xref: /netbsd-src/sys/dev/pci/if_bge.c (revision d0b9170efe70b3a8ede38a60ede546792c926885)
1 /*	$NetBSD: if_bge.c,v 1.79 2004/11/19 17:59:09 jmmv Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.79 2004/11/19 17:59:09 jmmv Exp $");
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109 
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113 
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/if_bgereg.h>
124 
125 #include <uvm/uvm_extern.h>
126 
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128 
129 
130 /*
131  * Tunable thresholds for rx-side bge interrupt mitigation.
132  */
133 
134 /*
135  * The pairs of values below were obtained from empirical measurement
136  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137  * interrupt for every N packets received, where N is, approximately,
138  * the second value (rx_max_bds) in each pair.  The values are chosen
139  * such that moving from one pair to the succeeding pair was observed
140  * to roughly halve interrupt rate under sustained input packet load.
141  * The values were empirically chosen to avoid overflowing internal
142  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
143  * results in internal wrapping and higher interrupt rates.
144  * The limit of 46 frames was chosen to match NFS workloads.
145  *
146  * These values also work well on bcm5701, bcm5704C, and (less
147  * tested) bcm5703.  On other chipsets, (including the Altima chip
148  * family), the larger values may overflow internal chip limits,
149  * leading to increasing interrupt rates rather than lower interrupt
150  * rates.
151  *
152  * Applications using heavy interrupt mitigation (interrupting every
153  * 32 or 46 frames) in both directions may need to increase the TCP
154  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155  * full link bandwidth, due to ACKs and window updates lingering
156  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157  */
158 struct bge_load_rx_thresh {
159 	int rx_ticks;
160 	int rx_max_bds; }
161 bge_rx_threshes[] = {
162 	{ 32,   2 },
163 	{ 50,   4 },
164 	{ 100,  8 },
165 	{ 192, 16 },
166 	{ 416, 32 },
167 	{ 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170 
171 /* XXX patchable; should be sysctl'able */
172 static int	bge_auto_thresh = 1;
173 static int	bge_rx_thresh_lvl;
174 
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178 
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_release_resources(struct bge_softc *);
182 void bge_txeof(struct bge_softc *);
183 void bge_rxeof(struct bge_softc *);
184 
185 void bge_tick(void *);
186 void bge_stats_update(struct bge_softc *);
187 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
188 static __inline int bge_cksum_pad(struct mbuf *pkt);
189 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
190 
191 int bge_intr(void *);
192 void bge_start(struct ifnet *);
193 int bge_ioctl(struct ifnet *, u_long, caddr_t);
194 int bge_init(struct ifnet *);
195 void bge_stop(struct bge_softc *);
196 void bge_watchdog(struct ifnet *);
197 void bge_shutdown(void *);
198 int bge_ifmedia_upd(struct ifnet *);
199 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200 
201 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
202 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
203 
204 void bge_setmulti(struct bge_softc *);
205 
206 void bge_handle_events(struct bge_softc *);
207 int bge_alloc_jumbo_mem(struct bge_softc *);
208 void bge_free_jumbo_mem(struct bge_softc *);
209 void *bge_jalloc(struct bge_softc *);
210 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
211 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
212 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
213 int bge_init_rx_ring_std(struct bge_softc *);
214 void bge_free_rx_ring_std(struct bge_softc *);
215 int bge_init_rx_ring_jumbo(struct bge_softc *);
216 void bge_free_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_tx_ring(struct bge_softc *);
218 int bge_init_tx_ring(struct bge_softc *);
219 
220 int bge_chipinit(struct bge_softc *);
221 int bge_blockinit(struct bge_softc *);
222 int bge_setpowerstate(struct bge_softc *, int);
223 
224 #ifdef notdef
225 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
226 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
227 void bge_vpd_read(struct bge_softc *);
228 #endif
229 
230 u_int32_t bge_readmem_ind(struct bge_softc *, int);
231 void bge_writemem_ind(struct bge_softc *, int, int);
232 #ifdef notdef
233 u_int32_t bge_readreg_ind(struct bge_softc *, int);
234 #endif
235 void bge_writereg_ind(struct bge_softc *, int, int);
236 
237 int bge_miibus_readreg(struct device *, int, int);
238 void bge_miibus_writereg(struct device *, int, int, int);
239 void bge_miibus_statchg(struct device *);
240 
241 void bge_reset(struct bge_softc *);
242 
243 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
244 void	bge_update_all_threshes(int /*lvl*/);
245 
246 void bge_dump_status(struct bge_softc *);
247 void bge_dump_rxbd(struct bge_rx_bd *);
248 
249 #define BGE_DEBUG
250 #ifdef BGE_DEBUG
251 #define DPRINTF(x)	if (bgedebug) printf x
252 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
253 int	bgedebug = 0;
254 #else
255 #define DPRINTF(x)
256 #define DPRINTFN(n,x)
257 #endif
258 
259 #ifdef BGE_EVENT_COUNTERS
260 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
261 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
262 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
263 #else
264 #define	BGE_EVCNT_INCR(ev)	/* nothing */
265 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
266 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
267 #endif
268 
269 /* Various chip quirks. */
270 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
271 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
272 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
273 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
274 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
275 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
276 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
277 #define	BGE_QUIRK_5705_CORE		0x00000080
278 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
279 
280 /* following bugs are common to bcm5700 rev B, all flavours */
281 #define BGE_QUIRK_5700_COMMON \
282 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
283 
284 CFATTACH_DECL(bge, sizeof(struct bge_softc),
285     bge_probe, bge_attach, NULL, NULL);
286 
287 u_int32_t
288 bge_readmem_ind(sc, off)
289 	struct bge_softc *sc;
290 	int off;
291 {
292 	struct pci_attach_args	*pa = &(sc->bge_pa);
293 	pcireg_t val;
294 
295 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
296 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
297 	return val;
298 }
299 
300 void
301 bge_writemem_ind(sc, off, val)
302 	struct bge_softc *sc;
303 	int off, val;
304 {
305 	struct pci_attach_args	*pa = &(sc->bge_pa);
306 
307 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
308 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
309 }
310 
311 #ifdef notdef
312 u_int32_t
313 bge_readreg_ind(sc, off)
314 	struct bge_softc *sc;
315 	int off;
316 {
317 	struct pci_attach_args	*pa = &(sc->bge_pa);
318 
319 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
320 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
321 }
322 #endif
323 
324 void
325 bge_writereg_ind(sc, off, val)
326 	struct bge_softc *sc;
327 	int off, val;
328 {
329 	struct pci_attach_args	*pa = &(sc->bge_pa);
330 
331 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
332 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
333 }
334 
335 #ifdef notdef
336 u_int8_t
337 bge_vpd_readbyte(sc, addr)
338 	struct bge_softc *sc;
339 	int addr;
340 {
341 	int i;
342 	u_int32_t val;
343 	struct pci_attach_args	*pa = &(sc->bge_pa);
344 
345 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
346 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
347 		DELAY(10);
348 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
349 		    BGE_VPD_FLAG)
350 			break;
351 	}
352 
353 	if (i == BGE_TIMEOUT) {
354 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
355 		return(0);
356 	}
357 
358 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
359 
360 	return((val >> ((addr % 4) * 8)) & 0xFF);
361 }
362 
363 void
364 bge_vpd_read_res(sc, res, addr)
365 	struct bge_softc *sc;
366 	struct vpd_res *res;
367 	int addr;
368 {
369 	int i;
370 	u_int8_t *ptr;
371 
372 	ptr = (u_int8_t *)res;
373 	for (i = 0; i < sizeof(struct vpd_res); i++)
374 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
375 }
376 
377 void
378 bge_vpd_read(sc)
379 	struct bge_softc *sc;
380 {
381 	int pos = 0, i;
382 	struct vpd_res res;
383 
384 	if (sc->bge_vpd_prodname != NULL)
385 		free(sc->bge_vpd_prodname, M_DEVBUF);
386 	if (sc->bge_vpd_readonly != NULL)
387 		free(sc->bge_vpd_readonly, M_DEVBUF);
388 	sc->bge_vpd_prodname = NULL;
389 	sc->bge_vpd_readonly = NULL;
390 
391 	bge_vpd_read_res(sc, &res, pos);
392 
393 	if (res.vr_id != VPD_RES_ID) {
394 		printf("%s: bad VPD resource id: expected %x got %x\n",
395 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
396 		return;
397 	}
398 
399 	pos += sizeof(res);
400 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
401 	if (sc->bge_vpd_prodname == NULL)
402 		panic("bge_vpd_read");
403 	for (i = 0; i < res.vr_len; i++)
404 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
405 	sc->bge_vpd_prodname[i] = '\0';
406 	pos += i;
407 
408 	bge_vpd_read_res(sc, &res, pos);
409 
410 	if (res.vr_id != VPD_RES_READ) {
411 		printf("%s: bad VPD resource id: expected %x got %x\n",
412 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
413 		return;
414 	}
415 
416 	pos += sizeof(res);
417 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
418 	if (sc->bge_vpd_readonly == NULL)
419 		panic("bge_vpd_read");
420 	for (i = 0; i < res.vr_len + 1; i++)
421 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
422 }
423 #endif
424 
425 /*
426  * Read a byte of data stored in the EEPROM at address 'addr.' The
427  * BCM570x supports both the traditional bitbang interface and an
428  * auto access interface for reading the EEPROM. We use the auto
429  * access method.
430  */
431 u_int8_t
432 bge_eeprom_getbyte(sc, addr, dest)
433 	struct bge_softc *sc;
434 	int addr;
435 	u_int8_t *dest;
436 {
437 	int i;
438 	u_int32_t byte = 0;
439 
440 	/*
441 	 * Enable use of auto EEPROM access so we can avoid
442 	 * having to use the bitbang method.
443 	 */
444 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
445 
446 	/* Reset the EEPROM, load the clock period. */
447 	CSR_WRITE_4(sc, BGE_EE_ADDR,
448 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
449 	DELAY(20);
450 
451 	/* Issue the read EEPROM command. */
452 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
453 
454 	/* Wait for completion */
455 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
456 		DELAY(10);
457 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
458 			break;
459 	}
460 
461 	if (i == BGE_TIMEOUT) {
462 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
463 		return(0);
464 	}
465 
466 	/* Get result. */
467 	byte = CSR_READ_4(sc, BGE_EE_DATA);
468 
469 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
470 
471 	return(0);
472 }
473 
474 /*
475  * Read a sequence of bytes from the EEPROM.
476  */
477 int
478 bge_read_eeprom(sc, dest, off, cnt)
479 	struct bge_softc *sc;
480 	caddr_t dest;
481 	int off;
482 	int cnt;
483 {
484 	int err = 0, i;
485 	u_int8_t byte = 0;
486 
487 	for (i = 0; i < cnt; i++) {
488 		err = bge_eeprom_getbyte(sc, off + i, &byte);
489 		if (err)
490 			break;
491 		*(dest + i) = byte;
492 	}
493 
494 	return(err ? 1 : 0);
495 }
496 
497 int
498 bge_miibus_readreg(dev, phy, reg)
499 	struct device *dev;
500 	int phy, reg;
501 {
502 	struct bge_softc *sc = (struct bge_softc *)dev;
503 	u_int32_t val;
504 	u_int32_t saved_autopoll;
505 	int i;
506 
507 	/*
508 	 * Several chips with builtin PHYs will incorrectly answer to
509 	 * other PHY instances than the builtin PHY at id 1.
510 	 */
511 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
512 		return(0);
513 
514 	/* Reading with autopolling on may trigger PCI errors */
515 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
516 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
517 		CSR_WRITE_4(sc, BGE_MI_MODE,
518 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
519 		DELAY(40);
520 	}
521 
522 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
523 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
524 
525 	for (i = 0; i < BGE_TIMEOUT; i++) {
526 		val = CSR_READ_4(sc, BGE_MI_COMM);
527 		if (!(val & BGE_MICOMM_BUSY))
528 			break;
529 		delay(10);
530 	}
531 
532 	if (i == BGE_TIMEOUT) {
533 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
534 		val = 0;
535 		goto done;
536 	}
537 
538 	val = CSR_READ_4(sc, BGE_MI_COMM);
539 
540 done:
541 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
542 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
543 		DELAY(40);
544 	}
545 
546 	if (val & BGE_MICOMM_READFAIL)
547 		return(0);
548 
549 	return(val & 0xFFFF);
550 }
551 
552 void
553 bge_miibus_writereg(dev, phy, reg, val)
554 	struct device *dev;
555 	int phy, reg, val;
556 {
557 	struct bge_softc *sc = (struct bge_softc *)dev;
558 	u_int32_t saved_autopoll;
559 	int i;
560 
561 	/* Touching the PHY while autopolling is on may trigger PCI errors */
562 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
563 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
564 		delay(40);
565 		CSR_WRITE_4(sc, BGE_MI_MODE,
566 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
567 		delay(10); /* 40 usec is supposed to be adequate */
568 	}
569 
570 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
571 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
572 
573 	for (i = 0; i < BGE_TIMEOUT; i++) {
574 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
575 			break;
576 		delay(10);
577 	}
578 
579 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
580 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
581 		delay(40);
582 	}
583 
584 	if (i == BGE_TIMEOUT) {
585 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
586 	}
587 }
588 
589 void
590 bge_miibus_statchg(dev)
591 	struct device *dev;
592 {
593 	struct bge_softc *sc = (struct bge_softc *)dev;
594 	struct mii_data *mii = &sc->bge_mii;
595 
596 	/*
597 	 * Get flow control negotiation result.
