xref: /netbsd-src/sys/dev/pci/if_bge.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: if_bge.c,v 1.41 2003/06/15 23:09:08 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include "bpfilter.h"
82 #include "vlan.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118 
119 #include <dev/pci/if_bgereg.h>
120 
121 #include <uvm/uvm_extern.h>
122 
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128 
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132 
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142 
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145 
146 void bge_setmulti(struct bge_softc *);
147 
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161 
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165 
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171 
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178 
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182 
183 void bge_reset(struct bge_softc *);
184 
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187 
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x)	if (bgedebug) printf x
191 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
192 int	bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197 
198 /* Various chip quirks. */
199 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
200 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
201 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
202 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
203 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
204 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
205 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
206 
207 /* following bugs are common to bcm5700 rev B, all flavours */
208 #define BGE_QUIRK_5700_COMMON \
209 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
210 
211 CFATTACH_DECL(bge, sizeof(struct bge_softc),
212     bge_probe, bge_attach, NULL, NULL);
213 
214 u_int32_t
215 bge_readmem_ind(sc, off)
216 	struct bge_softc *sc;
217 	int off;
218 {
219 	struct pci_attach_args	*pa = &(sc->bge_pa);
220 	pcireg_t val;
221 
222 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
223 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
224 	return val;
225 }
226 
227 void
228 bge_writemem_ind(sc, off, val)
229 	struct bge_softc *sc;
230 	int off, val;
231 {
232 	struct pci_attach_args	*pa = &(sc->bge_pa);
233 
234 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
235 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
236 }
237 
238 #ifdef notdef
239 u_int32_t
240 bge_readreg_ind(sc, off)
241 	struct bge_softc *sc;
242 	int off;
243 {
244 	struct pci_attach_args	*pa = &(sc->bge_pa);
245 
246 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
247 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
248 }
249 #endif
250 
251 void
252 bge_writereg_ind(sc, off, val)
253 	struct bge_softc *sc;
254 	int off, val;
255 {
256 	struct pci_attach_args	*pa = &(sc->bge_pa);
257 
258 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
259 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
260 }
261 
262 #ifdef notdef
263 u_int8_t
264 bge_vpd_readbyte(sc, addr)
265 	struct bge_softc *sc;
266 	int addr;
267 {
268 	int i;
269 	u_int32_t val;
270 	struct pci_attach_args	*pa = &(sc->bge_pa);
271 
272 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
273 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
274 		DELAY(10);
275 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
276 		    BGE_VPD_FLAG)
277 			break;
278 	}
279 
280 	if (i == BGE_TIMEOUT) {
281 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
282 		return(0);
283 	}
284 
285 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
286 
287 	return((val >> ((addr % 4) * 8)) & 0xFF);
288 }
289 
290 void
291 bge_vpd_read_res(sc, res, addr)
292 	struct bge_softc *sc;
293 	struct vpd_res *res;
294 	int addr;
295 {
296 	int i;
297 	u_int8_t *ptr;
298 
299 	ptr = (u_int8_t *)res;
300 	for (i = 0; i < sizeof(struct vpd_res); i++)
301 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
302 }
303 
304 void
305 bge_vpd_read(sc)
306 	struct bge_softc *sc;
307 {
308 	int pos = 0, i;
309 	struct vpd_res res;
310 
311 	if (sc->bge_vpd_prodname != NULL)
312 		free(sc->bge_vpd_prodname, M_DEVBUF);
313 	if (sc->bge_vpd_readonly != NULL)
314 		free(sc->bge_vpd_readonly, M_DEVBUF);
315 	sc->bge_vpd_prodname = NULL;
316 	sc->bge_vpd_readonly = NULL;
317 
318 	bge_vpd_read_res(sc, &res, pos);
319 
320 	if (res.vr_id != VPD_RES_ID) {
321 		printf("%s: bad VPD resource id: expected %x got %x\n",
322 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
323 		return;
324 	}
325 
326 	pos += sizeof(res);
327 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
328 	if (sc->bge_vpd_prodname == NULL)
329 		panic("bge_vpd_read");
330 	for (i = 0; i < res.vr_len; i++)
331 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
332 	sc->bge_vpd_prodname[i] = '\0';
333 	pos += i;
334 
335 	bge_vpd_read_res(sc, &res, pos);
336 
337 	if (res.vr_id != VPD_RES_READ) {
338 		printf("%s: bad VPD resource id: expected %x got %x\n",
339 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
340 		return;
341 	}
342 
343 	pos += sizeof(res);
344 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
345 	if (sc->bge_vpd_readonly == NULL)
346 		panic("bge_vpd_read");
347 	for (i = 0; i < res.vr_len + 1; i++)
348 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
349 }
350 #endif
351 
352 /*
353  * Read a byte of data stored in the EEPROM at address 'addr.' The
354  * BCM570x supports both the traditional bitbang interface and an
355  * auto access interface for reading the EEPROM. We use the auto
356  * access method.
357  */
358 u_int8_t
359 bge_eeprom_getbyte(sc, addr, dest)
360 	struct bge_softc *sc;
361 	int addr;
362 	u_int8_t *dest;
363 {
364 	int i;
365 	u_int32_t byte = 0;
366 
367 	/*
368 	 * Enable use of auto EEPROM access so we can avoid
369 	 * having to use the bitbang method.
370 	 */
371 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
372 
373 	/* Reset the EEPROM, load the clock period. */
374 	CSR_WRITE_4(sc, BGE_EE_ADDR,
375 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
376 	DELAY(20);
377 
378 	/* Issue the read EEPROM command. */
379 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
380 
381 	/* Wait for completion */
382 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
383 		DELAY(10);
384 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
385 			break;
386 	}
387 
388 	if (i == BGE_TIMEOUT) {
389 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
390 		return(0);
391 	}
392 
393 	/* Get result. */
394 	byte = CSR_READ_4(sc, BGE_EE_DATA);
395 
396 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
397 
398 	return(0);
399 }
400 
401 /*
402  * Read a sequence of bytes from the EEPROM.
403  */
404 int
405 bge_read_eeprom(sc, dest, off, cnt)
406 	struct bge_softc *sc;
407 	caddr_t dest;
408 	int off;
409 	int cnt;
410 {
411 	int err = 0, i;
412 	u_int8_t byte = 0;
413 
414 	for (i = 0; i < cnt; i++) {
415 		err = bge_eeprom_getbyte(sc, off + i, &byte);
416 		if (err)
417 			break;
418 		*(dest + i) = byte;
419 	}
420 
421 	return(err ? 1 : 0);
422 }
423 
424 int
425 bge_miibus_readreg(dev, phy, reg)
426 	struct device *dev;
427 	int phy, reg;
428 {
429 	struct bge_softc *sc = (struct bge_softc *)dev;
430 	struct ifnet *ifp;
431 	u_int32_t val;
432 	u_int32_t saved_autopoll;
433 	int i;
434 
435 	ifp = &sc->ethercom.ec_if;
436 
437 	/*
438 	 * Several chips with builtin PHYs will incorrectly answer to
439 	 * other PHY instances than the builtin PHY at id 1.
440 	 */
441 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
442 		return(0);
443 
444 	/* Reading with autopolling on may trigger PCI errors */
445 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
446 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
447 		CSR_WRITE_4(sc, BGE_MI_MODE,
448 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
449 		DELAY(40);
450 	}
451 
452 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
453 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
454 
455 	for (i = 0; i < BGE_TIMEOUT; i++) {
456 		val = CSR_READ_4(sc, BGE_MI_COMM);
457 		if (!(val & BGE_MICOMM_BUSY))
458 			break;
459 		delay(10);
460 	}
461 
462 	if (i == BGE_TIMEOUT) {
463 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
464 		val = 0;
465 		goto done;
466 	}
467 
468 	val = CSR_READ_4(sc, BGE_MI_COMM);
469 
470 done:
471 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
472 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
473 		DELAY(40);
474 	}
475 
476 	if (val & BGE_MICOMM_READFAIL)
477 		return(0);
478 
479 	return(val & 0xFFFF);
480 }
481 
482 void
483 bge_miibus_writereg(dev, phy, reg, val)
484 	struct device *dev;
485 	int phy, reg, val;
486 {
487 	struct bge_softc *sc = (struct bge_softc *)dev;
488 	u_int32_t saved_autopoll;
489 	int i;
490 
491 	/* Touching the PHY while autopolling is on may trigger PCI errors */
492 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
493 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
494 		delay(40);
495 		CSR_WRITE_4(sc, BGE_MI_MODE,
496 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
497 		delay(10); /* 40 usec is supposed to be adequate */
498 	}
499 
500 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
501 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
502 
503 	for (i = 0; i < BGE_TIMEOUT; i++) {
504 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
505 			break;
506 		delay(10);
507 	}
508 
509 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
510 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
511 		delay(40);
512 	}
513 
514 	if (i == BGE_TIMEOUT) {
515 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
516 	}
517 }
518 
519 void
520 bge_miibus_statchg(dev)
521 	struct device *dev;
522 {
523 	struct bge_softc *sc = (struct bge_softc *)dev;
524 	struct mii_data *mii = &sc->bge_mii;
525 
526 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
527 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
528 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
529 	} else {
530 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
531 	}
532 
533 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
534 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
535 	} else {
536 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
537 	}
538 }
539 
540 /*
541  * Handle events that have triggered interrupts.
542  */
543 void
544 bge_handle_events(sc)
545 	struct bge_softc		*sc;
546 {
547 
548 	return;
549 }
550 
551 /*
552  * Memory management for jumbo frames.
553  */
554 
555 int
556 bge_alloc_jumbo_mem(sc)
557 	struct bge_softc		*sc;
558 {
559 	caddr_t			ptr, kva;
560 	bus_dma_segment_t	seg;
561 	int		i, rseg, state, error;
562 	struct bge_jpool_entry   *entry;
563 
564 	state = error = 0;
565 
566 	/* Grab a big chunk o' storage. */
567 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
568 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
569 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
570 		return ENOBUFS;
571 	}
572 
573 	state = 1;
574 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
575 	    BUS_DMA_NOWAIT)) {
576 		printf("%s: can't map DMA buffers (%d bytes)\n",
577 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
578 		error = ENOBUFS;
579 		goto out;
580 	}
581 
582 	state = 2;
583 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
584 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
585 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
586 		error = ENOBUFS;
587 		goto out;
588 	}
589 
590 	state = 3;
591 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
592 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
593 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
594 		error = ENOBUFS;
595 		goto out;
596 	}
597 
598 	state = 4;
599 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
600 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
601 
602 	SLIST_INIT(&sc->bge_jfree_listhead);
603 	SLIST_INIT(&sc->bge_jinuse_listhead);
604 
605 	/*
606 	 * Now divide it up into 9K pieces and save the addresses
607 	 * in an array.
