xref: /netbsd-src/sys/dev/pci/if_bge.c (revision b8c616269f5ebf18ab2e35cb8099d683130a177c)
1 /*	$NetBSD: if_bge.c,v 1.31 2003/01/31 05:00:24 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	jonathan Stone <joanthan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include "bpfilter.h"
82 #include "vlan.h"
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_media.h>
97 #include <net/if_ether.h>
98 
99 #ifdef INET
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #endif
105 
106 #if NBPFILTER > 0
107 #include <net/bpf.h>
108 #endif
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 
114 #include <dev/mii/mii.h>
115 #include <dev/mii/miivar.h>
116 #include <dev/mii/miidevs.h>
117 #include <dev/mii/brgphyreg.h>
118 
119 #include <dev/pci/if_bgereg.h>
120 
121 #include <uvm/uvm_extern.h>
122 
123 int bge_probe(struct device *, struct cfdata *, void *);
124 void bge_attach(struct device *, struct device *, void *);
125 void bge_release_resources(struct bge_softc *);
126 void bge_txeof(struct bge_softc *);
127 void bge_rxeof(struct bge_softc *);
128 
129 void bge_tick(void *);
130 void bge_stats_update(struct bge_softc *);
131 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
132 
133 int bge_intr(void *);
134 void bge_start(struct ifnet *);
135 int bge_ioctl(struct ifnet *, u_long, caddr_t);
136 int bge_init(struct ifnet *);
137 void bge_stop(struct bge_softc *);
138 void bge_watchdog(struct ifnet *);
139 void bge_shutdown(void *);
140 int bge_ifmedia_upd(struct ifnet *);
141 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
142 
143 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
144 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
145 
146 void bge_setmulti(struct bge_softc *);
147 
148 void bge_handle_events(struct bge_softc *);
149 int bge_alloc_jumbo_mem(struct bge_softc *);
150 void bge_free_jumbo_mem(struct bge_softc *);
151 void *bge_jalloc(struct bge_softc *);
152 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
153 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
154 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
155 int bge_init_rx_ring_std(struct bge_softc *);
156 void bge_free_rx_ring_std(struct bge_softc *);
157 int bge_init_rx_ring_jumbo(struct bge_softc *);
158 void bge_free_rx_ring_jumbo(struct bge_softc *);
159 void bge_free_tx_ring(struct bge_softc *);
160 int bge_init_tx_ring(struct bge_softc *);
161 
162 int bge_chipinit(struct bge_softc *);
163 int bge_blockinit(struct bge_softc *);
164 int bge_setpowerstate(struct bge_softc *, int);
165 
166 #ifdef notdef
167 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
168 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
169 void bge_vpd_read(struct bge_softc *);
170 #endif
171 
172 u_int32_t bge_readmem_ind(struct bge_softc *, int);
173 void bge_writemem_ind(struct bge_softc *, int, int);
174 #ifdef notdef
175 u_int32_t bge_readreg_ind(struct bge_softc *, int);
176 #endif
177 void bge_writereg_ind(struct bge_softc *, int, int);
178 
179 int bge_miibus_readreg(struct device *, int, int);
180 void bge_miibus_writereg(struct device *, int, int, int);
181 void bge_miibus_statchg(struct device *);
182 
183 void bge_reset(struct bge_softc *);
184 
185 void bge_dump_status(struct bge_softc *);
186 void bge_dump_rxbd(struct bge_rx_bd *);
187 
188 #define BGE_DEBUG
189 #ifdef BGE_DEBUG
190 #define DPRINTF(x)	if (bgedebug) printf x
191 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
192 int	bgedebug = 0;
193 #else
194 #define DPRINTF(x)
195 #define DPRINTFN(n,x)
196 #endif
197 
198 /* Various chip quirks. */
199 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
200 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
201 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
202 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
203 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
204 #define	BGE_QUIRK_PRODUCER_BUG		0x00000011
205 
206 /* following bugs are common to bcm5700 rev B, all flavours */
207 #define BGE_QUIRK_5700_COMMON \
208 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
209 
210 CFATTACH_DECL(bge, sizeof(struct bge_softc),
211     bge_probe, bge_attach, NULL, NULL);
212 
213 u_int32_t
214 bge_readmem_ind(sc, off)
215 	struct bge_softc *sc;
216 	int off;
217 {
218 	struct pci_attach_args	*pa = &(sc->bge_pa);
219 	pcireg_t val;
220 
221 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
222 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
223 	return val;
224 }
225 
226 void
227 bge_writemem_ind(sc, off, val)
228 	struct bge_softc *sc;
229 	int off, val;
230 {
231 	struct pci_attach_args	*pa = &(sc->bge_pa);
232 
233 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
234 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
235 }
236 
237 #ifdef notdef
238 u_int32_t
239 bge_readreg_ind(sc, off)
240 	struct bge_softc *sc;
241 	int off;
242 {
243 	struct pci_attach_args	*pa = &(sc->bge_pa);
244 
245 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
246 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
247 }
248 #endif
249 
250 void
251 bge_writereg_ind(sc, off, val)
252 	struct bge_softc *sc;
253 	int off, val;
254 {
255 	struct pci_attach_args	*pa = &(sc->bge_pa);
256 
257 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
258 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
259 }
260 
261 #ifdef notdef
262 u_int8_t
263 bge_vpd_readbyte(sc, addr)
264 	struct bge_softc *sc;
265 	int addr;
266 {
267 	int i;
268 	u_int32_t val;
269 	struct pci_attach_args	*pa = &(sc->bge_pa);
270 
271 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
272 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
273 		DELAY(10);
274 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
275 		    BGE_VPD_FLAG)
276 			break;
277 	}
278 
279 	if (i == BGE_TIMEOUT) {
280 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
281 		return(0);
282 	}
283 
284 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
285 
286 	return((val >> ((addr % 4) * 8)) & 0xFF);
287 }
288 
289 void
290 bge_vpd_read_res(sc, res, addr)
291 	struct bge_softc *sc;
292 	struct vpd_res *res;
293 	int addr;
294 {
295 	int i;
296 	u_int8_t *ptr;
297 
298 	ptr = (u_int8_t *)res;
299 	for (i = 0; i < sizeof(struct vpd_res); i++)
300 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
301 }
302 
303 void
304 bge_vpd_read(sc)
305 	struct bge_softc *sc;
306 {
307 	int pos = 0, i;
308 	struct vpd_res res;
309 
310 	if (sc->bge_vpd_prodname != NULL)
311 		free(sc->bge_vpd_prodname, M_DEVBUF);
312 	if (sc->bge_vpd_readonly != NULL)
313 		free(sc->bge_vpd_readonly, M_DEVBUF);
314 	sc->bge_vpd_prodname = NULL;
315 	sc->bge_vpd_readonly = NULL;
316 
317 	bge_vpd_read_res(sc, &res, pos);
318 
319 	if (res.vr_id != VPD_RES_ID) {
320 		printf("%s: bad VPD resource id: expected %x got %x\n",
321 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
322 		return;
323 	}
324 
325 	pos += sizeof(res);
326 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
327 	if (sc->bge_vpd_prodname == NULL)
328 		panic("bge_vpd_read");
329 	for (i = 0; i < res.vr_len; i++)
330 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
331 	sc->bge_vpd_prodname[i] = '\0';
332 	pos += i;
333 
334 	bge_vpd_read_res(sc, &res, pos);
335 
336 	if (res.vr_id != VPD_RES_READ) {
337 		printf("%s: bad VPD resource id: expected %x got %x\n",
338 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
339 		return;
340 	}
341 
342 	pos += sizeof(res);
343 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
344 	if (sc->bge_vpd_readonly == NULL)
345 		panic("bge_vpd_read");
346 	for (i = 0; i < res.vr_len + 1; i++)
347 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
348 }
349 #endif
350 
351 /*
352  * Read a byte of data stored in the EEPROM at address 'addr.' The
353  * BCM570x supports both the traditional bitbang interface and an
354  * auto access interface for reading the EEPROM. We use the auto
355  * access method.
356  */
357 u_int8_t
358 bge_eeprom_getbyte(sc, addr, dest)
359 	struct bge_softc *sc;
360 	int addr;
361 	u_int8_t *dest;
362 {
363 	int i;
364 	u_int32_t byte = 0;
365 
366 	/*
367 	 * Enable use of auto EEPROM access so we can avoid
368 	 * having to use the bitbang method.
369 	 */
370 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
371 
372 	/* Reset the EEPROM, load the clock period. */
373 	CSR_WRITE_4(sc, BGE_EE_ADDR,
374 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
375 	DELAY(20);
376 
377 	/* Issue the read EEPROM command. */
378 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
379 
380 	/* Wait for completion */
381 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
382 		DELAY(10);
383 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
384 			break;
385 	}
386 
387 	if (i == BGE_TIMEOUT) {
388 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
389 		return(0);
390 	}
391 
392 	/* Get result. */
393 	byte = CSR_READ_4(sc, BGE_EE_DATA);
394 
395 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
396 
397 	return(0);
398 }
399 
400 /*
401  * Read a sequence of bytes from the EEPROM.
402  */
403 int
404 bge_read_eeprom(sc, dest, off, cnt)
405 	struct bge_softc *sc;
406 	caddr_t dest;
407 	int off;
408 	int cnt;
409 {
410 	int err = 0, i;
411 	u_int8_t byte = 0;
412 
413 	for (i = 0; i < cnt; i++) {
414 		err = bge_eeprom_getbyte(sc, off + i, &byte);
415 		if (err)
416 			break;
417 		*(dest + i) = byte;
418 	}
419 
420 	return(err ? 1 : 0);
421 }
422 
423 int
424 bge_miibus_readreg(dev, phy, reg)
425 	struct device *dev;
426 	int phy, reg;
427 {
428 	struct bge_softc *sc = (struct bge_softc *)dev;
429 	struct ifnet *ifp;
430 	u_int32_t val;
431 	u_int32_t saved_autopoll;
432 	int i;
433 
434 	ifp = &sc->ethercom.ec_if;
435 
436 	/*
437 	 * Several chips with builtin PHYs will incorrectly answer to
438 	 * other PHY instances than the builtin PHY at id 1.
