xref: /netbsd-src/sys/dev/pci/if_bnx.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: if_bnx.c,v 1.25 2009/04/07 18:07:10 dyoung Exp $	*/
2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
3 
4 /*-
5  * Copyright (c) 2006 Broadcom Corporation
6  *	David Christensen <davidch@broadcom.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written consent.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.25 2009/04/07 18:07:10 dyoung Exp $");
39 
40 /*
41  * The following controllers are supported by this driver:
42  *   BCM5706C A2, A3
43  *   BCM5708C B1, B2
44  *
45  * The following controllers are not supported by this driver:
46  * (These are not "Production" versions of the controller.)
47  *
48  *   BCM5706C A0, A1
49  *   BCM5706S A0, A1, A2, A3
50  *   BCM5708C A0, B0
51  *   BCM5708S A0, B0, B1
52  */
53 
54 #include <sys/callout.h>
55 
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58 
59 /****************************************************************************/
60 /* BNX Driver Version                                                       */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63 
64 /****************************************************************************/
65 /* BNX Debug Options                                                        */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69 
70 	/*          0 = Never              */
71 	/*          1 = 1 in 2,147,483,648 */
72 	/*        256 = 1 in     8,388,608 */
73 	/*       2048 = 1 in     1,048,576 */
74 	/*      65536 = 1 in        32,768 */
75 	/*    1048576 = 1 in         2,048 */
76 	/*  268435456 =	1 in             8 */
77 	/*  536870912 = 1 in             4 */
78 	/* 1073741824 = 1 in             2 */
79 
80 	/* Controls how often the l2_fhdr frame error check will fail. */
81 	int bnx_debug_l2fhdr_status_check = 0;
82 
83 	/* Controls how often the unexpected attention check will fail. */
84 	int bnx_debug_unexpected_attention = 0;
85 
86 	/* Controls how often to simulate an mbuf allocation failure. */
87 	int bnx_debug_mbuf_allocation_failure = 0;
88 
89 	/* Controls how often to simulate a DMA mapping failure. */
90 	int bnx_debug_dma_map_addr_failure = 0;
91 
92 	/* Controls how often to simulate a bootcode failure. */
93 	int bnx_debug_bootcode_running_failure = 0;
94 #endif
95 
96 /****************************************************************************/
97 /* PCI Device ID Table                                                      */
98 /*                                                                          */
99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
100 /****************************************************************************/
101 static const struct bnx_product {
102 	pci_vendor_id_t		bp_vendor;
103 	pci_product_id_t	bp_product;
104 	pci_vendor_id_t		bp_subvendor;
105 	pci_product_id_t	bp_subproduct;
106 	const char		*bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 	{
110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 	  "HP NC370T Multifunction Gigabit Server Adapter"
113 	},
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 	{
117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 	  "HP NC370i Multifunction Gigabit Server Adapter"
120 	},
121 #endif
122 	{
123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 	  0, 0,
125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
126 	},
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 	{
129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 	  "HP NC370F Multifunction Gigabit Server Adapter"
132 	},
133 #endif
134 	{
135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 	  0, 0,
137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 	},
139 	{
140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 	  0, 0,
142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
143 	},
144 	{
145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 	  0, 0,
147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 	},
149 };
150 
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data.                                       */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 	/* Slow EEPROM */
157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 	 "EEPROM - slow"},
161 	/* Expansion entry 0001 */
162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 	 "Entry 0001"},
166 	/* Saifun SA25F010 (non-buffered flash) */
167 	/* strap, cfg1, & write1 need updates */
168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 	 "Non-buffered flash (128kB)"},
172 	/* Saifun SA25F020 (non-buffered flash) */
173 	/* strap, cfg1, & write1 need updates */
174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 	 "Non-buffered flash (256kB)"},
178 	/* Expansion entry 0100 */
179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 	 "Entry 0100"},
183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 	/* Saifun SA25F005 (non-buffered flash) */
194 	/* strap, cfg1, & write1 need updates */
195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 	 "Non-buffered flash (64kB)"},
199 	/* Fast EEPROM */
200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 	 "EEPROM - fast"},
204 	/* Expansion entry 1001 */
205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 	 "Entry 1001"},
209 	/* Expansion entry 1010 */
210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 	 "Entry 1010"},
214 	/* ATMEL AT45DB011B (buffered flash) */
215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 	 "Buffered flash (128kB)"},
219 	/* Expansion entry 1100 */
220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 	 "Entry 1100"},
224 	/* Expansion entry 1101 */
225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 	 "Entry 1101"},
229 	/* Ateml Expansion entry 1110 */
230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 	 "Entry 1110 (Atmel)"},
234 	/* ATMEL AT45DB021B (buffered flash) */
235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 	 "Buffered flash (256kB)"},
239 };
240 
241 /****************************************************************************/
242 /* OpenBSD device entry points.                                             */
243 /****************************************************************************/
244 static int	bnx_probe(device_t, cfdata_t, void *);
245 void	bnx_attach(device_t, device_t, void *);
246 int	bnx_detach(device_t, int);
247 
248 /****************************************************************************/
249 /* BNX Debug Data Structure Dump Routines                                   */
250 /****************************************************************************/
251 #ifdef BNX_DEBUG
252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
260 void	bnx_dump_status_block(struct bnx_softc *);
261 void	bnx_dump_stats_block(struct bnx_softc *);
262 void	bnx_dump_driver_state(struct bnx_softc *);
263 void	bnx_dump_hw_state(struct bnx_softc *);
264 void	bnx_breakpoint(struct bnx_softc *);
265 #endif
266 
267 /****************************************************************************/
268 /* BNX Register/Memory Access Routines                                      */
269 /****************************************************************************/
270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
273 int	bnx_miibus_read_reg(device_t, int, int);
274 void	bnx_miibus_write_reg(device_t, int, int, int);
275 void	bnx_miibus_statchg(device_t);
276 
277 /****************************************************************************/
278 /* BNX NVRAM Access Routines                                                */
279 /****************************************************************************/
280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
281 int	bnx_release_nvram_lock(struct bnx_softc *);
282 void	bnx_enable_nvram_access(struct bnx_softc *);
283 void	bnx_disable_nvram_access(struct bnx_softc *);
284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
285 	    u_int32_t);
286 int	bnx_init_nvram(struct bnx_softc *);
287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
288 int	bnx_nvram_test(struct bnx_softc *);
289 #ifdef BNX_NVRAM_WRITE_SUPPORT
290 int	bnx_enable_nvram_write(struct bnx_softc *);
291 void	bnx_disable_nvram_write(struct bnx_softc *);
292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
294 	    u_int32_t);
295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
296 #endif
297 
298 /****************************************************************************/
299 /*                                                                          */
300 /****************************************************************************/
301 int	bnx_dma_alloc(struct bnx_softc *);
302 void	bnx_dma_free(struct bnx_softc *);
303 void	bnx_release_resources(struct bnx_softc *);
304 
305 /****************************************************************************/
306 /* BNX Firmware Synchronization and Load                                    */
307 /****************************************************************************/
308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
310 	    u_int32_t);
311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
312 	    struct fw_info *);
313 void	bnx_init_cpus(struct bnx_softc *);
314 
315 void	bnx_stop(struct ifnet *, int);
316 int	bnx_reset(struct bnx_softc *, u_int32_t);
317 int	bnx_chipinit(struct bnx_softc *);
318 int	bnx_blockinit(struct bnx_softc *);
319 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
320 	    u_int16_t *, u_int32_t *);
321 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
322 
323 int	bnx_init_tx_chain(struct bnx_softc *);
324 int	bnx_init_rx_chain(struct bnx_softc *);
325 void	bnx_free_rx_chain(struct bnx_softc *);
326 void	bnx_free_tx_chain(struct bnx_softc *);
327 
328 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
329 void	bnx_start(struct ifnet *);
330 int	bnx_ioctl(struct ifnet *, u_long, void *);
331 void	bnx_watchdog(struct ifnet *);
332 int	bnx_init(struct ifnet *);
333 
334 void	bnx_init_context(struct bnx_softc *);
335 void	bnx_get_mac_addr(struct bnx_softc *);
336 void	bnx_set_mac_addr(struct bnx_softc *);
337 void	bnx_phy_intr(struct bnx_softc *);
338 void	bnx_rx_intr(struct bnx_softc *);
339 void	bnx_tx_intr(struct bnx_softc *);
340 void	bnx_disable_intr(struct bnx_softc *);
341 void	bnx_enable_intr(struct bnx_softc *);
342 
343 int	bnx_intr(void *);
344 void	bnx_set_rx_mode(struct bnx_softc *);
345 void	bnx_stats_update(struct bnx_softc *);
346 void	bnx_tick(void *);
347 
348 /****************************************************************************/
349 /* OpenBSD device dispatch table.                                           */
350 /****************************************************************************/
351 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
352     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
353 
354 /****************************************************************************/
355 /* Device probe function.                                                   */
356 /*                                                                          */
357 /* Compares the device to the driver's list of supported devices and        */
358 /* reports back to the OS whether this is the right driver for the device.  */
359 /*                                                                          */
360 /* Returns:                                                                 */
361 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
362 /****************************************************************************/
363 static const struct bnx_product *
364 bnx_lookup(const struct pci_attach_args *pa)
365 {
366 	int i;
367 	pcireg_t subid;
368 
369 	for (i = 0; i < __arraycount(bnx_devices); i++) {
370 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
371 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
372 			continue;
373 		if (!bnx_devices[i].bp_subvendor)
374 			return &bnx_devices[i];
375 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
376 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
377 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
378 			return &bnx_devices[i];
379 	}
380 
381 	return NULL;
382 }
383 static int
384 bnx_probe(device_t parent, cfdata_t match, void *aux)
385 {
386 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
387 
388 	if (bnx_lookup(pa) != NULL)
389 		return (1);
390 
391 	return (0);
392 }
393 
394 /****************************************************************************/
395 /* Device attach function.                                                  */
396 /*                                                                          */
397 /* Allocates device resources, performs secondary chip identification,      */
398 /* resets and initializes the hardware, and initializes driver instance     */
399 /* variables.                                                               */
400 /*                                                                          */
401 /* Returns:                                                                 */
402 /*   0 on success, positive value on failure.                               */
403 /****************************************************************************/
404 void
405 bnx_attach(device_t parent, device_t self, void *aux)
406 {
407 	const struct bnx_product *bp;
408 	struct bnx_softc	*sc = device_private(self);
409 	struct pci_attach_args	*pa = aux;
410 	pci_chipset_tag_t	pc = pa->pa_pc;
411 	pci_intr_handle_t	ih;
412 	const char 		*intrstr = NULL;
413 	u_int32_t		command;
414 	struct ifnet		*ifp;
415 	u_int32_t		val;
416 	int			mii_flags = MIIF_FORCEANEG;
417 	pcireg_t		memtype;
418 
419 	bp = bnx_lookup(pa);
420 	if (bp == NULL)
421 		panic("unknown device");
422 
423 	sc->bnx_dev = self;
424 
425 	aprint_naive("\n");
426 	aprint_normal(": %s\n", bp->bp_name);
427 
428 	sc->bnx_pa = *pa;
429 
430 	/*
431 	 * Map control/status registers.
432 	*/
433 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
434 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
435 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
436 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
437 
438 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
439 		aprint_error_dev(sc->bnx_dev,
440 		    "failed to enable memory mapping!\n");
441 		return;
442 	}
443 
444 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
445 	switch (memtype) {
446 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
448 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
449 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
450 		    NULL, &sc->bnx_size) == 0)
451 			break;
452 	default:
453 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
454 		return;
455 	}
456 
457 	if (pci_intr_map(pa, &ih)) {
458 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
459 		goto bnx_attach_fail;
460 	}
461 
462 	intrstr = pci_intr_string(pc, ih);
463 
464 	/*
465 	 * Configure byte swap and enable indirect register access.
466 	 * Rely on CPU to do target byte swapping on big endian systems.
467 	 * Access to registers outside of PCI configurtion space are not
468 	 * valid until this is done.
469 	 */
470 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
471 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
472 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
473 
474 	/* Save ASIC revsion info. */
475 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
476 
477 	/* Weed out any non-production controller revisions. */
478 	switch(BNX_CHIP_ID(sc)) {
479 	case BNX_CHIP_ID_5706_A0:
480 	case BNX_CHIP_ID_5706_A1:
481 	case BNX_CHIP_ID_5708_A0:
482 	case BNX_CHIP_ID_5708_B0:
483 		aprint_error_dev(sc->bnx_dev,
484 		    "unsupported controller revision (%c%d)!\n",
485 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
486 		    PCI_REVISION(pa->pa_class) & 0x0f);
487 		goto bnx_attach_fail;
488 	}
489 
490 	/*
491 	 * Find the base address for shared memory access.
492 	 * Newer versions of bootcode use a signature and offset
493 	 * while older versions use a fixed address.
494 	 */
495 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
496 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
497 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
498 	else
499 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
500 
501 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
502 
503 	/* Set initial device and PHY flags */
504 	sc->bnx_flags = 0;
505 	sc->bnx_phy_flags = 0;
506 
507 	/* Get PCI bus information (speed and type). */
508 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
509 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
510 		u_int32_t clkreg;
511 
512 		sc->bnx_flags |= BNX_PCIX_FLAG;
513 
514 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
515 
516 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
517 		switch (clkreg) {
518 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
519 			sc->bus_speed_mhz = 133;
520 			break;
521 
522 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
523 			sc->bus_speed_mhz = 100;
524 			break;
525 
526 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
528 			sc->bus_speed_mhz = 66;
529 			break;
530 
531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
532 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
533 			sc->bus_speed_mhz = 50;
534 			break;
535 
536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
538 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
539 			sc->bus_speed_mhz = 33;
540 			break;
541 		}
542 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
543 			sc->bus_speed_mhz = 66;
544 		else
545 			sc->bus_speed_mhz = 33;
546 
547 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
548 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
549 
550 	/* Reset the controller. */
551 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
552 		goto bnx_attach_fail;
553 
554 	/* Initialize the controller. */
555 	if (bnx_chipinit(sc)) {
556 		aprint_error_dev(sc->bnx_dev,
557 		    "Controller initialization failed!\n");
558 		goto bnx_attach_fail;
559 	}
560 
561 	/* Perform NVRAM test. */
562 	if (bnx_nvram_test(sc)) {
563 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
564 		goto bnx_attach_fail;
565 	}
566 
567 	/* Fetch the permanent Ethernet MAC address. */
568 	bnx_get_mac_addr(sc);
569 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
570 	    ether_sprintf(sc->eaddr));
571 
572 	/*
573 	 * Trip points control how many BDs
574 	 * should be ready before generating an
575 	 * interrupt while ticks control how long
576 	 * a BD can sit in the chain before
577 	 * generating an interrupt.  Set the default
578 	 * values for the RX and TX rings.
579 	 */
580 
581 #ifdef BNX_DEBUG
582 	/* Force more frequent interrupts. */
583 	sc->bnx_tx_quick_cons_trip_int = 1;
584 	sc->bnx_tx_quick_cons_trip     = 1;
585 	sc->bnx_tx_ticks_int           = 0;
586 	sc->bnx_tx_ticks               = 0;
587 
588 	sc->bnx_rx_quick_cons_trip_int = 1;
589 	sc->bnx_rx_quick_cons_trip     = 1;
590 	sc->bnx_rx_ticks_int           = 0;
591 	sc->bnx_rx_ticks               = 0;
592 #else
593 	sc->bnx_tx_quick_cons_trip_int = 20;
594 	sc->bnx_tx_quick_cons_trip     = 20;
595 	sc->bnx_tx_ticks_int           = 80;
596 	sc->bnx_tx_ticks               = 80;
597 
598 	sc->bnx_rx_quick_cons_trip_int = 6;
599 	sc->bnx_rx_quick_cons_trip     = 6;
600 	sc->bnx_rx_ticks_int           = 18;
601 	sc->bnx_rx_ticks               = 18;
602 #endif
603 
604 	/* Update statistics once every second. */
605 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
606 
607 	/*
608 	 * The copper based NetXtreme II controllers
609 	 * that support 2.5Gb operation (currently
610 	 * 5708S) use a PHY at address 2, otherwise
611 	 * the PHY is present at address 1.