598 	 */
599 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
600 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
601 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
602 		mii->mii_media_active &= ~IFM_ETH_FMASK;
603 	}
604 
605 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
606 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
607 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
608 	} else {
609 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
610 	}
611 
612 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
613 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
614 	} else {
615 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
616 	}
617 
618 	/*
619 	 * 802.3x flow control
620 	 */
621 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
622 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
623 	} else {
624 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
625 	}
626 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
627 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
628 	} else {
629 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
630 	}
631 }
632 
633 /*
634  * Update rx threshold levels to values in a particular slot
635  * of the interrupt-mitigation table bge_rx_threshes.
636  */
637 void
638 bge_set_thresh(struct ifnet *ifp, int lvl)
639 {
640 	struct bge_softc *sc = ifp->if_softc;
641 	int s;
642 
643 	/* For now, just save the new Rx-intr thresholds and record
644 	 * that a threshold update is pending.  Updating the hardware
645 	 * registers here (even at splhigh()) is observed to
646 	 * occasionaly cause glitches where Rx-interrupts are not
647 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
648 	 */
649 	s = splnet();
650 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
651 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
652 	sc->bge_pending_rxintr_change = 1;
653 	splx(s);
654 
655 	 return;
656 }
657 
658 
659 /*
660  * Update Rx thresholds of all bge devices
661  */
662 void
663 bge_update_all_threshes(int lvl)
664 {
665 	struct ifnet *ifp;
666 	const char * const namebuf = "bge";
667 	int namelen;
668 
669 	if (lvl < 0)
670 		lvl = 0;
671 	else if( lvl >= NBGE_RX_THRESH)
672 		lvl = NBGE_RX_THRESH - 1;
673 
674 	namelen = strlen(namebuf);
675 	/*
676 	 * Now search all the interfaces for this name/number
677 	 */
678 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
679 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
680 		      continue;
681 		/* We got a match: update if doing auto-threshold-tuning */
682 		if (bge_auto_thresh)
683 			bge_set_thresh(ifp, lvl);
684 	}
685 }
686 
687 /*
688  * Handle events that have triggered interrupts.
689  */
690 void
691 bge_handle_events(sc)
692 	struct bge_softc		*sc;
693 {
694 
695 	return;
696 }
697 
698 /*
699  * Memory management for jumbo frames.
700  */
701 
702 int
703 bge_alloc_jumbo_mem(sc)
704 	struct bge_softc		*sc;
705 {
706 	caddr_t			ptr, kva;
707 	bus_dma_segment_t	seg;
708 	int		i, rseg, state, error;
709 	struct bge_jpool_entry   *entry;
710 
711 	state = error = 0;
712 
713 	/* Grab a big chunk o' storage. */
714 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
715 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
716 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
717 		return ENOBUFS;
718 	}
719 
720 	state = 1;
721 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
722 	    BUS_DMA_NOWAIT)) {
723 		printf("%s: can't map DMA buffers (%d bytes)\n",
724 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
725 		error = ENOBUFS;
726 		goto out;
727 	}
728 
729 	state = 2;
730 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
731 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
732 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
733 		error = ENOBUFS;
734 		goto out;
735 	}
736 
737 	state = 3;
738 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
739 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
740 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
741 		error = ENOBUFS;
742 		goto out;
743 	}
744 
745 	state = 4;
746 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
747 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
748 
749 	SLIST_INIT(&sc->bge_jfree_listhead);
750 	SLIST_INIT(&sc->bge_jinuse_listhead);
751 
752 	/*
753 	 * Now divide it up into 9K pieces and save the addresses
754 	 * in an array.
755 	 */
756 	ptr = sc->bge_cdata.bge_jumbo_buf;
757 	for (i = 0; i < BGE_JSLOTS; i++) {
758 		sc->bge_cdata.bge_jslots[i] = ptr;
759 		ptr += BGE_JLEN;
760 		entry = malloc(sizeof(struct bge_jpool_entry),
761 		    M_DEVBUF, M_NOWAIT);
762 		if (entry == NULL) {
763 			printf("%s: no memory for jumbo buffer queue!\n",
764 			    sc->bge_dev.dv_xname);
765 			error = ENOBUFS;
766 			goto out;
767 		}
768 		entry->slot = i;
769 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
770 				 entry, jpool_entries);
771 	}
772 out:
773 	if (error != 0) {
774 		switch (state) {
775 		case 4:
776 			bus_dmamap_unload(sc->bge_dmatag,
777 			    sc->bge_cdata.bge_rx_jumbo_map);
778 		case 3:
779 			bus_dmamap_destroy(sc->bge_dmatag,
780 			    sc->bge_cdata.bge_rx_jumbo_map);
781 		case 2:
782 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
783 		case 1:
784 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
785 			break;
786 		default:
787 			break;
788 		}
789 	}
790 
791 	return error;
792 }
793 
794 /*
795  * Allocate a jumbo buffer.
796  */
797 void *
798 bge_jalloc(sc)
799 	struct bge_softc		*sc;
800 {
801 	struct bge_jpool_entry   *entry;
802 
803 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
804 
805 	if (entry == NULL) {
806 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
807 		return(NULL);
808 	}
809 
810 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
811 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
812 	return(sc->bge_cdata.bge_jslots[entry->slot]);
813 }
814 
815 /*
816  * Release a jumbo buffer.
817  */
818 void
819 bge_jfree(m, buf, size, arg)
820 	struct mbuf	*m;
821 	caddr_t		buf;
822 	size_t		size;
823 	void		*arg;
824 {
825 	struct bge_jpool_entry *entry;
826 	struct bge_softc *sc;
827 	int i, s;
828 
829 	/* Extract the softc struct pointer. */
830 	sc = (struct bge_softc *)arg;
831 
832 	if (sc == NULL)
833 		panic("bge_jfree: can't find softc pointer!");
834 
835 	/* calculate the slot this buffer belongs to */
836 
837 	i = ((caddr_t)buf
838 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
839 
840 	if ((i < 0) || (i >= BGE_JSLOTS))
841 		panic("bge_jfree: asked to free buffer that we don't manage!");
842 
843 	s = splvm();
844 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
845 	if (entry == NULL)
846 		panic("bge_jfree: buffer not in use!");
847 	entry->slot = i;
848 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
849 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
850 
851 	if (__predict_true(m != NULL))
852   		pool_cache_put(&mbpool_cache, m);
853 	splx(s);
854 }
855 
856 
857 /*
858  * Intialize a standard receive ring descriptor.
859  */
860 int
861 bge_newbuf_std(sc, i, m, dmamap)
862 	struct bge_softc	*sc;
863 	int			i;
864 	struct mbuf		*m;
865 	bus_dmamap_t dmamap;
866 {
867 	struct mbuf		*m_new = NULL;
868 	struct bge_rx_bd	*r;
869 	int			error;
870 
871 	if (dmamap == NULL) {
872 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
873 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
874 		if (error != 0)
875 			return error;
876 	}
877 
878 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
879 
880 	if (m == NULL) {
881 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
882 		if (m_new == NULL) {
883 			return(ENOBUFS);
884 		}
885 
886 		MCLGET(m_new, M_DONTWAIT);
887 		if (!(m_new->m_flags & M_EXT)) {
888 			m_freem(m_new);
889 			return(ENOBUFS);
890 		}
891 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
892 		if (!sc->bge_rx_alignment_bug)
893 		    m_adj(m_new, ETHER_ALIGN);
894 
895 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
896 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
897 			return(ENOBUFS);
898 	} else {
899 		m_new = m;
900 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
901 		m_new->m_data = m_new->m_ext.ext_buf;
902 		if (!sc->bge_rx_alignment_bug)
903 		    m_adj(m_new, ETHER_ALIGN);
904 	}
905 
906 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
907 	r = &sc->bge_rdata->bge_rx_std_ring[i];
908 	bge_set_hostaddr(&r->bge_addr,
909 	    dmamap->dm_segs[0].ds_addr);
910 	r->bge_flags = BGE_RXBDFLAG_END;
911 	r->bge_len = m_new->m_len;
912 	r->bge_idx = i;
913 
914 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
915 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
916 		i * sizeof (struct bge_rx_bd),
917 	    sizeof (struct bge_rx_bd),
918 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
919 
920 	return(0);
921 }
922 
923 /*
924  * Initialize a jumbo receive ring descriptor. This allocates
925  * a jumbo buffer from the pool managed internally by the driver.
926  */
927 int
928 bge_newbuf_jumbo(sc, i, m)
929 	struct bge_softc *sc;
930 	int i;
931 	struct mbuf *m;
932 {
933 	struct mbuf *m_new = NULL;
934 	struct bge_rx_bd *r;
935 
936 	if (m == NULL) {
937 		caddr_t			buf = NULL;
938 
939 		/* Allocate the mbuf. */
940 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
941 		if (m_new == NULL) {
942 			return(ENOBUFS);
943 		}
944 
945 		/* Allocate the jumbo buffer */
946 		buf = bge_jalloc(sc);
947 		if (buf == NULL) {
948 			m_freem(m_new);
949 			printf("%s: jumbo allocation failed "
950 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
951 			return(ENOBUFS);
952 		}
953 
954 		/* Attach the buffer to the mbuf. */
955 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
956 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
957 		    bge_jfree, sc);
958 		m_new->m_flags |= M_EXT_RW;
959 	} else {
960 		m_new = m;
961 		m_new->m_data = m_new->m_ext.ext_buf;
962 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
963 	}
964 
965 	if (!sc->bge_rx_alignment_bug)
966 	    m_adj(m_new, ETHER_ALIGN);
967 	/* Set up the descriptor. */
968 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
969 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
970 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
971 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
972 	r->bge_len = m_new->m_len;
973 	r->bge_idx = i;
974 
975 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
976 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
977 		i * sizeof (struct bge_rx_bd),
978 	    sizeof (struct bge_rx_bd),
979 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
980 
981 	return(0);
982 }
983 
984 /*
985  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
986  * that's 1MB or memory, which is a lot. For now, we fill only the first
987  * 256 ring entries and hope that our CPU is fast enough to keep up with
988  * the NIC.
989  */
990 int
991 bge_init_rx_ring_std(sc)
992 	struct bge_softc *sc;
993 {
994 	int i;
995 
996 	if (sc->bge_flags & BGE_RXRING_VALID)
997 		return 0;
998 
999 	for (i = 0; i < BGE_SSLOTS; i++) {
1000 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1001 			return(ENOBUFS);
1002 	}
1003 
1004 	sc->bge_std = i - 1;
1005 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1006 
1007 	sc->bge_flags |= BGE_RXRING_VALID;
1008 
1009 	return(0);
1010 }
1011 
1012 void
1013 bge_free_rx_ring_std(sc)
1014 	struct bge_softc *sc;
1015 {
1016 	int i;
1017 
1018 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1019 		return;
1020 
1021 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1022 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1023 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1024 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1025 			bus_dmamap_destroy(sc->bge_dmatag,
1026 			    sc->bge_cdata.bge_rx_std_map[i]);
1027 		}
1028 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1029 		    sizeof(struct bge_rx_bd));
1030 	}
1031 
1032 	sc->bge_flags &= ~BGE_RXRING_VALID;
1033 }
1034 
1035 int
1036 bge_init_rx_ring_jumbo(sc)
1037 	struct bge_softc *sc;
1038 {
1039 	int i;
1040 	volatile struct bge_rcb *rcb;
1041 
1042 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1043 		return 0;
1044 
1045 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1046 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1047 			return(ENOBUFS);
1048 	};
1049 
1050 	sc->bge_jumbo = i - 1;
1051 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1052 
1053 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1054 	rcb->bge_maxlen_flags = 0;
1055 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1056 
1057 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1058 
1059 	return(0);
1060 }
1061 
1062 void
1063 bge_free_rx_ring_jumbo(sc)
1064 	struct bge_softc *sc;
1065 {
1066 	int i;
1067 
1068 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1069 		return;
1070 
1071 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1072 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1073 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1074 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1075 		}
1076 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1077 		    sizeof(struct bge_rx_bd));
1078 	}
1079 
1080 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1081 }
1082 
1083 void
1084 bge_free_tx_ring(sc)
1085 	struct bge_softc *sc;
1086 {
1087 	int i, freed;
1088 	struct txdmamap_pool_entry *dma;
1089 
1090 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1091 		return;
1092 
1093 	freed = 0;
1094 
1095 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1096 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1097 			freed++;
1098 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1099 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1100 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1101 					    link);
1102 			sc->txdma[i] = 0;
1103 		}
1104 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1105 		    sizeof(struct bge_tx_bd));
1106 	}
1107 
1108 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1109 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1110 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1111 		free(dma, M_DEVBUF);
1112 	}
1113 
1114 	sc->bge_flags &= ~BGE_TXRING_VALID;
1115 }
1116 
1117 int
1118 bge_init_tx_ring(sc)
1119 	struct bge_softc *sc;
1120 {
1121 	int i;
1122 	bus_dmamap_t dmamap;
1123 	struct txdmamap_pool_entry *dma;
1124 
1125 	if (sc->bge_flags & BGE_TXRING_VALID)
1126 		return 0;
1127 
1128 	sc->bge_txcnt = 0;
1129 	sc->bge_tx_saved_considx = 0;
1130 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1131 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1132 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1133 
1134 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1135 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1136 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1137 
1138 	SLIST_INIT(&sc->txdma_list);
1139 	for (i = 0; i < BGE_RSLOTS; i++) {
1140 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1141 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1142 		    &dmamap))
1143 			return(ENOBUFS);
1144 		if (dmamap == NULL)
1145 			panic("dmamap NULL in bge_init_tx_ring");
1146 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1147 		if (dma == NULL) {
1148 			printf("%s: can't alloc txdmamap_pool_entry\n",
1149 			    sc->bge_dev.dv_xname);
1150 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1151 			return (ENOMEM);
1152 		}
1153 		dma->dmamap = dmamap;
1154 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1155 	}
1156 
1157 	sc->bge_flags |= BGE_TXRING_VALID;
1158 
1159 	return(0);
1160 }
1161 
1162 void
1163 bge_setmulti(sc)
1164 	struct bge_softc *sc;
1165 {
1166 	struct ethercom		*ac = &sc->ethercom;
1167 	struct ifnet		*ifp = &ac->ec_if;
1168 	struct ether_multi	*enm;
1169 	struct ether_multistep  step;
1170 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1171 	u_int32_t		h;
1172 	int			i;
1173 
1174 	if (ifp->if_flags & IFF_PROMISC)
1175 		goto allmulti;
1176 
1177 	/* Now program new ones. */
1178 	ETHER_FIRST_MULTI(step, ac, enm);
1179 	while (enm != NULL) {
1180 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1181 			/*
1182 			 * We must listen to a range of multicast addresses.