439 	 */
440 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
441 		return(0);
442 
443 	/* Reading with autopolling on may trigger PCI errors */
444 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
445 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
446 		CSR_WRITE_4(sc, BGE_MI_MODE,
447 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
448 		DELAY(40);
449 	}
450 
451 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
452 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
453 
454 	for (i = 0; i < BGE_TIMEOUT; i++) {
455 		val = CSR_READ_4(sc, BGE_MI_COMM);
456 		if (!(val & BGE_MICOMM_BUSY))
457 			break;
458 		delay(10);
459 	}
460 
461 	if (i == BGE_TIMEOUT) {
462 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
463 		val = 0;
464 		goto done;
465 	}
466 
467 	val = CSR_READ_4(sc, BGE_MI_COMM);
468 
469 done:
470 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
471 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
472 		DELAY(40);
473 	}
474 
475 	if (val & BGE_MICOMM_READFAIL)
476 		return(0);
477 
478 	return(val & 0xFFFF);
479 }
480 
481 void
482 bge_miibus_writereg(dev, phy, reg, val)
483 	struct device *dev;
484 	int phy, reg, val;
485 {
486 	struct bge_softc *sc = (struct bge_softc *)dev;
487 	u_int32_t saved_autopoll;
488 	int i;
489 
490 	/* Touching the PHY while autopolling is on may trigger PCI errors */
491 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
492 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
493 		delay(40);
494 		CSR_WRITE_4(sc, BGE_MI_MODE,
495 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
496 		delay(10); /* 40 usec is supposed to be adequate */
497 	}
498 
499 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
500 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
501 
502 	for (i = 0; i < BGE_TIMEOUT; i++) {
503 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
504 			break;
505 		delay(10);
506 	}
507 
508 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
509 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
510 		delay(40);
511 	}
512 
513 	if (i == BGE_TIMEOUT) {
514 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
515 	}
516 }
517 
518 void
519 bge_miibus_statchg(dev)
520 	struct device *dev;
521 {
522 	struct bge_softc *sc = (struct bge_softc *)dev;
523 	struct mii_data *mii = &sc->bge_mii;
524 
525 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
526 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
527 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
528 	} else {
529 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
530 	}
531 
532 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
533 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
534 	} else {
535 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
536 	}
537 }
538 
539 /*
540  * Handle events that have triggered interrupts.
541  */
542 void
543 bge_handle_events(sc)
544 	struct bge_softc		*sc;
545 {
546 
547 	return;
548 }
549 
550 /*
551  * Memory management for jumbo frames.
552  */
553 
554 int
555 bge_alloc_jumbo_mem(sc)
556 	struct bge_softc		*sc;
557 {
558 	caddr_t			ptr, kva;
559 	bus_dma_segment_t	seg;
560 	int		i, rseg, state, error;
561 	struct bge_jpool_entry   *entry;
562 
563 	state = error = 0;
564 
565 	/* Grab a big chunk o' storage. */
566 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
567 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
568 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
569 		return ENOBUFS;
570 	}
571 
572 	state = 1;
573 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
574 	    BUS_DMA_NOWAIT)) {
575 		printf("%s: can't map dma buffers (%d bytes)\n",
576 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
577 		error = ENOBUFS;
578 		goto out;
579 	}
580 
581 	state = 2;
582 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
583 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
584 		printf("%s: can't create dma map\n", sc->bge_dev.dv_xname);
585 		error = ENOBUFS;
586 		goto out;
587 	}
588 
589 	state = 3;
590 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
591 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
592 		printf("%s: can't load dma map\n", sc->bge_dev.dv_xname);
593 		error = ENOBUFS;
594 		goto out;
595 	}
596 
597 	state = 4;
598 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
599 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
600 
601 	SLIST_INIT(&sc->bge_jfree_listhead);
602 	SLIST_INIT(&sc->bge_jinuse_listhead);
603 
604 	/*
605 	 * Now divide it up into 9K pieces and save the addresses
606 	 * in an array.
607 	 */
608 	ptr = sc->bge_cdata.bge_jumbo_buf;
609 	for (i = 0; i < BGE_JSLOTS; i++) {
610 		sc->bge_cdata.bge_jslots[i] = ptr;
611 		ptr += BGE_JLEN;
612 		entry = malloc(sizeof(struct bge_jpool_entry),
613 		    M_DEVBUF, M_NOWAIT);
614 		if (entry == NULL) {
615 			printf("%s: no memory for jumbo buffer queue!\n",
616 			    sc->bge_dev.dv_xname);
617 			error = ENOBUFS;
618 			goto out;
619 		}
620 		entry->slot = i;
621 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
622 				 entry, jpool_entries);
623 	}
624 out:
625 	if (error != 0) {
626 		switch (state) {
627 		case 4:
628 			bus_dmamap_unload(sc->bge_dmatag,
629 			    sc->bge_cdata.bge_rx_jumbo_map);
630 		case 3:
631 			bus_dmamap_destroy(sc->bge_dmatag,
632 			    sc->bge_cdata.bge_rx_jumbo_map);
633 		case 2:
634 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
635 		case 1:
636 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
637 			break;
638 		default:
639 			break;
640 		}
641 	}
642 
643 	return error;
644 }
645 
646 /*
647  * Allocate a jumbo buffer.
648  */
649 void *
650 bge_jalloc(sc)
651 	struct bge_softc		*sc;
652 {
653 	struct bge_jpool_entry   *entry;
654 
655 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
656 
657 	if (entry == NULL) {
658 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
659 		return(NULL);
660 	}
661 
662 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
663 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
664 	return(sc->bge_cdata.bge_jslots[entry->slot]);
665 }
666 
667 /*
668  * Release a jumbo buffer.
669  */
670 void
671 bge_jfree(m, buf, size, arg)
672 	struct mbuf	*m;
673 	caddr_t		buf;
674 	size_t		size;
675 	void		*arg;
676 {
677 	struct bge_jpool_entry *entry;
678 	struct bge_softc *sc;
679 	int i, s;
680 
681 	/* Extract the softc struct pointer. */
682 	sc = (struct bge_softc *)arg;
683 
684 	if (sc == NULL)
685 		panic("bge_jfree: can't find softc pointer!");
686 
687 	/* calculate the slot this buffer belongs to */
688 
689 	i = ((caddr_t)buf
690 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
691 
692 	if ((i < 0) || (i >= BGE_JSLOTS))
693 		panic("bge_jfree: asked to free buffer that we don't manage!");
694 
695 	s = splvm();
696 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
697 	if (entry == NULL)
698 		panic("bge_jfree: buffer not in use!");
699 	entry->slot = i;
700 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
701 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
702 
703 	if (__predict_true(m != NULL))
704   		pool_cache_put(&mbpool_cache, m);
705 	splx(s);
706 }
707 
708 
709 /*
710  * Intialize a standard receive ring descriptor.
711  */
712 int
713 bge_newbuf_std(sc, i, m, dmamap)
714 	struct bge_softc	*sc;
715 	int			i;
716 	struct mbuf		*m;
717 	bus_dmamap_t dmamap;
718 {
719 	struct mbuf		*m_new = NULL;
720 	struct bge_rx_bd	*r;
721 	int			error;
722 
723 	if (dmamap == NULL) {
724 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
725 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
726 		if (error != 0)
727 			return error;
728 	}
729 
730 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
731 
732 	if (m == NULL) {
733 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
734 		if (m_new == NULL) {
735 			return(ENOBUFS);
736 		}
737 
738 		MCLGET(m_new, M_DONTWAIT);
739 		if (!(m_new->m_flags & M_EXT)) {
740 			m_freem(m_new);
741 			return(ENOBUFS);
742 		}
743 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
744 		m_adj(m_new, ETHER_ALIGN);
745 
746 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
747 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
748 			return(ENOBUFS);
749 	} else {
750 		m_new = m;
751 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
752 		m_new->m_data = m_new->m_ext.ext_buf;
753 		m_adj(m_new, ETHER_ALIGN);
754 	}
755 
756 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
757 	r = &sc->bge_rdata->bge_rx_std_ring[i];
758 	bge_set_hostaddr(&r->bge_addr,
759 	    dmamap->dm_segs[0].ds_addr);
760 	r->bge_flags = BGE_RXBDFLAG_END;
761 	r->bge_len = m_new->m_len;
762 	r->bge_idx = i;
763 
764 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
765 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
766 		i * sizeof (struct bge_rx_bd),
767 	    sizeof (struct bge_rx_bd),
768 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
769 
770 	return(0);
771 }
772 
773 /*
774  * Initialize a jumbo receive ring descriptor. This allocates
775  * a jumbo buffer from the pool managed internally by the driver.
776  */
777 int
778 bge_newbuf_jumbo(sc, i, m)
779 	struct bge_softc *sc;
780 	int i;
781 	struct mbuf *m;
782 {
783 	struct mbuf *m_new = NULL;
784 	struct bge_rx_bd *r;
785 
786 	if (m == NULL) {
787 		caddr_t			*buf = NULL;
788 
789 		/* Allocate the mbuf. */
790 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
791 		if (m_new == NULL) {
792 			return(ENOBUFS);
793 		}
794 
795 		/* Allocate the jumbo buffer */
796 		buf = bge_jalloc(sc);
797 		if (buf == NULL) {
798 			m_freem(m_new);
799 			printf("%s: jumbo allocation failed "
800 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
801 			return(ENOBUFS);
802 		}
803 
804 		/* Attach the buffer to the mbuf. */
805 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
806 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
807 		    bge_jfree, sc);
808 	} else {
809 		m_new = m;
810 		m_new->m_data = m_new->m_ext.ext_buf;
811 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
812 	}
813 
814 	m_adj(m_new, ETHER_ALIGN);
815 	/* Set up the descriptor. */
816 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
817 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
818 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
819 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
820 	r->bge_len = m_new->m_len;
821 	r->bge_idx = i;
822 
823 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
824 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
825 		i * sizeof (struct bge_rx_bd),
826 	    sizeof (struct bge_rx_bd),
827 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
828 
829 	return(0);
830 }
831 
832 /*
833  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
834  * that's 1MB or memory, which is a lot. For now, we fill only the first
835  * 256 ring entries and hope that our CPU is fast enough to keep up with
836  * the NIC.