612 	 */
613 	sc->bnx_phy_addr = 1;
614 
615 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
616 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
617 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
618 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
619 			sc->bnx_phy_addr = 2;
620 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
621 					 BNX_SHARED_HW_CFG_CONFIG);
622 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
623 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
624 		}
625 	}
626 
627 	/* Allocate DMA memory resources. */
628 	sc->bnx_dmatag = pa->pa_dmat;
629 	if (bnx_dma_alloc(sc)) {
630 		aprint_error_dev(sc->bnx_dev,
631 		    "DMA resource allocation failed!\n");
632 		goto bnx_attach_fail;
633 	}
634 
635 	/* Initialize the ifnet interface. */
636 	ifp = &sc->bnx_ec.ec_if;
637 	ifp->if_softc = sc;
638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
639 	ifp->if_ioctl = bnx_ioctl;
640 	ifp->if_stop = bnx_stop;
641 	ifp->if_start = bnx_start;
642 	ifp->if_init = bnx_init;
643 	ifp->if_timer = 0;
644 	ifp->if_watchdog = bnx_watchdog;
645 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
646 	IFQ_SET_READY(&ifp->if_snd);
647 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
648 
649 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
650 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
651 
652 	ifp->if_capabilities |=
653 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
654 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
655 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
656 
657 	/* Hookup IRQ last. */
658 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
659 	if (sc->bnx_intrhand == NULL) {
660 		aprint_error_dev(self, "couldn't establish interrupt");
661 		if (intrstr != NULL)
662 			aprint_error(" at %s", intrstr);
663 		aprint_error("\n");
664 		goto bnx_attach_fail;
665 	}
666 
667 	sc->bnx_mii.mii_ifp = ifp;
668 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
669 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
670 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
671 
672 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
673 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
674 	    ether_mediastatus);
675 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
676 		mii_flags |= MIIF_HAVEFIBER;
677 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
678 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
679 
680 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
681 		aprint_error_dev(self, "no PHY found!\n");
682 		ifmedia_add(&sc->bnx_mii.mii_media,
683 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
684 		ifmedia_set(&sc->bnx_mii.mii_media,
685 		    IFM_ETHER|IFM_MANUAL);
686 	} else {
687 		ifmedia_set(&sc->bnx_mii.mii_media,
688 		    IFM_ETHER|IFM_AUTO);
689 	}
690 
691 	/* Attach to the Ethernet interface list. */
692 	if_attach(ifp);
693 	ether_ifattach(ifp,sc->eaddr);
694 
695 	callout_init(&sc->bnx_timeout, 0);
696 
697 	if (!pmf_device_register(self, NULL, NULL))
698 		aprint_error_dev(self, "couldn't establish power handler\n");
699 	else
700 		pmf_class_network_register(self, ifp);
701 
702 	/* Print some important debugging info. */
703 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
704 
705 	goto bnx_attach_exit;
706 
707 bnx_attach_fail:
708 	bnx_release_resources(sc);
709 
710 bnx_attach_exit:
711 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
712 }
713 
714 /****************************************************************************/
715 /* Device detach function.                                                  */
716 /*                                                                          */
717 /* Stops the controller, resets the controller, and releases resources.     */
718 /*                                                                          */
719 /* Returns:                                                                 */
720 /*   0 on success, positive value on failure.                               */
721 /****************************************************************************/
722 int
723 bnx_detach(device_t dev, int flags)
724 {
725 	int s;
726 	struct bnx_softc *sc;
727 	struct ifnet *ifp;
728 
729 	sc = device_private(dev);
730 	ifp = &sc->bnx_ec.ec_if;
731 
732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
733 
734 	/* Stop and reset the controller. */
735 	s = splnet();
736 	if (ifp->if_flags & IFF_RUNNING)
737 		bnx_stop(ifp, 1);
738 	splx(s);
739 
740 	pmf_device_deregister(dev);
741 	callout_destroy(&sc->bnx_timeout);
742 	ether_ifdetach(ifp);
743 	if_detach(ifp);
744 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
745 
746 	/* Release all remaining resources. */
747 	bnx_release_resources(sc);
748 
749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
750 
751 	return(0);
752 }
753 
754 /****************************************************************************/
755 /* Indirect register read.                                                  */
756 /*                                                                          */
757 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
758 /* configuration space.  Using this mechanism avoids issues with posted     */
759 /* reads but is much slower than memory-mapped I/O.                         */
760 /*                                                                          */
761 /* Returns:                                                                 */
762 /*   The value of the register.                                             */
763 /****************************************************************************/
764 u_int32_t
765 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
766 {
767 	struct pci_attach_args	*pa = &(sc->bnx_pa);
768 
769 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
770 	    offset);
771 #ifdef BNX_DEBUG
772 	{
773 		u_int32_t val;
774 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
775 		    BNX_PCICFG_REG_WINDOW);
776 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
777 		    "val = 0x%08X\n", __func__, offset, val);
778 		return (val);
779 	}
780 #else
781 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
782 #endif
783 }
784 
785 /****************************************************************************/
786 /* Indirect register write.                                                 */
787 /*                                                                          */
788 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
789 /* configuration space.  Using this mechanism avoids issues with posted     */
790 /* writes but is muchh slower than memory-mapped I/O.                       */
791 /*                                                                          */
792 /* Returns:                                                                 */
793 /*   Nothing.                                                               */
794 /****************************************************************************/
795 void
796 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
797 {
798 	struct pci_attach_args  *pa = &(sc->bnx_pa);
799 
800 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
801 		__func__, offset, val);
802 
803 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
804 	    offset);
805 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
806 }
807 
808 /****************************************************************************/
809 /* Context memory write.                                                    */
810 /*                                                                          */
811 /* The NetXtreme II controller uses context memory to track connection      */
812 /* information for L2 and higher network protocols.                         */
813 /*                                                                          */
814 /* Returns:                                                                 */
815 /*   Nothing.                                                               */
816 /****************************************************************************/
817 void
818 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
819     u_int32_t val)
820 {
821 
822 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
823 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
824 
825 	offset += cid_addr;
826 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
827 	REG_WR(sc, BNX_CTX_DATA, val);
828 }
829 
830 /****************************************************************************/
831 /* PHY register read.                                                       */
832 /*                                                                          */
833 /* Implements register reads on the MII bus.                                */
834 /*                                                                          */
835 /* Returns:                                                                 */
836 /*   The value of the register.                                             */
837 /****************************************************************************/
838 int
839 bnx_miibus_read_reg(device_t dev, int phy, int reg)
840 {
841 	struct bnx_softc	*sc = device_private(dev);
842 	u_int32_t		val;
843 	int			i;
844 
845 	/* Make sure we are accessing the correct PHY address. */
846 	if (phy != sc->bnx_phy_addr) {
847 		DBPRINT(sc, BNX_VERBOSE,
848 		    "Invalid PHY address %d for PHY read!\n", phy);
849 		return(0);
850 	}
851 
852 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
853 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
854 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
855 
856 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
857 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
858 
859 		DELAY(40);
860 	}
861 
862 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
863 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
864 	    BNX_EMAC_MDIO_COMM_START_BUSY;
865 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
866 
867 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
868 		DELAY(10);
869 
870 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
871 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
872 			DELAY(5);
873 
874 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
875 			val &= BNX_EMAC_MDIO_COMM_DATA;
876 
877 			break;
878 		}
879 	}
880 
881 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
882 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
883 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
884 		val = 0x0;
885 	} else
886 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
887 
888 	DBPRINT(sc, BNX_EXCESSIVE,
889 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
890 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
891 
892 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
893 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
894 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
895 
896 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
897 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
898 
899 		DELAY(40);
900 	}
901 
902 	return (val & 0xffff);
903 }
904 
905 /****************************************************************************/
906 /* PHY register write.                                                      */
907 /*                                                                          */
908 /* Implements register writes on the MII bus.                               */
909 /*                                                                          */
910 /* Returns:                                                                 */
911 /*   The value of the register.                                             */
912 /****************************************************************************/
913 void
914 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
915 {
916 	struct bnx_softc	*sc = device_private(dev);
917 	u_int32_t		val1;
918 	int			i;
919 
920 	/* Make sure we are accessing the correct PHY address. */
921 	if (phy != sc->bnx_phy_addr) {
922 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
923 		    phy);
924 		return;
925 	}
926 
927 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
928 	    "val = 0x%04X\n", __func__,
929 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
930 
931 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
932 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
933 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
934 
935 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
936 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
937 
938 		DELAY(40);
939 	}
940 
941 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
942 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
943 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
944 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
945 
946 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
947 		DELAY(10);
948 
949 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
950 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
951 			DELAY(5);
952 			break;
953 		}
954 	}
955 
956 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
957 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
958 		    __LINE__);
959 	}
960 
961 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
962 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
963 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
964 
965 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
966 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
967 
968 		DELAY(40);
969 	}
970 }
971 
972 /****************************************************************************/
973 /* MII bus status change.                                                   */
974 /*                                                                          */
975 /* Called by the MII bus driver when the PHY establishes link to set the    */
976 /* MAC interface registers.                                                 */
977 /*                                                                          */
978 /* Returns:                                                                 */
979 /*   Nothing.                                                               */
980 /****************************************************************************/
981 void
982 bnx_miibus_statchg(device_t dev)
983 {
984 	struct bnx_softc	*sc = device_private(dev);
985 	struct mii_data		*mii = &sc->bnx_mii;
986 	int			val;
987 
988 	val = REG_RD(sc, BNX_EMAC_MODE);
989 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
990 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
991 	    BNX_EMAC_MODE_25G);
992 
993 	/* Set MII or GMII interface based on the speed
994 	 * negotiated by the PHY.
995 	 */
996 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
997 	case IFM_10_T:
998 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
999 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1000 			val |= BNX_EMAC_MODE_PORT_MII_10;
1001 			break;
1002 		}
1003 		/* FALLTHROUGH */
1004 	case IFM_100_TX:
1005 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1006 		val |= BNX_EMAC_MODE_PORT_MII;
1007 		break;
1008 	case IFM_2500_SX:
1009 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1010 		val |= BNX_EMAC_MODE_25G;
1011 		/* FALLTHROUGH */
1012 	case IFM_1000_T:
1013 	case IFM_1000_SX:
1014 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1015 		val |= BNX_EMAC_MODE_PORT_GMII;
1016 		break;
1017 	default:
1018 		val |= BNX_EMAC_MODE_PORT_GMII;
1019 		break;
1020 	}
1021 
1022 	/* Set half or full duplex based on the duplicity
1023 	 * negotiated by the PHY.
1024 	 */
1025 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1026 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1027 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
1028 	} else {
1029 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1030 	}
1031 
1032 	REG_WR(sc, BNX_EMAC_MODE, val);
1033 }
1034 
1035 /****************************************************************************/
1036 /* Acquire NVRAM lock.                                                      */
1037 /*                                                                          */
1038 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
1039 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1040 /* for use by the driver.                                                   */
1041 /*                                                                          */
1042 /* Returns:                                                                 */
1043 /*   0 on success, positive value on failure.                               */
1044 /****************************************************************************/
1045 int
1046 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1047 {
1048 	u_int32_t		val;
1049 	int			j;
1050 
1051 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1052 
1053 	/* Request access to the flash interface. */
1054 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1055 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1056 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1057 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1058 			break;
1059 
1060 		DELAY(5);
1061 	}
1062 
1063 	if (j >= NVRAM_TIMEOUT_COUNT) {
1064 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1065 		return (EBUSY);
1066 	}
1067 
1068 	return (0);
1069 }
1070 
1071 /****************************************************************************/
1072 /* Release NVRAM lock.                                                      */
1073 /*                                                                          */
1074 /* When the caller is finished accessing NVRAM the lock must be released.   */
1075 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
1076 /* for use by the driver.                                                   */
1077 /*                                                                          */
1078 /* Returns:                                                                 */
1079 /*   0 on success, positive value on failure.                               */
1080 /****************************************************************************/
1081 int
1082 bnx_release_nvram_lock(struct bnx_softc *sc)
1083 {
1084 	int			j;
1085 	u_int32_t		val;
1086 
1087 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1088 
1089 	/* Relinquish nvram interface. */
1090 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1091 
1092 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1093 		val = REG_RD(sc, BNX_NVM_SW_ARB);
1094 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1095 			break;
1096 
1097 		DELAY(5);
1098 	}
1099 
1100 	if (j >= NVRAM_TIMEOUT_COUNT) {
1101 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1102 		return (EBUSY);
1103 	}
1104 
1105 	return (0);
1106 }
1107 
1108 #ifdef BNX_NVRAM_WRITE_SUPPORT
1109 /****************************************************************************/
1110 /* Enable NVRAM write access.                                               */
1111 /*                                                                          */
1112 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
1113 /*                                                                          */
1114 /* Returns:                                                                 */
1115 /*   0 on success, positive value on failure.                               */
1116 /****************************************************************************/
1117 int
1118 bnx_enable_nvram_write(struct bnx_softc *sc)
1119 {
1120 	u_int32_t		val;
1121 
1122 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1123 
1124 	val = REG_RD(sc, BNX_MISC_CFG);
1125 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1126 
1127 	if (!sc->bnx_flash_info->buffered) {
1128 		int j;
1129 
1130 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1131 		REG_WR(sc, BNX_NVM_COMMAND,
1132 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1133 
1134 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1135 			DELAY(5);
1136 
1137 			val = REG_RD(sc, BNX_NVM_COMMAND);
1138 			if (val & BNX_NVM_COMMAND_DONE)
1139 				break;
1140 		}
1141 
1142 		if (j >= NVRAM_TIMEOUT_COUNT) {
1143 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1144 			return (EBUSY);
1145 		}
1146 	}
1147 
1148 	return (0);
1149 }
1150 
1151 /****************************************************************************/
1152 /* Disable NVRAM write access.                                              */
1153 /*                                                                          */
1154 /* When the caller is finished writing to NVRAM write access must be        */
1155 /* disabled.                                                                */
1156 /*                                                                          */
1157 /* Returns:                                                                 */
1158 /*   Nothing.                                                               */
1159 /****************************************************************************/
1160 void
1161 bnx_disable_nvram_write(struct bnx_softc *sc)
1162 {
1163 	u_int32_t		val;
1164 
1165 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
1166 
1167 	val = REG_RD(sc, BNX_MISC_CFG);
1168 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1169 }
1170 #endif
1171 
1172 /****************************************************************************/
1173 /* Enable NVRAM access.                                                     */
1174 /*                                                                          */
1175 /* Before accessing NVRAM for read or write operations the caller must      */
1176 /* enabled NVRAM access.                                                    */
1177 /*                                                                          */
1178 /* Returns:                                                                 */
1179 /*   Nothing.                                                               */
1180 /****************************************************************************/
1181 void
1182 bnx_enable_nvram_access(struct bnx_softc *sc)
1183 {
1184 	u_int32_t		val;
1185 
1186 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1187 
1188 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1189 	/* Enable both bits, even on read. */
1190 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1191 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1192 }
1193 
1194 /****************************************************************************/
1195 /* Disable NVRAM access.                                                    */
1196 /*                                                                          */
1197 /* When the caller is finished accessing NVRAM access must be disabled.     */
1198 /*                                                                          */
1199 /* Returns:                                                                 */
1200 /*   Nothing.                                                               */
1201 /****************************************************************************/
1202 void
1203 bnx_disable_nvram_access(struct bnx_softc *sc)
1204 {
1205 	u_int32_t		val;
1206 
1207 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1208 
1209 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1210 
1211 	/* Disable both bits, even after read. */
1212 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1213 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1214 }
1215 
1216 #ifdef BNX_NVRAM_WRITE_SUPPORT
1217 /****************************************************************************/
1218 /* Erase NVRAM page before writing.                                         */
1219 /*                                                                          */
1220 /* Non-buffered flash parts require that a page be erased before it is      */
1221 /* written.                                                                 */
1222 /*                                                                          */
1223 /* Returns:                                                                 */
1224 /*   0 on success, positive value on failure.                               */
1225 /****************************************************************************/
1226 int
1227 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1228 {
1229 	u_int32_t		cmd;
1230 	int			j;
1231 
1232 	/* Buffered flash doesn't require an erase. */
1233 	if (sc->bnx_flash_info->buffered)
1234 		return (0);
1235 
1236 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1237 
1238 	/* Build an erase command. */
1239 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1240 	    BNX_NVM_COMMAND_DOIT;
1241 
1242 	/*
1243 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
1244 	 * and issue the erase command.
1245 	 */
1246 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1247 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1248 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1249 
1250 	/* Wait for completion. */
1251 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1252 		u_int32_t val;
1253 
1254 		DELAY(5);
1255 
1256 		val = REG_RD(sc, BNX_NVM_COMMAND);
1257 		if (val & BNX_NVM_COMMAND_DONE)
1258 			break;
1259 	}
1260 
1261 	if (j >= NVRAM_TIMEOUT_COUNT) {
1262 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1263 		return (EBUSY);
1264 	}
1265 
1266 	return (0);
1267 }
1268 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1269 
1270 /****************************************************************************/
1271 /* Read a dword (32 bits) from NVRAM.                                       */
1272 /*                                                                          */
1273 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
1274 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
1275 /*                                                                          */
1276 /* Returns:                                                                 */
1277 /*   0 on success and the 32 bit value read, positive value on failure.     */
1278 /****************************************************************************/
1279 int
1280 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1281     u_int8_t *ret_val, u_int32_t cmd_flags)
1282 {
1283 	u_int32_t		cmd;
1284 	int			i, rc = 0;
1285 
1286 	/* Build the command word. */
1287 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1288 
1289 	/* Calculate the offset for buffered flash. */
1290 	if (sc->bnx_flash_info->buffered)
1291 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1292 		    sc->bnx_flash_info->page_bits) +
1293 		    (offset % sc->bnx_flash_info->page_size);
1294 
1295 	/*
1296 	 * Clear the DONE bit separately, set the address to read,
1297 	 * and issue the read.
1298 	 */
1299 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1300 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1301 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1302 
1303 	/* Wait for completion. */
1304 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1305 		u_int32_t val;
1306 
1307 		DELAY(5);
1308 
1309 		val = REG_RD(sc, BNX_NVM_COMMAND);
1310 		if (val & BNX_NVM_COMMAND_DONE) {
1311 			val = REG_RD(sc, BNX_NVM_READ);
1312 
1313 			val = bnx_be32toh(val);
1314 			memcpy(ret_val, &val, 4);
1315 			break;
1316 		}
1317 	}
1318 
1319 	/* Check for errors. */
1320 	if (i >= NVRAM_TIMEOUT_COUNT) {
1321 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1322 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1323 		rc = EBUSY;
1324 	}
1325 
1326 	return(rc);
1327 }
1328 
1329 #ifdef BNX_NVRAM_WRITE_SUPPORT
1330 /****************************************************************************/
1331 /* Write a dword (32 bits) to NVRAM.                                        */
1332 /*                                                                          */
1333 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
1334 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
1335 /* enabled NVRAM write access.                                              */
1336 /*                                                                          */
1337 /* Returns:                                                                 */
1338 /*   0 on success, positive value on failure.                               */
1339 /****************************************************************************/
1340 int
1341 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1342     u_int32_t cmd_flags)
1343 {
1344 	u_int32_t		cmd, val32;
1345 	int			j;
1346 
1347 	/* Build the command word. */
1348 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1349 
1350 	/* Calculate the offset for buffered flash. */
1351 	if (sc->bnx_flash_info->buffered)
1352 		offset = ((offset / sc->bnx_flash_info->page_size) <<
1353 		    sc->bnx_flash_info->page_bits) +
1354 		    (offset % sc->bnx_flash_info->page_size);
1355 
1356 	/*
1357 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1358 	 * set the NVRAM address to write, and issue the write command
1359 	 */
1360 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1361 	memcpy(&val32, val, 4);
1362 	val32 = htobe32(val32);
1363 	REG_WR(sc, BNX_NVM_WRITE, val32);
1364 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1365 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
1366 
1367 	/* Wait for completion. */
1368 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1369 		DELAY(5);
1370 
1371 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1372 			break;
1373 	}
1374 	if (j >= NVRAM_TIMEOUT_COUNT) {
1375 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1376 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
1377 		return (EBUSY);
1378 	}
1379 
1380 	return (0);
1381 }
1382 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1383 
1384 /****************************************************************************/
1385 /* Initialize NVRAM access.                                                 */
1386 /*                                                                          */
1387 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
1388 /* access that device.                                                      */
1389 /*                                                                          */
1390 /* Returns:                                                                 */
1391 /*   0 on success, positive value on failure.                               */
1392 /****************************************************************************/
1393 int
1394 bnx_init_nvram(struct bnx_softc *sc)
1395 {
1396 	u_int32_t		val;
1397 	int			j, entry_count, rc;
1398 	struct flash_spec	*flash;
1399 
1400 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1401 
1402 	/* Determine the selected interface. */
1403 	val = REG_RD(sc, BNX_NVM_CFG1);
1404 
1405 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1406 
1407 	rc = 0;
1408 
1409 	/*
1410 	 * Flash reconfiguration is required to support additional
1411 	 * NVRAM devices not directly supported in hardware.
1412 	 * Check if the flash interface was reconfigured
1413 	 * by the bootcode.
