xref: /netbsd-src/sys/dev/pci/if_bge.c (revision b757af438b42b93f8c6571f026d8b8ef3eaf5fc9)
1 /*	$NetBSD: if_bge.c,v 1.200 2012/02/02 19:43:05 tls Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.200 2012/02/02 19:43:05 tls Exp $");
83 
84 #include "vlan.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96 
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 
102 #include <sys/rnd.h>
103 
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110 
111 /* Headers for TCP  Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h>			/* for struct ip */
115 #include <netinet/tcp.h>		/* for struct tcphdr */
116 
117 
118 #include <net/bpf.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128 
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131 
132 #include <prop/proplib.h>
133 
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135 
136 
137 /*
138  * Tunable thresholds for rx-side bge interrupt mitigation.
139  */
140 
141 /*
142  * The pairs of values below were obtained from empirical measurement
143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144  * interrupt for every N packets received, where N is, approximately,
145  * the second value (rx_max_bds) in each pair.  The values are chosen
146  * such that moving from one pair to the succeeding pair was observed
147  * to roughly halve interrupt rate under sustained input packet load.
148  * The values were empirically chosen to avoid overflowing internal
149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
150  * results in internal wrapping and higher interrupt rates.
151  * The limit of 46 frames was chosen to match NFS workloads.
152  *
153  * These values also work well on bcm5701, bcm5704C, and (less
154  * tested) bcm5703.  On other chipsets, (including the Altima chip
155  * family), the larger values may overflow internal chip limits,
156  * leading to increasing interrupt rates rather than lower interrupt
157  * rates.
158  *
159  * Applications using heavy interrupt mitigation (interrupting every
160  * 32 or 46 frames) in both directions may need to increase the TCP
161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162  * full link bandwidth, due to ACKs and window updates lingering
163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164  */
165 static const struct bge_load_rx_thresh {
166 	int rx_ticks;
167 	int rx_max_bds; }
168 bge_rx_threshes[] = {
169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
170 	{ 32,   2 },
171 	{ 50,   4 },
172 	{ 100,  8 },
173 	{ 192, 16 },
174 	{ 416, 32 },
175 	{ 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178 
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182 
183 static int bge_rxthresh_nodenum;
184 
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186 
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190 
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199 
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205 
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215 
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218 
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222 
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 			       bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239 
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249 
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(device_t);
253 
254 #define	BGE_RESET_START 1
255 #define	BGE_RESET_STOP  2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void sysctl_bge_init(struct bge_softc *);
263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
264 
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x)	if (bgedebug) printf x
267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
269 int	bgedebug = 0;
270 int	bge_tso_debug = 0;
271 void		bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277 
278 #ifdef BGE_EVENT_COUNTERS
279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
282 #else
283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
286 #endif
287 
288 static const struct bge_product {
289 	pci_vendor_id_t		bp_vendor;
290 	pci_product_id_t	bp_product;
291 	const char		*bp_name;
292 } bge_products[] = {
293 	/*
294 	 * The BCM5700 documentation seems to indicate that the hardware
295 	 * still has the Alteon vendor ID burned into it, though it
296 	 * should always be overridden by the value in the EEPROM.  We'll
297 	 * check for it anyway.
298 	 */
299 	{ PCI_VENDOR_ALTEON,
300 	  PCI_PRODUCT_ALTEON_BCM5700,
301 	  "Broadcom BCM5700 Gigabit Ethernet",
302 	  },
303 	{ PCI_VENDOR_ALTEON,
304 	  PCI_PRODUCT_ALTEON_BCM5701,
305 	  "Broadcom BCM5701 Gigabit Ethernet",
306 	  },
307 	{ PCI_VENDOR_ALTIMA,
308 	  PCI_PRODUCT_ALTIMA_AC1000,
309 	  "Altima AC1000 Gigabit Ethernet",
310 	  },
311 	{ PCI_VENDOR_ALTIMA,
312 	  PCI_PRODUCT_ALTIMA_AC1001,
313 	  "Altima AC1001 Gigabit Ethernet",
314 	   },
315 	{ PCI_VENDOR_ALTIMA,
316 	  PCI_PRODUCT_ALTIMA_AC9100,
317 	  "Altima AC9100 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_BROADCOM,
320 	  PCI_PRODUCT_BROADCOM_BCM5700,
321 	  "Broadcom BCM5700 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_BROADCOM,
324 	  PCI_PRODUCT_BROADCOM_BCM5701,
325 	  "Broadcom BCM5701 Gigabit Ethernet",
326 	  },
327 	{ PCI_VENDOR_BROADCOM,
328 	  PCI_PRODUCT_BROADCOM_BCM5702,
329 	  "Broadcom BCM5702 Gigabit Ethernet",
330 	  },
331 	{ PCI_VENDOR_BROADCOM,
332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
333 	  "Broadcom BCM5702X Gigabit Ethernet" },
334 	{ PCI_VENDOR_BROADCOM,
335 	  PCI_PRODUCT_BROADCOM_BCM5703,
336 	  "Broadcom BCM5703 Gigabit Ethernet",
337 	  },
338 	{ PCI_VENDOR_BROADCOM,
339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
340 	  "Broadcom BCM5703X Gigabit Ethernet",
341 	  },
342 	{ PCI_VENDOR_BROADCOM,
343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 	  "Broadcom BCM5703 Gigabit Ethernet",
345 	  },
346 	{ PCI_VENDOR_BROADCOM,
347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
349 	  },
350 	{ PCI_VENDOR_BROADCOM,
351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
353 	  },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5705,
356 	  "Broadcom BCM5705 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
360 	  "Broadcom BCM5705F Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
364 	  "Broadcom BCM5705K Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
368 	  "Broadcom BCM5705M Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 	  "Broadcom BCM5705M Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5714,
376 	  "Broadcom BCM5714 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
380 	  "Broadcom BCM5714S Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5715,
384 	  "Broadcom BCM5715 Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
388 	  "Broadcom BCM5715S Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5717,
392 	  "Broadcom BCM5717 Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5718,
396 	  "Broadcom BCM5718 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5720,
400 	  "Broadcom BCM5720 Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5721,
404 	  "Broadcom BCM5721 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5722,
408 	  "Broadcom BCM5722 Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5723,
412 	  "Broadcom BCM5723 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5724,
416 	  "Broadcom BCM5724 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5750,
420 	  "Broadcom BCM5750 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
424 	  "Broadcom BCM5750M Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5751,
428 	  "Broadcom BCM5751 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
432 	  "Broadcom BCM5751F Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
436 	  "Broadcom BCM5751M Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5752,
440 	  "Broadcom BCM5752 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
444 	  "Broadcom BCM5752M Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5753,
448 	  "Broadcom BCM5753 Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
452 	  "Broadcom BCM5753F Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
456 	  "Broadcom BCM5753M Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5754,
460 	  "Broadcom BCM5754 Gigabit Ethernet",
461 	},
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
464 	  "Broadcom BCM5754M Gigabit Ethernet",
465 	},
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5755,
468 	  "Broadcom BCM5755 Gigabit Ethernet",
469 	},
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
472 	  "Broadcom BCM5755M Gigabit Ethernet",
473 	},
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5756,
476 	  "Broadcom BCM5756 Gigabit Ethernet",
477 	},
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5761,
480 	  "Broadcom BCM5761 Gigabit Ethernet",
481 	},
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
484 	  "Broadcom BCM5761E Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
488 	  "Broadcom BCM5761S Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
492 	  "Broadcom BCM5761SE Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5764,
496 	  "Broadcom BCM5764 Gigabit Ethernet",
497 	  },
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5780,
500 	  "Broadcom BCM5780 Gigabit Ethernet",
501 	  },
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
504 	  "Broadcom BCM5780S Gigabit Ethernet",
505 	  },
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5781,
508 	  "Broadcom BCM5781 Gigabit Ethernet",
509 	  },
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5782,
512 	  "Broadcom BCM5782 Gigabit Ethernet",
513 	},
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
516 	  "BCM5784M NetLink 1000baseT Ethernet",
517 	},
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5786,
520 	  "Broadcom BCM5786 Gigabit Ethernet",
521 	},
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5787,
524 	  "Broadcom BCM5787 Gigabit Ethernet",
525 	},
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
528 	  "Broadcom BCM5787M Gigabit Ethernet",
529 	},
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5788,
532 	  "Broadcom BCM5788 Gigabit Ethernet",
533 	  },
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5789,
536 	  "Broadcom BCM5789 Gigabit Ethernet",
537 	  },
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5901,
540 	  "Broadcom BCM5901 Fast Ethernet",
541 	  },
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
544 	  "Broadcom BCM5901A2 Fast Ethernet",
545 	  },
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
548 	  "Broadcom BCM5903M Fast Ethernet",
549 	  },
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5906,
552 	  "Broadcom BCM5906 Fast Ethernet",
553 	  },
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
556 	  "Broadcom BCM5906M Fast Ethernet",
557 	  },
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM57760,
560 	  "Broadcom BCM57760 Fast Ethernet",
561 	  },
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM57761,
564 	  "Broadcom BCM57761 Fast Ethernet",
565 	  },
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM57765,
568 	  "Broadcom BCM57765 Fast Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM57780,
572 	  "Broadcom BCM57780 Fast Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM57781,
576 	  "Broadcom BCM57781 Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM57785,
580 	  "Broadcom BCM57785 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM57788,
584 	  "Broadcom BCM57788 Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM57790,
588 	  "Broadcom BCM57790 Fast Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM57791,
592 	  "Broadcom BCM57791 Fast Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57795,
596 	  "Broadcom BCM57795 Fast Ethernet",
597 	  },
598 	{ PCI_VENDOR_SCHNEIDERKOCH,
599 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
600 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
601 	  },
602 	{ PCI_VENDOR_3COM,
603 	  PCI_PRODUCT_3COM_3C996,
604 	  "3Com 3c996 Gigabit Ethernet",
605 	  },
606 	{ PCI_VENDOR_FUJITSU4,
607 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
608 	  "Fujitsu PW008GE4 Gigabit Ethernet",
609 	  },
610 	{ PCI_VENDOR_FUJITSU4,
611 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
612 	  "Fujitsu PW008GE5 Gigabit Ethernet",
613 	  },
614 	{ PCI_VENDOR_FUJITSU4,
615 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
616 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
617 	  },
618 	{ 0,
619 	  0,
620 	  NULL },
621 };
622 
623 /*
624  * XXX: how to handle variants based on 5750 and derivatives:
625  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
626  * in general behave like a 5705, except with additional quirks.
627  * This driver's current handling of the 5721 is wrong;
628  * how we map ASIC revision to "quirks" needs more thought.
629  * (defined here until the thought is done).
630  */
631 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
632 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
633 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
634 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
635 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
636 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
637 
638 static const struct bge_revision {
639 	uint32_t		br_chipid;
640 	const char		*br_name;
641 } bge_revisions[] = {
642 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
643 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
644 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
645 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
646 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
647 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
648 	/* This is treated like a BCM5700 Bx */
649 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
650 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
651 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
652 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
653 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
654 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
655 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
656 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
657 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
658 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
659 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
660 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
661 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
662 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
663 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
664 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
665 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
666 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
667 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
668 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
669 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
670 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
671 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
672 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
673 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
674 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
675 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
676 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
677 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
678 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
679 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
680 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
681 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
682 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
683 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
684 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
685 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
686 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
687 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
688 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
689 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
690 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
691 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
692 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
693 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
694 	/* 5754 and 5787 share the same ASIC ID */
695 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
696 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
697 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
698 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
699 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
700 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
701 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
702 
703 	{ 0, NULL }
704 };
705 
706 /*
707  * Some defaults for major revisions, so that newer steppings
708  * that we don't know about have a shot at working.
709  */
710 static const struct bge_revision bge_majorrevs[] = {
711 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
712 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
713 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
714 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
715 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
716 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
717 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
718 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
719 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
720 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
721 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
722 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
723 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
724 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
725 	/* 5754 and 5787 share the same ASIC ID */
726 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
727 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
728 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
729 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
730 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
731 
732 	{ 0, NULL }
733 };
734 
735 static int bge_allow_asf = 1;
736 
737 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
738     bge_probe, bge_attach, NULL, NULL);
739 
740 static uint32_t
741 bge_readmem_ind(struct bge_softc *sc, int off)
742 {
743 	pcireg_t val;
744 
745 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
746 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
747 	return val;
748 }
749 
750 static void
751 bge_writemem_ind(struct bge_softc *sc, int off, int val)
752 {
753 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
754 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
755 }
756 
757 /*
758  * PCI Express only
759  */
760 static void
761 bge_set_max_readrq(struct bge_softc *sc)
762 {
763 	pcireg_t val;
764 
765 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
766 	    + PCI_PCIE_DCSR);
767 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
768 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
769 		aprint_verbose_dev(sc->bge_dev,
770 		    "adjust device control 0x%04x ", val);
771 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
772 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
773 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
774 		    + PCI_PCIE_DCSR, val);
775 		aprint_verbose("-> 0x%04x\n", val);
776 	}
777 }
778 
779 #ifdef notdef
780 static uint32_t
781 bge_readreg_ind(struct bge_softc *sc, int off)
782 {
783 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
784 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
785 }
786 #endif
787 
788 static void
789 bge_writereg_ind(struct bge_softc *sc, int off, int val)
790 {
791 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
792 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
793 }
794 
795 static void
796 bge_writemem_direct(struct bge_softc *sc, int off, int val)
797 {
798 	CSR_WRITE_4(sc, off, val);
799 }
800 
801 static void
802 bge_writembx(struct bge_softc *sc, int off, int val)
803 {
804 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
805 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
806 
807 	CSR_WRITE_4(sc, off, val);
808 }
809 
810 static uint8_t
811 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
812 {
813 	uint32_t access, byte = 0;
814 	int i;
815 
816 	/* Lock. */
817 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
818 	for (i = 0; i < 8000; i++) {
819 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
820 			break;
821 		DELAY(20);
822 	}
823 	if (i == 8000)
824 		return 1;
825 
826 	/* Enable access. */
827 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
828 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
829 
830 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
831 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
832 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
833 		DELAY(10);
834 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
835 			DELAY(10);
836 			break;
837 		}
838 	}
839 
840 	if (i == BGE_TIMEOUT * 10) {
841 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
842 		return 1;
843 	}
844 
845 	/* Get result. */
846 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
847 
848 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
849 
850 	/* Disable access. */
851 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
852 
853 	/* Unlock. */
854 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
855 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
856 
857 	return 0;
858 }
859 
860 /*
861  * Read a sequence of bytes from NVRAM.
