xref: /netbsd-src/sys/dev/pci/if_bge.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: if_bge.c,v 1.199 2011/11/02 16:26:30 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.199 2011/11/02 16:26:30 yamt Exp $");
83 
84 #include "vlan.h"
85 #include "rnd.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #if NRND > 0
104 #include <sys/rnd.h>
105 #endif
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 /* Headers for TCP  Segmentation Offload (TSO) */
115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
117 #include <netinet/ip.h>			/* for struct ip */
118 #include <netinet/tcp.h>		/* for struct tcphdr */
119 
120 
121 #include <net/bpf.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/miidevs.h>
130 #include <dev/mii/brgphyreg.h>
131 
132 #include <dev/pci/if_bgereg.h>
133 #include <dev/pci/if_bgevar.h>
134 
135 #include <prop/proplib.h>
136 
137 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
138 
139 
140 /*
141  * Tunable thresholds for rx-side bge interrupt mitigation.
142  */
143 
144 /*
145  * The pairs of values below were obtained from empirical measurement
146  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
147  * interrupt for every N packets received, where N is, approximately,
148  * the second value (rx_max_bds) in each pair.  The values are chosen
149  * such that moving from one pair to the succeeding pair was observed
150  * to roughly halve interrupt rate under sustained input packet load.
151  * The values were empirically chosen to avoid overflowing internal
152  * limits on the  bcm5700: increasing rx_ticks much beyond 600
153  * results in internal wrapping and higher interrupt rates.
154  * The limit of 46 frames was chosen to match NFS workloads.
155  *
156  * These values also work well on bcm5701, bcm5704C, and (less
157  * tested) bcm5703.  On other chipsets, (including the Altima chip
158  * family), the larger values may overflow internal chip limits,
159  * leading to increasing interrupt rates rather than lower interrupt
160  * rates.
161  *
162  * Applications using heavy interrupt mitigation (interrupting every
163  * 32 or 46 frames) in both directions may need to increase the TCP
164  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
165  * full link bandwidth, due to ACKs and window updates lingering
166  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
167  */
168 static const struct bge_load_rx_thresh {
169 	int rx_ticks;
170 	int rx_max_bds; }
171 bge_rx_threshes[] = {
172 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
173 	{ 32,   2 },
174 	{ 50,   4 },
175 	{ 100,  8 },
176 	{ 192, 16 },
177 	{ 416, 32 },
178 	{ 598, 46 }
179 };
180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
181 
182 /* XXX patchable; should be sysctl'able */
183 static int bge_auto_thresh = 1;
184 static int bge_rx_thresh_lvl;
185 
186 static int bge_rxthresh_nodenum;
187 
188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
189 
190 static int bge_probe(device_t, cfdata_t, void *);
191 static void bge_attach(device_t, device_t, void *);
192 static void bge_release_resources(struct bge_softc *);
193 
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199 
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxeof(struct bge_softc *);
202 
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208 
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ifflags_cb(struct ethercom *);
212 static int bge_ioctl(struct ifnet *, u_long, void *);
213 static int bge_init(struct ifnet *);
214 static void bge_stop(struct ifnet *, int);
215 static void bge_watchdog(struct ifnet *);
216 static int bge_ifmedia_upd(struct ifnet *);
217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218 
219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
221 
222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
224 static void bge_setmulti(struct bge_softc *);
225 
226 static void bge_handle_events(struct bge_softc *);
227 static int bge_alloc_jumbo_mem(struct bge_softc *);
228 #if 0 /* XXX */
229 static void bge_free_jumbo_mem(struct bge_softc *);
230 #endif
231 static void *bge_jalloc(struct bge_softc *);
232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
234 			       bus_dmamap_t);
235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
236 static int bge_init_rx_ring_std(struct bge_softc *);
237 static void bge_free_rx_ring_std(struct bge_softc *);
238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_tx_ring(struct bge_softc *);
241 static int bge_init_tx_ring(struct bge_softc *);
242 
243 static int bge_chipinit(struct bge_softc *);
244 static int bge_blockinit(struct bge_softc *);
245 static int bge_setpowerstate(struct bge_softc *, int);
246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
247 static void bge_writemem_ind(struct bge_softc *, int, int);
248 static void bge_writembx(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252 
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(device_t);
256 
257 #define	BGE_RESET_START 1
258 #define	BGE_RESET_STOP  2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_stop_fw(struct bge_softc *);
263 static int bge_reset(struct bge_softc *);
264 static void bge_link_upd(struct bge_softc *);
265 static void sysctl_bge_init(struct bge_softc *);
266 static int sysctl_bge_verify(SYSCTLFN_PROTO);
267 
268 #ifdef BGE_DEBUG
269 #define DPRINTF(x)	if (bgedebug) printf x
270 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
271 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
272 int	bgedebug = 0;
273 int	bge_tso_debug = 0;
274 void		bge_debug_info(struct bge_softc *);
275 #else
276 #define DPRINTF(x)
277 #define DPRINTFN(n,x)
278 #define BGE_TSO_PRINTF(x)
279 #endif
280 
281 #ifdef BGE_EVENT_COUNTERS
282 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
283 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
284 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
285 #else
286 #define	BGE_EVCNT_INCR(ev)	/* nothing */
287 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
288 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
289 #endif
290 
291 static const struct bge_product {
292 	pci_vendor_id_t		bp_vendor;
293 	pci_product_id_t	bp_product;
294 	const char		*bp_name;
295 } bge_products[] = {
296 	/*
297 	 * The BCM5700 documentation seems to indicate that the hardware
298 	 * still has the Alteon vendor ID burned into it, though it
299 	 * should always be overridden by the value in the EEPROM.  We'll
300 	 * check for it anyway.
301 	 */
302 	{ PCI_VENDOR_ALTEON,
303 	  PCI_PRODUCT_ALTEON_BCM5700,
304 	  "Broadcom BCM5700 Gigabit Ethernet",
305 	  },
306 	{ PCI_VENDOR_ALTEON,
307 	  PCI_PRODUCT_ALTEON_BCM5701,
308 	  "Broadcom BCM5701 Gigabit Ethernet",
309 	  },
310 	{ PCI_VENDOR_ALTIMA,
311 	  PCI_PRODUCT_ALTIMA_AC1000,
312 	  "Altima AC1000 Gigabit Ethernet",
313 	  },
314 	{ PCI_VENDOR_ALTIMA,
315 	  PCI_PRODUCT_ALTIMA_AC1001,
316 	  "Altima AC1001 Gigabit Ethernet",
317 	   },
318 	{ PCI_VENDOR_ALTIMA,
319 	  PCI_PRODUCT_ALTIMA_AC9100,
320 	  "Altima AC9100 Gigabit Ethernet",
321 	  },
322 	{ PCI_VENDOR_BROADCOM,
323 	  PCI_PRODUCT_BROADCOM_BCM5700,
324 	  "Broadcom BCM5700 Gigabit Ethernet",
325 	  },
326 	{ PCI_VENDOR_BROADCOM,
327 	  PCI_PRODUCT_BROADCOM_BCM5701,
328 	  "Broadcom BCM5701 Gigabit Ethernet",
329 	  },
330 	{ PCI_VENDOR_BROADCOM,
331 	  PCI_PRODUCT_BROADCOM_BCM5702,
332 	  "Broadcom BCM5702 Gigabit Ethernet",
333 	  },
334 	{ PCI_VENDOR_BROADCOM,
335 	  PCI_PRODUCT_BROADCOM_BCM5702X,
336 	  "Broadcom BCM5702X Gigabit Ethernet" },
337 	{ PCI_VENDOR_BROADCOM,
338 	  PCI_PRODUCT_BROADCOM_BCM5703,
339 	  "Broadcom BCM5703 Gigabit Ethernet",
340 	  },
341 	{ PCI_VENDOR_BROADCOM,
342 	  PCI_PRODUCT_BROADCOM_BCM5703X,
343 	  "Broadcom BCM5703X Gigabit Ethernet",
344 	  },
345 	{ PCI_VENDOR_BROADCOM,
346 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
347 	  "Broadcom BCM5703 Gigabit Ethernet",
348 	  },
349 	{ PCI_VENDOR_BROADCOM,
350 	  PCI_PRODUCT_BROADCOM_BCM5704C,
351 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
352 	  },
353 	{ PCI_VENDOR_BROADCOM,
354 	  PCI_PRODUCT_BROADCOM_BCM5704S,
355 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
356 	  },
357 	{ PCI_VENDOR_BROADCOM,
358 	  PCI_PRODUCT_BROADCOM_BCM5705,
359 	  "Broadcom BCM5705 Gigabit Ethernet",
360 	  },
361 	{ PCI_VENDOR_BROADCOM,
362 	  PCI_PRODUCT_BROADCOM_BCM5705F,
363 	  "Broadcom BCM5705F Gigabit Ethernet",
364 	  },
365 	{ PCI_VENDOR_BROADCOM,
366 	  PCI_PRODUCT_BROADCOM_BCM5705K,
367 	  "Broadcom BCM5705K Gigabit Ethernet",
368 	  },
369 	{ PCI_VENDOR_BROADCOM,
370 	  PCI_PRODUCT_BROADCOM_BCM5705M,
371 	  "Broadcom BCM5705M Gigabit Ethernet",
372 	  },
373 	{ PCI_VENDOR_BROADCOM,
374 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
375 	  "Broadcom BCM5705M Gigabit Ethernet",
376 	  },
377 	{ PCI_VENDOR_BROADCOM,
378 	  PCI_PRODUCT_BROADCOM_BCM5714,
379 	  "Broadcom BCM5714 Gigabit Ethernet",
380 	  },
381 	{ PCI_VENDOR_BROADCOM,
382 	  PCI_PRODUCT_BROADCOM_BCM5714S,
383 	  "Broadcom BCM5714S Gigabit Ethernet",
384 	  },
385 	{ PCI_VENDOR_BROADCOM,
386 	  PCI_PRODUCT_BROADCOM_BCM5715,
387 	  "Broadcom BCM5715 Gigabit Ethernet",
388 	  },
389 	{ PCI_VENDOR_BROADCOM,
390 	  PCI_PRODUCT_BROADCOM_BCM5715S,
391 	  "Broadcom BCM5715S Gigabit Ethernet",
392 	  },
393 	{ PCI_VENDOR_BROADCOM,
394 	  PCI_PRODUCT_BROADCOM_BCM5717,
395 	  "Broadcom BCM5717 Gigabit Ethernet",
396 	  },
397 	{ PCI_VENDOR_BROADCOM,
398 	  PCI_PRODUCT_BROADCOM_BCM5718,
399 	  "Broadcom BCM5718 Gigabit Ethernet",
400 	  },
401 	{ PCI_VENDOR_BROADCOM,
402 	  PCI_PRODUCT_BROADCOM_BCM5720,
403 	  "Broadcom BCM5720 Gigabit Ethernet",
404 	  },
405 	{ PCI_VENDOR_BROADCOM,
406 	  PCI_PRODUCT_BROADCOM_BCM5721,
407 	  "Broadcom BCM5721 Gigabit Ethernet",
408 	  },
409 	{ PCI_VENDOR_BROADCOM,
410 	  PCI_PRODUCT_BROADCOM_BCM5722,
411 	  "Broadcom BCM5722 Gigabit Ethernet",
412 	  },
413 	{ PCI_VENDOR_BROADCOM,
414 	  PCI_PRODUCT_BROADCOM_BCM5723,
415 	  "Broadcom BCM5723 Gigabit Ethernet",
416 	  },
417 	{ PCI_VENDOR_BROADCOM,
418 	  PCI_PRODUCT_BROADCOM_BCM5724,
419 	  "Broadcom BCM5724 Gigabit Ethernet",
420 	  },
421 	{ PCI_VENDOR_BROADCOM,
422 	  PCI_PRODUCT_BROADCOM_BCM5750,
423 	  "Broadcom BCM5750 Gigabit Ethernet",
424 	  },
425 	{ PCI_VENDOR_BROADCOM,
426 	  PCI_PRODUCT_BROADCOM_BCM5750M,
427 	  "Broadcom BCM5750M Gigabit Ethernet",
428 	  },
429 	{ PCI_VENDOR_BROADCOM,
430 	  PCI_PRODUCT_BROADCOM_BCM5751,
431 	  "Broadcom BCM5751 Gigabit Ethernet",
432 	  },
433 	{ PCI_VENDOR_BROADCOM,
434 	  PCI_PRODUCT_BROADCOM_BCM5751F,
435 	  "Broadcom BCM5751F Gigabit Ethernet",
436 	  },
437 	{ PCI_VENDOR_BROADCOM,
438 	  PCI_PRODUCT_BROADCOM_BCM5751M,
439 	  "Broadcom BCM5751M Gigabit Ethernet",
440 	  },
441 	{ PCI_VENDOR_BROADCOM,
442 	  PCI_PRODUCT_BROADCOM_BCM5752,
443 	  "Broadcom BCM5752 Gigabit Ethernet",
444 	  },
445 	{ PCI_VENDOR_BROADCOM,
446 	  PCI_PRODUCT_BROADCOM_BCM5752M,
447 	  "Broadcom BCM5752M Gigabit Ethernet",
448 	  },
449 	{ PCI_VENDOR_BROADCOM,
450 	  PCI_PRODUCT_BROADCOM_BCM5753,
451 	  "Broadcom BCM5753 Gigabit Ethernet",
452 	  },
453 	{ PCI_VENDOR_BROADCOM,
454 	  PCI_PRODUCT_BROADCOM_BCM5753F,
455 	  "Broadcom BCM5753F Gigabit Ethernet",
456 	  },
457 	{ PCI_VENDOR_BROADCOM,
458 	  PCI_PRODUCT_BROADCOM_BCM5753M,
459 	  "Broadcom BCM5753M Gigabit Ethernet",
460 	  },
461 	{ PCI_VENDOR_BROADCOM,
462 	  PCI_PRODUCT_BROADCOM_BCM5754,
463 	  "Broadcom BCM5754 Gigabit Ethernet",
464 	},
465 	{ PCI_VENDOR_BROADCOM,
466 	  PCI_PRODUCT_BROADCOM_BCM5754M,
467 	  "Broadcom BCM5754M Gigabit Ethernet",
468 	},
469 	{ PCI_VENDOR_BROADCOM,
470 	  PCI_PRODUCT_BROADCOM_BCM5755,
471 	  "Broadcom BCM5755 Gigabit Ethernet",
472 	},
473 	{ PCI_VENDOR_BROADCOM,
474 	  PCI_PRODUCT_BROADCOM_BCM5755M,
475 	  "Broadcom BCM5755M Gigabit Ethernet",
476 	},
477 	{ PCI_VENDOR_BROADCOM,
478 	  PCI_PRODUCT_BROADCOM_BCM5756,
479 	  "Broadcom BCM5756 Gigabit Ethernet",
480 	},
481 	{ PCI_VENDOR_BROADCOM,
482 	  PCI_PRODUCT_BROADCOM_BCM5761,
483 	  "Broadcom BCM5761 Gigabit Ethernet",
484 	},
485 	{ PCI_VENDOR_BROADCOM,
486 	  PCI_PRODUCT_BROADCOM_BCM5761E,
487 	  "Broadcom BCM5761E Gigabit Ethernet",
488 	},
489 	{ PCI_VENDOR_BROADCOM,
490 	  PCI_PRODUCT_BROADCOM_BCM5761S,
491 	  "Broadcom BCM5761S Gigabit Ethernet",
492 	},
493 	{ PCI_VENDOR_BROADCOM,
494 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
495 	  "Broadcom BCM5761SE Gigabit Ethernet",
496 	},
497 	{ PCI_VENDOR_BROADCOM,
498 	  PCI_PRODUCT_BROADCOM_BCM5764,
499 	  "Broadcom BCM5764 Gigabit Ethernet",
500 	  },
501 	{ PCI_VENDOR_BROADCOM,
502 	  PCI_PRODUCT_BROADCOM_BCM5780,
503 	  "Broadcom BCM5780 Gigabit Ethernet",
504 	  },
505 	{ PCI_VENDOR_BROADCOM,
506 	  PCI_PRODUCT_BROADCOM_BCM5780S,
507 	  "Broadcom BCM5780S Gigabit Ethernet",
508 	  },
509 	{ PCI_VENDOR_BROADCOM,
510 	  PCI_PRODUCT_BROADCOM_BCM5781,
511 	  "Broadcom BCM5781 Gigabit Ethernet",
512 	  },
513 	{ PCI_VENDOR_BROADCOM,
514 	  PCI_PRODUCT_BROADCOM_BCM5782,
515 	  "Broadcom BCM5782 Gigabit Ethernet",
516 	},
517 	{ PCI_VENDOR_BROADCOM,
518 	  PCI_PRODUCT_BROADCOM_BCM5784M,
519 	  "BCM5784M NetLink 1000baseT Ethernet",
520 	},
521 	{ PCI_VENDOR_BROADCOM,
522 	  PCI_PRODUCT_BROADCOM_BCM5786,
523 	  "Broadcom BCM5786 Gigabit Ethernet",
524 	},
525 	{ PCI_VENDOR_BROADCOM,
526 	  PCI_PRODUCT_BROADCOM_BCM5787,
527 	  "Broadcom BCM5787 Gigabit Ethernet",
528 	},
529 	{ PCI_VENDOR_BROADCOM,
530 	  PCI_PRODUCT_BROADCOM_BCM5787M,
531 	  "Broadcom BCM5787M Gigabit Ethernet",
532 	},
533 	{ PCI_VENDOR_BROADCOM,
534 	  PCI_PRODUCT_BROADCOM_BCM5788,
535 	  "Broadcom BCM5788 Gigabit Ethernet",
536 	  },
537 	{ PCI_VENDOR_BROADCOM,
538 	  PCI_PRODUCT_BROADCOM_BCM5789,
539 	  "Broadcom BCM5789 Gigabit Ethernet",
540 	  },
541 	{ PCI_VENDOR_BROADCOM,
542 	  PCI_PRODUCT_BROADCOM_BCM5901,
543 	  "Broadcom BCM5901 Fast Ethernet",
544 	  },
545 	{ PCI_VENDOR_BROADCOM,
546 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
547 	  "Broadcom BCM5901A2 Fast Ethernet",
548 	  },
549 	{ PCI_VENDOR_BROADCOM,
550 	  PCI_PRODUCT_BROADCOM_BCM5903M,
551 	  "Broadcom BCM5903M Fast Ethernet",
552 	  },
553 	{ PCI_VENDOR_BROADCOM,
554 	  PCI_PRODUCT_BROADCOM_BCM5906,
555 	  "Broadcom BCM5906 Fast Ethernet",
556 	  },
557 	{ PCI_VENDOR_BROADCOM,
558 	  PCI_PRODUCT_BROADCOM_BCM5906M,
559 	  "Broadcom BCM5906M Fast Ethernet",
560 	  },
561 	{ PCI_VENDOR_BROADCOM,
562 	  PCI_PRODUCT_BROADCOM_BCM57760,
563 	  "Broadcom BCM57760 Fast Ethernet",
564 	  },
565 	{ PCI_VENDOR_BROADCOM,
566 	  PCI_PRODUCT_BROADCOM_BCM57761,
567 	  "Broadcom BCM57761 Fast Ethernet",
568 	  },
569 	{ PCI_VENDOR_BROADCOM,
570 	  PCI_PRODUCT_BROADCOM_BCM57765,
571 	  "Broadcom BCM57765 Fast Ethernet",
572 	  },
573 	{ PCI_VENDOR_BROADCOM,
574 	  PCI_PRODUCT_BROADCOM_BCM57780,
575 	  "Broadcom BCM57780 Fast Ethernet",
576 	  },
577 	{ PCI_VENDOR_BROADCOM,
578 	  PCI_PRODUCT_BROADCOM_BCM57781,
579 	  "Broadcom BCM57781 Fast Ethernet",
580 	  },
581 	{ PCI_VENDOR_BROADCOM,
582 	  PCI_PRODUCT_BROADCOM_BCM57785,
583 	  "Broadcom BCM57785 Fast Ethernet",
584 	  },
585 	{ PCI_VENDOR_BROADCOM,
586 	  PCI_PRODUCT_BROADCOM_BCM57788,
587 	  "Broadcom BCM57788 Fast Ethernet",
588 	  },
589 	{ PCI_VENDOR_BROADCOM,
590 	  PCI_PRODUCT_BROADCOM_BCM57790,
591 	  "Broadcom BCM57790 Fast Ethernet",
592 	  },
593 	{ PCI_VENDOR_BROADCOM,
594 	  PCI_PRODUCT_BROADCOM_BCM57791,
595 	  "Broadcom BCM57791 Fast Ethernet",
596 	  },
597 	{ PCI_VENDOR_BROADCOM,
598 	  PCI_PRODUCT_BROADCOM_BCM57795,
599 	  "Broadcom BCM57795 Fast Ethernet",
600 	  },
601 	{ PCI_VENDOR_SCHNEIDERKOCH,
602 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
603 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
604 	  },
605 	{ PCI_VENDOR_3COM,
606 	  PCI_PRODUCT_3COM_3C996,
607 	  "3Com 3c996 Gigabit Ethernet",
608 	  },
609 	{ PCI_VENDOR_FUJITSU4,
610 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
611 	  "Fujitsu PW008GE4 Gigabit Ethernet",
612 	  },
613 	{ PCI_VENDOR_FUJITSU4,
614 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
615 	  "Fujitsu PW008GE5 Gigabit Ethernet",
616 	  },
617 	{ PCI_VENDOR_FUJITSU4,
618 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
619 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
620 	  },
621 	{ 0,
622 	  0,
623 	  NULL },
624 };
625 
626 /*
627  * XXX: how to handle variants based on 5750 and derivatives:
628  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
629  * in general behave like a 5705, except with additional quirks.