1414 	 */
1415 
1416 	if (val & 0x40000000) {
1417 		/* Flash interface reconfigured by bootcode. */
1418 
1419 		DBPRINT(sc,BNX_INFO_LOAD,
1420 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
1421 
1422 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1423 		     j++, flash++) {
1424 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
1425 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1426 				sc->bnx_flash_info = flash;
1427 				break;
1428 			}
1429 		}
1430 	} else {
1431 		/* Flash interface not yet reconfigured. */
1432 		u_int32_t mask;
1433 
1434 		DBPRINT(sc,BNX_INFO_LOAD,
1435 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
1436 
1437 		if (val & (1 << 23))
1438 			mask = FLASH_BACKUP_STRAP_MASK;
1439 		else
1440 			mask = FLASH_STRAP_MASK;
1441 
1442 		/* Look for the matching NVRAM device configuration data. */
1443 		for (j = 0, flash = &flash_table[0]; j < entry_count;
1444 		    j++, flash++) {
1445 			/* Check if the dev matches any of the known devices. */
1446 			if ((val & mask) == (flash->strapping & mask)) {
1447 				/* Found a device match. */
1448 				sc->bnx_flash_info = flash;
1449 
1450 				/* Request access to the flash interface. */
1451 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1452 					return (rc);
1453 
1454 				/* Reconfigure the flash interface. */
1455 				bnx_enable_nvram_access(sc);
1456 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1457 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1458 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1459 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1460 				bnx_disable_nvram_access(sc);
1461 				bnx_release_nvram_lock(sc);
1462 
1463 				break;
1464 			}
1465 		}
1466 	}
1467 
1468 	/* Check if a matching device was found. */
1469 	if (j == entry_count) {
1470 		sc->bnx_flash_info = NULL;
1471 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1472 			__FILE__, __LINE__);
1473 		rc = ENODEV;
1474 	}
1475 
1476 	/* Write the flash config data to the shared memory interface. */
1477 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1478 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1479 	if (val)
1480 		sc->bnx_flash_size = val;
1481 	else
1482 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1483 
1484 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1485 	    "0x%08X\n", sc->bnx_flash_info->total_size);
1486 
1487 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1488 
1489 	return (rc);
1490 }
1491 
1492 /****************************************************************************/
1493 /* Read an arbitrary range of data from NVRAM.                              */
1494 /*                                                                          */
1495 /* Prepares the NVRAM interface for access and reads the requested data     */
1496 /* into the supplied buffer.                                                */
1497 /*                                                                          */
1498 /* Returns:                                                                 */
1499 /*   0 on success and the data read, positive value on failure.             */
1500 /****************************************************************************/
1501 int
1502 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1503     int buf_size)
1504 {
1505 	int			rc = 0;
1506 	u_int32_t		cmd_flags, offset32, len32, extra;
1507 
1508 	if (buf_size == 0)
1509 		return (0);
1510 
1511 	/* Request access to the flash interface. */
1512 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1513 		return (rc);
1514 
1515 	/* Enable access to flash interface */
1516 	bnx_enable_nvram_access(sc);
1517 
1518 	len32 = buf_size;
1519 	offset32 = offset;
1520 	extra = 0;
1521 
1522 	cmd_flags = 0;
1523 
1524 	if (offset32 & 3) {
1525 		u_int8_t buf[4];
1526 		u_int32_t pre_len;
1527 
1528 		offset32 &= ~3;
1529 		pre_len = 4 - (offset & 3);
1530 
1531 		if (pre_len >= len32) {
1532 			pre_len = len32;
1533 			cmd_flags =
1534 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1535 		} else
1536 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1537 
1538 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1539 
1540 		if (rc)
1541 			return (rc);
1542 
1543 		memcpy(ret_buf, buf + (offset & 3), pre_len);
1544 
1545 		offset32 += 4;
1546 		ret_buf += pre_len;
1547 		len32 -= pre_len;
1548 	}
1549 
1550 	if (len32 & 3) {
1551 		extra = 4 - (len32 & 3);
1552 		len32 = (len32 + 4) & ~3;
1553 	}
1554 
1555 	if (len32 == 4) {
1556 		u_int8_t buf[4];
1557 
1558 		if (cmd_flags)
1559 			cmd_flags = BNX_NVM_COMMAND_LAST;
1560 		else
1561 			cmd_flags =
1562 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1563 
1564 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1565 
1566 		memcpy(ret_buf, buf, 4 - extra);
1567 	} else if (len32 > 0) {
1568 		u_int8_t buf[4];
1569 
1570 		/* Read the first word. */
1571 		if (cmd_flags)
1572 			cmd_flags = 0;
1573 		else
1574 			cmd_flags = BNX_NVM_COMMAND_FIRST;
1575 
1576 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1577 
1578 		/* Advance to the next dword. */
1579 		offset32 += 4;
1580 		ret_buf += 4;
1581 		len32 -= 4;
1582 
1583 		while (len32 > 4 && rc == 0) {
1584 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1585 
1586 			/* Advance to the next dword. */
1587 			offset32 += 4;
1588 			ret_buf += 4;
1589 			len32 -= 4;
1590 		}
1591 
1592 		if (rc)
1593 			return (rc);
1594 
1595 		cmd_flags = BNX_NVM_COMMAND_LAST;
1596 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1597 
1598 		memcpy(ret_buf, buf, 4 - extra);
1599 	}
1600 
1601 	/* Disable access to flash interface and release the lock. */
1602 	bnx_disable_nvram_access(sc);
1603 	bnx_release_nvram_lock(sc);
1604 
1605 	return (rc);
1606 }
1607 
1608 #ifdef BNX_NVRAM_WRITE_SUPPORT
1609 /****************************************************************************/
1610 /* Write an arbitrary range of data from NVRAM.                             */
1611 /*                                                                          */
1612 /* Prepares the NVRAM interface for write access and writes the requested   */
1613 /* data from the supplied buffer.  The caller is responsible for            */
1614 /* calculating any appropriate CRCs.                                        */
1615 /*                                                                          */
1616 /* Returns:                                                                 */
1617 /*   0 on success, positive value on failure.                               */
1618 /****************************************************************************/
1619 int
1620 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1621     int buf_size)
1622 {
1623 	u_int32_t		written, offset32, len32;
1624 	u_int8_t		*buf, start[4], end[4];
1625 	int			rc = 0;
1626 	int			align_start, align_end;
1627 
1628 	buf = data_buf;
1629 	offset32 = offset;
1630 	len32 = buf_size;
1631 	align_start = align_end = 0;
1632 
1633 	if ((align_start = (offset32 & 3))) {
1634 		offset32 &= ~3;
1635 		len32 += align_start;
1636 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1637 			return (rc);
1638 	}
1639 
1640 	if (len32 & 3) {
1641 	       	if ((len32 > 4) || !align_start) {
1642 			align_end = 4 - (len32 & 3);
1643 			len32 += align_end;
1644 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1645 			    end, 4))) {
1646 				return (rc);
1647 			}
1648 		}
1649 	}
1650 
1651 	if (align_start || align_end) {
1652 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1653 		if (buf == 0)
1654 			return (ENOMEM);
1655 
1656 		if (align_start)
1657 			memcpy(buf, start, 4);
1658 
1659 		if (align_end)
1660 			memcpy(buf + len32 - 4, end, 4);
1661 
1662 		memcpy(buf + align_start, data_buf, buf_size);
1663 	}
1664 
1665 	written = 0;
1666 	while ((written < len32) && (rc == 0)) {
1667 		u_int32_t page_start, page_end, data_start, data_end;
1668 		u_int32_t addr, cmd_flags;
1669 		int i;
1670 		u_int8_t flash_buffer[264];
1671 
1672 	    /* Find the page_start addr */
1673 		page_start = offset32 + written;
1674 		page_start -= (page_start % sc->bnx_flash_info->page_size);
1675 		/* Find the page_end addr */
1676 		page_end = page_start + sc->bnx_flash_info->page_size;
1677 		/* Find the data_start addr */
1678 		data_start = (written == 0) ? offset32 : page_start;
1679 		/* Find the data_end addr */
1680 		data_end = (page_end > offset32 + len32) ?
1681 		    (offset32 + len32) : page_end;
1682 
1683 		/* Request access to the flash interface. */
1684 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1685 			goto nvram_write_end;
1686 
1687 		/* Enable access to flash interface */
1688 		bnx_enable_nvram_access(sc);
1689 
1690 		cmd_flags = BNX_NVM_COMMAND_FIRST;
1691 		if (sc->bnx_flash_info->buffered == 0) {
1692 			int j;
1693 
1694 			/* Read the whole page into the buffer
1695 			 * (non-buffer flash only) */
1696 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1697 				if (j == (sc->bnx_flash_info->page_size - 4))
1698 					cmd_flags |= BNX_NVM_COMMAND_LAST;
1699 
1700 				rc = bnx_nvram_read_dword(sc,
1701 					page_start + j,
1702 					&flash_buffer[j],
1703 					cmd_flags);
1704 
1705 				if (rc)
1706 					goto nvram_write_end;
1707 
1708 				cmd_flags = 0;
1709 			}
1710 		}
1711 
1712 		/* Enable writes to flash interface (unlock write-protect) */
1713 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
1714 			goto nvram_write_end;
1715 
1716 		/* Erase the page */
1717 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1718 			goto nvram_write_end;
1719 
1720 		/* Re-enable the write again for the actual write */
1721 		bnx_enable_nvram_write(sc);
1722 
1723 		/* Loop to write back the buffer data from page_start to
1724 		 * data_start */
1725 		i = 0;
1726 		if (sc->bnx_flash_info->buffered == 0) {
1727 			for (addr = page_start; addr < data_start;
1728 				addr += 4, i += 4) {
1729 
1730 				rc = bnx_nvram_write_dword(sc, addr,
1731 				    &flash_buffer[i], cmd_flags);
1732 
1733 				if (rc != 0)
1734 					goto nvram_write_end;
1735 
1736 				cmd_flags = 0;
1737 			}
1738 		}
1739 
1740 		/* Loop to write the new data from data_start to data_end */
1741 		for (addr = data_start; addr < data_end; addr += 4, i++) {
1742 			if ((addr == page_end - 4) ||
1743 			    ((sc->bnx_flash_info->buffered) &&
1744 			    (addr == data_end - 4))) {
1745 
1746 				cmd_flags |= BNX_NVM_COMMAND_LAST;
1747 			}
1748 
1749 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1750 
1751 			if (rc != 0)
1752 				goto nvram_write_end;
1753 
1754 			cmd_flags = 0;
1755 			buf += 4;
1756 		}
1757 
1758 		/* Loop to write back the buffer data from data_end
1759 		 * to page_end */
1760 		if (sc->bnx_flash_info->buffered == 0) {
1761 			for (addr = data_end; addr < page_end;
1762 			    addr += 4, i += 4) {
1763 
1764 				if (addr == page_end-4)
1765 					cmd_flags = BNX_NVM_COMMAND_LAST;
1766 
1767 				rc = bnx_nvram_write_dword(sc, addr,
1768 				    &flash_buffer[i], cmd_flags);
1769 
1770 				if (rc != 0)
1771 					goto nvram_write_end;
1772 
1773 				cmd_flags = 0;
1774 			}
1775 		}
1776 
1777 		/* Disable writes to flash interface (lock write-protect) */
1778 		bnx_disable_nvram_write(sc);
1779 
1780 		/* Disable access to flash interface */
1781 		bnx_disable_nvram_access(sc);
1782 		bnx_release_nvram_lock(sc);
1783 
1784 		/* Increment written */
1785 		written += data_end - data_start;
1786 	}
1787 
1788 nvram_write_end:
1789 	if (align_start || align_end)
1790 		free(buf, M_DEVBUF);
1791 
1792 	return (rc);
1793 }
1794 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1795 
1796 /****************************************************************************/
1797 /* Verifies that NVRAM is accessible and contains valid data.               */
1798 /*                                                                          */
1799 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
1800 /* correct.                                                                 */
1801 /*                                                                          */
1802 /* Returns:                                                                 */
1803 /*   0 on success, positive value on failure.                               */
1804 /****************************************************************************/
1805 int
1806 bnx_nvram_test(struct bnx_softc *sc)
1807 {
1808 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
1809 	u_int8_t		*data = (u_int8_t *) buf;
1810 	int			rc = 0;
1811 	u_int32_t		magic, csum;
1812 
1813 	/*
1814 	 * Check that the device NVRAM is valid by reading
1815 	 * the magic value at offset 0.
1816 	 */
1817 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1818 		goto bnx_nvram_test_done;
1819 
1820 	magic = bnx_be32toh(buf[0]);
1821 	if (magic != BNX_NVRAM_MAGIC) {
1822 		rc = ENODEV;
1823 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1824 		    "Expected: 0x%08X, Found: 0x%08X\n",
1825 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1826 		goto bnx_nvram_test_done;
1827 	}
1828 
1829 	/*
1830 	 * Verify that the device NVRAM includes valid
1831 	 * configuration data.
1832 	 */
1833 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1834 		goto bnx_nvram_test_done;
1835 
1836 	csum = ether_crc32_le(data, 0x100);
1837 	if (csum != BNX_CRC32_RESIDUAL) {
1838 		rc = ENODEV;
1839 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1840 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1841 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1842 		goto bnx_nvram_test_done;
1843 	}
1844 
1845 	csum = ether_crc32_le(data + 0x100, 0x100);
1846 	if (csum != BNX_CRC32_RESIDUAL) {
1847 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1848 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1849 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1850 		rc = ENODEV;
1851 	}
1852 
1853 bnx_nvram_test_done:
1854 	return (rc);
1855 }
1856 
1857 /****************************************************************************/
1858 /* Free any DMA memory owned by the driver.                                 */
1859 /*                                                                          */
1860 /* Scans through each data structre that requires DMA memory and frees      */
1861 /* the memory if allocated.                                                 */
1862 /*                                                                          */
1863 /* Returns:                                                                 */
1864 /*   Nothing.                                                               */
1865 /****************************************************************************/
1866 void
1867 bnx_dma_free(struct bnx_softc *sc)
1868 {
1869 	int			i;
1870 
1871 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1872 
1873 	/* Destroy the status block. */
1874 	if (sc->status_block != NULL && sc->status_map != NULL) {
1875 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1876 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1877 		    BNX_STATUS_BLK_SZ);
1878 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1879 		    sc->status_rseg);
1880 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1881 		sc->status_block = NULL;
1882 		sc->status_map = NULL;
1883 	}
1884 
1885 	/* Destroy the statistics block. */
1886 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
1887 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1888 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1889 		    BNX_STATS_BLK_SZ);
1890 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1891 		    sc->stats_rseg);
1892 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1893 		sc->stats_block = NULL;
1894 		sc->stats_map = NULL;
1895 	}
1896 
1897 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
1898 	for (i = 0; i < TX_PAGES; i++ ) {
1899 		if (sc->tx_bd_chain[i] != NULL &&
1900 		    sc->tx_bd_chain_map[i] != NULL) {
1901 			bus_dmamap_unload(sc->bnx_dmatag,
1902 			    sc->tx_bd_chain_map[i]);
1903 			bus_dmamem_unmap(sc->bnx_dmatag,
1904 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1905 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1906 			    sc->tx_bd_chain_rseg[i]);
1907 			bus_dmamap_destroy(sc->bnx_dmatag,
1908 			    sc->tx_bd_chain_map[i]);
1909 			sc->tx_bd_chain[i] = NULL;
1910 			sc->tx_bd_chain_map[i] = NULL;
1911 		}
1912 	}
1913 
1914 	/* Unload and destroy the TX mbuf maps. */
1915 	for (i = 0; i < TOTAL_TX_BD; i++) {
1916 		if (sc->tx_mbuf_map[i] != NULL) {
1917 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1918 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1919 		}
1920 	}
1921 
1922 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
1923 	for (i = 0; i < RX_PAGES; i++ ) {
1924 		if (sc->rx_bd_chain[i] != NULL &&
1925 		    sc->rx_bd_chain_map[i] != NULL) {
1926 			bus_dmamap_unload(sc->bnx_dmatag,
1927 			    sc->rx_bd_chain_map[i]);
1928 			bus_dmamem_unmap(sc->bnx_dmatag,
1929 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1930 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1931 			    sc->rx_bd_chain_rseg[i]);
1932 
1933 			bus_dmamap_destroy(sc->bnx_dmatag,
1934 			    sc->rx_bd_chain_map[i]);
1935 			sc->rx_bd_chain[i] = NULL;
1936 			sc->rx_bd_chain_map[i] = NULL;
1937 		}
1938 	}
1939 
1940 	/* Unload and destroy the RX mbuf maps. */
1941 	for (i = 0; i < TOTAL_RX_BD; i++) {
1942 		if (sc->rx_mbuf_map[i] != NULL) {
1943 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1944 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1945 		}
1946 	}
1947 
1948 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1949 }
1950 
1951 /****************************************************************************/
1952 /* Allocate any DMA memory needed by the driver.                            */
1953 /*                                                                          */
1954 /* Allocates DMA memory needed for the various global structures needed by  */
1955 /* hardware.                                                                */
1956 /*                                                                          */
1957 /* Returns:                                                                 */
1958 /*   0 for success, positive value for failure.                             */
1959 /****************************************************************************/
1960 int
1961 bnx_dma_alloc(struct bnx_softc *sc)
1962 {
1963 	int			i, rc = 0;
1964 
1965 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1966 
1967 	/*
1968 	 * Allocate DMA memory for the status block, map the memory into DMA
1969 	 * space, and fetch the physical address of the block.
1970 	 */
1971 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1972 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1973 		aprint_error_dev(sc->bnx_dev,
1974 		    "Could not create status block DMA map!\n");
1975 		rc = ENOMEM;
1976 		goto bnx_dma_alloc_exit;
1977 	}
1978 
1979 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1980 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1981 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
1982 		aprint_error_dev(sc->bnx_dev,
1983 		    "Could not allocate status block DMA memory!\n");
1984 		rc = ENOMEM;
1985 		goto bnx_dma_alloc_exit;
1986 	}
1987 
1988 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1989 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1990 		aprint_error_dev(sc->bnx_dev,
1991 		    "Could not map status block DMA memory!\n");
1992 		rc = ENOMEM;
1993 		goto bnx_dma_alloc_exit;
1994 	}
1995 
1996 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
1997 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
1998 		aprint_error_dev(sc->bnx_dev,
1999 		    "Could not load status block DMA memory!\n");
2000 		rc = ENOMEM;
2001 		goto bnx_dma_alloc_exit;
2002 	}
2003 
2004 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2005 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2006 
2007 	/* DRC - Fix for 64 bit addresses. */
2008 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2009 		(u_int32_t) sc->status_block_paddr);
2010 
2011 	/*
2012 	 * Allocate DMA memory for the statistics block, map the memory into
2013 	 * DMA space, and fetch the physical address of the block.
2014 	 */
2015 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2016 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2017 		aprint_error_dev(sc->bnx_dev,
2018 		    "Could not create stats block DMA map!\n");
2019 		rc = ENOMEM;
2020 		goto bnx_dma_alloc_exit;
2021 	}
2022 
2023 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2024 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2025 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2026 		aprint_error_dev(sc->bnx_dev,
2027 		    "Could not allocate stats block DMA memory!\n");
2028 		rc = ENOMEM;
2029 		goto bnx_dma_alloc_exit;
2030 	}
2031 
2032 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2033 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2034 		aprint_error_dev(sc->bnx_dev,
2035 		    "Could not map stats block DMA memory!\n");
2036 		rc = ENOMEM;
2037 		goto bnx_dma_alloc_exit;
2038 	}
2039 
2040 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2041 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2042 		aprint_error_dev(sc->bnx_dev,
2043 		    "Could not load status block DMA memory!\n");
2044 		rc = ENOMEM;
2045 		goto bnx_dma_alloc_exit;
2046 	}
2047 
2048 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2049 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2050 
2051 	/* DRC - Fix for 64 bit address. */
2052 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2053 	    (u_int32_t) sc->stats_block_paddr);
2054 
2055 	/*
2056 	 * Allocate DMA memory for the TX buffer descriptor chain,
2057 	 * and fetch the physical address of the block.
2058 	 */
2059 	for (i = 0; i < TX_PAGES; i++) {
2060 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2061 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2062 		    &sc->tx_bd_chain_map[i])) {
2063 			aprint_error_dev(sc->bnx_dev,
2064 			    "Could not create Tx desc %d DMA map!\n", i);
2065 			rc = ENOMEM;
2066 			goto bnx_dma_alloc_exit;
2067 		}
2068 
2069 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2070 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2071 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2072 			aprint_error_dev(sc->bnx_dev,
2073 			    "Could not allocate TX desc %d DMA memory!\n",
2074 			    i);
2075 			rc = ENOMEM;
2076 			goto bnx_dma_alloc_exit;
2077 		}
2078 
2079 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2080 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2081 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2082 			aprint_error_dev(sc->bnx_dev,
2083 			    "Could not map TX desc %d DMA memory!\n", i);
2084 			rc = ENOMEM;
2085 			goto bnx_dma_alloc_exit;
2086 		}
2087 
2088 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2089 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2090 		    BUS_DMA_NOWAIT)) {
2091 			aprint_error_dev(sc->bnx_dev,
2092 			    "Could not load TX desc %d DMA memory!\n", i);
2093 			rc = ENOMEM;
2094 			goto bnx_dma_alloc_exit;
2095 		}
2096 
2097 		sc->tx_bd_chain_paddr[i] =
2098 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2099 
2100 		/* DRC - Fix for 64 bit systems. */
2101 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2102 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2103 	}
2104 
2105 	/*
2106 	 * Create DMA maps for the TX buffer mbufs.
2107 	 */
2108 	for (i = 0; i < TOTAL_TX_BD; i++) {
2109 		if (bus_dmamap_create(sc->bnx_dmatag,
2110 		    MCLBYTES * BNX_MAX_SEGMENTS,
2111 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2112 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
2113 		    &sc->tx_mbuf_map[i])) {
2114 			aprint_error_dev(sc->bnx_dev,
2115 			    "Could not create Tx mbuf %d DMA map!\n", i);
2116 			rc = ENOMEM;
2117 			goto bnx_dma_alloc_exit;
2118 		}
2119 	}
2120 
2121 	/*
2122 	 * Allocate DMA memory for the Rx buffer descriptor chain,
2123 	 * and fetch the physical address of the block.
2124 	 */
2125 	for (i = 0; i < RX_PAGES; i++) {
2126 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2127 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2128 		    &sc->rx_bd_chain_map[i])) {
2129 			aprint_error_dev(sc->bnx_dev,
2130 			    "Could not create Rx desc %d DMA map!\n", i);
2131 			rc = ENOMEM;
2132 			goto bnx_dma_alloc_exit;
2133 		}
2134 
2135 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2136 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2137 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2138 			aprint_error_dev(sc->bnx_dev,
2139 			    "Could not allocate Rx desc %d DMA memory!\n", i);
2140 			rc = ENOMEM;
2141 			goto bnx_dma_alloc_exit;
2142 		}
2143 
2144 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2145 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2146 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2147 			aprint_error_dev(sc->bnx_dev,
2148 			    "Could not map Rx desc %d DMA memory!\n", i);
2149 			rc = ENOMEM;
2150 			goto bnx_dma_alloc_exit;
2151 		}
2152 
2153 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2154 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2155 		    BUS_DMA_NOWAIT)) {
2156 			aprint_error_dev(sc->bnx_dev,
2157 			    "Could not load Rx desc %d DMA memory!\n", i);
2158 			rc = ENOMEM;
2159 			goto bnx_dma_alloc_exit;
2160 		}
2161 
2162 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2163 		sc->rx_bd_chain_paddr[i] =
2164 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2165 
2166 		/* DRC - Fix for 64 bit systems. */
2167 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2168 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2169 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2170 		    0, BNX_RX_CHAIN_PAGE_SZ,
2171 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2172 	}
2173 
2174 	/*
2175 	 * Create DMA maps for the Rx buffer mbufs.
