xref: /netbsd-src/sys/dev/pci/if_bge.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_bge.c,v 1.314 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.314 2018/06/26 06:48:01 msaitoh Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99 
100 #include <sys/rndsource.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h>			/* for struct ip */
113 #include <netinet/tcp.h>		/* for struct tcphdr */
114 
115 
116 #include <net/bpf.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129 
130 #include <prop/proplib.h>
131 
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133 
134 
135 /*
136  * Tunable thresholds for rx-side bge interrupt mitigation.
137  */
138 
139 /*
140  * The pairs of values below were obtained from empirical measurement
141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142  * interrupt for every N packets received, where N is, approximately,
143  * the second value (rx_max_bds) in each pair.  The values are chosen
144  * such that moving from one pair to the succeeding pair was observed
145  * to roughly halve interrupt rate under sustained input packet load.
146  * The values were empirically chosen to avoid overflowing internal
147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
148  * results in internal wrapping and higher interrupt rates.
149  * The limit of 46 frames was chosen to match NFS workloads.
150  *
151  * These values also work well on bcm5701, bcm5704C, and (less
152  * tested) bcm5703.  On other chipsets, (including the Altima chip
153  * family), the larger values may overflow internal chip limits,
154  * leading to increasing interrupt rates rather than lower interrupt
155  * rates.
156  *
157  * Applications using heavy interrupt mitigation (interrupting every
158  * 32 or 46 frames) in both directions may need to increase the TCP
159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160  * full link bandwidth, due to ACKs and window updates lingering
161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162  */
163 static const struct bge_load_rx_thresh {
164 	int rx_ticks;
165 	int rx_max_bds; }
166 bge_rx_threshes[] = {
167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
168 	{ 32,   2 },
169 	{ 50,   4 },
170 	{ 100,  8 },
171 	{ 192, 16 },
172 	{ 416, 32 },
173 	{ 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176 
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180 
181 static int bge_rxthresh_nodenum;
182 
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184 
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191 
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197 
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201 
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224 
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 			       bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241 
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252 
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256 
257 #define BGE_RESET_SHUTDOWN	0
258 #define	BGE_RESET_START		1
259 #define	BGE_RESET_SUSPEND	2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269 
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276 
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x)	if (bgedebug) printf x
279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
281 int	bgedebug = 0;
282 int	bge_tso_debug = 0;
283 void		bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289 
290 #ifdef BGE_EVENT_COUNTERS
291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
294 #else
295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
298 #endif
299 
300 static const struct bge_product {
301 	pci_vendor_id_t		bp_vendor;
302 	pci_product_id_t	bp_product;
303 	const char		*bp_name;
304 } bge_products[] = {
305 	/*
306 	 * The BCM5700 documentation seems to indicate that the hardware
307 	 * still has the Alteon vendor ID burned into it, though it
308 	 * should always be overridden by the value in the EEPROM.  We'll
309 	 * check for it anyway.
310 	 */
311 	{ PCI_VENDOR_ALTEON,
312 	  PCI_PRODUCT_ALTEON_BCM5700,
313 	  "Broadcom BCM5700 Gigabit Ethernet",
314 	  },
315 	{ PCI_VENDOR_ALTEON,
316 	  PCI_PRODUCT_ALTEON_BCM5701,
317 	  "Broadcom BCM5701 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_ALTIMA,
320 	  PCI_PRODUCT_ALTIMA_AC1000,
321 	  "Altima AC1000 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_ALTIMA,
324 	  PCI_PRODUCT_ALTIMA_AC1001,
325 	  "Altima AC1001 Gigabit Ethernet",
326 	   },
327 	{ PCI_VENDOR_ALTIMA,
328 	  PCI_PRODUCT_ALTIMA_AC1003,
329 	  "Altima AC1003 Gigabit Ethernet",
330 	   },
331 	{ PCI_VENDOR_ALTIMA,
332 	  PCI_PRODUCT_ALTIMA_AC9100,
333 	  "Altima AC9100 Gigabit Ethernet",
334 	  },
335 	{ PCI_VENDOR_APPLE,
336 	  PCI_PRODUCT_APPLE_BCM5701,
337 	  "APPLE BCM5701 Gigabit Ethernet",
338 	  },
339 	{ PCI_VENDOR_BROADCOM,
340 	  PCI_PRODUCT_BROADCOM_BCM5700,
341 	  "Broadcom BCM5700 Gigabit Ethernet",
342 	  },
343 	{ PCI_VENDOR_BROADCOM,
344 	  PCI_PRODUCT_BROADCOM_BCM5701,
345 	  "Broadcom BCM5701 Gigabit Ethernet",
346 	  },
347 	{ PCI_VENDOR_BROADCOM,
348 	  PCI_PRODUCT_BROADCOM_BCM5702,
349 	  "Broadcom BCM5702 Gigabit Ethernet",
350 	  },
351 	{ PCI_VENDOR_BROADCOM,
352 	  PCI_PRODUCT_BROADCOM_BCM5702X,
353 	  "Broadcom BCM5702X Gigabit Ethernet" },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5703,
356 	  "Broadcom BCM5703 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5703X,
360 	  "Broadcom BCM5703X Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 	  "Broadcom BCM5703 Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5704C,
368 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5704S,
372 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5705,
376 	  "Broadcom BCM5705 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5705F,
380 	  "Broadcom BCM5705F Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5705K,
384 	  "Broadcom BCM5705K Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5705M,
388 	  "Broadcom BCM5705M Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 	  "Broadcom BCM5705M Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5714,
396 	  "Broadcom BCM5714 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5714S,
400 	  "Broadcom BCM5714S Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5715,
404 	  "Broadcom BCM5715 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5715S,
408 	  "Broadcom BCM5715S Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5717,
412 	  "Broadcom BCM5717 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5718,
416 	  "Broadcom BCM5718 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5719,
420 	  "Broadcom BCM5719 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5720,
424 	  "Broadcom BCM5720 Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5721,
428 	  "Broadcom BCM5721 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5722,
432 	  "Broadcom BCM5722 Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5723,
436 	  "Broadcom BCM5723 Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5750,
440 	  "Broadcom BCM5750 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5751,
444 	  "Broadcom BCM5751 Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5751F,
448 	  "Broadcom BCM5751F Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5751M,
452 	  "Broadcom BCM5751M Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5752,
456 	  "Broadcom BCM5752 Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5752M,
460 	  "Broadcom BCM5752M Gigabit Ethernet",
461 	  },
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5753,
464 	  "Broadcom BCM5753 Gigabit Ethernet",
465 	  },
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5753F,
468 	  "Broadcom BCM5753F Gigabit Ethernet",
469 	  },
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5753M,
472 	  "Broadcom BCM5753M Gigabit Ethernet",
473 	  },
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5754,
476 	  "Broadcom BCM5754 Gigabit Ethernet",
477 	},
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5754M,
480 	  "Broadcom BCM5754M Gigabit Ethernet",
481 	},
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5755,
484 	  "Broadcom BCM5755 Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5755M,
488 	  "Broadcom BCM5755M Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5756,
492 	  "Broadcom BCM5756 Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5761,
496 	  "Broadcom BCM5761 Gigabit Ethernet",
497 	},
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5761E,
500 	  "Broadcom BCM5761E Gigabit Ethernet",
501 	},
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5761S,
504 	  "Broadcom BCM5761S Gigabit Ethernet",
505 	},
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
508 	  "Broadcom BCM5761SE Gigabit Ethernet",
509 	},
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5764,
512 	  "Broadcom BCM5764 Gigabit Ethernet",
513 	  },
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5780,
516 	  "Broadcom BCM5780 Gigabit Ethernet",
517 	  },
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5780S,
520 	  "Broadcom BCM5780S Gigabit Ethernet",
521 	  },
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5781,
524 	  "Broadcom BCM5781 Gigabit Ethernet",
525 	  },
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5782,
528 	  "Broadcom BCM5782 Gigabit Ethernet",
529 	},
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5784M,
532 	  "BCM5784M NetLink 1000baseT Ethernet",
533 	},
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5785F,
536 	  "BCM5785F NetLink 10/100 Ethernet",
537 	},
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5785G,
540 	  "BCM5785G NetLink 1000baseT Ethernet",
541 	},
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5786,
544 	  "Broadcom BCM5786 Gigabit Ethernet",
545 	},
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5787,
548 	  "Broadcom BCM5787 Gigabit Ethernet",
549 	},
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5787F,
552 	  "Broadcom BCM5787F 10/100 Ethernet",
553 	},
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5787M,
556 	  "Broadcom BCM5787M Gigabit Ethernet",
557 	},
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM5788,
560 	  "Broadcom BCM5788 Gigabit Ethernet",
561 	  },
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM5789,
564 	  "Broadcom BCM5789 Gigabit Ethernet",
565 	  },
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM5901,
568 	  "Broadcom BCM5901 Fast Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
572 	  "Broadcom BCM5901A2 Fast Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM5903M,
576 	  "Broadcom BCM5903M Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM5906,
580 	  "Broadcom BCM5906 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM5906M,
584 	  "Broadcom BCM5906M Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM57760,
588 	  "Broadcom BCM57760 Gigabit Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM57761,
592 	  "Broadcom BCM57761 Gigabit Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57762,
596 	  "Broadcom BCM57762 Gigabit Ethernet",
597 	  },
598 	{ PCI_VENDOR_BROADCOM,
599 	  PCI_PRODUCT_BROADCOM_BCM57765,
600 	  "Broadcom BCM57765 Gigabit Ethernet",
601 	  },
602 	{ PCI_VENDOR_BROADCOM,
603 	  PCI_PRODUCT_BROADCOM_BCM57766,
604 	  "Broadcom BCM57766 Gigabit Ethernet",
605 	  },
606 	{ PCI_VENDOR_BROADCOM,
607 	  PCI_PRODUCT_BROADCOM_BCM57780,
608 	  "Broadcom BCM57780 Gigabit Ethernet",
609 	  },
610 	{ PCI_VENDOR_BROADCOM,
611 	  PCI_PRODUCT_BROADCOM_BCM57781,
612 	  "Broadcom BCM57781 Gigabit Ethernet",
613 	  },
614 	{ PCI_VENDOR_BROADCOM,
615 	  PCI_PRODUCT_BROADCOM_BCM57782,
616 	  "Broadcom BCM57782 Gigabit Ethernet",
617 	  },
618 	{ PCI_VENDOR_BROADCOM,
619 	  PCI_PRODUCT_BROADCOM_BCM57785,
620 	  "Broadcom BCM57785 Gigabit Ethernet",
621 	  },
622 	{ PCI_VENDOR_BROADCOM,
623 	  PCI_PRODUCT_BROADCOM_BCM57786,
624 	  "Broadcom BCM57786 Gigabit Ethernet",
625 	  },
626 	{ PCI_VENDOR_BROADCOM,
627 	  PCI_PRODUCT_BROADCOM_BCM57788,
628 	  "Broadcom BCM57788 Gigabit Ethernet",
629 	  },
630 	{ PCI_VENDOR_BROADCOM,
631 	  PCI_PRODUCT_BROADCOM_BCM57790,
632 	  "Broadcom BCM57790 Gigabit Ethernet",
633 	  },
634 	{ PCI_VENDOR_BROADCOM,
635 	  PCI_PRODUCT_BROADCOM_BCM57791,
636 	  "Broadcom BCM57791 Gigabit Ethernet",
637 	  },
638 	{ PCI_VENDOR_BROADCOM,
639 	  PCI_PRODUCT_BROADCOM_BCM57795,
640 	  "Broadcom BCM57795 Gigabit Ethernet",
641 	  },
642 	{ PCI_VENDOR_SCHNEIDERKOCH,
643 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 	  },
646 	{ PCI_VENDOR_3COM,
647 	  PCI_PRODUCT_3COM_3C996,
648 	  "3Com 3c996 Gigabit Ethernet",
649 	  },
650 	{ PCI_VENDOR_FUJITSU4,
651 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
652 	  "Fujitsu PW008GE4 Gigabit Ethernet",
653 	  },
654 	{ PCI_VENDOR_FUJITSU4,
655 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
656 	  "Fujitsu PW008GE5 Gigabit Ethernet",
657 	  },
658 	{ PCI_VENDOR_FUJITSU4,
659 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 	  },
662 	{ 0,
663 	  0,
664 	  NULL },
665 };
666 
667 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
676 
677 static const struct bge_revision {
678 	uint32_t		br_chipid;
679 	const char		*br_name;
680 } bge_revisions[] = {
681 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 	/* 5754 and 5787 share the same ASIC ID */
738 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
747 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
748 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
749 
750 	{ 0, NULL }
751 };
752 
753 /*
754  * Some defaults for major revisions, so that newer steppings
755  * that we don't know about have a shot at working.
756  */
757 static const struct bge_revision bge_majorrevs[] = {
758 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
759 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
760 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
761 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
762 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
763 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
764 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
765 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
766 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
767 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
768 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
769 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
770 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
771 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
772 	/* 5754 and 5787 share the same ASIC ID */
773 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
774 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
775 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
776 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
777 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
778 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
779 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
780 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
781 
782 	{ 0, NULL }
783 };
784 
785 static int bge_allow_asf = 1;
786 
787 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
788     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
789 
790 static uint32_t
791 bge_readmem_ind(struct bge_softc *sc, int off)
792 {
793 	pcireg_t val;
794 
795 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
796 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
797 		return 0;
798 
799 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
800 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
801 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
802 	return val;
803 }
804 
805 static void
806 bge_writemem_ind(struct bge_softc *sc, int off, int val)
807 {
808 
809 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
811 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
812 }
813 
814 /*
815  * PCI Express only
816  */
817 static void
818 bge_set_max_readrq(struct bge_softc *sc)
819 {
820 	pcireg_t val;
821 
822 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
823 	    + PCIE_DCSR);
824 	val &= ~PCIE_DCSR_MAX_READ_REQ;
825 	switch (sc->bge_expmrq) {
826 	case 2048:
827 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
828 		break;
829 	case 4096:
830 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
831 		break;
832 	default:
833 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
834 		break;
835 	}
836 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
837 	    + PCIE_DCSR, val);
838 }
839 
840 #ifdef notdef
841 static uint32_t
842 bge_readreg_ind(struct bge_softc *sc, int off)
843 {
844 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
845 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
846 }
847 #endif
848 
849 static void
850 bge_writereg_ind(struct bge_softc *sc, int off, int val)
851 {
852 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
853 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
854 }
855 
856 static void
857 bge_writemem_direct(struct bge_softc *sc, int off, int val)
858 {
859 	CSR_WRITE_4(sc, off, val);
860 }
861 
862 static void
863 bge_writembx(struct bge_softc *sc, int off, int val)
864 {
865 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
866 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
867 
868 	CSR_WRITE_4(sc, off, val);
869 }
870 
871 static void
872 bge_writembx_flush(struct bge_softc *sc, int off, int val)
873 {
874 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
875 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
876 
877 	CSR_WRITE_4_FLUSH(sc, off, val);
878 }
879 
880 /*
881  * Clear all stale locks and select the lock for this driver instance.
882  */
883 void
884 bge_ape_lock_init(struct bge_softc *sc)
885 {
886 	struct pci_attach_args *pa = &(sc->bge_pa);
887 	uint32_t bit, regbase;
888 	int i;
889 
890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
891 		regbase = BGE_APE_LOCK_GRANT;
892 	else
893 		regbase = BGE_APE_PER_LOCK_GRANT;
894 
895 	/* Clear any stale locks. */
896 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
897 		switch (i) {
898 		case BGE_APE_LOCK_PHY0:
899 		case BGE_APE_LOCK_PHY1:
900 		case BGE_APE_LOCK_PHY2:
901 		case BGE_APE_LOCK_PHY3:
902 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
903 			break;
904 		default:
905 			if (pa->pa_function == 0)
906 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
907 			else
908 				bit = (1 << pa->pa_function);
909 		}
910 		APE_WRITE_4(sc, regbase + 4 * i, bit);
911 	}
912 
913 	/* Select the PHY lock based on the device's function number. */
914 	switch (pa->pa_function) {
915 	case 0:
916 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
917 		break;
918 	case 1:
919 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
920 		break;
921 	case 2:
922 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
923 		break;
924 	case 3:
925 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
926 		break;
927 	default:
928 		printf("%s: PHY lock not supported on function\n",
929 		    device_xname(sc->bge_dev));
930 		break;
931 	}
932 }
933 
934 /*
935  * Check for APE firmware, set flags, and print version info.
936  */
937 void
938 bge_ape_read_fw_ver(struct bge_softc *sc)
939 {
940 	const char *fwtype;
941 	uint32_t apedata, features;
942 
943 	/* Check for a valid APE signature in shared memory. */
944 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
945 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
946 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
947 		return;
948 	}
949 
950 	/* Check if APE firmware is running. */
951 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
952 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
953 		printf("%s: APE signature found but FW status not ready! "
954 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
955 		return;
956 	}
957 
958 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
959 
960 	/* Fetch the APE firwmare type and version. */
961 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
962 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
963 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
964 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
965 		fwtype = "NCSI";
966 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
967 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
968 		fwtype = "DASH";
969 	} else
970 		fwtype = "UNKN";
971 
972 	/* Print the APE firmware version. */
973 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
974 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
975 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
976 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
977 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
978 }
979 
980 int
981 bge_ape_lock(struct bge_softc *sc, int locknum)
982 {
983 	struct pci_attach_args *pa = &(sc->bge_pa);
984 	uint32_t bit, gnt, req, status;
985 	int i, off;
986 
987 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
988 		return (0);
989 
990 	/* Lock request/grant registers have different bases. */
991 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
992 		req = BGE_APE_LOCK_REQ;
993 		gnt = BGE_APE_LOCK_GRANT;
994 	} else {
995 		req = BGE_APE_PER_LOCK_REQ;
996 		gnt = BGE_APE_PER_LOCK_GRANT;
997 	}
998 
999 	off = 4 * locknum;
1000 
1001 	switch (locknum) {
1002 	case BGE_APE_LOCK_GPIO:
1003 		/* Lock required when using GPIO. */
1004 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1005 			return (0);
1006 		if (pa->pa_function == 0)
1007 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1008 		else
1009 			bit = (1 << pa->pa_function);
1010 		break;
1011 	case BGE_APE_LOCK_GRC:
1012 		/* Lock required to reset the device. */
1013 		if (pa->pa_function == 0)
1014 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1015 		else
1016 			bit = (1 << pa->pa_function);
1017 		break;
1018 	case BGE_APE_LOCK_MEM:
1019 		/* Lock required when accessing certain APE memory. */
1020 		if (pa->pa_function == 0)
1021 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1022 		else
1023 			bit = (1 << pa->pa_function);
1024 		break;
1025 	case BGE_APE_LOCK_PHY0:
1026 	case BGE_APE_LOCK_PHY1:
1027 	case BGE_APE_LOCK_PHY2:
1028 	case BGE_APE_LOCK_PHY3:
1029 		/* Lock required when accessing PHYs. */
1030 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1031 		break;
1032 	default:
1033 		return (EINVAL);
1034 	}
1035 
1036 	/* Request a lock. */
1037 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1038 
1039 	/* Wait up to 1 second to acquire lock. */
1040 	for (i = 0; i < 20000; i++) {
1041 		status = APE_READ_4(sc, gnt + off);
1042 		if (status == bit)
1043 			break;
1044 		DELAY(50);
1045 	}
1046 
1047 	/* Handle any errors. */
1048 	if (status != bit) {
1049 		printf("%s: APE lock %d request failed! "
1050 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1051 		    device_xname(sc->bge_dev),
1052 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1053 		    status & 0xFFFF);
1054 		/* Revoke the lock request. */
1055 		APE_WRITE_4(sc, gnt + off, bit);
1056 		return (EBUSY);
1057 	}
1058 
1059 	return (0);
1060 }
1061 
1062 void
1063 bge_ape_unlock(struct bge_softc *sc, int locknum)
1064 {
1065 	struct pci_attach_args *pa = &(sc->bge_pa);
1066 	uint32_t bit, gnt;
1067 	int off;
1068 
1069 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1070 		return;
1071 
1072 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1073 		gnt = BGE_APE_LOCK_GRANT;
1074 	else
1075 		gnt = BGE_APE_PER_LOCK_GRANT;
1076 
1077 	off = 4 * locknum;
1078 
1079 	switch (locknum) {
1080 	case BGE_APE_LOCK_GPIO:
1081 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1082 			return;
1083 		if (pa->pa_function == 0)
1084 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1085 		else
1086 			bit = (1 << pa->pa_function);
1087 		break;
1088 	case BGE_APE_LOCK_GRC:
1089 		if (pa->pa_function == 0)
1090 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 		else
1092 			bit = (1 << pa->pa_function);
1093 		break;
1094 	case BGE_APE_LOCK_MEM:
1095 		if (pa->pa_function == 0)
1096 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 		else
1098 			bit = (1 << pa->pa_function);
1099 		break;
1100 	case BGE_APE_LOCK_PHY0:
1101 	case BGE_APE_LOCK_PHY1:
1102 	case BGE_APE_LOCK_PHY2:
1103 	case BGE_APE_LOCK_PHY3:
1104 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1105 		break;
1106 	default:
1107 		return;
1108 	}
1109 
1110 	/* Write and flush for consecutive bge_ape_lock() */
1111 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1112 }
1113 
1114 /*
1115  * Send an event to the APE firmware.