837  */
838 int
839 bge_init_rx_ring_std(sc)
840 	struct bge_softc *sc;
841 {
842 	int i;
843 
844 	if (sc->bge_flags & BGE_RXRING_VALID)
845 		return 0;
846 
847 	for (i = 0; i < BGE_SSLOTS; i++) {
848 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
849 			return(ENOBUFS);
850 	}
851 
852 	sc->bge_std = i - 1;
853 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
854 
855 	sc->bge_flags |= BGE_RXRING_VALID;
856 
857 	return(0);
858 }
859 
860 void
861 bge_free_rx_ring_std(sc)
862 	struct bge_softc *sc;
863 {
864 	int i;
865 
866 	if (!(sc->bge_flags & BGE_RXRING_VALID))
867 		return;
868 
869 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
870 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
871 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
872 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
873 			bus_dmamap_destroy(sc->bge_dmatag,
874 			    sc->bge_cdata.bge_rx_std_map[i]);
875 		}
876 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
877 		    sizeof(struct bge_rx_bd));
878 	}
879 
880 	sc->bge_flags &= ~BGE_RXRING_VALID;
881 }
882 
883 int
884 bge_init_rx_ring_jumbo(sc)
885 	struct bge_softc *sc;
886 {
887 	int i;
888 	struct bge_rcb *rcb;
889 	struct bge_rcb_opaque *rcbo;
890 
891 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
892 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
893 			return(ENOBUFS);
894 	};
895 
896 	sc->bge_jumbo = i - 1;
897 
898 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
899 	rcbo = (struct bge_rcb_opaque *)rcb;
900 	rcb->bge_flags = 0;
901 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
902 
903 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
904 
905 	return(0);
906 }
907 
908 void
909 bge_free_rx_ring_jumbo(sc)
910 	struct bge_softc *sc;
911 {
912 	int i;
913 
914 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
915 		return;
916 
917 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
918 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
919 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
920 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
921 		}
922 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
923 		    sizeof(struct bge_rx_bd));
924 	}
925 
926 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
927 }
928 
929 void
930 bge_free_tx_ring(sc)
931 	struct bge_softc *sc;
932 {
933 	int i, freed;
934 	struct txdmamap_pool_entry *dma;
935 
936 	if (!(sc->bge_flags & BGE_TXRING_VALID))
937 		return;
938 
939 	freed = 0;
940 
941 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
942 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
943 			freed++;
944 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
945 			sc->bge_cdata.bge_tx_chain[i] = NULL;
946 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
947 					    link);
948 			sc->txdma[i] = 0;
949 		}
950 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
951 		    sizeof(struct bge_tx_bd));
952 	}
953 
954 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
955 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
956 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
957 		free(dma, M_DEVBUF);
958 	}
959 
960 	sc->bge_flags &= ~BGE_TXRING_VALID;
961 }
962 
963 int
964 bge_init_tx_ring(sc)
965 	struct bge_softc *sc;
966 {
967 	int i;
968 	bus_dmamap_t dmamap;
969 	struct txdmamap_pool_entry *dma;
970 
971 	if (sc->bge_flags & BGE_TXRING_VALID)
972 		return 0;
973 
974 	sc->bge_txcnt = 0;
975 	sc->bge_tx_saved_considx = 0;
976 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
977 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
978 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
979 
980 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
981 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
982 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983 
984 	SLIST_INIT(&sc->txdma_list);
985 	for (i = 0; i < BGE_RSLOTS; i++) {
986 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
987 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
988 		    &dmamap))
989 			return(ENOBUFS);
990 		if (dmamap == NULL)
991 			panic("dmamap NULL in bge_init_tx_ring");
992 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
993 		if (dma == NULL) {
994 			printf("%s: can't alloc txdmamap_pool_entry\n",
995 			    sc->bge_dev.dv_xname);
996 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
997 			return (ENOMEM);
998 		}
999 		dma->dmamap = dmamap;
1000 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1001 	}
1002 
1003 	sc->bge_flags |= BGE_TXRING_VALID;
1004 
1005 	return(0);
1006 }
1007 
1008 void
1009 bge_setmulti(sc)
1010 	struct bge_softc *sc;
1011 {
1012 	struct ethercom		*ac = &sc->ethercom;
1013 	struct ifnet		*ifp = &ac->ec_if;
1014 	struct ether_multi	*enm;
1015 	struct ether_multistep  step;
1016 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1017 	u_int32_t		h;
1018 	int			i;
1019 
1020 	if (ifp->if_flags & IFF_PROMISC)
1021 		goto allmulti;
1022 
1023 	/* Now program new ones. */
1024 	ETHER_FIRST_MULTI(step, ac, enm);
1025 	while (enm != NULL) {
1026 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1027 			/*
1028 			 * We must listen to a range of multicast addresses.
1029 			 * For now, just accept all multicasts, rather than
1030 			 * trying to set only those filter bits needed to match
1031 			 * the range.  (At this time, the only use of address
1032 			 * ranges is for IP multicast routing, for which the
1033 			 * range is big enough to require all bits set.)
1034 			 */
1035 			goto allmulti;
1036 		}
1037 
1038 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1039 
1040 		/* Just want the 7 least-significant bits. */
1041 		h &= 0x7f;
1042 
1043 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1044 		ETHER_NEXT_MULTI(step, enm);
1045 	}
1046 
1047 	ifp->if_flags &= ~IFF_ALLMULTI;
1048 	goto setit;
1049 
1050  allmulti:
1051 	ifp->if_flags |= IFF_ALLMULTI;
1052 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1053 
1054  setit:
1055 	for (i = 0; i < 4; i++)
1056 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1057 }
1058 
1059 const int bge_swapbits[] = {
1060 	0,
1061 	BGE_MODECTL_BYTESWAP_DATA,
1062 	BGE_MODECTL_WORDSWAP_DATA,
1063 	BGE_MODECTL_BYTESWAP_NONFRAME,
1064 	BGE_MODECTL_WORDSWAP_NONFRAME,
1065 
1066 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1067 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1068 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1069 
1070 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1071 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1072 
1073 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1074 
1075 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1076 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1077 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1078 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1079 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1080 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1081 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1082 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1083 
1084 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1085 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1086 };
1087 
1088 int bge_swapindex = 0;
1089 
1090 /*
1091  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1092  * self-test results.
1093  */
1094 int
1095 bge_chipinit(sc)
1096 	struct bge_softc *sc;
1097 {
1098 	u_int32_t		cachesize;
1099 	int			i;
1100 	u_int32_t		dma_rw_ctl;
1101 	struct pci_attach_args	*pa = &(sc->bge_pa);
1102 
1103 
1104 	/* Set endianness before we access any non-PCI registers. */
1105 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1106 	    BGE_INIT);
1107 
1108 	/* Set power state to D0. */
1109 	bge_setpowerstate(sc, 0);
1110 
1111 	/*
1112 	 * Check the 'ROM failed' bit on the RX CPU to see if
1113 	 * self-tests passed.
1114 	 */
1115 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1116 		printf("%s: RX CPU self-diagnostics failed!\n",
1117 		    sc->bge_dev.dv_xname);
1118 		return(ENODEV);
1119 	}
1120 
1121 	/* Clear the MAC control register */
1122 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1123 
1124 	/*
1125 	 * Clear the MAC statistics block in the NIC's
1126 	 * internal memory.
1127 	 */
1128 	for (i = BGE_STATS_BLOCK;
1129 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1130 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1131 
1132 	for (i = BGE_STATUS_BLOCK;
1133 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1134 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1135 
1136 	/* Set up the PCI DMA control register. */
1137 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1138 	    BGE_PCISTATE_PCI_BUSMODE) {
1139 		/* Conventional PCI bus */
1140 	  	DPRINTFN(4, ("(%s: PCI 2.2 dma setting)\n", sc->bge_dev.dv_xname));
1141 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1142 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1143 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1144 		   (0x0F));
1145 	} else {
1146 	  	DPRINTFN(4, ("(:%s: PCI-X dma setting)\n", sc->bge_dev.dv_xname));
1147 		/* PCI-X bus */
1148 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1149 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1150 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1151 		    (0x0F);
1152 		/*
1153 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1154 		 * for hardware bugs, which means we should also clear
1155 		 * the low-order MINDMA bits.  In addition, the 5704
1156 		 * uses a different encoding of read/write watermarks.
1157 		 */
1158 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0) {
1159 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1160 			  /* should be 0x1f0000 */
1161 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1162 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1163 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1164 		}
1165 		else if ((sc->bge_asicrev >> 28) ==
1166 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1167 			dma_rw_ctl &=  0xfffffff0;
1168 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1169 		}
1170 	}
1171 
1172 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1173 
1174 	/*
1175 	 * Set up general mode register.
1176 	 */
1177 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1178 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1179 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1180 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
1181 
1182 	/* Get cache line size. */
1183 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1184 
1185 	/*
1186 	 * Avoid violating PCI spec on certain chip revs.
1187 	 */
1188 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1189 	    PCIM_CMD_MWIEN) {
1190 		switch(cachesize) {
1191 		case 1:
1192 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1193 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1194 			break;
1195 		case 2:
1196 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1197 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1198 			break;
1199 		case 4:
1200 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1201 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1202 			break;
1203 		case 8:
1204 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1205 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1206 			break;
1207 		case 16:
1208 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1209 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1210 			break;
1211 		case 32:
1212 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1213 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1214 			break;
1215 		case 64:
1216 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1217 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1218 			break;
1219 		default:
1220 		/* Disable PCI memory write and invalidate. */
1221 #if 0
1222 			if (bootverbose)
1223 				printf("%s: cache line size %d not "
1224 				    "supported; disabling PCI MWI\n",
1225 				    sc->bge_dev.dv_xname, cachesize);
1226 #endif
1227 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1228 			    PCIM_CMD_MWIEN);
1229 			break;
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Disable memory write invalidate.  Apparently it is not supported
1235 	 * properly by these devices.
1236 	 */
1237 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1238 
1239 
1240 #ifdef __brokenalpha__
1241 	/*
1242 	 * Must insure that we do not cross an 8K (bytes) boundary
1243 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1244 	 * restriction on some ALPHA platforms with early revision
1245 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1246 	 */
1247 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1248 #endif
1249 
1250 	/* Set the timer prescaler (always 66Mhz) */
1251 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1252 
1253 	return(0);
1254 }
1255 
1256 int
1257 bge_blockinit(sc)
1258 	struct bge_softc *sc;
1259 {
1260 	struct bge_rcb		*rcb;
1261 	struct bge_rcb_opaque	*rcbo;
1262 	bus_size_t		rcb_addr;
1263 	int			i;
1264 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1265 	bge_hostaddr		taddr;
1266 
1267 	/*
1268 	 * Initialize the memory window pointer register so that
1269 	 * we can access the first 32K of internal NIC RAM. This will
1270 	 * allow us to set up the TX send ring RCBs and the RX return
1271 	 * ring RCBs, plus other things which live in NIC memory.
1272 	 */
1273 
1274 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1275 	    BGE_PCI_MEMWIN_BASEADDR, 0);
1276 
1277 	/* Configure mbuf memory pool */
1278 	if (sc->bge_extram) {
1279 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM);
1280 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1281 	} else {
1282 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1283 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1284 	}
1285 
1286 	/* Configure DMA resource pool */
1287 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS);
1288 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1289 
1290 	/* Configure mbuf pool watermarks */
1291 #ifdef ORIG_WPAUL_VALUES
1292 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1293 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1294 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1295 #else
1296 	/* new broadcom docs strongly recommend these: */
1297 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1298 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1299 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1300 #endif
1301 
1302 	/* Configure DMA resource watermarks */
1303 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1304 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1305 
1306 	/* Enable buffer manager */
1307 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1308 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1309 
1310 	/* Poll for buffer manager start indication */
1311 	for (i = 0; i < BGE_TIMEOUT; i++) {
1312 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1313 			break;
1314 		DELAY(10);
1315 	}
1316 
1317 	if (i == BGE_TIMEOUT) {
1318 		printf("%s: buffer manager failed to start\n",
1319 		    sc->bge_dev.dv_xname);
1320 		return(ENXIO);
1321 	}
1322 
1323 	/* Enable flow-through queues */
1324 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1325 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1326 
1327 	/* Wait until queue initialization is complete */
1328 	for (i = 0; i < BGE_TIMEOUT; i++) {
1329 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1330 			break;
1331 		DELAY(10);
1332 	}
1333 
1334 	if (i == BGE_TIMEOUT) {
1335 		printf("%s: flow-through queue init failed\n",
1336 		    sc->bge_dev.dv_xname);
1337 		return(ENXIO);
1338 	}
1339 
1340 	/* Initialize the standard RX ring control block */
1341 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1342 	bge_set_hostaddr(&rcb->bge_hostaddr,
1343 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1344 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1345 	if (sc->bge_extram)
1346 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1347 	else
1348 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1349 	rcb->bge_flags = 0;
1350 	rcbo = (struct bge_rcb_opaque *)rcb;
1351 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcbo->bge_reg0);
1352 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcbo->bge_reg1);
1353 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1354 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcbo->bge_reg3);
1355 
1356 	/*
1357 	 * Initialize the jumbo RX ring control block
1358 	 * We set the 'ring disabled' bit in the flags
1359 	 * field until we're actually ready to start
1360 	 * using this ring (i.e. once we set the MTU
1361 	 * high enough to require it).