2176 	 */
2177 	for (i = 0; i < TOTAL_RX_BD; i++) {
2178 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2179 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2180 		    &sc->rx_mbuf_map[i])) {
2181 			aprint_error_dev(sc->bnx_dev,
2182 			    "Could not create Rx mbuf %d DMA map!\n", i);
2183 			rc = ENOMEM;
2184 			goto bnx_dma_alloc_exit;
2185 		}
2186 	}
2187 
2188  bnx_dma_alloc_exit:
2189 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2190 
2191 	return(rc);
2192 }
2193 
2194 /****************************************************************************/
2195 /* Release all resources used by the driver.                                */
2196 /*                                                                          */
2197 /* Releases all resources acquired by the driver including interrupts,      */
2198 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
2199 /*                                                                          */
2200 /* Returns:                                                                 */
2201 /*   Nothing.                                                               */
2202 /****************************************************************************/
2203 void
2204 bnx_release_resources(struct bnx_softc *sc)
2205 {
2206 	int i;
2207 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2208 
2209 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2210 
2211 	bnx_dma_free(sc);
2212 
2213 	if (sc->bnx_intrhand != NULL)
2214 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2215 
2216 	if (sc->bnx_size)
2217 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2218 
2219 	for (i = 0; i < TOTAL_RX_BD; i++)
2220 		if (sc->rx_mbuf_map[i])
2221 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2222 
2223 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2224 }
2225 
2226 /****************************************************************************/
2227 /* Firmware synchronization.                                                */
2228 /*                                                                          */
2229 /* Before performing certain events such as a chip reset, synchronize with  */
2230 /* the firmware first.                                                      */
2231 /*                                                                          */
2232 /* Returns:                                                                 */
2233 /*   0 for success, positive value for failure.                             */
2234 /****************************************************************************/
2235 int
2236 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2237 {
2238 	int			i, rc = 0;
2239 	u_int32_t		val;
2240 
2241 	/* Don't waste any time if we've timed out before. */
2242 	if (sc->bnx_fw_timed_out) {
2243 		rc = EBUSY;
2244 		goto bnx_fw_sync_exit;
2245 	}
2246 
2247 	/* Increment the message sequence number. */
2248 	sc->bnx_fw_wr_seq++;
2249 	msg_data |= sc->bnx_fw_wr_seq;
2250 
2251  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2252 	    msg_data);
2253 
2254 	/* Send the message to the bootcode driver mailbox. */
2255 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2256 
2257 	/* Wait for the bootcode to acknowledge the message. */
2258 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2259 		/* Check for a response in the bootcode firmware mailbox. */
2260 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2261 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2262 			break;
2263 		DELAY(1000);
2264 	}
2265 
2266 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
2267 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2268 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2269 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2270 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2271 
2272 		msg_data &= ~BNX_DRV_MSG_CODE;
2273 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2274 
2275 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2276 
2277 		sc->bnx_fw_timed_out = 1;
2278 		rc = EBUSY;
2279 	}
2280 
2281 bnx_fw_sync_exit:
2282 	return (rc);
2283 }
2284 
2285 /****************************************************************************/
2286 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
2287 /*                                                                          */
2288 /* Returns:                                                                 */
2289 /*   Nothing.                                                               */
2290 /****************************************************************************/
2291 void
2292 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2293     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2294 {
2295 	int			i;
2296 	u_int32_t		val;
2297 
2298 	for (i = 0; i < rv2p_code_len; i += 8) {
2299 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2300 		rv2p_code++;
2301 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2302 		rv2p_code++;
2303 
2304 		if (rv2p_proc == RV2P_PROC1) {
2305 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2306 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2307 		}
2308 		else {
2309 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2310 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2311 		}
2312 	}
2313 
2314 	/* Reset the processor, un-stall is done later. */
2315 	if (rv2p_proc == RV2P_PROC1)
2316 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2317 	else
2318 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2319 }
2320 
2321 /****************************************************************************/
2322 /* Load RISC processor firmware.                                            */
2323 /*                                                                          */
2324 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
2325 /* associated with a particular processor.                                  */
2326 /*                                                                          */
2327 /* Returns:                                                                 */
2328 /*   Nothing.                                                               */
2329 /****************************************************************************/
2330 void
2331 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2332     struct fw_info *fw)
2333 {
2334 	u_int32_t		offset;
2335 	u_int32_t		val;
2336 
2337 	/* Halt the CPU. */
2338 	val = REG_RD_IND(sc, cpu_reg->mode);
2339 	val |= cpu_reg->mode_value_halt;
2340 	REG_WR_IND(sc, cpu_reg->mode, val);
2341 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2342 
2343 	/* Load the Text area. */
2344 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2345 	if (fw->text) {
2346 		int j;
2347 
2348 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2349 			REG_WR_IND(sc, offset, fw->text[j]);
2350 	}
2351 
2352 	/* Load the Data area. */
2353 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2354 	if (fw->data) {
2355 		int j;
2356 
2357 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2358 			REG_WR_IND(sc, offset, fw->data[j]);
2359 	}
2360 
2361 	/* Load the SBSS area. */
2362 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2363 	if (fw->sbss) {
2364 		int j;
2365 
2366 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2367 			REG_WR_IND(sc, offset, fw->sbss[j]);
2368 	}
2369 
2370 	/* Load the BSS area. */
2371 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2372 	if (fw->bss) {
2373 		int j;
2374 
2375 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2376 			REG_WR_IND(sc, offset, fw->bss[j]);
2377 	}
2378 
2379 	/* Load the Read-Only area. */
2380 	offset = cpu_reg->spad_base +
2381 	    (fw->rodata_addr - cpu_reg->mips_view_base);
2382 	if (fw->rodata) {
2383 		int j;
2384 
2385 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2386 			REG_WR_IND(sc, offset, fw->rodata[j]);
2387 	}
2388 
2389 	/* Clear the pre-fetch instruction. */
2390 	REG_WR_IND(sc, cpu_reg->inst, 0);
2391 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2392 
2393 	/* Start the CPU. */
2394 	val = REG_RD_IND(sc, cpu_reg->mode);
2395 	val &= ~cpu_reg->mode_value_halt;
2396 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2397 	REG_WR_IND(sc, cpu_reg->mode, val);
2398 }
2399 
2400 /****************************************************************************/
2401 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
2402 /*                                                                          */
2403 /* Loads the firmware for each CPU and starts the CPU.                      */
2404 /*                                                                          */
2405 /* Returns:                                                                 */
2406 /*   Nothing.                                                               */
2407 /****************************************************************************/
2408 void
2409 bnx_init_cpus(struct bnx_softc *sc)
2410 {
2411 	struct cpu_reg cpu_reg;
2412 	struct fw_info fw;
2413 
2414 	/* Initialize the RV2P processor. */
2415 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2416 	    RV2P_PROC1);
2417 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2418 	    RV2P_PROC2);
2419 
2420 	/* Initialize the RX Processor. */
2421 	cpu_reg.mode = BNX_RXP_CPU_MODE;
2422 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2423 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2424 	cpu_reg.state = BNX_RXP_CPU_STATE;
2425 	cpu_reg.state_value_clear = 0xffffff;
2426 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2427 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2428 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2429 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2430 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2431 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
2432 	cpu_reg.mips_view_base = 0x8000000;
2433 
2434 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2435 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2436 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2437 	fw.start_addr = bnx_RXP_b06FwStartAddr;
2438 
2439 	fw.text_addr = bnx_RXP_b06FwTextAddr;
2440 	fw.text_len = bnx_RXP_b06FwTextLen;
2441 	fw.text_index = 0;
2442 	fw.text = bnx_RXP_b06FwText;
2443 
2444 	fw.data_addr = bnx_RXP_b06FwDataAddr;
2445 	fw.data_len = bnx_RXP_b06FwDataLen;
2446 	fw.data_index = 0;
2447 	fw.data = bnx_RXP_b06FwData;
2448 
2449 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2450 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
2451 	fw.sbss_index = 0;
2452 	fw.sbss = bnx_RXP_b06FwSbss;
2453 
2454 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
2455 	fw.bss_len = bnx_RXP_b06FwBssLen;
2456 	fw.bss_index = 0;
2457 	fw.bss = bnx_RXP_b06FwBss;
2458 
2459 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2460 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
2461 	fw.rodata_index = 0;
2462 	fw.rodata = bnx_RXP_b06FwRodata;
2463 
2464 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2465 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2466 
2467 	/* Initialize the TX Processor. */
2468 	cpu_reg.mode = BNX_TXP_CPU_MODE;
2469 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2470 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2471 	cpu_reg.state = BNX_TXP_CPU_STATE;
2472 	cpu_reg.state_value_clear = 0xffffff;
2473 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2474 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2475 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2476 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2477 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2478 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
2479 	cpu_reg.mips_view_base = 0x8000000;
2480 
2481 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2482 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2483 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2484 	fw.start_addr = bnx_TXP_b06FwStartAddr;
2485 
2486 	fw.text_addr = bnx_TXP_b06FwTextAddr;
2487 	fw.text_len = bnx_TXP_b06FwTextLen;
2488 	fw.text_index = 0;
2489 	fw.text = bnx_TXP_b06FwText;
2490 
2491 	fw.data_addr = bnx_TXP_b06FwDataAddr;
2492 	fw.data_len = bnx_TXP_b06FwDataLen;
2493 	fw.data_index = 0;
2494 	fw.data = bnx_TXP_b06FwData;
2495 
2496 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2497 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
2498 	fw.sbss_index = 0;
2499 	fw.sbss = bnx_TXP_b06FwSbss;
2500 
2501 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
2502 	fw.bss_len = bnx_TXP_b06FwBssLen;
2503 	fw.bss_index = 0;
2504 	fw.bss = bnx_TXP_b06FwBss;
2505 
2506 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2507 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
2508 	fw.rodata_index = 0;
2509 	fw.rodata = bnx_TXP_b06FwRodata;
2510 
2511 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2512 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2513 
2514 	/* Initialize the TX Patch-up Processor. */
2515 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
2516 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2517 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2518 	cpu_reg.state = BNX_TPAT_CPU_STATE;
2519 	cpu_reg.state_value_clear = 0xffffff;
2520 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2521 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2522 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2523 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2524 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2525 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2526 	cpu_reg.mips_view_base = 0x8000000;
2527 
2528 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2529 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2530 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2531 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
2532 
2533 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
2534 	fw.text_len = bnx_TPAT_b06FwTextLen;
2535 	fw.text_index = 0;
2536 	fw.text = bnx_TPAT_b06FwText;
2537 
2538 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
2539 	fw.data_len = bnx_TPAT_b06FwDataLen;
2540 	fw.data_index = 0;
2541 	fw.data = bnx_TPAT_b06FwData;
2542 
2543 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2544 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2545 	fw.sbss_index = 0;
2546 	fw.sbss = bnx_TPAT_b06FwSbss;
2547 
2548 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2549 	fw.bss_len = bnx_TPAT_b06FwBssLen;
2550 	fw.bss_index = 0;
2551 	fw.bss = bnx_TPAT_b06FwBss;
2552 
2553 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2554 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2555 	fw.rodata_index = 0;
2556 	fw.rodata = bnx_TPAT_b06FwRodata;
2557 
2558 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2559 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2560 
2561 	/* Initialize the Completion Processor. */
2562 	cpu_reg.mode = BNX_COM_CPU_MODE;
2563 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2564 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2565 	cpu_reg.state = BNX_COM_CPU_STATE;
2566 	cpu_reg.state_value_clear = 0xffffff;
2567 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2568 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2569 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2570 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2571 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2572 	cpu_reg.spad_base = BNX_COM_SCRATCH;
2573 	cpu_reg.mips_view_base = 0x8000000;
2574 
2575 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
2576 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2577 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
2578 	fw.start_addr = bnx_COM_b06FwStartAddr;
2579 
2580 	fw.text_addr = bnx_COM_b06FwTextAddr;
2581 	fw.text_len = bnx_COM_b06FwTextLen;
2582 	fw.text_index = 0;
2583 	fw.text = bnx_COM_b06FwText;
2584 
2585 	fw.data_addr = bnx_COM_b06FwDataAddr;
2586 	fw.data_len = bnx_COM_b06FwDataLen;
2587 	fw.data_index = 0;
2588 	fw.data = bnx_COM_b06FwData;
2589 
2590 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2591 	fw.sbss_len = bnx_COM_b06FwSbssLen;
2592 	fw.sbss_index = 0;
2593 	fw.sbss = bnx_COM_b06FwSbss;
2594 
2595 	fw.bss_addr = bnx_COM_b06FwBssAddr;
2596 	fw.bss_len = bnx_COM_b06FwBssLen;
2597 	fw.bss_index = 0;
2598 	fw.bss = bnx_COM_b06FwBss;
2599 
2600 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2601 	fw.rodata_len = bnx_COM_b06FwRodataLen;
2602 	fw.rodata_index = 0;
2603 	fw.rodata = bnx_COM_b06FwRodata;
2604 
2605 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2606 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2607 }
2608 
2609 /****************************************************************************/
2610 /* Initialize context memory.                                               */
2611 /*                                                                          */
2612 /* Clears the memory associated with each Context ID (CID).                 */
2613 /*                                                                          */
2614 /* Returns:                                                                 */
2615 /*   Nothing.                                                               */
2616 /****************************************************************************/
2617 void
2618 bnx_init_context(struct bnx_softc *sc)
2619 {
2620 	u_int32_t		vcid;
2621 
2622 	vcid = 96;
2623 	while (vcid) {
2624 		u_int32_t vcid_addr, pcid_addr, offset;
2625 
2626 		vcid--;
2627 
2628    		vcid_addr = GET_CID_ADDR(vcid);
2629 		pcid_addr = vcid_addr;
2630 
2631 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2632 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2633 
2634 		/* Zero out the context. */
2635 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2636 			CTX_WR(sc, 0x00, offset, 0);
2637 
2638 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2639 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2640 	}
2641 }
2642 
2643 /****************************************************************************/
2644 /* Fetch the permanent MAC address of the controller.                       */
2645 /*                                                                          */
2646 /* Returns:                                                                 */
2647 /*   Nothing.                                                               */
2648 /****************************************************************************/
2649 void
2650 bnx_get_mac_addr(struct bnx_softc *sc)
2651 {
2652 	u_int32_t		mac_lo = 0, mac_hi = 0;
2653 
2654 	/*
2655 	 * The NetXtreme II bootcode populates various NIC
2656 	 * power-on and runtime configuration items in a
2657 	 * shared memory area.  The factory configured MAC
2658 	 * address is available from both NVRAM and the
2659 	 * shared memory area so we'll read the value from
2660 	 * shared memory for speed.
2661 	 */
2662 
2663 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2664 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2665 
2666 	if ((mac_lo == 0) && (mac_hi == 0)) {
2667 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2668 		    __FILE__, __LINE__);
2669 	} else {
2670 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
2671 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
2672 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
2673 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
2674 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
2675 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
2676 	}
2677 
2678 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2679 	    "%s\n", ether_sprintf(sc->eaddr));
2680 }
2681 
2682 /****************************************************************************/
2683 /* Program the MAC address.                                                 */
2684 /*                                                                          */
2685 /* Returns:                                                                 */
2686 /*   Nothing.                                                               */
2687 /****************************************************************************/
2688 void
2689 bnx_set_mac_addr(struct bnx_softc *sc)
2690 {
2691 	u_int32_t		val;
2692 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
2693 
2694 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2695 	    "%s\n", ether_sprintf(sc->eaddr));
2696 
2697 	val = (mac_addr[0] << 8) | mac_addr[1];
2698 
2699 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2700 
2701 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2702 		(mac_addr[4] << 8) | mac_addr[5];
2703 
2704 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2705 }
2706 
2707 /****************************************************************************/
2708 /* Stop the controller.                                                     */
2709 /*                                                                          */
2710 /* Returns:                                                                 */
2711 /*   Nothing.                                                               */
2712 /****************************************************************************/
2713 void
2714 bnx_stop(struct ifnet *ifp, int disable)
2715 {
2716 	struct bnx_softc *sc = ifp->if_softc;
2717 
2718 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2719 
2720 	if ((ifp->if_flags & IFF_RUNNING) == 0)
2721 		return;
2722 
2723 	callout_stop(&sc->bnx_timeout);
2724 
2725 	mii_down(&sc->bnx_mii);
2726 
2727 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2728 
2729 	/* Disable the transmit/receive blocks. */
2730 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2731 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2732 	DELAY(20);
2733 
2734 	bnx_disable_intr(sc);
2735 
2736 	/* Tell firmware that the driver is going away. */
2737 	if (disable)
2738 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
2739 	else
2740 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2741 
2742 	/* Free the RX lists. */
2743 	bnx_free_rx_chain(sc);
2744 
2745 	/* Free TX buffers. */
2746 	bnx_free_tx_chain(sc);
2747 
2748 	ifp->if_timer = 0;
2749 
2750 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2751 
2752 }
2753 
2754 int
2755 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2756 {
2757 	u_int32_t		val;
2758 	int			i, rc = 0;
2759 
2760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2761 
2762 	/* Wait for pending PCI transactions to complete. */
2763 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2764 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2765 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2766 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2767 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2768 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2769 	DELAY(5);
2770 
2771 	/* Assume bootcode is running. */
2772 	sc->bnx_fw_timed_out = 0;
2773 
2774 	/* Give the firmware a chance to prepare for the reset. */
2775 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2776 	if (rc)
2777 		goto bnx_reset_exit;
2778 
2779 	/* Set a firmware reminder that this is a soft reset. */
2780 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2781 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
2782 
2783 	/* Dummy read to force the chip to complete all current transactions. */
2784 	val = REG_RD(sc, BNX_MISC_ID);
2785 
2786 	/* Chip reset. */
2787 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2788 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2789 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2790 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2791 
2792 	/* Allow up to 30us for reset to complete. */
2793 	for (i = 0; i < 10; i++) {
2794 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2795 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2796 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2797 			break;
2798 
2799 		DELAY(10);
2800 	}
2801 
2802 	/* Check that reset completed successfully. */
2803 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2804 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2805 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2806 		rc = EBUSY;
2807 		goto bnx_reset_exit;
2808 	}
2809 
2810 	/* Make sure byte swapping is properly configured. */
2811 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2812 	if (val != 0x01020304) {
2813 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2814 		    __FILE__, __LINE__);
2815 		rc = ENODEV;
2816 		goto bnx_reset_exit;
2817 	}
2818 
2819 	/* Just completed a reset, assume that firmware is running again. */
2820 	sc->bnx_fw_timed_out = 0;
2821 
2822 	/* Wait for the firmware to finish its initialization. */
2823 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2824 	if (rc)
2825 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2826 		    "initialization!\n", __FILE__, __LINE__);
2827 
2828 bnx_reset_exit:
2829 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2830 
2831 	return (rc);
2832 }
2833 
2834 int
2835 bnx_chipinit(struct bnx_softc *sc)
2836 {
2837 	struct pci_attach_args	*pa = &(sc->bnx_pa);
2838 	u_int32_t		val;
2839 	int			rc = 0;
2840 
2841 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2842 
2843 	/* Make sure the interrupt is not active. */
2844 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2845 
2846 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
2847 	/* channels and PCI clock compensation delay.                      */
2848 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2849 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
2850 #if BYTE_ORDER == BIG_ENDIAN
2851 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2852 #endif
2853 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2854 	    DMA_READ_CHANS << 12 |
2855 	    DMA_WRITE_CHANS << 16;
2856 
2857 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2858 
2859 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2860 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2861 
2862 	/*
2863 	 * This setting resolves a problem observed on certain Intel PCI
2864 	 * chipsets that cannot handle multiple outstanding DMA operations.
2865 	 * See errata E9_5706A1_65.