1183 			 * For now, just accept all multicasts, rather than
1184 			 * trying to set only those filter bits needed to match
1185 			 * the range.  (At this time, the only use of address
1186 			 * ranges is for IP multicast routing, for which the
1187 			 * range is big enough to require all bits set.)
1188 			 */
1189 			goto allmulti;
1190 		}
1191 
1192 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1193 
1194 		/* Just want the 7 least-significant bits. */
1195 		h &= 0x7f;
1196 
1197 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1198 		ETHER_NEXT_MULTI(step, enm);
1199 	}
1200 
1201 	ifp->if_flags &= ~IFF_ALLMULTI;
1202 	goto setit;
1203 
1204  allmulti:
1205 	ifp->if_flags |= IFF_ALLMULTI;
1206 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1207 
1208  setit:
1209 	for (i = 0; i < 4; i++)
1210 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1211 }
1212 
1213 const int bge_swapbits[] = {
1214 	0,
1215 	BGE_MODECTL_BYTESWAP_DATA,
1216 	BGE_MODECTL_WORDSWAP_DATA,
1217 	BGE_MODECTL_BYTESWAP_NONFRAME,
1218 	BGE_MODECTL_WORDSWAP_NONFRAME,
1219 
1220 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1221 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1222 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1223 
1224 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1225 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1226 
1227 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1228 
1229 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1230 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1231 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1232 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1233 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1234 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1235 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1236 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1237 
1238 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1239 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1240 };
1241 
1242 int bge_swapindex = 0;
1243 
1244 /*
1245  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1246  * self-test results.
1247  */
1248 int
1249 bge_chipinit(sc)
1250 	struct bge_softc *sc;
1251 {
1252 	u_int32_t		cachesize;
1253 	int			i;
1254 	u_int32_t		dma_rw_ctl;
1255 	struct pci_attach_args	*pa = &(sc->bge_pa);
1256 
1257 
1258 	/* Set endianness before we access any non-PCI registers. */
1259 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1260 	    BGE_INIT);
1261 
1262 	/* Set power state to D0. */
1263 	bge_setpowerstate(sc, 0);
1264 
1265 	/*
1266 	 * Check the 'ROM failed' bit on the RX CPU to see if
1267 	 * self-tests passed.
1268 	 */
1269 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1270 		printf("%s: RX CPU self-diagnostics failed!\n",
1271 		    sc->bge_dev.dv_xname);
1272 		return(ENODEV);
1273 	}
1274 
1275 	/* Clear the MAC control register */
1276 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1277 
1278 	/*
1279 	 * Clear the MAC statistics block in the NIC's
1280 	 * internal memory.
1281 	 */
1282 	for (i = BGE_STATS_BLOCK;
1283 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1284 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1285 
1286 	for (i = BGE_STATUS_BLOCK;
1287 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1288 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1289 
1290 	/* Set up the PCI DMA control register. */
1291 	if (sc->bge_pcie) {
1292 		/* From FreeBSD */
1293 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1294 		    sc->bge_dev.dv_xname));
1295 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1296 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1297 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1298 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1299 	    BGE_PCISTATE_PCI_BUSMODE) {
1300 		/* Conventional PCI bus */
1301 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1302 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1303 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1304 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1305 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1306 			dma_rw_ctl |= 0x0F;
1307 		}
1308 	} else {
1309 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1310 		/* PCI-X bus */
1311 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1312 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1314 		    (0x0F);
1315 		/*
1316 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1317 		 * for hardware bugs, which means we should also clear
1318 		 * the low-order MINDMA bits.  In addition, the 5704
1319 		 * uses a different encoding of read/write watermarks.
1320 		 */
1321 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1322 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1323 			  /* should be 0x1f0000 */
1324 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1325 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1326 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 		}
1328 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1329 			dma_rw_ctl &=  0xfffffff0;
1330 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1331 		}
1332 	}
1333 
1334 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1335 
1336 	/*
1337 	 * Set up general mode register.
1338 	 */
1339 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1340 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1341 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1342 
1343 	/* Get cache line size. */
1344 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1345 
1346 	/*
1347 	 * Avoid violating PCI spec on certain chip revs.
1348 	 */
1349 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1350 	    PCIM_CMD_MWIEN) {
1351 		switch(cachesize) {
1352 		case 1:
1353 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1354 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1355 			break;
1356 		case 2:
1357 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1358 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1359 			break;
1360 		case 4:
1361 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1362 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1363 			break;
1364 		case 8:
1365 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1366 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1367 			break;
1368 		case 16:
1369 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1370 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1371 			break;
1372 		case 32:
1373 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1374 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1375 			break;
1376 		case 64:
1377 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1378 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1379 			break;
1380 		default:
1381 		/* Disable PCI memory write and invalidate. */
1382 #if 0
1383 			if (bootverbose)
1384 				printf("%s: cache line size %d not "
1385 				    "supported; disabling PCI MWI\n",
1386 				    sc->bge_dev.dv_xname, cachesize);
1387 #endif
1388 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1389 			    PCIM_CMD_MWIEN);
1390 			break;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Disable memory write invalidate.  Apparently it is not supported
1396 	 * properly by these devices.
1397 	 */
1398 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1399 
1400 
1401 #ifdef __brokenalpha__
1402 	/*
1403 	 * Must insure that we do not cross an 8K (bytes) boundary
1404 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1405 	 * restriction on some ALPHA platforms with early revision
1406 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1407 	 */
1408 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1409 #endif
1410 
1411 	/* Set the timer prescaler (always 66MHz) */
1412 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1413 
1414 	return(0);
1415 }
1416 
1417 int
1418 bge_blockinit(sc)
1419 	struct bge_softc *sc;
1420 {
1421 	volatile struct bge_rcb		*rcb;
1422 	bus_size_t		rcb_addr;
1423 	int			i;
1424 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1425 	bge_hostaddr		taddr;
1426 
1427 	/*
1428 	 * Initialize the memory window pointer register so that
1429 	 * we can access the first 32K of internal NIC RAM. This will
1430 	 * allow us to set up the TX send ring RCBs and the RX return
1431 	 * ring RCBs, plus other things which live in NIC memory.
1432 	 */
1433 
1434 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1435 	    BGE_PCI_MEMWIN_BASEADDR, 0);
1436 
1437 	/* Configure mbuf memory pool */
1438 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1439 		if (sc->bge_extram) {
1440 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1441 			    BGE_EXT_SSRAM);
1442 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1443 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1444 			else
1445 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1446 		} else {
1447 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1448 			    BGE_BUFFPOOL_1);
1449 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1450 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1451 			else
1452 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1453 		}
1454 
1455 		/* Configure DMA resource pool */
1456 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1457 		    BGE_DMA_DESCRIPTORS);
1458 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1459 	}
1460 
1461 	/* Configure mbuf pool watermarks */
1462 #ifdef ORIG_WPAUL_VALUES
1463 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1464 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1465 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1466 #else
1467 	/* new broadcom docs strongly recommend these: */
1468 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1469 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1470 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1471 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1472 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1473 		} else {
1474 			/* Values from Linux driver... */
1475 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1476 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1477 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1478 		}
1479 	} else {
1480 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1481 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1482 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1483 	}
1484 #endif
1485 
1486 	/* Configure DMA resource watermarks */
1487 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1488 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1489 
1490 	/* Enable buffer manager */
1491 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1492 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1493 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1494 
1495 		/* Poll for buffer manager start indication */
1496 		for (i = 0; i < BGE_TIMEOUT; i++) {
1497 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1498 				break;
1499 			DELAY(10);
1500 		}
1501 
1502 		if (i == BGE_TIMEOUT) {
1503 			printf("%s: buffer manager failed to start\n",
1504 			    sc->bge_dev.dv_xname);
1505 			return(ENXIO);
1506 		}
1507 	}
1508 
1509 	/* Enable flow-through queues */
1510 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1511 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1512 
1513 	/* Wait until queue initialization is complete */
1514 	for (i = 0; i < BGE_TIMEOUT; i++) {
1515 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1516 			break;
1517 		DELAY(10);
1518 	}
1519 
1520 	if (i == BGE_TIMEOUT) {
1521 		printf("%s: flow-through queue init failed\n",
1522 		    sc->bge_dev.dv_xname);
1523 		return(ENXIO);
1524 	}
1525 
1526 	/* Initialize the standard RX ring control block */
1527 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1528 	bge_set_hostaddr(&rcb->bge_hostaddr,
1529 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1530 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1531 		rcb->bge_maxlen_flags =
1532 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1533 	} else {
1534 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1535 	}
1536 	if (sc->bge_extram)
1537 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1538 	else
1539 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1540 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1541 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1542 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1543 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1544 
1545 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1546 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1547 	} else {
1548 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1549 	}
1550 
1551 	/*
1552 	 * Initialize the jumbo RX ring control block
1553 	 * We set the 'ring disabled' bit in the flags
1554 	 * field until we're actually ready to start
1555 	 * using this ring (i.e. once we set the MTU
1556 	 * high enough to require it).
1557 	 */
1558 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1559 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1560 		bge_set_hostaddr(&rcb->bge_hostaddr,
1561 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1562 		rcb->bge_maxlen_flags =
1563 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1564 			BGE_RCB_FLAG_RING_DISABLED);
1565 		if (sc->bge_extram)
1566 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1567 		else
1568 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1569 
1570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1571 		    rcb->bge_hostaddr.bge_addr_hi);
1572 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1573 		    rcb->bge_hostaddr.bge_addr_lo);
1574 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1575 		    rcb->bge_maxlen_flags);
1576 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1577 
1578 		/* Set up dummy disabled mini ring RCB */
1579 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1580 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1581 		    BGE_RCB_FLAG_RING_DISABLED);
1582 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1583 		    rcb->bge_maxlen_flags);
1584 
1585 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1586 		    offsetof(struct bge_ring_data, bge_info),
1587 		    sizeof (struct bge_gib),
1588 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589 	}
1590 
1591 	/*
1592 	 * Set the BD ring replentish thresholds. The recommended
1593 	 * values are 1/8th the number of descriptors allocated to
1594 	 * each ring.
1595 	 */
1596 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1597 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1598 
1599 	/*
1600 	 * Disable all unused send rings by setting the 'ring disabled'
1601 	 * bit in the flags field of all the TX send ring control blocks.
1602 	 * These are located in NIC memory.
1603 	 */
1604 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1605 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1606 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1607 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1608 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1609 		rcb_addr += sizeof(struct bge_rcb);
1610 	}
1611 
1612 	/* Configure TX RCB 0 (we use only the first ring) */
1613 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1614 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1615 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1616 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1617 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1618 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1619 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1620 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1621 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1622 	}
1623 
1624 	/* Disable all unused RX return rings */
1625 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1626 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1627 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1628 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1629 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1630 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1631                                      BGE_RCB_FLAG_RING_DISABLED));
1632 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1633 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1634 		    (i * (sizeof(u_int64_t))), 0);
1635 		rcb_addr += sizeof(struct bge_rcb);
1636 	}
1637 
1638 	/* Initialize RX ring indexes */
1639 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1640 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1641 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1642 
1643 	/*
1644 	 * Set up RX return ring 0
1645 	 * Note that the NIC address for RX return rings is 0x00000000.
1646 	 * The return rings live entirely within the host, so the
1647 	 * nicaddr field in the RCB isn't used.
1648 	 */
1649 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1650 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1651 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1652 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1653 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1654 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1655 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1656 
1657 	/* Set random backoff seed for TX */
1658 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1659 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1660 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1661 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1662 	    BGE_TX_BACKOFF_SEED_MASK);
1663 
1664 	/* Set inter-packet gap */
1665 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1666 
1667 	/*
1668 	 * Specify which ring to use for packets that don't match
1669 	 * any RX rules.
1670 	 */
1671 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1672 
1673 	/*
1674 	 * Configure number of RX lists. One interrupt distribution
1675 	 * list, sixteen active lists, one bad frames class.