1362 	 */
1363 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1364 	bge_set_hostaddr(&rcb->bge_hostaddr,
1365 	    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1366 	rcb->bge_max_len = BGE_MAX_FRAMELEN;
1367 	if (sc->bge_extram)
1368 		rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1369 	else
1370 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1371 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1372 
1373 	rcbo = (struct bge_rcb_opaque *)rcb;
1374 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcbo->bge_reg0);
1375 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcbo->bge_reg1);
1376 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1377 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcbo->bge_reg3);
1378 
1379 	/* Set up dummy disabled mini ring RCB */
1380 	rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1381 	rcb->bge_flags = BGE_RCB_FLAG_RING_DISABLED;
1382 	rcbo = (struct bge_rcb_opaque *)rcb;
1383 	CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcbo->bge_reg2);
1384 
1385 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1386 	    offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib),
1387 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1388 
1389 	/*
1390 	 * Set the BD ring replentish thresholds. The recommended
1391 	 * values are 1/8th the number of descriptors allocated to
1392 	 * each ring.
1393 	 */
1394 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1395 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1396 
1397 	/*
1398 	 * Disable all unused send rings by setting the 'ring disabled'
1399 	 * bit in the flags field of all the TX send ring control blocks.
1400 	 * These are located in NIC memory.
1401 	 */
1402 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1403 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1404 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
1405 			    BGE_RCB_FLAG_RING_DISABLED);
1406 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, 0);
1407 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1408 		rcb_addr += sizeof(struct bge_rcb);
1409 	}
1410 
1411 	/* Configure TX RCB 0 (we use only the first ring) */
1412 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1413 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1414 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1415 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1416 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1417 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1418 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_TX_RING_CNT);
1419 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1420 
1421 	/* Disable all unused RX return rings */
1422 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1423 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1424 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1425 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1426 		RCB_WRITE_2(sc, rcb_addr, bge_flags,
1427 			    BGE_RCB_FLAG_RING_DISABLED);
1428 		RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1429 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1430 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1431 		    (i * (sizeof(u_int64_t))), 0);
1432 		rcb_addr += sizeof(struct bge_rcb);
1433 	}
1434 
1435 	/* Initialize RX ring indexes */
1436 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1437 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1438 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1439 
1440 	/*
1441 	 * Set up RX return ring 0
1442 	 * Note that the NIC address for RX return rings is 0x00000000.
1443 	 * The return rings live entirely within the host, so the
1444 	 * nicaddr field in the RCB isn't used.
1445 	 */
1446 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1447 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1448 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1449 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1450 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1451 	RCB_WRITE_2(sc, rcb_addr, bge_max_len, BGE_RETURN_RING_CNT);
1452 	RCB_WRITE_2(sc, rcb_addr, bge_flags, 0);
1453 
1454 	/* Set random backoff seed for TX */
1455 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1456 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1457 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1458 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1459 	    BGE_TX_BACKOFF_SEED_MASK);
1460 
1461 	/* Set inter-packet gap */
1462 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1463 
1464 	/*
1465 	 * Specify which ring to use for packets that don't match
1466 	 * any RX rules.
1467 	 */
1468 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1469 
1470 	/*
1471 	 * Configure number of RX lists. One interrupt distribution
1472 	 * list, sixteen active lists, one bad frames class.
1473 	 */
1474 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1475 
1476 	/* Inialize RX list placement stats mask. */
1477 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1478 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1479 
1480 	/* Disable host coalescing until we get it set up */
1481 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1482 
1483 	/* Poll to make sure it's shut down. */
1484 	for (i = 0; i < BGE_TIMEOUT; i++) {
1485 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1486 			break;
1487 		DELAY(10);
1488 	}
1489 
1490 	if (i == BGE_TIMEOUT) {
1491 		printf("%s: host coalescing engine failed to idle\n",
1492 		    sc->bge_dev.dv_xname);
1493 		return(ENXIO);
1494 	}
1495 
1496 	/* Set up host coalescing defaults */
1497 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1498 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1499 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1500 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1501 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1502 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1503 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1504 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1505 	CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1506 
1507 	/* Set up address of statistics block */
1508 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1509 	CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1510 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1511 	CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1512 
1513 	/* Set up address of status block */
1514 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1515 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1516 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1517 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1518 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1519 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1520 
1521 	/* Turn on host coalescing state machine */
1522 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1523 
1524 	/* Turn on RX BD completion state machine and enable attentions */
1525 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1526 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1527 
1528 	/* Turn on RX list placement state machine */
1529 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1530 
1531 	/* Turn on RX list selector state machine. */
1532 	CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1533 
1534 	/* Turn on DMA, clear stats */
1535 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1536 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1537 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1538 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1539 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1540 
1541 	/* Set misc. local control, enable interrupts on attentions */
1542 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1543 
1544 #ifdef notdef
1545 	/* Assert GPIO pins for PHY reset */
1546 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1547 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1548 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1549 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1550 #endif
1551 
1552 #if defined(not_quite_yet)
1553 	/* Linux driver enables enable gpio pin #1 on 5700s */
1554 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1555 		sc->bge_local_ctrl_reg |=
1556 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1557 	}
1558 #endif
1559 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1560 
1561 	/* Turn on DMA completion state machine */
1562 	CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1563 
1564 	/* Turn on write DMA state machine */
1565 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1566 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1567 
1568 	/* Turn on read DMA state machine */
1569 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1570 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1571 
1572 	/* Turn on RX data completion state machine */
1573 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1574 
1575 	/* Turn on RX BD initiator state machine */
1576 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1577 
1578 	/* Turn on RX data and RX BD initiator state machine */
1579 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1580 
1581 	/* Turn on Mbuf cluster free state machine */
1582 	CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1583 
1584 	/* Turn on send BD completion state machine */
1585 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1586 
1587 	/* Turn on send data completion state machine */
1588 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1589 
1590 	/* Turn on send data initiator state machine */
1591 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1592 
1593 	/* Turn on send BD initiator state machine */
1594 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1595 
1596 	/* Turn on send BD selector state machine */
1597 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1598 
1599 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1600 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1601 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1602 
1603 	/* init LED register */
1604 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1605 
1606 	/* ack/clear link change events */
1607 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1608 	    BGE_MACSTAT_CFG_CHANGED);
1609 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1610 
1611 	/* Enable PHY auto polling (for MII/GMII only) */
1612 	if (sc->bge_tbi) {
1613 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1614  	} else {
1615 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1616 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1617 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1618 			    BGE_EVTENB_MI_INTERRUPT);
1619 	}
1620 
1621 	/* Enable link state change attentions. */
1622 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1623 
1624 	return(0);
1625 }
1626 
1627 static const struct bge_revision {
1628 	uint32_t		br_asicrev;
1629 	uint32_t		br_quirks;
1630 	const char		*br_name;
1631 } bge_revisions[] = {
1632 	{ BGE_ASICREV_BCM5700_A0,
1633 	  BGE_QUIRK_LINK_STATE_BROKEN,
1634 	  "BCM5700 A0" },
1635 
1636 	{ BGE_ASICREV_BCM5700_A1,
1637 	  BGE_QUIRK_LINK_STATE_BROKEN,
1638 	  "BCM5700 A1" },
1639 
1640 	{ BGE_ASICREV_BCM5700_B0,
1641 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1642 	  "BCM5700 B0" },
1643 
1644 	{ BGE_ASICREV_BCM5700_B1,
1645 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1646 	  "BCM5700 B1" },
1647 
1648 	{ BGE_ASICREV_BCM5700_B2,
1649 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1650 	  "BCM5700 B2" },
1651 
1652 	/* This is treated like a BCM5700 Bx */
1653 	{ BGE_ASICREV_BCM5700_ALTIMA,
1654 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1655 	  "BCM5700 Altima" },
1656 
1657 	{ BGE_ASICREV_BCM5700_C0,
1658 	  0,
1659 	  "BCM5700 C0" },
1660 
1661 	{ BGE_ASICREV_BCM5701_A0,
1662 	  0,
1663 	  "BCM5701 A0" },
1664 
1665 	{ BGE_ASICREV_BCM5701_B0,
1666 	  0,
1667 	  "BCM5701 B0" },
1668 
1669 	{ BGE_ASICREV_BCM5701_B2,
1670 	  0,
1671 	  "BCM5701 B2" },
1672 
1673 	{ BGE_ASICREV_BCM5701_B5,
1674 	  BGE_QUIRK_ONLY_PHY_1,
1675 	  "BCM5701 B5" },
1676 
1677 	{ BGE_ASICREV_BCM5703_A0,
1678 	  0,
1679 	  "BCM5703 A0" },
1680 
1681 	{ BGE_ASICREV_BCM5703_A1,
1682 	  0,
1683 	  "BCM5703 A1" },
1684 
1685 	{ BGE_ASICREV_BCM5703_A2,
1686 	  BGE_QUIRK_ONLY_PHY_1,
1687 	  "BCM5703 A2" },
1688 
1689 	{ BGE_ASICREV_BCM5704_A0,
1690   	  BGE_QUIRK_ONLY_PHY_1,
1691 	  "BCM5704 A0" },
1692 
1693 	{ 0, 0, NULL }
1694 };
1695 
1696 static const struct bge_revision *
1697 bge_lookup_rev(uint32_t asicrev)
1698 {
1699 	const struct bge_revision *br;
1700 
1701 	for (br = bge_revisions; br->br_name != NULL; br++) {
1702 		if (br->br_asicrev == asicrev)
1703 			return (br);
1704 	}
1705 
1706 	return (NULL);
1707 }
1708 
1709 static const struct bge_product {
1710 	pci_vendor_id_t		bp_vendor;
1711 	pci_product_id_t	bp_product;
1712 	const char		*bp_name;
1713 } bge_products[] = {
1714 	/*
1715 	 * The BCM5700 documentation seems to indicate that the hardware
1716 	 * still has the Alteon vendor ID burned into it, though it
1717 	 * should always be overridden by the value in the EEPROM.  We'll
1718 	 * check for it anyway.