2866 	 */
2867 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2868 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2869 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
2870 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2871 
2872 	REG_WR(sc, BNX_DMA_CONFIG, val);
2873 
2874 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2875 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
2876 		u_int16_t nval;
2877 
2878 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2879 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2880 		    nval & ~0x20000);
2881 	}
2882 
2883 	/* Enable the RX_V2P and Context state machines before access. */
2884 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2885 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2886 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2887 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2888 
2889 	/* Initialize context mapping and zero out the quick contexts. */
2890 	bnx_init_context(sc);
2891 
2892 	/* Initialize the on-boards CPUs */
2893 	bnx_init_cpus(sc);
2894 
2895 	/* Prepare NVRAM for access. */
2896 	if (bnx_init_nvram(sc)) {
2897 		rc = ENODEV;
2898 		goto bnx_chipinit_exit;
2899 	}
2900 
2901 	/* Set the kernel bypass block size */
2902 	val = REG_RD(sc, BNX_MQ_CONFIG);
2903 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2904 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2905 	REG_WR(sc, BNX_MQ_CONFIG, val);
2906 
2907 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2908 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2909 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2910 
2911 	val = (BCM_PAGE_BITS - 8) << 24;
2912 	REG_WR(sc, BNX_RV2P_CONFIG, val);
2913 
2914 	/* Configure page size. */
2915 	val = REG_RD(sc, BNX_TBDR_CONFIG);
2916 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2917 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2918 	REG_WR(sc, BNX_TBDR_CONFIG, val);
2919 
2920 bnx_chipinit_exit:
2921 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2922 
2923 	return(rc);
2924 }
2925 
2926 /****************************************************************************/
2927 /* Initialize the controller in preparation to send/receive traffic.        */
2928 /*                                                                          */
2929 /* Returns:                                                                 */
2930 /*   0 for success, positive value for failure.                             */
2931 /****************************************************************************/
2932 int
2933 bnx_blockinit(struct bnx_softc *sc)
2934 {
2935 	u_int32_t		reg, val;
2936 	int 			rc = 0;
2937 
2938 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2939 
2940 	/* Load the hardware default MAC address. */
2941 	bnx_set_mac_addr(sc);
2942 
2943 	/* Set the Ethernet backoff seed value */
2944 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2945 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2946 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2947 
2948 	sc->last_status_idx = 0;
2949 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2950 
2951 	/* Set up link change interrupt generation. */
2952 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2953 
2954 	/* Program the physical address of the status block. */
2955 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2956 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2957 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2958 
2959 	/* Program the physical address of the statistics block. */
2960 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2961 	    (u_int32_t)(sc->stats_block_paddr));
2962 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2963 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2964 
2965 	/* Program various host coalescing parameters. */
2966 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2967 	    << 16) | sc->bnx_tx_quick_cons_trip);
2968 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2969 	    << 16) | sc->bnx_rx_quick_cons_trip);
2970 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2971 	    sc->bnx_comp_prod_trip);
2972 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2973 	    sc->bnx_tx_ticks);
2974 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2975 	    sc->bnx_rx_ticks);
2976 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2977 	    sc->bnx_com_ticks);
2978 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2979 	    sc->bnx_cmd_ticks);
2980 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2981 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
2982 	REG_WR(sc, BNX_HC_CONFIG,
2983 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2984 	    BNX_HC_CONFIG_COLLECT_STATS));
2985 
2986 	/* Clear the internal statistics counters. */
2987 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2988 
2989 	/* Verify that bootcode is running. */
2990 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2991 
2992 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2993 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2994 	    __FILE__, __LINE__); reg = 0);
2995 
2996 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2997 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
2998 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2999 		    "Expected: 08%08X\n", __FILE__, __LINE__,
3000 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3001 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
3002 		rc = ENODEV;
3003 		goto bnx_blockinit_exit;
3004 	}
3005 
3006 	/* Check if any management firmware is running. */
3007 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3008 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3009 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
3010 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3011 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3012 	}
3013 
3014 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3015 	    BNX_DEV_INFO_BC_REV);
3016 
3017 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3018 
3019 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
3020 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3021 
3022 	/* Enable link state change interrupt generation. */
3023 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3024 
3025 	/* Enable all remaining blocks in the MAC. */
3026 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3027 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3028 	DELAY(20);
3029 
3030 bnx_blockinit_exit:
3031 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3032 
3033 	return (rc);
3034 }
3035 
3036 static int
3037 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3038     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3039 {
3040 	bus_dmamap_t		map;
3041 	struct rx_bd		*rxbd;
3042 	u_int32_t		addr;
3043 	int i;
3044 #ifdef BNX_DEBUG
3045 	u_int16_t debug_chain_prod =	*chain_prod;
3046 #endif
3047 	u_int16_t first_chain_prod;
3048 
3049 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3050 
3051 	/* Map the mbuf cluster into device memory. */
3052 	map = sc->rx_mbuf_map[*chain_prod];
3053 	first_chain_prod = *chain_prod;
3054 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3055 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3056 		    __FILE__, __LINE__);
3057 
3058 		m_freem(m_new);
3059 
3060 		DBRUNIF(1, sc->rx_mbuf_alloc--);
3061 
3062 		return ENOBUFS;
3063 	}
3064 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3065 	    BUS_DMASYNC_PREREAD);
3066 
3067 	/* Watch for overflow. */
3068 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3069 	    aprint_error_dev(sc->bnx_dev,
3070 		"Too many free rx_bd (0x%04X > 0x%04X)!\n",
3071 		sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3072 
3073 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3074 	    sc->rx_low_watermark = sc->free_rx_bd);
3075 
3076 	/*
3077 	 * Setup the rx_bd for the first segment
3078 	 */
3079 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3080 
3081 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3082 	rxbd->rx_bd_haddr_lo = htole32(addr);
3083 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3084 	rxbd->rx_bd_haddr_hi = htole32(addr);
3085 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3086 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3087 	*prod_bseq += map->dm_segs[0].ds_len;
3088 	bus_dmamap_sync(sc->bnx_dmatag,
3089 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3090 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3091 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3092 
3093 	for (i = 1; i < map->dm_nsegs; i++) {
3094 		*prod = NEXT_RX_BD(*prod);
3095 		*chain_prod = RX_CHAIN_IDX(*prod);
3096 
3097 		rxbd =
3098 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3099 
3100 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3101 		rxbd->rx_bd_haddr_lo = htole32(addr);
3102 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3103 		rxbd->rx_bd_haddr_hi = htole32(addr);
3104 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3105 		rxbd->rx_bd_flags = 0;
3106 		*prod_bseq += map->dm_segs[i].ds_len;
3107 		bus_dmamap_sync(sc->bnx_dmatag,
3108 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3109 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3110 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3111 	}
3112 
3113 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3114 	bus_dmamap_sync(sc->bnx_dmatag,
3115 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3116 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3117 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3118 
3119 	/*
3120 	 * Save the mbuf, ajust the map pointer (swap map for first and
3121 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3122 	 * and update counter.
3123 	 */
3124 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
3125 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3126 	sc->rx_mbuf_map[*chain_prod] = map;
3127 	sc->free_rx_bd -= map->dm_nsegs;
3128 
3129 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3130 	    map->dm_nsegs));
3131 	*prod = NEXT_RX_BD(*prod);
3132 	*chain_prod = RX_CHAIN_IDX(*prod);
3133 
3134 	return 0;
3135 }
3136 
3137 /****************************************************************************/
3138 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
3139 /*                                                                          */
3140 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
3141 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
3142 /* necessary.                                                               */
3143 /*                                                                          */
3144 /* Returns:                                                                 */
3145 /*   0 for success, positive value for failure.                             */
3146 /****************************************************************************/
3147 int
3148 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3149     u_int16_t *chain_prod, u_int32_t *prod_bseq)
3150 {
3151 	struct mbuf 		*m_new = NULL;
3152 	int			rc = 0;
3153 	u_int16_t min_free_bd;
3154 
3155 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3156 	    __func__);
3157 
3158 	/* Make sure the inputs are valid. */
3159 	DBRUNIF((*chain_prod > MAX_RX_BD),
3160 	    aprint_error_dev(sc->bnx_dev,
3161 	        "RX producer out of range: 0x%04X > 0x%04X\n",
3162 		*chain_prod, (u_int16_t)MAX_RX_BD));
3163 
3164 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3165 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3166 	    *prod_bseq);
3167 
3168 	/* try to get in as many mbufs as possible */
3169 	if (sc->mbuf_alloc_size == MCLBYTES)
3170 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3171 	else
3172 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3173 	while (sc->free_rx_bd >= min_free_bd) {
3174 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3175 		    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3176 
3177 			sc->mbuf_alloc_failed++;
3178 			rc = ENOBUFS;
3179 			goto bnx_get_buf_exit);
3180 
3181 		/* This is a new mbuf allocation. */
3182 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3183 		if (m_new == NULL) {
3184 			DBPRINT(sc, BNX_WARN,
3185 			    "%s(%d): RX mbuf header allocation failed!\n",
3186 			    __FILE__, __LINE__);
3187 
3188 			DBRUNIF(1, sc->mbuf_alloc_failed++);
3189 
3190 			rc = ENOBUFS;
3191 			goto bnx_get_buf_exit;
3192 		}
3193 
3194 		DBRUNIF(1, sc->rx_mbuf_alloc++);
3195 		if (sc->mbuf_alloc_size == MCLBYTES)
3196 			MCLGET(m_new, M_DONTWAIT);
3197 		else
3198 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3199 			    M_DONTWAIT);
3200 		if (!(m_new->m_flags & M_EXT)) {
3201 			DBPRINT(sc, BNX_WARN,
3202 			    "%s(%d): RX mbuf chain allocation failed!\n",
3203 			    __FILE__, __LINE__);
3204 
3205 			m_freem(m_new);
3206 
3207 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3208 			DBRUNIF(1, sc->mbuf_alloc_failed++);
3209 
3210 			rc = ENOBUFS;
3211 			goto bnx_get_buf_exit;
3212 		}
3213 
3214 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3215 		if (rc != 0)
3216 			goto bnx_get_buf_exit;
3217 	}
3218 
3219 bnx_get_buf_exit:
3220 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3221 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3222 	    *chain_prod, *prod_bseq);
3223 
3224 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3225 	    __func__);
3226 
3227 	return(rc);
3228 }
3229 
3230 /****************************************************************************/
3231 /* Allocate memory and initialize the TX data structures.                   */
3232 /*                                                                          */
3233 /* Returns:                                                                 */
3234 /*   0 for success, positive value for failure.                             */
3235 /****************************************************************************/
3236 int
3237 bnx_init_tx_chain(struct bnx_softc *sc)
3238 {
3239 	struct tx_bd		*txbd;
3240 	u_int32_t		val, addr;
3241 	int			i, rc = 0;
3242 
3243 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3244 
3245 	/* Set the initial TX producer/consumer indices. */
3246 	sc->tx_prod = 0;
3247 	sc->tx_cons = 0;
3248 	sc->tx_prod_bseq = 0;
3249 	sc->used_tx_bd = 0;
3250 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3251 
3252 	/*
3253 	 * The NetXtreme II supports a linked-list structure called
3254 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
3255 	 * consists of a series of 1 or more chain pages, each of which
3256 	 * consists of a fixed number of BD entries.
3257 	 * The last BD entry on each page is a pointer to the next page
3258 	 * in the chain, and the last pointer in the BD chain
3259 	 * points back to the beginning of the chain.
3260 	 */
3261 
3262 	/* Set the TX next pointer chain entries. */
3263 	for (i = 0; i < TX_PAGES; i++) {
3264 		int j;
3265 
3266 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3267 
3268 		/* Check if we've reached the last page. */
3269 		if (i == (TX_PAGES - 1))
3270 			j = 0;
3271 		else
3272 			j = i + 1;
3273 
3274 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3275 		txbd->tx_bd_haddr_lo = htole32(addr);
3276 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3277 		txbd->tx_bd_haddr_hi = htole32(addr);
3278 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3279 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3280 	}
3281 
3282 	/*
3283 	 * Initialize the context ID for an L2 TX chain.
3284 	 */
3285 	val = BNX_L2CTX_TYPE_TYPE_L2;
3286 	val |= BNX_L2CTX_TYPE_SIZE_L2;
3287 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3288 
3289 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3290 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3291 
3292 	/* Point the hardware to the first page in the chain. */
3293 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3294 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3295 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3296 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3297 
3298 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3299 
3300 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3301 
3302 	return(rc);
3303 }
3304 
3305 /****************************************************************************/
3306 /* Free memory and clear the TX data structures.                            */
3307 /*                                                                          */
3308 /* Returns:                                                                 */
3309 /*   Nothing.                                                               */
3310 /****************************************************************************/
3311 void
3312 bnx_free_tx_chain(struct bnx_softc *sc)
3313 {
3314 	int			i;
3315 
3316 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3317 
3318 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3319 	for (i = 0; i < TOTAL_TX_BD; i++) {
3320 		if (sc->tx_mbuf_ptr[i] != NULL) {
3321 			if (sc->tx_mbuf_map != NULL)
3322 				bus_dmamap_sync(sc->bnx_dmatag,
3323 				    sc->tx_mbuf_map[i], 0,
3324 				    sc->tx_mbuf_map[i]->dm_mapsize,
3325 				    BUS_DMASYNC_POSTWRITE);
3326 			m_freem(sc->tx_mbuf_ptr[i]);
3327 			sc->tx_mbuf_ptr[i] = NULL;
3328 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3329 		}
3330 	}
3331 
3332 	/* Clear each TX chain page. */
3333 	for (i = 0; i < TX_PAGES; i++) {
3334 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3335 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3336 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3337 	}
3338 
3339 	/* Check if we lost any mbufs in the process. */
3340 	DBRUNIF((sc->tx_mbuf_alloc),
3341 	    aprint_error_dev(sc->bnx_dev,
3342 	        "Memory leak! Lost %d mbufs from tx chain!\n",
3343 		sc->tx_mbuf_alloc));
3344 
3345 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3346 }
3347 
3348 /****************************************************************************/
3349 /* Allocate memory and initialize the RX data structures.                   */
3350 /*                                                                          */
3351 /* Returns:                                                                 */
3352 /*   0 for success, positive value for failure.                             */
3353 /****************************************************************************/
3354 int
3355 bnx_init_rx_chain(struct bnx_softc *sc)
3356 {
3357 	struct rx_bd		*rxbd;
3358 	int			i, rc = 0;
3359 	u_int16_t		prod, chain_prod;
3360 	u_int32_t		prod_bseq, val, addr;
3361 
3362 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3363 
3364 	/* Initialize the RX producer and consumer indices. */
3365 	sc->rx_prod = 0;
3366 	sc->rx_cons = 0;
3367 	sc->rx_prod_bseq = 0;
3368 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3369 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3370 
3371 	/* Initialize the RX next pointer chain entries. */
3372 	for (i = 0; i < RX_PAGES; i++) {
3373 		int j;
3374 
3375 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3376 
3377 		/* Check if we've reached the last page. */
3378 		if (i == (RX_PAGES - 1))
3379 			j = 0;
3380 		else
3381 			j = i + 1;
3382 
3383 		/* Setup the chain page pointers. */
3384 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3385 		rxbd->rx_bd_haddr_hi = htole32(addr);
3386 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3387 		rxbd->rx_bd_haddr_lo = htole32(addr);
3388 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3389 		    0, BNX_RX_CHAIN_PAGE_SZ,
3390 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3391 	}
3392 
3393 	/* Initialize the context ID for an L2 RX chain. */
3394 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3395 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3396 	val |= 0x02 << 8;
3397 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3398 
3399 	/* Point the hardware to the first page in the chain. */
3400 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3401 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3402 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3403 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3404 
3405 	/* Allocate mbuf clusters for the rx_bd chain. */
3406 	prod = prod_bseq = 0;
3407 	chain_prod = RX_CHAIN_IDX(prod);
3408 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
3409 		BNX_PRINTF(sc,
3410 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3411 	}
3412 
3413 	/* Save the RX chain producer index. */
3414 	sc->rx_prod = prod;
3415 	sc->rx_prod_bseq = prod_bseq;
3416 
3417 	for (i = 0; i < RX_PAGES; i++)
3418 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3419 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3420 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3421 
3422 	/* Tell the chip about the waiting rx_bd's. */
3423 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3424 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3425 
3426 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3427 
3428 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3429 
3430 	return(rc);
3431 }
3432 
3433 /****************************************************************************/
3434 /* Free memory and clear the RX data structures.                            */
3435 /*                                                                          */
3436 /* Returns:                                                                 */
3437 /*   Nothing.                                                               */
3438 /****************************************************************************/
3439 void
3440 bnx_free_rx_chain(struct bnx_softc *sc)
3441 {
3442 	int			i;
3443 
3444 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3445 
3446 	/* Free any mbufs still in the RX mbuf chain. */
3447 	for (i = 0; i < TOTAL_RX_BD; i++) {
3448 		if (sc->rx_mbuf_ptr[i] != NULL) {
3449 			if (sc->rx_mbuf_map[i] != NULL)
3450 				bus_dmamap_sync(sc->bnx_dmatag,
3451 				    sc->rx_mbuf_map[i],	0,
3452 				    sc->rx_mbuf_map[i]->dm_mapsize,
3453 				    BUS_DMASYNC_POSTREAD);
3454 			m_freem(sc->rx_mbuf_ptr[i]);
3455 			sc->rx_mbuf_ptr[i] = NULL;
3456 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3457 		}
3458 	}
3459 
3460 	/* Clear each RX chain page. */
3461 	for (i = 0; i < RX_PAGES; i++)
3462 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
3463 
3464 	/* Check if we lost any mbufs in the process. */
3465 	DBRUNIF((sc->rx_mbuf_alloc),
3466 	    aprint_error_dev(sc->bnx_dev,
3467 	        "Memory leak! Lost %d mbufs from rx chain!\n",
3468 		sc->rx_mbuf_alloc));
3469 
3470 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3471 }
3472 
3473 /****************************************************************************/
3474 /* Handles PHY generated interrupt events.                                  */
3475 /*                                                                          */
3476 /* Returns:                                                                 */
3477 /*   Nothing.                                                               */
3478 /****************************************************************************/
3479 void
3480 bnx_phy_intr(struct bnx_softc *sc)
3481 {
3482 	u_int32_t		new_link_state, old_link_state;
3483 
3484 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3485 	    BUS_DMASYNC_POSTREAD);
3486 	new_link_state = sc->status_block->status_attn_bits &
3487 	    STATUS_ATTN_BITS_LINK_STATE;
3488 	old_link_state = sc->status_block->status_attn_bits_ack &
3489 	    STATUS_ATTN_BITS_LINK_STATE;
3490 
3491 	/* Handle any changes if the link state has changed. */
3492 	if (new_link_state != old_link_state) {
3493 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3494 
3495 		callout_stop(&sc->bnx_timeout);
3496 		bnx_tick(sc);
3497 
3498 		/* Update the status_attn_bits_ack field in the status block. */
3499 		if (new_link_state) {
3500 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3501 			    STATUS_ATTN_BITS_LINK_STATE);
3502 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3503 		} else {
3504 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3505 			    STATUS_ATTN_BITS_LINK_STATE);
3506 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3507 		}
3508 	}
3509 
3510 	/* Acknowledge the link change interrupt. */
3511 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3512 }
3513 
3514 /****************************************************************************/
3515 /* Handles received frame interrupt events.                                 */
3516 /*                                                                          */
3517 /* Returns:                                                                 */
3518 /*   Nothing.                                                               */
3519 /****************************************************************************/
3520 void
3521 bnx_rx_intr(struct bnx_softc *sc)
3522 {
3523 	struct status_block	*sblk = sc->status_block;
3524 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
3525 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
3526 	u_int16_t		sw_prod, sw_chain_prod;
3527 	u_int32_t		sw_prod_bseq;
3528 	struct l2_fhdr		*l2fhdr;
3529 	int			i;
3530 
3531 	DBRUNIF(1, sc->rx_interrupts++);
3532 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3533 	    BUS_DMASYNC_POSTREAD);
3534 
3535 	/* Prepare the RX chain pages to be accessed by the host CPU. */
3536 	for (i = 0; i < RX_PAGES; i++)
3537 		bus_dmamap_sync(sc->bnx_dmatag,
3538 		    sc->rx_bd_chain_map[i], 0,
3539 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3540 		    BUS_DMASYNC_POSTWRITE);
3541 
3542 	/* Get the hardware's view of the RX consumer index. */
3543 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3544 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3545 		hw_cons++;
3546 
3547 	/* Get working copies of the driver's view of the RX indices. */
3548 	sw_cons = sc->rx_cons;
3549 	sw_prod = sc->rx_prod;
3550 	sw_prod_bseq = sc->rx_prod_bseq;
3551 
3552 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3553 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3554 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
3555 
3556 	/* Prevent speculative reads from getting ahead of the status block. */
3557 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3558 	    BUS_SPACE_BARRIER_READ);
3559 
3560 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3561 	    sc->rx_low_watermark = sc->free_rx_bd);
3562 
3563 	/*
3564 	 * Scan through the receive chain as long
3565 	 * as there is work to do.
3566 	 */
3567 	while (sw_cons != hw_cons) {
3568 		struct mbuf *m;
3569 		struct rx_bd *rxbd;
3570 		unsigned int len;
3571 		u_int32_t status;
3572 
3573 		/* Convert the producer/consumer indices to an actual
3574 		 * rx_bd index.
3575 		 */
3576 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3577 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3578 
3579 		/* Get the used rx_bd. */
3580 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3581 		sc->free_rx_bd++;
3582 
3583 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3584 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3585 
3586 		/* The mbuf is stored with the last rx_bd entry of a packet. */
3587 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3588 #ifdef DIAGNOSTIC
3589 			/* Validate that this is the last rx_bd. */
3590 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3591 			    printf("%s: Unexpected mbuf found in "
3592 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3593 			        sw_chain_cons);
3594 			}
3595 #endif
3596 
3597 			/* DRC - ToDo: If the received packet is small, say less
3598 			 *             than 128 bytes, allocate a new mbuf here,
3599 			 *             copy the data to that mbuf, and recycle
3600 			 *             the mapped jumbo frame.