1116  */
1117 void
1118 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1119 {
1120 	uint32_t apedata;
1121 	int i;
1122 
1123 	/* NCSI does not support APE events. */
1124 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1125 		return;
1126 
1127 	/* Wait up to 1ms for APE to service previous event. */
1128 	for (i = 10; i > 0; i--) {
1129 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1130 			break;
1131 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1132 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1133 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1134 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1135 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1136 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1137 			break;
1138 		}
1139 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1140 		DELAY(100);
1141 	}
1142 	if (i == 0) {
1143 		printf("%s: APE event 0x%08x send timed out\n",
1144 		    device_xname(sc->bge_dev), event);
1145 	}
1146 }
1147 
1148 void
1149 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1150 {
1151 	uint32_t apedata, event;
1152 
1153 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1154 		return;
1155 
1156 	switch (kind) {
1157 	case BGE_RESET_START:
1158 		/* If this is the first load, clear the load counter. */
1159 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1160 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1161 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1162 		else {
1163 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1164 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1165 		}
1166 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1167 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1168 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1169 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1170 
1171 		/* Add some version info if bge(4) supports it. */
1172 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1173 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1174 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1175 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1176 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1177 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1178 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1179 		    BGE_APE_HOST_DRVR_STATE_START);
1180 		event = BGE_APE_EVENT_STATUS_STATE_START;
1181 		break;
1182 	case BGE_RESET_SHUTDOWN:
1183 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1185 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1186 		break;
1187 	case BGE_RESET_SUSPEND:
1188 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1189 		break;
1190 	default:
1191 		return;
1192 	}
1193 
1194 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1195 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1196 }
1197 
1198 static uint8_t
1199 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1200 {
1201 	uint32_t access, byte = 0;
1202 	int i;
1203 
1204 	/* Lock. */
1205 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1206 	for (i = 0; i < 8000; i++) {
1207 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1208 			break;
1209 		DELAY(20);
1210 	}
1211 	if (i == 8000)
1212 		return 1;
1213 
1214 	/* Enable access. */
1215 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1216 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1217 
1218 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1219 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1220 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1221 		DELAY(10);
1222 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1223 			DELAY(10);
1224 			break;
1225 		}
1226 	}
1227 
1228 	if (i == BGE_TIMEOUT * 10) {
1229 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1230 		return 1;
1231 	}
1232 
1233 	/* Get result. */
1234 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1235 
1236 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1237 
1238 	/* Disable access. */
1239 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1240 
1241 	/* Unlock. */
1242 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1243 
1244 	return 0;
1245 }
1246 
1247 /*
1248  * Read a sequence of bytes from NVRAM.
1249  */
1250 static int
1251 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1252 {
1253 	int error = 0, i;
1254 	uint8_t byte = 0;
1255 
1256 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1257 		return 1;
1258 
1259 	for (i = 0; i < cnt; i++) {
1260 		error = bge_nvram_getbyte(sc, off + i, &byte);
1261 		if (error)
1262 			break;
1263 		*(dest + i) = byte;
1264 	}
1265 
1266 	return (error ? 1 : 0);
1267 }
1268 
1269 /*
1270  * Read a byte of data stored in the EEPROM at address 'addr.' The
1271  * BCM570x supports both the traditional bitbang interface and an
1272  * auto access interface for reading the EEPROM. We use the auto
1273  * access method.
1274  */
1275 static uint8_t
1276 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1277 {
1278 	int i;
1279 	uint32_t byte = 0;
1280 
1281 	/*
1282 	 * Enable use of auto EEPROM access so we can avoid
1283 	 * having to use the bitbang method.
1284 	 */
1285 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1286 
1287 	/* Reset the EEPROM, load the clock period. */
1288 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1289 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1290 	DELAY(20);
1291 
1292 	/* Issue the read EEPROM command. */
1293 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1294 
1295 	/* Wait for completion */
1296 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1297 		DELAY(10);
1298 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1299 			break;
1300 	}
1301 
1302 	if (i == BGE_TIMEOUT * 10) {
1303 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1304 		return 1;
1305 	}
1306 
1307 	/* Get result. */
1308 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1309 
1310 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Read a sequence of bytes from the EEPROM.
1317  */
1318 static int
1319 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1320 {
1321 	int error = 0, i;
1322 	uint8_t byte = 0;
1323 	char *dest = destv;
1324 
1325 	for (i = 0; i < cnt; i++) {
1326 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1327 		if (error)
1328 			break;
1329 		*(dest + i) = byte;
1330 	}
1331 
1332 	return (error ? 1 : 0);
1333 }
1334 
1335 static int
1336 bge_miibus_readreg(device_t dev, int phy, int reg)
1337 {
1338 	struct bge_softc *sc = device_private(dev);
1339 	uint32_t val;
1340 	uint32_t autopoll;
1341 	int i;
1342 
1343 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1344 		return 0;
1345 
1346 	/* Reading with autopolling on may trigger PCI errors */
1347 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1348 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1349 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1350 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1351 		DELAY(80);
1352 	}
1353 
1354 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1355 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1356 
1357 	for (i = 0; i < BGE_TIMEOUT; i++) {
1358 		delay(10);
1359 		val = CSR_READ_4(sc, BGE_MI_COMM);
1360 		if (!(val & BGE_MICOMM_BUSY)) {
1361 			DELAY(5);
1362 			val = CSR_READ_4(sc, BGE_MI_COMM);
1363 			break;
1364 		}
1365 	}
1366 
1367 	if (i == BGE_TIMEOUT) {
1368 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1369 		val = 0;
1370 		goto done;
1371 	}
1372 
1373 done:
1374 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1375 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1376 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1377 		DELAY(80);
1378 	}
1379 
1380 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1381 
1382 	if (val & BGE_MICOMM_READFAIL)
1383 		return 0;
1384 
1385 	return (val & 0xFFFF);
1386 }
1387 
1388 static void
1389 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1390 {
1391 	struct bge_softc *sc = device_private(dev);
1392 	uint32_t autopoll;
1393 	int i;
1394 
1395 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1396 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1397 		return;
1398 
1399 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1400 		return;
1401 
1402 	/* Reading with autopolling on may trigger PCI errors */
1403 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1404 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1405 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1406 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1407 		DELAY(80);
1408 	}
1409 
1410 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1411 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1412 
1413 	for (i = 0; i < BGE_TIMEOUT; i++) {
1414 		delay(10);
1415 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1416 			delay(5);
1417 			CSR_READ_4(sc, BGE_MI_COMM);
1418 			break;
1419 		}
1420 	}
1421 
1422 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1423 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1424 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1425 		delay(80);
1426 	}
1427 
1428 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1429 
1430 	if (i == BGE_TIMEOUT)
1431 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1432 }
1433 
1434 static void
1435 bge_miibus_statchg(struct ifnet *ifp)
1436 {
1437 	struct bge_softc *sc = ifp->if_softc;
1438 	struct mii_data *mii = &sc->bge_mii;
1439 	uint32_t mac_mode, rx_mode, tx_mode;
1440 
1441 	/*
1442 	 * Get flow control negotiation result.
1443 	 */
1444 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1445 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1446 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1447 
1448 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1449 	    mii->mii_media_status & IFM_ACTIVE &&
1450 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1451 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1452 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1453 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1454 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1455 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1456 
1457 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1458 		return;
1459 
1460 	/* Set the port mode (MII/GMII) to match the link speed. */
1461 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1462 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1463 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1464 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1465 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1466 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1467 		mac_mode |= BGE_PORTMODE_GMII;
1468 	else
1469 		mac_mode |= BGE_PORTMODE_MII;
1470 
1471 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1472 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1473 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1474 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1475 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1476 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1477 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1478 	} else
1479 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1480 
1481 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1482 	DELAY(40);
1483 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1484 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1485 }
1486 
1487 /*
1488  * Update rx threshold levels to values in a particular slot
1489  * of the interrupt-mitigation table bge_rx_threshes.
1490  */
1491 static void
1492 bge_set_thresh(struct ifnet *ifp, int lvl)
1493 {
1494 	struct bge_softc *sc = ifp->if_softc;
1495 	int s;
1496 
1497 	/* For now, just save the new Rx-intr thresholds and record
1498 	 * that a threshold update is pending.  Updating the hardware
1499 	 * registers here (even at splhigh()) is observed to
1500 	 * occasionaly cause glitches where Rx-interrupts are not
1501 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1502 	 */
1503 	s = splnet();
1504 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1505 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1506 	sc->bge_pending_rxintr_change = 1;
1507 	splx(s);
1508 }
1509 
1510 
1511 /*
1512  * Update Rx thresholds of all bge devices
1513  */
1514 static void
1515 bge_update_all_threshes(int lvl)
1516 {
1517 	struct ifnet *ifp;
1518 	const char * const namebuf = "bge";
1519 	int namelen;
1520 	int s;
1521 
1522 	if (lvl < 0)
1523 		lvl = 0;
1524 	else if (lvl >= NBGE_RX_THRESH)
1525 		lvl = NBGE_RX_THRESH - 1;
1526 
1527 	namelen = strlen(namebuf);
1528 	/*
1529 	 * Now search all the interfaces for this name/number
1530 	 */
1531 	s = pserialize_read_enter();
1532 	IFNET_READER_FOREACH(ifp) {
1533 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1534 		      continue;
1535 		/* We got a match: update if doing auto-threshold-tuning */
1536 		if (bge_auto_thresh)
1537 			bge_set_thresh(ifp, lvl);
1538 	}
1539 	pserialize_read_exit(s);
1540 }
1541 
1542 /*
1543  * Handle events that have triggered interrupts.
1544  */
1545 static void
1546 bge_handle_events(struct bge_softc *sc)
1547 {
1548 
1549 	return;
1550 }
1551 
1552 /*
1553  * Memory management for jumbo frames.
1554  */
1555 
1556 static int
1557 bge_alloc_jumbo_mem(struct bge_softc *sc)
1558 {
1559 	char *ptr, *kva;
1560 	bus_dma_segment_t	seg;
1561 	int		i, rseg, state, error;
1562 	struct bge_jpool_entry   *entry;
1563 
1564 	state = error = 0;
1565 
1566 	/* Grab a big chunk o' storage. */
1567 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1568 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1569 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1570 		return ENOBUFS;
1571 	}
1572 
1573 	state = 1;
1574 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1575 	    BUS_DMA_NOWAIT)) {
1576 		aprint_error_dev(sc->bge_dev,
1577 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1578 		error = ENOBUFS;
1579 		goto out;
1580 	}
1581 
1582 	state = 2;
1583 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1584 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1585 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1586 		error = ENOBUFS;
1587 		goto out;
1588 	}
1589 
1590 	state = 3;
1591 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1592 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1593 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1594 		error = ENOBUFS;
1595 		goto out;
1596 	}
1597 
1598 	state = 4;
1599 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1600 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1601 
1602 	SLIST_INIT(&sc->bge_jfree_listhead);
1603 	SLIST_INIT(&sc->bge_jinuse_listhead);
1604 
1605 	/*
1606 	 * Now divide it up into 9K pieces and save the addresses
1607 	 * in an array.
1608 	 */
1609 	ptr = sc->bge_cdata.bge_jumbo_buf;
1610 	for (i = 0; i < BGE_JSLOTS; i++) {
1611 		sc->bge_cdata.bge_jslots[i] = ptr;
1612 		ptr += BGE_JLEN;
1613 		entry = malloc(sizeof(struct bge_jpool_entry),
1614 		    M_DEVBUF, M_NOWAIT);
1615 		if (entry == NULL) {
1616 			aprint_error_dev(sc->bge_dev,
1617 			    "no memory for jumbo buffer queue!\n");
1618 			error = ENOBUFS;
1619 			goto out;
1620 		}
1621 		entry->slot = i;
1622 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1623 				 entry, jpool_entries);
1624 	}
1625 out:
1626 	if (error != 0) {
1627 		switch (state) {
1628 		case 4:
1629 			bus_dmamap_unload(sc->bge_dmatag,
1630 			    sc->bge_cdata.bge_rx_jumbo_map);
1631 		case 3:
1632 			bus_dmamap_destroy(sc->bge_dmatag,
1633 			    sc->bge_cdata.bge_rx_jumbo_map);
1634 		case 2:
1635 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1636 		case 1:
1637 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1638 			break;
1639 		default:
1640 			break;
1641 		}
1642 	}
1643 
1644 	return error;
1645 }
1646 
1647 /*
1648  * Allocate a jumbo buffer.
1649  */
1650 static void *
1651 bge_jalloc(struct bge_softc *sc)
1652 {
1653 	struct bge_jpool_entry   *entry;
1654 
1655 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1656 
1657 	if (entry == NULL) {
1658 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1659 		return NULL;
1660 	}
1661 
1662 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1663 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1664 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1665 }
1666 
1667 /*
1668  * Release a jumbo buffer.
1669  */
1670 static void
1671 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1672 {
1673 	struct bge_jpool_entry *entry;
1674 	struct bge_softc *sc;
1675 	int i, s;
1676 
1677 	/* Extract the softc struct pointer. */
1678 	sc = (struct bge_softc *)arg;
1679 
1680 	if (sc == NULL)
1681 		panic("bge_jfree: can't find softc pointer!");
1682 
1683 	/* calculate the slot this buffer belongs to */
1684 
1685 	i = ((char *)buf
1686 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1687 
1688 	if ((i < 0) || (i >= BGE_JSLOTS))
1689 		panic("bge_jfree: asked to free buffer that we don't manage!");
1690 
1691 	s = splvm();
1692 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1693 	if (entry == NULL)
1694 		panic("bge_jfree: buffer not in use!");
1695 	entry->slot = i;
1696 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1697 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1698 
1699 	if (__predict_true(m != NULL))
1700   		pool_cache_put(mb_cache, m);
1701 	splx(s);
1702 }
1703 
1704 
1705 /*
1706  * Initialize a standard receive ring descriptor.
1707  */
1708 static int
1709 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1710     bus_dmamap_t dmamap)
1711 {
1712 	struct mbuf		*m_new = NULL;
1713 	struct bge_rx_bd	*r;
1714 	int			error;
1715 
1716 	if (dmamap == NULL) {
1717 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1718 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1719 		if (error != 0)
1720 			return error;
1721 	}
1722 
1723 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1724 
1725 	if (m == NULL) {
1726 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1727 		if (m_new == NULL)
1728 			return ENOBUFS;
1729 
1730 		MCLGET(m_new, M_DONTWAIT);
1731 		if (!(m_new->m_flags & M_EXT)) {
1732 			m_freem(m_new);
1733 			return ENOBUFS;
1734 		}
1735 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1736 
1737 	} else {
1738 		m_new = m;
1739 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1740 		m_new->m_data = m_new->m_ext.ext_buf;
1741 	}
1742 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1743 	    m_adj(m_new, ETHER_ALIGN);
1744 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1745 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1746 		m_freem(m_new);
1747 		return ENOBUFS;
1748 	}
1749 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1750 	    BUS_DMASYNC_PREREAD);
1751 
1752 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1753 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1754 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1755 	r->bge_flags = BGE_RXBDFLAG_END;
1756 	r->bge_len = m_new->m_len;
1757 	r->bge_idx = i;
1758 
1759 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1760 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1761 		i * sizeof (struct bge_rx_bd),
1762 	    sizeof (struct bge_rx_bd),
1763 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1764 
1765 	return 0;
1766 }
1767 
1768 /*
1769  * Initialize a jumbo receive ring descriptor. This allocates
1770  * a jumbo buffer from the pool managed internally by the driver.
1771  */
1772 static int
1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1774 {
1775 	struct mbuf *m_new = NULL;
1776 	struct bge_rx_bd *r;
1777 	void *buf = NULL;
1778 
1779 	if (m == NULL) {
1780 
1781 		/* Allocate the mbuf. */
1782 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1783 		if (m_new == NULL)
1784 			return ENOBUFS;
1785 
1786 		/* Allocate the jumbo buffer */
1787 		buf = bge_jalloc(sc);
1788 		if (buf == NULL) {
1789 			m_freem(m_new);
1790 			aprint_error_dev(sc->bge_dev,
1791 			    "jumbo allocation failed -- packet dropped!\n");
1792 			return ENOBUFS;
1793 		}
1794 
1795 		/* Attach the buffer to the mbuf. */
1796 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1797 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1798 		    bge_jfree, sc);
1799 		m_new->m_flags |= M_EXT_RW;
1800 	} else {
1801 		m_new = m;
1802 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1803 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1804 	}
1805 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1806 	    m_adj(m_new, ETHER_ALIGN);
1807 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1808 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1809 	    BUS_DMASYNC_PREREAD);
1810 	/* Set up the descriptor. */
1811 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1812 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1813 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1814 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1815 	r->bge_len = m_new->m_len;
1816 	r->bge_idx = i;
1817 
1818 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1819 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1820 		i * sizeof (struct bge_rx_bd),
1821 	    sizeof (struct bge_rx_bd),
1822 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1829  * that's 1MB or memory, which is a lot. For now, we fill only the first
1830  * 256 ring entries and hope that our CPU is fast enough to keep up with
1831  * the NIC.
1832  */
1833 static int
1834 bge_init_rx_ring_std(struct bge_softc *sc)
1835 {
1836 	int i;
1837 
1838 	if (sc->bge_flags & BGEF_RXRING_VALID)
1839 		return 0;
1840 
1841 	for (i = 0; i < BGE_SSLOTS; i++) {
1842 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1843 			return ENOBUFS;
1844 	}
1845 
1846 	sc->bge_std = i - 1;
1847 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1848 
1849 	sc->bge_flags |= BGEF_RXRING_VALID;
1850 
1851 	return 0;
1852 }
1853 
1854 static void
1855 bge_free_rx_ring_std(struct bge_softc *sc)
1856 {
1857 	int i;
1858 
1859 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1860 		return;
1861 
1862 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1863 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1864 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1865 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1866 			bus_dmamap_destroy(sc->bge_dmatag,
1867 			    sc->bge_cdata.bge_rx_std_map[i]);
1868 		}
1869 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1870 		    sizeof(struct bge_rx_bd));
1871 	}
1872 
1873 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1874 }
1875 
1876 static int
1877 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1878 {
1879 	int i;
1880 	volatile struct bge_rcb *rcb;
1881 
1882 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1883 		return 0;
1884 
1885 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1886 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1887 			return ENOBUFS;
1888 	}
1889 
1890 	sc->bge_jumbo = i - 1;
1891 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1892 
1893 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1894 	rcb->bge_maxlen_flags = 0;
1895 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1896 
1897 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1898 
1899 	return 0;
1900 }
1901 
1902 static void
1903 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1904 {
1905 	int i;
1906 
1907 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1908 		return;
1909 
1910 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1911 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1912 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1913 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1914 		}
1915 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1916 		    sizeof(struct bge_rx_bd));
1917 	}
1918 
1919 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1920 }
1921 
1922 static void
1923 bge_free_tx_ring(struct bge_softc *sc)
1924 {
1925 	int i;
1926 	struct txdmamap_pool_entry *dma;
1927 
1928 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1929 		return;
1930 
1931 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1932 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1933 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1934 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1935 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1936 					    link);
1937 			sc->txdma[i] = 0;
1938 		}
1939 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1940 		    sizeof(struct bge_tx_bd));
1941 	}
1942 
1943 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1944 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1945 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1946 		free(dma, M_DEVBUF);
1947 	}
1948 
1949 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1950 }
1951 
1952 static int
1953 bge_init_tx_ring(struct bge_softc *sc)
1954 {
1955 	struct ifnet *ifp = &sc->ethercom.ec_if;
1956 	int i;
1957 	bus_dmamap_t dmamap;
1958 	bus_size_t maxsegsz;
1959 	struct txdmamap_pool_entry *dma;
1960 
1961 	if (sc->bge_flags & BGEF_TXRING_VALID)
1962 		return 0;
1963 
1964 	sc->bge_txcnt = 0;
1965 	sc->bge_tx_saved_considx = 0;
1966 
1967 	/* Initialize transmit producer index for host-memory send ring. */
1968 	sc->bge_tx_prodidx = 0;
1969 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970 	/* 5700 b2 errata */
1971 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1972 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973 
1974 	/* NIC-memory send ring not used; initialize to zero. */
1975 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976 	/* 5700 b2 errata */
1977 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1978 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979 
1980 	/* Limit DMA segment size for some chips */
1981 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1982 	    (ifp->if_mtu <= ETHERMTU))
1983 		maxsegsz = 2048;
1984 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1985 		maxsegsz = 4096;
1986 	else
1987 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1988 	SLIST_INIT(&sc->txdma_list);
1989 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1990 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1991 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1992 		    &dmamap))
1993 			return ENOBUFS;
1994 		if (dmamap == NULL)
1995 			panic("dmamap NULL in bge_init_tx_ring");
1996 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1997 		if (dma == NULL) {
1998 			aprint_error_dev(sc->bge_dev,
1999 			    "can't alloc txdmamap_pool_entry\n");
2000 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2001 			return ENOMEM;
2002 		}
2003 		dma->dmamap = dmamap;
2004 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2005 	}
2006 
2007 	sc->bge_flags |= BGEF_TXRING_VALID;
2008 
2009 	return 0;
2010 }
2011 
2012 static void
2013 bge_setmulti(struct bge_softc *sc)
2014 {
2015 	struct ethercom		*ac = &sc->ethercom;
2016 	struct ifnet		*ifp = &ac->ec_if;
2017 	struct ether_multi	*enm;
2018 	struct ether_multistep  step;
2019 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2020 	uint32_t		h;
2021 	int			i;
2022 
2023 	if (ifp->if_flags & IFF_PROMISC)
2024 		goto allmulti;
2025 
2026 	/* Now program new ones. */
2027 	ETHER_FIRST_MULTI(step, ac, enm);
2028 	while (enm != NULL) {
2029 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 			/*
2031 			 * We must listen to a range of multicast addresses.