862  */
863 static int
864 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
865 {
866 	int err = 0, i;
867 	uint8_t byte = 0;
868 
869 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
870 		return 1;
871 
872 	for (i = 0; i < cnt; i++) {
873 		err = bge_nvram_getbyte(sc, off + i, &byte);
874 		if (err)
875 			break;
876 		*(dest + i) = byte;
877 	}
878 
879 	return (err ? 1 : 0);
880 }
881 
882 /*
883  * Read a byte of data stored in the EEPROM at address 'addr.' The
884  * BCM570x supports both the traditional bitbang interface and an
885  * auto access interface for reading the EEPROM. We use the auto
886  * access method.
887  */
888 static uint8_t
889 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
890 {
891 	int i;
892 	uint32_t byte = 0;
893 
894 	/*
895 	 * Enable use of auto EEPROM access so we can avoid
896 	 * having to use the bitbang method.
897 	 */
898 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
899 
900 	/* Reset the EEPROM, load the clock period. */
901 	CSR_WRITE_4(sc, BGE_EE_ADDR,
902 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
903 	DELAY(20);
904 
905 	/* Issue the read EEPROM command. */
906 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
907 
908 	/* Wait for completion */
909 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
910 		DELAY(10);
911 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
912 			break;
913 	}
914 
915 	if (i == BGE_TIMEOUT * 10) {
916 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
917 		return 1;
918 	}
919 
920 	/* Get result. */
921 	byte = CSR_READ_4(sc, BGE_EE_DATA);
922 
923 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
924 
925 	return 0;
926 }
927 
928 /*
929  * Read a sequence of bytes from the EEPROM.
930  */
931 static int
932 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
933 {
934 	int err = 0, i;
935 	uint8_t byte = 0;
936 	char *dest = destv;
937 
938 	for (i = 0; i < cnt; i++) {
939 		err = bge_eeprom_getbyte(sc, off + i, &byte);
940 		if (err)
941 			break;
942 		*(dest + i) = byte;
943 	}
944 
945 	return (err ? 1 : 0);
946 }
947 
948 static int
949 bge_miibus_readreg(device_t dev, int phy, int reg)
950 {
951 	struct bge_softc *sc = device_private(dev);
952 	uint32_t val;
953 	uint32_t autopoll;
954 	int i;
955 
956 	/*
957 	 * Broadcom's own driver always assumes the internal
958 	 * PHY is at GMII address 1. On some chips, the PHY responds
959 	 * to accesses at all addresses, which could cause us to
960 	 * bogusly attach the PHY 32 times at probe type. Always
961 	 * restricting the lookup to address 1 is simpler than
962 	 * trying to figure out which chips revisions should be
963 	 * special-cased.
964 	 */
965 	if (phy != 1)
966 		return 0;
967 
968 	/* Reading with autopolling on may trigger PCI errors */
969 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
970 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
971 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
972 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
973 		DELAY(40);
974 	}
975 
976 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
977 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
978 
979 	for (i = 0; i < BGE_TIMEOUT; i++) {
980 		val = CSR_READ_4(sc, BGE_MI_COMM);
981 		if (!(val & BGE_MICOMM_BUSY))
982 			break;
983 		delay(10);
984 	}
985 
986 	if (i == BGE_TIMEOUT) {
987 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
988 		val = 0;
989 		goto done;
990 	}
991 
992 	val = CSR_READ_4(sc, BGE_MI_COMM);
993 
994 done:
995 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
996 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
997 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
998 		DELAY(40);
999 	}
1000 
1001 	if (val & BGE_MICOMM_READFAIL)
1002 		return 0;
1003 
1004 	return (val & 0xFFFF);
1005 }
1006 
1007 static void
1008 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1009 {
1010 	struct bge_softc *sc = device_private(dev);
1011 	uint32_t autopoll;
1012 	int i;
1013 
1014 	if (phy!=1) {
1015 		return;
1016 	}
1017 
1018 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1019 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1020 		return;
1021 	}
1022 
1023 	/* Reading with autopolling on may trigger PCI errors */
1024 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1025 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1026 		delay(40);
1027 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1028 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1029 		delay(10); /* 40 usec is supposed to be adequate */
1030 	}
1031 
1032 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1033 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1034 
1035 	for (i = 0; i < BGE_TIMEOUT; i++) {
1036 		delay(10);
1037 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1038 			delay(5);
1039 			CSR_READ_4(sc, BGE_MI_COMM);
1040 			break;
1041 		}
1042 	}
1043 
1044 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1045 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1046 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1047 		delay(40);
1048 	}
1049 
1050 	if (i == BGE_TIMEOUT)
1051 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1052 }
1053 
1054 static void
1055 bge_miibus_statchg(device_t dev)
1056 {
1057 	struct bge_softc *sc = device_private(dev);
1058 	struct mii_data *mii = &sc->bge_mii;
1059 
1060 	/*
1061 	 * Get flow control negotiation result.
1062 	 */
1063 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1064 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1065 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1066 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1067 	}
1068 
1069 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1070 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1071 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1072 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1073 	else
1074 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1075 
1076 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1077 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1078 	else
1079 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1080 
1081 	/*
1082 	 * 802.3x flow control
1083 	 */
1084 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1085 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1086 	else
1087 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1088 
1089 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1090 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1091 	else
1092 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1093 }
1094 
1095 /*
1096  * Update rx threshold levels to values in a particular slot
1097  * of the interrupt-mitigation table bge_rx_threshes.
1098  */
1099 static void
1100 bge_set_thresh(struct ifnet *ifp, int lvl)
1101 {
1102 	struct bge_softc *sc = ifp->if_softc;
1103 	int s;
1104 
1105 	/* For now, just save the new Rx-intr thresholds and record
1106 	 * that a threshold update is pending.  Updating the hardware
1107 	 * registers here (even at splhigh()) is observed to
1108 	 * occasionaly cause glitches where Rx-interrupts are not
1109 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1110 	 */
1111 	s = splnet();
1112 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1113 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1114 	sc->bge_pending_rxintr_change = 1;
1115 	splx(s);
1116 
1117 	 return;
1118 }
1119 
1120 
1121 /*
1122  * Update Rx thresholds of all bge devices
1123  */
1124 static void
1125 bge_update_all_threshes(int lvl)
1126 {
1127 	struct ifnet *ifp;
1128 	const char * const namebuf = "bge";
1129 	int namelen;
1130 
1131 	if (lvl < 0)
1132 		lvl = 0;
1133 	else if (lvl >= NBGE_RX_THRESH)
1134 		lvl = NBGE_RX_THRESH - 1;
1135 
1136 	namelen = strlen(namebuf);
1137 	/*
1138 	 * Now search all the interfaces for this name/number
1139 	 */
1140 	IFNET_FOREACH(ifp) {
1141 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1142 		      continue;
1143 		/* We got a match: update if doing auto-threshold-tuning */
1144 		if (bge_auto_thresh)
1145 			bge_set_thresh(ifp, lvl);
1146 	}
1147 }
1148 
1149 /*
1150  * Handle events that have triggered interrupts.
1151  */
1152 static void
1153 bge_handle_events(struct bge_softc *sc)
1154 {
1155 
1156 	return;
1157 }
1158 
1159 /*
1160  * Memory management for jumbo frames.
1161  */
1162 
1163 static int
1164 bge_alloc_jumbo_mem(struct bge_softc *sc)
1165 {
1166 	char *ptr, *kva;
1167 	bus_dma_segment_t	seg;
1168 	int		i, rseg, state, error;
1169 	struct bge_jpool_entry   *entry;
1170 
1171 	state = error = 0;
1172 
1173 	/* Grab a big chunk o' storage. */
1174 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1175 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1176 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1177 		return ENOBUFS;
1178 	}
1179 
1180 	state = 1;
1181 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1182 	    BUS_DMA_NOWAIT)) {
1183 		aprint_error_dev(sc->bge_dev,
1184 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1185 		error = ENOBUFS;
1186 		goto out;
1187 	}
1188 
1189 	state = 2;
1190 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1191 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1192 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1193 		error = ENOBUFS;
1194 		goto out;
1195 	}
1196 
1197 	state = 3;
1198 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1199 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1200 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1201 		error = ENOBUFS;
1202 		goto out;
1203 	}
1204 
1205 	state = 4;
1206 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1207 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1208 
1209 	SLIST_INIT(&sc->bge_jfree_listhead);
1210 	SLIST_INIT(&sc->bge_jinuse_listhead);
1211 
1212 	/*
1213 	 * Now divide it up into 9K pieces and save the addresses
1214 	 * in an array.
1215 	 */
1216 	ptr = sc->bge_cdata.bge_jumbo_buf;
1217 	for (i = 0; i < BGE_JSLOTS; i++) {
1218 		sc->bge_cdata.bge_jslots[i] = ptr;
1219 		ptr += BGE_JLEN;
1220 		entry = malloc(sizeof(struct bge_jpool_entry),
1221 		    M_DEVBUF, M_NOWAIT);
1222 		if (entry == NULL) {
1223 			aprint_error_dev(sc->bge_dev,
1224 			    "no memory for jumbo buffer queue!\n");
1225 			error = ENOBUFS;
1226 			goto out;
1227 		}
1228 		entry->slot = i;
1229 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1230 				 entry, jpool_entries);
1231 	}
1232 out:
1233 	if (error != 0) {
1234 		switch (state) {
1235 		case 4:
1236 			bus_dmamap_unload(sc->bge_dmatag,
1237 			    sc->bge_cdata.bge_rx_jumbo_map);
1238 		case 3:
1239 			bus_dmamap_destroy(sc->bge_dmatag,
1240 			    sc->bge_cdata.bge_rx_jumbo_map);
1241 		case 2:
1242 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1243 		case 1:
1244 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1245 			break;
1246 		default:
1247 			break;
1248 		}
1249 	}
1250 
1251 	return error;
1252 }
1253 
1254 /*
1255  * Allocate a jumbo buffer.
1256  */
1257 static void *
1258 bge_jalloc(struct bge_softc *sc)
1259 {
1260 	struct bge_jpool_entry   *entry;
1261 
1262 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1263 
1264 	if (entry == NULL) {
1265 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1266 		return NULL;
1267 	}
1268 
1269 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1270 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1271 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1272 }
1273 
1274 /*
1275  * Release a jumbo buffer.
1276  */
1277 static void
1278 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1279 {
1280 	struct bge_jpool_entry *entry;
1281 	struct bge_softc *sc;
1282 	int i, s;
1283 
1284 	/* Extract the softc struct pointer. */
1285 	sc = (struct bge_softc *)arg;
1286 
1287 	if (sc == NULL)
1288 		panic("bge_jfree: can't find softc pointer!");
1289 
1290 	/* calculate the slot this buffer belongs to */
1291 
1292 	i = ((char *)buf
1293 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1294 
1295 	if ((i < 0) || (i >= BGE_JSLOTS))
1296 		panic("bge_jfree: asked to free buffer that we don't manage!");
1297 
1298 	s = splvm();
1299 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1300 	if (entry == NULL)
1301 		panic("bge_jfree: buffer not in use!");
1302 	entry->slot = i;
1303 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1304 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1305 
1306 	if (__predict_true(m != NULL))
1307   		pool_cache_put(mb_cache, m);
1308 	splx(s);
1309 }
1310 
1311 
1312 /*
1313  * Initialize a standard receive ring descriptor.