3601 			 */
3602 
3603 			/* Unmap the mbuf from DMA space. */
3604 #ifdef DIAGNOSTIC
3605 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3606 				printf("invalid map sw_cons 0x%x "
3607 				"sw_prod 0x%x "
3608 				"sw_chain_cons 0x%x "
3609 				"sw_chain_prod 0x%x "
3610 				"hw_cons 0x%x "
3611 				"TOTAL_RX_BD_PER_PAGE 0x%x "
3612 				"TOTAL_RX_BD 0x%x\n",
3613 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3614 				hw_cons,
3615 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3616 			}
3617 #endif
3618 			bus_dmamap_sync(sc->bnx_dmatag,
3619 			    sc->rx_mbuf_map[sw_chain_cons], 0,
3620 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3621 			    BUS_DMASYNC_POSTREAD);
3622 			bus_dmamap_unload(sc->bnx_dmatag,
3623 			    sc->rx_mbuf_map[sw_chain_cons]);
3624 
3625 			/* Remove the mbuf from the driver's chain. */
3626 			m = sc->rx_mbuf_ptr[sw_chain_cons];
3627 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3628 
3629 			/*
3630 			 * Frames received on the NetXteme II are prepended
3631 			 * with the l2_fhdr structure which provides status
3632 			 * information about the received frame (including
3633 			 * VLAN tags and checksum info) and are also
3634 			 * automatically adjusted to align the IP header
3635 			 * (i.e. two null bytes are inserted before the
3636 			 * Ethernet header).
3637 			 */
3638 			l2fhdr = mtod(m, struct l2_fhdr *);
3639 
3640 			len    = l2fhdr->l2_fhdr_pkt_len;
3641 			status = l2fhdr->l2_fhdr_status;
3642 
3643 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3644 			    aprint_error("Simulating l2_fhdr status error.\n");
3645 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
3646 
3647 			/* Watch for unusual sized frames. */
3648 			DBRUNIF(((len < BNX_MIN_MTU) ||
3649 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3650 			    aprint_error_dev(sc->bnx_dev,
3651 			        "Unusual frame size found. "
3652 				"Min(%d), Actual(%d), Max(%d)\n",
3653 				(int)BNX_MIN_MTU, len,
3654 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3655 
3656 			bnx_dump_mbuf(sc, m);
3657 			bnx_breakpoint(sc));
3658 
3659 			len -= ETHER_CRC_LEN;
3660 
3661 			/* Check the received frame for errors. */
3662 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
3663 			    L2_FHDR_ERRORS_PHY_DECODE |
3664 			    L2_FHDR_ERRORS_ALIGNMENT |
3665 			    L2_FHDR_ERRORS_TOO_SHORT |
3666 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
3667 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3668 			    len >
3669 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3670 				ifp->if_ierrors++;
3671 				DBRUNIF(1, sc->l2fhdr_status_errors++);
3672 
3673 				/* Reuse the mbuf for a new frame. */
3674 				if (bnx_add_buf(sc, m, &sw_prod,
3675 				    &sw_chain_prod, &sw_prod_bseq)) {
3676 					DBRUNIF(1, bnx_breakpoint(sc));
3677 					panic("%s: Can't reuse RX mbuf!\n",
3678 					    device_xname(sc->bnx_dev));
3679 				}
3680 				continue;
3681 			}
3682 
3683 			/*
3684 			 * Get a new mbuf for the rx_bd.   If no new
3685 			 * mbufs are available then reuse the current mbuf,
3686 			 * log an ierror on the interface, and generate
3687 			 * an error in the system log.
3688 			 */
3689 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
3690 			    &sw_prod_bseq)) {
3691 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3692 					"new mbuf, incoming frame dropped!\n"));
3693 
3694 				ifp->if_ierrors++;
3695 
3696 				/* Try and reuse the exisitng mbuf. */
3697 				if (bnx_add_buf(sc, m, &sw_prod,
3698 				    &sw_chain_prod, &sw_prod_bseq)) {
3699 					DBRUNIF(1, bnx_breakpoint(sc));
3700 					panic("%s: Double mbuf allocation "
3701 					    "failure!",
3702 					    device_xname(sc->bnx_dev));
3703 				}
3704 				continue;
3705 			}
3706 
3707 			/* Skip over the l2_fhdr when passing the data up
3708 			 * the stack.
3709 			 */
3710 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3711 
3712 			/* Adjust the pckt length to match the received data. */
3713 			m->m_pkthdr.len = m->m_len = len;
3714 
3715 			/* Send the packet to the appropriate interface. */
3716 			m->m_pkthdr.rcvif = ifp;
3717 
3718 			DBRUN(BNX_VERBOSE_RECV,
3719 			    struct ether_header *eh;
3720 			    eh = mtod(m, struct ether_header *);
3721 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3722 			    __func__, ether_sprintf(eh->ether_dhost),
3723 			    ether_sprintf(eh->ether_shost),
3724 			    htons(eh->ether_type)));
3725 
3726 			/* Validate the checksum. */
3727 
3728 			/* Check for an IP datagram. */
3729 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3730 				/* Check if the IP checksum is valid. */
3731 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3732 				    == 0)
3733 					m->m_pkthdr.csum_flags |=
3734 					    M_CSUM_IPv4;
3735 #ifdef BNX_DEBUG
3736 				else
3737 					DBPRINT(sc, BNX_WARN_SEND,
3738 					    "%s(): Invalid IP checksum "
3739 					        "= 0x%04X!\n",
3740 						__func__,
3741 						l2fhdr->l2_fhdr_ip_xsum
3742 						);
3743 #endif
3744 			}
3745 
3746 			/* Check for a valid TCP/UDP frame. */
3747 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3748 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
3749 				/* Check for a good TCP/UDP checksum. */
3750 				if ((status &
3751 				    (L2_FHDR_ERRORS_TCP_XSUM |
3752 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3753 					m->m_pkthdr.csum_flags |=
3754 					    M_CSUM_TCPv4 |
3755 					    M_CSUM_UDPv4;
3756 				} else {
3757 					DBPRINT(sc, BNX_WARN_SEND,
3758 					    "%s(): Invalid TCP/UDP "
3759 					    "checksum = 0x%04X!\n",
3760 					    __func__,
3761 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
3762 				}
3763 			}
3764 
3765 			/*
3766 			 * If we received a packet with a vlan tag,
3767 			 * attach that information to the packet.
3768 			 */
3769 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3770 #if 0
3771 				struct ether_vlan_header vh;
3772 
3773 				DBPRINT(sc, BNX_VERBOSE_SEND,
3774 				    "%s(): VLAN tag = 0x%04X\n",
3775 				    __func__,
3776 				    l2fhdr->l2_fhdr_vlan_tag);
3777 
3778 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3779 					m_freem(m);
3780 					continue;
3781 				}
3782 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3783 				vh.evl_proto = vh.evl_encap_proto;
3784 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3785 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3786 				m_adj(m, ETHER_HDR_LEN);
3787 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3788 					continue;
3789 				m->m_pkthdr.len += sizeof(vh);
3790 				if (m->m_len < sizeof(vh) &&
3791 				    (m = m_pullup(m, sizeof(vh))) == NULL)
3792 					goto bnx_rx_int_next_rx;
3793 				m_copyback(m, 0, sizeof(vh), &vh);
3794 #else
3795 				VLAN_INPUT_TAG(ifp, m,
3796 				    l2fhdr->l2_fhdr_vlan_tag,
3797 				    continue);
3798 #endif
3799 			}
3800 
3801 #if NBPFILTER > 0
3802 			/*
3803 			 * Handle BPF listeners. Let the BPF
3804 			 * user see the packet.
3805 			 */
3806 			if (ifp->if_bpf)
3807 				bpf_mtap(ifp->if_bpf, m);
3808 #endif
3809 
3810 			/* Pass the mbuf off to the upper layers. */
3811 			ifp->if_ipackets++;
3812 			DBPRINT(sc, BNX_VERBOSE_RECV,
3813 			    "%s(): Passing received frame up.\n", __func__);
3814 			(*ifp->if_input)(ifp, m);
3815 			DBRUNIF(1, sc->rx_mbuf_alloc--);
3816 
3817 		}
3818 
3819 		sw_cons = NEXT_RX_BD(sw_cons);
3820 
3821 		/* Refresh hw_cons to see if there's new work */
3822 		if (sw_cons == hw_cons) {
3823 			hw_cons = sc->hw_rx_cons =
3824 			    sblk->status_rx_quick_consumer_index0;
3825 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3826 			    USABLE_RX_BD_PER_PAGE)
3827 				hw_cons++;
3828 		}
3829 
3830 		/* Prevent speculative reads from getting ahead of
3831 		 * the status block.
3832 		 */
3833 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3834 		    BUS_SPACE_BARRIER_READ);
3835 	}
3836 
3837 	for (i = 0; i < RX_PAGES; i++)
3838 		bus_dmamap_sync(sc->bnx_dmatag,
3839 		    sc->rx_bd_chain_map[i], 0,
3840 		    sc->rx_bd_chain_map[i]->dm_mapsize,
3841 		    BUS_DMASYNC_PREWRITE);
3842 
3843 	sc->rx_cons = sw_cons;
3844 	sc->rx_prod = sw_prod;
3845 	sc->rx_prod_bseq = sw_prod_bseq;
3846 
3847 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3848 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3849 
3850 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3851 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3852 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3853 }
3854 
3855 /****************************************************************************/
3856 /* Handles transmit completion interrupt events.                            */
3857 /*                                                                          */
3858 /* Returns:                                                                 */
3859 /*   Nothing.                                                               */
3860 /****************************************************************************/
3861 void
3862 bnx_tx_intr(struct bnx_softc *sc)
3863 {
3864 	struct status_block	*sblk = sc->status_block;
3865 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
3866 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3867 
3868 	DBRUNIF(1, sc->tx_interrupts++);
3869 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3870 	    BUS_DMASYNC_POSTREAD);
3871 
3872 	/* Get the hardware's view of the TX consumer index. */
3873 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3874 
3875 	/* Skip to the next entry if this is a chain page pointer. */
3876 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3877 		hw_tx_cons++;
3878 
3879 	sw_tx_cons = sc->tx_cons;
3880 
3881 	/* Prevent speculative reads from getting ahead of the status block. */
3882 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3883 	    BUS_SPACE_BARRIER_READ);
3884 
3885 	/* Cycle through any completed TX chain page entries. */
3886 	while (sw_tx_cons != hw_tx_cons) {
3887 #ifdef BNX_DEBUG
3888 		struct tx_bd *txbd = NULL;
3889 #endif
3890 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3891 
3892 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3893 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3894 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3895 
3896 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3897 		    aprint_error_dev(sc->bnx_dev,
3898 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3899 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3900 
3901 		DBRUNIF(1, txbd = &sc->tx_bd_chain
3902 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3903 
3904 		DBRUNIF((txbd == NULL),
3905 		    aprint_error_dev(sc->bnx_dev,
3906 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3907 		    bnx_breakpoint(sc));
3908 
3909 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3910 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3911 
3912 		/*
3913 		 * Free the associated mbuf. Remember
3914 		 * that only the last tx_bd of a packet
3915 		 * has an mbuf pointer and DMA map.
3916 		 */
3917 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3918 			/* Validate that this is the last tx_bd. */
3919 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3920 			    TX_BD_FLAGS_END)),
3921 			    aprint_error_dev(sc->bnx_dev,
3922 			        "tx_bd END flag not set but txmbuf == NULL!\n");
3923 			    bnx_breakpoint(sc));
3924 
3925 			DBRUN(BNX_INFO_SEND,
3926 			    aprint_debug("%s: Unloading map/freeing mbuf "
3927 			    "from tx_bd[0x%04X]\n",
3928 			    __func__, sw_tx_chain_cons));
3929 
3930 			/* Unmap the mbuf. */
3931 			bus_dmamap_unload(sc->bnx_dmatag,
3932 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
3933 
3934 			/* Free the mbuf. */
3935 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3936 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3937 			DBRUNIF(1, sc->tx_mbuf_alloc--);
3938 
3939 			ifp->if_opackets++;
3940 		}
3941 
3942 		sc->used_tx_bd--;
3943 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3944 
3945 		/* Refresh hw_cons to see if there's new work. */
3946 		hw_tx_cons = sc->hw_tx_cons =
3947 		    sblk->status_tx_quick_consumer_index0;
3948 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3949 		    USABLE_TX_BD_PER_PAGE)
3950 			hw_tx_cons++;
3951 
3952 		/* Prevent speculative reads from getting ahead of
3953 		 * the status block.
3954 		 */
3955 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3956 		    BUS_SPACE_BARRIER_READ);
3957 	}
3958 
3959 	/* Clear the TX timeout timer. */
3960 	ifp->if_timer = 0;
3961 
3962 	/* Clear the tx hardware queue full flag. */
3963 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
3964 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
3965 		    aprint_debug_dev(sc->bnx_dev,
3966 		        "TX chain is open for business! Used tx_bd = %d\n",
3967 			sc->used_tx_bd));
3968 		ifp->if_flags &= ~IFF_OACTIVE;
3969 	}
3970 
3971 	sc->tx_cons = sw_tx_cons;
3972 }
3973 
3974 /****************************************************************************/
3975 /* Disables interrupt generation.                                           */
3976 /*                                                                          */
3977 /* Returns:                                                                 */
3978 /*   Nothing.                                                               */
3979 /****************************************************************************/
3980 void
3981 bnx_disable_intr(struct bnx_softc *sc)
3982 {
3983 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3984 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
3985 }
3986 
3987 /****************************************************************************/
3988 /* Enables interrupt generation.                                            */
3989 /*                                                                          */
3990 /* Returns:                                                                 */
3991 /*   Nothing.                                                               */
3992 /****************************************************************************/
3993 void
3994 bnx_enable_intr(struct bnx_softc *sc)
3995 {
3996 	u_int32_t		val;
3997 
3998 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
3999 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4000 
4001 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4002 	    sc->last_status_idx);
4003 
4004 	val = REG_RD(sc, BNX_HC_COMMAND);
4005 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4006 }
4007 
4008 /****************************************************************************/
4009 /* Handles controller initialization.                                       */
4010 /*                                                                          */
4011 /****************************************************************************/
4012 int
4013 bnx_init(struct ifnet *ifp)
4014 {
4015 	struct bnx_softc	*sc = ifp->if_softc;
4016 	u_int32_t		ether_mtu;
4017 	int			s, error = 0;
4018 
4019 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4020 
4021 	s = splnet();
4022 
4023 	bnx_stop(ifp, 0);
4024 
4025 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4026 		aprint_error("bnx: Controller reset failed!\n");
4027 		goto bnx_init_exit;
4028 	}
4029 
4030 	if ((error = bnx_chipinit(sc)) != 0) {
4031 		aprint_error("bnx: Controller initialization failed!\n");
4032 		goto bnx_init_exit;
4033 	}
4034 
4035 	if ((error = bnx_blockinit(sc)) != 0) {
4036 		aprint_error("bnx: Block initialization failed!\n");
4037 		goto bnx_init_exit;
4038 	}
4039 
4040 	/* Calculate and program the Ethernet MRU size. */
4041 	if (ifp->if_mtu <= ETHERMTU) {
4042 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4043 		sc->mbuf_alloc_size = MCLBYTES;
4044 	} else {
4045 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4046 		sc->mbuf_alloc_size = BNX_MAX_MRU;
4047 	}
4048 
4049 
4050 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4051 	    __func__, ether_mtu);
4052 
4053 	/*
4054 	 * Program the MRU and enable Jumbo frame
4055 	 * support.
4056 	 */
4057 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4058 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4059 
4060 	/* Calculate the RX Ethernet frame size for rx_bd's. */
4061 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4062 
4063 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4064 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4065 	    sc->mbuf_alloc_size, sc->max_frame_size);
4066 
4067 	/* Program appropriate promiscuous/multicast filtering. */
4068 	bnx_set_rx_mode(sc);
4069 
4070 	/* Init RX buffer descriptor chain. */
4071 	bnx_init_rx_chain(sc);
4072 
4073 	/* Init TX buffer descriptor chain. */
4074 	bnx_init_tx_chain(sc);
4075 
4076 	/* Enable host interrupts. */
4077 	bnx_enable_intr(sc);
4078 
4079 	if ((error = ether_mediachange(ifp)) != 0)
4080 		goto bnx_init_exit;
4081 
4082 	ifp->if_flags |= IFF_RUNNING;
4083 	ifp->if_flags &= ~IFF_OACTIVE;
4084 
4085 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4086 
4087 bnx_init_exit:
4088 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4089 
4090 	splx(s);
4091 
4092 	return(error);
4093 }
4094 
4095 /****************************************************************************/
4096 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4097 /* memory visible to the controller.                                        */
4098 /*                                                                          */
4099 /* Returns:                                                                 */
4100 /*   0 for success, positive value for failure.                             */
4101 /****************************************************************************/
4102 int
4103 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4104 {
4105 	bus_dmamap_t		map;
4106 	struct tx_bd		*txbd = NULL;
4107 	struct mbuf		*m0;
4108 	u_int16_t		vlan_tag = 0, flags = 0;
4109 	u_int16_t		chain_prod, prod;
4110 #ifdef BNX_DEBUG
4111 	u_int16_t		debug_prod;
4112 #endif
4113 	u_int32_t		addr, prod_bseq;
4114 	int			i, error, rc = 0;
4115 	struct m_tag		*mtag;
4116 
4117 	m0 = *m_head;
4118 
4119 	/* Transfer any checksum offload flags to the bd. */
4120 	if (m0->m_pkthdr.csum_flags) {
4121 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4122 			flags |= TX_BD_FLAGS_IP_CKSUM;
4123 		if (m0->m_pkthdr.csum_flags &
4124 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4125 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4126 	}
4127 
4128 	/* Transfer any VLAN tags to the bd. */
4129 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
4130 	if (mtag != NULL) {
4131 		flags |= TX_BD_FLAGS_VLAN_TAG;
4132 		vlan_tag = VLAN_TAG_VALUE(mtag);
4133 	}
4134 
4135 	/* Map the mbuf into DMAable memory. */
4136 	prod = sc->tx_prod;
4137 	chain_prod = TX_CHAIN_IDX(prod);
4138 	map = sc->tx_mbuf_map[chain_prod];
4139 
4140 	/* Map the mbuf into our DMA address space. */
4141 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4142 	if (error != 0) {
4143 		aprint_error_dev(sc->bnx_dev,
4144 		    "Error mapping mbuf into TX chain!\n");
4145 		m_freem(m0);
4146 		*m_head = NULL;
4147 		return (error);
4148 	}
4149 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4150 	    BUS_DMASYNC_PREWRITE);
4151         /*
4152          * The chip seems to require that at least 16 descriptors be kept
4153          * empty at all times.  Make sure we honor that.
4154          * XXX Would it be faster to assume worst case scenario for
4155          * map->dm_nsegs and do this calculation higher up?
4156          */
4157         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4158                 bus_dmamap_unload(sc->bnx_dmatag, map);
4159                 return (ENOBUFS);
4160         }
4161 
4162 	/* prod points to an empty tx_bd at this point. */
4163 	prod_bseq = sc->tx_prod_bseq;
4164 #ifdef BNX_DEBUG
4165 	debug_prod = chain_prod;
4166 #endif
4167 	DBPRINT(sc, BNX_INFO_SEND,
4168 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4169 		"prod_bseq = 0x%08X\n",
4170 		__func__, *prod, chain_prod, prod_bseq);
4171 
4172 	/*
4173 	 * Cycle through each mbuf segment that makes up
4174 	 * the outgoing frame, gathering the mapping info
4175 	 * for that segment and creating a tx_bd for the
4176 	 * mbuf.
