiscards);
6474 
6475 	if (sblk->stat_CatchupInMBUFDiscards)
6476 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6477 		    sblk->stat_CatchupInMBUFDiscards);
6478 
6479 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
6480 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6481 		    sblk->stat_CatchupInRuleCheckerP4Hit);
6482 
6483 	aprint_debug_dev(sc->bnx_dev,
6484 	    "-----------------------------"
6485 	    "--------------"
6486 	    "-----------------------------\n");
6487 }
6488 
6489 void
6490 bnx_dump_driver_state(struct bnx_softc *sc)
6491 {
6492 	aprint_debug_dev(sc->bnx_dev,
6493 	    "-----------------------------"
6494 	    " Driver State "
6495 	    "-----------------------------\n");
6496 
6497 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6498 	    "address\n", sc);
6499 
6500 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6501 	    sc->status_block);
6502 
6503 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6504 	    "address\n", sc->stats_block);
6505 
6506 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6507 	    "address\n", sc->tx_bd_chain);
6508 
6509 #if 0
6510 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6511 	    sc->rx_bd_chain);
6512 
6513 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6514 	    sc->tx_mbuf_ptr);
6515 #endif
6516 
6517 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6518 	    sc->rx_mbuf_ptr);
6519 
6520 	BNX_PRINTF(sc,
6521 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
6522 	    sc->interrupts_generated);
6523 
6524 	BNX_PRINTF(sc,
6525 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6526 	    sc->rx_interrupts);
6527 
6528 	BNX_PRINTF(sc,
6529 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6530 	    sc->tx_interrupts);
6531 
6532 	BNX_PRINTF(sc,
6533 	    "         0x%08X - (sc->last_status_idx) status block index\n",
6534 	    sc->last_status_idx);
6535 
6536 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
6537 	    sc->tx_prod);
6538 
6539 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
6540 	    sc->tx_cons);
6541 
6542 	BNX_PRINTF(sc,
6543 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6544 	    sc->tx_prod_bseq);
6545 	BNX_PRINTF(sc,
6546 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6547 	    sc->tx_mbuf_alloc);
6548 
6549 	BNX_PRINTF(sc,
6550 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6551 	    sc->used_tx_bd);
6552 
6553 	BNX_PRINTF(sc,
6554 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6555 	    sc->tx_hi_watermark, sc->max_tx_bd);
6556 
6557 
6558 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
6559 	    sc->rx_prod);
6560 
6561 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
6562 	    sc->rx_cons);
6563 
6564 	BNX_PRINTF(sc,
6565 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6566 	    sc->rx_prod_bseq);
6567 
6568 	BNX_PRINTF(sc,
6569 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6570 	    sc->rx_mbuf_alloc);
6571 
6572 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6573 	    sc->free_rx_bd);
6574 
6575 	BNX_PRINTF(sc,
6576 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6577 	    sc->rx_low_watermark, sc->max_rx_bd);
6578 
6579 	BNX_PRINTF(sc,
6580 	    "         0x%08X - (sc->mbuf_alloc_failed) "
6581 	    "mbuf alloc failures\n",
6582 	    sc->mbuf_alloc_failed);
6583 
6584 	BNX_PRINTF(sc,
6585 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
6586 	    "simulated mbuf alloc failures\n",
6587 	    sc->mbuf_sim_alloc_failed);
6588 
6589 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6590 	    "-----------------------------\n");
6591 }
6592 
6593 void
6594 bnx_dump_hw_state(struct bnx_softc *sc)
6595 {
6596 	uint32_t		val1;
6597 	int			i;
6598 
6599 	aprint_debug_dev(sc->bnx_dev,
6600 	    "----------------------------"
6601 	    " Hardware State "
6602 	    "----------------------------\n");
6603 
6604 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6605 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6606 
6607 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6608 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6609 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
6610 
6611 	val1 = REG_RD(sc, BNX_DMA_STATUS);
6612 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6613 
6614 	val1 = REG_RD(sc, BNX_CTX_STATUS);
6615 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6616 
6617 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
6618 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6619 	    BNX_EMAC_STATUS);
6620 
6621 	val1 = REG_RD(sc, BNX_RPM_STATUS);
6622 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6623 
6624 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
6625 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6626 	    BNX_TBDR_STATUS);
6627 
6628 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
6629 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6630 	    BNX_TDMA_STATUS);
6631 
6632 	val1 = REG_RD(sc, BNX_HC_STATUS);
6633 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6634 
6635 	aprint_debug_dev(sc->bnx_dev,
6636 	    "----------------------------"
6637 	    "----------------"
6638 	    "----------------------------\n");
6639 
6640 	aprint_debug_dev(sc->bnx_dev,
6641 	    "----------------------------"
6642 	    " Register  Dump "
6643 	    "----------------------------\n");
6644 
6645 	for (i = 0x400; i < 0x8000; i += 0x10)
6646 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6647 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6648 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6649 
6650 	aprint_debug_dev(sc->bnx_dev,
6651 	    "----------------------------"
6652 	    "----------------"
6653 	    "----------------------------\n");
6654 }
6655 
6656 void
6657 bnx_breakpoint(struct bnx_softc *sc)
6658 {
6659 	/* Unreachable code to shut the compiler up about unused functions. */
6660 	if (0) {
6661 		bnx_dump_txbd(sc, 0, NULL);
6662 		bnx_dump_rxbd(sc, 0, NULL);
6663 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6664 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6665 		bnx_dump_l2fhdr(sc, 0, NULL);
6666 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6667 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6668 		bnx_dump_status_block(sc);
6669 		bnx_dump_stats_block(sc);
6670 		bnx_dump_driver_state(sc);
6671 		bnx_dump_hw_state(sc);
6672 	}
6673 
6674 	bnx_dump_driver_state(sc);
6675 	/* Print the important status block fields. */
6676 	bnx_dump_status_block(sc);
6677 
6678 #if 0
6679 	/* Call the debugger. */
6680 	breakpoint();
6681 #endif
6682 
6683 	return;
6684 }
6685 #endif
6686