1314  */
1315 static int
1316 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1317     bus_dmamap_t dmamap)
1318 {
1319 	struct mbuf		*m_new = NULL;
1320 	struct bge_rx_bd	*r;
1321 	int			error;
1322 
1323 	if (dmamap == NULL) {
1324 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1325 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1326 		if (error != 0)
1327 			return error;
1328 	}
1329 
1330 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1331 
1332 	if (m == NULL) {
1333 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1334 		if (m_new == NULL)
1335 			return ENOBUFS;
1336 
1337 		MCLGET(m_new, M_DONTWAIT);
1338 		if (!(m_new->m_flags & M_EXT)) {
1339 			m_freem(m_new);
1340 			return ENOBUFS;
1341 		}
1342 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1343 
1344 	} else {
1345 		m_new = m;
1346 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1347 		m_new->m_data = m_new->m_ext.ext_buf;
1348 	}
1349 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1350 	    m_adj(m_new, ETHER_ALIGN);
1351 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1352 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1353 		return ENOBUFS;
1354 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1355 	    BUS_DMASYNC_PREREAD);
1356 
1357 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1358 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1359 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1360 	r->bge_flags = BGE_RXBDFLAG_END;
1361 	r->bge_len = m_new->m_len;
1362 	r->bge_idx = i;
1363 
1364 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1365 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1366 		i * sizeof (struct bge_rx_bd),
1367 	    sizeof (struct bge_rx_bd),
1368 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1369 
1370 	return 0;
1371 }
1372 
1373 /*
1374  * Initialize a jumbo receive ring descriptor. This allocates
1375  * a jumbo buffer from the pool managed internally by the driver.
1376  */
1377 static int
1378 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1379 {
1380 	struct mbuf *m_new = NULL;
1381 	struct bge_rx_bd *r;
1382 	void *buf = NULL;
1383 
1384 	if (m == NULL) {
1385 
1386 		/* Allocate the mbuf. */
1387 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1388 		if (m_new == NULL)
1389 			return ENOBUFS;
1390 
1391 		/* Allocate the jumbo buffer */
1392 		buf = bge_jalloc(sc);
1393 		if (buf == NULL) {
1394 			m_freem(m_new);
1395 			aprint_error_dev(sc->bge_dev,
1396 			    "jumbo allocation failed -- packet dropped!\n");
1397 			return ENOBUFS;
1398 		}
1399 
1400 		/* Attach the buffer to the mbuf. */
1401 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1402 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1403 		    bge_jfree, sc);
1404 		m_new->m_flags |= M_EXT_RW;
1405 	} else {
1406 		m_new = m;
1407 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1408 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1409 	}
1410 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1411 	    m_adj(m_new, ETHER_ALIGN);
1412 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1413 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1414 	    BUS_DMASYNC_PREREAD);
1415 	/* Set up the descriptor. */
1416 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1417 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1418 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1419 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1420 	r->bge_len = m_new->m_len;
1421 	r->bge_idx = i;
1422 
1423 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1424 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1425 		i * sizeof (struct bge_rx_bd),
1426 	    sizeof (struct bge_rx_bd),
1427 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1428 
1429 	return 0;
1430 }
1431 
1432 /*
1433  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1434  * that's 1MB or memory, which is a lot. For now, we fill only the first
1435  * 256 ring entries and hope that our CPU is fast enough to keep up with
1436  * the NIC.
1437  */
1438 static int
1439 bge_init_rx_ring_std(struct bge_softc *sc)
1440 {
1441 	int i;
1442 
1443 	if (sc->bge_flags & BGE_RXRING_VALID)
1444 		return 0;
1445 
1446 	for (i = 0; i < BGE_SSLOTS; i++) {
1447 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1448 			return ENOBUFS;
1449 	}
1450 
1451 	sc->bge_std = i - 1;
1452 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1453 
1454 	sc->bge_flags |= BGE_RXRING_VALID;
1455 
1456 	return 0;
1457 }
1458 
1459 static void
1460 bge_free_rx_ring_std(struct bge_softc *sc)
1461 {
1462 	int i;
1463 
1464 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1465 		return;
1466 
1467 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1468 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1469 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1470 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1471 			bus_dmamap_destroy(sc->bge_dmatag,
1472 			    sc->bge_cdata.bge_rx_std_map[i]);
1473 		}
1474 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1475 		    sizeof(struct bge_rx_bd));
1476 	}
1477 
1478 	sc->bge_flags &= ~BGE_RXRING_VALID;
1479 }
1480 
1481 static int
1482 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1483 {
1484 	int i;
1485 	volatile struct bge_rcb *rcb;
1486 
1487 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1488 		return 0;
1489 
1490 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1491 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1492 			return ENOBUFS;
1493 	};
1494 
1495 	sc->bge_jumbo = i - 1;
1496 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1497 
1498 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1499 	rcb->bge_maxlen_flags = 0;
1500 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1501 
1502 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1503 
1504 	return 0;
1505 }
1506 
1507 static void
1508 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1509 {
1510 	int i;
1511 
1512 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1513 		return;
1514 
1515 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1516 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1517 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1518 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1519 		}
1520 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1521 		    sizeof(struct bge_rx_bd));
1522 	}
1523 
1524 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1525 }
1526 
1527 static void
1528 bge_free_tx_ring(struct bge_softc *sc)
1529 {
1530 	int i, freed;
1531 	struct txdmamap_pool_entry *dma;
1532 
1533 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1534 		return;
1535 
1536 	freed = 0;
1537 
1538 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1539 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1540 			freed++;
1541 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1542 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1543 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1544 					    link);
1545 			sc->txdma[i] = 0;
1546 		}
1547 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1548 		    sizeof(struct bge_tx_bd));
1549 	}
1550 
1551 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1552 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1553 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1554 		free(dma, M_DEVBUF);
1555 	}
1556 
1557 	sc->bge_flags &= ~BGE_TXRING_VALID;
1558 }
1559 
1560 static int
1561 bge_init_tx_ring(struct bge_softc *sc)
1562 {
1563 	int i;
1564 	bus_dmamap_t dmamap;
1565 	struct txdmamap_pool_entry *dma;
1566 
1567 	if (sc->bge_flags & BGE_TXRING_VALID)
1568 		return 0;
1569 
1570 	sc->bge_txcnt = 0;
1571 	sc->bge_tx_saved_considx = 0;
1572 
1573 	/* Initialize transmit producer index for host-memory send ring. */
1574 	sc->bge_tx_prodidx = 0;
1575 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1576 	/* 5700 b2 errata */
1577 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1578 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1579 
1580 	/* NIC-memory send ring not used; initialize to zero. */
1581 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1582 	/* 5700 b2 errata */
1583 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1584 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1585 
1586 	SLIST_INIT(&sc->txdma_list);
1587 	for (i = 0; i < BGE_RSLOTS; i++) {
1588 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1589 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1590 		    &dmamap))
1591 			return ENOBUFS;
1592 		if (dmamap == NULL)
1593 			panic("dmamap NULL in bge_init_tx_ring");
1594 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1595 		if (dma == NULL) {
1596 			aprint_error_dev(sc->bge_dev,
1597 			    "can't alloc txdmamap_pool_entry\n");
1598 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1599 			return ENOMEM;
1600 		}
1601 		dma->dmamap = dmamap;
1602 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1603 	}
1604 
1605 	sc->bge_flags |= BGE_TXRING_VALID;
1606 
1607 	return 0;
1608 }
1609 
1610 static void
1611 bge_setmulti(struct bge_softc *sc)
1612 {
1613 	struct ethercom		*ac = &sc->ethercom;
1614 	struct ifnet		*ifp = &ac->ec_if;
1615 	struct ether_multi	*enm;
1616 	struct ether_multistep  step;
1617 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1618 	uint32_t		h;
1619 	int			i;
1620 
1621 	if (ifp->if_flags & IFF_PROMISC)
1622 		goto allmulti;
1623 
1624 	/* Now program new ones. */
1625 	ETHER_FIRST_MULTI(step, ac, enm);
1626 	while (enm != NULL) {
1627 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1628 			/*
1629 			 * We must listen to a range of multicast addresses.
1630 			 * For now, just accept all multicasts, rather than
1631 			 * trying to set only those filter bits needed to match
1632 			 * the range.  (At this time, the only use of address
1633 			 * ranges is for IP multicast routing, for which the
1634 			 * range is big enough to require all bits set.)
1635 			 */
1636 			goto allmulti;
1637 		}
1638 
1639 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1640 
1641 		/* Just want the 7 least-significant bits. */
1642 		h &= 0x7f;
1643 
1644 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1645 		ETHER_NEXT_MULTI(step, enm);
1646 	}
1647 
1648 	ifp->if_flags &= ~IFF_ALLMULTI;
1649 	goto setit;
1650 
1651  allmulti:
1652 	ifp->if_flags |= IFF_ALLMULTI;
1653 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1654 
1655  setit:
1656 	for (i = 0; i < 4; i++)
1657 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1658 }
1659 
1660 static void
1661 bge_sig_pre_reset(struct bge_softc *sc, int type)
1662 {
1663 	/*
1664 	 * Some chips don't like this so only do this if ASF is enabled
1665 	 */
1666 	if (sc->bge_asf_mode)
1667 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1668 
1669 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1670 		switch (type) {
1671 		case BGE_RESET_START:
1672 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1673 			break;
1674 		case BGE_RESET_STOP:
1675 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1676 			break;
1677 		}
1678 	}
1679 }
1680 
1681 static void
1682 bge_sig_post_reset(struct bge_softc *sc, int type)
1683 {
1684 
1685 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1686 		switch (type) {
1687 		case BGE_RESET_START:
1688 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1689 			/* START DONE */
1690 			break;
1691 		case BGE_RESET_STOP:
1692 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1693 			break;
1694 		}
1695 	}
1696 }
1697 
1698 static void
1699 bge_sig_legacy(struct bge_softc *sc, int type)
1700 {
1701 
1702 	if (sc->bge_asf_mode) {
1703 		switch (type) {
1704 		case BGE_RESET_START:
1705 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1706 			break;
1707 		case BGE_RESET_STOP:
1708 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1709 			break;
1710 		}
1711 	}
1712 }
1713 
1714 static void
1715 bge_stop_fw(struct bge_softc *sc)
1716 {
1717 	int i;
1718 
1719 	if (sc->bge_asf_mode) {
1720 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1721 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1722 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1723 
1724 		for (i = 0; i < 100; i++) {
1725 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1726 				break;
1727 			DELAY(10);
1728 		}
1729 	}
1730 }
1731 
1732 static int
1733 bge_poll_fw(struct bge_softc *sc)
1734 {
1735 	uint32_t val;
1736 	int i;
1737 
1738 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1739 		for (i = 0; i < BGE_TIMEOUT; i++) {
1740 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1741 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1742 				break;
1743 			DELAY(100);
1744 		}
1745 		if (i >= BGE_TIMEOUT) {
1746 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1747 			return -1;
1748 		}
1749 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1750 		/*
1751 		 * Poll the value location we just wrote until
1752 		 * we see the 1's complement of the magic number.
1753 		 * This indicates that the firmware initialization
1754 		 * is complete.
1755 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1756 		 */
1757 		for (i = 0; i < BGE_TIMEOUT; i++) {
1758 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1759 			if (val == ~BGE_MAGIC_NUMBER)
1760 				break;
1761 			DELAY(10);
1762 		}
1763 
1764 		if (i >= BGE_TIMEOUT) {
1765 			aprint_error_dev(sc->bge_dev,
1766 			    "firmware handshake timed out, val = %x\n", val);
1767 			return -1;
1768 		}
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 /*
1775  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1776  * self-test results.
1777  */
1778 static int
1779 bge_chipinit(struct bge_softc *sc)
1780 {
1781 	int i;
1782 	uint32_t dma_rw_ctl;
1783 
1784 	/* Set endianness before we access any non-PCI registers. */
1785 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1786 	    BGE_INIT);
1787 
1788 	/* Set power state to D0. */
1789 	bge_setpowerstate(sc, 0);
1790 
1791 	/* Clear the MAC control register */
1792 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1793 
1794 	/*
1795 	 * Clear the MAC statistics block in the NIC's
1796 	 * internal memory.
1797 	 */
1798 	for (i = BGE_STATS_BLOCK;
1799 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1800 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1801 
1802 	for (i = BGE_STATUS_BLOCK;
1803 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1804 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1805 
1806 	/* Set up the PCI DMA control register. */
1807 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1808 	if (sc->bge_flags & BGE_PCIE) {
1809 		/* Read watermark not used, 128 bytes for write. */
1810 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1811 		    device_xname(sc->bge_dev)));
1812 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1813 	} else if (sc->bge_flags & BGE_PCIX) {
1814 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1815 		    device_xname(sc->bge_dev)));
1816 		/* PCI-X bus */
1817 		if (BGE_IS_5714_FAMILY(sc)) {
1818 			/* 256 bytes for read and write. */
1819 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1820 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1821 
1822 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1823 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1824 			else
1825 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1826 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1827 			/* 1536 bytes for read, 384 bytes for write. */
1828 			dma_rw_ctl |=
1829 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1830 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1831 		} else {
1832 			/* 384 bytes for read and write. */
1833 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1834 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1835 			    (0x0F);
1836 		}
1837 
1838 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1839 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1840 			uint32_t tmp;
1841 
1842 			/* Set ONEDMA_ATONCE for hardware workaround. */
1843 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1844 			if (tmp == 6 || tmp == 7)
1845 				dma_rw_ctl |=
1846 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1847 
1848 			/* Set PCI-X DMA write workaround. */
1849 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1850 		}
1851 	} else {
1852 		/* Conventional PCI bus: 256 bytes for read and write. */
1853 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1854 		    device_xname(sc->bge_dev)));
1855 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1856 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1857 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1858 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1859 			dma_rw_ctl |= 0x0F;
1860 	}
1861 
1862 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1863 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1864 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1865 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1866 
1867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1868 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1869 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1870 
1871 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1872 	    dma_rw_ctl);
1873 
1874 	/*
1875 	 * Set up general mode register.