608 	 */
609 	ptr = sc->bge_cdata.bge_jumbo_buf;
610 	for (i = 0; i < BGE_JSLOTS; i++) {
611 		sc->bge_cdata.bge_jslots[i] = ptr;
612 		ptr += BGE_JLEN;
613 		entry = malloc(sizeof(struct bge_jpool_entry),
614 		    M_DEVBUF, M_NOWAIT);
615 		if (entry == NULL) {
616 			printf("%s: no memory for jumbo buffer queue!\n",
617 			    sc->bge_dev.dv_xname);
618 			error = ENOBUFS;
619 			goto out;
620 		}
621 		entry->slot = i;
622 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
623 				 entry, jpool_entries);
624 	}
625 out:
626 	if (error != 0) {
627 		switch (state) {
628 		case 4:
629 			bus_dmamap_unload(sc->bge_dmatag,
630 			    sc->bge_cdata.bge_rx_jumbo_map);
631 		case 3:
632 			bus_dmamap_destroy(sc->bge_dmatag,
633 			    sc->bge_cdata.bge_rx_jumbo_map);
634 		case 2:
635 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
636 		case 1:
637 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
638 			break;
639 		default:
640 			break;
641 		}
642 	}
643 
644 	return error;
645 }
646 
647 /*
648  * Allocate a jumbo buffer.
649  */
650 void *
651 bge_jalloc(sc)
652 	struct bge_softc		*sc;
653 {
654 	struct bge_jpool_entry   *entry;
655 
656 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
657 
658 	if (entry == NULL) {
659 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
660 		return(NULL);
661 	}
662 
663 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
664 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
665 	return(sc->bge_cdata.bge_jslots[entry->slot]);
666 }
667 
668 /*
669  * Release a jumbo buffer.
670  */
671 void
672 bge_jfree(m, buf, size, arg)
673 	struct mbuf	*m;
674 	caddr_t		buf;
675 	size_t		size;
676 	void		*arg;
677 {
678 	struct bge_jpool_entry *entry;
679 	struct bge_softc *sc;
680 	int i, s;
681 
682 	/* Extract the softc struct pointer. */
683 	sc = (struct bge_softc *)arg;
684 
685 	if (sc == NULL)
686 		panic("bge_jfree: can't find softc pointer!");
687 
688 	/* calculate the slot this buffer belongs to */
689 
690 	i = ((caddr_t)buf
691 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
692 
693 	if ((i < 0) || (i >= BGE_JSLOTS))
694 		panic("bge_jfree: asked to free buffer that we don't manage!");
695 
696 	s = splvm();
697 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
698 	if (entry == NULL)
699 		panic("bge_jfree: buffer not in use!");
700 	entry->slot = i;
701 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
702 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
703 
704 	if (__predict_true(m != NULL))
705   		pool_cache_put(&mbpool_cache, m);
706 	splx(s);
707 }
708 
709 
710 /*
711  * Intialize a standard receive ring descriptor.
712  */
713 int
714 bge_newbuf_std(sc, i, m, dmamap)
715 	struct bge_softc	*sc;
716 	int			i;
717 	struct mbuf		*m;
718 	bus_dmamap_t dmamap;
719 {
720 	struct mbuf		*m_new = NULL;
721 	struct bge_rx_bd	*r;
722 	int			error;
723 
724 	if (dmamap == NULL) {
725 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
726 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
727 		if (error != 0)
728 			return error;
729 	}
730 
731 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
732 
733 	if (m == NULL) {
734 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
735 		if (m_new == NULL) {
736 			return(ENOBUFS);
737 		}
738 
739 		MCLGET(m_new, M_DONTWAIT);
740 		if (!(m_new->m_flags & M_EXT)) {
741 			m_freem(m_new);
742 			return(ENOBUFS);
743 		}
744 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
745 		if (!sc->bge_rx_alignment_bug)
746 		    m_adj(m_new, ETHER_ALIGN);
747 
748 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
749 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
750 			return(ENOBUFS);
751 	} else {
752 		m_new = m;
753 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
754 		m_new->m_data = m_new->m_ext.ext_buf;
755 		if (!sc->bge_rx_alignment_bug)
756 		    m_adj(m_new, ETHER_ALIGN);
757 	}
758 
759 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
760 	r = &sc->bge_rdata->bge_rx_std_ring[i];
761 	bge_set_hostaddr(&r->bge_addr,
762 	    dmamap->dm_segs[0].ds_addr);
763 	r->bge_flags = BGE_RXBDFLAG_END;
764 	r->bge_len = m_new->m_len;
765 	r->bge_idx = i;
766 
767 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
768 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
769 		i * sizeof (struct bge_rx_bd),
770 	    sizeof (struct bge_rx_bd),
771 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
772 
773 	return(0);
774 }
775 
776 /*
777  * Initialize a jumbo receive ring descriptor. This allocates
778  * a jumbo buffer from the pool managed internally by the driver.
779  */
780 int
781 bge_newbuf_jumbo(sc, i, m)
782 	struct bge_softc *sc;
783 	int i;
784 	struct mbuf *m;
785 {
786 	struct mbuf *m_new = NULL;
787 	struct bge_rx_bd *r;
788 
789 	if (m == NULL) {
790 		caddr_t			*buf = NULL;
791 
792 		/* Allocate the mbuf. */
793 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
794 		if (m_new == NULL) {
795 			return(ENOBUFS);
796 		}
797 
798 		/* Allocate the jumbo buffer */
799 		buf = bge_jalloc(sc);
800 		if (buf == NULL) {
801 			m_freem(m_new);
802 			printf("%s: jumbo allocation failed "
803 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
804 			return(ENOBUFS);
805 		}
806 
807 		/* Attach the buffer to the mbuf. */
808 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
809 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
810 		    bge_jfree, sc);
811 	} else {
812 		m_new = m;
813 		m_new->m_data = m_new->m_ext.ext_buf;
814 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
815 	}
816 
817 	if (!sc->bge_rx_alignment_bug)
818 	    m_adj(m_new, ETHER_ALIGN);
819 	/* Set up the descriptor. */
820 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
821 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
822 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
823 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
824 	r->bge_len = m_new->m_len;
825 	r->bge_idx = i;
826 
827 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
828 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
829 		i * sizeof (struct bge_rx_bd),
830 	    sizeof (struct bge_rx_bd),
831 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
832 
833 	return(0);
834 }
835 
836 /*
837  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
838  * that's 1MB or memory, which is a lot. For now, we fill only the first
839  * 256 ring entries and hope that our CPU is fast enough to keep up with
840  * the NIC.
841  */
842 int
843 bge_init_rx_ring_std(sc)
844 	struct bge_softc *sc;
845 {
846 	int i;
847 
848 	if (sc->bge_flags & BGE_RXRING_VALID)
849 		return 0;
850 
851 	for (i = 0; i < BGE_SSLOTS; i++) {
852 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
853 			return(ENOBUFS);
854 	}
855 
856 	sc->bge_std = i - 1;
857 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
858 
859 	sc->bge_flags |= BGE_RXRING_VALID;
860 
861 	return(0);
862 }
863 
864 void
865 bge_free_rx_ring_std(sc)
866 	struct bge_softc *sc;
867 {
868 	int i;
869 
870 	if (!(sc->bge_flags & BGE_RXRING_VALID))
871 		return;
872 
873 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
874 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
875 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
876 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
877 			bus_dmamap_destroy(sc->bge_dmatag,
878 			    sc->bge_cdata.bge_rx_std_map[i]);
879 		}
880 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
881 		    sizeof(struct bge_rx_bd));
882 	}
883 
884 	sc->bge_flags &= ~BGE_RXRING_VALID;
885 }
886 
887 int
888 bge_init_rx_ring_jumbo(sc)
889 	struct bge_softc *sc;
890 {
891 	int i;
892 	volatile struct bge_rcb *rcb;
893 
894 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
895 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
896 			return(ENOBUFS);
897 	};
898 
899 	sc->bge_jumbo = i - 1;
900 
901 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
902 	rcb->bge_maxlen_flags = 0;
903 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
904 
905 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
906 
907 	return(0);
908 }
909 
910 void
911 bge_free_rx_ring_jumbo(sc)
912 	struct bge_softc *sc;
913 {
914 	int i;
915 
916 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
917 		return;
918 
919 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
920 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
921 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
922 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
923 		}
924 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
925 		    sizeof(struct bge_rx_bd));
926 	}
927 
928 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
929 }
930 
931 void
932 bge_free_tx_ring(sc)
933 	struct bge_softc *sc;
934 {
935 	int i, freed;
936 	struct txdmamap_pool_entry *dma;
937 
938 	if (!(sc->bge_flags & BGE_TXRING_VALID))
939 		return;
940 
941 	freed = 0;
942 
943 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
944 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
945 			freed++;
946 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
947 			sc->bge_cdata.bge_tx_chain[i] = NULL;
948 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
949 					    link);
950 			sc->txdma[i] = 0;
951 		}
952 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
953 		    sizeof(struct bge_tx_bd));
954 	}
955 
956 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
957 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
958 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
959 		free(dma, M_DEVBUF);
960 	}
961 
962 	sc->bge_flags &= ~BGE_TXRING_VALID;
963 }
964 
965 int
966 bge_init_tx_ring(sc)
967 	struct bge_softc *sc;
968 {
969 	int i;
970 	bus_dmamap_t dmamap;
971 	struct txdmamap_pool_entry *dma;
972 
973 	if (sc->bge_flags & BGE_TXRING_VALID)
974 		return 0;
975 
976 	sc->bge_txcnt = 0;
977 	sc->bge_tx_saved_considx = 0;
978 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
980 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
981 
982 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
983 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
984 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 
986 	SLIST_INIT(&sc->txdma_list);
987 	for (i = 0; i < BGE_RSLOTS; i++) {
988 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
989 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
990 		    &dmamap))
991 			return(ENOBUFS);
992 		if (dmamap == NULL)
993 			panic("dmamap NULL in bge_init_tx_ring");
994 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
995 		if (dma == NULL) {
996 			printf("%s: can't alloc txdmamap_pool_entry\n",
997 			    sc->bge_dev.dv_xname);
998 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
999 			return (ENOMEM);
1000 		}
1001 		dma->dmamap = dmamap;
1002 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1003 	}
1004 
1005 	sc->bge_flags |= BGE_TXRING_VALID;
1006 
1007 	return(0);
1008 }
1009 
1010 void
1011 bge_setmulti(sc)
1012 	struct bge_softc *sc;
1013 {
1014 	struct ethercom		*ac = &sc->ethercom;
1015 	struct ifnet		*ifp = &ac->ec_if;
1016 	struct ether_multi	*enm;
1017 	struct ether_multistep  step;
1018 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1019 	u_int32_t		h;
1020 	int			i;
1021 
1022 	if (ifp->if_flags & IFF_PROMISC)
1023 		goto allmulti;
1024 
1025 	/* Now program new ones. */
1026 	ETHER_FIRST_MULTI(step, ac, enm);
1027 	while (enm != NULL) {
1028 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1029 			/*
1030 			 * We must listen to a range of multicast addresses.