2032 			 * For now, just accept all multicasts, rather than
2033 			 * trying to set only those filter bits needed to match
2034 			 * the range.  (At this time, the only use of address
2035 			 * ranges is for IP multicast routing, for which the
2036 			 * range is big enough to require all bits set.)
2037 			 */
2038 			goto allmulti;
2039 		}
2040 
2041 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042 
2043 		/* Just want the 7 least-significant bits. */
2044 		h &= 0x7f;
2045 
2046 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2047 		ETHER_NEXT_MULTI(step, enm);
2048 	}
2049 
2050 	ifp->if_flags &= ~IFF_ALLMULTI;
2051 	goto setit;
2052 
2053  allmulti:
2054 	ifp->if_flags |= IFF_ALLMULTI;
2055 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2056 
2057  setit:
2058 	for (i = 0; i < 4; i++)
2059 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2060 }
2061 
2062 static void
2063 bge_sig_pre_reset(struct bge_softc *sc, int type)
2064 {
2065 
2066 	/*
2067 	 * Some chips don't like this so only do this if ASF is enabled
2068 	 */
2069 	if (sc->bge_asf_mode)
2070 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2071 
2072 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2073 		switch (type) {
2074 		case BGE_RESET_START:
2075 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 			    BGE_FW_DRV_STATE_START);
2077 			break;
2078 		case BGE_RESET_SHUTDOWN:
2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 			    BGE_FW_DRV_STATE_UNLOAD);
2081 			break;
2082 		case BGE_RESET_SUSPEND:
2083 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2084 			    BGE_FW_DRV_STATE_SUSPEND);
2085 			break;
2086 		}
2087 	}
2088 
2089 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2090 		bge_ape_driver_state_change(sc, type);
2091 }
2092 
2093 static void
2094 bge_sig_post_reset(struct bge_softc *sc, int type)
2095 {
2096 
2097 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2098 		switch (type) {
2099 		case BGE_RESET_START:
2100 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2101 			    BGE_FW_DRV_STATE_START_DONE);
2102 			/* START DONE */
2103 			break;
2104 		case BGE_RESET_SHUTDOWN:
2105 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (type == BGE_RESET_SHUTDOWN)
2112 		bge_ape_driver_state_change(sc, type);
2113 }
2114 
2115 static void
2116 bge_sig_legacy(struct bge_softc *sc, int type)
2117 {
2118 
2119 	if (sc->bge_asf_mode) {
2120 		switch (type) {
2121 		case BGE_RESET_START:
2122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 			    BGE_FW_DRV_STATE_START);
2124 			break;
2125 		case BGE_RESET_SHUTDOWN:
2126 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2127 			    BGE_FW_DRV_STATE_UNLOAD);
2128 			break;
2129 		}
2130 	}
2131 }
2132 
2133 static void
2134 bge_wait_for_event_ack(struct bge_softc *sc)
2135 {
2136 	int i;
2137 
2138 	/* wait up to 2500usec */
2139 	for (i = 0; i < 250; i++) {
2140 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2141 			BGE_RX_CPU_DRV_EVENT))
2142 			break;
2143 		DELAY(10);
2144 	}
2145 }
2146 
2147 static void
2148 bge_stop_fw(struct bge_softc *sc)
2149 {
2150 
2151 	if (sc->bge_asf_mode) {
2152 		bge_wait_for_event_ack(sc);
2153 
2154 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2155 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2156 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2157 
2158 		bge_wait_for_event_ack(sc);
2159 	}
2160 }
2161 
2162 static int
2163 bge_poll_fw(struct bge_softc *sc)
2164 {
2165 	uint32_t val;
2166 	int i;
2167 
2168 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2169 		for (i = 0; i < BGE_TIMEOUT; i++) {
2170 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2171 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2172 				break;
2173 			DELAY(100);
2174 		}
2175 		if (i >= BGE_TIMEOUT) {
2176 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2177 			return -1;
2178 		}
2179 	} else {
2180 		/*
2181 		 * Poll the value location we just wrote until
2182 		 * we see the 1's complement of the magic number.
2183 		 * This indicates that the firmware initialization
2184 		 * is complete.
2185 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2186 		 */
2187 		for (i = 0; i < BGE_TIMEOUT; i++) {
2188 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2189 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2190 				break;
2191 			DELAY(10);
2192 		}
2193 
2194 		if ((i >= BGE_TIMEOUT)
2195 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2196 			aprint_error_dev(sc->bge_dev,
2197 			    "firmware handshake timed out, val = %x\n", val);
2198 			return -1;
2199 		}
2200 	}
2201 
2202 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2203 		/* tg3 says we have to wait extra time */
2204 		delay(10 * 1000);
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 int
2211 bge_phy_addr(struct bge_softc *sc)
2212 {
2213 	struct pci_attach_args *pa = &(sc->bge_pa);
2214 	int phy_addr = 1;
2215 
2216 	/*
2217 	 * PHY address mapping for various devices.
2218 	 *
2219 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2220 	 * ---------+-------+-------+-------+-------+
2221 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2222 	 * BCM5704  |   1   |   X   |   1   |   X   |
2223 	 * BCM5717  |   1   |   8   |   2   |   9   |
2224 	 * BCM5719  |   1   |   8   |   2   |   9   |
2225 	 * BCM5720  |   1   |   8   |   2   |   9   |
2226 	 *
2227 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2228 	 * ---------+-------+-------+-------+-------+
2229 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2230 	 * BCM5704  |   X   |   X   |   X   |   X   |
2231 	 * BCM5717  |   X   |   X   |   X   |   X   |
2232 	 * BCM5719  |   3   |   10  |   4   |   11  |
2233 	 * BCM5720  |   X   |   X   |   X   |   X   |
2234 	 *
2235 	 * Other addresses may respond but they are not
2236 	 * IEEE compliant PHYs and should be ignored.
2237 	 */
2238 	switch (BGE_ASICREV(sc->bge_chipid)) {
2239 	case BGE_ASICREV_BCM5717:
2240 	case BGE_ASICREV_BCM5719:
2241 	case BGE_ASICREV_BCM5720:
2242 		phy_addr = pa->pa_function;
2243 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2244 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2245 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2246 		} else {
2247 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2248 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2249 		}
2250 	}
2251 
2252 	return phy_addr;
2253 }
2254 
2255 /*
2256  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2257  * self-test results.
2258  */
2259 static int
2260 bge_chipinit(struct bge_softc *sc)
2261 {
2262 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2263 	int i;
2264 
2265 	/* Set endianness before we access any non-PCI registers. */
2266 	misc_ctl = BGE_INIT;
2267 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
2268 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2269 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2270 	    misc_ctl);
2271 
2272 	/*
2273 	 * Clear the MAC statistics block in the NIC's
2274 	 * internal memory.
2275 	 */
2276 	for (i = BGE_STATS_BLOCK;
2277 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279 
2280 	for (i = BGE_STATUS_BLOCK;
2281 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2282 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2283 
2284 	/* 5717 workaround from tg3 */
2285 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2286 		/* Save */
2287 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2288 
2289 		/* Temporary modify MODE_CTL to control TLP */
2290 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2291 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2292 
2293 		/* Control TLP */
2294 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2295 		    BGE_TLP_PHYCTL1);
2296 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2297 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2298 
2299 		/* Restore */
2300 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2301 	}
2302 
2303 	if (BGE_IS_57765_FAMILY(sc)) {
2304 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2305 			/* Save */
2306 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2307 
2308 			/* Temporary modify MODE_CTL to control TLP */
2309 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2310 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2311 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2312 
2313 			/* Control TLP */
2314 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2315 			    BGE_TLP_PHYCTL5);
2316 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2317 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2318 
2319 			/* Restore */
2320 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 		}
2322 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2323 			/*
2324 			 * For the 57766 and non Ax versions of 57765, bootcode
2325 			 * needs to setup the PCIE Fast Training Sequence (FTS)
2326 			 * value to prevent transmit hangs.
2327 			 */
2328 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2329 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2330 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2331 
2332 			/* Save */
2333 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2334 
2335 			/* Temporary modify MODE_CTL to control TLP */
2336 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2337 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2338 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2339 
2340 			/* Control TLP */
2341 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2342 			    BGE_TLP_FTSMAX);
2343 			reg &= ~BGE_TLP_FTSMAX_MSK;
2344 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2345 			    reg | BGE_TLP_FTSMAX_VAL);
2346 
2347 			/* Restore */
2348 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2349 		}
2350 
2351 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2352 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2353 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2354 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2355 	}
2356 
2357 	/* Set up the PCI DMA control register. */
2358 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2359 	if (sc->bge_flags & BGEF_PCIE) {
2360 		/* Read watermark not used, 128 bytes for write. */
2361 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2362 		    device_xname(sc->bge_dev)));
2363 		if (sc->bge_mps >= 256)
2364 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2365 		else
2366 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2367 	} else if (sc->bge_flags & BGEF_PCIX) {
2368 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2369 		    device_xname(sc->bge_dev)));
2370 		/* PCI-X bus */
2371 		if (BGE_IS_5714_FAMILY(sc)) {
2372 			/* 256 bytes for read and write. */
2373 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2374 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2375 
2376 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2377 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2378 			else
2379 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2380 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2381 			/*
2382 			 * In the BCM5703, the DMA read watermark should
2383 			 * be set to less than or equal to the maximum
2384 			 * memory read byte count of the PCI-X command
2385 			 * register.
2386 			 */
2387 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2388 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2389 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2390 			/* 1536 bytes for read, 384 bytes for write. */
2391 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2392 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2393 		} else {
2394 			/* 384 bytes for read and write. */
2395 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2396 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2397 			    (0x0F);
2398 		}
2399 
2400 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2401 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2402 			uint32_t tmp;
2403 
2404 			/* Set ONEDMA_ATONCE for hardware workaround. */
2405 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2406 			if (tmp == 6 || tmp == 7)
2407 				dma_rw_ctl |=
2408 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2409 
2410 			/* Set PCI-X DMA write workaround. */
2411 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2412 		}
2413 	} else {
2414 		/* Conventional PCI bus: 256 bytes for read and write. */
2415 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2416 		    device_xname(sc->bge_dev)));
2417 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2418 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2419 
2420 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2421 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2422 			dma_rw_ctl |= 0x0F;
2423 	}
2424 
2425 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2426 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2427 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2428 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2429 
2430 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2431 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2432 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2433 
2434 	if (BGE_IS_57765_PLUS(sc)) {
2435 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2436 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2437 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2438 
2439 		/*
2440 		 * Enable HW workaround for controllers that misinterpret
2441 		 * a status tag update and leave interrupts permanently
2442 		 * disabled.
2443 		 */
2444 		if (!BGE_IS_57765_FAMILY(sc) &&
2445 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2446 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2447 	}
2448 
2449 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2450 	    dma_rw_ctl);
2451 
2452 	/*
2453 	 * Set up general mode register.
2454 	 */
2455 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2456 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2457 		/* Retain Host-2-BMC settings written by APE firmware. */
2458 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2459 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2460 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2461 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2462 	}
2463 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2464 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2465 
2466 	/*
2467 	 * BCM5701 B5 have a bug causing data corruption when using
2468 	 * 64-bit DMA reads, which can be terminated early and then
2469 	 * completed later as 32-bit accesses, in combination with
2470 	 * certain bridges.
2471 	 */
2472 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2473 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2474 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2475 
2476 	/*
2477 	 * Tell the firmware the driver is running
2478 	 */
2479 	if (sc->bge_asf_mode & ASF_STACKUP)
2480 		mode_ctl |= BGE_MODECTL_STACKUP;
2481 
2482 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2483 
2484 	/*
2485 	 * Disable memory write invalidate.  Apparently it is not supported
2486 	 * properly by these devices.
2487 	 */
2488 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2489 		   PCI_COMMAND_INVALIDATE_ENABLE);
2490 
2491 #ifdef __brokenalpha__
2492 	/*
2493 	 * Must insure that we do not cross an 8K (bytes) boundary
2494 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2495 	 * restriction on some ALPHA platforms with early revision
2496 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2497 	 */
2498 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2499 #endif
2500 
2501 	/* Set the timer prescaler (always 66MHz) */
2502 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2503 
2504 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2505 		DELAY(40);	/* XXX */
2506 
2507 		/* Put PHY into ready state */
2508 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2509 		DELAY(40);
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int
2516 bge_blockinit(struct bge_softc *sc)
2517 {
2518 	volatile struct bge_rcb	 *rcb;
2519 	bus_size_t rcb_addr;
2520 	struct ifnet *ifp = &sc->ethercom.ec_if;
2521 	bge_hostaddr taddr;
2522 	uint32_t	dmactl, mimode, val;
2523 	int		i, limit;
2524 
2525 	/*
2526 	 * Initialize the memory window pointer register so that
2527 	 * we can access the first 32K of internal NIC RAM. This will
2528 	 * allow us to set up the TX send ring RCBs and the RX return
2529 	 * ring RCBs, plus other things which live in NIC memory.
2530 	 */
2531 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2532 
2533 	if (!BGE_IS_5705_PLUS(sc)) {
2534 		/* 57XX step 33 */
2535 		/* Configure mbuf memory pool */
2536 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2537 		    BGE_BUFFPOOL_1);
2538 
2539 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2540 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2541 		else
2542 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2543 
2544 		/* 57XX step 34 */
2545 		/* Configure DMA resource pool */
2546 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2547 		    BGE_DMA_DESCRIPTORS);
2548 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2549 	}
2550 
2551 	/* 5718 step 11, 57XX step 35 */
2552 	/*
2553 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2554 	 * recommend these.
2555 	 */
2556 	if (BGE_IS_5717_PLUS(sc)) {
2557 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2558 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2559 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2560 	} else if (BGE_IS_5705_PLUS(sc)) {
2561 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2562 
2563 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2564 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2565 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2566 		} else {
2567 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2568 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2569 		}
2570 	} else {
2571 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2572 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2573 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2574 	}
2575 
2576 	/* 57XX step 36 */
2577 	/* Configure DMA resource watermarks */
2578 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2579 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2580 
2581 	/* 5718 step 13, 57XX step 38 */
2582 	/* Enable buffer manager */
2583 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2584 	/*
2585 	 * Change the arbitration algorithm of TXMBUF read request to
2586 	 * round-robin instead of priority based for BCM5719.  When
2587 	 * TXFIFO is almost empty, RDMA will hold its request until
2588 	 * TXFIFO is not almost empty.
2589 	 */
2590 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2591 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2593 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2594 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2595 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2596 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2597 
2598 	/* 57XX step 39 */
2599 	/* Poll for buffer manager start indication */
2600 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2601 		DELAY(10);
2602 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2603 			break;
2604 	}
2605 
2606 	if (i == BGE_TIMEOUT * 2) {
2607 		aprint_error_dev(sc->bge_dev,
2608 		    "buffer manager failed to start\n");
2609 		return ENXIO;
2610 	}
2611 
2612 	/* 57XX step 40 */
2613 	/* Enable flow-through queues */
2614 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2615 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2616 
2617 	/* Wait until queue initialization is complete */
2618 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2619 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2620 			break;
2621 		DELAY(10);
2622 	}
2623 
2624 	if (i == BGE_TIMEOUT * 2) {
2625 		aprint_error_dev(sc->bge_dev,
2626 		    "flow-through queue init failed\n");
2627 		return ENXIO;
2628 	}
2629 
2630 	/*
2631 	 * Summary of rings supported by the controller:
2632 	 *
2633 	 * Standard Receive Producer Ring
2634 	 * - This ring is used to feed receive buffers for "standard"
2635 	 *   sized frames (typically 1536 bytes) to the controller.
2636 	 *
2637 	 * Jumbo Receive Producer Ring
2638 	 * - This ring is used to feed receive buffers for jumbo sized
2639 	 *   frames (i.e. anything bigger than the "standard" frames)
2640 	 *   to the controller.
2641 	 *
2642 	 * Mini Receive Producer Ring
2643 	 * - This ring is used to feed receive buffers for "mini"
2644 	 *   sized frames to the controller.
2645 	 * - This feature required external memory for the controller
2646 	 *   but was never used in a production system.  Should always
2647 	 *   be disabled.
2648 	 *
2649 	 * Receive Return Ring
2650 	 * - After the controller has placed an incoming frame into a
2651 	 *   receive buffer that buffer is moved into a receive return
2652 	 *   ring.  The driver is then responsible to passing the
2653 	 *   buffer up to the stack.  Many versions of the controller
2654 	 *   support multiple RR rings.
2655 	 *
2656 	 * Send Ring
2657 	 * - This ring is used for outgoing frames.  Many versions of
2658 	 *   the controller support multiple send rings.
2659 	 */
2660 
2661 	/* 5718 step 15, 57XX step 41 */
2662 	/* Initialize the standard RX ring control block */
2663 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2664 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2665 	/* 5718 step 16 */
2666 	if (BGE_IS_57765_PLUS(sc)) {
2667 		/*
2668 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2669 		 * Bits 15-2 : Maximum RX frame size
2670 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2671 		 * Bit 0     : Reserved
2672 		 */
2673 		rcb->bge_maxlen_flags =
2674 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2675 	} else if (BGE_IS_5705_PLUS(sc)) {
2676 		/*
2677 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2678 		 * Bits 15-2 : Reserved (should be 0)
2679 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2680 		 * Bit 0     : Reserved
2681 		 */
2682 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2683 	} else {
2684 		/*
2685 		 * Ring size is always XXX entries
2686 		 * Bits 31-16: Maximum RX frame size
2687 		 * Bits 15-2 : Reserved (should be 0)
2688 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2689 		 * Bit 0     : Reserved
2690 		 */
2691 		rcb->bge_maxlen_flags =
2692 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2693 	}
2694 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2695 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2696 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2697 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2698 	else
2699 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2700 	/* Write the standard receive producer ring control block. */
2701 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2702 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2703 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2704 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2705 
2706 	/* Reset the standard receive producer ring producer index. */
2707 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2708 
2709 	/* 57XX step 42 */
2710 	/*
2711 	 * Initialize the jumbo RX ring control block
2712 	 * We set the 'ring disabled' bit in the flags
2713 	 * field until we're actually ready to start
2714 	 * using this ring (i.e. once we set the MTU
2715 	 * high enough to require it).
2716 	 */
2717 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2718 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2719 		BGE_HOSTADDR(rcb->bge_hostaddr,
2720 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2721 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2722 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2723 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2724 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2725 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2726 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2727 		else
2728 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2729 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2730 		    rcb->bge_hostaddr.bge_addr_hi);
2731 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2732 		    rcb->bge_hostaddr.bge_addr_lo);
2733 		/* Program the jumbo receive producer ring RCB parameters. */
2734 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2735 		    rcb->bge_maxlen_flags);
2736 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2737 		/* Reset the jumbo receive producer ring producer index. */
2738 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2739 	}
2740 
2741 	/* 57XX step 43 */
2742 	/* Disable the mini receive producer ring RCB. */
2743 	if (BGE_IS_5700_FAMILY(sc)) {
2744 		/* Set up dummy disabled mini ring RCB */
2745 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2746 		rcb->bge_maxlen_flags =
2747 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2748 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2749 		    rcb->bge_maxlen_flags);
2750 		/* Reset the mini receive producer ring producer index. */
2751 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2752 
2753 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2754 		    offsetof(struct bge_ring_data, bge_info),
2755 		    sizeof (struct bge_gib),
2756 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2757 	}
2758 
2759 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2760 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2761 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2762 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2763 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2764 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2765 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2766 	}
2767 	/* 5718 step 14, 57XX step 44 */
2768 	/*
2769 	 * The BD ring replenish thresholds control how often the
2770 	 * hardware fetches new BD's from the producer rings in host
2771 	 * memory.  Setting the value too low on a busy system can
2772 	 * starve the hardware and recue the throughpout.