630  * This driver's current handling of the 5721 is wrong;
631  * how we map ASIC revision to "quirks" needs more thought.
632  * (defined here until the thought is done).
633  */
634 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
635 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
636 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
637 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
638 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
639 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
640 
641 static const struct bge_revision {
642 	uint32_t		br_chipid;
643 	const char		*br_name;
644 } bge_revisions[] = {
645 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
646 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
647 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
648 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
649 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
650 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
651 	/* This is treated like a BCM5700 Bx */
652 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
653 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
654 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
655 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
656 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
657 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
658 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
659 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
660 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
661 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
662 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
663 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
664 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
665 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
666 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
667 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
668 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
669 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
670 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
671 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
672 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
673 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
674 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
675 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
676 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
677 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
678 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
679 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
680 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
681 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
682 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
683 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
684 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
685 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
686 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
687 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
688 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
689 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
690 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
691 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
692 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
693 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
694 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
695 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
696 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
697 	/* 5754 and 5787 share the same ASIC ID */
698 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
699 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
700 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
701 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
702 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
703 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
704 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
705 
706 	{ 0, NULL }
707 };
708 
709 /*
710  * Some defaults for major revisions, so that newer steppings
711  * that we don't know about have a shot at working.
712  */
713 static const struct bge_revision bge_majorrevs[] = {
714 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
715 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
716 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
717 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
718 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
719 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
720 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
721 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
722 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
723 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
724 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
725 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
726 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
727 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
728 	/* 5754 and 5787 share the same ASIC ID */
729 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
730 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
731 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
732 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
733 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
734 
735 	{ 0, NULL }
736 };
737 
738 static int bge_allow_asf = 1;
739 
740 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
741     bge_probe, bge_attach, NULL, NULL);
742 
743 static uint32_t
744 bge_readmem_ind(struct bge_softc *sc, int off)
745 {
746 	pcireg_t val;
747 
748 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
749 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
750 	return val;
751 }
752 
753 static void
754 bge_writemem_ind(struct bge_softc *sc, int off, int val)
755 {
756 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
757 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
758 }
759 
760 /*
761  * PCI Express only
762  */
763 static void
764 bge_set_max_readrq(struct bge_softc *sc)
765 {
766 	pcireg_t val;
767 
768 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
769 	    + PCI_PCIE_DCSR);
770 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
771 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
772 		aprint_verbose_dev(sc->bge_dev,
773 		    "adjust device control 0x%04x ", val);
774 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
775 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
776 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
777 		    + PCI_PCIE_DCSR, val);
778 		aprint_verbose("-> 0x%04x\n", val);
779 	}
780 }
781 
782 #ifdef notdef
783 static uint32_t
784 bge_readreg_ind(struct bge_softc *sc, int off)
785 {
786 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
787 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
788 }
789 #endif
790 
791 static void
792 bge_writereg_ind(struct bge_softc *sc, int off, int val)
793 {
794 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
795 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
796 }
797 
798 static void
799 bge_writemem_direct(struct bge_softc *sc, int off, int val)
800 {
801 	CSR_WRITE_4(sc, off, val);
802 }
803 
804 static void
805 bge_writembx(struct bge_softc *sc, int off, int val)
806 {
807 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
808 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
809 
810 	CSR_WRITE_4(sc, off, val);
811 }
812 
813 static uint8_t
814 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
815 {
816 	uint32_t access, byte = 0;
817 	int i;
818 
819 	/* Lock. */
820 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
821 	for (i = 0; i < 8000; i++) {
822 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
823 			break;
824 		DELAY(20);
825 	}
826 	if (i == 8000)
827 		return 1;
828 
829 	/* Enable access. */
830 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
831 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
832 
833 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
834 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
835 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
836 		DELAY(10);
837 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
838 			DELAY(10);
839 			break;
840 		}
841 	}
842 
843 	if (i == BGE_TIMEOUT * 10) {
844 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
845 		return 1;
846 	}
847 
848 	/* Get result. */
849 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
850 
851 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
852 
853 	/* Disable access. */
854 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
855 
856 	/* Unlock. */
857 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
858 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
859 
860 	return 0;
861 }
862 
863 /*
864  * Read a sequence of bytes from NVRAM.
865  */
866 static int
867 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
868 {
869 	int err = 0, i;
870 	uint8_t byte = 0;
871 
872 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
873 		return 1;
874 
875 	for (i = 0; i < cnt; i++) {
876 		err = bge_nvram_getbyte(sc, off + i, &byte);
877 		if (err)
878 			break;
879 		*(dest + i) = byte;
880 	}
881 
882 	return (err ? 1 : 0);
883 }
884 
885 /*
886  * Read a byte of data stored in the EEPROM at address 'addr.' The
887  * BCM570x supports both the traditional bitbang interface and an
888  * auto access interface for reading the EEPROM. We use the auto
889  * access method.
890  */
891 static uint8_t
892 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
893 {
894 	int i;
895 	uint32_t byte = 0;
896 
897 	/*
898 	 * Enable use of auto EEPROM access so we can avoid
899 	 * having to use the bitbang method.
900 	 */
901 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
902 
903 	/* Reset the EEPROM, load the clock period. */
904 	CSR_WRITE_4(sc, BGE_EE_ADDR,
905 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
906 	DELAY(20);
907 
908 	/* Issue the read EEPROM command. */
909 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
910 
911 	/* Wait for completion */
912 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
913 		DELAY(10);
914 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
915 			break;
916 	}
917 
918 	if (i == BGE_TIMEOUT * 10) {
919 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
920 		return 1;
921 	}
922 
923 	/* Get result. */
924 	byte = CSR_READ_4(sc, BGE_EE_DATA);
925 
926 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
927 
928 	return 0;
929 }
930 
931 /*
932  * Read a sequence of bytes from the EEPROM.
933  */
934 static int
935 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
936 {
937 	int err = 0, i;
938 	uint8_t byte = 0;
939 	char *dest = destv;
940 
941 	for (i = 0; i < cnt; i++) {
942 		err = bge_eeprom_getbyte(sc, off + i, &byte);
943 		if (err)
944 			break;
945 		*(dest + i) = byte;
946 	}
947 
948 	return (err ? 1 : 0);
949 }
950 
951 static int
952 bge_miibus_readreg(device_t dev, int phy, int reg)
953 {
954 	struct bge_softc *sc = device_private(dev);
955 	uint32_t val;
956 	uint32_t autopoll;
957 	int i;
958 
959 	/*
960 	 * Broadcom's own driver always assumes the internal
961 	 * PHY is at GMII address 1. On some chips, the PHY responds
962 	 * to accesses at all addresses, which could cause us to
963 	 * bogusly attach the PHY 32 times at probe type. Always
964 	 * restricting the lookup to address 1 is simpler than
965 	 * trying to figure out which chips revisions should be
966 	 * special-cased.
967 	 */
968 	if (phy != 1)
969 		return 0;
970 
971 	/* Reading with autopolling on may trigger PCI errors */
972 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
973 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
974 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
975 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
976 		DELAY(40);
977 	}
978 
979 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
980 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
981 
982 	for (i = 0; i < BGE_TIMEOUT; i++) {
983 		val = CSR_READ_4(sc, BGE_MI_COMM);
984 		if (!(val & BGE_MICOMM_BUSY))
985 			break;
986 		delay(10);
987 	}
988 
989 	if (i == BGE_TIMEOUT) {
990 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
991 		val = 0;
992 		goto done;
993 	}
994 
995 	val = CSR_READ_4(sc, BGE_MI_COMM);
996 
997 done:
998 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
999 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1000 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1001 		DELAY(40);
1002 	}
1003 
1004 	if (val & BGE_MICOMM_READFAIL)
1005 		return 0;
1006 
1007 	return (val & 0xFFFF);
1008 }
1009 
1010 static void
1011 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1012 {
1013 	struct bge_softc *sc = device_private(dev);
1014 	uint32_t autopoll;
1015 	int i;
1016 
1017 	if (phy!=1) {
1018 		return;
1019 	}
1020 
1021 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1022 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1023 		return;
1024 	}
1025 
1026 	/* Reading with autopolling on may trigger PCI errors */
1027 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1028 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1029 		delay(40);
1030 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1031 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1032 		delay(10); /* 40 usec is supposed to be adequate */
1033 	}
1034 
1035 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1036 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1037 
1038 	for (i = 0; i < BGE_TIMEOUT; i++) {
1039 		delay(10);
1040 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1041 			delay(5);
1042 			CSR_READ_4(sc, BGE_MI_COMM);
1043 			break;
1044 		}
1045 	}
1046 
1047 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1048 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1049 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1050 		delay(40);
1051 	}
1052 
1053 	if (i == BGE_TIMEOUT)
1054 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1055 }
1056 
1057 static void
1058 bge_miibus_statchg(device_t dev)
1059 {
1060 	struct bge_softc *sc = device_private(dev);
1061 	struct mii_data *mii = &sc->bge_mii;
1062 
1063 	/*
1064 	 * Get flow control negotiation result.
1065 	 */
1066 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1067 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1068 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1069 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1070 	}
1071 
1072 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1073 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1074 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1075 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1076 	else
1077 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1078 
1079 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1080 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1081 	else
1082 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1083 
1084 	/*
1085 	 * 802.3x flow control
1086 	 */
1087 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1088 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1089 	else
1090 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1091 
1092 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1093 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1094 	else
1095 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1096 }
1097 
1098 /*
1099  * Update rx threshold levels to values in a particular slot
1100  * of the interrupt-mitigation table bge_rx_threshes.
1101  */
1102 static void
1103 bge_set_thresh(struct ifnet *ifp, int lvl)
1104 {
1105 	struct bge_softc *sc = ifp->if_softc;
1106 	int s;
1107 
1108 	/* For now, just save the new Rx-intr thresholds and record
1109 	 * that a threshold update is pending.  Updating the hardware
1110 	 * registers here (even at splhigh()) is observed to
1111 	 * occasionaly cause glitches where Rx-interrupts are not
1112 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1113 	 */
1114 	s = splnet();
1115 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1116 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1117 	sc->bge_pending_rxintr_change = 1;
1118 	splx(s);
1119 
1120 	 return;
1121 }
1122 
1123 
1124 /*
1125  * Update Rx thresholds of all bge devices
1126  */
1127 static void
1128 bge_update_all_threshes(int lvl)
1129 {
1130 	struct ifnet *ifp;
1131 	const char * const namebuf = "bge";
1132 	int namelen;
1133 
1134 	if (lvl < 0)
1135 		lvl = 0;
1136 	else if (lvl >= NBGE_RX_THRESH)
1137 		lvl = NBGE_RX_THRESH - 1;
1138 
1139 	namelen = strlen(namebuf);
1140 	/*
1141 	 * Now search all the interfaces for this name/number
1142 	 */
1143 	IFNET_FOREACH(ifp) {
1144 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1145 		      continue;
1146 		/* We got a match: update if doing auto-threshold-tuning */
1147 		if (bge_auto_thresh)
1148 			bge_set_thresh(ifp, lvl);
1149 	}
1150 }
1151 
1152 /*
1153  * Handle events that have triggered interrupts.
1154  */
1155 static void
1156 bge_handle_events(struct bge_softc *sc)
1157 {
1158 
1159 	return;
1160 }
1161 
1162 /*
1163  * Memory management for jumbo frames.
1164  */
1165 
1166 static int
1167 bge_alloc_jumbo_mem(struct bge_softc *sc)
1168 {
1169 	char *ptr, *kva;
1170 	bus_dma_segment_t	seg;
1171 	int		i, rseg, state, error;
1172 	struct bge_jpool_entry   *entry;
1173 
1174 	state = error = 0;
1175 
1176 	/* Grab a big chunk o' storage. */
1177 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1178 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1179 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1180 		return ENOBUFS;
1181 	}
1182 
1183 	state = 1;
1184 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1185 	    BUS_DMA_NOWAIT)) {
1186 		aprint_error_dev(sc->bge_dev,
1187 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1188 		error = ENOBUFS;
1189 		goto out;
1190 	}
1191 
1192 	state = 2;
1193 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1194 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1195 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1196 		error = ENOBUFS;
1197 		goto out;
1198 	}
1199 
1200 	state = 3;
1201 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1202 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1203 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1204 		error = ENOBUFS;
1205 		goto out;
1206 	}
1207 
1208 	state = 4;
1209 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1210 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1211 
1212 	SLIST_INIT(&sc->bge_jfree_listhead);
1213 	SLIST_INIT(&sc->bge_jinuse_listhead);
1214 
1215 	/*
1216 	 * Now divide it up into 9K pieces and save the addresses
1217 	 * in an array.