1719 	 */
1720 	{ PCI_VENDOR_ALTEON,
1721 	  PCI_PRODUCT_ALTEON_BCM5700,
1722 	  "Broadcom BCM5700 Gigabit Ethernet" },
1723 	{ PCI_VENDOR_ALTEON,
1724 	  PCI_PRODUCT_ALTEON_BCM5701,
1725 	  "Broadcom BCM5701 Gigabit Ethernet" },
1726 
1727 	{ PCI_VENDOR_ALTIMA,
1728 	  PCI_PRODUCT_ALTIMA_AC1000,
1729 	  "Altima AC1000 Gigabit Ethernet" },
1730 	{ PCI_VENDOR_ALTIMA,
1731 	  PCI_PRODUCT_ALTIMA_AC1001,
1732 	  "Altima AC1001 Gigabit Ethernet" },
1733 	{ PCI_VENDOR_ALTIMA,
1734 	  PCI_PRODUCT_ALTIMA_AC9100,
1735 	  "Altima AC9100 Gigabit Ethernet" },
1736 
1737 	{ PCI_VENDOR_BROADCOM,
1738 	  PCI_PRODUCT_BROADCOM_BCM5700,
1739 	  "Broadcom BCM5700 Gigabit Ethernet" },
1740 	{ PCI_VENDOR_BROADCOM,
1741 	  PCI_PRODUCT_BROADCOM_BCM5701,
1742 	  "Broadcom BCM5701 Gigabit Ethernet" },
1743 	{ PCI_VENDOR_BROADCOM,
1744 	  PCI_PRODUCT_BROADCOM_BCM5702,
1745 	  "Broadcom BCM5702 Gigabit Ethernet" },
1746 	{ PCI_VENDOR_BROADCOM,
1747 	  PCI_PRODUCT_BROADCOM_BCM5702X,
1748 	  "Broadcom BCM5702X Gigabit Ethernet" },
1749 	{ PCI_VENDOR_BROADCOM,
1750 	  PCI_PRODUCT_BROADCOM_BCM5703,
1751 	  "Broadcom BCM5703 Gigabit Ethernet" },
1752 	{ PCI_VENDOR_BROADCOM,
1753 	  PCI_PRODUCT_BROADCOM_BCM5703X,
1754 	  "Broadcom BCM5703X Gigabit Ethernet" },
1755    	{ PCI_VENDOR_BROADCOM,
1756 	  PCI_PRODUCT_BROADCOM_BCM5704C,
1757 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
1758    	{ PCI_VENDOR_BROADCOM,
1759 	  PCI_PRODUCT_BROADCOM_BCM5704S,
1760 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
1761 
1762 
1763 	{ PCI_VENDOR_SCHNEIDERKOCH,
1764 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1765 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1766 
1767 	{ PCI_VENDOR_3COM,
1768 	  PCI_PRODUCT_3COM_3C996,
1769 	  "3Com 3c996 Gigabit Ethernet" },
1770 
1771 	{ 0,
1772 	  0,
1773 	  NULL },
1774 };
1775 
1776 static const struct bge_product *
1777 bge_lookup(const struct pci_attach_args *pa)
1778 {
1779 	const struct bge_product *bp;
1780 
1781 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
1782 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1783 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1784 			return (bp);
1785 	}
1786 
1787 	return (NULL);
1788 }
1789 
1790 int
1791 bge_setpowerstate(sc, powerlevel)
1792 	struct bge_softc *sc;
1793 	int powerlevel;
1794 {
1795 #ifdef NOTYET
1796 	u_int32_t pm_ctl = 0;
1797 
1798 	/* XXX FIXME: make sure indirect accesses enabled? */
1799 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1800 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1801 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1802 
1803 	/* clear the PME_assert bit and power state bits, enable PME */
1804 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1805 	pm_ctl &= ~PCIM_PSTAT_DMASK;
1806 	pm_ctl |= (1 << 8);
1807 
1808 	if (powerlevel == 0) {
1809 		pm_ctl |= PCIM_PSTAT_D0;
1810 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1811 		    pm_ctl, 2);
1812 		DELAY(10000);
1813 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1814 		DELAY(10000);
1815 
1816 #ifdef NOTYET
1817 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1818 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1819 #endif
1820 		DELAY(40); DELAY(40); DELAY(40);
1821 		DELAY(10000);	/* above not quite adequate on 5700 */
1822 		return 0;
1823 	}
1824 
1825 
1826 	/*
1827 	 * Entering ACPI power states D1-D3 is achieved by wiggling
1828 	 * GMII gpio pins. Example code assumes all hardware vendors
1829 	 * followed Broadom's sample pcb layout. Until we verify that
1830 	 * for all supported OEM cards, states D1-D3 are  unsupported.
1831 	 */
1832 	printf("%s: power state %d unimplemented; check GPIO pins\n",
1833 	       sc->bge_dev.dv_xname, powerlevel);
1834 #endif
1835 	return EOPNOTSUPP;
1836 }
1837 
1838 
1839 /*
1840  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1841  * against our list and return its name if we find a match. Note
1842  * that since the Broadcom controller contains VPD support, we
1843  * can get the device name string from the controller itself instead
1844  * of the compiled-in string. This is a little slow, but it guarantees
1845  * we'll always announce the right product name.
1846  */
1847 int
1848 bge_probe(parent, match, aux)
1849 	struct device *parent;
1850 	struct cfdata *match;
1851 	void *aux;
1852 {
1853 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1854 
1855 	if (bge_lookup(pa) != NULL)
1856 		return (1);
1857 
1858 	return (0);
1859 }
1860 
1861 void
1862 bge_attach(parent, self, aux)
1863 	struct device *parent, *self;
1864 	void *aux;
1865 {
1866 	struct bge_softc	*sc = (struct bge_softc *)self;
1867 	struct pci_attach_args	*pa = aux;
1868 	const struct bge_product *bp;
1869 	const struct bge_revision *br;
1870 	pci_chipset_tag_t	pc = pa->pa_pc;
1871 	pci_intr_handle_t	ih;
1872 	const char		*intrstr = NULL;
1873 	bus_dma_segment_t	seg;
1874 	int			rseg;
1875 	u_int32_t		hwcfg = 0;
1876 	u_int32_t		mac_addr = 0;
1877 	u_int32_t		command;
1878 	struct ifnet		*ifp;
1879 	caddr_t			kva;
1880 	u_char			eaddr[ETHER_ADDR_LEN];
1881 	pcireg_t		memtype;
1882 	bus_addr_t		memaddr;
1883 	bus_size_t		memsize;
1884 	u_int32_t		pm_ctl;
1885 
1886 	bp = bge_lookup(pa);
1887 	KASSERT(bp != NULL);
1888 
1889 	sc->bge_pa = *pa;
1890 
1891 	aprint_naive(": Ethernet controller\n");
1892 	aprint_normal(": %s\n", bp->bp_name);
1893 
1894 	/*
1895 	 * Map control/status registers.
1896 	 */
1897 	DPRINTFN(5, ("Map control/status regs\n"));
1898 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1899 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1900 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1901 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1902 
1903 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1904 		aprint_error("%s: failed to enable memory mapping!\n",
1905 		    sc->bge_dev.dv_xname);
1906 		return;
1907 	}
1908 
1909 	DPRINTFN(5, ("pci_mem_find\n"));
1910 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1911  	switch (memtype) {
1912 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1913 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1914 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1915 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1916 		    &memaddr, &memsize) == 0)
1917 			break;
1918 	default:
1919 		aprint_error("%s: can't find mem space\n",
1920 		    sc->bge_dev.dv_xname);
1921 		return;
1922 	}
1923 
1924 	DPRINTFN(5, ("pci_intr_map\n"));
1925 	if (pci_intr_map(pa, &ih)) {
1926 		aprint_error("%s: couldn't map interrupt\n",
1927 		    sc->bge_dev.dv_xname);
1928 		return;
1929 	}
1930 
1931 	DPRINTFN(5, ("pci_intr_string\n"));
1932 	intrstr = pci_intr_string(pc, ih);
1933 
1934 	DPRINTFN(5, ("pci_intr_establish\n"));
1935 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1936 
1937 	if (sc->bge_intrhand == NULL) {
1938 		aprint_error("%s: couldn't establish interrupt",
1939 		    sc->bge_dev.dv_xname);
1940 		if (intrstr != NULL)
1941 			aprint_normal(" at %s", intrstr);
1942 		aprint_normal("\n");
1943 		return;
1944 	}
1945 	aprint_normal("%s: interrupting at %s\n",
1946 	    sc->bge_dev.dv_xname, intrstr);
1947 
1948 	/*
1949 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
1950 	 * can clobber the chip's PCI config-space power control registers,
1951 	 * leaving the card in D3 powersave state.
1952 	 * We do not have memory-mapped registers in this state,
1953 	 * so force device into D0 state before starting initialization.
1954 	 */
1955 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
1956 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
1957 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
1958 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
1959 	DELAY(1000);	/* 27 usec is allegedly sufficent */
1960 
1961 	/* Try to reset the chip. */
1962 	DPRINTFN(5, ("bge_reset\n"));
1963 	bge_reset(sc);
1964 
1965 	if (bge_chipinit(sc)) {
1966 		aprint_error("%s: chip initialization failed\n",
1967 		    sc->bge_dev.dv_xname);
1968 		bge_release_resources(sc);
1969 		return;
1970 	}
1971 
1972 	/*
1973 	 * Get station address from the EEPROM.
1974 	 */
1975 	mac_addr = bge_readmem_ind(sc, 0x0c14);
1976 	if ((mac_addr >> 16) == 0x484b) {
1977 		eaddr[0] = (u_char)(mac_addr >> 8);
1978 		eaddr[1] = (u_char)(mac_addr >> 0);
1979 		mac_addr = bge_readmem_ind(sc, 0x0c18);
1980 		eaddr[2] = (u_char)(mac_addr >> 24);
1981 		eaddr[3] = (u_char)(mac_addr >> 16);
1982 		eaddr[4] = (u_char)(mac_addr >> 8);
1983 		eaddr[5] = (u_char)(mac_addr >> 0);
1984 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
1985 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1986 		aprint_error("%s: failed to read station address\n",
1987 		    sc->bge_dev.dv_xname);
1988 		bge_release_resources(sc);
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * Save ASIC rev.  Look up any quirks associated with this
1994 	 * ASIC.
1995 	 */
1996 	sc->bge_asicrev =
1997 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
1998 	    BGE_PCIMISCCTL_ASICREV;
1999 	br = bge_lookup_rev(sc->bge_asicrev);
2000 
2001 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
2002 	if (br == NULL) {
2003 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2004 		sc->bge_quirks = 0;
2005 	} else {
2006 		aprint_normal("ASIC %s", br->br_name);
2007 		sc->bge_quirks = br->br_quirks;
2008 	}
2009 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2010 
2011 	/* Allocate the general information block and ring buffers. */
2012 	sc->bge_dmatag = pa->pa_dmat;
2013 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2014 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2015 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2016 		aprint_error("%s: can't alloc rx buffers\n",
2017 		    sc->bge_dev.dv_xname);
2018 		return;
2019 	}
2020 	DPRINTFN(5, ("bus_dmamem_map\n"));
2021 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2022 			   sizeof(struct bge_ring_data), &kva,
2023 			   BUS_DMA_NOWAIT)) {
2024 		aprint_error("%s: can't map dma buffers (%d bytes)\n",
2025 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2026 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2027 		return;
2028 	}
2029 	DPRINTFN(5, ("bus_dmamem_create\n"));
2030 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2031 	    sizeof(struct bge_ring_data), 0,
2032 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2033 		aprint_error("%s: can't create dma map\n",
2034 		    sc->bge_dev.dv_xname);
2035 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2036 				 sizeof(struct bge_ring_data));
2037 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2038 		return;
2039 	}
2040 	DPRINTFN(5, ("bus_dmamem_load\n"));
2041 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2042 			    sizeof(struct bge_ring_data), NULL,
2043 			    BUS_DMA_NOWAIT)) {
2044 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2045 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2046 				 sizeof(struct bge_ring_data));
2047 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2048 		return;
2049 	}
2050 
2051 	DPRINTFN(5, ("bzero\n"));
2052 	sc->bge_rdata = (struct bge_ring_data *)kva;
2053 
2054 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2055 
2056 	/* Try to allocate memory for jumbo buffers. */
2057 	if (bge_alloc_jumbo_mem(sc)) {
2058 		aprint_error("%s: jumbo buffer allocation failed\n",
2059 		    sc->bge_dev.dv_xname);
2060 	} else
2061 		sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2062 
2063 	/* Set default tuneable values. */
2064 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2065 	sc->bge_rx_coal_ticks = 150;
2066 	sc->bge_rx_max_coal_bds = 64;
2067 #ifdef ORIG_WPAUL_VALUES
2068 	sc->bge_tx_coal_ticks = 150;
2069 	sc->bge_tx_max_coal_bds = 128;
2070 #else
2071 	sc->bge_tx_coal_ticks = 300;
2072 	sc->bge_tx_max_coal_bds = 400;
2073 #endif
2074 
2075 	/* Set up ifnet structure */
2076 	ifp = &sc->ethercom.ec_if;
2077 	ifp->if_softc = sc;
2078 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2079 	ifp->if_ioctl = bge_ioctl;
2080 	ifp->if_start = bge_start;
2081 	ifp->if_init = bge_init;
2082 	ifp->if_watchdog = bge_watchdog;
2083 	IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2084 	IFQ_SET_READY(&ifp->if_snd);
2085 	DPRINTFN(5, ("bcopy\n"));
2086 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2087 
2088 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2089 		sc->ethercom.ec_if.if_capabilities |=
2090 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2091 	sc->ethercom.ec_capabilities |=
2092 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2093 
2094 	/*
2095 	 * Do MII setup.