2773 	 *
2774 	 * Set the BD ring replenish thresholds. The recommended
2775 	 * values are 1/8th the number of descriptors allocated to
2776 	 * each ring, but since we try to avoid filling the entire
2777 	 * ring we set these to the minimal value of 8.  This needs to
2778 	 * be done on several of the supported chip revisions anyway,
2779 	 * to work around HW bugs.
2780 	 */
2781 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2782 	if (BGE_IS_JUMBO_CAPABLE(sc))
2783 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2784 
2785 	/* 5718 step 18 */
2786 	if (BGE_IS_5717_PLUS(sc)) {
2787 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2788 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2789 	}
2790 
2791 	/* 57XX step 45 */
2792 	/*
2793 	 * Disable all send rings by setting the 'ring disabled' bit
2794 	 * in the flags field of all the TX send ring control blocks,
2795 	 * located in NIC memory.
2796 	 */
2797 	if (BGE_IS_5700_FAMILY(sc)) {
2798 		/* 5700 to 5704 had 16 send rings. */
2799 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2800 	} else if (BGE_IS_5717_PLUS(sc)) {
2801 		limit = BGE_TX_RINGS_5717_MAX;
2802 	} else if (BGE_IS_57765_FAMILY(sc)) {
2803 		limit = BGE_TX_RINGS_57765_MAX;
2804 	} else
2805 		limit = 1;
2806 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2807 	for (i = 0; i < limit; i++) {
2808 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2809 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2810 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2811 		rcb_addr += sizeof(struct bge_rcb);
2812 	}
2813 
2814 	/* 57XX step 46 and 47 */
2815 	/* Configure send ring RCB 0 (we use only the first ring) */
2816 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2817 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2818 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2819 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2820 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2821 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2822 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2823 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2824 	else
2825 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2826 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2827 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2828 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2829 
2830 	/* 57XX step 48 */
2831 	/*
2832 	 * Disable all receive return rings by setting the
2833 	 * 'ring diabled' bit in the flags field of all the receive
2834 	 * return ring control blocks, located in NIC memory.
2835 	 */
2836 	if (BGE_IS_5717_PLUS(sc)) {
2837 		/* Should be 17, use 16 until we get an SRAM map. */
2838 		limit = 16;
2839 	} else if (BGE_IS_5700_FAMILY(sc))
2840 		limit = BGE_RX_RINGS_MAX;
2841 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2842 	    BGE_IS_57765_FAMILY(sc))
2843 		limit = 4;
2844 	else
2845 		limit = 1;
2846 	/* Disable all receive return rings */
2847 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2848 	for (i = 0; i < limit; i++) {
2849 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2850 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2851 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2852 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2853 			BGE_RCB_FLAG_RING_DISABLED));
2854 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2855 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2856 		    (i * (sizeof(uint64_t))), 0);
2857 		rcb_addr += sizeof(struct bge_rcb);
2858 	}
2859 
2860 	/* 57XX step 49 */
2861 	/*
2862 	 * Set up receive return ring 0.  Note that the NIC address
2863 	 * for RX return rings is 0x0.  The return rings live entirely
2864 	 * within the host, so the nicaddr field in the RCB isn't used.
2865 	 */
2866 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2867 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2868 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2869 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2870 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2871 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2872 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2873 
2874 	/* 5718 step 24, 57XX step 53 */
2875 	/* Set random backoff seed for TX */
2876 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2877 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2878 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2879 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2880 	    BGE_TX_BACKOFF_SEED_MASK);
2881 
2882 	/* 5718 step 26, 57XX step 55 */
2883 	/* Set inter-packet gap */
2884 	val = 0x2620;
2885 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2886 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2887 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2888 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2889 
2890 	/* 5718 step 27, 57XX step 56 */
2891 	/*
2892 	 * Specify which ring to use for packets that don't match
2893 	 * any RX rules.
2894 	 */
2895 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2896 
2897 	/* 5718 step 28, 57XX step 57 */
2898 	/*
2899 	 * Configure number of RX lists. One interrupt distribution
2900 	 * list, sixteen active lists, one bad frames class.
2901 	 */
2902 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2903 
2904 	/* 5718 step 29, 57XX step 58 */
2905 	/* Inialize RX list placement stats mask. */
2906 	if (BGE_IS_575X_PLUS(sc)) {
2907 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2908 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2909 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2910 	} else
2911 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2912 
2913 	/* 5718 step 30, 57XX step 59 */
2914 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2915 
2916 	/* 5718 step 33, 57XX step 62 */
2917 	/* Disable host coalescing until we get it set up */
2918 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2919 
2920 	/* 5718 step 34, 57XX step 63 */
2921 	/* Poll to make sure it's shut down. */
2922 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2923 		DELAY(10);
2924 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2925 			break;
2926 	}
2927 
2928 	if (i == BGE_TIMEOUT * 2) {
2929 		aprint_error_dev(sc->bge_dev,
2930 		    "host coalescing engine failed to idle\n");
2931 		return ENXIO;
2932 	}
2933 
2934 	/* 5718 step 35, 36, 37 */
2935 	/* Set up host coalescing defaults */
2936 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2937 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2938 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2939 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2940 	if (!(BGE_IS_5705_PLUS(sc))) {
2941 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2942 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2943 	}
2944 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2945 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2946 
2947 	/* Set up address of statistics block */
2948 	if (BGE_IS_5700_FAMILY(sc)) {
2949 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2950 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2951 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2952 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2953 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2954 	}
2955 
2956 	/* 5718 step 38 */
2957 	/* Set up address of status block */
2958 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2959 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2960 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2961 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2962 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2963 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2964 
2965 	/* Set up status block size. */
2966 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2967 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2968 		val = BGE_STATBLKSZ_FULL;
2969 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2970 	} else {
2971 		val = BGE_STATBLKSZ_32BYTE;
2972 		bzero(&sc->bge_rdata->bge_status_block, 32);
2973 	}
2974 
2975 	/* 5718 step 39, 57XX step 73 */
2976 	/* Turn on host coalescing state machine */
2977 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2978 
2979 	/* 5718 step 40, 57XX step 74 */
2980 	/* Turn on RX BD completion state machine and enable attentions */
2981 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2982 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2983 
2984 	/* 5718 step 41, 57XX step 75 */
2985 	/* Turn on RX list placement state machine */
2986 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2987 
2988 	/* 57XX step 76 */
2989 	/* Turn on RX list selector state machine. */
2990 	if (!(BGE_IS_5705_PLUS(sc)))
2991 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2992 
2993 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2994 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2995 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2996 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2997 
2998 	if (sc->bge_flags & BGEF_FIBER_TBI)
2999 		val |= BGE_PORTMODE_TBI;
3000 	else if (sc->bge_flags & BGEF_FIBER_MII)
3001 		val |= BGE_PORTMODE_GMII;
3002 	else
3003 		val |= BGE_PORTMODE_MII;
3004 
3005 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
3006 	/* Allow APE to send/receive frames. */
3007 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3008 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3009 
3010 	/* Turn on DMA, clear stats */
3011 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3012 	/* 5718 step 44 */
3013 	DELAY(40);
3014 
3015 	/* 5718 step 45, 57XX step 79 */
3016 	/* Set misc. local control, enable interrupts on attentions */
3017 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3018 	if (BGE_IS_5717_PLUS(sc)) {
3019 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3020 		/* 5718 step 46 */
3021 		DELAY(100);
3022 	}
3023 
3024 	/* 57XX step 81 */
3025 	/* Turn on DMA completion state machine */
3026 	if (!(BGE_IS_5705_PLUS(sc)))
3027 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3028 
3029 	/* 5718 step 47, 57XX step 82 */
3030 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3031 
3032 	/* 5718 step 48 */
3033 	/* Enable host coalescing bug fix. */
3034 	if (BGE_IS_5755_PLUS(sc))
3035 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3036 
3037 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3038 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
3039 
3040 	/* Turn on write DMA state machine */
3041 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3042 	/* 5718 step 49 */
3043 	DELAY(40);
3044 
3045 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3046 
3047 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3048 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3049 
3050 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3051 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3052 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3053 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3054 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3055 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3056 
3057 	if (sc->bge_flags & BGEF_PCIE)
3058 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3059 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3060 		if (ifp->if_mtu <= ETHERMTU)
3061 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
3062 	}
3063 	if (sc->bge_flags & BGEF_TSO)
3064 		val |= BGE_RDMAMODE_TSO4_ENABLE;
3065 
3066 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3067 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3068 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
3069 		/*
3070 		 * Allow multiple outstanding read requests from
3071 		 * non-LSO read DMA engine.
3072 		 */
3073 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3074 	}
3075 
3076 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3077 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3078 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3079 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3080 	    BGE_IS_57765_PLUS(sc)) {
3081 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3082 		/*
3083 		 * Adjust tx margin to prevent TX data corruption and
3084 		 * fix internal FIFO overflow.
3085 		 */
3086 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3087 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3088 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3089 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3090 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3091 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3092 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3093 		}
3094 		/*
3095 		 * Enable fix for read DMA FIFO overruns.
3096 		 * The fix is to limit the number of RX BDs
3097 		 * the hardware would fetch at a fime.
3098 		 */
3099 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3100 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3101 	}
3102 
3103 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3104 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3105 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3106 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3107 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3108 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3109 		/*
3110 		 * Allow 4KB burst length reads for non-LSO frames.
3111 		 * Enable 512B burst length reads for buffer descriptors.
3112 		 */
3113 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3114 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3115 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3116 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3117 	}
3118 
3119 	/* Turn on read DMA state machine */
3120 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3121 	/* 5718 step 52 */
3122 	delay(40);
3123 
3124 	/* 5718 step 56, 57XX step 84 */
3125 	/* Turn on RX data completion state machine */
3126 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3127 
3128 	/* Turn on RX data and RX BD initiator state machine */
3129 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3130 
3131 	/* 57XX step 85 */
3132 	/* Turn on Mbuf cluster free state machine */
3133 	if (!BGE_IS_5705_PLUS(sc))
3134 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3135 
3136 	/* 5718 step 57, 57XX step 86 */
3137 	/* Turn on send data completion state machine */
3138 	val = BGE_SDCMODE_ENABLE;
3139 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3140 		val |= BGE_SDCMODE_CDELAY;
3141 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3142 
3143 	/* 5718 step 58 */
3144 	/* Turn on send BD completion state machine */
3145 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3146 
3147 	/* 57XX step 88 */
3148 	/* Turn on RX BD initiator state machine */
3149 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3150 
3151 	/* 5718 step 60, 57XX step 90 */
3152 	/* Turn on send data initiator state machine */
3153 	if (sc->bge_flags & BGEF_TSO) {
3154 		/* XXX: magic value from Linux driver */
3155 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3156 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3157 	} else
3158 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3159 
3160 	/* 5718 step 61, 57XX step 91 */
3161 	/* Turn on send BD initiator state machine */
3162 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3163 
3164 	/* 5718 step 62, 57XX step 92 */
3165 	/* Turn on send BD selector state machine */
3166 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3167 
3168 	/* 5718 step 31, 57XX step 60 */
3169 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3170 	/* 5718 step 32, 57XX step 61 */
3171 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3172 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3173 
3174 	/* ack/clear link change events */
3175 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3176 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3177 	    BGE_MACSTAT_LINK_CHANGED);
3178 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3179 
3180 	/*
3181 	 * Enable attention when the link has changed state for
3182 	 * devices that use auto polling.
3183 	 */
3184 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3185 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3186 	} else {
3187 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3188 			mimode = BGE_MIMODE_500KHZ_CONST;
3189 		else
3190 			mimode = BGE_MIMODE_BASE;
3191 		/* 5718 step 68. 5718 step 69 (optionally). */
3192 		if (BGE_IS_5700_FAMILY(sc) ||
3193 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3194 			mimode |= BGE_MIMODE_AUTOPOLL;
3195 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3196 		}
3197 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3198 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3199 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3200 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3201 			    BGE_EVTENB_MI_INTERRUPT);
3202 	}
3203 
3204 	/*
3205 	 * Clear any pending link state attention.
3206 	 * Otherwise some link state change events may be lost until attention
3207 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3208 	 * It's not necessary on newer BCM chips - perhaps enabling link
3209 	 * state change attentions implies clearing pending attention.
3210 	 */
3211 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3212 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3213 	    BGE_MACSTAT_LINK_CHANGED);
3214 
3215 	/* Enable link state change attentions. */
3216 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3217 
3218 	return 0;
3219 }
3220 
3221 static const struct bge_revision *
3222 bge_lookup_rev(uint32_t chipid)
3223 {
3224 	const struct bge_revision *br;
3225 
3226 	for (br = bge_revisions; br->br_name != NULL; br++) {
3227 		if (br->br_chipid == chipid)
3228 			return br;
3229 	}
3230 
3231 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3232 		if (br->br_chipid == BGE_ASICREV(chipid))
3233 			return br;
3234 	}
3235 
3236 	return NULL;
3237 }
3238 
3239 static const struct bge_product *
3240 bge_lookup(const struct pci_attach_args *pa)
3241 {
3242 	const struct bge_product *bp;
3243 
3244 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3245 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3246 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3247 			return bp;
3248 	}
3249 
3250 	return NULL;
3251 }
3252 
3253 static uint32_t
3254 bge_chipid(const struct pci_attach_args *pa)
3255 {
3256 	uint32_t id;
3257 
3258 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3259 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3260 
3261 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3262 		switch (PCI_PRODUCT(pa->pa_id)) {
3263 		case PCI_PRODUCT_BROADCOM_BCM5717:
3264 		case PCI_PRODUCT_BROADCOM_BCM5718:
3265 		case PCI_PRODUCT_BROADCOM_BCM5719:
3266 		case PCI_PRODUCT_BROADCOM_BCM5720:
3267 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3268 			    BGE_PCI_GEN2_PRODID_ASICREV);
3269 			break;
3270 		case PCI_PRODUCT_BROADCOM_BCM57761:
3271 		case PCI_PRODUCT_BROADCOM_BCM57762:
3272 		case PCI_PRODUCT_BROADCOM_BCM57765:
3273 		case PCI_PRODUCT_BROADCOM_BCM57766:
3274 		case PCI_PRODUCT_BROADCOM_BCM57781:
3275 		case PCI_PRODUCT_BROADCOM_BCM57782:
3276 		case PCI_PRODUCT_BROADCOM_BCM57785:
3277 		case PCI_PRODUCT_BROADCOM_BCM57786:
3278 		case PCI_PRODUCT_BROADCOM_BCM57791:
3279 		case PCI_PRODUCT_BROADCOM_BCM57795:
3280 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3281 			    BGE_PCI_GEN15_PRODID_ASICREV);
3282 			break;
3283 		default:
3284 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3285 			    BGE_PCI_PRODID_ASICREV);
3286 			break;
3287 		}
3288 	}
3289 
3290 	return id;
3291 }
3292 
3293 /*
3294  * Return true if MSI can be used with this device.
3295  */
3296 static int
3297 bge_can_use_msi(struct bge_softc *sc)
3298 {
3299 	int can_use_msi = 0;
3300 
3301 	switch (BGE_ASICREV(sc->bge_chipid)) {
3302 	case BGE_ASICREV_BCM5714_A0:
3303 	case BGE_ASICREV_BCM5714:
3304 		/*
3305 		 * Apparently, MSI doesn't work when these chips are
3306 		 * configured in single-port mode.
3307 		 */
3308 		break;
3309 	case BGE_ASICREV_BCM5750:
3310 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3311 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3312 			can_use_msi = 1;
3313 		break;
3314 	default:
3315 		if (BGE_IS_575X_PLUS(sc))
3316 			can_use_msi = 1;
3317 	}
3318 	return (can_use_msi);
3319 }
3320 
3321 /*
3322  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3323  * against our list and return its name if we find a match. Note
3324  * that since the Broadcom controller contains VPD support, we
3325  * can get the device name string from the controller itself instead
3326  * of the compiled-in string. This is a little slow, but it guarantees
3327  * we'll always announce the right product name.
3328  */
3329 static int
3330 bge_probe(device_t parent, cfdata_t match, void *aux)
3331 {
3332 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3333 
3334 	if (bge_lookup(pa) != NULL)
3335 		return 1;
3336 
3337 	return 0;
3338 }
3339 
3340 static void
3341 bge_attach(device_t parent, device_t self, void *aux)
3342 {
3343 	struct bge_softc	*sc = device_private(self);
3344 	struct pci_attach_args	*pa = aux;
3345 	prop_dictionary_t dict;
3346 	const struct bge_product *bp;
3347 	const struct bge_revision *br;
3348 	pci_chipset_tag_t	pc;
3349 	int counts[PCI_INTR_TYPE_SIZE];
3350 	pci_intr_type_t intr_type, max_type;
3351 	const char		*intrstr = NULL;
3352 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3353 	uint32_t		command;
3354 	struct ifnet		*ifp;
3355 	uint32_t		misccfg, mimode;
3356 	void *			kva;
3357 	u_char			eaddr[ETHER_ADDR_LEN];
3358 	pcireg_t		memtype, subid, reg;
3359 	bus_addr_t		memaddr;
3360 	uint32_t		pm_ctl;
3361 	bool			no_seeprom;
3362 	int			capmask;
3363 	int			mii_flags;
3364 	int			map_flags;
3365 	char intrbuf[PCI_INTRSTR_LEN];
3366 
3367 	bp = bge_lookup(pa);
3368 	KASSERT(bp != NULL);
3369 
3370 	sc->sc_pc = pa->pa_pc;
3371 	sc->sc_pcitag = pa->pa_tag;
3372 	sc->bge_dev = self;
3373 
3374 	sc->bge_pa = *pa;
3375 	pc = sc->sc_pc;
3376 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3377 
3378 	aprint_naive(": Ethernet controller\n");
3379 	aprint_normal(": %s\n", bp->bp_name);
3380 
3381 	/*
3382 	 * Map control/status registers.
3383 	 */
3384 	DPRINTFN(5, ("Map control/status regs\n"));
3385 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3386 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3387 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3388 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3389 
3390 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3391 		aprint_error_dev(sc->bge_dev,
3392 		    "failed to enable memory mapping!\n");
3393 		return;
3394 	}
3395 
3396 	DPRINTFN(5, ("pci_mem_find\n"));
3397 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3398 	switch (memtype) {
3399 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3400 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3401 #if 0
3402 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3403 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3404 		    &memaddr, &sc->bge_bsize) == 0)
3405 			break;
3406 #else
3407 		/*
3408 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3409 		 * system get NMI on boot (PR#48451). This problem might not be
3410 		 * the driver's bug but our PCI common part's bug. Until we
3411 		 * find a real reason, we ignore the prefetchable bit.
3412 		 */
3413 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3414 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3415 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3416 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3417 			    map_flags, &sc->bge_bhandle) == 0) {
3418 				sc->bge_btag = pa->pa_memt;
3419 				break;
3420 			}
3421 		}
3422 #endif
3423 	default:
3424 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3425 		return;
3426 	}
3427 
3428 	/* Save various chip information. */
3429 	sc->bge_chipid = bge_chipid(pa);
3430 	sc->bge_phy_addr = bge_phy_addr(sc);
3431 
3432 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3433 	    &sc->bge_pciecap, NULL) != 0) {
3434 		/* PCIe */
3435 		sc->bge_flags |= BGEF_PCIE;
3436 		/* Extract supported maximum payload size. */
3437 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3438 		    sc->bge_pciecap + PCIE_DCAP);
3439 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3440 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3441 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3442 			sc->bge_expmrq = 2048;
3443 		else
3444 			sc->bge_expmrq = 4096;
3445 		bge_set_max_readrq(sc);
3446 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3447 		/* PCIe without PCIe cap */
3448 		sc->bge_flags |= BGEF_PCIE;
3449 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3450 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3451 		/* PCI-X */
3452 		sc->bge_flags |= BGEF_PCIX;
3453 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3454 			&sc->bge_pcixcap, NULL) == 0)
3455 			aprint_error_dev(sc->bge_dev,
3456 			    "unable to find PCIX capability\n");
3457 	}
3458 
3459 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3460 		/*
3461 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3462 		 * can clobber the chip's PCI config-space power control
3463 		 * registers, leaving the card in D3 powersave state. We do
3464 		 * not have memory-mapped registers in this state, so force
3465 		 * device into D0 state before starting initialization.