1218 	 */
1219 	ptr = sc->bge_cdata.bge_jumbo_buf;
1220 	for (i = 0; i < BGE_JSLOTS; i++) {
1221 		sc->bge_cdata.bge_jslots[i] = ptr;
1222 		ptr += BGE_JLEN;
1223 		entry = malloc(sizeof(struct bge_jpool_entry),
1224 		    M_DEVBUF, M_NOWAIT);
1225 		if (entry == NULL) {
1226 			aprint_error_dev(sc->bge_dev,
1227 			    "no memory for jumbo buffer queue!\n");
1228 			error = ENOBUFS;
1229 			goto out;
1230 		}
1231 		entry->slot = i;
1232 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1233 				 entry, jpool_entries);
1234 	}
1235 out:
1236 	if (error != 0) {
1237 		switch (state) {
1238 		case 4:
1239 			bus_dmamap_unload(sc->bge_dmatag,
1240 			    sc->bge_cdata.bge_rx_jumbo_map);
1241 		case 3:
1242 			bus_dmamap_destroy(sc->bge_dmatag,
1243 			    sc->bge_cdata.bge_rx_jumbo_map);
1244 		case 2:
1245 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1246 		case 1:
1247 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1248 			break;
1249 		default:
1250 			break;
1251 		}
1252 	}
1253 
1254 	return error;
1255 }
1256 
1257 /*
1258  * Allocate a jumbo buffer.
1259  */
1260 static void *
1261 bge_jalloc(struct bge_softc *sc)
1262 {
1263 	struct bge_jpool_entry   *entry;
1264 
1265 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1266 
1267 	if (entry == NULL) {
1268 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1269 		return NULL;
1270 	}
1271 
1272 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1273 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1274 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1275 }
1276 
1277 /*
1278  * Release a jumbo buffer.
1279  */
1280 static void
1281 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1282 {
1283 	struct bge_jpool_entry *entry;
1284 	struct bge_softc *sc;
1285 	int i, s;
1286 
1287 	/* Extract the softc struct pointer. */
1288 	sc = (struct bge_softc *)arg;
1289 
1290 	if (sc == NULL)
1291 		panic("bge_jfree: can't find softc pointer!");
1292 
1293 	/* calculate the slot this buffer belongs to */
1294 
1295 	i = ((char *)buf
1296 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1297 
1298 	if ((i < 0) || (i >= BGE_JSLOTS))
1299 		panic("bge_jfree: asked to free buffer that we don't manage!");
1300 
1301 	s = splvm();
1302 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1303 	if (entry == NULL)
1304 		panic("bge_jfree: buffer not in use!");
1305 	entry->slot = i;
1306 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1307 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1308 
1309 	if (__predict_true(m != NULL))
1310   		pool_cache_put(mb_cache, m);
1311 	splx(s);
1312 }
1313 
1314 
1315 /*
1316  * Initialize a standard receive ring descriptor.
1317  */
1318 static int
1319 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1320     bus_dmamap_t dmamap)
1321 {
1322 	struct mbuf		*m_new = NULL;
1323 	struct bge_rx_bd	*r;
1324 	int			error;
1325 
1326 	if (dmamap == NULL) {
1327 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1328 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1329 		if (error != 0)
1330 			return error;
1331 	}
1332 
1333 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1334 
1335 	if (m == NULL) {
1336 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1337 		if (m_new == NULL)
1338 			return ENOBUFS;
1339 
1340 		MCLGET(m_new, M_DONTWAIT);
1341 		if (!(m_new->m_flags & M_EXT)) {
1342 			m_freem(m_new);
1343 			return ENOBUFS;
1344 		}
1345 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1346 
1347 	} else {
1348 		m_new = m;
1349 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1350 		m_new->m_data = m_new->m_ext.ext_buf;
1351 	}
1352 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1353 	    m_adj(m_new, ETHER_ALIGN);
1354 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1355 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1356 		return ENOBUFS;
1357 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1358 	    BUS_DMASYNC_PREREAD);
1359 
1360 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1361 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1362 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1363 	r->bge_flags = BGE_RXBDFLAG_END;
1364 	r->bge_len = m_new->m_len;
1365 	r->bge_idx = i;
1366 
1367 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1368 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1369 		i * sizeof (struct bge_rx_bd),
1370 	    sizeof (struct bge_rx_bd),
1371 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1372 
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Initialize a jumbo receive ring descriptor. This allocates
1378  * a jumbo buffer from the pool managed internally by the driver.
1379  */
1380 static int
1381 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1382 {
1383 	struct mbuf *m_new = NULL;
1384 	struct bge_rx_bd *r;
1385 	void *buf = NULL;
1386 
1387 	if (m == NULL) {
1388 
1389 		/* Allocate the mbuf. */
1390 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1391 		if (m_new == NULL)
1392 			return ENOBUFS;
1393 
1394 		/* Allocate the jumbo buffer */
1395 		buf = bge_jalloc(sc);
1396 		if (buf == NULL) {
1397 			m_freem(m_new);
1398 			aprint_error_dev(sc->bge_dev,
1399 			    "jumbo allocation failed -- packet dropped!\n");
1400 			return ENOBUFS;
1401 		}
1402 
1403 		/* Attach the buffer to the mbuf. */
1404 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1405 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1406 		    bge_jfree, sc);
1407 		m_new->m_flags |= M_EXT_RW;
1408 	} else {
1409 		m_new = m;
1410 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1411 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1412 	}
1413 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1414 	    m_adj(m_new, ETHER_ALIGN);
1415 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1416 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1417 	    BUS_DMASYNC_PREREAD);
1418 	/* Set up the descriptor. */
1419 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1420 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1421 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1422 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1423 	r->bge_len = m_new->m_len;
1424 	r->bge_idx = i;
1425 
1426 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1427 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1428 		i * sizeof (struct bge_rx_bd),
1429 	    sizeof (struct bge_rx_bd),
1430 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1431 
1432 	return 0;
1433 }
1434 
1435 /*
1436  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1437  * that's 1MB or memory, which is a lot. For now, we fill only the first
1438  * 256 ring entries and hope that our CPU is fast enough to keep up with
1439  * the NIC.
1440  */
1441 static int
1442 bge_init_rx_ring_std(struct bge_softc *sc)
1443 {
1444 	int i;
1445 
1446 	if (sc->bge_flags & BGE_RXRING_VALID)
1447 		return 0;
1448 
1449 	for (i = 0; i < BGE_SSLOTS; i++) {
1450 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1451 			return ENOBUFS;
1452 	}
1453 
1454 	sc->bge_std = i - 1;
1455 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1456 
1457 	sc->bge_flags |= BGE_RXRING_VALID;
1458 
1459 	return 0;
1460 }
1461 
1462 static void
1463 bge_free_rx_ring_std(struct bge_softc *sc)
1464 {
1465 	int i;
1466 
1467 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1468 		return;
1469 
1470 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1471 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1472 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1473 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1474 			bus_dmamap_destroy(sc->bge_dmatag,
1475 			    sc->bge_cdata.bge_rx_std_map[i]);
1476 		}
1477 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1478 		    sizeof(struct bge_rx_bd));
1479 	}
1480 
1481 	sc->bge_flags &= ~BGE_RXRING_VALID;
1482 }
1483 
1484 static int
1485 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1486 {
1487 	int i;
1488 	volatile struct bge_rcb *rcb;
1489 
1490 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1491 		return 0;
1492 
1493 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1494 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1495 			return ENOBUFS;
1496 	};
1497 
1498 	sc->bge_jumbo = i - 1;
1499 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1500 
1501 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1502 	rcb->bge_maxlen_flags = 0;
1503 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1504 
1505 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1506 
1507 	return 0;
1508 }
1509 
1510 static void
1511 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1512 {
1513 	int i;
1514 
1515 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1516 		return;
1517 
1518 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1519 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1520 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1521 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1522 		}
1523 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1524 		    sizeof(struct bge_rx_bd));
1525 	}
1526 
1527 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1528 }
1529 
1530 static void
1531 bge_free_tx_ring(struct bge_softc *sc)
1532 {
1533 	int i, freed;
1534 	struct txdmamap_pool_entry *dma;
1535 
1536 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1537 		return;
1538 
1539 	freed = 0;
1540 
1541 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1542 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1543 			freed++;
1544 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1545 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1546 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1547 					    link);
1548 			sc->txdma[i] = 0;
1549 		}
1550 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1551 		    sizeof(struct bge_tx_bd));
1552 	}
1553 
1554 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1555 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1556 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1557 		free(dma, M_DEVBUF);
1558 	}
1559 
1560 	sc->bge_flags &= ~BGE_TXRING_VALID;
1561 }
1562 
1563 static int
1564 bge_init_tx_ring(struct bge_softc *sc)
1565 {
1566 	int i;
1567 	bus_dmamap_t dmamap;
1568 	struct txdmamap_pool_entry *dma;
1569 
1570 	if (sc->bge_flags & BGE_TXRING_VALID)
1571 		return 0;
1572 
1573 	sc->bge_txcnt = 0;
1574 	sc->bge_tx_saved_considx = 0;
1575 
1576 	/* Initialize transmit producer index for host-memory send ring. */
1577 	sc->bge_tx_prodidx = 0;
1578 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1579 	/* 5700 b2 errata */
1580 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1581 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1582 
1583 	/* NIC-memory send ring not used; initialize to zero. */
1584 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1585 	/* 5700 b2 errata */
1586 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1587 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1588 
1589 	SLIST_INIT(&sc->txdma_list);
1590 	for (i = 0; i < BGE_RSLOTS; i++) {
1591 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1592 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1593 		    &dmamap))
1594 			return ENOBUFS;
1595 		if (dmamap == NULL)
1596 			panic("dmamap NULL in bge_init_tx_ring");
1597 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1598 		if (dma == NULL) {
1599 			aprint_error_dev(sc->bge_dev,
1600 			    "can't alloc txdmamap_pool_entry\n");
1601 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1602 			return ENOMEM;
1603 		}
1604 		dma->dmamap = dmamap;
1605 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1606 	}
1607 
1608 	sc->bge_flags |= BGE_TXRING_VALID;
1609 
1610 	return 0;
1611 }
1612 
1613 static void
1614 bge_setmulti(struct bge_softc *sc)
1615 {
1616 	struct ethercom		*ac = &sc->ethercom;
1617 	struct ifnet		*ifp = &ac->ec_if;
1618 	struct ether_multi	*enm;
1619 	struct ether_multistep  step;
1620 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1621 	uint32_t		h;
1622 	int			i;
1623 
1624 	if (ifp->if_flags & IFF_PROMISC)
1625 		goto allmulti;
1626 
1627 	/* Now program new ones. */
1628 	ETHER_FIRST_MULTI(step, ac, enm);
1629 	while (enm != NULL) {
1630 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1631 			/*
1632 			 * We must listen to a range of multicast addresses.
1633 			 * For now, just accept all multicasts, rather than
1634 			 * trying to set only those filter bits needed to match
1635 			 * the range.  (At this time, the only use of address
1636 			 * ranges is for IP multicast routing, for which the
1637 			 * range is big enough to require all bits set.)
1638 			 */
1639 			goto allmulti;
1640 		}
1641 
1642 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1643 
1644 		/* Just want the 7 least-significant bits. */
1645 		h &= 0x7f;
1646 
1647 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1648 		ETHER_NEXT_MULTI(step, enm);
1649 	}
1650 
1651 	ifp->if_flags &= ~IFF_ALLMULTI;
1652 	goto setit;
1653 
1654  allmulti:
1655 	ifp->if_flags |= IFF_ALLMULTI;
1656 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1657 
1658  setit:
1659 	for (i = 0; i < 4; i++)
1660 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1661 }
1662 
1663 static void
1664 bge_sig_pre_reset(struct bge_softc *sc, int type)
1665 {
1666 	/*
1667 	 * Some chips don't like this so only do this if ASF is enabled
1668 	 */
1669 	if (sc->bge_asf_mode)
1670 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1671 
1672 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1673 		switch (type) {
1674 		case BGE_RESET_START:
1675 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1676 			break;
1677 		case BGE_RESET_STOP:
1678 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1679 			break;
1680 		}
1681 	}
1682 }
1683 
1684 static void
1685 bge_sig_post_reset(struct bge_softc *sc, int type)
1686 {
1687 
1688 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1689 		switch (type) {
1690 		case BGE_RESET_START:
1691 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1692 			/* START DONE */
1693 			break;
1694 		case BGE_RESET_STOP:
1695 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1696 			break;
1697 		}
1698 	}
1699 }
1700 
1701 static void
1702 bge_sig_legacy(struct bge_softc *sc, int type)
1703 {
1704 
1705 	if (sc->bge_asf_mode) {
1706 		switch (type) {
1707 		case BGE_RESET_START:
1708 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1709 			break;
1710 		case BGE_RESET_STOP:
1711 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1712 			break;
1713 		}
1714 	}
1715 }
1716 
1717 static void
1718 bge_stop_fw(struct bge_softc *sc)
1719 {
1720 	int i;
1721 
1722 	if (sc->bge_asf_mode) {
1723 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1724 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1725 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1726 
1727 		for (i = 0; i < 100; i++) {
1728 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1729 				break;
1730 			DELAY(10);
1731 		}
1732 	}
1733 }
1734 
1735 static int
1736 bge_poll_fw(struct bge_softc *sc)
1737 {
1738 	uint32_t val;
1739 	int i;
1740 
1741 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1742 		for (i = 0; i < BGE_TIMEOUT; i++) {
1743 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1744 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1745 				break;
1746 			DELAY(100);
1747 		}
1748 		if (i >= BGE_TIMEOUT) {
1749 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1750 			return -1;
1751 		}
1752 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1753 		/*
1754 		 * Poll the value location we just wrote until
1755 		 * we see the 1's complement of the magic number.
1756 		 * This indicates that the firmware initialization
1757 		 * is complete.
1758 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1759 		 */
1760 		for (i = 0; i < BGE_TIMEOUT; i++) {
1761 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1762 			if (val == ~BGE_MAGIC_NUMBER)
1763 				break;
1764 			DELAY(10);
1765 		}
1766 
1767 		if (i >= BGE_TIMEOUT) {
1768 			aprint_error_dev(sc->bge_dev,
1769 			    "firmware handshake timed out, val = %x\n", val);
1770 			return -1;
1771 		}
1772 	}
1773 
1774 	return 0;
1775 }
1776 
1777 /*
1778  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1779  * self-test results.
1780  */
1781 static int
1782 bge_chipinit(struct bge_softc *sc)
1783 {
1784 	int i;
1785 	uint32_t dma_rw_ctl;
1786 
1787 	/* Set endianness before we access any non-PCI registers. */
1788 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1789 	    BGE_INIT);
1790 
1791 	/* Set power state to D0. */
1792 	bge_setpowerstate(sc, 0);
1793 
1794 	/* Clear the MAC control register */
1795 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1796 
1797 	/*
1798 	 * Clear the MAC statistics block in the NIC's
1799 	 * internal memory.
1800 	 */
1801 	for (i = BGE_STATS_BLOCK;
1802 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1803 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1804 
1805 	for (i = BGE_STATUS_BLOCK;
1806 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1807 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1808 
1809 	/* Set up the PCI DMA control register. */
1810 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1811 	if (sc->bge_flags & BGE_PCIE) {
1812 		/* Read watermark not used, 128 bytes for write. */
1813 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1814 		    device_xname(sc->bge_dev)));
1815 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1816 	} else if (sc->bge_flags & BGE_PCIX) {
1817 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1818 		    device_xname(sc->bge_dev)));
1819 		/* PCI-X bus */
1820 		if (BGE_IS_5714_FAMILY(sc)) {
1821 			/* 256 bytes for read and write. */
1822 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1823 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1824 
1825 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1826 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1827 			else
1828 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1829 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1830 			/* 1536 bytes for read, 384 bytes for write. */
1831 			dma_rw_ctl |=
1832 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1833 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1834 		} else {
1835 			/* 384 bytes for read and write. */
1836 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1837 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1838 			    (0x0F);
1839 		}
1840 
1841 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1842 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1843 			uint32_t tmp;
1844 
1845 			/* Set ONEDMA_ATONCE for hardware workaround. */
1846 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1847 			if (tmp == 6 || tmp == 7)
1848 				dma_rw_ctl |=
1849 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1850 
1851 			/* Set PCI-X DMA write workaround. */
1852 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1853 		}
1854 	} else {
1855 		/* Conventional PCI bus: 256 bytes for read and write. */
1856 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1857 		    device_xname(sc->bge_dev)));
1858 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1859 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1860 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1861 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1862 			dma_rw_ctl |= 0x0F;
1863 	}
1864 
1865 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1866 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1867 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1868 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1869 
1870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1871 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1872 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1873 
1874 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1875 	    dma_rw_ctl);
1876 
1877 	/*
1878 	 * Set up general mode register.
1879 	 */
1880 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1881 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1882 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1883 
1884 	/*
1885 	 * BCM5701 B5 have a bug causing data corruption when using
1886 	 * 64-bit DMA reads, which can be terminated early and then
1887 	 * completed later as 32-bit accesses, in combination with
1888 	 * certain bridges.
1889 	 */
1890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1891 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1892 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1893 
1894 	/*
1895 	 * Tell the firmware the driver is running
1896 	 */
1897 	if (sc->bge_asf_mode & ASF_STACKUP)
1898 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1899 
1900 	/*
1901 	 * Disable memory write invalidate.  Apparently it is not supported
1902 	 * properly by these devices.