1031 			 * For now, just accept all multicasts, rather than
1032 			 * trying to set only those filter bits needed to match
1033 			 * the range.  (At this time, the only use of address
1034 			 * ranges is for IP multicast routing, for which the
1035 			 * range is big enough to require all bits set.)
1036 			 */
1037 			goto allmulti;
1038 		}
1039 
1040 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1041 
1042 		/* Just want the 7 least-significant bits. */
1043 		h &= 0x7f;
1044 
1045 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1046 		ETHER_NEXT_MULTI(step, enm);
1047 	}
1048 
1049 	ifp->if_flags &= ~IFF_ALLMULTI;
1050 	goto setit;
1051 
1052  allmulti:
1053 	ifp->if_flags |= IFF_ALLMULTI;
1054 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1055 
1056  setit:
1057 	for (i = 0; i < 4; i++)
1058 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1059 }
1060 
1061 const int bge_swapbits[] = {
1062 	0,
1063 	BGE_MODECTL_BYTESWAP_DATA,
1064 	BGE_MODECTL_WORDSWAP_DATA,
1065 	BGE_MODECTL_BYTESWAP_NONFRAME,
1066 	BGE_MODECTL_WORDSWAP_NONFRAME,
1067 
1068 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1069 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1070 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1071 
1072 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1073 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1074 
1075 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1076 
1077 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1079 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1080 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1081 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1083 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1084 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1085 
1086 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1087 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1088 };
1089 
1090 int bge_swapindex = 0;
1091 
1092 /*
1093  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1094  * self-test results.
1095  */
1096 int
1097 bge_chipinit(sc)
1098 	struct bge_softc *sc;
1099 {
1100 	u_int32_t		cachesize;
1101 	int			i;
1102 	u_int32_t		dma_rw_ctl;
1103 	struct pci_attach_args	*pa = &(sc->bge_pa);
1104 
1105 
1106 	/* Set endianness before we access any non-PCI registers. */
1107 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1108 	    BGE_INIT);
1109 
1110 	/* Set power state to D0. */
1111 	bge_setpowerstate(sc, 0);
1112 
1113 	/*
1114 	 * Check the 'ROM failed' bit on the RX CPU to see if
1115 	 * self-tests passed.
1116 	 */
1117 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1118 		printf("%s: RX CPU self-diagnostics failed!\n",
1119 		    sc->bge_dev.dv_xname);
1120 		return(ENODEV);
1121 	}
1122 
1123 	/* Clear the MAC control register */
1124 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1125 
1126 	/*
1127 	 * Clear the MAC statistics block in the NIC's
1128 	 * internal memory.
1129 	 */
1130 	for (i = BGE_STATS_BLOCK;
1131 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1132 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1133 
1134 	for (i = BGE_STATUS_BLOCK;
1135 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137 
1138 	/* Set up the PCI DMA control register. */
1139 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1140 	    BGE_PCISTATE_PCI_BUSMODE) {
1141 		/* Conventional PCI bus */
1142 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1143 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1144 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1145 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1146 		   (0x0F));
1147 	} else {
1148 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1149 		/* PCI-X bus */
1150 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1151 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1152 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1153 		    (0x0F);
1154 		/*
1155 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1156 		 * for hardware bugs, which means we should also clear
1157 		 * the low-order MINDMA bits.  In addition, the 5704
1158 		 * uses a different encoding of read/write watermarks.
1159 		 */
1160 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1161 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1162 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
1163 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1164 			  /* should be 0x1f0000 */
1165 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1166 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1167 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1168 		}
1169 		else if ((sc->bge_asicrev >> 28) ==
1170 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1171 			dma_rw_ctl &=  0xfffffff0;
1172 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1173 		}
1174 	}
1175 
1176 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1177 
1178 	/*
1179 	 * Set up general mode register.
1180 	 */
1181 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1182 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1183 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1184 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
1185 
1186 	/* Get cache line size. */
1187 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1188 
1189 	/*
1190 	 * Avoid violating PCI spec on certain chip revs.
1191 	 */
1192 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1193 	    PCIM_CMD_MWIEN) {
1194 		switch(cachesize) {
1195 		case 1:
1196 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1197 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1198 			break;
1199 		case 2:
1200 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1202 			break;
1203 		case 4:
1204 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1206 			break;
1207 		case 8:
1208 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1210 			break;
1211 		case 16:
1212 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1214 			break;
1215 		case 32:
1216 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1218 			break;
1219 		case 64:
1220 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1221 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1222 			break;
1223 		default:
1224 		/* Disable PCI memory write and invalidate. */
1225 #if 0
1226 			if (bootverbose)
1227 				printf("%s: cache line size %d not "
1228 				    "supported; disabling PCI MWI\n",
1229 				    sc->bge_dev.dv_xname, cachesize);
1230 #endif
1231 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1232 			    PCIM_CMD_MWIEN);
1233 			break;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * Disable memory write invalidate.  Apparently it is not supported
1239 	 * properly by these devices.
1240 	 */
1241 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1242 
1243 
1244 #ifdef __brokenalpha__
1245 	/*
1246 	 * Must insure that we do not cross an 8K (bytes) boundary
1247 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1248 	 * restriction on some ALPHA platforms with early revision
1249 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1250 	 */
1251 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1252 #endif
1253 
1254 	/* Set the timer prescaler (always 66MHz) */
1255 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1256 
1257 	return(0);
1258 }
1259 
1260 int
1261 bge_blockinit(sc)
1262 	struct bge_softc *sc;
1263 {
1264 	volatile struct bge_rcb		*rcb;
1265 	bus_size_t		rcb_addr;
1266 	int			i;
1267 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1268 	bge_hostaddr		taddr;
1269 
1270 	/*
1271 	 * Initialize the memory window pointer register so that
1272 	 * we can access the first 32K of internal NIC RAM. This will
1273 	 * allow us to set up the TX send ring RCBs and the RX return
1274 	 * ring RCBs, plus other things which live in NIC memory.
1275 	 */
1276 
1277 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1278 	    BGE_PCI_MEMWIN_BASEADDR, 0);
1279 
1280 	/* Configure mbuf memory pool */
1281 	if (sc->bge_extram) {
1282 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1283 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1284 	} else {
1285 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1286 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1287 	}
1288 
1289 	/* Configure DMA resource pool */
1290 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1291 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1292 
1293 	/* Configure mbuf pool watermarks */
1294 #ifdef ORIG_WPAUL_VALUES
1295 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1296 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1297 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1298 #else
1299 	/* new broadcom docs strongly recommend these: */
1300 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1301 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1302 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1303 #endif
1304 
1305 	/* Configure DMA resource watermarks */
1306 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1307 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1308 
1309 	/* Enable buffer manager */
1310 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1311 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1312 
1313 	/* Poll for buffer manager start indication */
1314 	for (i = 0; i < BGE_TIMEOUT; i++) {
1315 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1316 			break;
1317 		DELAY(10);
1318 	}
1319 
1320 	if (i == BGE_TIMEOUT) {
1321 		printf("%s: buffer manager failed to start\n",
1322 		    sc->bge_dev.dv_xname);
1323 		return(ENXIO);
1324 	}
1325 
1326 	/* Enable flow-through queues */
1327 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1328 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1329 
1330 	/* Wait until queue initialization is complete */
1331 	for (i = 0; i < BGE_TIMEOUT; i++) {
1332 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1333 			break;
1334 		DELAY(10);
1335 	}
1336 
1337 	if (i == BGE_TIMEOUT) {
1338 		printf("%s: flow-through queue init failed\n",
1339 		    sc->bge_dev.dv_xname);
1340 		return(ENXIO);
1341 	}
1342 
1343 	/* Initialize the standard RX ring control block */
1344 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1345 	bge_set_hostaddr(&rcb->bge_hostaddr,
1346 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1347 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1348 	if (sc->bge_extram)
1349 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1350 	else
1351 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1352 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1353 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1354 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1355 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1356 
1357 	/*
1358 	 * Initialize the jumbo RX ring control block
1359 	 * We set the 'ring disabled' bit in the flags
1360 	 * field until we're actually ready to start
1361 	 * using this ring (i.e. once we set the MTU
1362 	 * high enough to require it).
1363 	 */
1364 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1365 	bge_set_hostaddr(&rcb->bge_hostaddr,
1366 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1367 	rcb->bge_maxlen_flags =
1368 	   BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED);
1369 	if (sc->bge_extram)
1370 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1371 	else
1372 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1373 
1374 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1375 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1376 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1377 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1378 
1379 	/* Set up dummy disabled mini ring RCB */
1380 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1381 	rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1382 	    BGE_RCB_FLAG_RING_DISABLED);
1383 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1384 
1385 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1386 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1387 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388 
1389 	/*
1390 	 * Set the BD ring replentish thresholds. The recommended
1391 	 * values are 1/8th the number of descriptors allocated to
1392 	 * each ring.
1393 	 */
1394 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1395 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1396 
1397 	/*
1398 	 * Disable all unused send rings by setting the 'ring disabled'
1399 	 * bit in the flags field of all the TX send ring control blocks.
1400 	 * These are located in NIC memory.
1401 	 */
1402 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1403 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1404 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1405 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1406 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1407 		rcb_addr += sizeof(struct bge_rcb);
1408 	}
1409 
1410 	/* Configure TX RCB 0 (we use only the first ring) */
1411 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1412 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1413 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1414 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1415 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1416 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1417 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1418 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1419 
1420 	/* Disable all unused RX return rings */
1421 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1422 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1423 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1424 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1425 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1426 			    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,
1427                                      BGE_RCB_FLAG_RING_DISABLED));
1428 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1429 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1430 		    (i * (sizeof(u_int64_t))), 0);
1431 		rcb_addr += sizeof(struct bge_rcb);
1432 	}
1433 
1434 	/* Initialize RX ring indexes */
1435 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1436 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1437 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1438 
1439 	/*
1440 	 * Set up RX return ring 0
1441 	 * Note that the NIC address for RX return rings is 0x00000000.
1442 	 * The return rings live entirely within the host, so the
1443 	 * nicaddr field in the RCB isn't used.
1444 	 */
1445 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1446 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1447 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1448 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1449 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1450 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1451 	    BGE_RCB_MAXLEN_FLAGS(BGE_RETURN_RING_CNT,0));
1452 
1453 	/* Set random backoff seed for TX */
1454 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1455 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1456 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1457 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1458 	    BGE_TX_BACKOFF_SEED_MASK);
1459 
1460 	/* Set inter-packet gap */
1461 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1462 
1463 	/*
1464 	 * Specify which ring to use for packets that don't match
1465 	 * any RX rules.