3466 		 */
3467 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3468 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3469 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3470 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3471 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3472 	}
3473 
3474 	/* Save chipset family. */
3475 	switch (BGE_ASICREV(sc->bge_chipid)) {
3476 	case BGE_ASICREV_BCM5717:
3477 	case BGE_ASICREV_BCM5719:
3478 	case BGE_ASICREV_BCM5720:
3479 		sc->bge_flags |= BGEF_5717_PLUS;
3480 		/* FALLTHROUGH */
3481 	case BGE_ASICREV_BCM57765:
3482 	case BGE_ASICREV_BCM57766:
3483 		if (!BGE_IS_5717_PLUS(sc))
3484 			sc->bge_flags |= BGEF_57765_FAMILY;
3485 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3486 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3487 		/* Jumbo frame on BCM5719 A0 does not work. */
3488 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3489 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3490 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3491 		break;
3492 	case BGE_ASICREV_BCM5755:
3493 	case BGE_ASICREV_BCM5761:
3494 	case BGE_ASICREV_BCM5784:
3495 	case BGE_ASICREV_BCM5785:
3496 	case BGE_ASICREV_BCM5787:
3497 	case BGE_ASICREV_BCM57780:
3498 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3499 		break;
3500 	case BGE_ASICREV_BCM5700:
3501 	case BGE_ASICREV_BCM5701:
3502 	case BGE_ASICREV_BCM5703:
3503 	case BGE_ASICREV_BCM5704:
3504 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3505 		break;
3506 	case BGE_ASICREV_BCM5714_A0:
3507 	case BGE_ASICREV_BCM5780:
3508 	case BGE_ASICREV_BCM5714:
3509 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3510 		/* FALLTHROUGH */
3511 	case BGE_ASICREV_BCM5750:
3512 	case BGE_ASICREV_BCM5752:
3513 	case BGE_ASICREV_BCM5906:
3514 		sc->bge_flags |= BGEF_575X_PLUS;
3515 		/* FALLTHROUGH */
3516 	case BGE_ASICREV_BCM5705:
3517 		sc->bge_flags |= BGEF_5705_PLUS;
3518 		break;
3519 	}
3520 
3521 	/* Identify chips with APE processor. */
3522 	switch (BGE_ASICREV(sc->bge_chipid)) {
3523 	case BGE_ASICREV_BCM5717:
3524 	case BGE_ASICREV_BCM5719:
3525 	case BGE_ASICREV_BCM5720:
3526 	case BGE_ASICREV_BCM5761:
3527 		sc->bge_flags |= BGEF_APE;
3528 		break;
3529 	}
3530 
3531 	/*
3532 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3533 	 * not actually a MAC controller bug but an issue with the embedded
3534 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3535 	 */
3536 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3537 		sc->bge_flags |= BGEF_40BIT_BUG;
3538 
3539 	/* Chips with APE need BAR2 access for APE registers/memory. */
3540 	if ((sc->bge_flags & BGEF_APE) != 0) {
3541 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3542 #if 0
3543 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3544 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3545 			&sc->bge_apesize)) {
3546 			aprint_error_dev(sc->bge_dev,
3547 			    "couldn't map BAR2 memory\n");
3548 			return;
3549 		}
3550 #else
3551 		/*
3552 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3553 		 * system get NMI on boot (PR#48451). This problem might not be
3554 		 * the driver's bug but our PCI common part's bug. Until we
3555 		 * find a real reason, we ignore the prefetchable bit.
3556 		 */
3557 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3558 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3559 			aprint_error_dev(sc->bge_dev,
3560 			    "couldn't map BAR2 memory\n");
3561 			return;
3562 		}
3563 
3564 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3565 		if (bus_space_map(pa->pa_memt, memaddr,
3566 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3567 			aprint_error_dev(sc->bge_dev,
3568 			    "couldn't map BAR2 memory\n");
3569 			return;
3570 		}
3571 		sc->bge_apetag = pa->pa_memt;
3572 #endif
3573 
3574 		/* Enable APE register/memory access by host driver. */
3575 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3576 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3577 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3578 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3579 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3580 
3581 		bge_ape_lock_init(sc);
3582 		bge_ape_read_fw_ver(sc);
3583 	}
3584 
3585 	/* Identify the chips that use an CPMU. */
3586 	if (BGE_IS_5717_PLUS(sc) ||
3587 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3588 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3589 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3590 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3591 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3592 
3593 	/* Set MI_MODE */
3594 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3595 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3596 		mimode |= BGE_MIMODE_500KHZ_CONST;
3597 	else
3598 		mimode |= BGE_MIMODE_BASE;
3599 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3600 
3601 	/*
3602 	 * When using the BCM5701 in PCI-X mode, data corruption has
3603 	 * been observed in the first few bytes of some received packets.
3604 	 * Aligning the packet buffer in memory eliminates the corruption.
3605 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3606 	 * which do not support unaligned accesses, we will realign the
3607 	 * payloads by copying the received packets.
3608 	 */
3609 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3610 	    sc->bge_flags & BGEF_PCIX)
3611 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3612 
3613 	if (BGE_IS_5700_FAMILY(sc))
3614 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3615 
3616 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3617 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3618 
3619 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3620 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3621 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3622 		sc->bge_flags |= BGEF_IS_5788;
3623 
3624 	/*
3625 	 * Some controllers seem to require a special firmware to use
3626 	 * TSO. But the firmware is not available to FreeBSD and Linux
3627 	 * claims that the TSO performed by the firmware is slower than
3628 	 * hardware based TSO. Moreover the firmware based TSO has one
3629 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3630 	 * header is greater than 80 bytes. The workaround for the TSO
3631 	 * bug exist but it seems it's too expensive than not using
3632 	 * TSO at all. Some hardwares also have the TSO bug so limit
3633 	 * the TSO to the controllers that are not affected TSO issues
3634 	 * (e.g. 5755 or higher).
3635 	 */
3636 	if (BGE_IS_5755_PLUS(sc)) {
3637 		/*
3638 		 * BCM5754 and BCM5787 shares the same ASIC id so
3639 		 * explicit device id check is required.
3640 		 */
3641 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3642 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3643 			sc->bge_flags |= BGEF_TSO;
3644 	}
3645 
3646 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3647 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3648 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3649 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3650 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3651 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3652 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3653 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3654 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3655 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3656 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3657 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3658 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3659 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3660 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3662 		/* These chips are 10/100 only. */
3663 		capmask &= ~BMSR_EXTSTAT;
3664 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3665 	}
3666 
3667 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3668 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3669 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3670 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3671 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3672 
3673 	/* Set various PHY bug flags. */
3674 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3675 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3676 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3677 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3678 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3679 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3680 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3681 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3682 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3683 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3684 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3685 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3686 	if (BGE_IS_5705_PLUS(sc) &&
3687 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3688 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3689 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3690 	    !BGE_IS_57765_PLUS(sc)) {
3691 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3692 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3693 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3694 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3695 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3696 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3697 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3698 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3699 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3700 		} else
3701 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3702 	}
3703 
3704 	/*
3705 	 * SEEPROM check.
3706 	 * First check if firmware knows we do not have SEEPROM.
3707 	 */
3708 	if (prop_dictionary_get_bool(device_properties(self),
3709 	     "without-seeprom", &no_seeprom) && no_seeprom)
3710 	 	sc->bge_flags |= BGEF_NO_EEPROM;
3711 
3712 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3713 		sc->bge_flags |= BGEF_NO_EEPROM;
3714 
3715 	/* Now check the 'ROM failed' bit on the RX CPU */
3716 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3717 		sc->bge_flags |= BGEF_NO_EEPROM;
3718 
3719 	sc->bge_asf_mode = 0;
3720 	/* No ASF if APE present. */
3721 	if ((sc->bge_flags & BGEF_APE) == 0) {
3722 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3723 			BGE_SRAM_DATA_SIG_MAGIC)) {
3724 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3725 			    BGE_HWCFG_ASF) {
3726 				sc->bge_asf_mode |= ASF_ENABLE;
3727 				sc->bge_asf_mode |= ASF_STACKUP;
3728 				if (BGE_IS_575X_PLUS(sc))
3729 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3730 			}
3731 		}
3732 	}
3733 
3734 	/* MSI-X will be used in future */
3735 	counts[PCI_INTR_TYPE_MSI] = 1;
3736 	counts[PCI_INTR_TYPE_INTX] = 1;
3737 	/* Check MSI capability */
3738 	if (bge_can_use_msi(sc) != 0) {
3739 		max_type = PCI_INTR_TYPE_MSI;
3740 		sc->bge_flags |= BGEF_MSI;
3741 	} else
3742 		max_type = PCI_INTR_TYPE_INTX;
3743 
3744 alloc_retry:
3745 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3746 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3747 		return;
3748 	}
3749 
3750 	DPRINTFN(5, ("pci_intr_string\n"));
3751 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3752 	    sizeof(intrbuf));
3753 	DPRINTFN(5, ("pci_intr_establish\n"));
3754 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3755 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3756 	if (sc->bge_intrhand == NULL) {
3757 		intr_type = pci_intr_type(pc, sc->bge_pihp[0]);
3758 		aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
3759 		    (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
3760 		pci_intr_release(pc, sc->bge_pihp, 1);
3761 		switch (intr_type) {
3762 		case PCI_INTR_TYPE_MSI:
3763 			/* The next try is for INTx: Disable MSI */
3764 			max_type = PCI_INTR_TYPE_INTX;
3765 			counts[PCI_INTR_TYPE_INTX] = 1;
3766 			sc->bge_flags &= ~BGEF_MSI;
3767 			goto alloc_retry;
3768 		case PCI_INTR_TYPE_INTX:
3769 		default:
3770 			/* See below */
3771 			break;
3772 		}
3773 	}
3774 
3775 	if (sc->bge_intrhand == NULL) {
3776 		aprint_error_dev(sc->bge_dev,
3777 		    "couldn't establish interrupt%s%s\n",
3778 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3779 		return;
3780 	}
3781 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3782 
3783 	/*
3784 	 * All controllers except BCM5700 supports tagged status but
3785 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3786 	 * MSI on BCM5717 does not work.
3787 	 */
3788 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3789 		sc->bge_flags |= BGEF_TAGGED_STATUS;
3790 
3791 	/*
3792 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3793 	 * lock in bge_reset().
3794 	 */
3795 	CSR_WRITE_4(sc, BGE_EE_ADDR,
3796 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3797 	delay(1000);
3798 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3799 
3800 	bge_stop_fw(sc);
3801 	bge_sig_pre_reset(sc, BGE_RESET_START);
3802 	if (bge_reset(sc))
3803 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3804 
3805 	/*
3806 	 * Read the hardware config word in the first 32k of NIC internal
3807 	 * memory, or fall back to the config word in the EEPROM.
3808 	 * Note: on some BCM5700 cards, this value appears to be unset.
3809 	 */
3810 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3811 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3812 	    BGE_SRAM_DATA_SIG_MAGIC) {
3813 		uint32_t tmp;
3814 
3815 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3816 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3817 		    BGE_SRAM_DATA_VER_SHIFT;
3818 		if ((0 < tmp) && (tmp < 0x100))
3819 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3820 		if (sc->bge_flags & BGEF_PCIE)
3821 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3822 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3823 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3824 		if (BGE_IS_5717_PLUS(sc))
3825 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3826 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3827 		bge_read_eeprom(sc, (void *)&hwcfg,
3828 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3829 		hwcfg = be32toh(hwcfg);
3830 	}
3831 	aprint_normal_dev(sc->bge_dev,
3832 	    "HW config %08x, %08x, %08x, %08x %08x\n",
3833 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3834 
3835 	bge_sig_legacy(sc, BGE_RESET_START);
3836 	bge_sig_post_reset(sc, BGE_RESET_START);
3837 
3838 	if (bge_chipinit(sc)) {
3839 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3840 		bge_release_resources(sc);
3841 		return;
3842 	}
3843 
3844 	/*
3845 	 * Get station address from the EEPROM.
3846 	 */
3847 	if (bge_get_eaddr(sc, eaddr)) {
3848 		aprint_error_dev(sc->bge_dev,
3849 		    "failed to read station address\n");
3850 		bge_release_resources(sc);
3851 		return;
3852 	}
3853 
3854 	br = bge_lookup_rev(sc->bge_chipid);
3855 
3856 	if (br == NULL) {
3857 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3858 		    sc->bge_chipid);
3859 	} else {
3860 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3861 		    br->br_name, sc->bge_chipid);
3862 	}
3863 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3864 
3865 	/* Allocate the general information block and ring buffers. */
3866 	if (pci_dma64_available(pa))
3867 		sc->bge_dmatag = pa->pa_dmat64;
3868 	else
3869 		sc->bge_dmatag = pa->pa_dmat;
3870 
3871 	/* 40bit DMA workaround */
3872 	if (sizeof(bus_addr_t) > 4) {
3873 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3874 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3875 
3876 			if (bus_dmatag_subregion(olddmatag, 0,
3877 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3878 				BUS_DMA_NOWAIT) != 0) {
3879 				aprint_error_dev(self,
3880 				    "WARNING: failed to restrict dma range,"
3881 				    " falling back to parent bus dma range\n");
3882 				sc->bge_dmatag = olddmatag;
3883 			}
3884 		}
3885 	}
3886 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3887 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3888 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3889 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3890 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3891 		return;
3892 	}
3893 	DPRINTFN(5, ("bus_dmamem_map\n"));
3894 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3895 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3896 			   BUS_DMA_NOWAIT)) {
3897 		aprint_error_dev(sc->bge_dev,
3898 		    "can't map DMA buffers (%zu bytes)\n",
3899 		    sizeof(struct bge_ring_data));
3900 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3901 		    sc->bge_ring_rseg);
3902 		return;
3903 	}
3904 	DPRINTFN(5, ("bus_dmamem_create\n"));
3905 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3906 	    sizeof(struct bge_ring_data), 0,
3907 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3908 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3909 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3910 				 sizeof(struct bge_ring_data));
3911 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3912 		    sc->bge_ring_rseg);
3913 		return;
3914 	}
3915 	DPRINTFN(5, ("bus_dmamem_load\n"));
3916 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3917 			    sizeof(struct bge_ring_data), NULL,
3918 			    BUS_DMA_NOWAIT)) {
3919 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3920 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3921 				 sizeof(struct bge_ring_data));
3922 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3923 		    sc->bge_ring_rseg);
3924 		return;
3925 	}
3926 
3927 	DPRINTFN(5, ("bzero\n"));
3928 	sc->bge_rdata = (struct bge_ring_data *)kva;
3929 
3930 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3931 
3932 	/* Try to allocate memory for jumbo buffers. */
3933 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3934 		if (bge_alloc_jumbo_mem(sc)) {
3935 			aprint_error_dev(sc->bge_dev,
3936 			    "jumbo buffer allocation failed\n");
3937 		} else
3938 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3939 	}
3940 
3941 	/* Set default tuneable values. */
3942 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3943 	sc->bge_rx_coal_ticks = 150;
3944 	sc->bge_rx_max_coal_bds = 64;
3945 	sc->bge_tx_coal_ticks = 300;
3946 	sc->bge_tx_max_coal_bds = 400;
3947 	if (BGE_IS_5705_PLUS(sc)) {
3948 		sc->bge_tx_coal_ticks = (12 * 5);
3949 		sc->bge_tx_max_coal_bds = (12 * 5);
3950 			aprint_verbose_dev(sc->bge_dev,
3951 			    "setting short Tx thresholds\n");
3952 	}
3953 
3954 	if (BGE_IS_5717_PLUS(sc))
3955 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3956 	else if (BGE_IS_5705_PLUS(sc))
3957 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3958 	else
3959 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3960 
3961 	/* Set up ifnet structure */
3962 	ifp = &sc->ethercom.ec_if;
3963 	ifp->if_softc = sc;
3964 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3965 	ifp->if_ioctl = bge_ioctl;
3966 	ifp->if_stop = bge_stop;
3967 	ifp->if_start = bge_start;
3968 	ifp->if_init = bge_init;
3969 	ifp->if_watchdog = bge_watchdog;
3970 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3971 	IFQ_SET_READY(&ifp->if_snd);
3972 	DPRINTFN(5, ("strcpy if_xname\n"));
3973 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3974 
3975 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3976 		sc->ethercom.ec_if.if_capabilities |=
3977 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3978 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3979 		sc->ethercom.ec_if.if_capabilities |=
3980 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3981 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3982 #endif
3983 	sc->ethercom.ec_capabilities |=
3984 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3985 
3986 	if (sc->bge_flags & BGEF_TSO)
3987 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3988 
3989 	/*
3990 	 * Do MII setup.
3991 	 */
3992 	DPRINTFN(5, ("mii setup\n"));
3993 	sc->bge_mii.mii_ifp = ifp;
3994 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3995 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3996 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3997 
3998 	/*
3999 	 * Figure out what sort of media we have by checking the hardware
4000 	 * config word.  Note: on some BCM5700 cards, this value appears to be
4001 	 * unset. If that's the case, we have to rely on identifying the NIC
4002 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
4003 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
4004 	 */
4005 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
4006 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
4007 		if (BGE_IS_5705_PLUS(sc)) {
4008 			sc->bge_flags |= BGEF_FIBER_MII;
4009 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
4010 		} else
4011 			sc->bge_flags |= BGEF_FIBER_TBI;
4012 	}
4013 
4014 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
4015 	if (BGE_IS_JUMBO_CAPABLE(sc))
4016 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4017 
4018 	/* set phyflags and chipid before mii_attach() */
4019 	dict = device_properties(self);
4020 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4021 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4022 
4023 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4024 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4025 		    bge_ifmedia_sts);
4026 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4027 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4028 			    0, NULL);
4029 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4030 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4031 		/* Pretend the user requested this setting */
4032 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4033 	} else {
4034 		/*
4035 		 * Do transceiver setup and tell the firmware the
4036 		 * driver is down so we can try to get access the
4037 		 * probe if ASF is running.  Retry a couple of times
4038 		 * if we get a conflict with the ASF firmware accessing
4039 		 * the PHY.
4040 		 */
4041 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4042 		bge_asf_driver_up(sc);
4043 
4044 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4045 			     bge_ifmedia_sts);
4046 		mii_flags = MIIF_DOPAUSE;
4047 		if (sc->bge_flags & BGEF_FIBER_MII)
4048 			mii_flags |= MIIF_HAVEFIBER;
4049 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4050 		    MII_OFFSET_ANY, mii_flags);
4051 
4052 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4053 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4054 			ifmedia_add(&sc->bge_mii.mii_media,
4055 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
4056 			ifmedia_set(&sc->bge_mii.mii_media,
4057 				    IFM_ETHER|IFM_MANUAL);
4058 		} else
4059 			ifmedia_set(&sc->bge_mii.mii_media,
4060 				    IFM_ETHER|IFM_AUTO);
4061 
4062 		/*
4063 		 * Now tell the firmware we are going up after probing the PHY
4064 		 */
4065 		if (sc->bge_asf_mode & ASF_STACKUP)
4066 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4067 	}
4068 
4069 	/*
4070 	 * Call MI attach routine.
4071 	 */
4072 	DPRINTFN(5, ("if_attach\n"));
4073 	if_attach(ifp);
4074 	if_deferred_start_init(ifp, NULL);
4075 	DPRINTFN(5, ("ether_ifattach\n"));
4076 	ether_ifattach(ifp, eaddr);
4077 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4078 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4079 		RND_TYPE_NET, RND_FLAG_DEFAULT);
4080 #ifdef BGE_EVENT_COUNTERS
4081 	/*
4082 	 * Attach event counters.
4083 	 */
4084 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4085 	    NULL, device_xname(sc->bge_dev), "intr");
4086 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
4087 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
4088 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
4089 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
4090 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4091 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
4092 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4093 	    NULL, device_xname(sc->bge_dev), "tx_xon");
4094 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4095 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
4096 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4097 	    NULL, device_xname(sc->bge_dev), "rx_xon");
4098 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4099 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
4100 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4101 	    NULL, device_xname(sc->bge_dev), "xoffentered");
4102 #endif /* BGE_EVENT_COUNTERS */
4103 	DPRINTFN(5, ("callout_init\n"));
4104 	callout_init(&sc->bge_timeout, 0);
4105 
4106 	if (pmf_device_register(self, NULL, NULL))
4107 		pmf_class_network_register(self, ifp);
4108 	else
4109 		aprint_error_dev(self, "couldn't establish power handler\n");
4110 
4111 	bge_sysctl_init(sc);
4112 
4113 #ifdef BGE_DEBUG
4114 	bge_debug_info(sc);
4115 #endif
4116 }
4117 
4118 /*
4119  * Stop all chip I/O so that the kernel's probe routines don't
4120  * get confused by errant DMAs when rebooting.