4177 	 */
4178 	for (i = 0; i < map->dm_nsegs ; i++) {
4179 		chain_prod = TX_CHAIN_IDX(prod);
4180 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4181 
4182 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4183 		txbd->tx_bd_haddr_lo = htole32(addr);
4184 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4185 		txbd->tx_bd_haddr_hi = htole32(addr);
4186 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4187 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4188 		txbd->tx_bd_flags = htole16(flags);
4189 		prod_bseq += map->dm_segs[i].ds_len;
4190 		if (i == 0)
4191 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4192 		prod = NEXT_TX_BD(prod);
4193 	}
4194 	/* Set the END flag on the last TX buffer descriptor. */
4195 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4196 
4197 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4198 
4199 	DBPRINT(sc, BNX_INFO_SEND,
4200 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
4201 		"prod_bseq = 0x%08X\n",
4202 		__func__, prod, chain_prod, prod_bseq);
4203 
4204 	/*
4205 	 * Ensure that the mbuf pointer for this
4206 	 * transmission is placed at the array
4207 	 * index of the last descriptor in this
4208 	 * chain.  This is done because a single
4209 	 * map is used for all segments of the mbuf
4210 	 * and we don't want to unload the map before
4211 	 * all of the segments have been freed.
4212 	 */
4213 	sc->tx_mbuf_ptr[chain_prod] = m0;
4214 	sc->used_tx_bd += map->dm_nsegs;
4215 
4216 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4217 	    sc->tx_hi_watermark = sc->used_tx_bd);
4218 
4219 	DBRUNIF(1, sc->tx_mbuf_alloc++);
4220 
4221 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4222 	    map_arg.maxsegs));
4223 
4224 	/* prod points to the next free tx_bd at this point. */
4225 	sc->tx_prod = prod;
4226 	sc->tx_prod_bseq = prod_bseq;
4227 
4228 	return (rc);
4229 }
4230 
4231 /****************************************************************************/
4232 /* Main transmit routine.                                                   */
4233 /*                                                                          */
4234 /* Returns:                                                                 */
4235 /*   Nothing.                                                               */
4236 /****************************************************************************/
4237 void
4238 bnx_start(struct ifnet *ifp)
4239 {
4240 	struct bnx_softc	*sc = ifp->if_softc;
4241 	struct mbuf		*m_head = NULL;
4242 	int			count = 0;
4243 	u_int16_t		tx_prod, tx_chain_prod;
4244 
4245 	/* If there's no link or the transmit queue is empty then just exit. */
4246 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4247 		DBPRINT(sc, BNX_INFO_SEND,
4248 		    "%s(): output active or device not running.\n", __func__);
4249 		goto bnx_start_exit;
4250 	}
4251 
4252 	/* prod points to the next free tx_bd. */
4253 	tx_prod = sc->tx_prod;
4254 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4255 
4256 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4257 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4258 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4259 
4260 	/*
4261 	 * Keep adding entries while there is space in the ring.  We keep
4262 	 * BNX_TX_SLACK_SPACE entries unused at all times.
4263 	 */
4264 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4265 		/* Check for any frames to send. */
4266 		IFQ_POLL(&ifp->if_snd, m_head);
4267 		if (m_head == NULL)
4268 			break;
4269 
4270 		/*
4271 		 * Pack the data into the transmit ring. If we
4272 		 * don't have room, set the OACTIVE flag to wait
4273 		 * for the NIC to drain the chain.
4274 		 */
4275 		if (bnx_tx_encap(sc, &m_head)) {
4276 			ifp->if_flags |= IFF_OACTIVE;
4277 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4278 			    "business! Total tx_bd used = %d\n",
4279 			    sc->used_tx_bd);
4280 			break;
4281 		}
4282 
4283 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4284 		count++;
4285 
4286 #if NBPFILTER > 0
4287 		/* Send a copy of the frame to any BPF listeners. */
4288 		if (ifp->if_bpf)
4289 			bpf_mtap(ifp->if_bpf, m_head);
4290 #endif
4291 	}
4292 
4293 	if (count == 0) {
4294 		/* no packets were dequeued */
4295 		DBPRINT(sc, BNX_VERBOSE_SEND,
4296 		    "%s(): No packets were dequeued\n", __func__);
4297 		goto bnx_start_exit;
4298 	}
4299 
4300 	/* Update the driver's counters. */
4301 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4302 
4303 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4304 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4305 	    tx_chain_prod, sc->tx_prod_bseq);
4306 
4307 	/* Start the transmit. */
4308 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4309 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4310 
4311 	/* Set the tx timeout. */
4312 	ifp->if_timer = BNX_TX_TIMEOUT;
4313 
4314 bnx_start_exit:
4315 	return;
4316 }
4317 
4318 /****************************************************************************/
4319 /* Handles any IOCTL calls from the operating system.                       */
4320 /*                                                                          */
4321 /* Returns:                                                                 */
4322 /*   0 for success, positive value for failure.                             */
4323 /****************************************************************************/
4324 int
4325 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4326 {
4327 	struct bnx_softc	*sc = ifp->if_softc;
4328 	struct ifreq		*ifr = (struct ifreq *) data;
4329 	struct mii_data		*mii = &sc->bnx_mii;
4330 	int			s, error = 0;
4331 
4332 	s = splnet();
4333 
4334 	switch (command) {
4335 	case SIOCSIFFLAGS:
4336 		if ((error = ifioctl_common(ifp, command, data)) != 0)
4337 			break;
4338 		/* XXX set an ifflags callback and let ether_ioctl
4339 		 * handle all of this.
4340 		 */
4341 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4342 		case IFF_UP|IFF_RUNNING:
4343 			if (((ifp->if_flags ^ sc->bnx_if_flags) &
4344 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
4345 				bnx_set_rx_mode(sc);
4346 			break;
4347 		case IFF_UP:
4348 			bnx_init(ifp);
4349 			break;
4350 		case IFF_RUNNING:
4351 			bnx_stop(ifp, 1);
4352 			break;
4353 		case 0:
4354 			break;
4355 		}
4356 
4357 		sc->bnx_if_flags = ifp->if_flags;
4358 		break;
4359 
4360 	case SIOCSIFMEDIA:
4361 	case SIOCGIFMEDIA:
4362 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4363 		    sc->bnx_phy_flags);
4364 
4365 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
4366 		break;
4367 
4368 	default:
4369 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4370 			break;
4371 
4372 		error = 0;
4373 
4374 		if (command != SIOCADDMULTI && command && SIOCDELMULTI)
4375 			;
4376 		else if (ifp->if_flags & IFF_RUNNING) {
4377 			/* reload packet filter if running */
4378 			bnx_set_rx_mode(sc);
4379 		}
4380 		break;
4381 	}
4382 
4383 	splx(s);
4384 
4385 	return (error);
4386 }
4387 
4388 /****************************************************************************/
4389 /* Transmit timeout handler.                                                */
4390 /*                                                                          */
4391 /* Returns:                                                                 */
4392 /*   Nothing.                                                               */
4393 /****************************************************************************/
4394 void
4395 bnx_watchdog(struct ifnet *ifp)
4396 {
4397 	struct bnx_softc	*sc = ifp->if_softc;
4398 
4399 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4400 	    bnx_dump_status_block(sc));
4401 
4402 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4403 
4404 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4405 
4406 	bnx_init(ifp);
4407 
4408 	ifp->if_oerrors++;
4409 }
4410 
4411 /*
4412  * Interrupt handler.
4413  */
4414 /****************************************************************************/
4415 /* Main interrupt entry point.  Verifies that the controller generated the  */
4416 /* interrupt and then calls a separate routine for handle the various       */
4417 /* interrupt causes (PHY, TX, RX).                                          */
4418 /*                                                                          */
4419 /* Returns:                                                                 */
4420 /*   0 for success, positive value for failure.                             */
4421 /****************************************************************************/
4422 int
4423 bnx_intr(void *xsc)
4424 {
4425 	struct bnx_softc	*sc;
4426 	struct ifnet		*ifp;
4427 	u_int32_t		status_attn_bits;
4428 	const struct status_block *sblk;
4429 
4430 	sc = xsc;
4431 	if (!device_is_active(sc->bnx_dev))
4432 		return 0;
4433 
4434 	ifp = &sc->bnx_ec.ec_if;
4435 
4436 	DBRUNIF(1, sc->interrupts_generated++);
4437 
4438 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4439 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4440 
4441 	/*
4442 	 * If the hardware status block index
4443 	 * matches the last value read by the
4444 	 * driver and we haven't asserted our
4445 	 * interrupt then there's nothing to do.
4446 	 */
4447 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
4448 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4449 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4450 		return (0);
4451 
4452 	/* Ack the interrupt and stop others from occuring. */
4453 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4454 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4455 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4456 
4457 	/* Keep processing data as long as there is work to do. */
4458 	for (;;) {
4459 		sblk = sc->status_block;
4460 		status_attn_bits = sblk->status_attn_bits;
4461 
4462 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4463 		    aprint_debug("Simulating unexpected status attention bit set.");
4464 		    status_attn_bits = status_attn_bits |
4465 		    STATUS_ATTN_BITS_PARITY_ERROR);
4466 
4467 		/* Was it a link change interrupt? */
4468 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4469 		    (sblk->status_attn_bits_ack &
4470 		    STATUS_ATTN_BITS_LINK_STATE))
4471 			bnx_phy_intr(sc);
4472 
4473 		/* If any other attention is asserted then the chip is toast. */
4474 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4475 		    (sblk->status_attn_bits_ack &
4476 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
4477 			DBRUN(1, sc->unexpected_attentions++);
4478 
4479 			aprint_error_dev(sc->bnx_dev,
4480 			    "Fatal attention detected: 0x%08X\n",
4481 			    sblk->status_attn_bits);
4482 
4483 			DBRUN(BNX_FATAL,
4484 			    if (bnx_debug_unexpected_attention == 0)
4485 			    bnx_breakpoint(sc));
4486 
4487 			bnx_init(ifp);
4488 			return (1);
4489 		}
4490 
4491 		/* Check for any completed RX frames. */
4492 		if (sblk->status_rx_quick_consumer_index0 !=
4493 		    sc->hw_rx_cons)
4494 			bnx_rx_intr(sc);
4495 
4496 		/* Check for any completed TX frames. */
4497 		if (sblk->status_tx_quick_consumer_index0 !=
4498 		    sc->hw_tx_cons)
4499 			bnx_tx_intr(sc);
4500 
4501 		/* Save the status block index value for use during the
4502 		 * next interrupt.
4503 		 */
4504 		sc->last_status_idx = sblk->status_idx;
4505 
4506 		/* Prevent speculative reads from getting ahead of the
4507 		 * status block.
4508 		 */
4509 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4510 		    BUS_SPACE_BARRIER_READ);
4511 
4512 		/* If there's no work left then exit the isr. */
4513 		if ((sblk->status_rx_quick_consumer_index0 ==
4514 		    sc->hw_rx_cons) &&
4515 		    (sblk->status_tx_quick_consumer_index0 ==
4516 		    sc->hw_tx_cons))
4517 			break;
4518 	}
4519 
4520 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4521 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4522 
4523 	/* Re-enable interrupts. */
4524 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4525 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4526 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4527 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4528 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4529 
4530 	/* Handle any frames that arrived while handling the interrupt. */
4531 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
4532 		bnx_start(ifp);
4533 
4534 	return (1);
4535 }
4536 
4537 /****************************************************************************/
4538 /* Programs the various packet receive modes (broadcast and multicast).     */
4539 /*                                                                          */
4540 /* Returns:                                                                 */
4541 /*   Nothing.                                                               */
4542 /****************************************************************************/
4543 void
4544 bnx_set_rx_mode(struct bnx_softc *sc)
4545 {
4546 	struct ethercom		*ec = &sc->bnx_ec;
4547 	struct ifnet		*ifp = &ec->ec_if;
4548 	struct ether_multi	*enm;
4549 	struct ether_multistep	step;
4550 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4551 	u_int32_t		rx_mode, sort_mode;
4552 	int			h, i;
4553 
4554 	/* Initialize receive mode default settings. */
4555 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4556 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4557 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4558 
4559 	/*
4560 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4561 	 * be enbled.
4562 	 */
4563 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4564 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4565 
4566 	/*
4567 	 * Check for promiscuous, all multicast, or selected
4568 	 * multicast address filtering.
4569 	 */
4570 	if (ifp->if_flags & IFF_PROMISC) {
4571 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4572 
4573 		/* Enable promiscuous mode. */
4574 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4575 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4576 	} else if (ifp->if_flags & IFF_ALLMULTI) {
4577 allmulti:
4578 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4579 
4580 		/* Enable all multicast addresses. */
4581 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4582 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4583 			    0xffffffff);
4584 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4585 	} else {
4586 		/* Accept one or more multicast(s). */
4587 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4588 
4589 		ETHER_FIRST_MULTI(step, ec, enm);
4590 		while (enm != NULL) {
4591 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
4592 			    ETHER_ADDR_LEN)) {
4593 				ifp->if_flags |= IFF_ALLMULTI;
4594 				goto allmulti;
4595 			}
4596 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4597 			    0xFF;
4598 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4599 			ETHER_NEXT_MULTI(step, enm);
4600 		}
4601 
4602 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4603 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4604 			    hashes[i]);
4605 
4606 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4607 	}
4608 
4609 	/* Only make changes if the recive mode has actually changed. */
4610 	if (rx_mode != sc->rx_mode) {
4611 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4612 		    rx_mode);
4613 
4614 		sc->rx_mode = rx_mode;
4615 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4616 	}
4617 
4618 	/* Disable and clear the exisitng sort before enabling a new sort. */
4619 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4620 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4621 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4622 }
4623 
4624 /****************************************************************************/
4625 /* Called periodically to updates statistics from the controllers           */
4626 /* statistics block.                                                        */
4627 /*                                                                          */
4628 /* Returns:                                                                 */
4629 /*   Nothing.                                                               */
4630 /****************************************************************************/
4631 void
4632 bnx_stats_update(struct bnx_softc *sc)
4633 {
4634 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
4635 	struct statistics_block	*stats;
4636 
4637 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4638 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4639 	    BUS_DMASYNC_POSTREAD);
4640 
4641 	stats = (struct statistics_block *)sc->stats_block;
4642 
4643 	/*
4644 	 * Update the interface statistics from the
4645 	 * hardware statistics.
4646 	 */
4647 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4648 
4649 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4650 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
4651 	    (u_long)stats->stat_IfInMBUFDiscards +
4652 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
4653 	    (u_long)stats->stat_Dot3StatsFCSErrors;
4654 
4655 	ifp->if_oerrors = (u_long)
4656 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4657 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4658 	    (u_long)stats->stat_Dot3StatsLateCollisions;
4659 
4660 	/*
4661 	 * Certain controllers don't report
4662 	 * carrier sense errors correctly.
4663 	 * See errata E11_5708CA0_1165.
4664 	 */
4665 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4666 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4667 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4668 
4669 	/*
4670 	 * Update the sysctl statistics from the
4671 	 * hardware statistics.
4672 	 */
4673 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4674 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
4675 
4676 	sc->stat_IfHCInBadOctets =
4677 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4678 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4679 
4680 	sc->stat_IfHCOutOctets =
4681 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4682 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
4683 
4684 	sc->stat_IfHCOutBadOctets =
4685 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4686 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4687 
4688 	sc->stat_IfHCInUcastPkts =
4689 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4690 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4691 
4692 	sc->stat_IfHCInMulticastPkts =
4693 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4694 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4695 
4696 	sc->stat_IfHCInBroadcastPkts =
4697 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4698 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4699 
4700 	sc->stat_IfHCOutUcastPkts =
4701 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4702 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4703 
4704 	sc->stat_IfHCOutMulticastPkts =
4705 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4706 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4707 
4708 	sc->stat_IfHCOutBroadcastPkts =
4709 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4710 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4711 
4712 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4713 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4714 
4715 	sc->stat_Dot3StatsCarrierSenseErrors =
4716 	    stats->stat_Dot3StatsCarrierSenseErrors;
4717 
4718 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4719 
4720 	sc->stat_Dot3StatsAlignmentErrors =
4721 	    stats->stat_Dot3StatsAlignmentErrors;
4722 
4723 	sc->stat_Dot3StatsSingleCollisionFrames =
4724 	    stats->stat_Dot3StatsSingleCollisionFrames;
4725 
4726 	sc->stat_Dot3StatsMultipleCollisionFrames =
4727 	    stats->stat_Dot3StatsMultipleCollisionFrames;
4728 
4729 	sc->stat_Dot3StatsDeferredTransmissions =
4730 	    stats->stat_Dot3StatsDeferredTransmissions;
4731 
4732 	sc->stat_Dot3StatsExcessiveCollisions =
4733 	    stats->stat_Dot3StatsExcessiveCollisions;
4734 
4735 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4736 
4737 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4738 
4739 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4740 
4741 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4742 
4743 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4744 
4745 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4746 
4747 	sc->stat_EtherStatsPktsRx64Octets =
4748 	    stats->stat_EtherStatsPktsRx64Octets;
4749 
4750 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4751 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4752 
4753 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4754 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4755 
4756 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4757 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4758 
4759 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4760 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4761 
4762 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4763 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4764 
4765 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4766 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4767 
4768 	sc->stat_EtherStatsPktsTx64Octets =
4769 	    stats->stat_EtherStatsPktsTx64Octets;
4770 
4771 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4772 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4773 
4774 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4775 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4776 
4777 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4778 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4779 
4780 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4781 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4782 
4783 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4784 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4785 
4786 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4787 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4788 
4789 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4790 
4791 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4792 
4793 	sc->stat_OutXonSent = stats->stat_OutXonSent;
4794 
4795 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4796 
4797 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4798 
4799 	sc->stat_MacControlFramesReceived =
4800 	    stats->stat_MacControlFramesReceived;
4801 
4802 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4803 
4804 	sc->stat_IfInFramesL2FilterDiscards =
4805 	    stats->stat_IfInFramesL2FilterDiscards;
4806 
4807 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4808 
4809 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4810 
4811 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4812 
4813 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4814 
4815 	sc->stat_CatchupInRuleCheckerDiscards =
4816 	    stats->stat_CatchupInRuleCheckerDiscards;
4817 
4818 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4819 
4820 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4821 
4822 	sc->stat_CatchupInRuleCheckerP4Hit =
4823 	    stats->stat_CatchupInRuleCheckerP4Hit;
4824 
4825 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4826 }
4827 
4828 void
4829 bnx_tick(void *xsc)
4830 {
4831 	struct bnx_softc	*sc = xsc;
4832 	struct mii_data		*mii;
4833 	u_int32_t		msg;
4834 	u_int16_t		prod, chain_prod;
4835 	u_int32_t		prod_bseq;
4836 	int s = splnet();
4837 
4838 	/* Tell the firmware that the driver is still running. */
4839 #ifdef BNX_DEBUG
4840 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4841 #else
4842 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4843 #endif
4844 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4845 
4846 	/* Update the statistics from the hardware statistics block. */
4847 	bnx_stats_update(sc);
4848 
4849 	/* Schedule the next tick. */
4850 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4851 
4852 	mii = &sc->bnx_mii;
4853 	mii_tick(mii);
4854 
4855 	/* try to get more RX buffers, just in case */
4856 	prod = sc->rx_prod;
4857 	prod_bseq = sc->rx_prod_bseq;
4858 	chain_prod = RX_CHAIN_IDX(prod);
4859 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
4860 	sc->rx_prod = prod;
4861 	sc->rx_prod_bseq = prod_bseq;
4862 	splx(s);
4863 	return;
4864 }
4865 
4866 /****************************************************************************/
4867 /* BNX Debug Routines                                                       */
4868 /****************************************************************************/
4869 #ifdef BNX_DEBUG
4870 
4871 /****************************************************************************/
4872 /* Prints out information about an mbuf.                                    */
4873 /*                                                                          */
4874 /* Returns:                                                                 */
4875 /*   Nothing.                                                               */
4876 /****************************************************************************/
4877 void
4878 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4879 {
4880 	struct mbuf		*mp = m;
4881 
4882 	if (m == NULL) {
4883 		/* Index out of range. */
4884 		aprint_error("mbuf ptr is null!\n");
4885 		return;
4886 	}
4887 
4888 	while (mp) {
4889 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4890 		    mp, mp->m_len);
4891 
4892 		if (mp->m_flags & M_EXT)
4893 			aprint_debug("M_EXT ");
4894 		if (mp->m_flags & M_PKTHDR)
4895 			aprint_debug("M_PKTHDR ");
4896 		aprint_debug("\n");
4897 
4898 		if (mp->m_flags & M_EXT)
4899 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4900 			    mp, mp->m_ext.ext_size);
4901 
4902 		mp = mp->m_next;
4903 	}
4904 }
4905 
4906 /****************************************************************************/
4907 /* Prints out the mbufs in the TX mbuf chain.                               */
4908 /*                                                                          */
4909 /* Returns:                                                                 */
4910 /*   Nothing.                                                               */
4911 /****************************************************************************/
4912 void
4913 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4914 {
4915 	struct mbuf		*m;
4916 	int			i;
4917 
4918 	BNX_PRINTF(sc,
4919 	    "----------------------------"
4920 	    "  tx mbuf data  "
4921 	    "----------------------------\n");
4922 
4923 	for (i = 0; i < count; i++) {
4924 	 	m = sc->tx_mbuf_ptr[chain_prod];
4925 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4926 		bnx_dump_mbuf(sc, m);
4927 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4928 	}
4929 
4930 	BNX_PRINTF(sc,
4931 	    "--------------------------------------------"
4932 	    "----------------------------\n");
4933 }
4934 
4935 /*
4936  * This routine prints the RX mbuf chain.