1876 	 */
1877 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1878 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1879 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1880 
1881 	/*
1882 	 * BCM5701 B5 have a bug causing data corruption when using
1883 	 * 64-bit DMA reads, which can be terminated early and then
1884 	 * completed later as 32-bit accesses, in combination with
1885 	 * certain bridges.
1886 	 */
1887 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1888 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1889 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1890 
1891 	/*
1892 	 * Tell the firmware the driver is running
1893 	 */
1894 	if (sc->bge_asf_mode & ASF_STACKUP)
1895 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1896 
1897 	/*
1898 	 * Disable memory write invalidate.  Apparently it is not supported
1899 	 * properly by these devices.
1900 	 */
1901 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1902 		   PCI_COMMAND_INVALIDATE_ENABLE);
1903 
1904 #ifdef __brokenalpha__
1905 	/*
1906 	 * Must insure that we do not cross an 8K (bytes) boundary
1907 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1908 	 * restriction on some ALPHA platforms with early revision
1909 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1910 	 */
1911 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1912 #endif
1913 
1914 	/* Set the timer prescaler (always 66MHz) */
1915 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1916 
1917 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1918 		DELAY(40);	/* XXX */
1919 
1920 		/* Put PHY into ready state */
1921 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1922 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1923 		DELAY(40);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static int
1930 bge_blockinit(struct bge_softc *sc)
1931 {
1932 	volatile struct bge_rcb	 *rcb;
1933 	bus_size_t rcb_addr;
1934 	int i;
1935 	struct ifnet *ifp = &sc->ethercom.ec_if;
1936 	bge_hostaddr taddr;
1937 	uint32_t val;
1938 
1939 	/*
1940 	 * Initialize the memory window pointer register so that
1941 	 * we can access the first 32K of internal NIC RAM. This will
1942 	 * allow us to set up the TX send ring RCBs and the RX return
1943 	 * ring RCBs, plus other things which live in NIC memory.
1944 	 */
1945 
1946 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1947 
1948 	/* Step 33: Configure mbuf memory pool */
1949 	if (BGE_IS_5700_FAMILY(sc)) {
1950 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1951 		    BGE_BUFFPOOL_1);
1952 
1953 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1954 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1955 		else
1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1957 
1958 		/* Configure DMA resource pool */
1959 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1960 		    BGE_DMA_DESCRIPTORS);
1961 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1962 	}
1963 
1964 	/* Step 35: Configure mbuf pool watermarks */
1965 #ifdef ORIG_WPAUL_VALUES
1966 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1967 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1968 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1969 #else
1970 
1971 	/* new broadcom docs strongly recommend these: */
1972 	if (!BGE_IS_5705_PLUS(sc)) {
1973 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1974 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1975 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1976 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1977 		} else {
1978 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1979 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1980 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1981 		}
1982 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1983 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1986 	} else {
1987 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1988 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1990 	}
1991 #endif
1992 
1993 	/* Step 36: Configure DMA resource watermarks */
1994 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1995 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1996 
1997 	/* Step 38: Enable buffer manager */
1998 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1999 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2000 
2001 	/* Step 39: Poll for buffer manager start indication */
2002 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2003 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2004 			break;
2005 		DELAY(10);
2006 	}
2007 
2008 	if (i == BGE_TIMEOUT * 2) {
2009 		aprint_error_dev(sc->bge_dev,
2010 		    "buffer manager failed to start\n");
2011 		return ENXIO;
2012 	}
2013 
2014 	/* Step 40: Enable flow-through queues */
2015 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2016 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2017 
2018 	/* Wait until queue initialization is complete */
2019 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2020 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2021 			break;
2022 		DELAY(10);
2023 	}
2024 
2025 	if (i == BGE_TIMEOUT * 2) {
2026 		aprint_error_dev(sc->bge_dev,
2027 		    "flow-through queue init failed\n");
2028 		return ENXIO;
2029 	}
2030 
2031 	/* Step 41: Initialize the standard RX ring control block */
2032 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2033 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2034 	if (BGE_IS_5705_PLUS(sc))
2035 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2036 	else
2037 		rcb->bge_maxlen_flags =
2038 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2039 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2040 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2041 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2042 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2043 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2044 
2045 	/*
2046 	 * Step 42: Initialize the jumbo RX ring control block
2047 	 * We set the 'ring disabled' bit in the flags
2048 	 * field until we're actually ready to start
2049 	 * using this ring (i.e. once we set the MTU
2050 	 * high enough to require it).
2051 	 */
2052 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2053 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2054 		BGE_HOSTADDR(rcb->bge_hostaddr,
2055 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2056 		rcb->bge_maxlen_flags =
2057 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2058 			BGE_RCB_FLAG_RING_DISABLED);
2059 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2060 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2061 		    rcb->bge_hostaddr.bge_addr_hi);
2062 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2063 		    rcb->bge_hostaddr.bge_addr_lo);
2064 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2065 		    rcb->bge_maxlen_flags);
2066 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2067 
2068 		/* Set up dummy disabled mini ring RCB */
2069 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2070 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2071 		    BGE_RCB_FLAG_RING_DISABLED);
2072 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2073 		    rcb->bge_maxlen_flags);
2074 
2075 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2076 		    offsetof(struct bge_ring_data, bge_info),
2077 		    sizeof (struct bge_gib),
2078 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2079 	}
2080 
2081 	/*
2082 	 * Set the BD ring replenish thresholds. The recommended
2083 	 * values are 1/8th the number of descriptors allocated to
2084 	 * each ring.
2085 	 */
2086 	i = BGE_STD_RX_RING_CNT / 8;
2087 
2088 	/*
2089 	 * Use a value of 8 for the following chips to workaround HW errata.
2090 	 * Some of these chips have been added based on empirical
2091 	 * evidence (they don't work unless this is done).
2092 	 */
2093 	if (BGE_IS_5705_PLUS(sc))
2094 		i = 8;
2095 
2096 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2097 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2098 
2099 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2100 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2101 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2102 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2103 	}
2104 
2105 	/*
2106 	 * Disable all unused send rings by setting the 'ring disabled'
2107 	 * bit in the flags field of all the TX send ring control blocks.
2108 	 * These are located in NIC memory.
2109 	 */
2110 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2111 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2112 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2113 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2114 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2115 		rcb_addr += sizeof(struct bge_rcb);
2116 	}
2117 
2118 	/* Configure TX RCB 0 (we use only the first ring) */
2119 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2120 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2121 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2122 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2123 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2124 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2125 	if (BGE_IS_5700_FAMILY(sc))
2126 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2127 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2128 
2129 	/* Disable all unused RX return rings */
2130 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2131 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2132 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2133 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2134 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2135 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2136 			BGE_RCB_FLAG_RING_DISABLED));
2137 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2138 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2139 		    (i * (sizeof(uint64_t))), 0);
2140 		rcb_addr += sizeof(struct bge_rcb);
2141 	}
2142 
2143 	/* Initialize RX ring indexes */
2144 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2145 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2146 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2147 
2148 	/*
2149 	 * Set up RX return ring 0
2150 	 * Note that the NIC address for RX return rings is 0x00000000.
2151 	 * The return rings live entirely within the host, so the
2152 	 * nicaddr field in the RCB isn't used.
2153 	 */
2154 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2155 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2156 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2157 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2158 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2159 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2160 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2161 
2162 	/* Set random backoff seed for TX */
2163 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2164 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2165 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2166 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2167 	    BGE_TX_BACKOFF_SEED_MASK);
2168 
2169 	/* Set inter-packet gap */
2170 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2171 
2172 	/*
2173 	 * Specify which ring to use for packets that don't match
2174 	 * any RX rules.
2175 	 */
2176 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2177 
2178 	/*
2179 	 * Configure number of RX lists. One interrupt distribution
2180 	 * list, sixteen active lists, one bad frames class.
2181 	 */
2182 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2183 
2184 	/* Inialize RX list placement stats mask. */
2185 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2186 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2187 
2188 	/* Disable host coalescing until we get it set up */
2189 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2190 
2191 	/* Poll to make sure it's shut down. */
2192 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2193 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2194 			break;
2195 		DELAY(10);
2196 	}
2197 
2198 	if (i == BGE_TIMEOUT * 2) {
2199 		aprint_error_dev(sc->bge_dev,
2200 		    "host coalescing engine failed to idle\n");
2201 		return ENXIO;
2202 	}
2203 
2204 	/* Set up host coalescing defaults */
2205 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2206 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2207 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2208 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2209 	if (BGE_IS_5700_FAMILY(sc)) {
2210 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2211 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2212 	}
2213 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2214 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2215 
2216 	/* Set up address of statistics block */
2217 	if (BGE_IS_5700_FAMILY(sc)) {
2218 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2219 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2220 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2221 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2222 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2223 	}
2224 
2225 	/* Set up address of status block */
2226 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2227 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2228 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2229 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2230 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2231 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2232 
2233 	/* Turn on host coalescing state machine */
2234 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2235 
2236 	/* Turn on RX BD completion state machine and enable attentions */
2237 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2238 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2239 
2240 	/* Turn on RX list placement state machine */
2241 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2242 
2243 	/* Turn on RX list selector state machine. */
2244 	if (BGE_IS_5700_FAMILY(sc))
2245 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2246 
2247 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2248 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2249 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2250 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2251 
2252 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2253 		val |= BGE_PORTMODE_TBI;
2254 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2255 		val |= BGE_PORTMODE_GMII;
2256 	else
2257 		val |= BGE_PORTMODE_MII;
2258 
2259 	/* Turn on DMA, clear stats */
2260 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2261 
2262 	/* Set misc. local control, enable interrupts on attentions */
2263 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2264 
2265 #ifdef notdef
2266 	/* Assert GPIO pins for PHY reset */
2267 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2268 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2269 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2270 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2271 #endif
2272 
2273 #if defined(not_quite_yet)
2274 	/* Linux driver enables enable gpio pin #1 on 5700s */
2275 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2276 		sc->bge_local_ctrl_reg |=
2277 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2278 	}
2279 #endif
2280 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2281 
2282 	/* Turn on DMA completion state machine */
2283 	if (BGE_IS_5700_FAMILY(sc))
2284 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2285 
2286 	/* Turn on write DMA state machine */
2287 	{
2288 		uint32_t bge_wdma_mode =
2289 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2290 
2291 		/* Enable host coalescing bug fix; see Linux tg3.c */
2292 		if (BGE_IS_5755_PLUS(sc))
2293 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2294 
2295 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2296 	}
2297 
2298 	/* Turn on read DMA state machine */
2299 	{
2300 		uint32_t dma_read_modebits;
2301 
2302 		dma_read_modebits =
2303 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2304 
2305 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2306 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2307 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2308 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2309 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2310 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2311 
2312 		if (sc->bge_flags & BGE_PCIE)
2313 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2314 		if (sc->bge_flags & BGE_TSO)
2315 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2316 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2317 		delay(40);
2318 	}
2319 
2320 	/* Turn on RX data completion state machine */
2321 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2322 
2323 	/* Turn on RX BD initiator state machine */
2324 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2325 
2326 	/* Turn on RX data and RX BD initiator state machine */
2327 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2328 
2329 	/* Turn on Mbuf cluster free state machine */
2330 	if (BGE_IS_5700_FAMILY(sc))
2331 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2332 
2333 	/* Turn on send BD completion state machine */
2334 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2335 
2336 	/* Turn on send data completion state machine */
2337 	val = BGE_SDCMODE_ENABLE;
2338 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2339 		val |= BGE_SDCMODE_CDELAY;
2340 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2341 
2342 	/* Turn on send data initiator state machine */
2343 	if (sc->bge_flags & BGE_TSO) {
2344 		/* XXX: magic value from Linux driver */
2345 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2346 	} else
2347 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2348 
2349 	/* Turn on send BD initiator state machine */
2350 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2351 
2352 	/* Turn on send BD selector state machine */
2353 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2354 
2355 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2356 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2357 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2358 
2359 	/* ack/clear link change events */
2360 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2361 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2362 	    BGE_MACSTAT_LINK_CHANGED);
2363 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2364 
2365 	/* Enable PHY auto polling (for MII/GMII only) */
2366 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2367 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2368 	} else {
2369 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2370 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2371 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2372 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2373 			    BGE_EVTENB_MI_INTERRUPT);
2374 	}
2375 
2376 	/*
2377 	 * Clear any pending link state attention.
2378 	 * Otherwise some link state change events may be lost until attention
2379 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2380 	 * It's not necessary on newer BCM chips - perhaps enabling link
2381 	 * state change attentions implies clearing pending attention.