1466 	 */
1467 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1468 
1469 	/*
1470 	 * Configure number of RX lists. One interrupt distribution
1471 	 * list, sixteen active lists, one bad frames class.
1472 	 */
1473 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1474 
1475 	/* Inialize RX list placement stats mask. */
1476 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1477 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1478 
1479 	/* Disable host coalescing until we get it set up */
1480 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1481 
1482 	/* Poll to make sure it's shut down. */
1483 	for (i = 0; i < BGE_TIMEOUT; i++) {
1484 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1485 			break;
1486 		DELAY(10);
1487 	}
1488 
1489 	if (i == BGE_TIMEOUT) {
1490 		printf("%s: host coalescing engine failed to idle\n",
1491 		    sc->bge_dev.dv_xname);
1492 		return(ENXIO);
1493 	}
1494 
1495 	/* Set up host coalescing defaults */
1496 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1497 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1498 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1499 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1500 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1501 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1502 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1503 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1504 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1505 
1506 	/* Set up address of statistics block */
1507 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1508 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1509 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1510 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1511 
1512 	/* Set up address of status block */
1513 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1514 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1515 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1516 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1517 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1518 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1519 
1520 	/* Turn on host coalescing state machine */
1521 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1522 
1523 	/* Turn on RX BD completion state machine and enable attentions */
1524 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1525 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1526 
1527 	/* Turn on RX list placement state machine */
1528 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1529 
1530 	/* Turn on RX list selector state machine. */
1531 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1532 
1533 	/* Turn on DMA, clear stats */
1534 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1535 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1536 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1537 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1538 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1539 
1540 	/* Set misc. local control, enable interrupts on attentions */
1541 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1542 
1543 #ifdef notdef
1544 	/* Assert GPIO pins for PHY reset */
1545 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1546 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1547 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1548 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1549 #endif
1550 
1551 #if defined(not_quite_yet)
1552 	/* Linux driver enables enable gpio pin #1 on 5700s */
1553 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1554 		sc->bge_local_ctrl_reg |=
1555 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1556 	}
1557 #endif
1558 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1559 
1560 	/* Turn on DMA completion state machine */
1561 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1562 
1563 	/* Turn on write DMA state machine */
1564 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1565 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1566 
1567 	/* Turn on read DMA state machine */
1568 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1569 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1570 
1571 	/* Turn on RX data completion state machine */
1572 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1573 
1574 	/* Turn on RX BD initiator state machine */
1575 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1576 
1577 	/* Turn on RX data and RX BD initiator state machine */
1578 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1579 
1580 	/* Turn on Mbuf cluster free state machine */
1581 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1582 
1583 	/* Turn on send BD completion state machine */
1584 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1585 
1586 	/* Turn on send data completion state machine */
1587 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1588 
1589 	/* Turn on send data initiator state machine */
1590 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1591 
1592 	/* Turn on send BD initiator state machine */
1593 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1594 
1595 	/* Turn on send BD selector state machine */
1596 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1597 
1598 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1599 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1600 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1601 
1602 	/* init LED register */
1603 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1604 
1605 	/* ack/clear link change events */
1606 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1607 	    BGE_MACSTAT_CFG_CHANGED);
1608 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1609 
1610 	/* Enable PHY auto polling (for MII/GMII only) */
1611 	if (sc->bge_tbi) {
1612 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1613  	} else {
1614 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1615 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1616 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1617 			    BGE_EVTENB_MI_INTERRUPT);
1618 	}
1619 
1620 	/* Enable link state change attentions. */
1621 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1622 
1623 	return(0);
1624 }
1625 
1626 static const struct bge_revision {
1627 	uint32_t		br_asicrev;
1628 	uint32_t		br_quirks;
1629 	const char		*br_name;
1630 } bge_revisions[] = {
1631 	{ BGE_ASICREV_BCM5700_A0,
1632 	  BGE_QUIRK_LINK_STATE_BROKEN,
1633 	  "BCM5700 A0" },
1634 
1635 	{ BGE_ASICREV_BCM5700_A1,
1636 	  BGE_QUIRK_LINK_STATE_BROKEN,
1637 	  "BCM5700 A1" },
1638 
1639 	{ BGE_ASICREV_BCM5700_B0,
1640 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1641 	  "BCM5700 B0" },
1642 
1643 	{ BGE_ASICREV_BCM5700_B1,
1644 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1645 	  "BCM5700 B1" },
1646 
1647 	{ BGE_ASICREV_BCM5700_B2,
1648 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1649 	  "BCM5700 B2" },
1650 
1651 	/* This is treated like a BCM5700 Bx */
1652 	{ BGE_ASICREV_BCM5700_ALTIMA,
1653 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1654 	  "BCM5700 Altima" },
1655 
1656 	{ BGE_ASICREV_BCM5700_C0,
1657 	  0,
1658 	  "BCM5700 C0" },
1659 
1660 	{ BGE_ASICREV_BCM5701_A0,
1661 	  0, /*XXX really, just not known */
1662 	  "BCM5701 A0" },
1663 
1664 	{ BGE_ASICREV_BCM5701_B0,
1665 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1666 	  "BCM5701 B0" },
1667 
1668 	{ BGE_ASICREV_BCM5701_B2,
1669 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1670 	  "BCM5701 B2" },
1671 
1672 	{ BGE_ASICREV_BCM5701_B5,
1673 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1674 	  "BCM5701 B5" },
1675 
1676 	{ BGE_ASICREV_BCM5703_A0,
1677 	  0,
1678 	  "BCM5703 A0" },
1679 
1680 	{ BGE_ASICREV_BCM5703_A1,
1681 	  0,
1682 	  "BCM5703 A1" },
1683 
1684 	{ BGE_ASICREV_BCM5703_A2,
1685 	  BGE_QUIRK_ONLY_PHY_1,
1686 	  "BCM5703 A2" },
1687 
1688 	{ BGE_ASICREV_BCM5704_A0,
1689   	  BGE_QUIRK_ONLY_PHY_1,
1690 	  "BCM5704 A0" },
1691 
1692 	{ BGE_ASICREV_BCM5704_A1,
1693   	  BGE_QUIRK_ONLY_PHY_1,
1694 	  "BCM5704 A1" },
1695 
1696 	{ BGE_ASICREV_BCM5704_A2,
1697   	  BGE_QUIRK_ONLY_PHY_1,
1698 	  "BCM5704 A2" },
1699 
1700 	{ 0, 0, NULL }
1701 };
1702 
1703 static const struct bge_revision *
1704 bge_lookup_rev(uint32_t asicrev)
1705 {
1706 	const struct bge_revision *br;
1707 
1708 	for (br = bge_revisions; br->br_name != NULL; br++) {
1709 		if (br->br_asicrev == asicrev)
1710 			return (br);
1711 	}
1712 
1713 	return (NULL);
1714 }
1715 
1716 static const struct bge_product {
1717 	pci_vendor_id_t		bp_vendor;
1718 	pci_product_id_t	bp_product;
1719 	const char		*bp_name;
1720 } bge_products[] = {
1721 	/*
1722 	 * The BCM5700 documentation seems to indicate that the hardware
1723 	 * still has the Alteon vendor ID burned into it, though it
1724 	 * should always be overridden by the value in the EEPROM.  We'll
1725 	 * check for it anyway.
1726 	 */
1727 	{ PCI_VENDOR_ALTEON,
1728 	  PCI_PRODUCT_ALTEON_BCM5700,
1729 	  "Broadcom BCM5700 Gigabit Ethernet" },
1730 	{ PCI_VENDOR_ALTEON,
1731 	  PCI_PRODUCT_ALTEON_BCM5701,
1732 	  "Broadcom BCM5701 Gigabit Ethernet" },
1733 
1734 	{ PCI_VENDOR_ALTIMA,
1735 	  PCI_PRODUCT_ALTIMA_AC1000,
1736 	  "Altima AC1000 Gigabit Ethernet" },
1737 	{ PCI_VENDOR_ALTIMA,
1738 	  PCI_PRODUCT_ALTIMA_AC1001,
1739 	  "Altima AC1001 Gigabit Ethernet" },
1740 	{ PCI_VENDOR_ALTIMA,
1741 	  PCI_PRODUCT_ALTIMA_AC9100,
1742 	  "Altima AC9100 Gigabit Ethernet" },
1743 
1744 	{ PCI_VENDOR_BROADCOM,
1745 	  PCI_PRODUCT_BROADCOM_BCM5700,
1746 	  "Broadcom BCM5700 Gigabit Ethernet" },
1747 	{ PCI_VENDOR_BROADCOM,
1748 	  PCI_PRODUCT_BROADCOM_BCM5701,
1749 	  "Broadcom BCM5701 Gigabit Ethernet" },
1750 	{ PCI_VENDOR_BROADCOM,
1751 	  PCI_PRODUCT_BROADCOM_BCM5702,
1752 	  "Broadcom BCM5702 Gigabit Ethernet" },
1753 	{ PCI_VENDOR_BROADCOM,
1754 	  PCI_PRODUCT_BROADCOM_BCM5702X,
1755 	  "Broadcom BCM5702X Gigabit Ethernet" },
1756 	{ PCI_VENDOR_BROADCOM,
1757 	  PCI_PRODUCT_BROADCOM_BCM5703,
1758 	  "Broadcom BCM5703 Gigabit Ethernet" },
1759 	{ PCI_VENDOR_BROADCOM,
1760 	  PCI_PRODUCT_BROADCOM_BCM5703X,
1761 	  "Broadcom BCM5703X Gigabit Ethernet" },
1762    	{ PCI_VENDOR_BROADCOM,
1763 	  PCI_PRODUCT_BROADCOM_BCM5704C,
1764 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
1765    	{ PCI_VENDOR_BROADCOM,
1766 	  PCI_PRODUCT_BROADCOM_BCM5704S,
1767 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
1768 
1769 
1770 	{ PCI_VENDOR_SCHNEIDERKOCH,
1771 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1772 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1773 
1774 	{ PCI_VENDOR_3COM,
1775 	  PCI_PRODUCT_3COM_3C996,
1776 	  "3Com 3c996 Gigabit Ethernet" },
1777 
1778 	{ 0,
1779 	  0,
1780 	  NULL },
1781 };
1782 
1783 static const struct bge_product *
1784 bge_lookup(const struct pci_attach_args *pa)
1785 {
1786 	const struct bge_product *bp;
1787 
1788 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
1789 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1790 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1791 			return (bp);
1792 	}
1793 
1794 	return (NULL);
1795 }
1796 
1797 int
1798 bge_setpowerstate(sc, powerlevel)
1799 	struct bge_softc *sc;
1800 	int powerlevel;
1801 {
1802 #ifdef NOTYET
1803 	u_int32_t pm_ctl = 0;
1804 
1805 	/* XXX FIXME: make sure indirect accesses enabled? */
1806 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1807 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1808 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1809 
1810 	/* clear the PME_assert bit and power state bits, enable PME */
1811 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1812 	pm_ctl &= ~PCIM_PSTAT_DMASK;
1813 	pm_ctl |= (1 << 8);
1814 
1815 	if (powerlevel == 0) {
1816 		pm_ctl |= PCIM_PSTAT_D0;
1817 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1818 		    pm_ctl, 2);
1819 		DELAY(10000);
1820 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1821 		DELAY(10000);
1822 
1823 #ifdef NOTYET
1824 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1825 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1826 #endif
1827 		DELAY(40); DELAY(40); DELAY(40);
1828 		DELAY(10000);	/* above not quite adequate on 5700 */
1829 		return 0;
1830 	}
1831 
1832 
1833 	/*
1834 	 * Entering ACPI power states D1-D3 is achieved by wiggling
1835 	 * GMII gpio pins. Example code assumes all hardware vendors
1836 	 * followed Broadom's sample pcb layout. Until we verify that
1837 	 * for all supported OEM cards, states D1-D3 are  unsupported.