1676 	 */
1677 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1678 
1679 	/* Inialize RX list placement stats mask. */
1680 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1681 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1682 
1683 	/* Disable host coalescing until we get it set up */
1684 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1685 
1686 	/* Poll to make sure it's shut down. */
1687 	for (i = 0; i < BGE_TIMEOUT; i++) {
1688 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1689 			break;
1690 		DELAY(10);
1691 	}
1692 
1693 	if (i == BGE_TIMEOUT) {
1694 		printf("%s: host coalescing engine failed to idle\n",
1695 		    sc->bge_dev.dv_xname);
1696 		return(ENXIO);
1697 	}
1698 
1699 	/* Set up host coalescing defaults */
1700 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1701 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1702 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1703 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1704 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1705 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1706 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1707 	}
1708 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1709 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1710 
1711 	/* Set up address of statistics block */
1712 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1713 		bge_set_hostaddr(&taddr,
1714 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1715 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1716 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1717 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1718 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1719 	}
1720 
1721 	/* Set up address of status block */
1722 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1723 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1724 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1725 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1726 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1727 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1728 
1729 	/* Turn on host coalescing state machine */
1730 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1731 
1732 	/* Turn on RX BD completion state machine and enable attentions */
1733 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1734 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1735 
1736 	/* Turn on RX list placement state machine */
1737 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1738 
1739 	/* Turn on RX list selector state machine. */
1740 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1741 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1742 	}
1743 
1744 	/* Turn on DMA, clear stats */
1745 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1746 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1747 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1748 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1749 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1750 
1751 	/* Set misc. local control, enable interrupts on attentions */
1752 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1753 
1754 #ifdef notdef
1755 	/* Assert GPIO pins for PHY reset */
1756 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1757 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1758 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1759 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1760 #endif
1761 
1762 #if defined(not_quite_yet)
1763 	/* Linux driver enables enable gpio pin #1 on 5700s */
1764 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1765 		sc->bge_local_ctrl_reg |=
1766 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1767 	}
1768 #endif
1769 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1770 
1771 	/* Turn on DMA completion state machine */
1772 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1773 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1774 	}
1775 
1776 	/* Turn on write DMA state machine */
1777 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1778 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1779 
1780 	/* Turn on read DMA state machine */
1781 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1782 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1783 
1784 	/* Turn on RX data completion state machine */
1785 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1786 
1787 	/* Turn on RX BD initiator state machine */
1788 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1789 
1790 	/* Turn on RX data and RX BD initiator state machine */
1791 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1792 
1793 	/* Turn on Mbuf cluster free state machine */
1794 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1795 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1796 	}
1797 
1798 	/* Turn on send BD completion state machine */
1799 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1800 
1801 	/* Turn on send data completion state machine */
1802 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1803 
1804 	/* Turn on send data initiator state machine */
1805 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1806 
1807 	/* Turn on send BD initiator state machine */
1808 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1809 
1810 	/* Turn on send BD selector state machine */
1811 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1812 
1813 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1814 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1815 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1816 
1817 	/* ack/clear link change events */
1818 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1819 	    BGE_MACSTAT_CFG_CHANGED);
1820 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1821 
1822 	/* Enable PHY auto polling (for MII/GMII only) */
1823 	if (sc->bge_tbi) {
1824 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1825  	} else {
1826 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1827 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1828 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1829 			    BGE_EVTENB_MI_INTERRUPT);
1830 	}
1831 
1832 	/* Enable link state change attentions. */
1833 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1834 
1835 	return(0);
1836 }
1837 
1838 static const struct bge_revision {
1839 	uint32_t		br_chipid;
1840 	uint32_t		br_quirks;
1841 	const char		*br_name;
1842 } bge_revisions[] = {
1843 	{ BGE_CHIPID_BCM5700_A0,
1844 	  BGE_QUIRK_LINK_STATE_BROKEN,
1845 	  "BCM5700 A0" },
1846 
1847 	{ BGE_CHIPID_BCM5700_A1,
1848 	  BGE_QUIRK_LINK_STATE_BROKEN,
1849 	  "BCM5700 A1" },
1850 
1851 	{ BGE_CHIPID_BCM5700_B0,
1852 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1853 	  "BCM5700 B0" },
1854 
1855 	{ BGE_CHIPID_BCM5700_B1,
1856 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1857 	  "BCM5700 B1" },
1858 
1859 	{ BGE_CHIPID_BCM5700_B2,
1860 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1861 	  "BCM5700 B2" },
1862 
1863 	/* This is treated like a BCM5700 Bx */
1864 	{ BGE_CHIPID_BCM5700_ALTIMA,
1865 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1866 	  "BCM5700 Altima" },
1867 
1868 	{ BGE_CHIPID_BCM5700_C0,
1869 	  0,
1870 	  "BCM5700 C0" },
1871 
1872 	{ BGE_CHIPID_BCM5701_A0,
1873 	  0, /*XXX really, just not known */
1874 	  "BCM5701 A0" },
1875 
1876 	{ BGE_CHIPID_BCM5701_B0,
1877 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1878 	  "BCM5701 B0" },
1879 
1880 	{ BGE_CHIPID_BCM5701_B2,
1881 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1882 	  "BCM5701 B2" },
1883 
1884 	{ BGE_CHIPID_BCM5701_B5,
1885 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1886 	  "BCM5701 B5" },
1887 
1888 	{ BGE_CHIPID_BCM5703_A0,
1889 	  0,
1890 	  "BCM5703 A0" },
1891 
1892 	{ BGE_CHIPID_BCM5703_A1,
1893 	  0,
1894 	  "BCM5703 A1" },
1895 
1896 	{ BGE_CHIPID_BCM5703_A2,
1897 	  BGE_QUIRK_ONLY_PHY_1,
1898 	  "BCM5703 A2" },
1899 
1900 	{ BGE_CHIPID_BCM5703_A3,
1901 	  BGE_QUIRK_ONLY_PHY_1,
1902 	  "BCM5703 A3" },
1903 
1904 	{ BGE_CHIPID_BCM5704_A0,
1905   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1906 	  "BCM5704 A0" },
1907 
1908 	{ BGE_CHIPID_BCM5704_A1,
1909   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1910 	  "BCM5704 A1" },
1911 
1912 	{ BGE_CHIPID_BCM5704_A2,
1913   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1914 	  "BCM5704 A2" },
1915 
1916 	{ BGE_CHIPID_BCM5704_A3,
1917   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1918 	  "BCM5704 A3" },
1919 
1920 	{ BGE_CHIPID_BCM5705_A0,
1921 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1922 	  "BCM5705 A0" },
1923 
1924 	{ BGE_CHIPID_BCM5705_A1,
1925 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1926 	  "BCM5705 A1" },
1927 
1928 	{ BGE_CHIPID_BCM5705_A2,
1929 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1930 	  "BCM5705 A2" },
1931 
1932 	{ BGE_CHIPID_BCM5705_A3,
1933 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1934 	  "BCM5705 A3" },
1935 
1936 	{ BGE_CHIPID_BCM5750_A0,
1937 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1938 	  "BCM5750 A1" },
1939 
1940 	{ BGE_CHIPID_BCM5750_A1,
1941 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1942 	  "BCM5750 A1" },
1943 
1944 	{ 0, 0, NULL }
1945 };
1946 
1947 /*
1948  * Some defaults for major revisions, so that newer steppings
1949  * that we don't know about have a shot at working.
1950  */
1951 static const struct bge_revision bge_majorrevs[] = {
1952 	{ BGE_ASICREV_BCM5700,
1953 	  BGE_QUIRK_LINK_STATE_BROKEN,
1954 	  "unknown BCM5700" },
1955 
1956 	{ BGE_ASICREV_BCM5701,
1957 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1958 	  "unknown BCM5701" },
1959 
1960 	{ BGE_ASICREV_BCM5703,
1961 	  0,
1962 	  "unknown BCM5703" },
1963 
1964 	{ BGE_ASICREV_BCM5704,
1965 	  BGE_QUIRK_ONLY_PHY_1,
1966 	  "unknown BCM5704" },
1967 
1968 	{ BGE_ASICREV_BCM5705,
1969 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1970 	  "unknown BCM5705" },
1971 
1972 	{ BGE_ASICREV_BCM5750,
1973 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1974 	  "unknown BCM5750" },
1975 
1976 	{ 0,
1977 	  0,
1978 	  NULL }
1979 };
1980 
1981 
1982 static const struct bge_revision *
1983 bge_lookup_rev(uint32_t chipid)
1984 {
1985 	const struct bge_revision *br;
1986 
1987 	for (br = bge_revisions; br->br_name != NULL; br++) {
1988 		if (br->br_chipid == chipid)
1989 			return (br);
1990 	}
1991 
1992 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1993 		if (br->br_chipid == BGE_ASICREV(chipid))
1994 			return (br);
1995 	}
1996 
1997 	return (NULL);
1998 }
1999 
2000 static const struct bge_product {
2001 	pci_vendor_id_t		bp_vendor;
2002 	pci_product_id_t	bp_product;
2003 	const char		*bp_name;
2004 } bge_products[] = {
2005 	/*
2006 	 * The BCM5700 documentation seems to indicate that the hardware
2007 	 * still has the Alteon vendor ID burned into it, though it
2008 	 * should always be overridden by the value in the EEPROM.  We'll
2009 	 * check for it anyway.
2010 	 */
2011 	{ PCI_VENDOR_ALTEON,
2012 	  PCI_PRODUCT_ALTEON_BCM5700,
2013 	  "Broadcom BCM5700 Gigabit Ethernet",
2014 	  },
2015 	{ PCI_VENDOR_ALTEON,
2016 	  PCI_PRODUCT_ALTEON_BCM5701,
2017 	  "Broadcom BCM5701 Gigabit Ethernet",
2018 	  },
2019 
2020 	{ PCI_VENDOR_ALTIMA,
2021 	  PCI_PRODUCT_ALTIMA_AC1000,
2022 	  "Altima AC1000 Gigabit Ethernet",
2023 	  },
2024 	{ PCI_VENDOR_ALTIMA,
2025 	  PCI_PRODUCT_ALTIMA_AC1001,
2026 	  "Altima AC1001 Gigabit Ethernet",
2027 	   },
2028 	{ PCI_VENDOR_ALTIMA,
2029 	  PCI_PRODUCT_ALTIMA_AC9100,
2030 	  "Altima AC9100 Gigabit Ethernet",
2031 	  },
2032 
2033 	{ PCI_VENDOR_BROADCOM,
2034 	  PCI_PRODUCT_BROADCOM_BCM5700,
2035 	  "Broadcom BCM5700 Gigabit Ethernet",
2036 	  },
2037 	{ PCI_VENDOR_BROADCOM,
2038 	  PCI_PRODUCT_BROADCOM_BCM5701,
2039 	  "Broadcom BCM5701 Gigabit Ethernet",
2040 	  },
2041 	{ PCI_VENDOR_BROADCOM,
2042 	  PCI_PRODUCT_BROADCOM_BCM5702,
2043 	  "Broadcom BCM5702 Gigabit Ethernet",
2044 	  },
2045 	{ PCI_VENDOR_BROADCOM,
2046 	  PCI_PRODUCT_BROADCOM_BCM5702X,
2047 	  "Broadcom BCM5702X Gigabit Ethernet" },
2048 
2049 	{ PCI_VENDOR_BROADCOM,
2050 	  PCI_PRODUCT_BROADCOM_BCM5703,
2051 	  "Broadcom BCM5703 Gigabit Ethernet",
2052 	  },
2053 	{ PCI_VENDOR_BROADCOM,
2054 	  PCI_PRODUCT_BROADCOM_BCM5703X,
2055 	  "Broadcom BCM5703X Gigabit Ethernet",
2056 	  },
2057 	{ PCI_VENDOR_BROADCOM,
2058 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
2059 	  "Broadcom BCM5703A3 Gigabit Ethernet",
2060 	  },
2061 
2062    	{ PCI_VENDOR_BROADCOM,
2063 	  PCI_PRODUCT_BROADCOM_BCM5704C,
2064 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
2065 	  },
2066    	{ PCI_VENDOR_BROADCOM,
2067 	  PCI_PRODUCT_BROADCOM_BCM5704S,
2068 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
2069 	  },
2070 
2071    	{ PCI_VENDOR_BROADCOM,
2072 	  PCI_PRODUCT_BROADCOM_BCM5705,
2073 	  "Broadcom BCM5705 Gigabit Ethernet",
2074 	  },
2075    	{ PCI_VENDOR_BROADCOM,
2076 	  PCI_PRODUCT_BROADCOM_BCM5705K,
2077 	  "Broadcom BCM5705K Gigabit Ethernet",
2078 	  },
2079    	{ PCI_VENDOR_BROADCOM,
2080 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2081 	  "Broadcom BCM5705 Gigabit Ethernet",
2082 	  },
2083    	{ PCI_VENDOR_BROADCOM,
2084 	  PCI_PRODUCT_BROADCOM_BCM5705M,
2085 	  "Broadcom BCM5705M Gigabit Ethernet",
2086 	  },
2087 
2088 	{ PCI_VENDOR_BROADCOM,
2089 	  PCI_PRODUCT_BROADCOM_BCM5750,
2090 	  "Broadcom BCM5750 Gigabit Ethernet",
2091 	  },
2092 
2093 	{ PCI_VENDOR_BROADCOM,
2094 	  PCI_PRODUCT_BROADCOM_BCM5750M,
2095 	  "Broadcom BCM5750M Gigabit Ethernet",
2096 	  },
2097 
2098 	{ PCI_VENDOR_BROADCOM,
2099 	  PCI_PRODUCT_BROADCOM_BCM5751,
2100 	  "Broadcom BCM5751 Gigabit Ethernet",
2101 	  },
2102 
2103    	{ PCI_VENDOR_BROADCOM,
2104 	  PCI_PRODUCT_BROADCOM_BCM5782,
2105 	  "Broadcom BCM5782 Gigabit Ethernet",
2106 	  },
2107    	{ PCI_VENDOR_BROADCOM,
2108 	  PCI_PRODUCT_BROADCOM_BCM5788,
2109 	  "Broadcom BCM5788 Gigabit Ethernet",
2110 	  },
2111 
2112    	{ PCI_VENDOR_BROADCOM,
2113 	  PCI_PRODUCT_BROADCOM_BCM5901,
2114 	  "Broadcom BCM5901 Fast Ethernet",
2115 	  },
2116    	{ PCI_VENDOR_BROADCOM,
2117 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
2118 	  "Broadcom BCM5901A2 Fast Ethernet",
2119 	  },
2120 
2121 	{ PCI_VENDOR_SCHNEIDERKOCH,
2122 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2123 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
2124 	  },
2125 
2126 	{ PCI_VENDOR_3COM,
2127 	  PCI_PRODUCT_3COM_3C996,
2128 	  "3Com 3c996 Gigabit Ethernet",
2129 	  },
2130 
2131 	{ 0,
2132 	  0,
2133 	  NULL },
2134 };
2135 
2136 static const struct bge_product *
2137 bge_lookup(const struct pci_attach_args *pa)
2138 {
2139 	const struct bge_product *bp;
2140 
2141 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2142 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2143 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2144 			return (bp);
2145 	}
2146 
2147 	return (NULL);
2148 }
2149 
2150 int
2151 bge_setpowerstate(sc, powerlevel)
2152 	struct bge_softc *sc;
2153 	int powerlevel;
2154 {
2155 #ifdef NOTYET
2156 	u_int32_t pm_ctl = 0;
2157 
2158 	/* XXX FIXME: make sure indirect accesses enabled? */
2159 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2160 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2161 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2162 
2163 	/* clear the PME_assert bit and power state bits, enable PME */
2164 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2165 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2166 	pm_ctl |= (1 << 8);
2167 
2168 	if (powerlevel == 0) {
2169 		pm_ctl |= PCIM_PSTAT_D0;
2170 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2171 		    pm_ctl, 2);
2172 		DELAY(10000);
2173 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2174 		DELAY(10000);
2175 
2176 #ifdef NOTYET
2177 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2178 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2179 #endif
2180 		DELAY(40); DELAY(40); DELAY(40);
2181 		DELAY(10000);	/* above not quite adequate on 5700 */
2182 		return 0;
2183 	}
2184 
2185 
2186 	/*
2187 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2188 	 * GMII gpio pins. Example code assumes all hardware vendors
2189 	 * followed Broadom's sample pcb layout. Until we verify that
2190 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2191 	 */
2192 	printf("%s: power state %d unimplemented; check GPIO pins\n",
2193 	       sc->bge_dev.dv_xname, powerlevel);
2194 #endif
2195 	return EOPNOTSUPP;
2196 }
2197 
2198 
2199 /*
2200  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2201  * against our list and return its name if we find a match. Note
2202  * that since the Broadcom controller contains VPD support, we
2203  * can get the device name string from the controller itself instead
2204  * of the compiled-in string. This is a little slow, but it guarantees
2205  * we'll always announce the right product name.