2382 	 */
2383 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2384 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2385 	    BGE_MACSTAT_LINK_CHANGED);
2386 
2387 	/* Enable link state change attentions. */
2388 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2389 
2390 	return 0;
2391 }
2392 
2393 static const struct bge_revision *
2394 bge_lookup_rev(uint32_t chipid)
2395 {
2396 	const struct bge_revision *br;
2397 
2398 	for (br = bge_revisions; br->br_name != NULL; br++) {
2399 		if (br->br_chipid == chipid)
2400 			return br;
2401 	}
2402 
2403 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2404 		if (br->br_chipid == BGE_ASICREV(chipid))
2405 			return br;
2406 	}
2407 
2408 	return NULL;
2409 }
2410 
2411 static const struct bge_product *
2412 bge_lookup(const struct pci_attach_args *pa)
2413 {
2414 	const struct bge_product *bp;
2415 
2416 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2417 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2418 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2419 			return bp;
2420 	}
2421 
2422 	return NULL;
2423 }
2424 
2425 static int
2426 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2427 {
2428 #ifdef NOTYET
2429 	uint32_t pm_ctl = 0;
2430 
2431 	/* XXX FIXME: make sure indirect accesses enabled? */
2432 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2433 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2434 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2435 
2436 	/* clear the PME_assert bit and power state bits, enable PME */
2437 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2438 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2439 	pm_ctl |= (1 << 8);
2440 
2441 	if (powerlevel == 0) {
2442 		pm_ctl |= PCIM_PSTAT_D0;
2443 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2444 		    pm_ctl, 2);
2445 		DELAY(10000);
2446 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2447 		DELAY(10000);
2448 
2449 #ifdef NOTYET
2450 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2451 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2452 #endif
2453 		DELAY(40); DELAY(40); DELAY(40);
2454 		DELAY(10000);	/* above not quite adequate on 5700 */
2455 		return 0;
2456 	}
2457 
2458 
2459 	/*
2460 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2461 	 * GMII gpio pins. Example code assumes all hardware vendors
2462 	 * followed Broadcom's sample pcb layout. Until we verify that
2463 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2464 	 */
2465 	aprint_error_dev(sc->bge_dev,
2466 	    "power state %d unimplemented; check GPIO pins\n",
2467 	    powerlevel);
2468 #endif
2469 	return EOPNOTSUPP;
2470 }
2471 
2472 
2473 /*
2474  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2475  * against our list and return its name if we find a match. Note
2476  * that since the Broadcom controller contains VPD support, we
2477  * can get the device name string from the controller itself instead
2478  * of the compiled-in string. This is a little slow, but it guarantees
2479  * we'll always announce the right product name.
2480  */
2481 static int
2482 bge_probe(device_t parent, cfdata_t match, void *aux)
2483 {
2484 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2485 
2486 	if (bge_lookup(pa) != NULL)
2487 		return 1;
2488 
2489 	return 0;
2490 }
2491 
2492 static void
2493 bge_attach(device_t parent, device_t self, void *aux)
2494 {
2495 	struct bge_softc	*sc = device_private(self);
2496 	struct pci_attach_args	*pa = aux;
2497 	prop_dictionary_t dict;
2498 	const struct bge_product *bp;
2499 	const struct bge_revision *br;
2500 	pci_chipset_tag_t	pc;
2501 	pci_intr_handle_t	ih;
2502 	const char		*intrstr = NULL;
2503 	bus_dma_segment_t	seg;
2504 	int			rseg;
2505 	uint32_t		hwcfg = 0;
2506 	uint32_t		command;
2507 	struct ifnet		*ifp;
2508 	uint32_t		misccfg;
2509 	void *			kva;
2510 	u_char			eaddr[ETHER_ADDR_LEN];
2511 	pcireg_t		memtype, subid;
2512 	bus_addr_t		memaddr;
2513 	bus_size_t		memsize;
2514 	uint32_t		pm_ctl;
2515 	bool			no_seeprom;
2516 
2517 	bp = bge_lookup(pa);
2518 	KASSERT(bp != NULL);
2519 
2520 	sc->sc_pc = pa->pa_pc;
2521 	sc->sc_pcitag = pa->pa_tag;
2522 	sc->bge_dev = self;
2523 
2524 	pc = sc->sc_pc;
2525 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2526 
2527 	aprint_naive(": Ethernet controller\n");
2528 	aprint_normal(": %s\n", bp->bp_name);
2529 
2530 	/*
2531 	 * Map control/status registers.
2532 	 */
2533 	DPRINTFN(5, ("Map control/status regs\n"));
2534 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2535 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2536 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2537 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2538 
2539 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2540 		aprint_error_dev(sc->bge_dev,
2541 		    "failed to enable memory mapping!\n");
2542 		return;
2543 	}
2544 
2545 	DPRINTFN(5, ("pci_mem_find\n"));
2546 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2547 	switch (memtype) {
2548 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2549 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2550 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2551 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2552 		    &memaddr, &memsize) == 0)
2553 			break;
2554 	default:
2555 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2556 		return;
2557 	}
2558 
2559 	DPRINTFN(5, ("pci_intr_map\n"));
2560 	if (pci_intr_map(pa, &ih)) {
2561 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2562 		return;
2563 	}
2564 
2565 	DPRINTFN(5, ("pci_intr_string\n"));
2566 	intrstr = pci_intr_string(pc, ih);
2567 
2568 	DPRINTFN(5, ("pci_intr_establish\n"));
2569 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2570 
2571 	if (sc->bge_intrhand == NULL) {
2572 		aprint_error_dev(sc->bge_dev,
2573 		    "couldn't establish interrupt%s%s\n",
2574 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2575 		return;
2576 	}
2577 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2578 
2579 	/*
2580 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2581 	 * can clobber the chip's PCI config-space power control registers,
2582 	 * leaving the card in D3 powersave state.
2583 	 * We do not have memory-mapped registers in this state,
2584 	 * so force device into D0 state before starting initialization.
2585 	 */
2586 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2587 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2588 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2589 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2590 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2591 
2592 	/*
2593 	 * Save ASIC rev.
2594 	 */
2595 	sc->bge_chipid =
2596 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2597 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
2598 
2599 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2600 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2601 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2602 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2603 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2604 			    BGE_PCI_GEN2_PRODID_ASICREV);
2605 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2606 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2607 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2608 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2609 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2610 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2611 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2612 			    BGE_PCI_GEN15_PRODID_ASICREV);
2613 		else
2614 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2615 			    BGE_PCI_PRODID_ASICREV);
2616 	}
2617 
2618 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2619 	        &sc->bge_pciecap, NULL) != 0)
2620 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2621 		/* PCIe */
2622 		sc->bge_flags |= BGE_PCIE;
2623 		bge_set_max_readrq(sc);
2624 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2625 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
2626 		/* PCI-X */
2627 		sc->bge_flags |= BGE_PCIX;
2628 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2629 			&sc->bge_pcixcap, NULL) == 0)
2630 			aprint_error_dev(sc->bge_dev,
2631 			    "unable to find PCIX capability\n");
2632 	}
2633 
2634 	/* chipid */
2635 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2636 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2637 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2639 		sc->bge_flags |= BGE_5700_FAMILY;
2640 
2641 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2642 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2643 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2644 		sc->bge_flags |= BGE_5714_FAMILY;
2645 
2646 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
2647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2651 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2652 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2653 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2655 		sc->bge_flags |= BGE_5755_PLUS;
2656 
2657 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2658 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2659 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2660 	    BGE_IS_5755_PLUS(sc) ||
2661 	    BGE_IS_5714_FAMILY(sc))
2662 		sc->bge_flags |= BGE_5750_PLUS;
2663 
2664 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2665 	    BGE_IS_5750_OR_BEYOND(sc))
2666 		sc->bge_flags |= BGE_5705_PLUS;
2667 
2668 	/*
2669 	 * When using the BCM5701 in PCI-X mode, data corruption has
2670 	 * been observed in the first few bytes of some received packets.
2671 	 * Aligning the packet buffer in memory eliminates the corruption.
2672 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2673 	 * which do not support unaligned accesses, we will realign the
2674 	 * payloads by copying the received packets.
2675 	 */
2676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2677 	    sc->bge_flags & BGE_PCIX)
2678 		sc->bge_flags |= BGE_RX_ALIGNBUG;
2679 
2680 	if (BGE_IS_5700_FAMILY(sc))
2681 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
2682 
2683 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2684 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2685 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2686 		sc->bge_flags |= BGE_NO_3LED;
2687 
2688 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2689 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2690 
2691 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2692 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2693 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2694 		sc->bge_flags |= BGE_IS_5788;
2695 
2696 	/*
2697 	 * Some controllers seem to require a special firmware to use
2698 	 * TSO. But the firmware is not available to FreeBSD and Linux
2699 	 * claims that the TSO performed by the firmware is slower than
2700 	 * hardware based TSO. Moreover the firmware based TSO has one
2701 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2702 	 * header is greater than 80 bytes. The workaround for the TSO
2703 	 * bug exist but it seems it's too expensive than not using
2704 	 * TSO at all. Some hardwares also have the TSO bug so limit
2705 	 * the TSO to the controllers that are not affected TSO issues
2706 	 * (e.g. 5755 or higher).
2707 	 */
2708 	if (BGE_IS_5755_PLUS(sc)) {
2709 		/*
2710 		 * BCM5754 and BCM5787 shares the same ASIC id so
2711 		 * explicit device id check is required.
2712 		 */
2713 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2714 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2715 			sc->bge_flags |= BGE_TSO;
2716 	}
2717 
2718 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2719 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2720 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2721 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2722 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2723 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2724 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2725 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2726 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2727 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2728 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2729 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2730 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2731 		sc->bge_flags |= BGE_10_100_ONLY;
2732 
2733 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2734 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2735 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2736 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2737 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2738 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2739 
2740 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2741 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2742 		sc->bge_flags |= BGE_PHY_CRC_BUG;
2743 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2744 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2745 		sc->bge_flags |= BGE_PHY_ADC_BUG;
2746 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2747 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2748 
2749 	if (BGE_IS_5705_PLUS(sc) &&
2750 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2751 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2752 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2753 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2754 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2755 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2756 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2757 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2758 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2759 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2760 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2761 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
2762 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2763 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2764 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2765 			sc->bge_flags |= BGE_PHY_BER_BUG;
2766 	}
2767 
2768 	/*
2769 	 * SEEPROM check.
2770 	 * First check if firmware knows we do not have SEEPROM.
2771 	 */
2772 	if (prop_dictionary_get_bool(device_properties(self),
2773 	     "without-seeprom", &no_seeprom) && no_seeprom)
2774 	 	sc->bge_flags |= BGE_NO_EEPROM;
2775 
2776 	/* Now check the 'ROM failed' bit on the RX CPU */
2777 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2778 		sc->bge_flags |= BGE_NO_EEPROM;
2779 
2780 	/* Try to reset the chip. */
2781 	DPRINTFN(5, ("bge_reset\n"));
2782 	bge_reset(sc);
2783 
2784 	sc->bge_asf_mode = 0;
2785 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2786 	    == BGE_MAGIC_NUMBER)) {
2787 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2788 		    & BGE_HWCFG_ASF) {
2789 			sc->bge_asf_mode |= ASF_ENABLE;
2790 			sc->bge_asf_mode |= ASF_STACKUP;
2791 			if (BGE_IS_5750_OR_BEYOND(sc)) {
2792 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2793 			}
2794 		}
2795 	}
2796 
2797 	/* Try to reset the chip again the nice way. */
2798 	bge_stop_fw(sc);
2799 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2800 	if (bge_reset(sc))
2801 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2802 
2803 	bge_sig_legacy(sc, BGE_RESET_STOP);
2804 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2805 
2806 	if (bge_chipinit(sc)) {
2807 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2808 		bge_release_resources(sc);
2809 		return;
2810 	}
2811 
2812 	/*
2813 	 * Get station address from the EEPROM
2814 	 */
2815 	if (bge_get_eaddr(sc, eaddr)) {
2816 		aprint_error_dev(sc->bge_dev,
2817 		    "failed to read station address\n");
2818 		bge_release_resources(sc);
2819 		return;
2820 	}
2821 
2822 	br = bge_lookup_rev(sc->bge_chipid);
2823 
2824 	if (br == NULL) {
2825 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2826 		    sc->bge_chipid);
2827 	} else {
2828 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2829 		    br->br_name, sc->bge_chipid);
2830 	}
2831 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2832 
2833 	/* Allocate the general information block and ring buffers. */
2834 	if (pci_dma64_available(pa))
2835 		sc->bge_dmatag = pa->pa_dmat64;
2836 	else
2837 		sc->bge_dmatag = pa->pa_dmat;
2838 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2839 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2840 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2841 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2842 		return;
2843 	}
2844 	DPRINTFN(5, ("bus_dmamem_map\n"));
2845 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2846 			   sizeof(struct bge_ring_data), &kva,
2847 			   BUS_DMA_NOWAIT)) {
2848 		aprint_error_dev(sc->bge_dev,
2849 		    "can't map DMA buffers (%zu bytes)\n",
2850 		    sizeof(struct bge_ring_data));
2851 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2852 		return;
2853 	}
2854 	DPRINTFN(5, ("bus_dmamem_create\n"));
2855 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2856 	    sizeof(struct bge_ring_data), 0,
2857 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2858 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2859 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2860 				 sizeof(struct bge_ring_data));
2861 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2862 		return;
2863 	}
2864 	DPRINTFN(5, ("bus_dmamem_load\n"));
2865 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2866 			    sizeof(struct bge_ring_data), NULL,
2867 			    BUS_DMA_NOWAIT)) {
2868 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2869 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2870 				 sizeof(struct bge_ring_data));
2871 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2872 		return;
2873 	}
2874 
2875 	DPRINTFN(5, ("bzero\n"));
2876 	sc->bge_rdata = (struct bge_ring_data *)kva;
2877 
2878 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2879 
2880 	/* Try to allocate memory for jumbo buffers. */
2881 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2882 		if (bge_alloc_jumbo_mem(sc)) {
2883 			aprint_error_dev(sc->bge_dev,
2884 			    "jumbo buffer allocation failed\n");
2885 		} else
2886 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2887 	}
2888 
2889 	/* Set default tuneable values. */
2890 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2891 	sc->bge_rx_coal_ticks = 150;
2892 	sc->bge_rx_max_coal_bds = 64;
2893 #ifdef ORIG_WPAUL_VALUES
2894 	sc->bge_tx_coal_ticks = 150;
2895 	sc->bge_tx_max_coal_bds = 128;
2896 #else
2897 	sc->bge_tx_coal_ticks = 300;
2898 	sc->bge_tx_max_coal_bds = 400;
2899 #endif
2900 	if (BGE_IS_5705_PLUS(sc)) {
2901 		sc->bge_tx_coal_ticks = (12 * 5);
2902 		sc->bge_tx_max_coal_bds = (12 * 5);
2903 			aprint_verbose_dev(sc->bge_dev,
2904 			    "setting short Tx thresholds\n");
2905 	}
2906 
2907 	if (BGE_IS_5705_PLUS(sc))
2908 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2909 	else
2910 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2911 
2912 	/* Set up ifnet structure */
2913 	ifp = &sc->ethercom.ec_if;
2914 	ifp->if_softc = sc;
2915 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2916 	ifp->if_ioctl = bge_ioctl;
2917 	ifp->if_stop = bge_stop;
2918 	ifp->if_start = bge_start;
2919 	ifp->if_init = bge_init;
2920 	ifp->if_watchdog = bge_watchdog;
2921 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2922 	IFQ_SET_READY(&ifp->if_snd);
2923 	DPRINTFN(5, ("strcpy if_xname\n"));
2924 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2925 
2926 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2927 		sc->ethercom.ec_if.if_capabilities |=
2928 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2929 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
2930 		sc->ethercom.ec_if.if_capabilities |=
2931 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2932 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2933 #endif
2934 	sc->ethercom.ec_capabilities |=
2935 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2936 
2937 	if (sc->bge_flags & BGE_TSO)
2938 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2939 
2940 	/*
2941 	 * Do MII setup.