1838 	 */
1839 	printf("%s: power state %d unimplemented; check GPIO pins\n",
1840 	       sc->bge_dev.dv_xname, powerlevel);
1841 #endif
1842 	return EOPNOTSUPP;
1843 }
1844 
1845 
1846 /*
1847  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1848  * against our list and return its name if we find a match. Note
1849  * that since the Broadcom controller contains VPD support, we
1850  * can get the device name string from the controller itself instead
1851  * of the compiled-in string. This is a little slow, but it guarantees
1852  * we'll always announce the right product name.
1853  */
1854 int
1855 bge_probe(parent, match, aux)
1856 	struct device *parent;
1857 	struct cfdata *match;
1858 	void *aux;
1859 {
1860 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1861 
1862 	if (bge_lookup(pa) != NULL)
1863 		return (1);
1864 
1865 	return (0);
1866 }
1867 
1868 void
1869 bge_attach(parent, self, aux)
1870 	struct device *parent, *self;
1871 	void *aux;
1872 {
1873 	struct bge_softc	*sc = (struct bge_softc *)self;
1874 	struct pci_attach_args	*pa = aux;
1875 	const struct bge_product *bp;
1876 	const struct bge_revision *br;
1877 	pci_chipset_tag_t	pc = pa->pa_pc;
1878 	pci_intr_handle_t	ih;
1879 	const char		*intrstr = NULL;
1880 	bus_dma_segment_t	seg;
1881 	int			rseg;
1882 	u_int32_t		hwcfg = 0;
1883 	u_int32_t		mac_addr = 0;
1884 	u_int32_t		command;
1885 	struct ifnet		*ifp;
1886 	caddr_t			kva;
1887 	u_char			eaddr[ETHER_ADDR_LEN];
1888 	pcireg_t		memtype;
1889 	bus_addr_t		memaddr;
1890 	bus_size_t		memsize;
1891 	u_int32_t		pm_ctl;
1892 
1893 	bp = bge_lookup(pa);
1894 	KASSERT(bp != NULL);
1895 
1896 	sc->bge_pa = *pa;
1897 
1898 	aprint_naive(": Ethernet controller\n");
1899 	aprint_normal(": %s\n", bp->bp_name);
1900 
1901 	/*
1902 	 * Map control/status registers.
1903 	 */
1904 	DPRINTFN(5, ("Map control/status regs\n"));
1905 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1906 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1907 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1908 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1909 
1910 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1911 		aprint_error("%s: failed to enable memory mapping!\n",
1912 		    sc->bge_dev.dv_xname);
1913 		return;
1914 	}
1915 
1916 	DPRINTFN(5, ("pci_mem_find\n"));
1917 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1918  	switch (memtype) {
1919 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1920 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1921 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1922 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1923 		    &memaddr, &memsize) == 0)
1924 			break;
1925 	default:
1926 		aprint_error("%s: can't find mem space\n",
1927 		    sc->bge_dev.dv_xname);
1928 		return;
1929 	}
1930 
1931 	DPRINTFN(5, ("pci_intr_map\n"));
1932 	if (pci_intr_map(pa, &ih)) {
1933 		aprint_error("%s: couldn't map interrupt\n",
1934 		    sc->bge_dev.dv_xname);
1935 		return;
1936 	}
1937 
1938 	DPRINTFN(5, ("pci_intr_string\n"));
1939 	intrstr = pci_intr_string(pc, ih);
1940 
1941 	DPRINTFN(5, ("pci_intr_establish\n"));
1942 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1943 
1944 	if (sc->bge_intrhand == NULL) {
1945 		aprint_error("%s: couldn't establish interrupt",
1946 		    sc->bge_dev.dv_xname);
1947 		if (intrstr != NULL)
1948 			aprint_normal(" at %s", intrstr);
1949 		aprint_normal("\n");
1950 		return;
1951 	}
1952 	aprint_normal("%s: interrupting at %s\n",
1953 	    sc->bge_dev.dv_xname, intrstr);
1954 
1955 	/*
1956 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1957 	 * can clobber the chip's PCI config-space power control registers,
1958 	 * leaving the card in D3 powersave state.
1959 	 * We do not have memory-mapped registers in this state,
1960 	 * so force device into D0 state before starting initialization.
1961 	 */
1962 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1963 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1964 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1965 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1966 	DELAY(1000);	/* 27 usec is allegedly sufficent */
1967 
1968 	/* Try to reset the chip. */
1969 	DPRINTFN(5, ("bge_reset\n"));
1970 	bge_reset(sc);
1971 
1972 	if (bge_chipinit(sc)) {
1973 		aprint_error("%s: chip initialization failed\n",
1974 		    sc->bge_dev.dv_xname);
1975 		bge_release_resources(sc);
1976 		return;
1977 	}
1978 
1979 	/*
1980 	 * Get station address from the EEPROM.
1981 	 */
1982 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1983 	if ((mac_addr >> 16) == 0x484b) {
1984 		eaddr[0] = (u_char)(mac_addr >> 8);
1985 		eaddr[1] = (u_char)(mac_addr >> 0);
1986 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1987 		eaddr[2] = (u_char)(mac_addr >> 24);
1988 		eaddr[3] = (u_char)(mac_addr >> 16);
1989 		eaddr[4] = (u_char)(mac_addr >> 8);
1990 		eaddr[5] = (u_char)(mac_addr >> 0);
1991 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1992 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1993 		aprint_error("%s: failed to read station address\n",
1994 		    sc->bge_dev.dv_xname);
1995 		bge_release_resources(sc);
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Save ASIC rev.  Look up any quirks associated with this
2001 	 * ASIC.
2002 	 */
2003 	sc->bge_asicrev =
2004 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2005 	    BGE_PCIMISCCTL_ASICREV;
2006 	br = bge_lookup_rev(sc->bge_asicrev);
2007 
2008 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
2009 	if (br == NULL) {
2010 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2011 		sc->bge_quirks = 0;
2012 	} else {
2013 		aprint_normal("ASIC %s", br->br_name);
2014 		sc->bge_quirks = br->br_quirks;
2015 	}
2016 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2017 
2018 	/* Allocate the general information block and ring buffers. */
2019 	if (pci_dma64_available(pa))
2020 		sc->bge_dmatag = pa->pa_dmat64;
2021 	else
2022 		sc->bge_dmatag = pa->pa_dmat;
2023 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2024 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2025 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2026 		aprint_error("%s: can't alloc rx buffers\n",
2027 		    sc->bge_dev.dv_xname);
2028 		return;
2029 	}
2030 	DPRINTFN(5, ("bus_dmamem_map\n"));
2031 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2032 			   sizeof(struct bge_ring_data), &kva,
2033 			   BUS_DMA_NOWAIT)) {
2034 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2035 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2036 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2037 		return;
2038 	}
2039 	DPRINTFN(5, ("bus_dmamem_create\n"));
2040 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2041 	    sizeof(struct bge_ring_data), 0,
2042 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2043 		aprint_error("%s: can't create DMA map\n",
2044 		    sc->bge_dev.dv_xname);
2045 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2046 				 sizeof(struct bge_ring_data));
2047 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2048 		return;
2049 	}
2050 	DPRINTFN(5, ("bus_dmamem_load\n"));
2051 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2052 			    sizeof(struct bge_ring_data), NULL,
2053 			    BUS_DMA_NOWAIT)) {
2054 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2055 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2056 				 sizeof(struct bge_ring_data));
2057 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2058 		return;
2059 	}
2060 
2061 	DPRINTFN(5, ("bzero\n"));
2062 	sc->bge_rdata = (struct bge_ring_data *)kva;
2063 
2064 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2065 
2066 	/* Try to allocate memory for jumbo buffers. */
2067 	if (bge_alloc_jumbo_mem(sc)) {
2068 		aprint_error("%s: jumbo buffer allocation failed\n",
2069 		    sc->bge_dev.dv_xname);
2070 	} else
2071 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2072 
2073 	/* Set default tuneable values. */
2074 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2075 	sc->bge_rx_coal_ticks = 150;
2076 	sc->bge_rx_max_coal_bds = 64;
2077 #ifdef ORIG_WPAUL_VALUES
2078 	sc->bge_tx_coal_ticks = 150;
2079 	sc->bge_tx_max_coal_bds = 128;
2080 #else
2081 	sc->bge_tx_coal_ticks = 300;
2082 	sc->bge_tx_max_coal_bds = 400;
2083 #endif
2084 
2085 	/* Set up ifnet structure */
2086 	ifp = &sc->ethercom.ec_if;
2087 	ifp->if_softc = sc;
2088 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2089 	ifp->if_ioctl = bge_ioctl;
2090 	ifp->if_start = bge_start;
2091 	ifp->if_init = bge_init;
2092 	ifp->if_watchdog = bge_watchdog;
2093 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2094 	IFQ_SET_READY(&ifp->if_snd);
2095 	DPRINTFN(5, ("bcopy\n"));
2096 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2097 
2098 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2099 		sc->ethercom.ec_if.if_capabilities |=
2100 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2101 	sc->ethercom.ec_capabilities |=
2102 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2103 
2104 	/*
2105 	 * Do MII setup.