2096 	 */
2097 	DPRINTFN(5, ("mii setup\n"));
2098 	sc->bge_mii.mii_ifp = ifp;
2099 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2100 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2101 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2102 
2103 	/*
2104 	 * Figure out what sort of media we have by checking the
2105 	 * hardware config word in the EEPROM. Note: on some BCM5700
2106 	 * cards, this value appears to be unset. If that's the
2107 	 * case, we have to rely on identifying the NIC by its PCI
2108 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2109 	 */
2110 	bge_read_eeprom(sc, (caddr_t)&hwcfg,
2111 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2112 	if ((be32toh(hwcfg) & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2113 		sc->bge_tbi = 1;
2114 
2115 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2116 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2117 	    SK_SUBSYSID_9D41)
2118 		sc->bge_tbi = 1;
2119 
2120 	if (sc->bge_tbi) {
2121 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2122 		    bge_ifmedia_sts);
2123 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2124 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2125 			    0, NULL);
2126 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2127 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2128 	} else {
2129 		/*
2130 		 * Do transceiver setup.
2131 		 */
2132 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2133 			     bge_ifmedia_sts);
2134 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2135 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
2136 
2137 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2138 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2139 			ifmedia_add(&sc->bge_mii.mii_media,
2140 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2141 			ifmedia_set(&sc->bge_mii.mii_media,
2142 				    IFM_ETHER|IFM_MANUAL);
2143 		} else
2144 			ifmedia_set(&sc->bge_mii.mii_media,
2145 				    IFM_ETHER|IFM_AUTO);
2146 	}
2147 
2148 	/*
2149 	 * Call MI attach routine.
2150 	 */
2151 	DPRINTFN(5, ("if_attach\n"));
2152 	if_attach(ifp);
2153 	DPRINTFN(5, ("ether_ifattach\n"));
2154 	ether_ifattach(ifp, eaddr);
2155 	DPRINTFN(5, ("callout_init\n"));
2156 	callout_init(&sc->bge_timeout);
2157 }
2158 
2159 void
2160 bge_release_resources(sc)
2161 	struct bge_softc *sc;
2162 {
2163 	if (sc->bge_vpd_prodname != NULL)
2164 		free(sc->bge_vpd_prodname, M_DEVBUF);
2165 
2166 	if (sc->bge_vpd_readonly != NULL)
2167 		free(sc->bge_vpd_readonly, M_DEVBUF);
2168 }
2169 
2170 void
2171 bge_reset(sc)
2172 	struct bge_softc *sc;
2173 {
2174 	struct pci_attach_args *pa = &sc->bge_pa;
2175 	u_int32_t cachesize, command, pcistate;
2176 	int i, val = 0;
2177 
2178 	/* Save some important PCI state. */
2179 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2180 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2181 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2182 
2183 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2184 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2185 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2186 
2187 	/* Issue global reset */
2188 	bge_writereg_ind(sc, BGE_MISC_CFG,
2189 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2190 
2191 	DELAY(1000);
2192 
2193 	/* Reset some of the PCI state that got zapped by reset */
2194 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2195 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2196 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2197 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2198 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2199 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2200 
2201 	/* Enable memory arbiter. */
2202 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2203 
2204 	/*
2205 	 * Prevent PXE restart: write a magic number to the
2206 	 * general communications memory at 0xB50.
2207 	 */
2208 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2209 
2210 	/*
2211 	 * Poll the value location we just wrote until
2212 	 * we see the 1's complement of the magic number.
2213 	 * This indicates that the firmware initialization
2214 	 * is complete.
2215 	 */
2216 	for (i = 0; i < 750; i++) {
2217 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2218 		if (val == ~BGE_MAGIC_NUMBER)
2219 			break;
2220 		DELAY(1000);
2221 	}
2222 
2223 	if (i == 750) {
2224 		printf("%s: firmware handshake timed out, val = %x\n",
2225 		    sc->bge_dev.dv_xname, val);
2226 		return;
2227 	}
2228 
2229 	/*
2230 	 * XXX Wait for the value of the PCISTATE register to
2231 	 * return to its original pre-reset state. This is a
2232 	 * fairly good indicator of reset completion. If we don't
2233 	 * wait for the reset to fully complete, trying to read
2234 	 * from the device's non-PCI registers may yield garbage
2235 	 * results.
2236 	 */
2237 	for (i = 0; i < BGE_TIMEOUT; i++) {
2238 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2239 		    pcistate)
2240 			break;
2241 		DELAY(10);
2242 	}
2243 
2244 	/* Enable memory arbiter. */
2245 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2246 
2247 	/* Fix up byte swapping */
2248 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2249 
2250 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2251 
2252 	DELAY(10000);
2253 }
2254 
2255 /*
2256  * Frame reception handling. This is called if there's a frame
2257  * on the receive return list.
2258  *
2259  * Note: we have to be able to handle two possibilities here:
2260  * 1) the frame is from the jumbo recieve ring
2261  * 2) the frame is from the standard receive ring
2262  */
2263 
2264 void
2265 bge_rxeof(sc)
2266 	struct bge_softc *sc;
2267 {
2268 	struct ifnet *ifp;
2269 	int stdcnt = 0, jumbocnt = 0;
2270 	int have_tag = 0;
2271 	u_int16_t vlan_tag = 0;
2272 	bus_dmamap_t dmamap;
2273 	bus_addr_t offset, toff;
2274 	bus_size_t tlen;
2275 	int tosync;
2276 
2277 	ifp = &sc->ethercom.ec_if;
2278 
2279 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2280 	    offsetof(struct bge_ring_data, bge_status_block),
2281 	    sizeof (struct bge_status_block),
2282 	    BUS_DMASYNC_POSTREAD);
2283 
2284 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2285 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2286 	    sc->bge_rx_saved_considx;
2287 
2288 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2289 
2290 	if (tosync < 0) {
2291 		tlen = (BGE_RETURN_RING_CNT - sc->bge_rx_saved_considx) *
2292 		    sizeof (struct bge_rx_bd);
2293 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2294 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2295 		tosync = -tosync;
2296 	}
2297 
2298 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2299 	    offset, tosync * sizeof (struct bge_rx_bd),
2300 	    BUS_DMASYNC_POSTREAD);
2301 
2302 	while(sc->bge_rx_saved_considx !=
2303 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2304 		struct bge_rx_bd	*cur_rx;
2305 		u_int32_t		rxidx;
2306 		struct mbuf		*m = NULL;
2307 
2308 		cur_rx = &sc->bge_rdata->
2309 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2310 
2311 		rxidx = cur_rx->bge_idx;
2312 		BGE_INC(sc->bge_rx_saved_considx, BGE_RETURN_RING_CNT);
2313 
2314 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2315 			have_tag = 1;
2316 			vlan_tag = cur_rx->bge_vlan_tag;
2317 		}
2318 
2319 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2320 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2321 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2322 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2323 			jumbocnt++;
2324 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2325 				ifp->if_ierrors++;
2326 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2327 				continue;
2328 			}
2329 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2330 					     NULL)== ENOBUFS) {
2331 				ifp->if_ierrors++;
2332 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2333 				continue;
2334 			}
2335 		} else {
2336 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2337 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2338 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2339 			stdcnt++;
2340 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2341 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2342 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2343 				ifp->if_ierrors++;
2344 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2345 				continue;
2346 			}
2347 			if (bge_newbuf_std(sc, sc->bge_std,
2348 			    NULL, dmamap) == ENOBUFS) {
2349 				ifp->if_ierrors++;
2350 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2351 				continue;
2352 			}
2353 		}
2354 
2355 		ifp->if_ipackets++;
2356 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2357 		m->m_pkthdr.rcvif = ifp;
2358 
2359 #if NBPFILTER > 0
2360 		/*
2361 		 * Handle BPF listeners. Let the BPF user see the packet.
2362 		 */
2363 		if (ifp->if_bpf)
2364 			bpf_mtap(ifp->if_bpf, m);
2365 #endif
2366 
2367 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2368 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2369 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2370 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2371 #if 0	/* XXX appears to be broken */
2372 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2373 				m->m_pkthdr.csum_data =
2374 				    cur_rx->bge_tcp_udp_csum;
2375 				m->m_pkthdr.csum_flags |=
2376 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2377 			}
2378 #endif
2379 		}
2380 
2381 		/*
2382 		 * If we received a packet with a vlan tag, pass it
2383 		 * to vlan_input() instead of ether_input().
2384 		 */
2385 		if (have_tag) {
2386 			struct m_tag *mtag;
2387 
2388 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2389 			    M_NOWAIT);
2390 			if (mtag != NULL) {
2391 				*(u_int *)(mtag + 1) = vlan_tag;
2392 				m_tag_prepend(m, mtag);
2393 				have_tag = vlan_tag = 0;
2394 			} else {
2395 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2396 				m_freem(m);
2397 				have_tag = vlan_tag = 0;
2398 				continue;
2399 			}
2400 		}
2401 		(*ifp->if_input)(ifp, m);
2402 	}
2403 
2404 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2405 	if (stdcnt)
2406 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2407 	if (jumbocnt)
2408 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2409 }
2410 
2411 void
2412 bge_txeof(sc)
2413 	struct bge_softc *sc;
2414 {
2415 	struct bge_tx_bd *cur_tx = NULL;
2416 	struct ifnet *ifp;
2417 	struct txdmamap_pool_entry *dma;
2418 	bus_addr_t offset, toff;
2419 	bus_size_t tlen;
2420 	int tosync;
2421 	struct mbuf *m;
2422 
2423 	ifp = &sc->ethercom.ec_if;
2424 
2425 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2426 	    offsetof(struct bge_ring_data, bge_status_block),
2427 	    sizeof (struct bge_status_block),
2428 	    BUS_DMASYNC_POSTREAD);
2429 
2430 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
2431 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2432 	    sc->bge_tx_saved_considx;
2433 
2434 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2435 
2436 	if (tosync < 0) {
2437 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2438 		    sizeof (struct bge_tx_bd);
2439 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2440 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2441 		tosync = -tosync;
2442 	}
2443 
2444 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2445 	    offset, tosync * sizeof (struct bge_tx_bd),
2446 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2447 
2448 	/*
2449 	 * Go through our tx ring and free mbufs for those
2450 	 * frames that have been sent.