2942 	 */
2943 	DPRINTFN(5, ("mii setup\n"));
2944 	sc->bge_mii.mii_ifp = ifp;
2945 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2946 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2947 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2948 
2949 	/*
2950 	 * Figure out what sort of media we have by checking the
2951 	 * hardware config word in the first 32k of NIC internal memory,
2952 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2953 	 * cards, this value appears to be unset. If that's the
2954 	 * case, we have to rely on identifying the NIC by its PCI
2955 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2956 	 */
2957 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2958 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2959 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2960 		bge_read_eeprom(sc, (void *)&hwcfg,
2961 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2962 		hwcfg = be32toh(hwcfg);
2963 	}
2964 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2965 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2966 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2967 		if (BGE_IS_5714_FAMILY(sc))
2968 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
2969 		else
2970 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
2971 	}
2972 
2973 	/* set phyflags and chipid before mii_attach() */
2974 	dict = device_properties(self);
2975 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2976 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
2977 
2978 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2979 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2980 		    bge_ifmedia_sts);
2981 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2982 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2983 			    0, NULL);
2984 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2985 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2986 		/* Pretend the user requested this setting */
2987 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2988 	} else {
2989 		/*
2990 		 * Do transceiver setup and tell the firmware the
2991 		 * driver is down so we can try to get access the
2992 		 * probe if ASF is running.  Retry a couple of times
2993 		 * if we get a conflict with the ASF firmware accessing
2994 		 * the PHY.
2995 		 */
2996 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2997 		bge_asf_driver_up(sc);
2998 
2999 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3000 			     bge_ifmedia_sts);
3001 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3002 			   MII_PHY_ANY, MII_OFFSET_ANY,
3003 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
3004 
3005 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3006 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3007 			ifmedia_add(&sc->bge_mii.mii_media,
3008 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3009 			ifmedia_set(&sc->bge_mii.mii_media,
3010 				    IFM_ETHER|IFM_MANUAL);
3011 		} else
3012 			ifmedia_set(&sc->bge_mii.mii_media,
3013 				    IFM_ETHER|IFM_AUTO);
3014 
3015 		/*
3016 		 * Now tell the firmware we are going up after probing the PHY
3017 		 */
3018 		if (sc->bge_asf_mode & ASF_STACKUP)
3019 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3020 	}
3021 
3022 	/*
3023 	 * Call MI attach routine.
3024 	 */
3025 	DPRINTFN(5, ("if_attach\n"));
3026 	if_attach(ifp);
3027 	DPRINTFN(5, ("ether_ifattach\n"));
3028 	ether_ifattach(ifp, eaddr);
3029 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3030 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3031 		RND_TYPE_NET, 0);
3032 #ifdef BGE_EVENT_COUNTERS
3033 	/*
3034 	 * Attach event counters.
3035 	 */
3036 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3037 	    NULL, device_xname(sc->bge_dev), "intr");
3038 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3039 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3040 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3041 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3042 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3043 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3044 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3045 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3046 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3047 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3048 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3049 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3050 #endif /* BGE_EVENT_COUNTERS */
3051 	DPRINTFN(5, ("callout_init\n"));
3052 	callout_init(&sc->bge_timeout, 0);
3053 
3054 	if (pmf_device_register(self, NULL, NULL))
3055 		pmf_class_network_register(self, ifp);
3056 	else
3057 		aprint_error_dev(self, "couldn't establish power handler\n");
3058 
3059 	sysctl_bge_init(sc);
3060 
3061 #ifdef BGE_DEBUG
3062 	bge_debug_info(sc);
3063 #endif
3064 }
3065 
3066 static void
3067 bge_release_resources(struct bge_softc *sc)
3068 {
3069 	if (sc->bge_vpd_prodname != NULL)
3070 		free(sc->bge_vpd_prodname, M_DEVBUF);
3071 
3072 	if (sc->bge_vpd_readonly != NULL)
3073 		free(sc->bge_vpd_readonly, M_DEVBUF);
3074 }
3075 
3076 static int
3077 bge_reset(struct bge_softc *sc)
3078 {
3079 	uint32_t cachesize, command, pcistate, marbmode;
3080 #if 0
3081 	uint32_t new_pcistate;
3082 #endif
3083 	pcireg_t devctl, reg;
3084 	int i, val;
3085 	void (*write_op)(struct bge_softc *, int, int);
3086 
3087 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3088 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3089 	    	if (sc->bge_flags & BGE_PCIE)
3090 			write_op = bge_writemem_direct;
3091 		else
3092 			write_op = bge_writemem_ind;
3093 	} else
3094 		write_op = bge_writereg_ind;
3095 
3096 	/* Save some important PCI state. */
3097 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3098 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3099 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3100 
3101 	/* Step 5a: Enable memory arbiter. */
3102 	marbmode = 0;
3103 	if (BGE_IS_5714_FAMILY(sc))
3104 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3105 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3106 
3107 	/* Step 5b-5d: */
3108 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3109 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3110 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3111 
3112 	/* XXX ???: Disable fastboot on controllers that support it. */
3113 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3114 	    BGE_IS_5755_PLUS(sc))
3115 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3116 
3117 	/*
3118 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3119 	 * When firmware finishes its initialization it will
3120 	 * write ~BGE_MAGIC_NUMBER to the same location.
3121 	 */
3122 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3123 
3124 	/* Step 7: */
3125 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3126 	/*
3127 	 * XXX: from FreeBSD/Linux; no documentation
3128 	 */
3129 	if (sc->bge_flags & BGE_PCIE) {
3130 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3131 			/* PCI Express 1.0 system */
3132 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3133 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3134 			/*
3135 			 * Prevent PCI Express link training
3136 			 * during global reset.
3137 			 */
3138 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3139 			val |= (1<<29);
3140 		}
3141 	}
3142 
3143 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3144 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3145 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3146 		    i | BGE_VCPU_STATUS_DRV_RESET);
3147 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3148 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3149 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3150 	}
3151 
3152 	/*
3153 	 * Set GPHY Power Down Override to leave GPHY
3154 	 * powered up in D0 uninitialized.
3155 	 */
3156 	if (BGE_IS_5705_PLUS(sc))
3157 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3158 
3159 	/* XXX 5721, 5751 and 5752 */
3160 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3161 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3162 
3163 	/* Issue global reset */
3164 	write_op(sc, BGE_MISC_CFG, val);
3165 
3166 	/* Step 8: wait for complete */
3167 	if (sc->bge_flags & BGE_PCIE)
3168 		delay(100*1000); /* too big */
3169 	else
3170 		delay(100);
3171 
3172 	/* From Linux: dummy read to flush PCI posted writes */
3173 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3174 
3175 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3176 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3177 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3178 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3179 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
3180 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3181 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3182 
3183 	/* Step 11: disable PCI-X Relaxed Ordering. */
3184 	if (sc->bge_flags & BGE_PCIX) {
3185 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3186 		    + PCI_PCIX_CMD);
3187 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3188 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3189 	}
3190 
3191 	if (sc->bge_flags & BGE_PCIE) {
3192 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3193 			DELAY(500000);
3194 			/* XXX: Magic Numbers */
3195 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3196 			    BGE_PCI_UNKNOWN0);
3197 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3198 			    BGE_PCI_UNKNOWN0,
3199 			    reg | (1 << 15));
3200 		}
3201 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3202 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3203 		/* Clear enable no snoop and disable relaxed ordering. */
3204 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3205 		/* Set PCIE max payload size to 128. */
3206 		devctl &= ~(0x00e0);
3207 		/* Clear device status register. Write 1b to clear */
3208 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3209 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3210 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3211 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3212 	}
3213 
3214 	/* Step 12: Enable memory arbiter. */
3215 	marbmode = 0;
3216 	if (BGE_IS_5714_FAMILY(sc))
3217 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3218 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3219 
3220 	/* Step 17: Poll until the firmware initialization is complete */
3221 	bge_poll_fw(sc);
3222 
3223 	/* XXX 5721, 5751 and 5752 */
3224 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3225 		/* Step 19: */
3226 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3227 		/* Step 20: */
3228 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3229 	}
3230 
3231 	/*
3232 	 * Step 18: wirte mac mode
3233 	 * XXX Write 0x0c for 5703S and 5704S
3234 	 */
3235 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3236 
3237 
3238 	/* Step 21: 5822 B0 errata */
3239 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3240 		pcireg_t msidata;
3241 
3242 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3243 		    BGE_PCI_MSI_DATA);
3244 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3245 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3246 		    msidata);
3247 	}
3248 
3249 	/* Step 23: restore cache line size */
3250 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3251 
3252 #if 0
3253 	/*
3254 	 * XXX Wait for the value of the PCISTATE register to
3255 	 * return to its original pre-reset state. This is a
3256 	 * fairly good indicator of reset completion. If we don't
3257 	 * wait for the reset to fully complete, trying to read
3258 	 * from the device's non-PCI registers may yield garbage
3259 	 * results.
3260 	 */
3261 	for (i = 0; i < BGE_TIMEOUT; i++) {
3262 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3263 		    BGE_PCI_PCISTATE);
3264 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3265 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3266 			break;
3267 		DELAY(10);
3268 	}
3269 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3270 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3271 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3272 	}
3273 #endif
3274 
3275 	/* Step 28: Fix up byte swapping */
3276 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3277 
3278 	/* Tell the ASF firmware we are up */
3279 	if (sc->bge_asf_mode & ASF_STACKUP)
3280 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3281 
3282 	/*
3283 	 * The 5704 in TBI mode apparently needs some special
3284 	 * adjustment to insure the SERDES drive level is set
3285 	 * to 1.2V.
3286 	 */
3287 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3288 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3289 		uint32_t serdescfg;
3290 
3291 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3292 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3293 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3294 	}
3295 
3296 	if (sc->bge_flags & BGE_PCIE &&
3297 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3298 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3299 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3300 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3301 		uint32_t v;
3302 
3303 		/* Enable PCI Express bug fix */
3304 		v = CSR_READ_4(sc, 0x7c00);
3305 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3306 	}
3307 	DELAY(10000);
3308 
3309 	return 0;
3310 }
3311 
3312 /*
3313  * Frame reception handling. This is called if there's a frame
3314  * on the receive return list.