1903 	 */
1904 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1905 		   PCI_COMMAND_INVALIDATE_ENABLE);
1906 
1907 #ifdef __brokenalpha__
1908 	/*
1909 	 * Must insure that we do not cross an 8K (bytes) boundary
1910 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1911 	 * restriction on some ALPHA platforms with early revision
1912 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1913 	 */
1914 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1915 #endif
1916 
1917 	/* Set the timer prescaler (always 66MHz) */
1918 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1919 
1920 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1921 		DELAY(40);	/* XXX */
1922 
1923 		/* Put PHY into ready state */
1924 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1925 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1926 		DELAY(40);
1927 	}
1928 
1929 	return 0;
1930 }
1931 
1932 static int
1933 bge_blockinit(struct bge_softc *sc)
1934 {
1935 	volatile struct bge_rcb	 *rcb;
1936 	bus_size_t rcb_addr;
1937 	int i;
1938 	struct ifnet *ifp = &sc->ethercom.ec_if;
1939 	bge_hostaddr taddr;
1940 	uint32_t val;
1941 
1942 	/*
1943 	 * Initialize the memory window pointer register so that
1944 	 * we can access the first 32K of internal NIC RAM. This will
1945 	 * allow us to set up the TX send ring RCBs and the RX return
1946 	 * ring RCBs, plus other things which live in NIC memory.
1947 	 */
1948 
1949 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1950 
1951 	/* Step 33: Configure mbuf memory pool */
1952 	if (BGE_IS_5700_FAMILY(sc)) {
1953 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1954 		    BGE_BUFFPOOL_1);
1955 
1956 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1957 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1958 		else
1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1960 
1961 		/* Configure DMA resource pool */
1962 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1963 		    BGE_DMA_DESCRIPTORS);
1964 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1965 	}
1966 
1967 	/* Step 35: Configure mbuf pool watermarks */
1968 #ifdef ORIG_WPAUL_VALUES
1969 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1970 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1971 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1972 #else
1973 
1974 	/* new broadcom docs strongly recommend these: */
1975 	if (!BGE_IS_5705_PLUS(sc)) {
1976 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1977 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1978 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1979 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1980 		} else {
1981 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1982 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1983 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1984 		}
1985 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1986 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1987 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1988 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1989 	} else {
1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1991 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1992 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1993 	}
1994 #endif
1995 
1996 	/* Step 36: Configure DMA resource watermarks */
1997 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1998 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1999 
2000 	/* Step 38: Enable buffer manager */
2001 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
2002 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2003 
2004 	/* Step 39: Poll for buffer manager start indication */
2005 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2006 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2007 			break;
2008 		DELAY(10);
2009 	}
2010 
2011 	if (i == BGE_TIMEOUT * 2) {
2012 		aprint_error_dev(sc->bge_dev,
2013 		    "buffer manager failed to start\n");
2014 		return ENXIO;
2015 	}
2016 
2017 	/* Step 40: Enable flow-through queues */
2018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2019 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2020 
2021 	/* Wait until queue initialization is complete */
2022 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2023 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2024 			break;
2025 		DELAY(10);
2026 	}
2027 
2028 	if (i == BGE_TIMEOUT * 2) {
2029 		aprint_error_dev(sc->bge_dev,
2030 		    "flow-through queue init failed\n");
2031 		return ENXIO;
2032 	}
2033 
2034 	/* Step 41: Initialize the standard RX ring control block */
2035 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2036 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2037 	if (BGE_IS_5705_PLUS(sc))
2038 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2039 	else
2040 		rcb->bge_maxlen_flags =
2041 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2042 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2043 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2044 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2045 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2046 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2047 
2048 	/*
2049 	 * Step 42: Initialize the jumbo RX ring control block
2050 	 * We set the 'ring disabled' bit in the flags
2051 	 * field until we're actually ready to start
2052 	 * using this ring (i.e. once we set the MTU
2053 	 * high enough to require it).
2054 	 */
2055 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2056 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2057 		BGE_HOSTADDR(rcb->bge_hostaddr,
2058 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2059 		rcb->bge_maxlen_flags =
2060 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2061 			BGE_RCB_FLAG_RING_DISABLED);
2062 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2063 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2064 		    rcb->bge_hostaddr.bge_addr_hi);
2065 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2066 		    rcb->bge_hostaddr.bge_addr_lo);
2067 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2068 		    rcb->bge_maxlen_flags);
2069 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2070 
2071 		/* Set up dummy disabled mini ring RCB */
2072 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2073 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2074 		    BGE_RCB_FLAG_RING_DISABLED);
2075 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2076 		    rcb->bge_maxlen_flags);
2077 
2078 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2079 		    offsetof(struct bge_ring_data, bge_info),
2080 		    sizeof (struct bge_gib),
2081 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2082 	}
2083 
2084 	/*
2085 	 * Set the BD ring replenish thresholds. The recommended
2086 	 * values are 1/8th the number of descriptors allocated to
2087 	 * each ring.
2088 	 */
2089 	i = BGE_STD_RX_RING_CNT / 8;
2090 
2091 	/*
2092 	 * Use a value of 8 for the following chips to workaround HW errata.
2093 	 * Some of these chips have been added based on empirical
2094 	 * evidence (they don't work unless this is done).
2095 	 */
2096 	if (BGE_IS_5705_PLUS(sc))
2097 		i = 8;
2098 
2099 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2100 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2101 
2102 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2103 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2104 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2105 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2106 	}
2107 
2108 	/*
2109 	 * Disable all unused send rings by setting the 'ring disabled'
2110 	 * bit in the flags field of all the TX send ring control blocks.
2111 	 * These are located in NIC memory.
2112 	 */
2113 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2114 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2115 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2116 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2117 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2118 		rcb_addr += sizeof(struct bge_rcb);
2119 	}
2120 
2121 	/* Configure TX RCB 0 (we use only the first ring) */
2122 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2123 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2124 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2125 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2126 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2127 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2128 	if (BGE_IS_5700_FAMILY(sc))
2129 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2130 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2131 
2132 	/* Disable all unused RX return rings */
2133 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2134 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2135 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2136 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2137 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2138 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2139 			BGE_RCB_FLAG_RING_DISABLED));
2140 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2141 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2142 		    (i * (sizeof(uint64_t))), 0);
2143 		rcb_addr += sizeof(struct bge_rcb);
2144 	}
2145 
2146 	/* Initialize RX ring indexes */
2147 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2148 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2149 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2150 
2151 	/*
2152 	 * Set up RX return ring 0
2153 	 * Note that the NIC address for RX return rings is 0x00000000.
2154 	 * The return rings live entirely within the host, so the
2155 	 * nicaddr field in the RCB isn't used.
2156 	 */
2157 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2158 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2159 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2160 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2161 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2162 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2163 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2164 
2165 	/* Set random backoff seed for TX */
2166 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2167 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2168 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2169 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2170 	    BGE_TX_BACKOFF_SEED_MASK);
2171 
2172 	/* Set inter-packet gap */
2173 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2174 
2175 	/*
2176 	 * Specify which ring to use for packets that don't match
2177 	 * any RX rules.
2178 	 */
2179 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2180 
2181 	/*
2182 	 * Configure number of RX lists. One interrupt distribution
2183 	 * list, sixteen active lists, one bad frames class.
2184 	 */
2185 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2186 
2187 	/* Inialize RX list placement stats mask. */
2188 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2189 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2190 
2191 	/* Disable host coalescing until we get it set up */
2192 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2193 
2194 	/* Poll to make sure it's shut down. */
2195 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2196 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2197 			break;
2198 		DELAY(10);
2199 	}
2200 
2201 	if (i == BGE_TIMEOUT * 2) {
2202 		aprint_error_dev(sc->bge_dev,
2203 		    "host coalescing engine failed to idle\n");
2204 		return ENXIO;
2205 	}
2206 
2207 	/* Set up host coalescing defaults */
2208 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2209 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2210 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2211 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2212 	if (BGE_IS_5700_FAMILY(sc)) {
2213 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2214 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2215 	}
2216 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2217 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2218 
2219 	/* Set up address of statistics block */
2220 	if (BGE_IS_5700_FAMILY(sc)) {
2221 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2222 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2223 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2224 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2225 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2226 	}
2227 
2228 	/* Set up address of status block */
2229 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2230 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2231 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2232 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2233 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2234 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2235 
2236 	/* Turn on host coalescing state machine */
2237 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2238 
2239 	/* Turn on RX BD completion state machine and enable attentions */
2240 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2241 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2242 
2243 	/* Turn on RX list placement state machine */
2244 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2245 
2246 	/* Turn on RX list selector state machine. */
2247 	if (BGE_IS_5700_FAMILY(sc))
2248 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2249 
2250 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2251 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2252 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2253 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2254 
2255 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2256 		val |= BGE_PORTMODE_TBI;
2257 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2258 		val |= BGE_PORTMODE_GMII;
2259 	else
2260 		val |= BGE_PORTMODE_MII;
2261 
2262 	/* Turn on DMA, clear stats */
2263 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2264 
2265 	/* Set misc. local control, enable interrupts on attentions */
2266 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2267 
2268 #ifdef notdef
2269 	/* Assert GPIO pins for PHY reset */
2270 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2271 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2272 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2273 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2274 #endif
2275 
2276 #if defined(not_quite_yet)
2277 	/* Linux driver enables enable gpio pin #1 on 5700s */
2278 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2279 		sc->bge_local_ctrl_reg |=
2280 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2281 	}
2282 #endif
2283 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2284 
2285 	/* Turn on DMA completion state machine */
2286 	if (BGE_IS_5700_FAMILY(sc))
2287 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2288 
2289 	/* Turn on write DMA state machine */
2290 	{
2291 		uint32_t bge_wdma_mode =
2292 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2293 
2294 		/* Enable host coalescing bug fix; see Linux tg3.c */
2295 		if (BGE_IS_5755_PLUS(sc))
2296 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2297 
2298 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2299 	}
2300 
2301 	/* Turn on read DMA state machine */
2302 	{
2303 		uint32_t dma_read_modebits;
2304 
2305 		dma_read_modebits =
2306 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2307 
2308 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2309 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2310 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2311 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2312 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2313 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2314 
2315 		if (sc->bge_flags & BGE_PCIE)
2316 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2317 		if (sc->bge_flags & BGE_TSO)
2318 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2319 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2320 		delay(40);
2321 	}
2322 
2323 	/* Turn on RX data completion state machine */
2324 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2325 
2326 	/* Turn on RX BD initiator state machine */
2327 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2328 
2329 	/* Turn on RX data and RX BD initiator state machine */
2330 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2331 
2332 	/* Turn on Mbuf cluster free state machine */
2333 	if (BGE_IS_5700_FAMILY(sc))
2334 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2335 
2336 	/* Turn on send BD completion state machine */
2337 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2338 
2339 	/* Turn on send data completion state machine */
2340 	val = BGE_SDCMODE_ENABLE;
2341 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2342 		val |= BGE_SDCMODE_CDELAY;
2343 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2344 
2345 	/* Turn on send data initiator state machine */
2346 	if (sc->bge_flags & BGE_TSO) {
2347 		/* XXX: magic value from Linux driver */
2348 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2349 	} else
2350 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2351 
2352 	/* Turn on send BD initiator state machine */
2353 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2354 
2355 	/* Turn on send BD selector state machine */
2356 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2357 
2358 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2359 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2360 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2361 
2362 	/* ack/clear link change events */
2363 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2364 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2365 	    BGE_MACSTAT_LINK_CHANGED);
2366 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2367 
2368 	/* Enable PHY auto polling (for MII/GMII only) */
2369 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2370 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2371 	} else {
2372 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2373 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2374 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2375 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2376 			    BGE_EVTENB_MI_INTERRUPT);
2377 	}
2378 
2379 	/*
2380 	 * Clear any pending link state attention.
2381 	 * Otherwise some link state change events may be lost until attention
2382 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2383 	 * It's not necessary on newer BCM chips - perhaps enabling link
2384 	 * state change attentions implies clearing pending attention.
2385 	 */
2386 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2387 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2388 	    BGE_MACSTAT_LINK_CHANGED);
2389 
2390 	/* Enable link state change attentions. */
2391 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2392 
2393 	return 0;
2394 }
2395 
2396 static const struct bge_revision *
2397 bge_lookup_rev(uint32_t chipid)
2398 {
2399 	const struct bge_revision *br;
2400 
2401 	for (br = bge_revisions; br->br_name != NULL; br++) {
2402 		if (br->br_chipid == chipid)
2403 			return br;
2404 	}
2405 
2406 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2407 		if (br->br_chipid == BGE_ASICREV(chipid))
2408 			return br;
2409 	}
2410 
2411 	return NULL;
2412 }
2413 
2414 static const struct bge_product *
2415 bge_lookup(const struct pci_attach_args *pa)
2416 {
2417 	const struct bge_product *bp;
2418 
2419 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2420 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2421 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2422 			return bp;
2423 	}
2424 
2425 	return NULL;
2426 }
2427 
2428 static int
2429 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2430 {
2431 #ifdef NOTYET
2432 	uint32_t pm_ctl = 0;
2433 
2434 	/* XXX FIXME: make sure indirect accesses enabled? */
2435 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2436 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2437 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2438 
2439 	/* clear the PME_assert bit and power state bits, enable PME */
2440 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2441 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2442 	pm_ctl |= (1 << 8);
2443 
2444 	if (powerlevel == 0) {
2445 		pm_ctl |= PCIM_PSTAT_D0;
2446 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2447 		    pm_ctl, 2);
2448 		DELAY(10000);
2449 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2450 		DELAY(10000);
2451 
2452 #ifdef NOTYET
2453 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2454 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2455 #endif
2456 		DELAY(40); DELAY(40); DELAY(40);
2457 		DELAY(10000);	/* above not quite adequate on 5700 */
2458 		return 0;
2459 	}
2460 
2461 
2462 	/*
2463 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2464 	 * GMII gpio pins. Example code assumes all hardware vendors
2465 	 * followed Broadcom's sample pcb layout. Until we verify that
2466 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2467 	 */
2468 	aprint_error_dev(sc->bge_dev,
2469 	    "power state %d unimplemented; check GPIO pins\n",
2470 	    powerlevel);
2471 #endif
2472 	return EOPNOTSUPP;
2473 }
2474 
2475 
2476 /*
2477  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2478  * against our list and return its name if we find a match. Note
2479  * that since the Broadcom controller contains VPD support, we
2480  * can get the device name string from the controller itself instead
2481  * of the compiled-in string. This is a little slow, but it guarantees
2482  * we'll always announce the right product name.
2483  */
2484 static int
2485 bge_probe(device_t parent, cfdata_t match, void *aux)
2486 {
2487 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2488 
2489 	if (bge_lookup(pa) != NULL)
2490 		return 1;
2491 
2492 	return 0;
2493 }
2494 
2495 static void
2496 bge_attach(device_t parent, device_t self, void *aux)
2497 {
2498 	struct bge_softc	*sc = device_private(self);
2499 	struct pci_attach_args	*pa = aux;
2500 	prop_dictionary_t dict;
2501 	const struct bge_product *bp;
2502 	const struct bge_revision *br;
2503 	pci_chipset_tag_t	pc;
2504 	pci_intr_handle_t	ih;
2505 	const char		*intrstr = NULL;
2506 	bus_dma_segment_t	seg;
2507 	int			rseg;
2508 	uint32_t		hwcfg = 0;
2509 	uint32_t		command;
2510 	struct ifnet		*ifp;
2511 	uint32_t		misccfg;
2512 	void *			kva;
2513 	u_char			eaddr[ETHER_ADDR_LEN];
2514 	pcireg_t		memtype, subid;
2515 	bus_addr_t		memaddr;
2516 	bus_size_t		memsize;
2517 	uint32_t		pm_ctl;
2518 	bool			no_seeprom;
2519 
2520 	bp = bge_lookup(pa);
2521 	KASSERT(bp != NULL);
2522 
2523 	sc->sc_pc = pa->pa_pc;
2524 	sc->sc_pcitag = pa->pa_tag;
2525 	sc->bge_dev = self;
2526 
2527 	pc = sc->sc_pc;
2528 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2529 
2530 	aprint_naive(": Ethernet controller\n");
2531 	aprint_normal(": %s\n", bp->bp_name);
2532 
2533 	/*
2534 	 * Map control/status registers.
2535 	 */
2536 	DPRINTFN(5, ("Map control/status regs\n"));
2537 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2538 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2539 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2540 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2541 
2542 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2543 		aprint_error_dev(sc->bge_dev,
2544 		    "failed to enable memory mapping!\n");
2545 		return;
2546 	}
2547 
2548 	DPRINTFN(5, ("pci_mem_find\n"));
2549 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2550 	switch (memtype) {
2551 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2552 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2553 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2554 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2555 		    &memaddr, &memsize) == 0)
2556 			break;
2557 	default:
2558 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2559 		return;
2560 	}
2561 
2562 	DPRINTFN(5, ("pci_intr_map\n"));
2563 	if (pci_intr_map(pa, &ih)) {
2564 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2565 		return;
2566 	}
2567 
2568 	DPRINTFN(5, ("pci_intr_string\n"));
2569 	intrstr = pci_intr_string(pc, ih);
2570 
2571 	DPRINTFN(5, ("pci_intr_establish\n"));
2572 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2573 
2574 	if (sc->bge_intrhand == NULL) {
2575 		aprint_error_dev(sc->bge_dev,
2576 		    "couldn't establish interrupt%s%s\n",
2577 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2578 		return;
2579 	}
2580 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2581 
2582 	/*
2583 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2584 	 * can clobber the chip's PCI config-space power control registers,
2585 	 * leaving the card in D3 powersave state.