2206  */
2207 int
2208 bge_probe(parent, match, aux)
2209 	struct device *parent;
2210 	struct cfdata *match;
2211 	void *aux;
2212 {
2213 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2214 
2215 	if (bge_lookup(pa) != NULL)
2216 		return (1);
2217 
2218 	return (0);
2219 }
2220 
2221 void
2222 bge_attach(parent, self, aux)
2223 	struct device *parent, *self;
2224 	void *aux;
2225 {
2226 	struct bge_softc	*sc = (struct bge_softc *)self;
2227 	struct pci_attach_args	*pa = aux;
2228 	const struct bge_product *bp;
2229 	const struct bge_revision *br;
2230 	pci_chipset_tag_t	pc = pa->pa_pc;
2231 	pci_intr_handle_t	ih;
2232 	const char		*intrstr = NULL;
2233 	bus_dma_segment_t	seg;
2234 	int			rseg;
2235 	u_int32_t		hwcfg = 0;
2236 	u_int32_t		mac_addr = 0;
2237 	u_int32_t		command;
2238 	struct ifnet		*ifp;
2239 	caddr_t			kva;
2240 	u_char			eaddr[ETHER_ADDR_LEN];
2241 	pcireg_t		memtype;
2242 	bus_addr_t		memaddr;
2243 	bus_size_t		memsize;
2244 	u_int32_t		pm_ctl;
2245 
2246 	bp = bge_lookup(pa);
2247 	KASSERT(bp != NULL);
2248 
2249 	sc->bge_pa = *pa;
2250 
2251 	aprint_naive(": Ethernet controller\n");
2252 	aprint_normal(": %s\n", bp->bp_name);
2253 
2254 	/*
2255 	 * Map control/status registers.
2256 	 */
2257 	DPRINTFN(5, ("Map control/status regs\n"));
2258 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2259 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2260 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2261 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2262 
2263 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2264 		aprint_error("%s: failed to enable memory mapping!\n",
2265 		    sc->bge_dev.dv_xname);
2266 		return;
2267 	}
2268 
2269 	DPRINTFN(5, ("pci_mem_find\n"));
2270 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2271  	switch (memtype) {
2272 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2273 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2274 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2275 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2276 		    &memaddr, &memsize) == 0)
2277 			break;
2278 	default:
2279 		aprint_error("%s: can't find mem space\n",
2280 		    sc->bge_dev.dv_xname);
2281 		return;
2282 	}
2283 
2284 	DPRINTFN(5, ("pci_intr_map\n"));
2285 	if (pci_intr_map(pa, &ih)) {
2286 		aprint_error("%s: couldn't map interrupt\n",
2287 		    sc->bge_dev.dv_xname);
2288 		return;
2289 	}
2290 
2291 	DPRINTFN(5, ("pci_intr_string\n"));
2292 	intrstr = pci_intr_string(pc, ih);
2293 
2294 	DPRINTFN(5, ("pci_intr_establish\n"));
2295 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2296 
2297 	if (sc->bge_intrhand == NULL) {
2298 		aprint_error("%s: couldn't establish interrupt",
2299 		    sc->bge_dev.dv_xname);
2300 		if (intrstr != NULL)
2301 			aprint_normal(" at %s", intrstr);
2302 		aprint_normal("\n");
2303 		return;
2304 	}
2305 	aprint_normal("%s: interrupting at %s\n",
2306 	    sc->bge_dev.dv_xname, intrstr);
2307 
2308 	/*
2309 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2310 	 * can clobber the chip's PCI config-space power control registers,
2311 	 * leaving the card in D3 powersave state.
2312 	 * We do not have memory-mapped registers in this state,
2313 	 * so force device into D0 state before starting initialization.
2314 	 */
2315 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2316 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2317 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2318 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2319 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2320 
2321 	/*
2322 	 * Save ASIC rev.  Look up any quirks associated with this
2323 	 * ASIC.
2324 	 */
2325 	sc->bge_chipid =
2326 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2327 	    BGE_PCIMISCCTL_ASICREV;
2328 
2329 	/*
2330 	 * Detect PCI-Express devices
2331 	 * XXX: guessed from Linux/FreeBSD; no documentation
2332 	 */
2333 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2334 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2335 	    NULL, NULL) != 0)
2336 		sc->bge_pcie = 1;
2337 	else
2338 		sc->bge_pcie = 0;
2339 
2340 	/* Try to reset the chip. */
2341 	DPRINTFN(5, ("bge_reset\n"));
2342 	bge_reset(sc);
2343 
2344 	if (bge_chipinit(sc)) {
2345 		aprint_error("%s: chip initialization failed\n",
2346 		    sc->bge_dev.dv_xname);
2347 		bge_release_resources(sc);
2348 		return;
2349 	}
2350 
2351 	/*
2352 	 * Get station address from the EEPROM.
2353 	 */
2354 	mac_addr = bge_readmem_ind(sc, 0x0c14);
2355 	if ((mac_addr >> 16) == 0x484b) {
2356 		eaddr[0] = (u_char)(mac_addr >> 8);
2357 		eaddr[1] = (u_char)(mac_addr >> 0);
2358 		mac_addr = bge_readmem_ind(sc, 0x0c18);
2359 		eaddr[2] = (u_char)(mac_addr >> 24);
2360 		eaddr[3] = (u_char)(mac_addr >> 16);
2361 		eaddr[4] = (u_char)(mac_addr >> 8);
2362 		eaddr[5] = (u_char)(mac_addr >> 0);
2363 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2364 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2365 		aprint_error("%s: failed to read station address\n",
2366 		    sc->bge_dev.dv_xname);
2367 		bge_release_resources(sc);
2368 		return;
2369 	}
2370 
2371 	br = bge_lookup_rev(sc->bge_chipid);
2372 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
2373 
2374 	if (br == NULL) {
2375 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2376 		sc->bge_quirks = 0;
2377 	} else {
2378 		aprint_normal("ASIC %s (0x%04x)",
2379 		    br->br_name, sc->bge_chipid >> 16);
2380 		sc->bge_quirks |= br->br_quirks;
2381 	}
2382 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2383 
2384 	/* Allocate the general information block and ring buffers. */
2385 	if (pci_dma64_available(pa))
2386 		sc->bge_dmatag = pa->pa_dmat64;
2387 	else
2388 		sc->bge_dmatag = pa->pa_dmat;
2389 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2390 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2391 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2392 		aprint_error("%s: can't alloc rx buffers\n",
2393 		    sc->bge_dev.dv_xname);
2394 		return;
2395 	}
2396 	DPRINTFN(5, ("bus_dmamem_map\n"));
2397 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2398 			   sizeof(struct bge_ring_data), &kva,
2399 			   BUS_DMA_NOWAIT)) {
2400 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2401 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2402 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2403 		return;
2404 	}
2405 	DPRINTFN(5, ("bus_dmamem_create\n"));
2406 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2407 	    sizeof(struct bge_ring_data), 0,
2408 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2409 		aprint_error("%s: can't create DMA map\n",
2410 		    sc->bge_dev.dv_xname);
2411 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2412 				 sizeof(struct bge_ring_data));
2413 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2414 		return;
2415 	}
2416 	DPRINTFN(5, ("bus_dmamem_load\n"));
2417 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2418 			    sizeof(struct bge_ring_data), NULL,
2419 			    BUS_DMA_NOWAIT)) {
2420 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2421 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2422 				 sizeof(struct bge_ring_data));
2423 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2424 		return;
2425 	}
2426 
2427 	DPRINTFN(5, ("bzero\n"));
2428 	sc->bge_rdata = (struct bge_ring_data *)kva;
2429 
2430 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2431 
2432 	/* Try to allocate memory for jumbo buffers. */
2433 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2434 		if (bge_alloc_jumbo_mem(sc)) {
2435 			aprint_error("%s: jumbo buffer allocation failed\n",
2436 			    sc->bge_dev.dv_xname);
2437 		} else
2438 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2439 	}
2440 
2441 	/* Set default tuneable values. */
2442 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2443 	sc->bge_rx_coal_ticks = 150;
2444 	sc->bge_rx_max_coal_bds = 64;
2445 #ifdef ORIG_WPAUL_VALUES
2446 	sc->bge_tx_coal_ticks = 150;
2447 	sc->bge_tx_max_coal_bds = 128;
2448 #else
2449 	sc->bge_tx_coal_ticks = 300;
2450 	sc->bge_tx_max_coal_bds = 400;
2451 #endif
2452 
2453 	/* Set up ifnet structure */
2454 	ifp = &sc->ethercom.ec_if;
2455 	ifp->if_softc = sc;
2456 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2457 	ifp->if_ioctl = bge_ioctl;
2458 	ifp->if_start = bge_start;
2459 	ifp->if_init = bge_init;
2460 	ifp->if_watchdog = bge_watchdog;
2461 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2462 	IFQ_SET_READY(&ifp->if_snd);
2463 	DPRINTFN(5, ("bcopy\n"));
2464 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2465 
2466 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2467 		sc->ethercom.ec_if.if_capabilities |=
2468 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2469 	sc->ethercom.ec_capabilities |=
2470 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2471 
2472 	/*
2473 	 * Do MII setup.
2474 	 */
2475 	DPRINTFN(5, ("mii setup\n"));
2476 	sc->bge_mii.mii_ifp = ifp;
2477 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2478 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2479 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2480 
2481 	/*
2482 	 * Figure out what sort of media we have by checking the
2483 	 * hardware config word in the first 32k of NIC internal memory,
2484 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2485 	 * cards, this value appears to be unset. If that's the
2486 	 * case, we have to rely on identifying the NIC by its PCI
2487 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2488 	 */
2489 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2490 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2491 	} else {
2492 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
2493 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2494 		hwcfg = be32toh(hwcfg);
2495 	}
2496 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2497 		sc->bge_tbi = 1;
2498 
2499 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2500 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2501 	    SK_SUBSYSID_9D41)
2502 		sc->bge_tbi = 1;
2503 
2504 	if (sc->bge_tbi) {
2505 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2506 		    bge_ifmedia_sts);
2507 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2508 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2509 			    0, NULL);
2510 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2511 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2512 	} else {
2513 		/*
2514 		 * Do transceiver setup.
2515 		 */
2516 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2517 			     bge_ifmedia_sts);
2518 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2519 			   MII_PHY_ANY, MII_OFFSET_ANY,
2520 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
2521 
2522 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2523 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2524 			ifmedia_add(&sc->bge_mii.mii_media,
2525 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2526 			ifmedia_set(&sc->bge_mii.mii_media,
2527 				    IFM_ETHER|IFM_MANUAL);
2528 		} else
2529 			ifmedia_set(&sc->bge_mii.mii_media,
2530 				    IFM_ETHER|IFM_AUTO);
2531 	}
2532 
2533 	/*
2534 	 * When using the BCM5701 in PCI-X mode, data corruption has
2535 	 * been observed in the first few bytes of some received packets.
2536 	 * Aligning the packet buffer in memory eliminates the corruption.
2537 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2538 	 * which do not support unaligned accesses, we will realign the
2539 	 * payloads by copying the received packets.
2540 	 */
2541 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2542 		/* If in PCI-X mode, work around the alignment bug. */
2543 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2544                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2545                          BGE_PCISTATE_PCI_BUSSPEED)
2546 		sc->bge_rx_alignment_bug = 1;
2547         }
2548 
2549 	/*
2550 	 * Call MI attach routine.