3315  *
3316  * Note: we have to be able to handle two possibilities here:
3317  * 1) the frame is from the jumbo receive ring
3318  * 2) the frame is from the standard receive ring
3319  */
3320 
3321 static void
3322 bge_rxeof(struct bge_softc *sc)
3323 {
3324 	struct ifnet *ifp;
3325 	uint16_t rx_prod, rx_cons;
3326 	int stdcnt = 0, jumbocnt = 0;
3327 	bus_dmamap_t dmamap;
3328 	bus_addr_t offset, toff;
3329 	bus_size_t tlen;
3330 	int tosync;
3331 
3332 	rx_cons = sc->bge_rx_saved_considx;
3333 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3334 
3335 	/* Nothing to do */
3336 	if (rx_cons == rx_prod)
3337 		return;
3338 
3339 	ifp = &sc->ethercom.ec_if;
3340 
3341 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3342 	    offsetof(struct bge_ring_data, bge_status_block),
3343 	    sizeof (struct bge_status_block),
3344 	    BUS_DMASYNC_POSTREAD);
3345 
3346 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3347 	tosync = rx_prod - rx_cons;
3348 
3349 	if (tosync != 0)
3350 		rnd_add_uint32(&sc->rnd_source, tosync);
3351 
3352 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3353 
3354 	if (tosync < 0) {
3355 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
3356 		    sizeof (struct bge_rx_bd);
3357 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3358 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3359 		tosync = -tosync;
3360 	}
3361 
3362 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3363 	    offset, tosync * sizeof (struct bge_rx_bd),
3364 	    BUS_DMASYNC_POSTREAD);
3365 
3366 	while (rx_cons != rx_prod) {
3367 		struct bge_rx_bd	*cur_rx;
3368 		uint32_t		rxidx;
3369 		struct mbuf		*m = NULL;
3370 
3371 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3372 
3373 		rxidx = cur_rx->bge_idx;
3374 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3375 
3376 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3377 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3378 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3379 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3380 			jumbocnt++;
3381 			bus_dmamap_sync(sc->bge_dmatag,
3382 			    sc->bge_cdata.bge_rx_jumbo_map,
3383 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3384 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3385 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3386 				ifp->if_ierrors++;
3387 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3388 				continue;
3389 			}
3390 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3391 					     NULL)== ENOBUFS) {
3392 				ifp->if_ierrors++;
3393 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3394 				continue;
3395 			}
3396 		} else {
3397 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3398 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3399 
3400 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3401 			stdcnt++;
3402 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3403 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3404 			if (dmamap == NULL) {
3405 				ifp->if_ierrors++;
3406 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3407 				continue;
3408 			}
3409 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3410 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3411 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3412 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3413 				ifp->if_ierrors++;
3414 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3415 				continue;
3416 			}
3417 			if (bge_newbuf_std(sc, sc->bge_std,
3418 			    NULL, dmamap) == ENOBUFS) {
3419 				ifp->if_ierrors++;
3420 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3421 				continue;
3422 			}
3423 		}
3424 
3425 		ifp->if_ipackets++;
3426 #ifndef __NO_STRICT_ALIGNMENT
3427 		/*
3428 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3429 		 * the Rx buffer has the layer-2 header unaligned.
3430 		 * If our CPU requires alignment, re-align by copying.
3431 		 */
3432 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3433 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3434 				cur_rx->bge_len);
3435 			m->m_data += ETHER_ALIGN;
3436 		}
3437 #endif
3438 
3439 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3440 		m->m_pkthdr.rcvif = ifp;
3441 
3442 		/*
3443 		 * Handle BPF listeners. Let the BPF user see the packet.
3444 		 */
3445 		bpf_mtap(ifp, m);
3446 
3447 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3448 
3449 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3450 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3451 		/*
3452 		 * Rx transport checksum-offload may also
3453 		 * have bugs with packets which, when transmitted,
3454 		 * were `runts' requiring padding.
3455 		 */
3456 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3457 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3458 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3459 			m->m_pkthdr.csum_data =
3460 			    cur_rx->bge_tcp_udp_csum;
3461 			m->m_pkthdr.csum_flags |=
3462 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3463 			     M_CSUM_DATA);
3464 		}
3465 
3466 		/*
3467 		 * If we received a packet with a vlan tag, pass it
3468 		 * to vlan_input() instead of ether_input().
3469 		 */
3470 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3471 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3472 		}
3473 
3474 		(*ifp->if_input)(ifp, m);
3475 	}
3476 
3477 	sc->bge_rx_saved_considx = rx_cons;
3478 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3479 	if (stdcnt)
3480 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3481 	if (jumbocnt)
3482 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3483 }
3484 
3485 static void
3486 bge_txeof(struct bge_softc *sc)
3487 {
3488 	struct bge_tx_bd *cur_tx = NULL;
3489 	struct ifnet *ifp;
3490 	struct txdmamap_pool_entry *dma;
3491 	bus_addr_t offset, toff;
3492 	bus_size_t tlen;
3493 	int tosync;
3494 	struct mbuf *m;
3495 
3496 	ifp = &sc->ethercom.ec_if;
3497 
3498 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3499 	    offsetof(struct bge_ring_data, bge_status_block),
3500 	    sizeof (struct bge_status_block),
3501 	    BUS_DMASYNC_POSTREAD);
3502 
3503 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3504 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3505 	    sc->bge_tx_saved_considx;
3506 
3507 	if (tosync != 0)
3508 		rnd_add_uint32(&sc->rnd_source, tosync);
3509 
3510 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3511 
3512 	if (tosync < 0) {
3513 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3514 		    sizeof (struct bge_tx_bd);
3515 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3516 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3517 		tosync = -tosync;
3518 	}
3519 
3520 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3521 	    offset, tosync * sizeof (struct bge_tx_bd),
3522 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3523 
3524 	/*
3525 	 * Go through our tx ring and free mbufs for those
3526 	 * frames that have been sent.
3527 	 */
3528 	while (sc->bge_tx_saved_considx !=
3529 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3530 		uint32_t		idx = 0;
3531 
3532 		idx = sc->bge_tx_saved_considx;
3533 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3534 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3535 			ifp->if_opackets++;
3536 		m = sc->bge_cdata.bge_tx_chain[idx];
3537 		if (m != NULL) {
3538 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3539 			dma = sc->txdma[idx];
3540 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3541 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3542 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3543 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3544 			sc->txdma[idx] = NULL;
3545 
3546 			m_freem(m);
3547 		}
3548 		sc->bge_txcnt--;
3549 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3550 		ifp->if_timer = 0;
3551 	}
3552 
3553 	if (cur_tx != NULL)
3554 		ifp->if_flags &= ~IFF_OACTIVE;
3555 }
3556 
3557 static int
3558 bge_intr(void *xsc)
3559 {
3560 	struct bge_softc *sc;
3561 	struct ifnet *ifp;
3562 	uint32_t statusword;
3563 
3564 	sc = xsc;
3565 	ifp = &sc->ethercom.ec_if;
3566 
3567 	/* It is possible for the interrupt to arrive before
3568 	 * the status block is updated prior to the interrupt.
3569 	 * Reading the PCI State register will confirm whether the
3570 	 * interrupt is ours and will flush the status block.
3571 	 */
3572 
3573 	/* read status word from status block */
3574 	statusword = sc->bge_rdata->bge_status_block.bge_status;
3575 
3576 	if ((statusword & BGE_STATFLAG_UPDATED) ||
3577 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3578 		/* Ack interrupt and stop others from occuring. */
3579 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3580 
3581 		BGE_EVCNT_INCR(sc->bge_ev_intr);
3582 
3583 		/* clear status word */
3584 		sc->bge_rdata->bge_status_block.bge_status = 0;
3585 
3586 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3587 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3588 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3589 			bge_link_upd(sc);
3590 
3591 		if (ifp->if_flags & IFF_RUNNING) {
3592 			/* Check RX return ring producer/consumer */
3593 			bge_rxeof(sc);
3594 
3595 			/* Check TX ring producer/consumer */
3596 			bge_txeof(sc);
3597 		}
3598 
3599 		if (sc->bge_pending_rxintr_change) {
3600 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3601 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3602 			uint32_t junk;
3603 
3604 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3605 			DELAY(10);
3606 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3607 
3608 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3609 			DELAY(10);
3610 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3611 
3612 			sc->bge_pending_rxintr_change = 0;
3613 		}
3614 		bge_handle_events(sc);
3615 
3616 		/* Re-enable interrupts. */
3617 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3618 
3619 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3620 			bge_start(ifp);
3621 
3622 		return 1;
3623 	} else
3624 		return 0;
3625 }
3626 
3627 static void
3628 bge_asf_driver_up(struct bge_softc *sc)
3629 {
3630 	if (sc->bge_asf_mode & ASF_STACKUP) {
3631 		/* Send ASF heartbeat aprox. every 2s */
3632 		if (sc->bge_asf_count)
3633 			sc->bge_asf_count --;
3634 		else {
3635 			sc->bge_asf_count = 2;
3636 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3637 			    BGE_FW_DRV_ALIVE);
3638 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3639 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3640 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3641 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3642 		}
3643 	}
3644 }
3645 
3646 static void
3647 bge_tick(void *xsc)
3648 {
3649 	struct bge_softc *sc = xsc;
3650 	struct mii_data *mii = &sc->bge_mii;
3651 	int s;
3652 
3653 	s = splnet();
3654 
3655 	if (BGE_IS_5705_PLUS(sc))
3656 		bge_stats_update_regs(sc);
3657 	else
3658 		bge_stats_update(sc);
3659 
3660 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3661 		/*
3662 		 * Since in TBI mode auto-polling can't be used we should poll
3663 		 * link status manually. Here we register pending link event
3664 		 * and trigger interrupt.
3665 		 */
3666 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3667 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3668 	} else {
3669 		/*
3670 		 * Do not touch PHY if we have link up. This could break
3671 		 * IPMI/ASF mode or produce extra input errors.
3672 		 * (extra input errors was reported for bcm5701 & bcm5704).
3673 		 */
3674 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3675 			mii_tick(mii);
3676 	}
3677 
3678 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3679 
3680 	splx(s);
3681 }
3682 
3683 static void
3684 bge_stats_update_regs(struct bge_softc *sc)
3685 {
3686 	struct ifnet *ifp = &sc->ethercom.ec_if;
3687 
3688 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3689 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3690 
3691 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3692 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3693 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3694 }
3695 
3696 static void
3697 bge_stats_update(struct bge_softc *sc)
3698 {
3699 	struct ifnet *ifp = &sc->ethercom.ec_if;
3700 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3701 
3702 #define READ_STAT(sc, stats, stat) \
3703 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3704 
3705 	ifp->if_collisions +=
3706 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3707 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3708 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3709 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3710 	  ifp->if_collisions;
3711 
3712 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3713 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3714 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3715 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3716 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3717 		      READ_STAT(sc, stats,
3718 		      		xoffPauseFramesReceived.bge_addr_lo));
3719 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3720 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3721 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3722 		      READ_STAT(sc, stats,
3723 		      		macControlFramesReceived.bge_addr_lo));
3724 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3725 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3726 
3727 #undef READ_STAT
3728 
3729 #ifdef notdef
3730 	ifp->if_collisions +=
3731 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3732 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3733 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3734 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3735 	   ifp->if_collisions;
3736 #endif
3737 }
3738 
3739 /*
3740  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3741  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3742  * but when such padded frames employ the  bge IP/TCP checksum offload,
3743  * the hardware checksum assist gives incorrect results (possibly
3744  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3745  * If we pad such runts with zeros, the onboard checksum comes out correct.
3746  */
3747 static inline int
3748 bge_cksum_pad(struct mbuf *pkt)
3749 {
3750 	struct mbuf *last = NULL;
3751 	int padlen;
3752 
3753 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3754 
3755 	/* if there's only the packet-header and we can pad there, use it. */
3756 	if (pkt->m_pkthdr.len == pkt->m_len &&
3757 	    M_TRAILINGSPACE(pkt) >= padlen) {
3758 		last = pkt;
3759 	} else {
3760 		/*
3761 		 * Walk packet chain to find last mbuf. We will either
3762 		 * pad there, or append a new mbuf and pad it
3763 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3764 		 */
3765 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3766 	      	       continue; /* do nothing */
3767 		}
3768 
3769 		/* `last' now points to last in chain. */
3770 		if (M_TRAILINGSPACE(last) < padlen) {
3771 			/* Allocate new empty mbuf, pad it. Compact later. */
3772 			struct mbuf *n;
3773 			MGET(n, M_DONTWAIT, MT_DATA);
3774 			if (n == NULL)
3775 				return ENOBUFS;
3776 			n->m_len = 0;
3777 			last->m_next = n;
3778 			last = n;
3779 		}
3780 	}
3781 
3782 	KDASSERT(!M_READONLY(last));
3783 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3784 
3785 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3786 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3787 	last->m_len += padlen;
3788 	pkt->m_pkthdr.len += padlen;
3789 	return 0;
3790 }
3791 
3792 /*
3793  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3794  */
3795 static inline int
3796 bge_compact_dma_runt(struct mbuf *pkt)
3797 {
3798 	struct mbuf	*m, *prev;
3799 	int 		totlen, prevlen;
3800 
3801 	prev = NULL;
3802 	totlen = 0;
3803 	prevlen = -1;
3804 
3805 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3806 		int mlen = m->m_len;
3807 		int shortfall = 8 - mlen ;
3808 
3809 		totlen += mlen;
3810 		if (mlen == 0) {
3811 			continue;
3812 		}
3813 		if (mlen >= 8)
3814 			continue;
3815 
3816 		/* If we get here, mbuf data is too small for DMA engine.
3817 		 * Try to fix by shuffling data to prev or next in chain.
3818 		 * If that fails, do a compacting deep-copy of the whole chain.