4121  */
4122 static int
4123 bge_detach(device_t self, int flags __unused)
4124 {
4125 	struct bge_softc *sc = device_private(self);
4126 	struct ifnet *ifp = &sc->ethercom.ec_if;
4127 	int s;
4128 
4129 	s = splnet();
4130 	/* Stop the interface. Callouts are stopped in it. */
4131 	bge_stop(ifp, 1);
4132 	splx(s);
4133 
4134 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4135 
4136 	/* Delete all remaining media. */
4137 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4138 
4139 	ether_ifdetach(ifp);
4140 	if_detach(ifp);
4141 
4142 	bge_release_resources(sc);
4143 
4144 	return 0;
4145 }
4146 
4147 static void
4148 bge_release_resources(struct bge_softc *sc)
4149 {
4150 
4151 	/* Detach sysctl */
4152 	if (sc->bge_log != NULL)
4153 		sysctl_teardown(&sc->bge_log);
4154 
4155 #ifdef BGE_EVENT_COUNTERS
4156 	/* Detach event counters. */
4157 	evcnt_detach(&sc->bge_ev_intr);
4158 	evcnt_detach(&sc->bge_ev_intr_spurious);
4159 	evcnt_detach(&sc->bge_ev_intr_spurious2);
4160 	evcnt_detach(&sc->bge_ev_tx_xoff);
4161 	evcnt_detach(&sc->bge_ev_tx_xon);
4162 	evcnt_detach(&sc->bge_ev_rx_xoff);
4163 	evcnt_detach(&sc->bge_ev_rx_xon);
4164 	evcnt_detach(&sc->bge_ev_rx_macctl);
4165 	evcnt_detach(&sc->bge_ev_xoffentered);
4166 #endif /* BGE_EVENT_COUNTERS */
4167 
4168 	/* Disestablish the interrupt handler */
4169 	if (sc->bge_intrhand != NULL) {
4170 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4171 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4172 		sc->bge_intrhand = NULL;
4173 	}
4174 
4175 	if (sc->bge_dmatag != NULL) {
4176 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4177 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4178 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4179 		    sizeof(struct bge_ring_data));
4180 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4181 		    sc->bge_ring_rseg);
4182 	}
4183 
4184 	/* Unmap the device registers */
4185 	if (sc->bge_bsize != 0) {
4186 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4187 		sc->bge_bsize = 0;
4188 	}
4189 
4190 	/* Unmap the APE registers */
4191 	if (sc->bge_apesize != 0) {
4192 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4193 		    sc->bge_apesize);
4194 		sc->bge_apesize = 0;
4195 	}
4196 }
4197 
4198 static int
4199 bge_reset(struct bge_softc *sc)
4200 {
4201 	uint32_t cachesize, command;
4202 	uint32_t reset, mac_mode, mac_mode_mask;
4203 	pcireg_t devctl, reg;
4204 	int i, val;
4205 	void (*write_op)(struct bge_softc *, int, int);
4206 
4207 	/* Make mask for BGE_MAC_MODE register. */
4208 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4209 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4210 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4211 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4212 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4213 
4214 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4215 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4216 	    	if (sc->bge_flags & BGEF_PCIE)
4217 			write_op = bge_writemem_direct;
4218 		else
4219 			write_op = bge_writemem_ind;
4220 	} else
4221 		write_op = bge_writereg_ind;
4222 
4223 	/* 57XX step 4 */
4224 	/* Acquire the NVM lock */
4225 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4226 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4227 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4228 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4229 		for (i = 0; i < 8000; i++) {
4230 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4231 			    BGE_NVRAMSWARB_GNT1)
4232 				break;
4233 			DELAY(20);
4234 		}
4235 		if (i == 8000) {
4236 			printf("%s: NVRAM lock timedout!\n",
4237 			    device_xname(sc->bge_dev));
4238 		}
4239 	}
4240 
4241 	/* Take APE lock when performing reset. */
4242 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4243 
4244 	/* 57XX step 3 */
4245 	/* Save some important PCI state. */
4246 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4247 	/* 5718 reset step 3 */
4248 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4249 
4250 	/* 5718 reset step 5, 57XX step 5b-5d */
4251 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4252 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4253 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4254 
4255 	/* XXX ???: Disable fastboot on controllers that support it. */
4256 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4257 	    BGE_IS_5755_PLUS(sc))
4258 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4259 
4260 	/* 5718 reset step 2, 57XX step 6 */
4261 	/*
4262 	 * Write the magic number to SRAM at offset 0xB50.
4263 	 * When firmware finishes its initialization it will
4264 	 * write ~BGE_MAGIC_NUMBER to the same location.
4265 	 */
4266 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4267 
4268 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4269 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4270 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4271 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4272 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4273 	}
4274 
4275 	/* 5718 reset step 6, 57XX step 7 */
4276 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4277 	/*
4278 	 * XXX: from FreeBSD/Linux; no documentation
4279 	 */
4280 	if (sc->bge_flags & BGEF_PCIE) {
4281 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4282 		    !BGE_IS_57765_PLUS(sc) &&
4283 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4284 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4285 			/* PCI Express 1.0 system */
4286 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4287 			    BGE_PHY_PCIE_SCRAM_MODE);
4288 		}
4289 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4290 			/*
4291 			 * Prevent PCI Express link training
4292 			 * during global reset.
4293 			 */
4294 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4295 			reset |= (1 << 29);
4296 		}
4297 	}
4298 
4299 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4300 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4301 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4302 		    i | BGE_VCPU_STATUS_DRV_RESET);
4303 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4304 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4305 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4306 	}
4307 
4308 	/*
4309 	 * Set GPHY Power Down Override to leave GPHY
4310 	 * powered up in D0 uninitialized.
4311 	 */
4312 	if (BGE_IS_5705_PLUS(sc) &&
4313 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4314 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4315 
4316 	/* Issue global reset */
4317 	write_op(sc, BGE_MISC_CFG, reset);
4318 
4319 	/* 5718 reset step 7, 57XX step 8 */
4320 	if (sc->bge_flags & BGEF_PCIE)
4321 		delay(100*1000); /* too big */
4322 	else
4323 		delay(1000);
4324 
4325 	if (sc->bge_flags & BGEF_PCIE) {
4326 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4327 			DELAY(500000);
4328 			/* XXX: Magic Numbers */
4329 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4330 			    BGE_PCI_UNKNOWN0);
4331 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4332 			    BGE_PCI_UNKNOWN0,
4333 			    reg | (1 << 15));
4334 		}
4335 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4336 		    sc->bge_pciecap + PCIE_DCSR);
4337 		/* Clear enable no snoop and disable relaxed ordering. */
4338 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4339 		    PCIE_DCSR_ENA_NO_SNOOP);
4340 
4341 		/* Set PCIE max payload size to 128 for older PCIe devices */
4342 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4343 			devctl &= ~(0x00e0);
4344 		/* Clear device status register. Write 1b to clear */
4345 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4346 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4347 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4348 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4349 		bge_set_max_readrq(sc);
4350 	}
4351 
4352 	/* From Linux: dummy read to flush PCI posted writes */
4353 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4354 
4355 	/*
4356 	 * Reset some of the PCI state that got zapped by reset
4357 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4358 	 * set, too.
4359 	 */
4360 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4361 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4362 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4363 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4364 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4365 	    (sc->bge_flags & BGEF_PCIX) != 0)
4366 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4367 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4368 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4369 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4370 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4371 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4372 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4373 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4374 
4375 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4376 	if (sc->bge_flags & BGEF_PCIX) {
4377 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4378 		    + PCIX_CMD);
4379 		/* Set max memory read byte count to 2K */
4380 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4381 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4382 			reg |= PCIX_CMD_BCNT_2048;
4383 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4384 			/*
4385 			 * For 5704, set max outstanding split transaction
4386 			 * field to 0 (0 means it supports 1 request)
4387 			 */
4388 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4389 			    | PCIX_CMD_BYTECNT_MASK);
4390 			reg |= PCIX_CMD_BCNT_2048;
4391 		}
4392 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4393 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4394 	}
4395 
4396 	/* 5718 reset step 10, 57XX step 12 */
4397 	/* Enable memory arbiter. */
4398 	if (BGE_IS_5714_FAMILY(sc)) {
4399 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4400 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4401 	} else
4402 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4403 
4404 	/* XXX 5721, 5751 and 5752 */
4405 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4406 		/* Step 19: */
4407 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4408 		/* Step 20: */
4409 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4410 	}
4411 
4412 	/* 5718 reset step 12, 57XX step 15 and 16 */
4413 	/* Fix up byte swapping */
4414 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4415 
4416 	/* 5718 reset step 13, 57XX step 17 */
4417 	/* Poll until the firmware initialization is complete */
4418 	bge_poll_fw(sc);
4419 
4420 	/* 57XX step 21 */
4421 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4422 		pcireg_t msidata;
4423 
4424 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4425 		    BGE_PCI_MSI_DATA);
4426 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4427 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4428 		    msidata);
4429 	}
4430 
4431 	/* 57XX step 18 */
4432 	/* Write mac mode. */
4433 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4434 	/* Restore mac_mode_mask's bits using mac_mode */
4435 	val = (val & ~mac_mode_mask) | mac_mode;
4436 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4437 	DELAY(40);
4438 
4439 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4440 
4441 	/*
4442 	 * The 5704 in TBI mode apparently needs some special
4443 	 * adjustment to insure the SERDES drive level is set
4444 	 * to 1.2V.
4445 	 */
4446 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4447 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4448 		uint32_t serdescfg;
4449 
4450 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4451 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4452 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4453 	}
4454 
4455 	if (sc->bge_flags & BGEF_PCIE &&
4456 	    !BGE_IS_57765_PLUS(sc) &&
4457 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4458 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4459 		uint32_t v;
4460 
4461 		/* Enable PCI Express bug fix */
4462 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4463 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4464 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4465 	}
4466 
4467 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4468 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4469 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4470 
4471 	return 0;
4472 }
4473 
4474 /*
4475  * Frame reception handling. This is called if there's a frame
4476  * on the receive return list.
4477  *
4478  * Note: we have to be able to handle two possibilities here:
4479  * 1) the frame is from the jumbo receive ring
4480  * 2) the frame is from the standard receive ring
4481  */
4482 
4483 static void
4484 bge_rxeof(struct bge_softc *sc)
4485 {
4486 	struct ifnet *ifp;
4487 	uint16_t rx_prod, rx_cons;
4488 	int stdcnt = 0, jumbocnt = 0;
4489 	bus_dmamap_t dmamap;
4490 	bus_addr_t offset, toff;
4491 	bus_size_t tlen;
4492 	int tosync;
4493 
4494 	rx_cons = sc->bge_rx_saved_considx;
4495 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4496 
4497 	/* Nothing to do */
4498 	if (rx_cons == rx_prod)
4499 		return;
4500 
4501 	ifp = &sc->ethercom.ec_if;
4502 
4503 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4504 	    offsetof(struct bge_ring_data, bge_status_block),
4505 	    sizeof (struct bge_status_block),
4506 	    BUS_DMASYNC_POSTREAD);
4507 
4508 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4509 	tosync = rx_prod - rx_cons;
4510 
4511 	if (tosync != 0)
4512 		rnd_add_uint32(&sc->rnd_source, tosync);
4513 
4514 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4515 
4516 	if (tosync < 0) {
4517 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4518 		    sizeof (struct bge_rx_bd);
4519 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4520 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4521 		tosync = -tosync;
4522 	}
4523 
4524 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4525 	    offset, tosync * sizeof (struct bge_rx_bd),
4526 	    BUS_DMASYNC_POSTREAD);
4527 
4528 	while (rx_cons != rx_prod) {
4529 		struct bge_rx_bd	*cur_rx;
4530 		uint32_t		rxidx;
4531 		struct mbuf		*m = NULL;
4532 
4533 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4534 
4535 		rxidx = cur_rx->bge_idx;
4536 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4537 
4538 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4539 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4540 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4541 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4542 			jumbocnt++;
4543 			bus_dmamap_sync(sc->bge_dmatag,
4544 			    sc->bge_cdata.bge_rx_jumbo_map,
4545 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4546 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4547 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4548 				ifp->if_ierrors++;
4549 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4550 				continue;
4551 			}
4552 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4553 					     NULL)== ENOBUFS) {
4554 				ifp->if_ierrors++;
4555 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4556 				continue;
4557 			}
4558 		} else {
4559 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4560 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4561 
4562 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4563 			stdcnt++;
4564 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4565 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4566 			if (dmamap == NULL) {
4567 				ifp->if_ierrors++;
4568 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4569 				continue;
4570 			}
4571 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4572 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4573 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4574 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4575 				ifp->if_ierrors++;
4576 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4577 				continue;
4578 			}
4579 			if (bge_newbuf_std(sc, sc->bge_std,
4580 			    NULL, dmamap) == ENOBUFS) {
4581 				ifp->if_ierrors++;
4582 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4583 				continue;
4584 			}
4585 		}
4586 
4587 #ifndef __NO_STRICT_ALIGNMENT
4588 		/*
4589 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4590 		 * the Rx buffer has the layer-2 header unaligned.
4591 		 * If our CPU requires alignment, re-align by copying.
4592 		 */
4593 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4594 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4595 				cur_rx->bge_len);
4596 			m->m_data += ETHER_ALIGN;
4597 		}
4598 #endif
4599 
4600 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4601 		m_set_rcvif(m, ifp);
4602 
4603 		bge_rxcsum(sc, cur_rx, m);
4604 
4605 		/*
4606 		 * If we received a packet with a vlan tag, pass it
4607 		 * to vlan_input() instead of ether_input().
4608 		 */
4609 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4610 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
4611 		}
4612 
4613 		if_percpuq_enqueue(ifp->if_percpuq, m);
4614 	}
4615 
4616 	sc->bge_rx_saved_considx = rx_cons;
4617 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4618 	if (stdcnt)
4619 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4620 	if (jumbocnt)
4621 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4622 }
4623 
4624 static void
4625 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4626 {
4627 
4628 	if (BGE_IS_57765_PLUS(sc)) {
4629 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4630 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4631 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4632 			if ((cur_rx->bge_error_flag &
4633 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4634 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4635 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4636 				m->m_pkthdr.csum_data =
4637 				    cur_rx->bge_tcp_udp_csum;
4638 				m->m_pkthdr.csum_flags |=
4639 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4640 					M_CSUM_DATA);
4641 			}
4642 		}
4643 	} else {
4644 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4645 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4646 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4647 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4648 		/*
4649 		 * Rx transport checksum-offload may also
4650 		 * have bugs with packets which, when transmitted,
4651 		 * were `runts' requiring padding.
4652 		 */
4653 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4654 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4655 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4656 			m->m_pkthdr.csum_data =
4657 			    cur_rx->bge_tcp_udp_csum;
4658 			m->m_pkthdr.csum_flags |=
4659 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4660 				M_CSUM_DATA);
4661 		}
4662 	}
4663 }
4664 
4665 static void
4666 bge_txeof(struct bge_softc *sc)
4667 {
4668 	struct bge_tx_bd *cur_tx = NULL;
4669 	struct ifnet *ifp;
4670 	struct txdmamap_pool_entry *dma;
4671 	bus_addr_t offset, toff;
4672 	bus_size_t tlen;
4673 	int tosync;
4674 	struct mbuf *m;
4675 
4676 	ifp = &sc->ethercom.ec_if;
4677 
4678 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4679 	    offsetof(struct bge_ring_data, bge_status_block),
4680 	    sizeof (struct bge_status_block),
4681 	    BUS_DMASYNC_POSTREAD);
4682 
4683 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4684 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4685 	    sc->bge_tx_saved_considx;
4686 
4687 	if (tosync != 0)
4688 		rnd_add_uint32(&sc->rnd_source, tosync);
4689 
4690 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4691 
4692 	if (tosync < 0) {
4693 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4694 		    sizeof (struct bge_tx_bd);
4695 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4696 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4697 		tosync = -tosync;
4698 	}
4699 
4700 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4701 	    offset, tosync * sizeof (struct bge_tx_bd),
4702 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4703 
4704 	/*
4705 	 * Go through our tx ring and free mbufs for those
4706 	 * frames that have been sent.
4707 	 */
4708 	while (sc->bge_tx_saved_considx !=
4709 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4710 		uint32_t		idx = 0;
4711 
4712 		idx = sc->bge_tx_saved_considx;
4713 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4714 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4715 			ifp->if_opackets++;
4716 		m = sc->bge_cdata.bge_tx_chain[idx];
4717 		if (m != NULL) {
4718 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4719 			dma = sc->txdma[idx];
4720 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4721 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4722 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4723 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4724 			sc->txdma[idx] = NULL;
4725 
4726 			m_freem(m);
4727 		}
4728 		sc->bge_txcnt--;
4729 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4730 		ifp->if_timer = 0;
4731 	}
4732 
4733 	if (cur_tx != NULL)
4734 		ifp->if_flags &= ~IFF_OACTIVE;
4735 }
4736 
4737 static int
4738 bge_intr(void *xsc)
4739 {
4740 	struct bge_softc *sc;
4741 	struct ifnet *ifp;
4742 	uint32_t pcistate, statusword, statustag;
4743 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4744 
4745 	sc = xsc;
4746 	ifp = &sc->ethercom.ec_if;
4747 
4748 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4749 	if (BGE_IS_5717_PLUS(sc))
4750 		intrmask = 0;
4751 
4752 	/* It is possible for the interrupt to arrive before
4753 	 * the status block is updated prior to the interrupt.
4754 	 * Reading the PCI State register will confirm whether the
4755 	 * interrupt is ours and will flush the status block.
4756 	 */
4757 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4758 
4759 	/* read status word from status block */
4760 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4761 	    offsetof(struct bge_ring_data, bge_status_block),
4762 	    sizeof (struct bge_status_block),
4763 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4764 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4765 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4766 
4767 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4768 		if (sc->bge_lasttag == statustag &&
4769 		    (~pcistate & intrmask)) {
4770 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4771 			return (0);
4772 		}
4773 		sc->bge_lasttag = statustag;
4774 	} else {
4775 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
4776 		    !(~pcistate & intrmask)) {
4777 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4778 			return (0);
4779 		}
4780 		statustag = 0;
4781 	}
4782 	/* Ack interrupt and stop others from occurring. */
4783 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4784 	BGE_EVCNT_INCR(sc->bge_ev_intr);
4785 
4786 	/* clear status word */
4787 	sc->bge_rdata->bge_status_block.bge_status = 0;
4788 
4789 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4790 	    offsetof(struct bge_ring_data, bge_status_block),
4791 	    sizeof (struct bge_status_block),
4792 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4793 
4794 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4795 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4796 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4797 		bge_link_upd(sc);
4798 
4799 	if (ifp->if_flags & IFF_RUNNING) {
4800 		/* Check RX return ring producer/consumer */
4801 		bge_rxeof(sc);
4802 
4803 		/* Check TX ring producer/consumer */
4804 		bge_txeof(sc);
4805 	}
4806 
4807 	if (sc->bge_pending_rxintr_change) {
4808 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4809 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4810 
4811 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4812 		DELAY(10);
4813 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4814 
4815 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4816 		DELAY(10);
4817 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4818 
4819 		sc->bge_pending_rxintr_change = 0;
4820 	}
4821 	bge_handle_events(sc);
4822 
4823 	/* Re-enable interrupts. */
4824 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4825 
4826 	if (ifp->if_flags & IFF_RUNNING)
4827 		if_schedule_deferred_start(ifp);
4828 
4829 	return 1;
4830 }
4831 
4832 static void
4833 bge_asf_driver_up(struct bge_softc *sc)
4834 {
4835 	if (sc->bge_asf_mode & ASF_STACKUP) {
4836 		/* Send ASF heartbeat aprox. every 2s */
4837 		if (sc->bge_asf_count)
4838 			sc->bge_asf_count --;
4839 		else {
4840 			sc->bge_asf_count = 2;
4841 
4842 			bge_wait_for_event_ack(sc);
4843 
4844 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4845 			    BGE_FW_CMD_DRV_ALIVE3);
4846 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4847 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4848 			    BGE_FW_HB_TIMEOUT_SEC);
4849 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4850 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4851 			    BGE_RX_CPU_DRV_EVENT);
4852 		}
4853 	}
4854 }
4855 
4856 static void
4857 bge_tick(void *xsc)
4858 {
4859 	struct bge_softc *sc = xsc;
4860 	struct mii_data *mii = &sc->bge_mii;
4861 	int s;
4862 
4863 	s = splnet();
4864 
4865 	if (BGE_IS_5705_PLUS(sc))
4866 		bge_stats_update_regs(sc);
4867 	else
4868 		bge_stats_update(sc);
4869 
4870 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4871 		/*
4872 		 * Since in TBI mode auto-polling can't be used we should poll
4873 		 * link status manually. Here we register pending link event
4874 		 * and trigger interrupt.
4875 		 */
4876 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4877 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4878 	} else {
4879 		/*
4880 		 * Do not touch PHY if we have link up. This could break
4881 		 * IPMI/ASF mode or produce extra input errors.
4882 		 * (extra input errors was reported for bcm5701 & bcm5704).