4937  */
4938 void
4939 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4940 {
4941 	struct mbuf		*m;
4942 	int			i;
4943 
4944 	BNX_PRINTF(sc,
4945 	    "----------------------------"
4946 	    "  rx mbuf data  "
4947 	    "----------------------------\n");
4948 
4949 	for (i = 0; i < count; i++) {
4950 	 	m = sc->rx_mbuf_ptr[chain_prod];
4951 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
4952 		bnx_dump_mbuf(sc, m);
4953 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
4954 	}
4955 
4956 
4957 	BNX_PRINTF(sc,
4958 	    "--------------------------------------------"
4959 	    "----------------------------\n");
4960 }
4961 
4962 void
4963 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
4964 {
4965 	if (idx > MAX_TX_BD)
4966 		/* Index out of range. */
4967 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
4968 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4969 		/* TX Chain page pointer. */
4970 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
4971 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
4972 		    txbd->tx_bd_haddr_lo);
4973 	else
4974 		/* Normal tx_bd entry. */
4975 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4976 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
4977 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
4978 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
4979 		    txbd->tx_bd_flags);
4980 }
4981 
4982 void
4983 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
4984 {
4985 	if (idx > MAX_RX_BD)
4986 		/* Index out of range. */
4987 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
4988 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4989 		/* TX Chain page pointer. */
4990 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
4991 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
4992 		    rxbd->rx_bd_haddr_lo);
4993 	else
4994 		/* Normal tx_bd entry. */
4995 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4996 		    "0x%08X, flags = 0x%08X\n", idx,
4997 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
4998 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
4999 }
5000 
5001 void
5002 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5003 {
5004 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5005 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5006 	    "tcp_udp_xsum = 0x%04X\n", idx,
5007 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5008 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5009 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
5010 }
5011 
5012 /*
5013  * This routine prints the TX chain.
5014  */
5015 void
5016 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5017 {
5018 	struct tx_bd		*txbd;
5019 	int			i;
5020 
5021 	/* First some info about the tx_bd chain structure. */
5022 	BNX_PRINTF(sc,
5023 	    "----------------------------"
5024 	    "  tx_bd  chain  "
5025 	    "----------------------------\n");
5026 
5027 	BNX_PRINTF(sc,
5028 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
5029 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5030 
5031 	BNX_PRINTF(sc,
5032 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5033 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5034 
5035 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5036 
5037 	BNX_PRINTF(sc, ""
5038 	    "-----------------------------"
5039 	    "   tx_bd data   "
5040 	    "-----------------------------\n");
5041 
5042 	/* Now print out the tx_bd's themselves. */
5043 	for (i = 0; i < count; i++) {
5044 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5045 		bnx_dump_txbd(sc, tx_prod, txbd);
5046 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5047 	}
5048 
5049 	BNX_PRINTF(sc,
5050 	    "-----------------------------"
5051 	    "--------------"
5052 	    "-----------------------------\n");
5053 }
5054 
5055 /*
5056  * This routine prints the RX chain.
5057  */
5058 void
5059 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5060 {
5061 	struct rx_bd		*rxbd;
5062 	int			i;
5063 
5064 	/* First some info about the tx_bd chain structure. */
5065 	BNX_PRINTF(sc,
5066 	    "----------------------------"
5067 	    "  rx_bd  chain  "
5068 	    "----------------------------\n");
5069 
5070 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5071 
5072 	BNX_PRINTF(sc,
5073 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
5074 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5075 
5076 	BNX_PRINTF(sc,
5077 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5078 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5079 
5080 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5081 
5082 	BNX_PRINTF(sc,
5083 	    "----------------------------"
5084 	    "   rx_bd data   "
5085 	    "----------------------------\n");
5086 
5087 	/* Now print out the rx_bd's themselves. */
5088 	for (i = 0; i < count; i++) {
5089 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5090 		bnx_dump_rxbd(sc, rx_prod, rxbd);
5091 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5092 	}
5093 
5094 	BNX_PRINTF(sc,
5095 	    "----------------------------"
5096 	    "--------------"
5097 	    "----------------------------\n");
5098 }
5099 
5100 /*
5101  * This routine prints the status block.
5102  */
5103 void
5104 bnx_dump_status_block(struct bnx_softc *sc)
5105 {
5106 	struct status_block	*sblk;
5107 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5108 	    BUS_DMASYNC_POSTREAD);
5109 
5110 	sblk = sc->status_block;
5111 
5112    	BNX_PRINTF(sc, "----------------------------- Status Block "
5113 	    "-----------------------------\n");
5114 
5115 	BNX_PRINTF(sc,
5116 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5117 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
5118 	    sblk->status_idx);
5119 
5120 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
5121 	    sblk->status_rx_quick_consumer_index0,
5122 	    sblk->status_tx_quick_consumer_index0);
5123 
5124 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5125 
5126 	/* Theses indices are not used for normal L2 drivers. */
5127 	if (sblk->status_rx_quick_consumer_index1 ||
5128 		sblk->status_tx_quick_consumer_index1)
5129 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
5130 		    sblk->status_rx_quick_consumer_index1,
5131 		    sblk->status_tx_quick_consumer_index1);
5132 
5133 	if (sblk->status_rx_quick_consumer_index2 ||
5134 		sblk->status_tx_quick_consumer_index2)
5135 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
5136 		    sblk->status_rx_quick_consumer_index2,
5137 		    sblk->status_tx_quick_consumer_index2);
5138 
5139 	if (sblk->status_rx_quick_consumer_index3 ||
5140 		sblk->status_tx_quick_consumer_index3)
5141 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
5142 		    sblk->status_rx_quick_consumer_index3,
5143 		    sblk->status_tx_quick_consumer_index3);
5144 
5145 	if (sblk->status_rx_quick_consumer_index4 ||
5146 		sblk->status_rx_quick_consumer_index5)
5147 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
5148 		    sblk->status_rx_quick_consumer_index4,
5149 		    sblk->status_rx_quick_consumer_index5);
5150 
5151 	if (sblk->status_rx_quick_consumer_index6 ||
5152 		sblk->status_rx_quick_consumer_index7)
5153 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
5154 		    sblk->status_rx_quick_consumer_index6,
5155 		    sblk->status_rx_quick_consumer_index7);
5156 
5157 	if (sblk->status_rx_quick_consumer_index8 ||
5158 		sblk->status_rx_quick_consumer_index9)
5159 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
5160 		    sblk->status_rx_quick_consumer_index8,
5161 		    sblk->status_rx_quick_consumer_index9);
5162 
5163 	if (sblk->status_rx_quick_consumer_index10 ||
5164 		sblk->status_rx_quick_consumer_index11)
5165 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
5166 		    sblk->status_rx_quick_consumer_index10,
5167 		    sblk->status_rx_quick_consumer_index11);
5168 
5169 	if (sblk->status_rx_quick_consumer_index12 ||
5170 		sblk->status_rx_quick_consumer_index13)
5171 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
5172 		    sblk->status_rx_quick_consumer_index12,
5173 		    sblk->status_rx_quick_consumer_index13);
5174 
5175 	if (sblk->status_rx_quick_consumer_index14 ||
5176 		sblk->status_rx_quick_consumer_index15)
5177 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
5178 		    sblk->status_rx_quick_consumer_index14,
5179 		    sblk->status_rx_quick_consumer_index15);
5180 
5181 	if (sblk->status_completion_producer_index ||
5182 		sblk->status_cmd_consumer_index)
5183 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
5184 		    sblk->status_completion_producer_index,
5185 		    sblk->status_cmd_consumer_index);
5186 
5187 	BNX_PRINTF(sc, "-------------------------------------------"
5188 	    "-----------------------------\n");
5189 }
5190 
5191 /*
5192  * This routine prints the statistics block.
5193  */
5194 void
5195 bnx_dump_stats_block(struct bnx_softc *sc)
5196 {
5197 	struct statistics_block	*sblk;
5198 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5199 	    BUS_DMASYNC_POSTREAD);
5200 
5201 	sblk = sc->stats_block;
5202 
5203 	BNX_PRINTF(sc, ""
5204 	    "-----------------------------"
5205 	    " Stats  Block "
5206 	    "-----------------------------\n");
5207 
5208 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
5209 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
5210 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5211 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5212 
5213 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
5214 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
5215 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5216 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5217 
5218 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
5219 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
5220 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5221 	    sblk->stat_IfHCInMulticastPkts_hi,
5222 	    sblk->stat_IfHCInMulticastPkts_lo);
5223 
5224 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
5225 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
5226 	    sblk->stat_IfHCInBroadcastPkts_hi,
5227 	    sblk->stat_IfHCInBroadcastPkts_lo,
5228 	    sblk->stat_IfHCOutUcastPkts_hi,
5229 	    sblk->stat_IfHCOutUcastPkts_lo);
5230 
5231 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5232 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5233 	    sblk->stat_IfHCOutMulticastPkts_hi,
5234 	    sblk->stat_IfHCOutMulticastPkts_lo,
5235 	    sblk->stat_IfHCOutBroadcastPkts_hi,
5236 	    sblk->stat_IfHCOutBroadcastPkts_lo);
5237 
5238 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5239 		BNX_PRINTF(sc, "0x%08X : "
5240 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5241 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5242 
5243 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
5244 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5245 		    sblk->stat_Dot3StatsCarrierSenseErrors);
5246 
5247 	if (sblk->stat_Dot3StatsFCSErrors)
5248 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5249 		    sblk->stat_Dot3StatsFCSErrors);
5250 
5251 	if (sblk->stat_Dot3StatsAlignmentErrors)
5252 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5253 		    sblk->stat_Dot3StatsAlignmentErrors);
5254 
5255 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
5256 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5257 		    sblk->stat_Dot3StatsSingleCollisionFrames);
5258 
5259 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5260 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5261 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
5262 
5263 	if (sblk->stat_Dot3StatsDeferredTransmissions)
5264 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5265 		    sblk->stat_Dot3StatsDeferredTransmissions);
5266 
5267 	if (sblk->stat_Dot3StatsExcessiveCollisions)
5268 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5269 		    sblk->stat_Dot3StatsExcessiveCollisions);
5270 
5271 	if (sblk->stat_Dot3StatsLateCollisions)
5272 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5273 		    sblk->stat_Dot3StatsLateCollisions);
5274 
5275 	if (sblk->stat_EtherStatsCollisions)
5276 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5277 		    sblk->stat_EtherStatsCollisions);
5278 
5279 	if (sblk->stat_EtherStatsFragments)
5280 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5281 		    sblk->stat_EtherStatsFragments);
5282 
5283 	if (sblk->stat_EtherStatsJabbers)
5284 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5285 		    sblk->stat_EtherStatsJabbers);
5286 
5287 	if (sblk->stat_EtherStatsUndersizePkts)
5288 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5289 		    sblk->stat_EtherStatsUndersizePkts);
5290 
5291 	if (sblk->stat_EtherStatsOverrsizePkts)
5292 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5293 		    sblk->stat_EtherStatsOverrsizePkts);
5294 
5295 	if (sblk->stat_EtherStatsPktsRx64Octets)
5296 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5297 		    sblk->stat_EtherStatsPktsRx64Octets);
5298 
5299 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5300 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5301 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5302 
5303 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5304 		BNX_PRINTF(sc, "0x%08X : "
5305 		    "EtherStatsPktsRx128Octetsto255Octets\n",
5306 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5307 
5308 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5309 		BNX_PRINTF(sc, "0x%08X : "
5310 		    "EtherStatsPktsRx256Octetsto511Octets\n",
5311 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5312 
5313 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5314 		BNX_PRINTF(sc, "0x%08X : "
5315 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
5316 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5317 
5318 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5319 		BNX_PRINTF(sc, "0x%08X : "
5320 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
5321 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5322 
5323 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5324 		BNX_PRINTF(sc, "0x%08X : "
5325 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
5326 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5327 
5328 	if (sblk->stat_EtherStatsPktsTx64Octets)
5329 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5330 		    sblk->stat_EtherStatsPktsTx64Octets);
5331 
5332 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5333 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5334 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5335 
5336 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5337 		BNX_PRINTF(sc, "0x%08X : "
5338 		    "EtherStatsPktsTx128Octetsto255Octets\n",
5339 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5340 
5341 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5342 		BNX_PRINTF(sc, "0x%08X : "
5343 		    "EtherStatsPktsTx256Octetsto511Octets\n",
5344 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5345 
5346 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5347 		BNX_PRINTF(sc, "0x%08X : "
5348 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
5349 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5350 
5351 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5352 		BNX_PRINTF(sc, "0x%08X : "
5353 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
5354 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5355 
5356 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5357 		BNX_PRINTF(sc, "0x%08X : "
5358 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
5359 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5360 
5361 	if (sblk->stat_XonPauseFramesReceived)
5362 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5363 		    sblk->stat_XonPauseFramesReceived);
5364 
5365 	if (sblk->stat_XoffPauseFramesReceived)
5366 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5367 		    sblk->stat_XoffPauseFramesReceived);
5368 
5369 	if (sblk->stat_OutXonSent)
5370 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5371 		    sblk->stat_OutXonSent);
5372 
5373 	if (sblk->stat_OutXoffSent)
5374 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5375 		    sblk->stat_OutXoffSent);
5376 
5377 	if (sblk->stat_FlowControlDone)
5378 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5379 		    sblk->stat_FlowControlDone);
5380 
5381 	if (sblk->stat_MacControlFramesReceived)
5382 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5383 		    sblk->stat_MacControlFramesReceived);
5384 
5385 	if (sblk->stat_XoffStateEntered)
5386 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5387 		    sblk->stat_XoffStateEntered);
5388 
5389 	if (sblk->stat_IfInFramesL2FilterDiscards)
5390 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5391 		    sblk->stat_IfInFramesL2FilterDiscards);
5392 
5393 	if (sblk->stat_IfInRuleCheckerDiscards)
5394 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5395 		    sblk->stat_IfInRuleCheckerDiscards);
5396 
5397 	if (sblk->stat_IfInFTQDiscards)
5398 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5399 		    sblk->stat_IfInFTQDiscards);
5400 
5401 	if (sblk->stat_IfInMBUFDiscards)
5402 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5403 		    sblk->stat_IfInMBUFDiscards);
5404 
5405 	if (sblk->stat_IfInRuleCheckerP4Hit)
5406 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5407 		    sblk->stat_IfInRuleCheckerP4Hit);
5408 
5409 	if (sblk->stat_CatchupInRuleCheckerDiscards)
5410 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5411 		    sblk->stat_CatchupInRuleCheckerDiscards);
5412 
5413 	if (sblk->stat_CatchupInFTQDiscards)
5414 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5415 		    sblk->stat_CatchupInFTQDiscards);
5416 
5417 	if (sblk->stat_CatchupInMBUFDiscards)
5418 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5419 		    sblk->stat_CatchupInMBUFDiscards);
5420 
5421 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
5422 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5423 		    sblk->stat_CatchupInRuleCheckerP4Hit);
5424 
5425 	BNX_PRINTF(sc,
5426 	    "-----------------------------"
5427 	    "--------------"
5428 	    "-----------------------------\n");
5429 }
5430 
5431 void
5432 bnx_dump_driver_state(struct bnx_softc *sc)
5433 {
5434 	BNX_PRINTF(sc,
5435 	    "-----------------------------"
5436 	    " Driver State "
5437 	    "-----------------------------\n");
5438 
5439 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5440 	    "address\n", sc);
5441 
5442 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5443 	    sc->status_block);
5444 
5445 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5446 	    "address\n", sc->stats_block);
5447 
5448 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5449 	    "adddress\n", sc->tx_bd_chain);
5450 
5451 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5452 	    sc->rx_bd_chain);
5453 
5454 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5455 	    sc->tx_mbuf_ptr);
5456 
5457 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5458 	    sc->rx_mbuf_ptr);
5459 
5460 	BNX_PRINTF(sc,
5461 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
5462 	    sc->interrupts_generated);
5463 
5464 	BNX_PRINTF(sc,
5465 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5466 	    sc->rx_interrupts);
5467 
5468 	BNX_PRINTF(sc,
5469 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5470 	    sc->tx_interrupts);
5471 
5472 	BNX_PRINTF(sc,
5473 	    "         0x%08X - (sc->last_status_idx) status block index\n",
5474 	    sc->last_status_idx);
5475 
5476 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
5477 	    sc->tx_prod);
5478 
5479 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
5480 	    sc->tx_cons);
5481 
5482 	BNX_PRINTF(sc,
5483 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5484 	    sc->tx_prod_bseq);
5485 
5486 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
5487 	    sc->rx_prod);
5488 
5489 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
5490 	    sc->rx_cons);
5491 
5492 	BNX_PRINTF(sc,
5493 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5494 	    sc->rx_prod_bseq);
5495 
5496 	BNX_PRINTF(sc,
5497 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5498 	    sc->rx_mbuf_alloc);
5499 
5500 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5501 	    sc->free_rx_bd);
5502 
5503 	BNX_PRINTF(sc,
5504 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5505 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5506 
5507 	BNX_PRINTF(sc,
5508 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5509 	    sc->tx_mbuf_alloc);
5510 
5511 	BNX_PRINTF(sc,
5512 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5513 	    sc->rx_mbuf_alloc);
5514 
5515 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5516 	    sc->used_tx_bd);
5517 
5518 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5519 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5520 
5521 	BNX_PRINTF(sc,
5522 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5523 	    sc->mbuf_alloc_failed);
5524 
5525 	BNX_PRINTF(sc, "-------------------------------------------"
5526 	    "-----------------------------\n");
5527 }
5528 
5529 void
5530 bnx_dump_hw_state(struct bnx_softc *sc)
5531 {
5532 	u_int32_t		val1;
5533 	int			i;
5534 
5535 	BNX_PRINTF(sc,
5536 	    "----------------------------"
5537 	    " Hardware State "
5538 	    "----------------------------\n");
5539 
5540 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5541 
5542 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5543 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5544 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
5545 
5546 	val1 = REG_RD(sc, BNX_DMA_STATUS);
5547 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5548 
5549 	val1 = REG_RD(sc, BNX_CTX_STATUS);
5550 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5551 
5552 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
5553 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5554 	    BNX_EMAC_STATUS);
5555 
5556 	val1 = REG_RD(sc, BNX_RPM_STATUS);
5557 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5558 
5559 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
5560 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5561 	    BNX_TBDR_STATUS);
5562 
5563 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
5564 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5565 	    BNX_TDMA_STATUS);
5566 
5567 	val1 = REG_RD(sc, BNX_HC_STATUS);
5568 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5569 
5570 	BNX_PRINTF(sc,
5571 	    "----------------------------"
5572 	    "----------------"
5573 	    "----------------------------\n");
5574 
5575 	BNX_PRINTF(sc,
5576 	    "----------------------------"
5577 	    " Register  Dump "
5578 	    "----------------------------\n");
5579 
5580 	for (i = 0x400; i < 0x8000; i += 0x10)
5581 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5582 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5583 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5584 
5585 	BNX_PRINTF(sc,
5586 	    "----------------------------"
5587 	    "----------------"
5588 	    "----------------------------\n");
5589 }
5590 
5591 void
5592 bnx_breakpoint(struct bnx_softc *sc)
5593 {
5594 	/* Unreachable code to shut the compiler up about unused functions. */
5595 	if (0) {
5596    		bnx_dump_txbd(sc, 0, NULL);
5597 		bnx_dump_rxbd(sc, 0, NULL);
5598 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5599 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5600 		bnx_dump_l2fhdr(sc, 0, NULL);
5601 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5602 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5603 		bnx_dump_status_block(sc);
5604 		bnx_dump_stats_block(sc);
5605 		bnx_dump_driver_state(sc);
5606 		bnx_dump_hw_state(sc);
5607 	}
5608 
5609 	bnx_dump_driver_state(sc);
5610 	/* Print the important status block fields. */
5611 	bnx_dump_status_block(sc);
5612 
5613 #if 0
5614 	/* Call the debugger. */
5615 	breakpoint();
5616 #endif
5617 
5618 	return;
5619 }
5620 #endif
5621