2551 	 */
2552 	DPRINTFN(5, ("if_attach\n"));
2553 	if_attach(ifp);
2554 	DPRINTFN(5, ("ether_ifattach\n"));
2555 	ether_ifattach(ifp, eaddr);
2556 #ifdef BGE_EVENT_COUNTERS
2557 	/*
2558 	 * Attach event counters.
2559 	 */
2560 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2561 	    NULL, sc->bge_dev.dv_xname, "intr");
2562 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2563 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
2564 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2565 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
2566 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2567 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
2568 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2569 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
2570 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2571 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
2572 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2573 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
2574 #endif /* BGE_EVENT_COUNTERS */
2575 	DPRINTFN(5, ("callout_init\n"));
2576 	callout_init(&sc->bge_timeout);
2577 }
2578 
2579 void
2580 bge_release_resources(sc)
2581 	struct bge_softc *sc;
2582 {
2583 	if (sc->bge_vpd_prodname != NULL)
2584 		free(sc->bge_vpd_prodname, M_DEVBUF);
2585 
2586 	if (sc->bge_vpd_readonly != NULL)
2587 		free(sc->bge_vpd_readonly, M_DEVBUF);
2588 }
2589 
2590 void
2591 bge_reset(sc)
2592 	struct bge_softc *sc;
2593 {
2594 	struct pci_attach_args *pa = &sc->bge_pa;
2595 	u_int32_t cachesize, command, pcistate, new_pcistate;
2596 	int i, val;
2597 
2598 	/* Save some important PCI state. */
2599 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2600 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2601 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2602 
2603 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2604 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2605 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2606 
2607 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2608 	/*
2609 	 * XXX: from FreeBSD/Linux; no documentation
2610 	 */
2611 	if (sc->bge_pcie) {
2612 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2613 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2614 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2615 			/* No idea what that actually means */
2616 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2617 			val |= (1<<29);
2618 		}
2619 	}
2620 
2621 	/* Issue global reset */
2622 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
2623 
2624 	DELAY(1000);
2625 
2626 	/*
2627 	 * XXX: from FreeBSD/Linux; no documentation
2628 	 */
2629 	if (sc->bge_pcie) {
2630 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2631 			pcireg_t reg;
2632 
2633 			DELAY(500000);
2634 			/* XXX: Magic Numbers */
2635 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2636 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2637 			    reg | (1 << 15));
2638 		}
2639 		/* XXX: Magic Numbers */
2640 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
2641 	}
2642 
2643 	/* Reset some of the PCI state that got zapped by reset */
2644 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2645 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2646 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2647 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2648 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2649 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2650 
2651 	/* Enable memory arbiter. */
2652 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2653 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2654 	}
2655 
2656 	/*
2657 	 * Prevent PXE restart: write a magic number to the
2658 	 * general communications memory at 0xB50.
2659 	 */
2660 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2661 
2662 	/*
2663 	 * Poll the value location we just wrote until
2664 	 * we see the 1's complement of the magic number.
2665 	 * This indicates that the firmware initialization
2666 	 * is complete.
2667 	 */
2668 	for (i = 0; i < 750; i++) {
2669 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2670 		if (val == ~BGE_MAGIC_NUMBER)
2671 			break;
2672 		DELAY(1000);
2673 	}
2674 
2675 	if (i == 750) {
2676 		printf("%s: firmware handshake timed out, val = %x\n",
2677 		    sc->bge_dev.dv_xname, val);
2678 		return;
2679 	}
2680 
2681 	/*
2682 	 * XXX Wait for the value of the PCISTATE register to
2683 	 * return to its original pre-reset state. This is a
2684 	 * fairly good indicator of reset completion. If we don't
2685 	 * wait for the reset to fully complete, trying to read
2686 	 * from the device's non-PCI registers may yield garbage
2687 	 * results.
2688 	 */
2689 	for (i = 0; i < BGE_TIMEOUT; i++) {
2690 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2691 		    BGE_PCI_PCISTATE);
2692 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2693 		    (pcistate & ~BGE_PCISTATE_RESERVED))
2694 			break;
2695 		DELAY(10);
2696 	}
2697 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2698 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
2699 		printf("%s: pcistate failed to revert\n",
2700 		    sc->bge_dev.dv_xname);
2701 	}
2702 
2703 	/* XXX: from FreeBSD/Linux; no documentation */
2704 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2705 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2706 
2707 	/* Enable memory arbiter. */
2708 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2709 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2710 	}
2711 
2712 	/* Fix up byte swapping */
2713 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2714 
2715 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2716 
2717 	DELAY(10000);
2718 }
2719 
2720 /*
2721  * Frame reception handling. This is called if there's a frame
2722  * on the receive return list.
2723  *
2724  * Note: we have to be able to handle two possibilities here:
2725  * 1) the frame is from the jumbo recieve ring
2726  * 2) the frame is from the standard receive ring
2727  */
2728 
2729 void
2730 bge_rxeof(sc)
2731 	struct bge_softc *sc;
2732 {
2733 	struct ifnet *ifp;
2734 	int stdcnt = 0, jumbocnt = 0;
2735 	int have_tag = 0;
2736 	u_int16_t vlan_tag = 0;
2737 	bus_dmamap_t dmamap;
2738 	bus_addr_t offset, toff;
2739 	bus_size_t tlen;
2740 	int tosync;
2741 
2742 	ifp = &sc->ethercom.ec_if;
2743 
2744 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2745 	    offsetof(struct bge_ring_data, bge_status_block),
2746 	    sizeof (struct bge_status_block),
2747 	    BUS_DMASYNC_POSTREAD);
2748 
2749 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2750 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2751 	    sc->bge_rx_saved_considx;
2752 
2753 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2754 
2755 	if (tosync < 0) {
2756 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2757 		    sizeof (struct bge_rx_bd);
2758 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2759 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2760 		tosync = -tosync;
2761 	}
2762 
2763 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2764 	    offset, tosync * sizeof (struct bge_rx_bd),
2765 	    BUS_DMASYNC_POSTREAD);
2766 
2767 	while(sc->bge_rx_saved_considx !=
2768 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2769 		struct bge_rx_bd	*cur_rx;
2770 		u_int32_t		rxidx;
2771 		struct mbuf		*m = NULL;
2772 
2773 		cur_rx = &sc->bge_rdata->
2774 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2775 
2776 		rxidx = cur_rx->bge_idx;
2777 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2778 
2779 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2780 			have_tag = 1;
2781 			vlan_tag = cur_rx->bge_vlan_tag;
2782 		}
2783 
2784 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2785 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2786 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2787 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2788 			jumbocnt++;
2789 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2790 				ifp->if_ierrors++;
2791 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2792 				continue;
2793 			}
2794 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2795 					     NULL)== ENOBUFS) {
2796 				ifp->if_ierrors++;
2797 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2798 				continue;
2799 			}
2800 		} else {
2801 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2802 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2803 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2804 			stdcnt++;
2805 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2806 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2807 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2808 				ifp->if_ierrors++;
2809 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2810 				continue;
2811 			}
2812 			if (bge_newbuf_std(sc, sc->bge_std,
2813 			    NULL, dmamap) == ENOBUFS) {
2814 				ifp->if_ierrors++;
2815 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2816 				continue;
2817 			}
2818 		}
2819 
2820 		ifp->if_ipackets++;
2821 #ifndef __NO_STRICT_ALIGNMENT
2822                 /*
2823                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2824                  * the Rx buffer has the layer-2 header unaligned.
2825                  * If our CPU requires alignment, re-align by copying.
2826                  */
2827 		if (sc->bge_rx_alignment_bug) {
2828 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2829                                 cur_rx->bge_len);
2830 			m->m_data += ETHER_ALIGN;
2831 		}
2832 #endif
2833 
2834 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2835 		m->m_pkthdr.rcvif = ifp;
2836 
2837 #if NBPFILTER > 0
2838 		/*
2839 		 * Handle BPF listeners. Let the BPF user see the packet.
2840 		 */
2841 		if (ifp->if_bpf)
2842 			bpf_mtap(ifp->if_bpf, m);
2843 #endif
2844 
2845 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2846 
2847 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2848 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2849 		/*
2850 		 * Rx transport checksum-offload may also
2851 		 * have bugs with packets which, when transmitted,
2852 		 * were `runts' requiring padding.
2853 		 */
2854 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2855 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2856 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2857 			m->m_pkthdr.csum_data =
2858 			    cur_rx->bge_tcp_udp_csum;
2859 			m->m_pkthdr.csum_flags |=
2860 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
2861 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2862 		}
2863 
2864 		/*
2865 		 * If we received a packet with a vlan tag, pass it
2866 		 * to vlan_input() instead of ether_input().
2867 		 */
2868 		if (have_tag) {
2869 			struct m_tag *mtag;
2870 
2871 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2872 			    M_NOWAIT);
2873 			if (mtag != NULL) {
2874 				*(u_int *)(mtag + 1) = vlan_tag;
2875 				m_tag_prepend(m, mtag);
2876 				have_tag = vlan_tag = 0;
2877 			} else {
2878 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2879 				m_freem(m);
2880 				have_tag = vlan_tag = 0;
2881 				continue;
2882 			}
2883 		}
2884 		(*ifp->if_input)(ifp, m);
2885 	}
2886 
2887 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2888 	if (stdcnt)
2889 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2890 	if (jumbocnt)
2891 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2892 }
2893 
2894 void
2895 bge_txeof(sc)
2896 	struct bge_softc *sc;
2897 {
2898 	struct bge_tx_bd *cur_tx = NULL;
2899 	struct ifnet *ifp;
2900 	struct txdmamap_pool_entry *dma;
2901 	bus_addr_t offset, toff;
2902 	bus_size_t tlen;
2903 	int tosync;
2904 	struct mbuf *m;
2905 
2906 	ifp = &sc->ethercom.ec_if;
2907 
2908 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2909 	    offsetof(struct bge_ring_data, bge_status_block),
2910 	    sizeof (struct bge_status_block),
2911 	    BUS_DMASYNC_POSTREAD);
2912 
2913 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
2914 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2915 	    sc->bge_tx_saved_considx;
2916 
2917 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2918 
2919 	if (tosync < 0) {
2920 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2921 		    sizeof (struct bge_tx_bd);
2922 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2923 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2924 		tosync = -tosync;
2925 	}
2926 
2927 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2928 	    offset, tosync * sizeof (struct bge_tx_bd),
2929 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2930 
2931 	/*
2932 	 * Go through our tx ring and free mbufs for those
2933 	 * frames that have been sent.
2934 	 */
2935 	while (sc->bge_tx_saved_considx !=
2936 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2937 		u_int32_t		idx = 0;
2938 
2939 		idx = sc->bge_tx_saved_considx;
2940 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2941 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2942 			ifp->if_opackets++;
2943 		m = sc->bge_cdata.bge_tx_chain[idx];
2944 		if (m != NULL) {
2945 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2946 			dma = sc->txdma[idx];
2947 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2948 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2949 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2950 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2951 			sc->txdma[idx] = NULL;
2952 
2953 			m_freem(m);
2954 		}
2955 		sc->bge_txcnt--;
2956 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2957 		ifp->if_timer = 0;
2958 	}
2959 
2960 	if (cur_tx != NULL)
2961 		ifp->if_flags &= ~IFF_OACTIVE;
2962 }
2963 
2964 int
2965 bge_intr(xsc)
2966 	void *xsc;
2967 {
2968 	struct bge_softc *sc;
2969 	struct ifnet *ifp;
2970 
2971 	sc = xsc;
2972 	ifp = &sc->ethercom.ec_if;
2973 
2974 #ifdef notdef
2975 	/* Avoid this for now -- checking this register is expensive. */
2976 	/* Make sure this is really our interrupt. */
2977 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2978 		return (0);
2979 #endif
2980 	/* Ack interrupt and stop others from occuring. */
2981 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2982 
2983 	BGE_EVCNT_INCR(sc->bge_ev_intr);
2984 
2985 	/*
2986 	 * Process link state changes.
2987 	 * Grrr. The link status word in the status block does
2988 	 * not work correctly on the BCM5700 rev AX and BX chips,
2989 	 * according to all avaibable information. Hence, we have
2990 	 * to enable MII interrupts in order to properly obtain
2991 	 * async link changes. Unfortunately, this also means that
2992 	 * we have to read the MAC status register to detect link
2993 	 * changes, thereby adding an additional register access to
2994 	 * the interrupt handler.