2586 	 * We do not have memory-mapped registers in this state,
2587 	 * so force device into D0 state before starting initialization.
2588 	 */
2589 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2590 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2591 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2592 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2593 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2594 
2595 	/*
2596 	 * Save ASIC rev.
2597 	 */
2598 	sc->bge_chipid =
2599 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2600 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
2601 
2602 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2603 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2604 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2605 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2606 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2607 			    BGE_PCI_GEN2_PRODID_ASICREV);
2608 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2609 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2610 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2611 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2612 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2613 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2614 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2615 			    BGE_PCI_GEN15_PRODID_ASICREV);
2616 		else
2617 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2618 			    BGE_PCI_PRODID_ASICREV);
2619 	}
2620 
2621 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2622 	        &sc->bge_pciecap, NULL) != 0)
2623 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2624 		/* PCIe */
2625 		sc->bge_flags |= BGE_PCIE;
2626 		bge_set_max_readrq(sc);
2627 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2628 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
2629 		/* PCI-X */
2630 		sc->bge_flags |= BGE_PCIX;
2631 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2632 			&sc->bge_pcixcap, NULL) == 0)
2633 			aprint_error_dev(sc->bge_dev,
2634 			    "unable to find PCIX capability\n");
2635 	}
2636 
2637 	/* chipid */
2638 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2641 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2642 		sc->bge_flags |= BGE_5700_FAMILY;
2643 
2644 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2646 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2647 		sc->bge_flags |= BGE_5714_FAMILY;
2648 
2649 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
2650 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2651 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2652 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2653 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2655 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2658 		sc->bge_flags |= BGE_5755_PLUS;
2659 
2660 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2662 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2663 	    BGE_IS_5755_PLUS(sc) ||
2664 	    BGE_IS_5714_FAMILY(sc))
2665 		sc->bge_flags |= BGE_5750_PLUS;
2666 
2667 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2668 	    BGE_IS_5750_OR_BEYOND(sc))
2669 		sc->bge_flags |= BGE_5705_PLUS;
2670 
2671 	/*
2672 	 * When using the BCM5701 in PCI-X mode, data corruption has
2673 	 * been observed in the first few bytes of some received packets.
2674 	 * Aligning the packet buffer in memory eliminates the corruption.
2675 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2676 	 * which do not support unaligned accesses, we will realign the
2677 	 * payloads by copying the received packets.
2678 	 */
2679 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2680 	    sc->bge_flags & BGE_PCIX)
2681 		sc->bge_flags |= BGE_RX_ALIGNBUG;
2682 
2683 	if (BGE_IS_5700_FAMILY(sc))
2684 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
2685 
2686 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2687 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2688 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2689 		sc->bge_flags |= BGE_NO_3LED;
2690 
2691 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2692 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2693 
2694 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2695 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2696 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2697 		sc->bge_flags |= BGE_IS_5788;
2698 
2699 	/*
2700 	 * Some controllers seem to require a special firmware to use
2701 	 * TSO. But the firmware is not available to FreeBSD and Linux
2702 	 * claims that the TSO performed by the firmware is slower than
2703 	 * hardware based TSO. Moreover the firmware based TSO has one
2704 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2705 	 * header is greater than 80 bytes. The workaround for the TSO
2706 	 * bug exist but it seems it's too expensive than not using
2707 	 * TSO at all. Some hardwares also have the TSO bug so limit
2708 	 * the TSO to the controllers that are not affected TSO issues
2709 	 * (e.g. 5755 or higher).
2710 	 */
2711 	if (BGE_IS_5755_PLUS(sc)) {
2712 		/*
2713 		 * BCM5754 and BCM5787 shares the same ASIC id so
2714 		 * explicit device id check is required.
2715 		 */
2716 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2717 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2718 			sc->bge_flags |= BGE_TSO;
2719 	}
2720 
2721 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2722 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2723 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2724 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2725 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2726 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2727 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2728 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2729 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2730 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2731 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2732 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2733 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2734 		sc->bge_flags |= BGE_10_100_ONLY;
2735 
2736 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2737 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2738 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2739 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2740 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2741 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2742 
2743 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2744 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2745 		sc->bge_flags |= BGE_PHY_CRC_BUG;
2746 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2747 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2748 		sc->bge_flags |= BGE_PHY_ADC_BUG;
2749 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2750 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2751 
2752 	if (BGE_IS_5705_PLUS(sc) &&
2753 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2754 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2755 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2756 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2757 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2758 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2759 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2760 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2761 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2762 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2763 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2764 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
2765 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2766 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2767 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2768 			sc->bge_flags |= BGE_PHY_BER_BUG;
2769 	}
2770 
2771 	/*
2772 	 * SEEPROM check.
2773 	 * First check if firmware knows we do not have SEEPROM.
2774 	 */
2775 	if (prop_dictionary_get_bool(device_properties(self),
2776 	     "without-seeprom", &no_seeprom) && no_seeprom)
2777 	 	sc->bge_flags |= BGE_NO_EEPROM;
2778 
2779 	/* Now check the 'ROM failed' bit on the RX CPU */
2780 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2781 		sc->bge_flags |= BGE_NO_EEPROM;
2782 
2783 	/* Try to reset the chip. */
2784 	DPRINTFN(5, ("bge_reset\n"));
2785 	bge_reset(sc);
2786 
2787 	sc->bge_asf_mode = 0;
2788 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2789 	    == BGE_MAGIC_NUMBER)) {
2790 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2791 		    & BGE_HWCFG_ASF) {
2792 			sc->bge_asf_mode |= ASF_ENABLE;
2793 			sc->bge_asf_mode |= ASF_STACKUP;
2794 			if (BGE_IS_5750_OR_BEYOND(sc)) {
2795 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2796 			}
2797 		}
2798 	}
2799 
2800 	/* Try to reset the chip again the nice way. */
2801 	bge_stop_fw(sc);
2802 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2803 	if (bge_reset(sc))
2804 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2805 
2806 	bge_sig_legacy(sc, BGE_RESET_STOP);
2807 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2808 
2809 	if (bge_chipinit(sc)) {
2810 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2811 		bge_release_resources(sc);
2812 		return;
2813 	}
2814 
2815 	/*
2816 	 * Get station address from the EEPROM
2817 	 */
2818 	if (bge_get_eaddr(sc, eaddr)) {
2819 		aprint_error_dev(sc->bge_dev,
2820 		    "failed to read station address\n");
2821 		bge_release_resources(sc);
2822 		return;
2823 	}
2824 
2825 	br = bge_lookup_rev(sc->bge_chipid);
2826 
2827 	if (br == NULL) {
2828 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2829 		    sc->bge_chipid);
2830 	} else {
2831 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2832 		    br->br_name, sc->bge_chipid);
2833 	}
2834 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2835 
2836 	/* Allocate the general information block and ring buffers. */
2837 	if (pci_dma64_available(pa))
2838 		sc->bge_dmatag = pa->pa_dmat64;
2839 	else
2840 		sc->bge_dmatag = pa->pa_dmat;
2841 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2842 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2843 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2844 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2845 		return;
2846 	}
2847 	DPRINTFN(5, ("bus_dmamem_map\n"));
2848 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2849 			   sizeof(struct bge_ring_data), &kva,
2850 			   BUS_DMA_NOWAIT)) {
2851 		aprint_error_dev(sc->bge_dev,
2852 		    "can't map DMA buffers (%zu bytes)\n",
2853 		    sizeof(struct bge_ring_data));
2854 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2855 		return;
2856 	}
2857 	DPRINTFN(5, ("bus_dmamem_create\n"));
2858 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2859 	    sizeof(struct bge_ring_data), 0,
2860 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2861 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2862 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2863 				 sizeof(struct bge_ring_data));
2864 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2865 		return;
2866 	}
2867 	DPRINTFN(5, ("bus_dmamem_load\n"));
2868 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2869 			    sizeof(struct bge_ring_data), NULL,
2870 			    BUS_DMA_NOWAIT)) {
2871 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2872 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2873 				 sizeof(struct bge_ring_data));
2874 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2875 		return;
2876 	}
2877 
2878 	DPRINTFN(5, ("bzero\n"));
2879 	sc->bge_rdata = (struct bge_ring_data *)kva;
2880 
2881 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2882 
2883 	/* Try to allocate memory for jumbo buffers. */
2884 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2885 		if (bge_alloc_jumbo_mem(sc)) {
2886 			aprint_error_dev(sc->bge_dev,
2887 			    "jumbo buffer allocation failed\n");
2888 		} else
2889 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2890 	}
2891 
2892 	/* Set default tuneable values. */
2893 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2894 	sc->bge_rx_coal_ticks = 150;
2895 	sc->bge_rx_max_coal_bds = 64;
2896 #ifdef ORIG_WPAUL_VALUES
2897 	sc->bge_tx_coal_ticks = 150;
2898 	sc->bge_tx_max_coal_bds = 128;
2899 #else
2900 	sc->bge_tx_coal_ticks = 300;
2901 	sc->bge_tx_max_coal_bds = 400;
2902 #endif
2903 	if (BGE_IS_5705_PLUS(sc)) {
2904 		sc->bge_tx_coal_ticks = (12 * 5);
2905 		sc->bge_tx_max_coal_bds = (12 * 5);
2906 			aprint_verbose_dev(sc->bge_dev,
2907 			    "setting short Tx thresholds\n");
2908 	}
2909 
2910 	if (BGE_IS_5705_PLUS(sc))
2911 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2912 	else
2913 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2914 
2915 	/* Set up ifnet structure */
2916 	ifp = &sc->ethercom.ec_if;
2917 	ifp->if_softc = sc;
2918 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2919 	ifp->if_ioctl = bge_ioctl;
2920 	ifp->if_stop = bge_stop;
2921 	ifp->if_start = bge_start;
2922 	ifp->if_init = bge_init;
2923 	ifp->if_watchdog = bge_watchdog;
2924 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2925 	IFQ_SET_READY(&ifp->if_snd);
2926 	DPRINTFN(5, ("strcpy if_xname\n"));
2927 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2928 
2929 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2930 		sc->ethercom.ec_if.if_capabilities |=
2931 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2932 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
2933 		sc->ethercom.ec_if.if_capabilities |=
2934 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2935 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2936 #endif
2937 	sc->ethercom.ec_capabilities |=
2938 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2939 
2940 	if (sc->bge_flags & BGE_TSO)
2941 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2942 
2943 	/*
2944 	 * Do MII setup.
2945 	 */
2946 	DPRINTFN(5, ("mii setup\n"));
2947 	sc->bge_mii.mii_ifp = ifp;
2948 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2949 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2950 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2951 
2952 	/*
2953 	 * Figure out what sort of media we have by checking the
2954 	 * hardware config word in the first 32k of NIC internal memory,
2955 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2956 	 * cards, this value appears to be unset. If that's the
2957 	 * case, we have to rely on identifying the NIC by its PCI
2958 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2959 	 */
2960 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2961 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2962 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2963 		bge_read_eeprom(sc, (void *)&hwcfg,
2964 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2965 		hwcfg = be32toh(hwcfg);
2966 	}
2967 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2968 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2969 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2970 		if (BGE_IS_5714_FAMILY(sc))
2971 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
2972 		else
2973 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
2974 	}
2975 
2976 	/* set phyflags and chipid before mii_attach() */
2977 	dict = device_properties(self);
2978 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2979 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
2980 
2981 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2982 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2983 		    bge_ifmedia_sts);
2984 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2985 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2986 			    0, NULL);
2987 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2988 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2989 		/* Pretend the user requested this setting */
2990 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2991 	} else {
2992 		/*
2993 		 * Do transceiver setup and tell the firmware the
2994 		 * driver is down so we can try to get access the
2995 		 * probe if ASF is running.  Retry a couple of times
2996 		 * if we get a conflict with the ASF firmware accessing
2997 		 * the PHY.
2998 		 */
2999 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3000 		bge_asf_driver_up(sc);
3001 
3002 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3003 			     bge_ifmedia_sts);
3004 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3005 			   MII_PHY_ANY, MII_OFFSET_ANY,
3006 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
3007 
3008 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3009 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3010 			ifmedia_add(&sc->bge_mii.mii_media,
3011 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3012 			ifmedia_set(&sc->bge_mii.mii_media,
3013 				    IFM_ETHER|IFM_MANUAL);
3014 		} else
3015 			ifmedia_set(&sc->bge_mii.mii_media,
3016 				    IFM_ETHER|IFM_AUTO);
3017 
3018 		/*
3019 		 * Now tell the firmware we are going up after probing the PHY
3020 		 */
3021 		if (sc->bge_asf_mode & ASF_STACKUP)
3022 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3023 	}
3024 
3025 	/*
3026 	 * Call MI attach routine.
3027 	 */
3028 	DPRINTFN(5, ("if_attach\n"));
3029 	if_attach(ifp);
3030 	DPRINTFN(5, ("ether_ifattach\n"));
3031 	ether_ifattach(ifp, eaddr);
3032 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3033 #if NRND > 0
3034 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3035 		RND_TYPE_NET, 0);
3036 #endif
3037 #ifdef BGE_EVENT_COUNTERS
3038 	/*
3039 	 * Attach event counters.
3040 	 */
3041 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3042 	    NULL, device_xname(sc->bge_dev), "intr");
3043 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3044 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3045 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3046 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3047 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3048 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3049 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3050 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3051 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3052 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3053 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3054 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3055 #endif /* BGE_EVENT_COUNTERS */
3056 	DPRINTFN(5, ("callout_init\n"));
3057 	callout_init(&sc->bge_timeout, 0);
3058 
3059 	if (pmf_device_register(self, NULL, NULL))
3060 		pmf_class_network_register(self, ifp);
3061 	else
3062 		aprint_error_dev(self, "couldn't establish power handler\n");
3063 
3064 	sysctl_bge_init(sc);
3065 
3066 #ifdef BGE_DEBUG
3067 	bge_debug_info(sc);
3068 #endif
3069 }
3070 
3071 static void
3072 bge_release_resources(struct bge_softc *sc)
3073 {
3074 	if (sc->bge_vpd_prodname != NULL)
3075 		free(sc->bge_vpd_prodname, M_DEVBUF);
3076 
3077 	if (sc->bge_vpd_readonly != NULL)
3078 		free(sc->bge_vpd_readonly, M_DEVBUF);
3079 }
3080 
3081 static int
3082 bge_reset(struct bge_softc *sc)
3083 {
3084 	uint32_t cachesize, command, pcistate, marbmode;
3085 #if 0
3086 	uint32_t new_pcistate;
3087 #endif
3088 	pcireg_t devctl, reg;
3089 	int i, val;
3090 	void (*write_op)(struct bge_softc *, int, int);
3091 
3092 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3093 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3094 	    	if (sc->bge_flags & BGE_PCIE)
3095 			write_op = bge_writemem_direct;
3096 		else
3097 			write_op = bge_writemem_ind;
3098 	} else
3099 		write_op = bge_writereg_ind;
3100 
3101 	/* Save some important PCI state. */
3102 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3103 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3104 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3105 
3106 	/* Step 5a: Enable memory arbiter. */
3107 	marbmode = 0;
3108 	if (BGE_IS_5714_FAMILY(sc))
3109 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3110 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3111 
3112 	/* Step 5b-5d: */
3113 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3114 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3115 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3116 
3117 	/* XXX ???: Disable fastboot on controllers that support it. */
3118 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3119 	    BGE_IS_5755_PLUS(sc))
3120 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3121 
3122 	/*
3123 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3124 	 * When firmware finishes its initialization it will
3125 	 * write ~BGE_MAGIC_NUMBER to the same location.
3126 	 */
3127 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3128 
3129 	/* Step 7: */
3130 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3131 	/*
3132 	 * XXX: from FreeBSD/Linux; no documentation
3133 	 */
3134 	if (sc->bge_flags & BGE_PCIE) {
3135 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3136 			/* PCI Express 1.0 system */
3137 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3138 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3139 			/*
3140 			 * Prevent PCI Express link training
3141 			 * during global reset.
3142 			 */
3143 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3144 			val |= (1<<29);
3145 		}
3146 	}
3147 
3148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3149 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3150 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3151 		    i | BGE_VCPU_STATUS_DRV_RESET);
3152 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3153 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3154 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3155 	}
3156 
3157 	/*
3158 	 * Set GPHY Power Down Override to leave GPHY
3159 	 * powered up in D0 uninitialized.