2451 	 */
2452 	while (sc->bge_tx_saved_considx !=
2453 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2454 		u_int32_t		idx = 0;
2455 
2456 		idx = sc->bge_tx_saved_considx;
2457 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2458 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2459 			ifp->if_opackets++;
2460 		m = sc->bge_cdata.bge_tx_chain[idx];
2461 		if (m != NULL) {
2462 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2463 			dma = sc->txdma[idx];
2464 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2465 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2466 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2467 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2468 			sc->txdma[idx] = NULL;
2469 
2470 			m_freem(m);
2471 		}
2472 		sc->bge_txcnt--;
2473 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2474 		ifp->if_timer = 0;
2475 	}
2476 
2477 	if (cur_tx != NULL)
2478 		ifp->if_flags &= ~IFF_OACTIVE;
2479 }
2480 
2481 int
2482 bge_intr(xsc)
2483 	void *xsc;
2484 {
2485 	struct bge_softc *sc;
2486 	struct ifnet *ifp;
2487 
2488 	sc = xsc;
2489 	ifp = &sc->ethercom.ec_if;
2490 
2491 #ifdef notdef
2492 	/* Avoid this for now -- checking this register is expensive. */
2493 	/* Make sure this is really our interrupt. */
2494 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2495 		return (0);
2496 #endif
2497 	/* Ack interrupt and stop others from occuring. */
2498 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2499 
2500 	/*
2501 	 * Process link state changes.
2502 	 * Grrr. The link status word in the status block does
2503 	 * not work correctly on the BCM5700 rev AX and BX chips,
2504 	 * according to all avaibable information. Hence, we have
2505 	 * to enable MII interrupts in order to properly obtain
2506 	 * async link changes. Unfortunately, this also means that
2507 	 * we have to read the MAC status register to detect link
2508 	 * changes, thereby adding an additional register access to
2509 	 * the interrupt handler.
2510 	 */
2511 
2512 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2513 		u_int32_t		status;
2514 
2515 		status = CSR_READ_4(sc, BGE_MAC_STS);
2516 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2517 			sc->bge_link = 0;
2518 			callout_stop(&sc->bge_timeout);
2519 			bge_tick(sc);
2520 			/* Clear the interrupt */
2521 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2522 			    BGE_EVTENB_MI_INTERRUPT);
2523 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2524 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2525 			    BRGPHY_INTRS);
2526 		}
2527 	} else {
2528 		if (sc->bge_rdata->bge_status_block.bge_status &
2529 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2530 			sc->bge_link = 0;
2531 			callout_stop(&sc->bge_timeout);
2532 			bge_tick(sc);
2533 			/* Clear the interrupt */
2534 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2535 			    BGE_MACSTAT_CFG_CHANGED);
2536 		}
2537 	}
2538 
2539 	if (ifp->if_flags & IFF_RUNNING) {
2540 		/* Check RX return ring producer/consumer */
2541 		bge_rxeof(sc);
2542 
2543 		/* Check TX ring producer/consumer */
2544 		bge_txeof(sc);
2545 	}
2546 
2547 	bge_handle_events(sc);
2548 
2549 	/* Re-enable interrupts. */
2550 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2551 
2552 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2553 		bge_start(ifp);
2554 
2555 	return (1);
2556 }
2557 
2558 void
2559 bge_tick(xsc)
2560 	void *xsc;
2561 {
2562 	struct bge_softc *sc = xsc;
2563 	struct mii_data *mii = &sc->bge_mii;
2564 	struct ifmedia *ifm = NULL;
2565 	struct ifnet *ifp = &sc->ethercom.ec_if;
2566 	int s;
2567 
2568 	s = splnet();
2569 
2570 	bge_stats_update(sc);
2571 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2572 	if (sc->bge_link) {
2573 		splx(s);
2574 		return;
2575 	}
2576 
2577 	if (sc->bge_tbi) {
2578 		ifm = &sc->bge_ifmedia;
2579 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2580 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2581 			sc->bge_link++;
2582 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2583 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2584 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
2585 				bge_start(ifp);
2586 		}
2587 		splx(s);
2588 		return;
2589 	}
2590 
2591 	mii_tick(mii);
2592 
2593 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2594 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2595 		sc->bge_link++;
2596 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
2597 		    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
2598 			printf("%s: gigabit link up\n", sc->bge_dev.dv_xname);
2599 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
2600 			bge_start(ifp);
2601 	}
2602 
2603 	splx(s);
2604 }
2605 
2606 void
2607 bge_stats_update(sc)
2608 	struct bge_softc *sc;
2609 {
2610 	struct ifnet *ifp = &sc->ethercom.ec_if;
2611 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2612 
2613 #define READ_STAT(sc, stats, stat) \
2614 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2615 
2616 	ifp->if_collisions +=
2617 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2618 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2619 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2620 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2621 	  ifp->if_collisions;
2622 
2623 #undef READ_STAT
2624 
2625 #ifdef notdef
2626 	ifp->if_collisions +=
2627 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2628 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2629 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2630 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2631 	   ifp->if_collisions;
2632 #endif
2633 }
2634 
2635 /*
2636  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2637  * pointers to descriptors.
2638  */
2639 int
2640 bge_encap(sc, m_head, txidx)
2641 	struct bge_softc *sc;
2642 	struct mbuf *m_head;
2643 	u_int32_t *txidx;
2644 {
2645 	struct bge_tx_bd	*f = NULL;
2646 	u_int32_t		frag, cur, cnt = 0;
2647 	u_int16_t		csum_flags = 0;
2648 	struct txdmamap_pool_entry *dma;
2649 	bus_dmamap_t dmamap;
2650 	int			i = 0;
2651 	struct m_tag		*mtag;
2652 	struct mbuf		*prev, *m;
2653 	int			totlen, prevlen;
2654 
2655 	cur = frag = *txidx;
2656 
2657 	if (m_head->m_pkthdr.csum_flags) {
2658 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2659 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2660 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2661 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2662 	}
2663 
2664 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2665 		goto doit;
2666 	/*
2667 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2668 	 * less than eight bytes.  If we encounter a teeny mbuf
2669 	 * at the end of a chain, we can pad.  Otherwise, copy.
2670 	 */
2671 	prev = NULL;
2672 	totlen = 0;
2673 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2674 		int mlen = m->m_len;
2675 
2676 		totlen += mlen;
2677 		if (mlen == 0) {
2678 			/* print a warning? */
2679 			continue;
2680 		}
2681 		if (mlen >= 8)
2682 			continue;
2683 
2684 		/* If we get here, mbuf data is too small for DMA engine. */
2685 		if (m->m_next != 0) {
2686 			  /* Internal frag. If fits in prev, copy it there. */
2687 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2688 			      !M_READONLY(prev)) {
2689 			  	bcopy(m->m_data,
2690 				      prev->m_data+prev->m_len,
2691 				      mlen);
2692 				prev->m_len += mlen;
2693 				m->m_len = 0;
2694 				MFREE(m, prev->m_next); /* XXX stitch chain */
2695 				m = prev;
2696 				continue;
2697 			  } else {
2698 				struct mbuf *n;
2699 				/* slow copy */
2700 slowcopy:
2701 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2702 				m_freem(m_head);
2703 				if (n == 0)
2704 					return 0;
2705 				m_head  = n;
2706 				goto doit;
2707 			  }
2708 		} else if ((totlen -mlen +8) >= 1500) {
2709 			goto slowcopy;
2710 		}
2711 		prevlen = m->m_len;
2712 	}
2713 
2714 doit:
2715 	dma = SLIST_FIRST(&sc->txdma_list);
2716 	if (dma == NULL)
2717 		return ENOBUFS;
2718 	dmamap = dma->dmamap;
2719 
2720 	/*
2721 	 * Start packing the mbufs in this chain into
2722 	 * the fragment pointers. Stop when we run out
2723 	 * of fragments or hit the end of the mbuf chain.
2724 	 */
2725 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2726 	    BUS_DMA_NOWAIT))
2727 		return(ENOBUFS);
2728 
2729 	mtag = sc->ethercom.ec_nvlans ?
2730 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2731 
2732 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2733 		f = &sc->bge_rdata->bge_tx_ring[frag];
2734 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2735 			break;
2736 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2737 		f->bge_len = dmamap->dm_segs[i].ds_len;
2738 		f->bge_flags = csum_flags;
2739 
2740 		if (mtag != NULL) {
2741 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2742 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
2743 		} else {
2744 			f->bge_vlan_tag = 0;
2745 		}
2746 		/*
2747 		 * Sanity check: avoid coming within 16 descriptors
2748 		 * of the end of the ring.
2749 		 */
2750 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2751 			return(ENOBUFS);
2752 		cur = frag;
2753 		BGE_INC(frag, BGE_TX_RING_CNT);
2754 		cnt++;
2755 	}
2756 
2757 	if (i < dmamap->dm_nsegs)
2758 		return ENOBUFS;
2759 
2760 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2761 	    BUS_DMASYNC_PREWRITE);
2762 
2763 	if (frag == sc->bge_tx_saved_considx)
2764 		return(ENOBUFS);
2765 
2766 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2767 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2768 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2769 	sc->txdma[cur] = dma;
2770 	sc->bge_txcnt += cnt;
2771 
2772 	*txidx = frag;
2773 
2774 	return(0);
2775 }
2776 
2777 /*
2778  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2779  * to the mbuf data regions directly in the transmit descriptors.
2780  */
2781 void
2782 bge_start(ifp)
2783 	struct ifnet *ifp;
2784 {
2785 	struct bge_softc *sc;
2786 	struct mbuf *m_head = NULL;
2787 	u_int32_t prodidx = 0;
2788 	int pkts = 0;
2789 
2790 	sc = ifp->if_softc;
2791 
2792 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2793 		return;
2794 
2795 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2796 
2797 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2798 		IFQ_POLL(&ifp->if_snd, m_head);
2799 		if (m_head == NULL)
2800 			break;
2801 
2802 #if 0
2803 		/*
2804 		 * XXX
2805 		 * safety overkill.  If this is a fragmented packet chain
2806 		 * with delayed TCP/UDP checksums, then only encapsulate
2807 		 * it if we have enough descriptors to handle the entire
2808 		 * chain at once.