2995 	 */
2996 
2997 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2998 		u_int32_t		status;
2999 
3000 		status = CSR_READ_4(sc, BGE_MAC_STS);
3001 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
3002 			sc->bge_link = 0;
3003 			callout_stop(&sc->bge_timeout);
3004 			bge_tick(sc);
3005 			/* Clear the interrupt */
3006 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3007 			    BGE_EVTENB_MI_INTERRUPT);
3008 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3009 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3010 			    BRGPHY_INTRS);
3011 		}
3012 	} else {
3013 		if (sc->bge_rdata->bge_status_block.bge_status &
3014 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
3015 			sc->bge_link = 0;
3016 			callout_stop(&sc->bge_timeout);
3017 			bge_tick(sc);
3018 			/* Clear the interrupt */
3019 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3020 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3021 			    BGE_MACSTAT_LINK_CHANGED);
3022 		}
3023 	}
3024 
3025 	if (ifp->if_flags & IFF_RUNNING) {
3026 		/* Check RX return ring producer/consumer */
3027 		bge_rxeof(sc);
3028 
3029 		/* Check TX ring producer/consumer */
3030 		bge_txeof(sc);
3031 	}
3032 
3033 	if (sc->bge_pending_rxintr_change) {
3034 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3035 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3036 		uint32_t junk;
3037 
3038 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3039 		DELAY(10);
3040 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3041 
3042 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3043 		DELAY(10);
3044 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3045 
3046 		sc->bge_pending_rxintr_change = 0;
3047 	}
3048 	bge_handle_events(sc);
3049 
3050 	/* Re-enable interrupts. */
3051 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3052 
3053 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3054 		bge_start(ifp);
3055 
3056 	return (1);
3057 }
3058 
3059 void
3060 bge_tick(xsc)
3061 	void *xsc;
3062 {
3063 	struct bge_softc *sc = xsc;
3064 	struct mii_data *mii = &sc->bge_mii;
3065 	struct ifmedia *ifm = NULL;
3066 	struct ifnet *ifp = &sc->ethercom.ec_if;
3067 	int s;
3068 
3069 	s = splnet();
3070 
3071 	bge_stats_update(sc);
3072 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3073 	if (sc->bge_link) {
3074 		splx(s);
3075 		return;
3076 	}
3077 
3078 	if (sc->bge_tbi) {
3079 		ifm = &sc->bge_ifmedia;
3080 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3081 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3082 			sc->bge_link++;
3083 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3084 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
3085 				bge_start(ifp);
3086 		}
3087 		splx(s);
3088 		return;
3089 	}
3090 
3091 	mii_tick(mii);
3092 
3093 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3094 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3095 		sc->bge_link++;
3096 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3097 			bge_start(ifp);
3098 	}
3099 
3100 	splx(s);
3101 }
3102 
3103 void
3104 bge_stats_update(sc)
3105 	struct bge_softc *sc;
3106 {
3107 	struct ifnet *ifp = &sc->ethercom.ec_if;
3108 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3109 	bus_size_t rstats = BGE_RX_STATS;
3110 
3111 #define READ_RSTAT(sc, stats, stat) \
3112 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3113 
3114 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3115 		ifp->if_collisions +=
3116 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3117 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3118 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3119 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3120 
3121 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3122 			      READ_RSTAT(sc, rstats, outXoffSent));
3123 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3124 			      READ_RSTAT(sc, rstats, outXonSent));
3125 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3126 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3127 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3128 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3129 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3130 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
3131 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3132 			      READ_RSTAT(sc, rstats, xoffStateEntered));
3133 		return;
3134 	}
3135 
3136 #undef READ_RSTAT
3137 #define READ_STAT(sc, stats, stat) \
3138 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3139 
3140 	ifp->if_collisions +=
3141 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3142 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3143 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3144 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3145 	  ifp->if_collisions;
3146 
3147 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3148 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3149 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3150 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3151 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3152 		      READ_STAT(sc, stats,
3153 		      		xoffPauseFramesReceived.bge_addr_lo));
3154 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3155 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3156 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3157 		      READ_STAT(sc, stats,
3158 		      		macControlFramesReceived.bge_addr_lo));
3159 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3160 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3161 
3162 #undef READ_STAT
3163 
3164 #ifdef notdef
3165 	ifp->if_collisions +=
3166 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3167 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3168 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3169 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3170 	   ifp->if_collisions;
3171 #endif
3172 }
3173 
3174 /*
3175  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3176  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3177  * but when such padded frames employ the  bge IP/TCP checksum offload,
3178  * the hardware checksum assist gives incorrect results (possibly
3179  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3180  * If we pad such runts with zeros, the onboard checksum comes out correct.
3181  */
3182 static __inline int
3183 bge_cksum_pad(struct mbuf *pkt)
3184 {
3185 	struct mbuf *last = NULL;
3186 	int padlen;
3187 
3188 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3189 
3190 	/* if there's only the packet-header and we can pad there, use it. */
3191 	if (pkt->m_pkthdr.len == pkt->m_len &&
3192 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3193 		last = pkt;
3194 	} else {
3195 		/*
3196 		 * Walk packet chain to find last mbuf. We will either
3197 		 * pad there, or append a new mbuf and pad it
3198 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3199 		 */
3200 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3201 	      	       (void) 0; /* do nothing*/
3202 		}
3203 
3204 		/* `last' now points to last in chain. */
3205 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3206 			(void) 0; /* we can pad here, in-place. */
3207 		} else {
3208 			/* Allocate new empty mbuf, pad it. Compact later. */
3209 			struct mbuf *n;
3210 			MGET(n, M_DONTWAIT, MT_DATA);
3211 			n->m_len = 0;
3212 			last->m_next = n;
3213 			last = n;
3214 		}
3215 	}
3216 
3217 #ifdef DEBUG
3218 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3219 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3220 #endif
3221 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3222 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3223 	last->m_len += padlen;
3224 	pkt->m_pkthdr.len += padlen;
3225 	return 0;
3226 }
3227 
3228 /*
3229  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3230  */
3231 static __inline int
3232 bge_compact_dma_runt(struct mbuf *pkt)
3233 {
3234 	struct mbuf	*m, *prev;
3235 	int 		totlen, prevlen;
3236 
3237 	prev = NULL;
3238 	totlen = 0;
3239 	prevlen = -1;
3240 
3241 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3242 		int mlen = m->m_len;
3243 		int shortfall = 8 - mlen ;
3244 
3245 		totlen += mlen;
3246 		if (mlen == 0) {
3247 			continue;
3248 		}
3249 		if (mlen >= 8)
3250 			continue;
3251 
3252 		/* If we get here, mbuf data is too small for DMA engine.
3253 		 * Try to fix by shuffling data to prev or next in chain.
3254 		 * If that fails, do a compacting deep-copy of the whole chain.
3255 		 */
3256 
3257 		/* Internal frag. If fits in prev, copy it there. */
3258 		if (prev && !M_READONLY(prev) &&
3259 		      M_TRAILINGSPACE(prev) >= m->m_len) {
3260 		  	bcopy(m->m_data,
3261 			      prev->m_data+prev->m_len,
3262 			      mlen);
3263 			prev->m_len += mlen;
3264 			m->m_len = 0;
3265 			/* XXX stitch chain */
3266 			prev->m_next = m_free(m);
3267 			m = prev;
3268 			continue;
3269 		}
3270 		else if (m->m_next != NULL && !M_READONLY(m) &&
3271 			     M_TRAILINGSPACE(m) >= shortfall &&
3272 			     m->m_next->m_len >= (8 + shortfall)) {
3273 		    /* m is writable and have enough data in next, pull up. */
3274 
3275 		  	bcopy(m->m_next->m_data,
3276 			      m->m_data+m->m_len,
3277 			      shortfall);
3278 			m->m_len += shortfall;
3279 			m->m_next->m_len -= shortfall;
3280 			m->m_next->m_data += shortfall;
3281 		}
3282 		else if (m->m_next == NULL || 1) {
3283 		  	/* Got a runt at the very end of the packet.
3284 			 * borrow data from the tail of the preceding mbuf and
3285 			 * update its length in-place. (The original data is still
3286 			 * valid, so we can do this even if prev is not writable.)
3287 			 */
3288 
3289 			/* if we'd make prev a runt, just move all of its data. */
3290 #ifdef DEBUG
3291 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3292 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3293 #endif
3294 			if ((prev->m_len - shortfall) < 8)
3295 				shortfall = prev->m_len;
3296 
3297 #ifdef notyet	/* just do the safe slow thing for now */
3298 			if (!M_READONLY(m)) {
3299 				if (M_LEADINGSPACE(m) < shorfall) {
3300 					void *m_dat;
3301 					m_dat = (m->m_flags & M_PKTHDR) ?
3302 					  m->m_pktdat : m->dat;
3303 					memmove(m_dat, mtod(m, void*), m->m_len);
3304 					m->m_data = m_dat;
3305 				    }
3306 			} else
3307 #endif	/* just do the safe slow thing */
3308 			{
3309 				struct mbuf * n = NULL;
3310 				int newprevlen = prev->m_len - shortfall;
3311 
3312 				MGET(n, M_NOWAIT, MT_DATA);
3313 				if (n == NULL)
3314 				   return ENOBUFS;
3315 				KASSERT(m->m_len + shortfall < MLEN
3316 					/*,
3317 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3318 
3319 				/* first copy the data we're stealing from prev */
3320 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3321 
3322 				/* update prev->m_len accordingly */
3323 				prev->m_len -= shortfall;
3324 
3325 				/* copy data from runt m */
3326 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3327 
3328 				/* n holds what we stole from prev, plus m */
3329 				n->m_len = shortfall + m->m_len;
3330 
3331 				/* stitch n into chain and free m */
3332 				n->m_next = m->m_next;
3333 				prev->m_next = n;
3334 				/* KASSERT(m->m_next == NULL); */
3335 				m->m_next = NULL;
3336 				m_free(m);
3337 				m = n;	/* for continuing loop */
3338 			}
3339 		}
3340 		prevlen = m->m_len;
3341 	}
3342 	return 0;
3343 }
3344 
3345 /*
3346  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3347  * pointers to descriptors.
3348  */
3349 int
3350 bge_encap(sc, m_head, txidx)
3351 	struct bge_softc *sc;
3352 	struct mbuf *m_head;
3353 	u_int32_t *txidx;
3354 {
3355 	struct bge_tx_bd	*f = NULL;
3356 	u_int32_t		frag, cur, cnt = 0;
3357 	u_int16_t		csum_flags = 0;
3358 	struct txdmamap_pool_entry *dma;
3359 	bus_dmamap_t dmamap;
3360 	int			i = 0;
3361 	struct m_tag		*mtag;
3362 
3363 	cur = frag = *txidx;
3364 
3365 	if (m_head->m_pkthdr.csum_flags) {
3366 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3367 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3368 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3369 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3370 	}
3371 
3372 	/*
3373 	 * If we were asked to do an outboard checksum, and the NIC
3374 	 * has the bug where it sometimes adds in the Ethernet padding,
3375 	 * explicitly pad with zeros so the cksum will be correct either way.
3376 	 * (For now, do this for all chip versions, until newer
3377 	 * are confirmed to not require the workaround.)
3378 	 */
3379 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3380 #ifdef notyet
3381 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3382 #endif
3383 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3384 		goto check_dma_bug;
3385 
3386 	if (bge_cksum_pad(m_head) != 0)
3387 	    return ENOBUFS;
3388 
3389 check_dma_bug:
3390 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3391 		goto doit;
3392 	/*
3393 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3394 	 * less than eight bytes.  If we encounter a teeny mbuf
3395 	 * at the end of a chain, we can pad.  Otherwise, copy.
3396 	 */
3397 	if (bge_compact_dma_runt(m_head) != 0)
3398 		return ENOBUFS;
3399 
3400 doit:
3401 	dma = SLIST_FIRST(&sc->txdma_list);
3402 	if (dma == NULL)
3403 		return ENOBUFS;
3404 	dmamap = dma->dmamap;
3405 
3406 	/*
3407 	 * Start packing the mbufs in this chain into
3408 	 * the fragment pointers. Stop when we run out
3409 	 * of fragments or hit the end of the mbuf chain.
3410 	 */
3411 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3412 	    BUS_DMA_NOWAIT))
3413 		return(ENOBUFS);
3414 
3415 	mtag = sc->ethercom.ec_nvlans ?
3416 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3417 
3418 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3419 		f = &sc->bge_rdata->bge_tx_ring[frag];
3420 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3421 			break;
3422 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3423 		f->bge_len = dmamap->dm_segs[i].ds_len;
3424 		f->bge_flags = csum_flags;
3425 
3426 		if (mtag != NULL) {
3427 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3428 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
3429 		} else {
3430 			f->bge_vlan_tag = 0;
3431 		}
3432 		/*
3433 		 * Sanity check: avoid coming within 16 descriptors
3434 		 * of the end of the ring.
3435 		 */
3436 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3437 			return(ENOBUFS);
3438 		cur = frag;
3439 		BGE_INC(frag, BGE_TX_RING_CNT);
3440 		cnt++;
3441 	}
3442 
3443 	if (i < dmamap->dm_nsegs)
3444 		return ENOBUFS;
3445 
3446 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3447 	    BUS_DMASYNC_PREWRITE);
3448 
3449 	if (frag == sc->bge_tx_saved_considx)
3450 		return(ENOBUFS);
3451 
3452 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3453 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
3454 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3455 	sc->txdma[cur] = dma;
3456 	sc->bge_txcnt += cnt;
3457 
3458 	*txidx = frag;
3459 
3460 	return(0);
3461 }
3462 
3463 /*
3464  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3465  * to the mbuf data regions directly in the transmit descriptors.
3466  */
3467 void
3468 bge_start(ifp)
3469 	struct ifnet *ifp;
3470 {
3471 	struct bge_softc *sc;
3472 	struct mbuf *m_head = NULL;
3473 	u_int32_t prodidx = 0;
3474 	int pkts = 0;
3475 
3476 	sc = ifp->if_softc;
3477 
3478 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3479 		return;
3480 
3481 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3482 
3483 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3484 		IFQ_POLL(&ifp->if_snd, m_head);
3485 		if (m_head == NULL)
3486 			break;
3487 
3488 #if 0
3489 		/*
3490 		 * XXX
3491 		 * safety overkill.  If this is a fragmented packet chain
3492 		 * with delayed TCP/UDP checksums, then only encapsulate
3493 		 * it if we have enough descriptors to handle the entire
3494 		 * chain at once.
3495 		 * (paranoia -- may not actually be needed)
3496 		 */
3497 		if (m_head->m_flags & M_FIRSTFRAG &&
3498 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3499 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3500 			    m_head->m_pkthdr.csum_data + 16) {
3501 				ifp->if_flags |= IFF_OACTIVE;
3502 				break;
3503 			}
3504 		}
3505 #endif
3506 
3507 		/*
3508 		 * Pack the data into the transmit ring. If we
3509 		 * don't have room, set the OACTIVE flag and wait
3510 		 * for the NIC to drain the ring.