4883 		 */
4884 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4885 			mii_tick(mii);
4886 	}
4887 
4888 	bge_asf_driver_up(sc);
4889 
4890 	if (!sc->bge_detaching)
4891 		callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4892 
4893 	splx(s);
4894 }
4895 
4896 static void
4897 bge_stats_update_regs(struct bge_softc *sc)
4898 {
4899 	struct ifnet *ifp = &sc->ethercom.ec_if;
4900 
4901 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4902 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4903 
4904 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4905 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4906 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4907 }
4908 
4909 static void
4910 bge_stats_update(struct bge_softc *sc)
4911 {
4912 	struct ifnet *ifp = &sc->ethercom.ec_if;
4913 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4914 
4915 #define READ_STAT(sc, stats, stat) \
4916 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4917 
4918 	ifp->if_collisions +=
4919 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4920 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4921 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4922 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4923 	  ifp->if_collisions;
4924 
4925 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4926 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4927 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4928 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4929 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4930 		      READ_STAT(sc, stats,
4931 		      		xoffPauseFramesReceived.bge_addr_lo));
4932 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4933 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4934 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4935 		      READ_STAT(sc, stats,
4936 		      		macControlFramesReceived.bge_addr_lo));
4937 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4938 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4939 
4940 #undef READ_STAT
4941 
4942 #ifdef notdef
4943 	ifp->if_collisions +=
4944 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4945 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4946 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4947 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4948 	   ifp->if_collisions;
4949 #endif
4950 }
4951 
4952 /*
4953  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4954  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4955  * but when such padded frames employ the  bge IP/TCP checksum offload,
4956  * the hardware checksum assist gives incorrect results (possibly
4957  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4958  * If we pad such runts with zeros, the onboard checksum comes out correct.
4959  */
4960 static inline int
4961 bge_cksum_pad(struct mbuf *pkt)
4962 {
4963 	struct mbuf *last = NULL;
4964 	int padlen;
4965 
4966 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4967 
4968 	/* if there's only the packet-header and we can pad there, use it. */
4969 	if (pkt->m_pkthdr.len == pkt->m_len &&
4970 	    M_TRAILINGSPACE(pkt) >= padlen) {
4971 		last = pkt;
4972 	} else {
4973 		/*
4974 		 * Walk packet chain to find last mbuf. We will either
4975 		 * pad there, or append a new mbuf and pad it
4976 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4977 		 */
4978 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4979 	      	       continue; /* do nothing */
4980 		}
4981 
4982 		/* `last' now points to last in chain. */
4983 		if (M_TRAILINGSPACE(last) < padlen) {
4984 			/* Allocate new empty mbuf, pad it. Compact later. */
4985 			struct mbuf *n;
4986 			MGET(n, M_DONTWAIT, MT_DATA);
4987 			if (n == NULL)
4988 				return ENOBUFS;
4989 			n->m_len = 0;
4990 			last->m_next = n;
4991 			last = n;
4992 		}
4993 	}
4994 
4995 	KDASSERT(!M_READONLY(last));
4996 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4997 
4998 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4999 	memset(mtod(last, char *) + last->m_len, 0, padlen);
5000 	last->m_len += padlen;
5001 	pkt->m_pkthdr.len += padlen;
5002 	return 0;
5003 }
5004 
5005 /*
5006  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
5007  */
5008 static inline int
5009 bge_compact_dma_runt(struct mbuf *pkt)
5010 {
5011 	struct mbuf	*m, *prev;
5012 	int 		totlen;
5013 
5014 	prev = NULL;
5015 	totlen = 0;
5016 
5017 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
5018 		int mlen = m->m_len;
5019 		int shortfall = 8 - mlen ;
5020 
5021 		totlen += mlen;
5022 		if (mlen == 0)
5023 			continue;
5024 		if (mlen >= 8)
5025 			continue;
5026 
5027 		/* If we get here, mbuf data is too small for DMA engine.
5028 		 * Try to fix by shuffling data to prev or next in chain.
5029 		 * If that fails, do a compacting deep-copy of the whole chain.
5030 		 */
5031 
5032 		/* Internal frag. If fits in prev, copy it there. */
5033 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
5034 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
5035 			prev->m_len += mlen;
5036 			m->m_len = 0;
5037 			/* XXX stitch chain */
5038 			prev->m_next = m_free(m);
5039 			m = prev;
5040 			continue;
5041 		}
5042 		else if (m->m_next != NULL &&
5043 			     M_TRAILINGSPACE(m) >= shortfall &&
5044 			     m->m_next->m_len >= (8 + shortfall)) {
5045 		    /* m is writable and have enough data in next, pull up. */
5046 
5047 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
5048 			    shortfall);
5049 			m->m_len += shortfall;
5050 			m->m_next->m_len -= shortfall;
5051 			m->m_next->m_data += shortfall;
5052 		}
5053 		else if (m->m_next == NULL || 1) {
5054 		  	/* Got a runt at the very end of the packet.
5055 			 * borrow data from the tail of the preceding mbuf and
5056 			 * update its length in-place. (The original data is still
5057 			 * valid, so we can do this even if prev is not writable.)
5058 			 */
5059 
5060 			/* if we'd make prev a runt, just move all of its data. */
5061 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5062 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5063 
5064 			if ((prev->m_len - shortfall) < 8)
5065 				shortfall = prev->m_len;
5066 
5067 #ifdef notyet	/* just do the safe slow thing for now */
5068 			if (!M_READONLY(m)) {
5069 				if (M_LEADINGSPACE(m) < shorfall) {
5070 					void *m_dat;
5071 					m_dat = (m->m_flags & M_PKTHDR) ?
5072 					  m->m_pktdat : m->dat;
5073 					memmove(m_dat, mtod(m, void*), m->m_len);
5074 					m->m_data = m_dat;
5075 				    }
5076 			} else
5077 #endif	/* just do the safe slow thing */
5078 			{
5079 				struct mbuf * n = NULL;
5080 				int newprevlen = prev->m_len - shortfall;
5081 
5082 				MGET(n, M_NOWAIT, MT_DATA);
5083 				if (n == NULL)
5084 				   return ENOBUFS;
5085 				KASSERT(m->m_len + shortfall < MLEN
5086 					/*,
5087 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5088 
5089 				/* first copy the data we're stealing from prev */
5090 				memcpy(n->m_data, prev->m_data + newprevlen,
5091 				    shortfall);
5092 
5093 				/* update prev->m_len accordingly */
5094 				prev->m_len -= shortfall;
5095 
5096 				/* copy data from runt m */
5097 				memcpy(n->m_data + shortfall, m->m_data,
5098 				    m->m_len);
5099 
5100 				/* n holds what we stole from prev, plus m */
5101 				n->m_len = shortfall + m->m_len;
5102 
5103 				/* stitch n into chain and free m */
5104 				n->m_next = m->m_next;
5105 				prev->m_next = n;
5106 				/* KASSERT(m->m_next == NULL); */
5107 				m->m_next = NULL;
5108 				m_free(m);
5109 				m = n;	/* for continuing loop */
5110 			}
5111 		}
5112 	}
5113 	return 0;
5114 }
5115 
5116 /*
5117  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5118  * pointers to descriptors.
5119  */
5120 static int
5121 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5122 {
5123 	struct bge_tx_bd	*f = NULL;
5124 	uint32_t		frag, cur;
5125 	uint16_t		csum_flags = 0;
5126 	uint16_t		txbd_tso_flags = 0;
5127 	struct txdmamap_pool_entry *dma;
5128 	bus_dmamap_t dmamap;
5129 	int			i = 0;
5130 	int			use_tso, maxsegsize, error;
5131 	bool			have_vtag;
5132 	uint16_t		vtag;
5133 
5134 	cur = frag = *txidx;
5135 
5136 	if (m_head->m_pkthdr.csum_flags) {
5137 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5138 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5139 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5140 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5141 	}
5142 
5143 	/*
5144 	 * If we were asked to do an outboard checksum, and the NIC
5145 	 * has the bug where it sometimes adds in the Ethernet padding,
5146 	 * explicitly pad with zeros so the cksum will be correct either way.
5147 	 * (For now, do this for all chip versions, until newer
5148 	 * are confirmed to not require the workaround.)
5149 	 */
5150 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5151 #ifdef notyet
5152 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5153 #endif
5154 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5155 		goto check_dma_bug;
5156 
5157 	if (bge_cksum_pad(m_head) != 0)
5158 	    return ENOBUFS;
5159 
5160 check_dma_bug:
5161 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5162 		goto doit;
5163 
5164 	/*
5165 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5166 	 * less than eight bytes.  If we encounter a teeny mbuf
5167 	 * at the end of a chain, we can pad.  Otherwise, copy.
5168 	 */
5169 	if (bge_compact_dma_runt(m_head) != 0)
5170 		return ENOBUFS;
5171 
5172 doit:
5173 	dma = SLIST_FIRST(&sc->txdma_list);
5174 	if (dma == NULL)
5175 		return ENOBUFS;
5176 	dmamap = dma->dmamap;
5177 
5178 	/*
5179 	 * Set up any necessary TSO state before we start packing...
5180 	 */
5181 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5182 	if (!use_tso) {
5183 		maxsegsize = 0;
5184 	} else {	/* TSO setup */
5185 		unsigned  mss;
5186 		struct ether_header *eh;
5187 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5188 		struct mbuf * m0 = m_head;
5189 		struct ip *ip;
5190 		struct tcphdr *th;
5191 		int iphl, hlen;
5192 
5193 		/*
5194 		 * XXX It would be nice if the mbuf pkthdr had offset
5195 		 * fields for the protocol headers.
5196 		 */
5197 
5198 		eh = mtod(m0, struct ether_header *);
5199 		switch (htons(eh->ether_type)) {
5200 		case ETHERTYPE_IP:
5201 			offset = ETHER_HDR_LEN;
5202 			break;
5203 
5204 		case ETHERTYPE_VLAN:
5205 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5206 			break;
5207 
5208 		default:
5209 			/*
5210 			 * Don't support this protocol or encapsulation.
5211 			 */
5212 			return ENOBUFS;
5213 		}
5214 
5215 		/*
5216 		 * TCP/IP headers are in the first mbuf; we can do
5217 		 * this the easy way.
5218 		 */
5219 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5220 		hlen = iphl + offset;
5221 		if (__predict_false(m0->m_len <
5222 				    (hlen + sizeof(struct tcphdr)))) {
5223 
5224 			aprint_debug_dev(sc->bge_dev,
5225 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5226 			    "not handled yet\n",
5227 			     m0->m_len, hlen+ sizeof(struct tcphdr));
5228 #ifdef NOTYET
5229 			/*
5230 			 * XXX jonathan@NetBSD.org: untested.
5231 			 * how to force  this branch to be taken?
5232 			 */
5233 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5234 
5235 			m_copydata(m0, offset, sizeof(ip), &ip);
5236 			m_copydata(m0, hlen, sizeof(th), &th);
5237 
5238 			ip.ip_len = 0;
5239 
5240 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5241 			    sizeof(ip.ip_len), &ip.ip_len);
5242 
5243 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5244 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5245 
5246 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5247 			    sizeof(th.th_sum), &th.th_sum);
5248 
5249 			hlen += th.th_off << 2;
5250 			iptcp_opt_words	= hlen;
5251 #else
5252 			/*
5253 			 * if_wm "hard" case not yet supported, can we not
5254 			 * mandate it out of existence?
5255 			 */
5256 			(void) ip; (void)th; (void) ip_tcp_hlen;
5257 
5258 			return ENOBUFS;
5259 #endif
5260 		} else {
5261 			ip = (struct ip *) (mtod(m0, char *) + offset);
5262 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5263 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5264 
5265 			/* Total IP/TCP options, in 32-bit words */
5266 			iptcp_opt_words = (ip_tcp_hlen
5267 					   - sizeof(struct tcphdr)
5268 					   - sizeof(struct ip)) >> 2;
5269 		}
5270 		if (BGE_IS_575X_PLUS(sc)) {
5271 			th->th_sum = 0;
5272 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5273 		} else {
5274 			/*
5275 			 * XXX jonathan@NetBSD.org: 5705 untested.
5276 			 * Requires TSO firmware patch for 5701/5703/5704.
5277 			 */
5278 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5279 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5280 		}
5281 
5282 		mss = m_head->m_pkthdr.segsz;
5283 		txbd_tso_flags |=
5284 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5285 		    BGE_TXBDFLAG_CPU_POST_DMA;
5286 
5287 		/*
5288 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5289 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5290 		 * the NIC copies 40 bytes of IP/TCP header from the
5291 		 * supplied header into the IP/TCP header portion of
5292 		 * each post-TSO-segment. If the supplied packet has IP or
5293 		 * TCP options, we need to tell the NIC to copy those extra
5294 		 * bytes into each  post-TSO header, in addition to the normal
5295 		 * 40-byte IP/TCP header (and to leave space accordingly).
5296 		 * Unfortunately, the driver encoding of option length
5297 		 * varies across different ASIC families.
5298 		 */
5299 		tcp_seg_flags = 0;
5300 		if (iptcp_opt_words) {
5301 			if (BGE_IS_5705_PLUS(sc)) {
5302 				tcp_seg_flags =
5303 					iptcp_opt_words << 11;
5304 			} else {
5305 				txbd_tso_flags |=
5306 					iptcp_opt_words << 12;
5307 			}
5308 		}
5309 		maxsegsize = mss | tcp_seg_flags;
5310 		ip->ip_len = htons(mss + ip_tcp_hlen);
5311 
5312 	}	/* TSO setup */
5313 
5314 	/*
5315 	 * Start packing the mbufs in this chain into
5316 	 * the fragment pointers. Stop when we run out
5317 	 * of fragments or hit the end of the mbuf chain.
5318 	 */
5319 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5320 	    BUS_DMA_NOWAIT);
5321 	if (error)
5322 		return ENOBUFS;
5323 	/*
5324 	 * Sanity check: avoid coming within 16 descriptors
5325 	 * of the end of the ring.
5326 	 */
5327 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5328 		BGE_TSO_PRINTF(("%s: "
5329 		    " dmamap_load_mbuf too close to ring wrap\n",
5330 		    device_xname(sc->bge_dev)));
5331 		goto fail_unload;
5332 	}
5333 
5334 	have_vtag = vlan_has_tag(m_head);
5335 	if (have_vtag)
5336 		vtag = vlan_get_tag(m_head);
5337 
5338 	/* Iterate over dmap-map fragments. */
5339 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5340 		f = &sc->bge_rdata->bge_tx_ring[frag];
5341 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5342 			break;
5343 
5344 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5345 		f->bge_len = dmamap->dm_segs[i].ds_len;
5346 
5347 		/*
5348 		 * For 5751 and follow-ons, for TSO we must turn
5349 		 * off checksum-assist flag in the tx-descr, and
5350 		 * supply the ASIC-revision-specific encoding
5351 		 * of TSO flags and segsize.
5352 		 */
5353 		if (use_tso) {
5354 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5355 				f->bge_rsvd = maxsegsize;
5356 				f->bge_flags = csum_flags | txbd_tso_flags;
5357 			} else {
5358 				f->bge_rsvd = 0;
5359 				f->bge_flags =
5360 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5361 			}
5362 		} else {
5363 			f->bge_rsvd = 0;
5364 			f->bge_flags = csum_flags;
5365 		}
5366 
5367 		if (have_vtag) {
5368 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5369 			f->bge_vlan_tag = vtag;
5370 		} else {
5371 			f->bge_vlan_tag = 0;
5372 		}
5373 		cur = frag;
5374 		BGE_INC(frag, BGE_TX_RING_CNT);
5375 	}
5376 
5377 	if (i < dmamap->dm_nsegs) {
5378 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5379 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5380 		goto fail_unload;
5381 	}
5382 
5383 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5384 	    BUS_DMASYNC_PREWRITE);
5385 
5386 	if (frag == sc->bge_tx_saved_considx) {
5387 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5388 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5389 
5390 		goto fail_unload;
5391 	}
5392 
5393 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5394 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5395 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5396 	sc->txdma[cur] = dma;
5397 	sc->bge_txcnt += dmamap->dm_nsegs;
5398 
5399 	*txidx = frag;
5400 
5401 	return 0;
5402 
5403 fail_unload:
5404 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
5405 
5406 	return ENOBUFS;
5407 }
5408 
5409 /*
5410  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5411  * to the mbuf data regions directly in the transmit descriptors.
5412  */
5413 static void
5414 bge_start(struct ifnet *ifp)
5415 {
5416 	struct bge_softc *sc;
5417 	struct mbuf *m_head = NULL;
5418 	uint32_t prodidx;
5419 	int pkts = 0;
5420 
5421 	sc = ifp->if_softc;
5422 
5423 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5424 		return;
5425 
5426 	prodidx = sc->bge_tx_prodidx;
5427 
5428 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5429 		IFQ_POLL(&ifp->if_snd, m_head);
5430 		if (m_head == NULL)
5431 			break;
5432 
5433 #if 0
5434 		/*
5435 		 * XXX
5436 		 * safety overkill.  If this is a fragmented packet chain
5437 		 * with delayed TCP/UDP checksums, then only encapsulate
5438 		 * it if we have enough descriptors to handle the entire
5439 		 * chain at once.
5440 		 * (paranoia -- may not actually be needed)
5441 		 */
5442 		if (m_head->m_flags & M_FIRSTFRAG &&
5443 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5444 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5445 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5446 				ifp->if_flags |= IFF_OACTIVE;
5447 				break;
5448 			}
5449 		}
5450 #endif
5451 
5452 		/*
5453 		 * Pack the data into the transmit ring. If we
5454 		 * don't have room, set the OACTIVE flag and wait
5455 		 * for the NIC to drain the ring.
5456 		 */
5457 		if (bge_encap(sc, m_head, &prodidx)) {
5458 			ifp->if_flags |= IFF_OACTIVE;
5459 			break;
5460 		}
5461 
5462 		/* now we are committed to transmit the packet */
5463 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5464 		pkts++;
5465 
5466 		/*
5467 		 * If there's a BPF listener, bounce a copy of this frame
5468 		 * to him.
5469 		 */
5470 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5471 	}
5472 	if (pkts == 0)
5473 		return;
5474 
5475 	/* Transmit */
5476 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5477 	/* 5700 b2 errata */
5478 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5479 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5480 
5481 	sc->bge_tx_prodidx = prodidx;
5482 
5483 	/*
5484 	 * Set a timeout in case the chip goes out to lunch.
5485 	 */
5486 	ifp->if_timer = 5;
5487 }
5488 
5489 static int
5490 bge_init(struct ifnet *ifp)
5491 {
5492 	struct bge_softc *sc = ifp->if_softc;
5493 	const uint16_t *m;
5494 	uint32_t mode, reg;
5495 	int s, error = 0;
5496 
5497 	s = splnet();
5498 
5499 	ifp = &sc->ethercom.ec_if;
5500 
5501 	/* Cancel pending I/O and flush buffers. */
5502 	bge_stop(ifp, 0);
5503 
5504 	bge_stop_fw(sc);
5505 	bge_sig_pre_reset(sc, BGE_RESET_START);
5506 	bge_reset(sc);
5507 	bge_sig_legacy(sc, BGE_RESET_START);
5508 
5509 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5510 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5511 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5512 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
5513 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5514 
5515 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5516 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5517 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5518 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5519 
5520 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5521 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5522 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5523 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5524 
5525 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5526 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5527 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5528 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5529 	}
5530 
5531 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5532 		pcireg_t aercap;
5533 
5534 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5535 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5536 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
5537 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5538 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5539 
5540 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5541 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5542 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
5543 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5544 
5545 		/* Clear correctable error */
5546 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5547 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
5548 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5549 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
5550 
5551 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5552 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5553 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5554 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5555 	}
5556 
5557 	bge_sig_post_reset(sc, BGE_RESET_START);
5558 
5559 	bge_chipinit(sc);
5560 
5561 	/*
5562 	 * Init the various state machines, ring
5563 	 * control blocks and firmware.
5564 	 */
5565 	error = bge_blockinit(sc);
5566 	if (error != 0) {
5567 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5568 		    error);
5569 		splx(s);
5570 		return error;
5571 	}
5572 
5573 	ifp = &sc->ethercom.ec_if;
5574 
5575 	/* 5718 step 25, 57XX step 54 */
5576 	/* Specify MTU. */
5577 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5578 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5579 
5580 	/* 5718 step 23 */
5581 	/* Load our MAC address. */
5582 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5583 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5584 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5585 
5586 	/* Enable or disable promiscuous mode as needed. */
5587 	if (ifp->if_flags & IFF_PROMISC)
5588 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5589 	else
5590 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5591 
5592 	/* Program multicast filter. */
5593 	bge_setmulti(sc);
5594 
5595 	/* Init RX ring. */
5596 	bge_init_rx_ring_std(sc);
5597 
5598 	/*
5599 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5600 	 * memory to insure that the chip has in fact read the first
5601 	 * entry of the ring.