2106 	 */
2107 	DPRINTFN(5, ("mii setup\n"));
2108 	sc->bge_mii.mii_ifp = ifp;
2109 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2110 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2111 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2112 
2113 	/*
2114 	 * Figure out what sort of media we have by checking the
2115 	 * hardware config word in the first 32k of NIC internal memory,
2116 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2117 	 * cards, this value appears to be unset. If that's the
2118 	 * case, we have to rely on identifying the NIC by its PCI
2119 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2120 	 */
2121 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2122 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2123 	} else {
2124 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
2125 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2126 		hwcfg = be32toh(hwcfg);
2127 	}
2128 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2129 		sc->bge_tbi = 1;
2130 
2131 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2132 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2133 	    SK_SUBSYSID_9D41)
2134 		sc->bge_tbi = 1;
2135 
2136 	if (sc->bge_tbi) {
2137 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2138 		    bge_ifmedia_sts);
2139 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2140 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2141 			    0, NULL);
2142 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2143 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2144 	} else {
2145 		/*
2146 		 * Do transceiver setup.
2147 		 */
2148 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2149 			     bge_ifmedia_sts);
2150 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2151 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
2152 
2153 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2154 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2155 			ifmedia_add(&sc->bge_mii.mii_media,
2156 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2157 			ifmedia_set(&sc->bge_mii.mii_media,
2158 				    IFM_ETHER|IFM_MANUAL);
2159 		} else
2160 			ifmedia_set(&sc->bge_mii.mii_media,
2161 				    IFM_ETHER|IFM_AUTO);
2162 	}
2163 
2164 	/*
2165 	 * When using the BCM5701 in PCI-X mode, data corruption has
2166 	 * been observed in the first few bytes of some received packets.
2167 	 * Aligning the packet buffer in memory eliminates the corruption.
2168 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2169 	 * which do not support unaligned accesses, we will realign the
2170 	 * payloads by copying the received packets.
2171 	 */
2172 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2173 		/* If in PCI-X mode, work around the alignment bug. */
2174 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2175                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2176                          BGE_PCISTATE_PCI_BUSSPEED)
2177 		sc->bge_rx_alignment_bug = 1;
2178         }
2179 
2180 	/*
2181 	 * Call MI attach routine.
2182 	 */
2183 	DPRINTFN(5, ("if_attach\n"));
2184 	if_attach(ifp);
2185 	DPRINTFN(5, ("ether_ifattach\n"));
2186 	ether_ifattach(ifp, eaddr);
2187 	DPRINTFN(5, ("callout_init\n"));
2188 	callout_init(&sc->bge_timeout);
2189 }
2190 
2191 void
2192 bge_release_resources(sc)
2193 	struct bge_softc *sc;
2194 {
2195 	if (sc->bge_vpd_prodname != NULL)
2196 		free(sc->bge_vpd_prodname, M_DEVBUF);
2197 
2198 	if (sc->bge_vpd_readonly != NULL)
2199 		free(sc->bge_vpd_readonly, M_DEVBUF);
2200 }
2201 
2202 void
2203 bge_reset(sc)
2204 	struct bge_softc *sc;
2205 {
2206 	struct pci_attach_args *pa = &sc->bge_pa;
2207 	u_int32_t cachesize, command, pcistate;
2208 	int i, val = 0;
2209 
2210 	/* Save some important PCI state. */
2211 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2212 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2213 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2214 
2215 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2216 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2217 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2218 
2219 	/* Issue global reset */
2220 	bge_writereg_ind(sc, BGE_MISC_CFG,
2221 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2222 
2223 	DELAY(1000);
2224 
2225 	/* Reset some of the PCI state that got zapped by reset */
2226 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2227 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2228 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2229 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2230 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2231 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2232 
2233 	/* Enable memory arbiter. */
2234 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2235 
2236 	/*
2237 	 * Prevent PXE restart: write a magic number to the
2238 	 * general communications memory at 0xB50.
2239 	 */
2240 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2241 
2242 	/*
2243 	 * Poll the value location we just wrote until
2244 	 * we see the 1's complement of the magic number.
2245 	 * This indicates that the firmware initialization
2246 	 * is complete.
2247 	 */
2248 	for (i = 0; i < 750; i++) {
2249 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2250 		if (val == ~BGE_MAGIC_NUMBER)
2251 			break;
2252 		DELAY(1000);
2253 	}
2254 
2255 	if (i == 750) {
2256 		printf("%s: firmware handshake timed out, val = %x\n",
2257 		    sc->bge_dev.dv_xname, val);
2258 		return;
2259 	}
2260 
2261 	/*
2262 	 * XXX Wait for the value of the PCISTATE register to
2263 	 * return to its original pre-reset state. This is a
2264 	 * fairly good indicator of reset completion. If we don't
2265 	 * wait for the reset to fully complete, trying to read
2266 	 * from the device's non-PCI registers may yield garbage
2267 	 * results.
2268 	 */
2269 	for (i = 0; i < BGE_TIMEOUT; i++) {
2270 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2271 		    pcistate)
2272 			break;
2273 		DELAY(10);
2274 	}
2275 
2276 	/* Enable memory arbiter. */
2277 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2278 
2279 	/* Fix up byte swapping */
2280 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2281 
2282 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2283 
2284 	DELAY(10000);
2285 }
2286 
2287 /*
2288  * Frame reception handling. This is called if there's a frame
2289  * on the receive return list.
2290  *
2291  * Note: we have to be able to handle two possibilities here:
2292  * 1) the frame is from the jumbo recieve ring
2293  * 2) the frame is from the standard receive ring
2294  */
2295 
2296 void
2297 bge_rxeof(sc)
2298 	struct bge_softc *sc;
2299 {
2300 	struct ifnet *ifp;
2301 	int stdcnt = 0, jumbocnt = 0;
2302 	int have_tag = 0;
2303 	u_int16_t vlan_tag = 0;
2304 	bus_dmamap_t dmamap;
2305 	bus_addr_t offset, toff;
2306 	bus_size_t tlen;
2307 	int tosync;
2308 
2309 	ifp = &sc->ethercom.ec_if;
2310 
2311 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2312 	    offsetof(struct bge_ring_data, bge_status_block),
2313 	    sizeof (struct bge_status_block),
2314 	    BUS_DMASYNC_POSTREAD);
2315 
2316 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2317 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2318 	    sc->bge_rx_saved_considx;
2319 
2320 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2321 
2322 	if (tosync < 0) {
2323 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2324 		    sizeof (struct bge_rx_bd);
2325 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2326 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2327 		tosync = -tosync;
2328 	}
2329 
2330 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2331 	    offset, tosync * sizeof (struct bge_rx_bd),
2332 	    BUS_DMASYNC_POSTREAD);
2333 
2334 	while(sc->bge_rx_saved_considx !=
2335 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2336 		struct bge_rx_bd	*cur_rx;
2337 		u_int32_t		rxidx;
2338 		struct mbuf		*m = NULL;
2339 
2340 		cur_rx = &sc->bge_rdata->
2341 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2342 
2343 		rxidx = cur_rx->bge_idx;
2344 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2345 
2346 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2347 			have_tag = 1;
2348 			vlan_tag = cur_rx->bge_vlan_tag;
2349 		}
2350 
2351 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2352 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2353 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2354 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2355 			jumbocnt++;
2356 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2357 				ifp->if_ierrors++;
2358 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2359 				continue;
2360 			}
2361 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2362 					     NULL)== ENOBUFS) {
2363 				ifp->if_ierrors++;
2364 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2365 				continue;
2366 			}
2367 		} else {
2368 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2369 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2370 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2371 			stdcnt++;
2372 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2373 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2374 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2375 				ifp->if_ierrors++;
2376 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2377 				continue;
2378 			}
2379 			if (bge_newbuf_std(sc, sc->bge_std,
2380 			    NULL, dmamap) == ENOBUFS) {
2381 				ifp->if_ierrors++;
2382 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2383 				continue;
2384 			}
2385 		}
2386 
2387 		ifp->if_ipackets++;
2388 #ifndef __NO_STRICT_ALIGNMENT
2389                 /*
2390                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2391                  * the Rx buffer has the layer-2 header unaligned.
2392                  * If our CPU requires alignment, re-align by copying.
2393                  */
2394 		if (sc->bge_rx_alignment_bug) {
2395 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2396                                 cur_rx->bge_len);
2397 			m->m_data += ETHER_ALIGN;
2398 		}
2399 #endif
2400 
2401 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2402 		m->m_pkthdr.rcvif = ifp;
2403 
2404 #if NBPFILTER > 0
2405 		/*
2406 		 * Handle BPF listeners. Let the BPF user see the packet.
2407 		 */
2408 		if (ifp->if_bpf)
2409 			bpf_mtap(ifp->if_bpf, m);
2410 #endif
2411 
2412 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2413 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2414 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2415 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2416 #if 0	/* XXX appears to be broken */
2417 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2418 				m->m_pkthdr.csum_data =
2419 				    cur_rx->bge_tcp_udp_csum;
2420 				m->m_pkthdr.csum_flags |=
2421 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2422 			}
2423 #endif
2424 		}
2425 
2426 		/*
2427 		 * If we received a packet with a vlan tag, pass it
2428 		 * to vlan_input() instead of ether_input().
2429 		 */
2430 		if (have_tag) {
2431 			struct m_tag *mtag;
2432 
2433 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2434 			    M_NOWAIT);
2435 			if (mtag != NULL) {
2436 				*(u_int *)(mtag + 1) = vlan_tag;
2437 				m_tag_prepend(m, mtag);
2438 				have_tag = vlan_tag = 0;
2439 			} else {
2440 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2441 				m_freem(m);
2442 				have_tag = vlan_tag = 0;
2443 				continue;
2444 			}
2445 		}
2446 		(*ifp->if_input)(ifp, m);
2447 	}
2448 
2449 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2450 	if (stdcnt)
2451 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2452 	if (jumbocnt)
2453 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2454 }
2455 
2456 void
2457 bge_txeof(sc)
2458 	struct bge_softc *sc;
2459 {
2460 	struct bge_tx_bd *cur_tx = NULL;
2461 	struct ifnet *ifp;
2462 	struct txdmamap_pool_entry *dma;
2463 	bus_addr_t offset, toff;
2464 	bus_size_t tlen;
2465 	int tosync;
2466 	struct mbuf *m;
2467 
2468 	ifp = &sc->ethercom.ec_if;
2469 
2470 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2471 	    offsetof(struct bge_ring_data, bge_status_block),
2472 	    sizeof (struct bge_status_block),
2473 	    BUS_DMASYNC_POSTREAD);
2474 
2475 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
2476 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2477 	    sc->bge_tx_saved_considx;
2478 
2479 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2480 
2481 	if (tosync < 0) {
2482 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2483 		    sizeof (struct bge_tx_bd);
2484 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2485 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2486 		tosync = -tosync;
2487 	}
2488 
2489 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2490 	    offset, tosync * sizeof (struct bge_tx_bd),
2491 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2492 
2493 	/*
2494 	 * Go through our tx ring and free mbufs for those
2495 	 * frames that have been sent.