3160 	 */
3161 	if (BGE_IS_5705_PLUS(sc))
3162 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3163 
3164 	/* XXX 5721, 5751 and 5752 */
3165 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3166 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3167 
3168 	/* Issue global reset */
3169 	write_op(sc, BGE_MISC_CFG, val);
3170 
3171 	/* Step 8: wait for complete */
3172 	if (sc->bge_flags & BGE_PCIE)
3173 		delay(100*1000); /* too big */
3174 	else
3175 		delay(100);
3176 
3177 	/* From Linux: dummy read to flush PCI posted writes */
3178 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3179 
3180 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3181 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3182 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3183 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3184 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
3185 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3186 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3187 
3188 	/* Step 11: disable PCI-X Relaxed Ordering. */
3189 	if (sc->bge_flags & BGE_PCIX) {
3190 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3191 		    + PCI_PCIX_CMD);
3192 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3193 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3194 	}
3195 
3196 	if (sc->bge_flags & BGE_PCIE) {
3197 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3198 			DELAY(500000);
3199 			/* XXX: Magic Numbers */
3200 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3201 			    BGE_PCI_UNKNOWN0);
3202 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3203 			    BGE_PCI_UNKNOWN0,
3204 			    reg | (1 << 15));
3205 		}
3206 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3207 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3208 		/* Clear enable no snoop and disable relaxed ordering. */
3209 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3210 		/* Set PCIE max payload size to 128. */
3211 		devctl &= ~(0x00e0);
3212 		/* Clear device status register. Write 1b to clear */
3213 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3214 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3215 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3216 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3217 	}
3218 
3219 	/* Step 12: Enable memory arbiter. */
3220 	marbmode = 0;
3221 	if (BGE_IS_5714_FAMILY(sc))
3222 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3223 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3224 
3225 	/* Step 17: Poll until the firmware initialization is complete */
3226 	bge_poll_fw(sc);
3227 
3228 	/* XXX 5721, 5751 and 5752 */
3229 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3230 		/* Step 19: */
3231 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3232 		/* Step 20: */
3233 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3234 	}
3235 
3236 	/*
3237 	 * Step 18: wirte mac mode
3238 	 * XXX Write 0x0c for 5703S and 5704S
3239 	 */
3240 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3241 
3242 
3243 	/* Step 21: 5822 B0 errata */
3244 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3245 		pcireg_t msidata;
3246 
3247 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3248 		    BGE_PCI_MSI_DATA);
3249 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3250 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3251 		    msidata);
3252 	}
3253 
3254 	/* Step 23: restore cache line size */
3255 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3256 
3257 #if 0
3258 	/*
3259 	 * XXX Wait for the value of the PCISTATE register to
3260 	 * return to its original pre-reset state. This is a
3261 	 * fairly good indicator of reset completion. If we don't
3262 	 * wait for the reset to fully complete, trying to read
3263 	 * from the device's non-PCI registers may yield garbage
3264 	 * results.
3265 	 */
3266 	for (i = 0; i < BGE_TIMEOUT; i++) {
3267 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3268 		    BGE_PCI_PCISTATE);
3269 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3270 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3271 			break;
3272 		DELAY(10);
3273 	}
3274 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3275 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3276 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3277 	}
3278 #endif
3279 
3280 	/* Step 28: Fix up byte swapping */
3281 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3282 
3283 	/* Tell the ASF firmware we are up */
3284 	if (sc->bge_asf_mode & ASF_STACKUP)
3285 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3286 
3287 	/*
3288 	 * The 5704 in TBI mode apparently needs some special
3289 	 * adjustment to insure the SERDES drive level is set
3290 	 * to 1.2V.
3291 	 */
3292 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3293 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3294 		uint32_t serdescfg;
3295 
3296 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3297 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3298 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3299 	}
3300 
3301 	if (sc->bge_flags & BGE_PCIE &&
3302 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3303 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3304 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3305 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3306 		uint32_t v;
3307 
3308 		/* Enable PCI Express bug fix */
3309 		v = CSR_READ_4(sc, 0x7c00);
3310 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3311 	}
3312 	DELAY(10000);
3313 
3314 	return 0;
3315 }
3316 
3317 /*
3318  * Frame reception handling. This is called if there's a frame
3319  * on the receive return list.
3320  *
3321  * Note: we have to be able to handle two possibilities here:
3322  * 1) the frame is from the jumbo receive ring
3323  * 2) the frame is from the standard receive ring
3324  */
3325 
3326 static void
3327 bge_rxeof(struct bge_softc *sc)
3328 {
3329 	struct ifnet *ifp;
3330 	uint16_t rx_prod, rx_cons;
3331 	int stdcnt = 0, jumbocnt = 0;
3332 	bus_dmamap_t dmamap;
3333 	bus_addr_t offset, toff;
3334 	bus_size_t tlen;
3335 	int tosync;
3336 
3337 	rx_cons = sc->bge_rx_saved_considx;
3338 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3339 
3340 	/* Nothing to do */
3341 	if (rx_cons == rx_prod)
3342 		return;
3343 
3344 	ifp = &sc->ethercom.ec_if;
3345 
3346 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3347 	    offsetof(struct bge_ring_data, bge_status_block),
3348 	    sizeof (struct bge_status_block),
3349 	    BUS_DMASYNC_POSTREAD);
3350 
3351 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3352 	tosync = rx_prod - rx_cons;
3353 
3354 #if NRND > 0
3355 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3356 		rnd_add_uint32(&sc->rnd_source, tosync);
3357 #endif
3358 
3359 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3360 
3361 	if (tosync < 0) {
3362 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
3363 		    sizeof (struct bge_rx_bd);
3364 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3365 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3366 		tosync = -tosync;
3367 	}
3368 
3369 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3370 	    offset, tosync * sizeof (struct bge_rx_bd),
3371 	    BUS_DMASYNC_POSTREAD);
3372 
3373 	while (rx_cons != rx_prod) {
3374 		struct bge_rx_bd	*cur_rx;
3375 		uint32_t		rxidx;
3376 		struct mbuf		*m = NULL;
3377 
3378 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3379 
3380 		rxidx = cur_rx->bge_idx;
3381 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3382 
3383 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3384 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3385 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3386 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3387 			jumbocnt++;
3388 			bus_dmamap_sync(sc->bge_dmatag,
3389 			    sc->bge_cdata.bge_rx_jumbo_map,
3390 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3391 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3392 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3393 				ifp->if_ierrors++;
3394 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3395 				continue;
3396 			}
3397 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3398 					     NULL)== ENOBUFS) {
3399 				ifp->if_ierrors++;
3400 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3401 				continue;
3402 			}
3403 		} else {
3404 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3405 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3406 
3407 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3408 			stdcnt++;
3409 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3410 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3411 			if (dmamap == NULL) {
3412 				ifp->if_ierrors++;
3413 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3414 				continue;
3415 			}
3416 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3417 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3418 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3419 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3420 				ifp->if_ierrors++;
3421 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3422 				continue;
3423 			}
3424 			if (bge_newbuf_std(sc, sc->bge_std,
3425 			    NULL, dmamap) == ENOBUFS) {
3426 				ifp->if_ierrors++;
3427 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3428 				continue;
3429 			}
3430 		}
3431 
3432 		ifp->if_ipackets++;
3433 #ifndef __NO_STRICT_ALIGNMENT
3434 		/*
3435 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3436 		 * the Rx buffer has the layer-2 header unaligned.
3437 		 * If our CPU requires alignment, re-align by copying.
3438 		 */
3439 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3440 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3441 				cur_rx->bge_len);
3442 			m->m_data += ETHER_ALIGN;
3443 		}
3444 #endif
3445 
3446 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3447 		m->m_pkthdr.rcvif = ifp;
3448 
3449 		/*
3450 		 * Handle BPF listeners. Let the BPF user see the packet.
3451 		 */
3452 		bpf_mtap(ifp, m);
3453 
3454 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3455 
3456 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3457 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3458 		/*
3459 		 * Rx transport checksum-offload may also
3460 		 * have bugs with packets which, when transmitted,
3461 		 * were `runts' requiring padding.
3462 		 */
3463 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3464 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3465 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3466 			m->m_pkthdr.csum_data =
3467 			    cur_rx->bge_tcp_udp_csum;
3468 			m->m_pkthdr.csum_flags |=
3469 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3470 			     M_CSUM_DATA);
3471 		}
3472 
3473 		/*
3474 		 * If we received a packet with a vlan tag, pass it
3475 		 * to vlan_input() instead of ether_input().
3476 		 */
3477 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3478 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3479 		}
3480 
3481 		(*ifp->if_input)(ifp, m);
3482 	}
3483 
3484 	sc->bge_rx_saved_considx = rx_cons;
3485 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3486 	if (stdcnt)
3487 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3488 	if (jumbocnt)
3489 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3490 }
3491 
3492 static void
3493 bge_txeof(struct bge_softc *sc)
3494 {
3495 	struct bge_tx_bd *cur_tx = NULL;
3496 	struct ifnet *ifp;
3497 	struct txdmamap_pool_entry *dma;
3498 	bus_addr_t offset, toff;
3499 	bus_size_t tlen;
3500 	int tosync;
3501 	struct mbuf *m;
3502 
3503 	ifp = &sc->ethercom.ec_if;
3504 
3505 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3506 	    offsetof(struct bge_ring_data, bge_status_block),
3507 	    sizeof (struct bge_status_block),
3508 	    BUS_DMASYNC_POSTREAD);
3509 
3510 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3511 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3512 	    sc->bge_tx_saved_considx;
3513 
3514 #if NRND > 0
3515 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3516 		rnd_add_uint32(&sc->rnd_source, tosync);
3517 #endif
3518 
3519 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3520 
3521 	if (tosync < 0) {
3522 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3523 		    sizeof (struct bge_tx_bd);
3524 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3525 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3526 		tosync = -tosync;
3527 	}
3528 
3529 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3530 	    offset, tosync * sizeof (struct bge_tx_bd),
3531 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3532 
3533 	/*
3534 	 * Go through our tx ring and free mbufs for those
3535 	 * frames that have been sent.
3536 	 */
3537 	while (sc->bge_tx_saved_considx !=
3538 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3539 		uint32_t		idx = 0;
3540 
3541 		idx = sc->bge_tx_saved_considx;
3542 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3543 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3544 			ifp->if_opackets++;
3545 		m = sc->bge_cdata.bge_tx_chain[idx];
3546 		if (m != NULL) {
3547 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3548 			dma = sc->txdma[idx];
3549 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3550 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3551 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3552 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3553 			sc->txdma[idx] = NULL;
3554 
3555 			m_freem(m);
3556 		}
3557 		sc->bge_txcnt--;
3558 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3559 		ifp->if_timer = 0;
3560 	}
3561 
3562 	if (cur_tx != NULL)
3563 		ifp->if_flags &= ~IFF_OACTIVE;
3564 }
3565 
3566 static int
3567 bge_intr(void *xsc)
3568 {
3569 	struct bge_softc *sc;
3570 	struct ifnet *ifp;
3571 	uint32_t statusword;
3572 
3573 	sc = xsc;
3574 	ifp = &sc->ethercom.ec_if;
3575 
3576 	/* It is possible for the interrupt to arrive before
3577 	 * the status block is updated prior to the interrupt.
3578 	 * Reading the PCI State register will confirm whether the
3579 	 * interrupt is ours and will flush the status block.
3580 	 */
3581 
3582 	/* read status word from status block */
3583 	statusword = sc->bge_rdata->bge_status_block.bge_status;
3584 
3585 	if ((statusword & BGE_STATFLAG_UPDATED) ||
3586 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3587 		/* Ack interrupt and stop others from occuring. */
3588 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3589 
3590 		BGE_EVCNT_INCR(sc->bge_ev_intr);
3591 
3592 		/* clear status word */
3593 		sc->bge_rdata->bge_status_block.bge_status = 0;
3594 
3595 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3596 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3597 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3598 			bge_link_upd(sc);
3599 
3600 		if (ifp->if_flags & IFF_RUNNING) {
3601 			/* Check RX return ring producer/consumer */
3602 			bge_rxeof(sc);
3603 
3604 			/* Check TX ring producer/consumer */
3605 			bge_txeof(sc);
3606 		}
3607 
3608 		if (sc->bge_pending_rxintr_change) {
3609 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3610 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3611 			uint32_t junk;
3612 
3613 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3614 			DELAY(10);
3615 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3616 
3617 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3618 			DELAY(10);
3619 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3620 
3621 			sc->bge_pending_rxintr_change = 0;
3622 		}
3623 		bge_handle_events(sc);
3624 
3625 		/* Re-enable interrupts. */
3626 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3627 
3628 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3629 			bge_start(ifp);
3630 
3631 		return 1;
3632 	} else
3633 		return 0;
3634 }
3635 
3636 static void
3637 bge_asf_driver_up(struct bge_softc *sc)
3638 {
3639 	if (sc->bge_asf_mode & ASF_STACKUP) {
3640 		/* Send ASF heartbeat aprox. every 2s */
3641 		if (sc->bge_asf_count)
3642 			sc->bge_asf_count --;
3643 		else {
3644 			sc->bge_asf_count = 2;
3645 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3646 			    BGE_FW_DRV_ALIVE);
3647 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3648 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3649 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3650 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3651 		}
3652 	}
3653 }
3654 
3655 static void
3656 bge_tick(void *xsc)
3657 {
3658 	struct bge_softc *sc = xsc;
3659 	struct mii_data *mii = &sc->bge_mii;
3660 	int s;
3661 
3662 	s = splnet();
3663 
3664 	if (BGE_IS_5705_PLUS(sc))
3665 		bge_stats_update_regs(sc);
3666 	else
3667 		bge_stats_update(sc);
3668 
3669 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3670 		/*
3671 		 * Since in TBI mode auto-polling can't be used we should poll
3672 		 * link status manually. Here we register pending link event
3673 		 * and trigger interrupt.
3674 		 */
3675 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3676 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3677 	} else {
3678 		/*
3679 		 * Do not touch PHY if we have link up. This could break
3680 		 * IPMI/ASF mode or produce extra input errors.
3681 		 * (extra input errors was reported for bcm5701 & bcm5704).
3682 		 */
3683 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3684 			mii_tick(mii);
3685 	}
3686 
3687 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3688 
3689 	splx(s);
3690 }
3691 
3692 static void
3693 bge_stats_update_regs(struct bge_softc *sc)
3694 {
3695 	struct ifnet *ifp = &sc->ethercom.ec_if;
3696 
3697 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3698 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3699 
3700 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3701 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3702 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3703 }
3704 
3705 static void
3706 bge_stats_update(struct bge_softc *sc)
3707 {
3708 	struct ifnet *ifp = &sc->ethercom.ec_if;
3709 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3710 
3711 #define READ_STAT(sc, stats, stat) \
3712 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3713 
3714 	ifp->if_collisions +=
3715 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3716 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3717 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3718 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3719 	  ifp->if_collisions;
3720 
3721 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3722 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3723 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3724 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3725 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3726 		      READ_STAT(sc, stats,
3727 		      		xoffPauseFramesReceived.bge_addr_lo));
3728 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3729 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3730 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3731 		      READ_STAT(sc, stats,
3732 		      		macControlFramesReceived.bge_addr_lo));
3733 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3734 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3735 
3736 #undef READ_STAT
3737 
3738 #ifdef notdef
3739 	ifp->if_collisions +=
3740 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3741 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3742 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3743 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3744 	   ifp->if_collisions;
3745 #endif
3746 }
3747 
3748 /*
3749  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3750  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3751  * but when such padded frames employ the  bge IP/TCP checksum offload,
3752  * the hardware checksum assist gives incorrect results (possibly
3753  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3754  * If we pad such runts with zeros, the onboard checksum comes out correct.
3755  */
3756 static inline int
3757 bge_cksum_pad(struct mbuf *pkt)
3758 {
3759 	struct mbuf *last = NULL;
3760 	int padlen;
3761 
3762 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3763 
3764 	/* if there's only the packet-header and we can pad there, use it. */
3765 	if (pkt->m_pkthdr.len == pkt->m_len &&
3766 	    M_TRAILINGSPACE(pkt) >= padlen) {
3767 		last = pkt;
3768 	} else {
3769 		/*
3770 		 * Walk packet chain to find last mbuf. We will either
3771 		 * pad there, or append a new mbuf and pad it
3772 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3773 		 */
3774 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3775 	      	       continue; /* do nothing */
3776 		}
3777 
3778 		/* `last' now points to last in chain. */
3779 		if (M_TRAILINGSPACE(last) < padlen) {
3780 			/* Allocate new empty mbuf, pad it. Compact later. */
3781 			struct mbuf *n;
3782 			MGET(n, M_DONTWAIT, MT_DATA);
3783 			if (n == NULL)
3784 				return ENOBUFS;
3785 			n->m_len = 0;
3786 			last->m_next = n;
3787 			last = n;
3788 		}
3789 	}
3790 
3791 	KDASSERT(!M_READONLY(last));
3792 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3793 
3794 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3795 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3796 	last->m_len += padlen;
3797 	pkt->m_pkthdr.len += padlen;
3798 	return 0;
3799 }
3800 
3801 /*
3802  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3803  */
3804 static inline int
3805 bge_compact_dma_runt(struct mbuf *pkt)
3806 {
3807 	struct mbuf	*m, *prev;
3808 	int 		totlen, prevlen;
3809 
3810 	prev = NULL;
3811 	totlen = 0;
3812 	prevlen = -1;
3813 
3814 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3815 		int mlen = m->m_len;
3816 		int shortfall = 8 - mlen ;
3817 
3818 		totlen += mlen;
3819 		if (mlen == 0) {
3820 			continue;
3821 		}
3822 		if (mlen >= 8)
3823 			continue;
3824 
3825 		/* If we get here, mbuf data is too small for DMA engine.