2809 		 * (paranoia -- may not actually be needed)
2810 		 */
2811 		if (m_head->m_flags & M_FIRSTFRAG &&
2812 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2813 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2814 			    m_head->m_pkthdr.csum_data + 16) {
2815 				ifp->if_flags |= IFF_OACTIVE;
2816 				break;
2817 			}
2818 		}
2819 #endif
2820 
2821 		/*
2822 		 * Pack the data into the transmit ring. If we
2823 		 * don't have room, set the OACTIVE flag and wait
2824 		 * for the NIC to drain the ring.
2825 		 */
2826 		if (bge_encap(sc, m_head, &prodidx)) {
2827 			ifp->if_flags |= IFF_OACTIVE;
2828 			break;
2829 		}
2830 
2831 		/* now we are committed to transmit the packet */
2832 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2833 		pkts++;
2834 
2835 #if NBPFILTER > 0
2836 		/*
2837 		 * If there's a BPF listener, bounce a copy of this frame
2838 		 * to him.
2839 		 */
2840 		if (ifp->if_bpf)
2841 			bpf_mtap(ifp->if_bpf, m_head);
2842 #endif
2843 	}
2844 	if (pkts == 0)
2845 		return;
2846 
2847 	/* Transmit */
2848 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2849 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
2850 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2851 
2852 	/*
2853 	 * Set a timeout in case the chip goes out to lunch.
2854 	 */
2855 	ifp->if_timer = 5;
2856 }
2857 
2858 int
2859 bge_init(ifp)
2860 	struct ifnet *ifp;
2861 {
2862 	struct bge_softc *sc = ifp->if_softc;
2863 	u_int16_t *m;
2864 	int s, error;
2865 
2866 	s = splnet();
2867 
2868 	ifp = &sc->ethercom.ec_if;
2869 
2870 	/* Cancel pending I/O and flush buffers. */
2871 	bge_stop(sc);
2872 	bge_reset(sc);
2873 	bge_chipinit(sc);
2874 
2875 	/*
2876 	 * Init the various state machines, ring
2877 	 * control blocks and firmware.
2878 	 */
2879 	error = bge_blockinit(sc);
2880 	if (error != 0) {
2881 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
2882 		    error);
2883 		splx(s);
2884 		return error;
2885 	}
2886 
2887 	ifp = &sc->ethercom.ec_if;
2888 
2889 	/* Specify MTU. */
2890 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
2891 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
2892 
2893 	/* Load our MAC address. */
2894 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
2895 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
2896 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
2897 
2898 	/* Enable or disable promiscuous mode as needed. */
2899 	if (ifp->if_flags & IFF_PROMISC) {
2900 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2901 	} else {
2902 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
2903 	}
2904 
2905 	/* Program multicast filter. */
2906 	bge_setmulti(sc);
2907 
2908 	/* Init RX ring. */
2909 	bge_init_rx_ring_std(sc);
2910 
2911 	/* Init jumbo RX ring. */
2912 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2913 		bge_init_rx_ring_jumbo(sc);
2914 
2915 	/* Init our RX return ring index */
2916 	sc->bge_rx_saved_considx = 0;
2917 
2918 	/* Init TX ring. */
2919 	bge_init_tx_ring(sc);
2920 
2921 	/* Turn on transmitter */
2922 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
2923 
2924 	/* Turn on receiver */
2925 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
2926 
2927 	/* Tell firmware we're alive. */
2928 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2929 
2930 	/* Enable host interrupts. */
2931 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
2932 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
2933 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2934 
2935 	bge_ifmedia_upd(ifp);
2936 
2937 	ifp->if_flags |= IFF_RUNNING;
2938 	ifp->if_flags &= ~IFF_OACTIVE;
2939 
2940 	splx(s);
2941 
2942 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2943 
2944 	return 0;
2945 }
2946 
2947 /*
2948  * Set media options.
2949  */
2950 int
2951 bge_ifmedia_upd(ifp)
2952 	struct ifnet *ifp;
2953 {
2954 	struct bge_softc *sc = ifp->if_softc;
2955 	struct mii_data *mii = &sc->bge_mii;
2956 	struct ifmedia *ifm = &sc->bge_ifmedia;
2957 
2958 	/* If this is a 1000baseX NIC, enable the TBI port. */
2959 	if (sc->bge_tbi) {
2960 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2961 			return(EINVAL);
2962 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
2963 		case IFM_AUTO:
2964 			break;
2965 		case IFM_1000_SX:
2966 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
2967 				BGE_CLRBIT(sc, BGE_MAC_MODE,
2968 				    BGE_MACMODE_HALF_DUPLEX);
2969 			} else {
2970 				BGE_SETBIT(sc, BGE_MAC_MODE,
2971 				    BGE_MACMODE_HALF_DUPLEX);
2972 			}
2973 			break;
2974 		default:
2975 			return(EINVAL);
2976 		}
2977 		return(0);
2978 	}
2979 
2980 	sc->bge_link = 0;
2981 	mii_mediachg(mii);
2982 
2983 	return(0);
2984 }
2985 
2986 /*
2987  * Report current media status.
2988  */
2989 void
2990 bge_ifmedia_sts(ifp, ifmr)
2991 	struct ifnet *ifp;
2992 	struct ifmediareq *ifmr;
2993 {
2994 	struct bge_softc *sc = ifp->if_softc;
2995 	struct mii_data *mii = &sc->bge_mii;
2996 
2997 	if (sc->bge_tbi) {
2998 		ifmr->ifm_status = IFM_AVALID;
2999 		ifmr->ifm_active = IFM_ETHER;
3000 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3001 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3002 			ifmr->ifm_status |= IFM_ACTIVE;
3003 		ifmr->ifm_active |= IFM_1000_SX;
3004 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3005 			ifmr->ifm_active |= IFM_HDX;
3006 		else
3007 			ifmr->ifm_active |= IFM_FDX;
3008 		return;
3009 	}
3010 
3011 	mii_pollstat(mii);
3012 	ifmr->ifm_active = mii->mii_media_active;
3013 	ifmr->ifm_status = mii->mii_media_status;
3014 }
3015 
3016 int
3017 bge_ioctl(ifp, command, data)
3018 	struct ifnet *ifp;
3019 	u_long command;
3020 	caddr_t data;
3021 {
3022 	struct bge_softc *sc = ifp->if_softc;
3023 	struct ifreq *ifr = (struct ifreq *) data;
3024 	int s, error = 0;
3025 	struct mii_data *mii;
3026 
3027 	s = splnet();
3028 
3029 	switch(command) {
3030 	case SIOCSIFFLAGS:
3031 		if (ifp->if_flags & IFF_UP) {
3032 			/*
3033 			 * If only the state of the PROMISC flag changed,
3034 			 * then just use the 'set promisc mode' command
3035 			 * instead of reinitializing the entire NIC. Doing
3036 			 * a full re-init means reloading the firmware and
3037 			 * waiting for it to start up, which may take a
3038 			 * second or two.
3039 			 */
3040 			if (ifp->if_flags & IFF_RUNNING &&
3041 			    ifp->if_flags & IFF_PROMISC &&
3042 			    !(sc->bge_if_flags & IFF_PROMISC)) {
3043 				BGE_SETBIT(sc, BGE_RX_MODE,
3044 				    BGE_RXMODE_RX_PROMISC);
3045 			} else if (ifp->if_flags & IFF_RUNNING &&
3046 			    !(ifp->if_flags & IFF_PROMISC) &&
3047 			    sc->bge_if_flags & IFF_PROMISC) {
3048 				BGE_CLRBIT(sc, BGE_RX_MODE,
3049 				    BGE_RXMODE_RX_PROMISC);
3050 			} else
3051 				bge_init(ifp);
3052 		} else {
3053 			if (ifp->if_flags & IFF_RUNNING) {
3054 				bge_stop(sc);
3055 			}
3056 		}
3057 		sc->bge_if_flags = ifp->if_flags;
3058 		error = 0;
3059 		break;
3060 	case SIOCSIFMEDIA:
3061 	case SIOCGIFMEDIA:
3062 		if (sc->bge_tbi) {
3063 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3064 			    command);
3065 		} else {
3066 			mii = &sc->bge_mii;
3067 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3068 			    command);
3069 		}
3070 		error = 0;
3071 		break;
3072 	default:
3073 		error = ether_ioctl(ifp, command, data);
3074 		if (error == ENETRESET) {
3075 			bge_setmulti(sc);
3076 			error = 0;
3077 		}
3078 		break;
3079 	}
3080 
3081 	splx(s);
3082 
3083 	return(error);
3084 }
3085 
3086 void
3087 bge_watchdog(ifp)
3088 	struct ifnet *ifp;
3089 {
3090 	struct bge_softc *sc;
3091 
3092 	sc = ifp->if_softc;
3093 
3094 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3095 
3096 	ifp->if_flags &= ~IFF_RUNNING;
3097 	bge_init(ifp);
3098 
3099 	ifp->if_oerrors++;
3100 }
3101 
3102 static void
3103 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3104 {
3105 	int i;
3106 
3107 	BGE_CLRBIT(sc, reg, bit);
3108 
3109 	for (i = 0; i < BGE_TIMEOUT; i++) {
3110 		if ((CSR_READ_4(sc, reg) & bit) == 0)
3111 			return;
3112 		delay(100);
3113 	}
3114 
3115 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3116 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
3117 }
3118 
3119 /*
3120  * Stop the adapter and free any mbufs allocated to the
3121  * RX and TX lists.
3122  */
3123 void
3124 bge_stop(sc)
3125 	struct bge_softc *sc;
3126 {
3127 	struct ifnet *ifp = &sc->ethercom.ec_if;
3128 
3129 	callout_stop(&sc->bge_timeout);
3130 
3131 	/*
3132 	 * Disable all of the receiver blocks
3133 	 */
3134 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3135 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3136 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3137 	bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3138 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3139 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3140 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3141 
3142 	/*
3143 	 * Disable all of the transmit blocks
3144 	 */
3145 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3146 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3147 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3148 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3149 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3150 	bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3151 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3152 
3153 	/*
3154 	 * Shut down all of the memory managers and related
3155 	 * state machines.
3156 	 */
3157 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3158 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3159 	bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3160 
3161 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3162 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3163 
3164 	bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3165 	bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3166 
3167 	/* Disable host interrupts. */
3168 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3169 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3170 
3171 	/*
3172 	 * Tell firmware we're shutting down.
3173 	 */
3174 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3175 
3176 	/* Free the RX lists. */
3177 	bge_free_rx_ring_std(sc);
3178 
3179 	/* Free jumbo RX list. */
3180 	bge_free_rx_ring_jumbo(sc);
3181 
3182 	/* Free TX buffers. */
3183 	bge_free_tx_ring(sc);
3184 
3185 	/*
3186 	 * Isolate/power down the PHY.
3187 	 */
3188 	if (!sc->bge_tbi)
3189 		mii_down(&sc->bge_mii);
3190 
3191 	sc->bge_link = 0;
3192 
3193 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3194 
3195 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3196 }
3197 
3198 /*
3199  * Stop all chip I/O so that the kernel's probe routines don't
3200  * get confused by errant DMAs when rebooting.
3201  */
3202 void
3203 bge_shutdown(xsc)
3204 	void *xsc;
3205 {
3206 	struct bge_softc *sc = (struct bge_softc *)xsc;
3207 
3208 	bge_stop(sc);
3209 	bge_reset(sc);
3210 }
3211