2496 	 */
2497 	while (sc->bge_tx_saved_considx !=
2498 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2499 		u_int32_t		idx = 0;
2500 
2501 		idx = sc->bge_tx_saved_considx;
2502 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2503 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2504 			ifp->if_opackets++;
2505 		m = sc->bge_cdata.bge_tx_chain[idx];
2506 		if (m != NULL) {
2507 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2508 			dma = sc->txdma[idx];
2509 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2510 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2511 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2512 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2513 			sc->txdma[idx] = NULL;
2514 
2515 			m_freem(m);
2516 		}
2517 		sc->bge_txcnt--;
2518 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2519 		ifp->if_timer = 0;
2520 	}
2521 
2522 	if (cur_tx != NULL)
2523 		ifp->if_flags &= ~IFF_OACTIVE;
2524 }
2525 
2526 int
2527 bge_intr(xsc)
2528 	void *xsc;
2529 {
2530 	struct bge_softc *sc;
2531 	struct ifnet *ifp;
2532 
2533 	sc = xsc;
2534 	ifp = &sc->ethercom.ec_if;
2535 
2536 #ifdef notdef
2537 	/* Avoid this for now -- checking this register is expensive. */
2538 	/* Make sure this is really our interrupt. */
2539 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2540 		return (0);
2541 #endif
2542 	/* Ack interrupt and stop others from occuring. */
2543 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2544 
2545 	/*
2546 	 * Process link state changes.
2547 	 * Grrr. The link status word in the status block does
2548 	 * not work correctly on the BCM5700 rev AX and BX chips,
2549 	 * according to all avaibable information. Hence, we have
2550 	 * to enable MII interrupts in order to properly obtain
2551 	 * async link changes. Unfortunately, this also means that
2552 	 * we have to read the MAC status register to detect link
2553 	 * changes, thereby adding an additional register access to
2554 	 * the interrupt handler.
2555 	 */
2556 
2557 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2558 		u_int32_t		status;
2559 
2560 		status = CSR_READ_4(sc, BGE_MAC_STS);
2561 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2562 			sc->bge_link = 0;
2563 			callout_stop(&sc->bge_timeout);
2564 			bge_tick(sc);
2565 			/* Clear the interrupt */
2566 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2567 			    BGE_EVTENB_MI_INTERRUPT);
2568 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2569 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2570 			    BRGPHY_INTRS);
2571 		}
2572 	} else {
2573 		if (sc->bge_rdata->bge_status_block.bge_status &
2574 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2575 			sc->bge_link = 0;
2576 			callout_stop(&sc->bge_timeout);
2577 			bge_tick(sc);
2578 			/* Clear the interrupt */
2579 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2580 			    BGE_MACSTAT_CFG_CHANGED);
2581 		}
2582 	}
2583 
2584 	if (ifp->if_flags & IFF_RUNNING) {
2585 		/* Check RX return ring producer/consumer */
2586 		bge_rxeof(sc);
2587 
2588 		/* Check TX ring producer/consumer */
2589 		bge_txeof(sc);
2590 	}
2591 
2592 	bge_handle_events(sc);
2593 
2594 	/* Re-enable interrupts. */
2595 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2596 
2597 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2598 		bge_start(ifp);
2599 
2600 	return (1);
2601 }
2602 
2603 void
2604 bge_tick(xsc)
2605 	void *xsc;
2606 {
2607 	struct bge_softc *sc = xsc;
2608 	struct mii_data *mii = &sc->bge_mii;
2609 	struct ifmedia *ifm = NULL;
2610 	struct ifnet *ifp = &sc->ethercom.ec_if;
2611 	int s;
2612 
2613 	s = splnet();
2614 
2615 	bge_stats_update(sc);
2616 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2617 	if (sc->bge_link) {
2618 		splx(s);
2619 		return;
2620 	}
2621 
2622 	if (sc->bge_tbi) {
2623 		ifm = &sc->bge_ifmedia;
2624 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2625 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2626 			sc->bge_link++;
2627 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2628 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
2629 				bge_start(ifp);
2630 		}
2631 		splx(s);
2632 		return;
2633 	}
2634 
2635 	mii_tick(mii);
2636 
2637 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2638 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2639 		sc->bge_link++;
2640 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
2641 			bge_start(ifp);
2642 	}
2643 
2644 	splx(s);
2645 }
2646 
2647 void
2648 bge_stats_update(sc)
2649 	struct bge_softc *sc;
2650 {
2651 	struct ifnet *ifp = &sc->ethercom.ec_if;
2652 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2653 
2654 #define READ_STAT(sc, stats, stat) \
2655 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2656 
2657 	ifp->if_collisions +=
2658 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2659 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2660 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2661 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2662 	  ifp->if_collisions;
2663 
2664 #undef READ_STAT
2665 
2666 #ifdef notdef
2667 	ifp->if_collisions +=
2668 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2669 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2670 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2671 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2672 	   ifp->if_collisions;
2673 #endif
2674 }
2675 
2676 /*
2677  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2678  * pointers to descriptors.
2679  */
2680 int
2681 bge_encap(sc, m_head, txidx)
2682 	struct bge_softc *sc;
2683 	struct mbuf *m_head;
2684 	u_int32_t *txidx;
2685 {
2686 	struct bge_tx_bd	*f = NULL;
2687 	u_int32_t		frag, cur, cnt = 0;
2688 	u_int16_t		csum_flags = 0;
2689 	struct txdmamap_pool_entry *dma;
2690 	bus_dmamap_t dmamap;
2691 	int			i = 0;
2692 	struct m_tag		*mtag;
2693 	struct mbuf		*prev, *m;
2694 	int			totlen, prevlen;
2695 
2696 	cur = frag = *txidx;
2697 
2698 	if (m_head->m_pkthdr.csum_flags) {
2699 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2700 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2701 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2702 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2703 	}
2704 
2705 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2706 		goto doit;
2707 	/*
2708 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2709 	 * less than eight bytes.  If we encounter a teeny mbuf
2710 	 * at the end of a chain, we can pad.  Otherwise, copy.
2711 	 */
2712 	prev = NULL;
2713 	totlen = 0;
2714 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2715 		int mlen = m->m_len;
2716 
2717 		totlen += mlen;
2718 		if (mlen == 0) {
2719 			/* print a warning? */
2720 			continue;
2721 		}
2722 		if (mlen >= 8)
2723 			continue;
2724 
2725 		/* If we get here, mbuf data is too small for DMA engine. */
2726 		if (m->m_next != 0) {
2727 			  /* Internal frag. If fits in prev, copy it there. */
2728 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2729 			      !M_READONLY(prev)) {
2730 			  	bcopy(m->m_data,
2731 				      prev->m_data+prev->m_len,
2732 				      mlen);
2733 				prev->m_len += mlen;
2734 				m->m_len = 0;
2735 				MFREE(m, prev->m_next); /* XXX stitch chain */
2736 				m = prev;
2737 				continue;
2738 			  } else {
2739 				struct mbuf *n;
2740 				/* slow copy */
2741 slowcopy:
2742 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2743 				m_freem(m_head);
2744 				if (n == 0)
2745 					return 0;
2746 				m_head  = n;
2747 				goto doit;
2748 			  }
2749 		} else if ((totlen -mlen +8) >= 1500) {
2750 			goto slowcopy;
2751 		}
2752 		prevlen = m->m_len;
2753 	}
2754 
2755 doit:
2756 	dma = SLIST_FIRST(&sc->txdma_list);
2757 	if (dma == NULL)
2758 		return ENOBUFS;
2759 	dmamap = dma->dmamap;
2760 
2761 	/*
2762 	 * Start packing the mbufs in this chain into
2763 	 * the fragment pointers. Stop when we run out
2764 	 * of fragments or hit the end of the mbuf chain.
2765 	 */
2766 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2767 	    BUS_DMA_NOWAIT))
2768 		return(ENOBUFS);
2769 
2770 	mtag = sc->ethercom.ec_nvlans ?
2771 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2772 
2773 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2774 		f = &sc->bge_rdata->bge_tx_ring[frag];
2775 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2776 			break;
2777 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2778 		f->bge_len = dmamap->dm_segs[i].ds_len;
2779 		f->bge_flags = csum_flags;
2780 
2781 		if (mtag != NULL) {
2782 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2783 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
2784 		} else {
2785 			f->bge_vlan_tag = 0;
2786 		}
2787 		/*
2788 		 * Sanity check: avoid coming within 16 descriptors
2789 		 * of the end of the ring.
2790 		 */
2791 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2792 			return(ENOBUFS);
2793 		cur = frag;
2794 		BGE_INC(frag, BGE_TX_RING_CNT);
2795 		cnt++;
2796 	}
2797 
2798 	if (i < dmamap->dm_nsegs)
2799 		return ENOBUFS;
2800 
2801 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2802 	    BUS_DMASYNC_PREWRITE);
2803 
2804 	if (frag == sc->bge_tx_saved_considx)
2805 		return(ENOBUFS);
2806 
2807 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2808 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2809 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2810 	sc->txdma[cur] = dma;
2811 	sc->bge_txcnt += cnt;
2812 
2813 	*txidx = frag;
2814 
2815 	return(0);
2816 }
2817 
2818 /*
2819  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2820  * to the mbuf data regions directly in the transmit descriptors.
2821  */
2822 void
2823 bge_start(ifp)
2824 	struct ifnet *ifp;
2825 {
2826 	struct bge_softc *sc;
2827 	struct mbuf *m_head = NULL;
2828 	u_int32_t prodidx = 0;
2829 	int pkts = 0;
2830 
2831 	sc = ifp->if_softc;
2832 
2833 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2834 		return;
2835 
2836 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2837 
2838 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2839 		IFQ_POLL(&ifp->if_snd, m_head);
2840 		if (m_head == NULL)
2841 			break;
2842 
2843 #if 0
2844 		/*
2845 		 * XXX
2846 		 * safety overkill.  If this is a fragmented packet chain
2847 		 * with delayed TCP/UDP checksums, then only encapsulate
2848 		 * it if we have enough descriptors to handle the entire
2849 		 * chain at once.
2850 		 * (paranoia -- may not actually be needed)
2851 		 */
2852 		if (m_head->m_flags & M_FIRSTFRAG &&
2853 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2854 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2855 			    m_head->m_pkthdr.csum_data + 16) {
2856 				ifp->if_flags |= IFF_OACTIVE;
2857 				break;
2858 			}
2859 		}
2860 #endif
2861 
2862 		/*
2863 		 * Pack the data into the transmit ring. If we
2864 		 * don't have room, set the OACTIVE flag and wait
2865 		 * for the NIC to drain the ring.