5602 	 */
5603 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5604 		uint32_t		v, i;
5605 		for (i = 0; i < 10; i++) {
5606 			DELAY(20);
5607 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5608 			if (v == (MCLBYTES - ETHER_ALIGN))
5609 				break;
5610 		}
5611 		if (i == 10)
5612 			aprint_error_dev(sc->bge_dev,
5613 			    "5705 A0 chip failed to load RX ring\n");
5614 	}
5615 
5616 	/* Init jumbo RX ring. */
5617 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5618 		bge_init_rx_ring_jumbo(sc);
5619 
5620 	/* Init our RX return ring index */
5621 	sc->bge_rx_saved_considx = 0;
5622 
5623 	/* Init TX ring. */
5624 	bge_init_tx_ring(sc);
5625 
5626 	/* 5718 step 63, 57XX step 94 */
5627 	/* Enable TX MAC state machine lockup fix. */
5628 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5629 	if (BGE_IS_5755_PLUS(sc) ||
5630 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5631 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5632 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5633 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5634 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5635 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5636 	}
5637 
5638 	/* Turn on transmitter */
5639 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5640 	/* 5718 step 64 */
5641 	DELAY(100);
5642 
5643 	/* 5718 step 65, 57XX step 95 */
5644 	/* Turn on receiver */
5645 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5646 	if (BGE_IS_5755_PLUS(sc))
5647 		mode |= BGE_RXMODE_IPV6_ENABLE;
5648 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5649 	/* 5718 step 66 */
5650 	DELAY(10);
5651 
5652 	/* 5718 step 12, 57XX step 37 */
5653 	/*
5654 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5655 	 * is 1, but tg3 set 1 only on 57765 series.
5656 	 */
5657 	if (BGE_IS_57765_PLUS(sc))
5658 		reg = 1;
5659 	else
5660 		reg = 2;
5661 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5662 
5663 	/* Tell firmware we're alive. */
5664 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5665 
5666 	/* Enable host interrupts. */
5667 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5668 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5669 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5670 
5671 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5672 		goto out;
5673 
5674 	ifp->if_flags |= IFF_RUNNING;
5675 	ifp->if_flags &= ~IFF_OACTIVE;
5676 
5677 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5678 
5679 out:
5680 	sc->bge_if_flags = ifp->if_flags;
5681 	splx(s);
5682 
5683 	return error;
5684 }
5685 
5686 /*
5687  * Set media options.
5688  */
5689 static int
5690 bge_ifmedia_upd(struct ifnet *ifp)
5691 {
5692 	struct bge_softc *sc = ifp->if_softc;
5693 	struct mii_data *mii = &sc->bge_mii;
5694 	struct ifmedia *ifm = &sc->bge_ifmedia;
5695 	int rc;
5696 
5697 	/* If this is a 1000baseX NIC, enable the TBI port. */
5698 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5699 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5700 			return EINVAL;
5701 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5702 		case IFM_AUTO:
5703 			/*
5704 			 * The BCM5704 ASIC appears to have a special
5705 			 * mechanism for programming the autoneg
5706 			 * advertisement registers in TBI mode.
5707 			 */
5708 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5709 				uint32_t sgdig;
5710 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5711 				if (sgdig & BGE_SGDIGSTS_DONE) {
5712 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5713 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5714 					sgdig |= BGE_SGDIGCFG_AUTO |
5715 					    BGE_SGDIGCFG_PAUSE_CAP |
5716 					    BGE_SGDIGCFG_ASYM_PAUSE;
5717 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5718 					    sgdig | BGE_SGDIGCFG_SEND);
5719 					DELAY(5);
5720 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5721 					    sgdig);
5722 				}
5723 			}
5724 			break;
5725 		case IFM_1000_SX:
5726 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5727 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5728 				    BGE_MACMODE_HALF_DUPLEX);
5729 			} else {
5730 				BGE_SETBIT(sc, BGE_MAC_MODE,
5731 				    BGE_MACMODE_HALF_DUPLEX);
5732 			}
5733 			DELAY(40);
5734 			break;
5735 		default:
5736 			return EINVAL;
5737 		}
5738 		/* XXX 802.3x flow control for 1000BASE-SX */
5739 		return 0;
5740 	}
5741 
5742 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5743 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5744 		uint32_t reg;
5745 
5746 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5747 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5748 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5749 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5750 		}
5751 	}
5752 
5753 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5754 	if ((rc = mii_mediachg(mii)) == ENXIO)
5755 		return 0;
5756 
5757 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5758 		uint32_t reg;
5759 
5760 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5761 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5762 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5763 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5764 			delay(40);
5765 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5766 		}
5767 	}
5768 
5769 	/*
5770 	 * Force an interrupt so that we will call bge_link_upd
5771 	 * if needed and clear any pending link state attention.
5772 	 * Without this we are not getting any further interrupts
5773 	 * for link state changes and thus will not UP the link and
5774 	 * not be able to send in bge_start. The only way to get
5775 	 * things working was to receive a packet and get a RX intr.
5776 	 */
5777 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5778 	    sc->bge_flags & BGEF_IS_5788)
5779 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5780 	else
5781 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5782 
5783 	return rc;
5784 }
5785 
5786 /*
5787  * Report current media status.
5788  */
5789 static void
5790 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5791 {
5792 	struct bge_softc *sc = ifp->if_softc;
5793 	struct mii_data *mii = &sc->bge_mii;
5794 
5795 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5796 		ifmr->ifm_status = IFM_AVALID;
5797 		ifmr->ifm_active = IFM_ETHER;
5798 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5799 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5800 			ifmr->ifm_status |= IFM_ACTIVE;
5801 		ifmr->ifm_active |= IFM_1000_SX;
5802 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5803 			ifmr->ifm_active |= IFM_HDX;
5804 		else
5805 			ifmr->ifm_active |= IFM_FDX;
5806 		return;
5807 	}
5808 
5809 	mii_pollstat(mii);
5810 	ifmr->ifm_status = mii->mii_media_status;
5811 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5812 	    sc->bge_flowflags;
5813 }
5814 
5815 static int
5816 bge_ifflags_cb(struct ethercom *ec)
5817 {
5818 	struct ifnet *ifp = &ec->ec_if;
5819 	struct bge_softc *sc = ifp->if_softc;
5820 	int change = ifp->if_flags ^ sc->bge_if_flags;
5821 
5822 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5823 		return ENETRESET;
5824 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5825 		return 0;
5826 
5827 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5828 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5829 	else
5830 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5831 
5832 	bge_setmulti(sc);
5833 
5834 	sc->bge_if_flags = ifp->if_flags;
5835 	return 0;
5836 }
5837 
5838 static int
5839 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5840 {
5841 	struct bge_softc *sc = ifp->if_softc;
5842 	struct ifreq *ifr = (struct ifreq *) data;
5843 	int s, error = 0;
5844 	struct mii_data *mii;
5845 
5846 	s = splnet();
5847 
5848 	switch (command) {
5849 	case SIOCSIFMEDIA:
5850 		/* XXX Flow control is not supported for 1000BASE-SX */
5851 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5852 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5853 			sc->bge_flowflags = 0;
5854 		}
5855 
5856 		/* Flow control requires full-duplex mode. */
5857 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5858 		    (ifr->ifr_media & IFM_FDX) == 0) {
5859 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5860 		}
5861 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5862 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5863 				/* We can do both TXPAUSE and RXPAUSE. */
5864 				ifr->ifr_media |=
5865 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5866 			}
5867 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5868 		}
5869 		/* FALLTHROUGH */
5870 	case SIOCGIFMEDIA:
5871 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5872 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5873 			    command);
5874 		} else {
5875 			mii = &sc->bge_mii;
5876 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5877 			    command);
5878 		}
5879 		break;
5880 	default:
5881 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5882 			break;
5883 
5884 		error = 0;
5885 
5886 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5887 			;
5888 		else if (ifp->if_flags & IFF_RUNNING)
5889 			bge_setmulti(sc);
5890 		break;
5891 	}
5892 
5893 	splx(s);
5894 
5895 	return error;
5896 }
5897 
5898 static void
5899 bge_watchdog(struct ifnet *ifp)
5900 {
5901 	struct bge_softc *sc;
5902 
5903 	sc = ifp->if_softc;
5904 
5905 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5906 
5907 	ifp->if_flags &= ~IFF_RUNNING;
5908 	bge_init(ifp);
5909 
5910 	ifp->if_oerrors++;
5911 }
5912 
5913 static void
5914 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5915 {
5916 	int i;
5917 
5918 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5919 
5920 	for (i = 0; i < 1000; i++) {
5921 		delay(100);
5922 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5923 			return;
5924 	}
5925 
5926 	/*
5927 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5928 	 * on some environment (and once after boot?)
5929 	 */
5930 	if (reg != BGE_SRS_MODE)
5931 		aprint_error_dev(sc->bge_dev,
5932 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5933 		    (u_long)reg, bit);
5934 }
5935 
5936 /*
5937  * Stop the adapter and free any mbufs allocated to the
5938  * RX and TX lists.
5939  */
5940 static void
5941 bge_stop(struct ifnet *ifp, int disable)
5942 {
5943 	struct bge_softc *sc = ifp->if_softc;
5944 
5945 	if (disable) {
5946 		sc->bge_detaching = 1;
5947 		callout_halt(&sc->bge_timeout, NULL);
5948 	} else
5949 		callout_stop(&sc->bge_timeout);
5950 
5951 	/* Disable host interrupts. */
5952 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5953 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5954 
5955 	/*
5956 	 * Tell firmware we're shutting down.
5957 	 */
5958 	bge_stop_fw(sc);
5959 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5960 
5961 	/*
5962 	 * Disable all of the receiver blocks.
5963 	 */
5964 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5965 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5966 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5967 	if (BGE_IS_5700_FAMILY(sc))
5968 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5969 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5970 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5971 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5972 
5973 	/*
5974 	 * Disable all of the transmit blocks.
5975 	 */
5976 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5977 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5978 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5979 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5980 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5981 	if (BGE_IS_5700_FAMILY(sc))
5982 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5983 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5984 
5985 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5986 	delay(40);
5987 
5988 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5989 
5990 	/*
5991 	 * Shut down all of the memory managers and related
5992 	 * state machines.
5993 	 */
5994 	/* 5718 step 5a,5b */
5995 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5996 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5997 	if (BGE_IS_5700_FAMILY(sc))
5998 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5999 
6000 	/* 5718 step 5c,5d */
6001 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6002 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6003 
6004 	if (BGE_IS_5700_FAMILY(sc)) {
6005 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6006 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6007 	}
6008 
6009 	bge_reset(sc);
6010 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6011 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6012 
6013 	/*
6014 	 * Keep the ASF firmware running if up.
6015 	 */
6016 	if (sc->bge_asf_mode & ASF_STACKUP)
6017 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6018 	else
6019 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6020 
6021 	/* Free the RX lists. */
6022 	bge_free_rx_ring_std(sc);
6023 
6024 	/* Free jumbo RX list. */
6025 	if (BGE_IS_JUMBO_CAPABLE(sc))
6026 		bge_free_rx_ring_jumbo(sc);
6027 
6028 	/* Free TX buffers. */
6029 	bge_free_tx_ring(sc);
6030 
6031 	/*
6032 	 * Isolate/power down the PHY.
6033 	 */
6034 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
6035 		mii_down(&sc->bge_mii);
6036 
6037 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6038 
6039 	/* Clear MAC's link state (PHY may still have link UP). */
6040 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6041 
6042 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6043 }
6044 
6045 static void
6046 bge_link_upd(struct bge_softc *sc)
6047 {
6048 	struct ifnet *ifp = &sc->ethercom.ec_if;
6049 	struct mii_data *mii = &sc->bge_mii;
6050 	uint32_t status;
6051 	int link;
6052 
6053 	/* Clear 'pending link event' flag */
6054 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6055 
6056 	/*
6057 	 * Process link state changes.
6058 	 * Grrr. The link status word in the status block does
6059 	 * not work correctly on the BCM5700 rev AX and BX chips,
6060 	 * according to all available information. Hence, we have
6061 	 * to enable MII interrupts in order to properly obtain
6062 	 * async link changes. Unfortunately, this also means that
6063 	 * we have to read the MAC status register to detect link
6064 	 * changes, thereby adding an additional register access to
6065 	 * the interrupt handler.
6066 	 */
6067 
6068 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6069 		status = CSR_READ_4(sc, BGE_MAC_STS);
6070 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6071 			mii_pollstat(mii);
6072 
6073 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6074 			    mii->mii_media_status & IFM_ACTIVE &&
6075 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6076 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6077 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6078 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6079 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6080 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6081 
6082 			/* Clear the interrupt */
6083 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6084 			    BGE_EVTENB_MI_INTERRUPT);
6085 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6086 			    BRGPHY_MII_ISR);
6087 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6088 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6089 		}
6090 		return;
6091 	}
6092 
6093 	if (sc->bge_flags & BGEF_FIBER_TBI) {
6094 		status = CSR_READ_4(sc, BGE_MAC_STS);
6095 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6096 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6097 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6098 				if (BGE_ASICREV(sc->bge_chipid)
6099 				    == BGE_ASICREV_BCM5704) {
6100 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6101 					    BGE_MACMODE_TBI_SEND_CFGS);
6102 					DELAY(40);
6103 				}
6104 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6105 				if_link_state_change(ifp, LINK_STATE_UP);
6106 			}
6107 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6108 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6109 			if_link_state_change(ifp, LINK_STATE_DOWN);
6110 		}
6111 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6112 		/*
6113 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6114 		 * bit in status word always set. Workaround this bug by
6115 		 * reading PHY link status directly.
6116 		 */
6117 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6118 		    BGE_STS_LINK : 0;
6119 
6120 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6121 			mii_pollstat(mii);
6122 
6123 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6124 			    mii->mii_media_status & IFM_ACTIVE &&
6125 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6126 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6127 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6128 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6129 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6130 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6131 		}
6132 	} else {
6133 		/*
6134 		 * For controllers that call mii_tick, we have to poll
6135 		 * link status.
6136 		 */
6137 		mii_pollstat(mii);
6138 	}
6139 
6140 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6141 		uint32_t reg, scale;
6142 
6143 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6144 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6145 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6146 			scale = 65;
6147 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6148 			scale = 6;
6149 		else
6150 			scale = 12;
6151 
6152 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6153 		    ~BGE_MISCCFG_TIMER_PRESCALER;
6154 		reg |= scale << 1;
6155 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6156 	}
6157 	/* Clear the attention */
6158 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6159 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6160 	    BGE_MACSTAT_LINK_CHANGED);
6161 }
6162 
6163 static int
6164 bge_sysctl_verify(SYSCTLFN_ARGS)
6165 {
6166 	int error, t;
6167 	struct sysctlnode node;
6168 
6169 	node = *rnode;
6170 	t = *(int*)rnode->sysctl_data;
6171 	node.sysctl_data = &t;
6172 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
6173 	if (error || newp == NULL)
6174 		return error;
6175 
6176 #if 0
6177 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6178 	    node.sysctl_num, rnode->sysctl_num));
6179 #endif
6180 
6181 	if (node.sysctl_num == bge_rxthresh_nodenum) {
6182 		if (t < 0 || t >= NBGE_RX_THRESH)
6183 			return EINVAL;
6184 		bge_update_all_threshes(t);
6185 	} else
6186 		return EINVAL;
6187 
6188 	*(int*)rnode->sysctl_data = t;
6189 
6190 	return 0;
6191 }
6192 
6193 /*
6194  * Set up sysctl(3) MIB, hw.bge.*.
6195  */
6196 static void
6197 bge_sysctl_init(struct bge_softc *sc)
6198 {
6199 	int rc, bge_root_num;
6200 	const struct sysctlnode *node;
6201 
6202 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6203 	    0, CTLTYPE_NODE, "bge",
6204 	    SYSCTL_DESCR("BGE interface controls"),
6205 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6206 		goto out;
6207 	}
6208 
6209 	bge_root_num = node->sysctl_num;
6210 
6211 	/* BGE Rx interrupt mitigation level */
6212 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6213 	    CTLFLAG_READWRITE,
6214 	    CTLTYPE_INT, "rx_lvl",
6215 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6216 	    bge_sysctl_verify, 0,
6217 	    &bge_rx_thresh_lvl,
6218 	    0, CTL_HW, bge_root_num, CTL_CREATE,
6219 	    CTL_EOL)) != 0) {
6220 		goto out;
6221 	}
6222 
6223 	bge_rxthresh_nodenum = node->sysctl_num;
6224 
6225 	return;
6226 
6227 out:
6228 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6229 }
6230 
6231 #ifdef BGE_DEBUG
6232 void
6233 bge_debug_info(struct bge_softc *sc)
6234 {
6235 
6236 	printf("Hardware Flags:\n");
6237 	if (BGE_IS_57765_PLUS(sc))
6238 		printf(" - 57765 Plus\n");
6239 	if (BGE_IS_5717_PLUS(sc))
6240 		printf(" - 5717 Plus\n");
6241 	if (BGE_IS_5755_PLUS(sc))
6242 		printf(" - 5755 Plus\n");
6243 	if (BGE_IS_575X_PLUS(sc))
6244 		printf(" - 575X Plus\n");
6245 	if (BGE_IS_5705_PLUS(sc))
6246 		printf(" - 5705 Plus\n");
6247 	if (BGE_IS_5714_FAMILY(sc))
6248 		printf(" - 5714 Family\n");
6249 	if (BGE_IS_5700_FAMILY(sc))
6250 		printf(" - 5700 Family\n");
6251 	if (sc->bge_flags & BGEF_IS_5788)
6252 		printf(" - 5788\n");
6253 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6254 		printf(" - Supports Jumbo Frames\n");
6255 	if (sc->bge_flags & BGEF_NO_EEPROM)
6256 		printf(" - No EEPROM\n");
6257 	if (sc->bge_flags & BGEF_PCIX)
6258 		printf(" - PCI-X Bus\n");
6259 	if (sc->bge_flags & BGEF_PCIE)
6260 		printf(" - PCI Express Bus\n");
6261 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6262 		printf(" - RX Alignment Bug\n");
6263 	if (sc->bge_flags & BGEF_APE)
6264 		printf(" - APE\n");
6265 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
6266 		printf(" - CPMU\n");
6267 	if (sc->bge_flags & BGEF_TSO)
6268 		printf(" - TSO\n");
6269 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
6270 		printf(" - TAGGED_STATUS\n");
6271 
6272 	/* PHY related */
6273 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6274 		printf(" - No 3 LEDs\n");
6275 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6276 		printf(" - CRC bug\n");
6277 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6278 		printf(" - ADC bug\n");
6279 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6280 		printf(" - 5704 A0 bug\n");
6281 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6282 		printf(" - jitter bug\n");
6283 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6284 		printf(" - BER bug\n");
6285 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6286 		printf(" - adjust trim\n");
6287 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6288 		printf(" - no wirespeed\n");
6289 
6290 	/* ASF related */
6291 	if (sc->bge_asf_mode & ASF_ENABLE)
6292 		printf(" - ASF enable\n");
6293 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6294 		printf(" - ASF new handshake\n");
6295 	if (sc->bge_asf_mode & ASF_STACKUP)
6296 		printf(" - ASF stackup\n");
6297 }
6298 #endif /* BGE_DEBUG */
6299 
6300 static int
6301 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6302 {
6303 	prop_dictionary_t dict;
6304 	prop_data_t ea;
6305 
6306 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6307 		return 1;
6308 
6309 	dict = device_properties(sc->bge_dev);
6310 	ea = prop_dictionary_get(dict, "mac-address");
6311 	if (ea != NULL) {
6312 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6313 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6314 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6315 		return 0;
6316 	}
6317 
6318 	return 1;
6319 }
6320 
6321 static int
6322 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6323 {
6324 	uint32_t mac_addr;
6325 
6326 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6327 	if ((mac_addr >> 16) == 0x484b) {
6328 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6329 		ether_addr[1] = (uint8_t)mac_addr;
6330 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6331 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6332 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6333 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6334 		ether_addr[5] = (uint8_t)mac_addr;
6335 		return 0;
6336 	}
6337 	return 1;
6338 }
6339 
6340 static int
6341 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6342 {
6343 	int mac_offset = BGE_EE_MAC_OFFSET;
6344 
6345 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6346 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6347 
6348 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6349 	    ETHER_ADDR_LEN));
6350 }
6351 
6352 static int
6353 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6354 {
6355 
6356 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6357 		return 1;
6358 
6359 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6360 	   ETHER_ADDR_LEN));
6361 }
6362 
6363 static int
6364 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6365 {
6366 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6367 		/* NOTE: Order is critical */
6368 		bge_get_eaddr_fw,
6369 		bge_get_eaddr_mem,
6370 		bge_get_eaddr_nvram,
6371 		bge_get_eaddr_eeprom,
6372 		NULL
6373 	};
6374 	const bge_eaddr_fcn_t *func;
6375 
6376 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6377 		if ((*func)(sc, eaddr) == 0)
6378 			break;
6379 	}
6380 	return (*func == NULL ? ENXIO : 0);
6381 }
6382