3511 		 */
3512 		if (bge_encap(sc, m_head, &prodidx)) {
3513 			ifp->if_flags |= IFF_OACTIVE;
3514 			break;
3515 		}
3516 
3517 		/* now we are committed to transmit the packet */
3518 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
3519 		pkts++;
3520 
3521 #if NBPFILTER > 0
3522 		/*
3523 		 * If there's a BPF listener, bounce a copy of this frame
3524 		 * to him.
3525 		 */
3526 		if (ifp->if_bpf)
3527 			bpf_mtap(ifp->if_bpf, m_head);
3528 #endif
3529 	}
3530 	if (pkts == 0)
3531 		return;
3532 
3533 	/* Transmit */
3534 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3535 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
3536 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3537 
3538 	/*
3539 	 * Set a timeout in case the chip goes out to lunch.
3540 	 */
3541 	ifp->if_timer = 5;
3542 }
3543 
3544 int
3545 bge_init(ifp)
3546 	struct ifnet *ifp;
3547 {
3548 	struct bge_softc *sc = ifp->if_softc;
3549 	u_int16_t *m;
3550 	int s, error;
3551 
3552 	s = splnet();
3553 
3554 	ifp = &sc->ethercom.ec_if;
3555 
3556 	/* Cancel pending I/O and flush buffers. */
3557 	bge_stop(sc);
3558 	bge_reset(sc);
3559 	bge_chipinit(sc);
3560 
3561 	/*
3562 	 * Init the various state machines, ring
3563 	 * control blocks and firmware.
3564 	 */
3565 	error = bge_blockinit(sc);
3566 	if (error != 0) {
3567 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3568 		    error);
3569 		splx(s);
3570 		return error;
3571 	}
3572 
3573 	ifp = &sc->ethercom.ec_if;
3574 
3575 	/* Specify MTU. */
3576 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3577 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
3578 
3579 	/* Load our MAC address. */
3580 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3581 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3582 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3583 
3584 	/* Enable or disable promiscuous mode as needed. */
3585 	if (ifp->if_flags & IFF_PROMISC) {
3586 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3587 	} else {
3588 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3589 	}
3590 
3591 	/* Program multicast filter. */
3592 	bge_setmulti(sc);
3593 
3594 	/* Init RX ring. */
3595 	bge_init_rx_ring_std(sc);
3596 
3597 	/* Init jumbo RX ring. */
3598 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3599 		bge_init_rx_ring_jumbo(sc);
3600 
3601 	/* Init our RX return ring index */
3602 	sc->bge_rx_saved_considx = 0;
3603 
3604 	/* Init TX ring. */
3605 	bge_init_tx_ring(sc);
3606 
3607 	/* Turn on transmitter */
3608 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3609 
3610 	/* Turn on receiver */
3611 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3612 
3613 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3614 
3615 	/* Tell firmware we're alive. */
3616 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3617 
3618 	/* Enable host interrupts. */
3619 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3620 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3621 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3622 
3623 	bge_ifmedia_upd(ifp);
3624 
3625 	ifp->if_flags |= IFF_RUNNING;
3626 	ifp->if_flags &= ~IFF_OACTIVE;
3627 
3628 	splx(s);
3629 
3630 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3631 
3632 	return 0;
3633 }
3634 
3635 /*
3636  * Set media options.
3637  */
3638 int
3639 bge_ifmedia_upd(ifp)
3640 	struct ifnet *ifp;
3641 {
3642 	struct bge_softc *sc = ifp->if_softc;
3643 	struct mii_data *mii = &sc->bge_mii;
3644 	struct ifmedia *ifm = &sc->bge_ifmedia;
3645 
3646 	/* If this is a 1000baseX NIC, enable the TBI port. */
3647 	if (sc->bge_tbi) {
3648 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3649 			return(EINVAL);
3650 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3651 		case IFM_AUTO:
3652 			break;
3653 		case IFM_1000_SX:
3654 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3655 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3656 				    BGE_MACMODE_HALF_DUPLEX);
3657 			} else {
3658 				BGE_SETBIT(sc, BGE_MAC_MODE,
3659 				    BGE_MACMODE_HALF_DUPLEX);
3660 			}
3661 			break;
3662 		default:
3663 			return(EINVAL);
3664 		}
3665 		/* XXX 802.3x flow control for 1000BASE-SX */
3666 		return(0);
3667 	}
3668 
3669 	sc->bge_link = 0;
3670 	mii_mediachg(mii);
3671 
3672 	return(0);
3673 }
3674 
3675 /*
3676  * Report current media status.
3677  */
3678 void
3679 bge_ifmedia_sts(ifp, ifmr)
3680 	struct ifnet *ifp;
3681 	struct ifmediareq *ifmr;
3682 {
3683 	struct bge_softc *sc = ifp->if_softc;
3684 	struct mii_data *mii = &sc->bge_mii;
3685 
3686 	if (sc->bge_tbi) {
3687 		ifmr->ifm_status = IFM_AVALID;
3688 		ifmr->ifm_active = IFM_ETHER;
3689 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3690 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3691 			ifmr->ifm_status |= IFM_ACTIVE;
3692 		ifmr->ifm_active |= IFM_1000_SX;
3693 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3694 			ifmr->ifm_active |= IFM_HDX;
3695 		else
3696 			ifmr->ifm_active |= IFM_FDX;
3697 		return;
3698 	}
3699 
3700 	mii_pollstat(mii);
3701 	ifmr->ifm_status = mii->mii_media_status;
3702 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3703 	    sc->bge_flowflags;
3704 }
3705 
3706 int
3707 bge_ioctl(ifp, command, data)
3708 	struct ifnet *ifp;
3709 	u_long command;
3710 	caddr_t data;
3711 {
3712 	struct bge_softc *sc = ifp->if_softc;
3713 	struct ifreq *ifr = (struct ifreq *) data;
3714 	int s, error = 0;
3715 	struct mii_data *mii;
3716 
3717 	s = splnet();
3718 
3719 	switch(command) {
3720 	case SIOCSIFFLAGS:
3721 		if (ifp->if_flags & IFF_UP) {
3722 			/*
3723 			 * If only the state of the PROMISC flag changed,
3724 			 * then just use the 'set promisc mode' command
3725 			 * instead of reinitializing the entire NIC. Doing
3726 			 * a full re-init means reloading the firmware and
3727 			 * waiting for it to start up, which may take a
3728 			 * second or two.
3729 			 */
3730 			if (ifp->if_flags & IFF_RUNNING &&
3731 			    ifp->if_flags & IFF_PROMISC &&
3732 			    !(sc->bge_if_flags & IFF_PROMISC)) {
3733 				BGE_SETBIT(sc, BGE_RX_MODE,
3734 				    BGE_RXMODE_RX_PROMISC);
3735 			} else if (ifp->if_flags & IFF_RUNNING &&
3736 			    !(ifp->if_flags & IFF_PROMISC) &&
3737 			    sc->bge_if_flags & IFF_PROMISC) {
3738 				BGE_CLRBIT(sc, BGE_RX_MODE,
3739 				    BGE_RXMODE_RX_PROMISC);
3740 			} else
3741 				bge_init(ifp);
3742 		} else {
3743 			if (ifp->if_flags & IFF_RUNNING) {
3744 				bge_stop(sc);
3745 			}
3746 		}
3747 		sc->bge_if_flags = ifp->if_flags;
3748 		error = 0;
3749 		break;
3750 	case SIOCSIFMEDIA:
3751 		/* XXX Flow control is not supported for 1000BASE-SX */
3752 		if (sc->bge_tbi) {
3753 			ifr->ifr_media &= ~IFM_ETH_FMASK;
3754 			sc->bge_flowflags = 0;
3755 		}
3756 
3757 		/* Flow control requires full-duplex mode. */
3758 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3759 		    (ifr->ifr_media & IFM_FDX) == 0) {
3760 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
3761 		}
3762 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3763 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3764 				/* We an do both TXPAUSE and RXPAUSE. */
3765 				ifr->ifr_media |=
3766 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3767 			}
3768 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3769 		}
3770 		/* FALLTHROUGH */
3771 	case SIOCGIFMEDIA:
3772 		if (sc->bge_tbi) {
3773 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3774 			    command);
3775 		} else {
3776 			mii = &sc->bge_mii;
3777 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3778 			    command);
3779 		}
3780 		break;
3781 	default:
3782 		error = ether_ioctl(ifp, command, data);
3783 		if (error == ENETRESET) {
3784 			if (ifp->if_flags & IFF_RUNNING)
3785 				bge_setmulti(sc);
3786 			error = 0;
3787 		}
3788 		break;
3789 	}
3790 
3791 	splx(s);
3792 
3793 	return(error);
3794 }
3795 
3796 void
3797 bge_watchdog(ifp)
3798 	struct ifnet *ifp;
3799 {
3800 	struct bge_softc *sc;
3801 
3802 	sc = ifp->if_softc;
3803 
3804 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3805 
3806 	ifp->if_flags &= ~IFF_RUNNING;
3807 	bge_init(ifp);
3808 
3809 	ifp->if_oerrors++;
3810 }
3811 
3812 static void
3813 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3814 {
3815 	int i;
3816 
3817 	BGE_CLRBIT(sc, reg, bit);
3818 
3819 	for (i = 0; i < BGE_TIMEOUT; i++) {
3820 		if ((CSR_READ_4(sc, reg) & bit) == 0)
3821 			return;
3822 		delay(100);
3823 	}
3824 
3825 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3826 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
3827 }
3828 
3829 /*
3830  * Stop the adapter and free any mbufs allocated to the
3831  * RX and TX lists.
3832  */
3833 void
3834 bge_stop(sc)
3835 	struct bge_softc *sc;
3836 {
3837 	struct ifnet *ifp = &sc->ethercom.ec_if;
3838 
3839 	callout_stop(&sc->bge_timeout);
3840 
3841 	/*
3842 	 * Disable all of the receiver blocks
3843 	 */
3844 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3845 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3846 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3847 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3848 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3849 	}
3850 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3851 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3852 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3853 
3854 	/*
3855 	 * Disable all of the transmit blocks
3856 	 */
3857 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3858 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3859 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3860 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3861 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3862 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3863 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3864 	}
3865 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3866 
3867 	/*
3868 	 * Shut down all of the memory managers and related
3869 	 * state machines.
3870 	 */
3871 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3872 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3873 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3874 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3875 	}
3876 
3877 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3878 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3879 
3880 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3881 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3882 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3883 	}
3884 
3885 	/* Disable host interrupts. */
3886 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3887 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3888 
3889 	/*
3890 	 * Tell firmware we're shutting down.
3891 	 */
3892 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3893 
3894 	/* Free the RX lists. */
3895 	bge_free_rx_ring_std(sc);
3896 
3897 	/* Free jumbo RX list. */
3898 	bge_free_rx_ring_jumbo(sc);
3899 
3900 	/* Free TX buffers. */
3901 	bge_free_tx_ring(sc);
3902 
3903 	/*
3904 	 * Isolate/power down the PHY.
3905 	 */
3906 	if (!sc->bge_tbi)
3907 		mii_down(&sc->bge_mii);
3908 
3909 	sc->bge_link = 0;
3910 
3911 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3912 
3913 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3914 }
3915 
3916 /*
3917  * Stop all chip I/O so that the kernel's probe routines don't
3918  * get confused by errant DMAs when rebooting.
3919  */
3920 void
3921 bge_shutdown(xsc)
3922 	void *xsc;
3923 {
3924 	struct bge_softc *sc = (struct bge_softc *)xsc;
3925 
3926 	bge_stop(sc);
3927 	bge_reset(sc);
3928 }
3929 
3930 
3931 static int
3932 sysctl_bge_verify(SYSCTLFN_ARGS)
3933 {
3934 	int error, t;
3935 	struct sysctlnode node;
3936 
3937 	node = *rnode;
3938 	t = *(int*)rnode->sysctl_data;
3939 	node.sysctl_data = &t;
3940 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3941 	if (error || newp == NULL)
3942 		return (error);
3943 
3944 #if 0
3945 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3946 	    node.sysctl_num, rnode->sysctl_num));
3947 #endif
3948 
3949 	if (node.sysctl_num == bge_rxthresh_nodenum) {
3950 		if (t < 0 || t >= NBGE_RX_THRESH)
3951 			return (EINVAL);
3952 		bge_update_all_threshes(t);
3953 	} else
3954 		return (EINVAL);
3955 
3956 	*(int*)rnode->sysctl_data = t;
3957 
3958 	return (0);
3959 }
3960 
3961 /*
3962  * Set up sysctl(3) MIB, hw.bge.*.
3963  *
3964  * TBD condition SYSCTL_PERMANENT on being an LKM or not
3965  */
3966 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3967 {
3968 	int rc, bge_root_num;
3969 	struct sysctlnode *node;
3970 
3971 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3972 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3973 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3974 		goto err;
3975 	}
3976 
3977 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3978 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
3979 	    SYSCTL_DESCR("BGE interface controls"),
3980 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3981 		goto err;
3982 	}
3983 
3984 	bge_root_num = node->sysctl_num;
3985 
3986 	/* BGE Rx interrupt mitigation level */
3987 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3988 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3989 	    CTLTYPE_INT, "rx_lvl",
3990 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
3991 	    sysctl_bge_verify, 0,
3992 	    &bge_rx_thresh_lvl,
3993 	    0, CTL_HW, bge_root_num, CTL_CREATE,
3994 	    CTL_EOL)) != 0) {
3995 		goto err;
3996 	}
3997 
3998 	bge_rxthresh_nodenum = node->sysctl_num;
3999 
4000 	return;
4001 
4002 err:
4003 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4004 }
4005