3826 		 * Try to fix by shuffling data to prev or next in chain.
3827 		 * If that fails, do a compacting deep-copy of the whole chain.
3828 		 */
3829 
3830 		/* Internal frag. If fits in prev, copy it there. */
3831 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3832 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3833 			prev->m_len += mlen;
3834 			m->m_len = 0;
3835 			/* XXX stitch chain */
3836 			prev->m_next = m_free(m);
3837 			m = prev;
3838 			continue;
3839 		}
3840 		else if (m->m_next != NULL &&
3841 			     M_TRAILINGSPACE(m) >= shortfall &&
3842 			     m->m_next->m_len >= (8 + shortfall)) {
3843 		    /* m is writable and have enough data in next, pull up. */
3844 
3845 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3846 			    shortfall);
3847 			m->m_len += shortfall;
3848 			m->m_next->m_len -= shortfall;
3849 			m->m_next->m_data += shortfall;
3850 		}
3851 		else if (m->m_next == NULL || 1) {
3852 		  	/* Got a runt at the very end of the packet.
3853 			 * borrow data from the tail of the preceding mbuf and
3854 			 * update its length in-place. (The original data is still
3855 			 * valid, so we can do this even if prev is not writable.)
3856 			 */
3857 
3858 			/* if we'd make prev a runt, just move all of its data. */
3859 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3860 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3861 
3862 			if ((prev->m_len - shortfall) < 8)
3863 				shortfall = prev->m_len;
3864 
3865 #ifdef notyet	/* just do the safe slow thing for now */
3866 			if (!M_READONLY(m)) {
3867 				if (M_LEADINGSPACE(m) < shorfall) {
3868 					void *m_dat;
3869 					m_dat = (m->m_flags & M_PKTHDR) ?
3870 					  m->m_pktdat : m->dat;
3871 					memmove(m_dat, mtod(m, void*), m->m_len);
3872 					m->m_data = m_dat;
3873 				    }
3874 			} else
3875 #endif	/* just do the safe slow thing */
3876 			{
3877 				struct mbuf * n = NULL;
3878 				int newprevlen = prev->m_len - shortfall;
3879 
3880 				MGET(n, M_NOWAIT, MT_DATA);
3881 				if (n == NULL)
3882 				   return ENOBUFS;
3883 				KASSERT(m->m_len + shortfall < MLEN
3884 					/*,
3885 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3886 
3887 				/* first copy the data we're stealing from prev */
3888 				memcpy(n->m_data, prev->m_data + newprevlen,
3889 				    shortfall);
3890 
3891 				/* update prev->m_len accordingly */
3892 				prev->m_len -= shortfall;
3893 
3894 				/* copy data from runt m */
3895 				memcpy(n->m_data + shortfall, m->m_data,
3896 				    m->m_len);
3897 
3898 				/* n holds what we stole from prev, plus m */
3899 				n->m_len = shortfall + m->m_len;
3900 
3901 				/* stitch n into chain and free m */
3902 				n->m_next = m->m_next;
3903 				prev->m_next = n;
3904 				/* KASSERT(m->m_next == NULL); */
3905 				m->m_next = NULL;
3906 				m_free(m);
3907 				m = n;	/* for continuing loop */
3908 			}
3909 		}
3910 		prevlen = m->m_len;
3911 	}
3912 	return 0;
3913 }
3914 
3915 /*
3916  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3917  * pointers to descriptors.
3918  */
3919 static int
3920 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3921 {
3922 	struct bge_tx_bd	*f = NULL;
3923 	uint32_t		frag, cur;
3924 	uint16_t		csum_flags = 0;
3925 	uint16_t		txbd_tso_flags = 0;
3926 	struct txdmamap_pool_entry *dma;
3927 	bus_dmamap_t dmamap;
3928 	int			i = 0;
3929 	struct m_tag		*mtag;
3930 	int			use_tso, maxsegsize, error;
3931 
3932 	cur = frag = *txidx;
3933 
3934 	if (m_head->m_pkthdr.csum_flags) {
3935 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3936 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3937 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3938 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3939 	}
3940 
3941 	/*
3942 	 * If we were asked to do an outboard checksum, and the NIC
3943 	 * has the bug where it sometimes adds in the Ethernet padding,
3944 	 * explicitly pad with zeros so the cksum will be correct either way.
3945 	 * (For now, do this for all chip versions, until newer
3946 	 * are confirmed to not require the workaround.)
3947 	 */
3948 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3949 #ifdef notyet
3950 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3951 #endif
3952 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3953 		goto check_dma_bug;
3954 
3955 	if (bge_cksum_pad(m_head) != 0)
3956 	    return ENOBUFS;
3957 
3958 check_dma_bug:
3959 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3960 		goto doit;
3961 
3962 	/*
3963 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3964 	 * less than eight bytes.  If we encounter a teeny mbuf
3965 	 * at the end of a chain, we can pad.  Otherwise, copy.
3966 	 */
3967 	if (bge_compact_dma_runt(m_head) != 0)
3968 		return ENOBUFS;
3969 
3970 doit:
3971 	dma = SLIST_FIRST(&sc->txdma_list);
3972 	if (dma == NULL)
3973 		return ENOBUFS;
3974 	dmamap = dma->dmamap;
3975 
3976 	/*
3977 	 * Set up any necessary TSO state before we start packing...
3978 	 */
3979 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3980 	if (!use_tso) {
3981 		maxsegsize = 0;
3982 	} else {	/* TSO setup */
3983 		unsigned  mss;
3984 		struct ether_header *eh;
3985 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3986 		struct mbuf * m0 = m_head;
3987 		struct ip *ip;
3988 		struct tcphdr *th;
3989 		int iphl, hlen;
3990 
3991 		/*
3992 		 * XXX It would be nice if the mbuf pkthdr had offset
3993 		 * fields for the protocol headers.
3994 		 */
3995 
3996 		eh = mtod(m0, struct ether_header *);
3997 		switch (htons(eh->ether_type)) {
3998 		case ETHERTYPE_IP:
3999 			offset = ETHER_HDR_LEN;
4000 			break;
4001 
4002 		case ETHERTYPE_VLAN:
4003 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4004 			break;
4005 
4006 		default:
4007 			/*
4008 			 * Don't support this protocol or encapsulation.
4009 			 */
4010 			return ENOBUFS;
4011 		}
4012 
4013 		/*
4014 		 * TCP/IP headers are in the first mbuf; we can do
4015 		 * this the easy way.
4016 		 */
4017 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4018 		hlen = iphl + offset;
4019 		if (__predict_false(m0->m_len <
4020 				    (hlen + sizeof(struct tcphdr)))) {
4021 
4022 			aprint_debug_dev(sc->bge_dev,
4023 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4024 			    "not handled yet\n",
4025 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4026 #ifdef NOTYET
4027 			/*
4028 			 * XXX jonathan@NetBSD.org: untested.
4029 			 * how to force  this branch to be taken?
4030 			 */
4031 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4032 
4033 			m_copydata(m0, offset, sizeof(ip), &ip);
4034 			m_copydata(m0, hlen, sizeof(th), &th);
4035 
4036 			ip.ip_len = 0;
4037 
4038 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4039 			    sizeof(ip.ip_len), &ip.ip_len);
4040 
4041 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4042 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4043 
4044 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4045 			    sizeof(th.th_sum), &th.th_sum);
4046 
4047 			hlen += th.th_off << 2;
4048 			iptcp_opt_words	= hlen;
4049 #else
4050 			/*
4051 			 * if_wm "hard" case not yet supported, can we not
4052 			 * mandate it out of existence?
4053 			 */
4054 			(void) ip; (void)th; (void) ip_tcp_hlen;
4055 
4056 			return ENOBUFS;
4057 #endif
4058 		} else {
4059 			ip = (struct ip *) (mtod(m0, char *) + offset);
4060 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4061 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4062 
4063 			/* Total IP/TCP options, in 32-bit words */
4064 			iptcp_opt_words = (ip_tcp_hlen
4065 					   - sizeof(struct tcphdr)
4066 					   - sizeof(struct ip)) >> 2;
4067 		}
4068 		if (BGE_IS_5750_OR_BEYOND(sc)) {
4069 			th->th_sum = 0;
4070 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4071 		} else {
4072 			/*
4073 			 * XXX jonathan@NetBSD.org: 5705 untested.
4074 			 * Requires TSO firmware patch for 5701/5703/5704.
4075 			 */
4076 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4077 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4078 		}
4079 
4080 		mss = m_head->m_pkthdr.segsz;
4081 		txbd_tso_flags |=
4082 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4083 		    BGE_TXBDFLAG_CPU_POST_DMA;
4084 
4085 		/*
4086 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4087 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4088 		 * the NIC copies 40 bytes of IP/TCP header from the
4089 		 * supplied header into the IP/TCP header portion of
4090 		 * each post-TSO-segment. If the supplied packet has IP or
4091 		 * TCP options, we need to tell the NIC to copy those extra
4092 		 * bytes into each  post-TSO header, in addition to the normal
4093 		 * 40-byte IP/TCP header (and to leave space accordingly).
4094 		 * Unfortunately, the driver encoding of option length
4095 		 * varies across different ASIC families.
4096 		 */
4097 		tcp_seg_flags = 0;
4098 		if (iptcp_opt_words) {
4099 			if (BGE_IS_5705_PLUS(sc)) {
4100 				tcp_seg_flags =
4101 					iptcp_opt_words << 11;
4102 			} else {
4103 				txbd_tso_flags |=
4104 					iptcp_opt_words << 12;
4105 			}
4106 		}
4107 		maxsegsize = mss | tcp_seg_flags;
4108 		ip->ip_len = htons(mss + ip_tcp_hlen);
4109 
4110 	}	/* TSO setup */
4111 
4112 	/*
4113 	 * Start packing the mbufs in this chain into
4114 	 * the fragment pointers. Stop when we run out
4115 	 * of fragments or hit the end of the mbuf chain.
4116 	 */
4117 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4118 	    BUS_DMA_NOWAIT);
4119 	if (error)
4120 		return ENOBUFS;
4121 	/*
4122 	 * Sanity check: avoid coming within 16 descriptors
4123 	 * of the end of the ring.
4124 	 */
4125 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4126 		BGE_TSO_PRINTF(("%s: "
4127 		    " dmamap_load_mbuf too close to ring wrap\n",
4128 		    device_xname(sc->bge_dev)));
4129 		goto fail_unload;
4130 	}
4131 
4132 	mtag = sc->ethercom.ec_nvlans ?
4133 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4134 
4135 
4136 	/* Iterate over dmap-map fragments. */
4137 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4138 		f = &sc->bge_rdata->bge_tx_ring[frag];
4139 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4140 			break;
4141 
4142 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4143 		f->bge_len = dmamap->dm_segs[i].ds_len;
4144 
4145 		/*
4146 		 * For 5751 and follow-ons, for TSO we must turn
4147 		 * off checksum-assist flag in the tx-descr, and
4148 		 * supply the ASIC-revision-specific encoding
4149 		 * of TSO flags and segsize.
4150 		 */
4151 		if (use_tso) {
4152 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4153 				f->bge_rsvd = maxsegsize;
4154 				f->bge_flags = csum_flags | txbd_tso_flags;
4155 			} else {
4156 				f->bge_rsvd = 0;
4157 				f->bge_flags =
4158 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4159 			}
4160 		} else {
4161 			f->bge_rsvd = 0;
4162 			f->bge_flags = csum_flags;
4163 		}
4164 
4165 		if (mtag != NULL) {
4166 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4167 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4168 		} else {
4169 			f->bge_vlan_tag = 0;
4170 		}
4171 		cur = frag;
4172 		BGE_INC(frag, BGE_TX_RING_CNT);
4173 	}
4174 
4175 	if (i < dmamap->dm_nsegs) {
4176 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4177 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4178 		goto fail_unload;
4179 	}
4180 
4181 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4182 	    BUS_DMASYNC_PREWRITE);
4183 
4184 	if (frag == sc->bge_tx_saved_considx) {
4185 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4186 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4187 
4188 		goto fail_unload;
4189 	}
4190 
4191 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4192 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4193 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4194 	sc->txdma[cur] = dma;
4195 	sc->bge_txcnt += dmamap->dm_nsegs;
4196 
4197 	*txidx = frag;
4198 
4199 	return 0;
4200 
4201 fail_unload:
4202 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4203 
4204 	return ENOBUFS;
4205 }
4206 
4207 /*
4208  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4209  * to the mbuf data regions directly in the transmit descriptors.
4210  */
4211 static void
4212 bge_start(struct ifnet *ifp)
4213 {
4214 	struct bge_softc *sc;
4215 	struct mbuf *m_head = NULL;
4216 	uint32_t prodidx;
4217 	int pkts = 0;
4218 
4219 	sc = ifp->if_softc;
4220 
4221 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4222 		return;
4223 
4224 	prodidx = sc->bge_tx_prodidx;
4225 
4226 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4227 		IFQ_POLL(&ifp->if_snd, m_head);
4228 		if (m_head == NULL)
4229 			break;
4230 
4231 #if 0
4232 		/*
4233 		 * XXX
4234 		 * safety overkill.  If this is a fragmented packet chain
4235 		 * with delayed TCP/UDP checksums, then only encapsulate
4236 		 * it if we have enough descriptors to handle the entire
4237 		 * chain at once.
4238 		 * (paranoia -- may not actually be needed)
4239 		 */
4240 		if (m_head->m_flags & M_FIRSTFRAG &&
4241 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4242 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4243 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4244 				ifp->if_flags |= IFF_OACTIVE;
4245 				break;
4246 			}
4247 		}
4248 #endif
4249 
4250 		/*
4251 		 * Pack the data into the transmit ring. If we
4252 		 * don't have room, set the OACTIVE flag and wait
4253 		 * for the NIC to drain the ring.
4254 		 */
4255 		if (bge_encap(sc, m_head, &prodidx)) {
4256 			ifp->if_flags |= IFF_OACTIVE;
4257 			break;
4258 		}
4259 
4260 		/* now we are committed to transmit the packet */
4261 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4262 		pkts++;
4263 
4264 		/*
4265 		 * If there's a BPF listener, bounce a copy of this frame
4266 		 * to him.
4267 		 */
4268 		bpf_mtap(ifp, m_head);
4269 	}
4270 	if (pkts == 0)
4271 		return;
4272 
4273 	/* Transmit */
4274 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4275 	/* 5700 b2 errata */
4276 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4277 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4278 
4279 	sc->bge_tx_prodidx = prodidx;
4280 
4281 	/*
4282 	 * Set a timeout in case the chip goes out to lunch.
4283 	 */
4284 	ifp->if_timer = 5;
4285 }
4286 
4287 static int
4288 bge_init(struct ifnet *ifp)
4289 {
4290 	struct bge_softc *sc = ifp->if_softc;
4291 	const uint16_t *m;
4292 	int s, error = 0;
4293 
4294 	s = splnet();
4295 
4296 	ifp = &sc->ethercom.ec_if;
4297 
4298 	/* Cancel pending I/O and flush buffers. */
4299 	bge_stop(ifp, 0);
4300 
4301 	bge_stop_fw(sc);
4302 	bge_sig_pre_reset(sc, BGE_RESET_START);
4303 	bge_reset(sc);
4304 	bge_sig_legacy(sc, BGE_RESET_START);
4305 	bge_sig_post_reset(sc, BGE_RESET_START);
4306 
4307 	bge_chipinit(sc);
4308 
4309 	/*
4310 	 * Init the various state machines, ring
4311 	 * control blocks and firmware.
4312 	 */
4313 	error = bge_blockinit(sc);
4314 	if (error != 0) {
4315 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4316 		    error);
4317 		splx(s);
4318 		return error;
4319 	}
4320 
4321 	ifp = &sc->ethercom.ec_if;
4322 
4323 	/* Specify MTU. */
4324 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4325 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4326 
4327 	/* Load our MAC address. */
4328 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4329 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4330 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4331 
4332 	/* Enable or disable promiscuous mode as needed. */
4333 	if (ifp->if_flags & IFF_PROMISC)
4334 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4335 	else
4336 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4337 
4338 	/* Program multicast filter. */
4339 	bge_setmulti(sc);
4340 
4341 	/* Init RX ring. */
4342 	bge_init_rx_ring_std(sc);
4343 
4344 	/*
4345 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4346 	 * memory to insure that the chip has in fact read the first
4347 	 * entry of the ring.