2866 		 */
2867 		if (bge_encap(sc, m_head, &prodidx)) {
2868 			ifp->if_flags |= IFF_OACTIVE;
2869 			break;
2870 		}
2871 
2872 		/* now we are committed to transmit the packet */
2873 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2874 		pkts++;
2875 
2876 #if NBPFILTER > 0
2877 		/*
2878 		 * If there's a BPF listener, bounce a copy of this frame
2879 		 * to him.
2880 		 */
2881 		if (ifp->if_bpf)
2882 			bpf_mtap(ifp->if_bpf, m_head);
2883 #endif
2884 	}
2885 	if (pkts == 0)
2886 		return;
2887 
2888 	/* Transmit */
2889 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2890 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
2891 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2892 
2893 	/*
2894 	 * Set a timeout in case the chip goes out to lunch.
2895 	 */
2896 	ifp->if_timer = 5;
2897 }
2898 
2899 int
2900 bge_init(ifp)
2901 	struct ifnet *ifp;
2902 {
2903 	struct bge_softc *sc = ifp->if_softc;
2904 	u_int16_t *m;
2905 	int s, error;
2906 
2907 	s = splnet();
2908 
2909 	ifp = &sc->ethercom.ec_if;
2910 
2911 	/* Cancel pending I/O and flush buffers. */
2912 	bge_stop(sc);
2913 	bge_reset(sc);
2914 	bge_chipinit(sc);
2915 
2916 	/*
2917 	 * Init the various state machines, ring
2918 	 * control blocks and firmware.
2919 	 */
2920 	error = bge_blockinit(sc);
2921 	if (error != 0) {
2922 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2923 		    error);
2924 		splx(s);
2925 		return error;
2926 	}
2927 
2928 	ifp = &sc->ethercom.ec_if;
2929 
2930 	/* Specify MTU. */
2931 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2932 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2933 
2934 	/* Load our MAC address. */
2935 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2936 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2937 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2938 
2939 	/* Enable or disable promiscuous mode as needed. */
2940 	if (ifp->if_flags & IFF_PROMISC) {
2941 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2942 	} else {
2943 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2944 	}
2945 
2946 	/* Program multicast filter. */
2947 	bge_setmulti(sc);
2948 
2949 	/* Init RX ring. */
2950 	bge_init_rx_ring_std(sc);
2951 
2952 	/* Init jumbo RX ring. */
2953 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2954 		bge_init_rx_ring_jumbo(sc);
2955 
2956 	/* Init our RX return ring index */
2957 	sc->bge_rx_saved_considx = 0;
2958 
2959 	/* Init TX ring. */
2960 	bge_init_tx_ring(sc);
2961 
2962 	/* Turn on transmitter */
2963 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2964 
2965 	/* Turn on receiver */
2966 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2967 
2968 	/* Tell firmware we're alive. */
2969 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2970 
2971 	/* Enable host interrupts. */
2972 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2973 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2974 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2975 
2976 	bge_ifmedia_upd(ifp);
2977 
2978 	ifp->if_flags |= IFF_RUNNING;
2979 	ifp->if_flags &= ~IFF_OACTIVE;
2980 
2981 	splx(s);
2982 
2983 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2984 
2985 	return 0;
2986 }
2987 
2988 /*
2989  * Set media options.
2990  */
2991 int
2992 bge_ifmedia_upd(ifp)
2993 	struct ifnet *ifp;
2994 {
2995 	struct bge_softc *sc = ifp->if_softc;
2996 	struct mii_data *mii = &sc->bge_mii;
2997 	struct ifmedia *ifm = &sc->bge_ifmedia;
2998 
2999 	/* If this is a 1000baseX NIC, enable the TBI port. */
3000 	if (sc->bge_tbi) {
3001 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3002 			return(EINVAL);
3003 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3004 		case IFM_AUTO:
3005 			break;
3006 		case IFM_1000_SX:
3007 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3008 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3009 				    BGE_MACMODE_HALF_DUPLEX);
3010 			} else {
3011 				BGE_SETBIT(sc, BGE_MAC_MODE,
3012 				    BGE_MACMODE_HALF_DUPLEX);
3013 			}
3014 			break;
3015 		default:
3016 			return(EINVAL);
3017 		}
3018 		return(0);
3019 	}
3020 
3021 	sc->bge_link = 0;
3022 	mii_mediachg(mii);
3023 
3024 	return(0);
3025 }
3026 
3027 /*
3028  * Report current media status.
3029  */
3030 void
3031 bge_ifmedia_sts(ifp, ifmr)
3032 	struct ifnet *ifp;
3033 	struct ifmediareq *ifmr;
3034 {
3035 	struct bge_softc *sc = ifp->if_softc;
3036 	struct mii_data *mii = &sc->bge_mii;
3037 
3038 	if (sc->bge_tbi) {
3039 		ifmr->ifm_status = IFM_AVALID;
3040 		ifmr->ifm_active = IFM_ETHER;
3041 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3042 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3043 			ifmr->ifm_status |= IFM_ACTIVE;
3044 		ifmr->ifm_active |= IFM_1000_SX;
3045 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3046 			ifmr->ifm_active |= IFM_HDX;
3047 		else
3048 			ifmr->ifm_active |= IFM_FDX;
3049 		return;
3050 	}
3051 
3052 	mii_pollstat(mii);
3053 	ifmr->ifm_active = mii->mii_media_active;
3054 	ifmr->ifm_status = mii->mii_media_status;
3055 }
3056 
3057 int
3058 bge_ioctl(ifp, command, data)
3059 	struct ifnet *ifp;
3060 	u_long command;
3061 	caddr_t data;
3062 {
3063 	struct bge_softc *sc = ifp->if_softc;
3064 	struct ifreq *ifr = (struct ifreq *) data;
3065 	int s, error = 0;
3066 	struct mii_data *mii;
3067 
3068 	s = splnet();
3069 
3070 	switch(command) {
3071 	case SIOCSIFFLAGS:
3072 		if (ifp->if_flags & IFF_UP) {
3073 			/*
3074 			 * If only the state of the PROMISC flag changed,
3075 			 * then just use the 'set promisc mode' command
3076 			 * instead of reinitializing the entire NIC. Doing
3077 			 * a full re-init means reloading the firmware and
3078 			 * waiting for it to start up, which may take a
3079 			 * second or two.
3080 			 */
3081 			if (ifp->if_flags & IFF_RUNNING &&
3082 			    ifp->if_flags & IFF_PROMISC &&
3083 			    !(sc->bge_if_flags & IFF_PROMISC)) {
3084 				BGE_SETBIT(sc, BGE_RX_MODE,
3085 				    BGE_RXMODE_RX_PROMISC);
3086 			} else if (ifp->if_flags & IFF_RUNNING &&
3087 			    !(ifp->if_flags & IFF_PROMISC) &&
3088 			    sc->bge_if_flags & IFF_PROMISC) {
3089 				BGE_CLRBIT(sc, BGE_RX_MODE,
3090 				    BGE_RXMODE_RX_PROMISC);
3091 			} else
3092 				bge_init(ifp);
3093 		} else {
3094 			if (ifp->if_flags & IFF_RUNNING) {
3095 				bge_stop(sc);
3096 			}
3097 		}
3098 		sc->bge_if_flags = ifp->if_flags;
3099 		error = 0;
3100 		break;
3101 	case SIOCSIFMEDIA:
3102 	case SIOCGIFMEDIA:
3103 		if (sc->bge_tbi) {
3104 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3105 			    command);
3106 		} else {
3107 			mii = &sc->bge_mii;
3108 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3109 			    command);
3110 		}
3111 		error = 0;
3112 		break;
3113 	default:
3114 		error = ether_ioctl(ifp, command, data);
3115 		if (error == ENETRESET) {
3116 			bge_setmulti(sc);
3117 			error = 0;
3118 		}
3119 		break;
3120 	}
3121 
3122 	splx(s);
3123 
3124 	return(error);
3125 }
3126 
3127 void
3128 bge_watchdog(ifp)
3129 	struct ifnet *ifp;
3130 {
3131 	struct bge_softc *sc;
3132 
3133 	sc = ifp->if_softc;
3134 
3135 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3136 
3137 	ifp->if_flags &= ~IFF_RUNNING;
3138 	bge_init(ifp);
3139 
3140 	ifp->if_oerrors++;
3141 }
3142 
3143 static void
3144 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3145 {
3146 	int i;
3147 
3148 	BGE_CLRBIT(sc, reg, bit);
3149 
3150 	for (i = 0; i < BGE_TIMEOUT; i++) {
3151 		if ((CSR_READ_4(sc, reg) & bit) == 0)
3152 			return;
3153 		delay(100);
3154 	}
3155 
3156 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3157 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
3158 }
3159 
3160 /*
3161  * Stop the adapter and free any mbufs allocated to the
3162  * RX and TX lists.
3163  */
3164 void
3165 bge_stop(sc)
3166 	struct bge_softc *sc;
3167 {
3168 	struct ifnet *ifp = &sc->ethercom.ec_if;
3169 
3170 	callout_stop(&sc->bge_timeout);
3171 
3172 	/*
3173 	 * Disable all of the receiver blocks
3174 	 */
3175 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3176 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3177 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3178 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3179 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3180 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3181 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3182 
3183 	/*
3184 	 * Disable all of the transmit blocks
3185 	 */
3186 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3187 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3188 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3189 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3190 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3191 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3192 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3193 
3194 	/*
3195 	 * Shut down all of the memory managers and related
3196 	 * state machines.
3197 	 */
3198 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3199 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3200 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3201 
3202 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3203 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3204 
3205 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3206 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3207 
3208 	/* Disable host interrupts. */
3209 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3210 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3211 
3212 	/*
3213 	 * Tell firmware we're shutting down.
3214 	 */
3215 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3216 
3217 	/* Free the RX lists. */
3218 	bge_free_rx_ring_std(sc);
3219 
3220 	/* Free jumbo RX list. */
3221 	bge_free_rx_ring_jumbo(sc);
3222 
3223 	/* Free TX buffers. */
3224 	bge_free_tx_ring(sc);
3225 
3226 	/*
3227 	 * Isolate/power down the PHY.
3228 	 */
3229 	if (!sc->bge_tbi)
3230 		mii_down(&sc->bge_mii);
3231 
3232 	sc->bge_link = 0;
3233 
3234 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3235 
3236 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3237 }
3238 
3239 /*
3240  * Stop all chip I/O so that the kernel's probe routines don't
3241  * get confused by errant DMAs when rebooting.
3242  */
3243 void
3244 bge_shutdown(xsc)
3245 	void *xsc;
3246 {
3247 	struct bge_softc *sc = (struct bge_softc *)xsc;
3248 
3249 	bge_stop(sc);
3250 	bge_reset(sc);
3251 }
3252