4348 	 */
4349 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4350 		uint32_t		v, i;
4351 		for (i = 0; i < 10; i++) {
4352 			DELAY(20);
4353 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4354 			if (v == (MCLBYTES - ETHER_ALIGN))
4355 				break;
4356 		}
4357 		if (i == 10)
4358 			aprint_error_dev(sc->bge_dev,
4359 			    "5705 A0 chip failed to load RX ring\n");
4360 	}
4361 
4362 	/* Init jumbo RX ring. */
4363 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4364 		bge_init_rx_ring_jumbo(sc);
4365 
4366 	/* Init our RX return ring index */
4367 	sc->bge_rx_saved_considx = 0;
4368 
4369 	/* Init TX ring. */
4370 	bge_init_tx_ring(sc);
4371 
4372 	/* Turn on transmitter */
4373 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4374 
4375 	/* Turn on receiver */
4376 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4377 
4378 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4379 
4380 	/* Tell firmware we're alive. */
4381 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4382 
4383 	/* Enable host interrupts. */
4384 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4385 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4386 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4387 
4388 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4389 		goto out;
4390 
4391 	ifp->if_flags |= IFF_RUNNING;
4392 	ifp->if_flags &= ~IFF_OACTIVE;
4393 
4394 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4395 
4396 out:
4397 	sc->bge_if_flags = ifp->if_flags;
4398 	splx(s);
4399 
4400 	return error;
4401 }
4402 
4403 /*
4404  * Set media options.
4405  */
4406 static int
4407 bge_ifmedia_upd(struct ifnet *ifp)
4408 {
4409 	struct bge_softc *sc = ifp->if_softc;
4410 	struct mii_data *mii = &sc->bge_mii;
4411 	struct ifmedia *ifm = &sc->bge_ifmedia;
4412 	int rc;
4413 
4414 	/* If this is a 1000baseX NIC, enable the TBI port. */
4415 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4416 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4417 			return EINVAL;
4418 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
4419 		case IFM_AUTO:
4420 			/*
4421 			 * The BCM5704 ASIC appears to have a special
4422 			 * mechanism for programming the autoneg
4423 			 * advertisement registers in TBI mode.
4424 			 */
4425 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4426 				uint32_t sgdig;
4427 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4428 				if (sgdig & BGE_SGDIGSTS_DONE) {
4429 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4430 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4431 					sgdig |= BGE_SGDIGCFG_AUTO |
4432 					    BGE_SGDIGCFG_PAUSE_CAP |
4433 					    BGE_SGDIGCFG_ASYM_PAUSE;
4434 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4435 					    sgdig | BGE_SGDIGCFG_SEND);
4436 					DELAY(5);
4437 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4438 				}
4439 			}
4440 			break;
4441 		case IFM_1000_SX:
4442 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4443 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4444 				    BGE_MACMODE_HALF_DUPLEX);
4445 			} else {
4446 				BGE_SETBIT(sc, BGE_MAC_MODE,
4447 				    BGE_MACMODE_HALF_DUPLEX);
4448 			}
4449 			break;
4450 		default:
4451 			return EINVAL;
4452 		}
4453 		/* XXX 802.3x flow control for 1000BASE-SX */
4454 		return 0;
4455 	}
4456 
4457 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4458 	if ((rc = mii_mediachg(mii)) == ENXIO)
4459 		return 0;
4460 
4461 	/*
4462 	 * Force an interrupt so that we will call bge_link_upd
4463 	 * if needed and clear any pending link state attention.
4464 	 * Without this we are not getting any further interrupts
4465 	 * for link state changes and thus will not UP the link and
4466 	 * not be able to send in bge_start. The only way to get
4467 	 * things working was to receive a packet and get a RX intr.
4468 	 */
4469 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4470 	    sc->bge_flags & BGE_IS_5788)
4471 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4472 	else
4473 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4474 
4475 	return rc;
4476 }
4477 
4478 /*
4479  * Report current media status.
4480  */
4481 static void
4482 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4483 {
4484 	struct bge_softc *sc = ifp->if_softc;
4485 	struct mii_data *mii = &sc->bge_mii;
4486 
4487 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4488 		ifmr->ifm_status = IFM_AVALID;
4489 		ifmr->ifm_active = IFM_ETHER;
4490 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4491 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4492 			ifmr->ifm_status |= IFM_ACTIVE;
4493 		ifmr->ifm_active |= IFM_1000_SX;
4494 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4495 			ifmr->ifm_active |= IFM_HDX;
4496 		else
4497 			ifmr->ifm_active |= IFM_FDX;
4498 		return;
4499 	}
4500 
4501 	mii_pollstat(mii);
4502 	ifmr->ifm_status = mii->mii_media_status;
4503 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4504 	    sc->bge_flowflags;
4505 }
4506 
4507 static int
4508 bge_ifflags_cb(struct ethercom *ec)
4509 {
4510 	struct ifnet *ifp = &ec->ec_if;
4511 	struct bge_softc *sc = ifp->if_softc;
4512 	int change = ifp->if_flags ^ sc->bge_if_flags;
4513 
4514 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4515 		return ENETRESET;
4516 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4517 		return 0;
4518 
4519 	if ((ifp->if_flags & IFF_PROMISC) == 0)
4520 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4521 	else
4522 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4523 
4524 	bge_setmulti(sc);
4525 
4526 	sc->bge_if_flags = ifp->if_flags;
4527 	return 0;
4528 }
4529 
4530 static int
4531 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4532 {
4533 	struct bge_softc *sc = ifp->if_softc;
4534 	struct ifreq *ifr = (struct ifreq *) data;
4535 	int s, error = 0;
4536 	struct mii_data *mii;
4537 
4538 	s = splnet();
4539 
4540 	switch (command) {
4541 	case SIOCSIFMEDIA:
4542 		/* XXX Flow control is not supported for 1000BASE-SX */
4543 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4544 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4545 			sc->bge_flowflags = 0;
4546 		}
4547 
4548 		/* Flow control requires full-duplex mode. */
4549 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4550 		    (ifr->ifr_media & IFM_FDX) == 0) {
4551 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4552 		}
4553 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4554 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4555 				/* We can do both TXPAUSE and RXPAUSE. */
4556 				ifr->ifr_media |=
4557 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4558 			}
4559 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4560 		}
4561 		/* FALLTHROUGH */
4562 	case SIOCGIFMEDIA:
4563 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4564 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4565 			    command);
4566 		} else {
4567 			mii = &sc->bge_mii;
4568 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4569 			    command);
4570 		}
4571 		break;
4572 	default:
4573 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4574 			break;
4575 
4576 		error = 0;
4577 
4578 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4579 			;
4580 		else if (ifp->if_flags & IFF_RUNNING)
4581 			bge_setmulti(sc);
4582 		break;
4583 	}
4584 
4585 	splx(s);
4586 
4587 	return error;
4588 }
4589 
4590 static void
4591 bge_watchdog(struct ifnet *ifp)
4592 {
4593 	struct bge_softc *sc;
4594 
4595 	sc = ifp->if_softc;
4596 
4597 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4598 
4599 	ifp->if_flags &= ~IFF_RUNNING;
4600 	bge_init(ifp);
4601 
4602 	ifp->if_oerrors++;
4603 }
4604 
4605 static void
4606 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4607 {
4608 	int i;
4609 
4610 	BGE_CLRBIT(sc, reg, bit);
4611 
4612 	for (i = 0; i < 1000; i++) {
4613 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4614 			return;
4615 		delay(100);
4616 	}
4617 
4618 	/*
4619 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4620 	 * on some environment (and once after boot?)
4621 	 */
4622 	if (reg != BGE_SRS_MODE)
4623 		aprint_error_dev(sc->bge_dev,
4624 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4625 		    (u_long)reg, bit);
4626 }
4627 
4628 /*
4629  * Stop the adapter and free any mbufs allocated to the
4630  * RX and TX lists.
4631  */
4632 static void
4633 bge_stop(struct ifnet *ifp, int disable)
4634 {
4635 	struct bge_softc *sc = ifp->if_softc;
4636 
4637 	callout_stop(&sc->bge_timeout);
4638 
4639 	/*
4640 	 * Tell firmware we're shutting down.
4641 	 */
4642 	bge_stop_fw(sc);
4643 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4644 
4645 	/* Disable host interrupts. */
4646 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4647 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4648 
4649 	/*
4650 	 * Disable all of the receiver blocks
4651 	 */
4652 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4653 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4654 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4655 	if (BGE_IS_5700_FAMILY(sc))
4656 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4657 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4658 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4659 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4660 
4661 	/*
4662 	 * Disable all of the transmit blocks
4663 	 */
4664 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4665 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4666 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4667 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4668 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4669 	if (BGE_IS_5700_FAMILY(sc))
4670 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4671 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4672 
4673 	/*
4674 	 * Shut down all of the memory managers and related
4675 	 * state machines.
4676 	 */
4677 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4678 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4679 	if (BGE_IS_5700_FAMILY(sc))
4680 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4681 
4682 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4683 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4684 
4685 	if (BGE_IS_5700_FAMILY(sc)) {
4686 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4687 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4688 	}
4689 
4690 	bge_reset(sc);
4691 	bge_sig_legacy(sc, BGE_RESET_STOP);
4692 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4693 
4694 	/*
4695 	 * Keep the ASF firmware running if up.
4696 	 */
4697 	if (sc->bge_asf_mode & ASF_STACKUP)
4698 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4699 	else
4700 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4701 
4702 	/* Free the RX lists. */
4703 	bge_free_rx_ring_std(sc);
4704 
4705 	/* Free jumbo RX list. */
4706 	if (BGE_IS_JUMBO_CAPABLE(sc))
4707 		bge_free_rx_ring_jumbo(sc);
4708 
4709 	/* Free TX buffers. */
4710 	bge_free_tx_ring(sc);
4711 
4712 	/*
4713 	 * Isolate/power down the PHY.
4714 	 */
4715 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4716 		mii_down(&sc->bge_mii);
4717 
4718 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4719 
4720 	/* Clear MAC's link state (PHY may still have link UP). */
4721 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4722 
4723 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4724 }
4725 
4726 static void
4727 bge_link_upd(struct bge_softc *sc)
4728 {
4729 	struct ifnet *ifp = &sc->ethercom.ec_if;
4730 	struct mii_data *mii = &sc->bge_mii;
4731 	uint32_t status;
4732 	int link;
4733 
4734 	/* Clear 'pending link event' flag */
4735 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4736 
4737 	/*
4738 	 * Process link state changes.
4739 	 * Grrr. The link status word in the status block does
4740 	 * not work correctly on the BCM5700 rev AX and BX chips,
4741 	 * according to all available information. Hence, we have
4742 	 * to enable MII interrupts in order to properly obtain
4743 	 * async link changes. Unfortunately, this also means that
4744 	 * we have to read the MAC status register to detect link
4745 	 * changes, thereby adding an additional register access to
4746 	 * the interrupt handler.
4747 	 */
4748 
4749 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4750 		status = CSR_READ_4(sc, BGE_MAC_STS);
4751 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4752 			mii_pollstat(mii);
4753 
4754 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4755 			    mii->mii_media_status & IFM_ACTIVE &&
4756 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4757 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4758 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4759 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4760 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4761 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4762 
4763 			/* Clear the interrupt */
4764 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4765 			    BGE_EVTENB_MI_INTERRUPT);
4766 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4767 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4768 			    BRGPHY_INTRS);
4769 		}
4770 		return;
4771 	}
4772 
4773 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4774 		status = CSR_READ_4(sc, BGE_MAC_STS);
4775 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4776 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4777 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4778 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4779 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4780 					    BGE_MACMODE_TBI_SEND_CFGS);
4781 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4782 				if_link_state_change(ifp, LINK_STATE_UP);
4783 			}
4784 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4785 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4786 			if_link_state_change(ifp, LINK_STATE_DOWN);
4787 		}
4788 	/*
4789 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4790 	 * This should not happen since mii callouts are locked now, but
4791 	 * we keep this check for debug.
4792 	 */
4793 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4794 		/*
4795 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4796 		 * bit in status word always set. Workaround this bug by
4797 		 * reading PHY link status directly.
4798 		 */
4799 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4800 		    BGE_STS_LINK : 0;
4801 
4802 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4803 			mii_pollstat(mii);
4804 
4805 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4806 			    mii->mii_media_status & IFM_ACTIVE &&
4807 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4808 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4809 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4810 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4811 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4812 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4813 		}
4814 	}
4815 
4816 	/* Clear the attention */
4817 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4818 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4819 	    BGE_MACSTAT_LINK_CHANGED);
4820 }
4821 
4822 static int
4823 sysctl_bge_verify(SYSCTLFN_ARGS)
4824 {
4825 	int error, t;
4826 	struct sysctlnode node;
4827 
4828 	node = *rnode;
4829 	t = *(int*)rnode->sysctl_data;
4830 	node.sysctl_data = &t;
4831 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4832 	if (error || newp == NULL)
4833 		return error;
4834 
4835 #if 0
4836 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4837 	    node.sysctl_num, rnode->sysctl_num));
4838 #endif
4839 
4840 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4841 		if (t < 0 || t >= NBGE_RX_THRESH)
4842 			return EINVAL;
4843 		bge_update_all_threshes(t);
4844 	} else
4845 		return EINVAL;
4846 
4847 	*(int*)rnode->sysctl_data = t;
4848 
4849 	return 0;
4850 }
4851 
4852 /*
4853  * Set up sysctl(3) MIB, hw.bge.*.
4854  */
4855 static void
4856 sysctl_bge_init(struct bge_softc *sc)
4857 {
4858 	int rc, bge_root_num;
4859 	const struct sysctlnode *node;
4860 
4861 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4862 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4863 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4864 		goto err;
4865 	}
4866 
4867 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4868 	    0, CTLTYPE_NODE, "bge",
4869 	    SYSCTL_DESCR("BGE interface controls"),
4870 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4871 		goto err;
4872 	}
4873 
4874 	bge_root_num = node->sysctl_num;
4875 
4876 	/* BGE Rx interrupt mitigation level */
4877 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4878 	    CTLFLAG_READWRITE,
4879 	    CTLTYPE_INT, "rx_lvl",
4880 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4881 	    sysctl_bge_verify, 0,
4882 	    &bge_rx_thresh_lvl,
4883 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4884 	    CTL_EOL)) != 0) {
4885 		goto err;
4886 	}
4887 
4888 	bge_rxthresh_nodenum = node->sysctl_num;
4889 
4890 	return;
4891 
4892 err:
4893 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4894 }
4895 
4896 #ifdef BGE_DEBUG
4897 void
4898 bge_debug_info(struct bge_softc *sc)
4899 {
4900 
4901 	printf("Hardware Flags:\n");
4902 	if (BGE_IS_5755_PLUS(sc))
4903 		printf(" - 5755 Plus\n");
4904 	if (BGE_IS_5750_OR_BEYOND(sc))
4905 		printf(" - 5750 Plus\n");
4906 	if (BGE_IS_5705_PLUS(sc))
4907 		printf(" - 5705 Plus\n");
4908 	if (BGE_IS_5714_FAMILY(sc))
4909 		printf(" - 5714 Family\n");
4910 	if (BGE_IS_5700_FAMILY(sc))
4911 		printf(" - 5700 Family\n");
4912 	if (sc->bge_flags & BGE_IS_5788)
4913 		printf(" - 5788\n");
4914 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4915 		printf(" - Supports Jumbo Frames\n");
4916 	if (sc->bge_flags & BGE_NO_EEPROM)
4917 		printf(" - No EEPROM\n");
4918 	if (sc->bge_flags & BGE_PCIX)
4919 		printf(" - PCI-X Bus\n");
4920 	if (sc->bge_flags & BGE_PCIE)
4921 		printf(" - PCI Express Bus\n");
4922 	if (sc->bge_flags & BGE_NO_3LED)
4923 		printf(" - No 3 LEDs\n");
4924 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
4925 		printf(" - RX Alignment Bug\n");
4926 	if (sc->bge_flags & BGE_TSO)
4927 		printf(" - TSO\n");
4928 }
4929 #endif /* BGE_DEBUG */
4930 
4931 static int
4932 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4933 {
4934 	prop_dictionary_t dict;
4935 	prop_data_t ea;
4936 
4937 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4938 		return 1;
4939 
4940 	dict = device_properties(sc->bge_dev);
4941 	ea = prop_dictionary_get(dict, "mac-address");
4942 	if (ea != NULL) {
4943 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4944 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4945 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4946 		return 0;
4947 	}
4948 
4949 	return 1;
4950 }
4951 
4952 static int
4953 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4954 {
4955 	uint32_t mac_addr;
4956 
4957 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4958 	if ((mac_addr >> 16) == 0x484b) {
4959 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4960 		ether_addr[1] = (uint8_t)mac_addr;
4961 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4962 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4963 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4964 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4965 		ether_addr[5] = (uint8_t)mac_addr;
4966 		return 0;
4967 	}
4968 	return 1;
4969 }
4970 
4971 static int
4972 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4973 {
4974 	int mac_offset = BGE_EE_MAC_OFFSET;
4975 
4976 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4977 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4978 
4979 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4980 	    ETHER_ADDR_LEN));
4981 }
4982 
4983 static int
4984 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4985 {
4986 
4987 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4988 		return 1;
4989 
4990 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4991 	   ETHER_ADDR_LEN));
4992 }
4993 
4994 static int
4995 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4996 {
4997 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4998 		/* NOTE: Order is critical */
4999 		bge_get_eaddr_fw,
5000 		bge_get_eaddr_mem,
5001 		bge_get_eaddr_nvram,
5002 		bge_get_eaddr_eeprom,
5003 		NULL
5004 	};
5005 	const bge_eaddr_fcn_t *func;
5006 
5007 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5008 		if ((*func)(sc, eaddr) == 0)
5009 			break;
5010 	}
5011 	return (*func == NULL ? ENXIO : 0);
5012 }
5013