3819 		 */
3820 
3821 		/* Internal frag. If fits in prev, copy it there. */
3822 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3823 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3824 			prev->m_len += mlen;
3825 			m->m_len = 0;
3826 			/* XXX stitch chain */
3827 			prev->m_next = m_free(m);
3828 			m = prev;
3829 			continue;
3830 		}
3831 		else if (m->m_next != NULL &&
3832 			     M_TRAILINGSPACE(m) >= shortfall &&
3833 			     m->m_next->m_len >= (8 + shortfall)) {
3834 		    /* m is writable and have enough data in next, pull up. */
3835 
3836 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3837 			    shortfall);
3838 			m->m_len += shortfall;
3839 			m->m_next->m_len -= shortfall;
3840 			m->m_next->m_data += shortfall;
3841 		}
3842 		else if (m->m_next == NULL || 1) {
3843 		  	/* Got a runt at the very end of the packet.
3844 			 * borrow data from the tail of the preceding mbuf and
3845 			 * update its length in-place. (The original data is still
3846 			 * valid, so we can do this even if prev is not writable.)
3847 			 */
3848 
3849 			/* if we'd make prev a runt, just move all of its data. */
3850 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3851 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3852 
3853 			if ((prev->m_len - shortfall) < 8)
3854 				shortfall = prev->m_len;
3855 
3856 #ifdef notyet	/* just do the safe slow thing for now */
3857 			if (!M_READONLY(m)) {
3858 				if (M_LEADINGSPACE(m) < shorfall) {
3859 					void *m_dat;
3860 					m_dat = (m->m_flags & M_PKTHDR) ?
3861 					  m->m_pktdat : m->dat;
3862 					memmove(m_dat, mtod(m, void*), m->m_len);
3863 					m->m_data = m_dat;
3864 				    }
3865 			} else
3866 #endif	/* just do the safe slow thing */
3867 			{
3868 				struct mbuf * n = NULL;
3869 				int newprevlen = prev->m_len - shortfall;
3870 
3871 				MGET(n, M_NOWAIT, MT_DATA);
3872 				if (n == NULL)
3873 				   return ENOBUFS;
3874 				KASSERT(m->m_len + shortfall < MLEN
3875 					/*,
3876 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3877 
3878 				/* first copy the data we're stealing from prev */
3879 				memcpy(n->m_data, prev->m_data + newprevlen,
3880 				    shortfall);
3881 
3882 				/* update prev->m_len accordingly */
3883 				prev->m_len -= shortfall;
3884 
3885 				/* copy data from runt m */
3886 				memcpy(n->m_data + shortfall, m->m_data,
3887 				    m->m_len);
3888 
3889 				/* n holds what we stole from prev, plus m */
3890 				n->m_len = shortfall + m->m_len;
3891 
3892 				/* stitch n into chain and free m */
3893 				n->m_next = m->m_next;
3894 				prev->m_next = n;
3895 				/* KASSERT(m->m_next == NULL); */
3896 				m->m_next = NULL;
3897 				m_free(m);
3898 				m = n;	/* for continuing loop */
3899 			}
3900 		}
3901 		prevlen = m->m_len;
3902 	}
3903 	return 0;
3904 }
3905 
3906 /*
3907  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3908  * pointers to descriptors.
3909  */
3910 static int
3911 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3912 {
3913 	struct bge_tx_bd	*f = NULL;
3914 	uint32_t		frag, cur;
3915 	uint16_t		csum_flags = 0;
3916 	uint16_t		txbd_tso_flags = 0;
3917 	struct txdmamap_pool_entry *dma;
3918 	bus_dmamap_t dmamap;
3919 	int			i = 0;
3920 	struct m_tag		*mtag;
3921 	int			use_tso, maxsegsize, error;
3922 
3923 	cur = frag = *txidx;
3924 
3925 	if (m_head->m_pkthdr.csum_flags) {
3926 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3927 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3928 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3929 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3930 	}
3931 
3932 	/*
3933 	 * If we were asked to do an outboard checksum, and the NIC
3934 	 * has the bug where it sometimes adds in the Ethernet padding,
3935 	 * explicitly pad with zeros so the cksum will be correct either way.
3936 	 * (For now, do this for all chip versions, until newer
3937 	 * are confirmed to not require the workaround.)
3938 	 */
3939 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3940 #ifdef notyet
3941 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3942 #endif
3943 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3944 		goto check_dma_bug;
3945 
3946 	if (bge_cksum_pad(m_head) != 0)
3947 	    return ENOBUFS;
3948 
3949 check_dma_bug:
3950 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3951 		goto doit;
3952 
3953 	/*
3954 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3955 	 * less than eight bytes.  If we encounter a teeny mbuf
3956 	 * at the end of a chain, we can pad.  Otherwise, copy.
3957 	 */
3958 	if (bge_compact_dma_runt(m_head) != 0)
3959 		return ENOBUFS;
3960 
3961 doit:
3962 	dma = SLIST_FIRST(&sc->txdma_list);
3963 	if (dma == NULL)
3964 		return ENOBUFS;
3965 	dmamap = dma->dmamap;
3966 
3967 	/*
3968 	 * Set up any necessary TSO state before we start packing...
3969 	 */
3970 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3971 	if (!use_tso) {
3972 		maxsegsize = 0;
3973 	} else {	/* TSO setup */
3974 		unsigned  mss;
3975 		struct ether_header *eh;
3976 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3977 		struct mbuf * m0 = m_head;
3978 		struct ip *ip;
3979 		struct tcphdr *th;
3980 		int iphl, hlen;
3981 
3982 		/*
3983 		 * XXX It would be nice if the mbuf pkthdr had offset
3984 		 * fields for the protocol headers.
3985 		 */
3986 
3987 		eh = mtod(m0, struct ether_header *);
3988 		switch (htons(eh->ether_type)) {
3989 		case ETHERTYPE_IP:
3990 			offset = ETHER_HDR_LEN;
3991 			break;
3992 
3993 		case ETHERTYPE_VLAN:
3994 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3995 			break;
3996 
3997 		default:
3998 			/*
3999 			 * Don't support this protocol or encapsulation.
4000 			 */
4001 			return ENOBUFS;
4002 		}
4003 
4004 		/*
4005 		 * TCP/IP headers are in the first mbuf; we can do
4006 		 * this the easy way.
4007 		 */
4008 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4009 		hlen = iphl + offset;
4010 		if (__predict_false(m0->m_len <
4011 				    (hlen + sizeof(struct tcphdr)))) {
4012 
4013 			aprint_debug_dev(sc->bge_dev,
4014 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4015 			    "not handled yet\n",
4016 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4017 #ifdef NOTYET
4018 			/*
4019 			 * XXX jonathan@NetBSD.org: untested.
4020 			 * how to force  this branch to be taken?
4021 			 */
4022 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4023 
4024 			m_copydata(m0, offset, sizeof(ip), &ip);
4025 			m_copydata(m0, hlen, sizeof(th), &th);
4026 
4027 			ip.ip_len = 0;
4028 
4029 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4030 			    sizeof(ip.ip_len), &ip.ip_len);
4031 
4032 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4033 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4034 
4035 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4036 			    sizeof(th.th_sum), &th.th_sum);
4037 
4038 			hlen += th.th_off << 2;
4039 			iptcp_opt_words	= hlen;
4040 #else
4041 			/*
4042 			 * if_wm "hard" case not yet supported, can we not
4043 			 * mandate it out of existence?
4044 			 */
4045 			(void) ip; (void)th; (void) ip_tcp_hlen;
4046 
4047 			return ENOBUFS;
4048 #endif
4049 		} else {
4050 			ip = (struct ip *) (mtod(m0, char *) + offset);
4051 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4052 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4053 
4054 			/* Total IP/TCP options, in 32-bit words */
4055 			iptcp_opt_words = (ip_tcp_hlen
4056 					   - sizeof(struct tcphdr)
4057 					   - sizeof(struct ip)) >> 2;
4058 		}
4059 		if (BGE_IS_5750_OR_BEYOND(sc)) {
4060 			th->th_sum = 0;
4061 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4062 		} else {
4063 			/*
4064 			 * XXX jonathan@NetBSD.org: 5705 untested.
4065 			 * Requires TSO firmware patch for 5701/5703/5704.
4066 			 */
4067 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4068 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4069 		}
4070 
4071 		mss = m_head->m_pkthdr.segsz;
4072 		txbd_tso_flags |=
4073 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4074 		    BGE_TXBDFLAG_CPU_POST_DMA;
4075 
4076 		/*
4077 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4078 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4079 		 * the NIC copies 40 bytes of IP/TCP header from the
4080 		 * supplied header into the IP/TCP header portion of
4081 		 * each post-TSO-segment. If the supplied packet has IP or
4082 		 * TCP options, we need to tell the NIC to copy those extra
4083 		 * bytes into each  post-TSO header, in addition to the normal
4084 		 * 40-byte IP/TCP header (and to leave space accordingly).
4085 		 * Unfortunately, the driver encoding of option length
4086 		 * varies across different ASIC families.
4087 		 */
4088 		tcp_seg_flags = 0;
4089 		if (iptcp_opt_words) {
4090 			if (BGE_IS_5705_PLUS(sc)) {
4091 				tcp_seg_flags =
4092 					iptcp_opt_words << 11;
4093 			} else {
4094 				txbd_tso_flags |=
4095 					iptcp_opt_words << 12;
4096 			}
4097 		}
4098 		maxsegsize = mss | tcp_seg_flags;
4099 		ip->ip_len = htons(mss + ip_tcp_hlen);
4100 
4101 	}	/* TSO setup */
4102 
4103 	/*
4104 	 * Start packing the mbufs in this chain into
4105 	 * the fragment pointers. Stop when we run out
4106 	 * of fragments or hit the end of the mbuf chain.
4107 	 */
4108 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4109 	    BUS_DMA_NOWAIT);
4110 	if (error)
4111 		return ENOBUFS;
4112 	/*
4113 	 * Sanity check: avoid coming within 16 descriptors
4114 	 * of the end of the ring.
4115 	 */
4116 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4117 		BGE_TSO_PRINTF(("%s: "
4118 		    " dmamap_load_mbuf too close to ring wrap\n",
4119 		    device_xname(sc->bge_dev)));
4120 		goto fail_unload;
4121 	}
4122 
4123 	mtag = sc->ethercom.ec_nvlans ?
4124 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4125 
4126 
4127 	/* Iterate over dmap-map fragments. */
4128 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4129 		f = &sc->bge_rdata->bge_tx_ring[frag];
4130 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4131 			break;
4132 
4133 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4134 		f->bge_len = dmamap->dm_segs[i].ds_len;
4135 
4136 		/*
4137 		 * For 5751 and follow-ons, for TSO we must turn
4138 		 * off checksum-assist flag in the tx-descr, and
4139 		 * supply the ASIC-revision-specific encoding
4140 		 * of TSO flags and segsize.
4141 		 */
4142 		if (use_tso) {
4143 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4144 				f->bge_rsvd = maxsegsize;
4145 				f->bge_flags = csum_flags | txbd_tso_flags;
4146 			} else {
4147 				f->bge_rsvd = 0;
4148 				f->bge_flags =
4149 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4150 			}
4151 		} else {
4152 			f->bge_rsvd = 0;
4153 			f->bge_flags = csum_flags;
4154 		}
4155 
4156 		if (mtag != NULL) {
4157 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4158 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4159 		} else {
4160 			f->bge_vlan_tag = 0;
4161 		}
4162 		cur = frag;
4163 		BGE_INC(frag, BGE_TX_RING_CNT);
4164 	}
4165 
4166 	if (i < dmamap->dm_nsegs) {
4167 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4168 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4169 		goto fail_unload;
4170 	}
4171 
4172 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4173 	    BUS_DMASYNC_PREWRITE);
4174 
4175 	if (frag == sc->bge_tx_saved_considx) {
4176 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4177 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4178 
4179 		goto fail_unload;
4180 	}
4181 
4182 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4183 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4184 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4185 	sc->txdma[cur] = dma;
4186 	sc->bge_txcnt += dmamap->dm_nsegs;
4187 
4188 	*txidx = frag;
4189 
4190 	return 0;
4191 
4192 fail_unload:
4193 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4194 
4195 	return ENOBUFS;
4196 }
4197 
4198 /*
4199  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4200  * to the mbuf data regions directly in the transmit descriptors.
4201  */
4202 static void
4203 bge_start(struct ifnet *ifp)
4204 {
4205 	struct bge_softc *sc;
4206 	struct mbuf *m_head = NULL;
4207 	uint32_t prodidx;
4208 	int pkts = 0;
4209 
4210 	sc = ifp->if_softc;
4211 
4212 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4213 		return;
4214 
4215 	prodidx = sc->bge_tx_prodidx;
4216 
4217 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4218 		IFQ_POLL(&ifp->if_snd, m_head);
4219 		if (m_head == NULL)
4220 			break;
4221 
4222 #if 0
4223 		/*
4224 		 * XXX
4225 		 * safety overkill.  If this is a fragmented packet chain
4226 		 * with delayed TCP/UDP checksums, then only encapsulate
4227 		 * it if we have enough descriptors to handle the entire
4228 		 * chain at once.
4229 		 * (paranoia -- may not actually be needed)
4230 		 */
4231 		if (m_head->m_flags & M_FIRSTFRAG &&
4232 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4233 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4234 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4235 				ifp->if_flags |= IFF_OACTIVE;
4236 				break;
4237 			}
4238 		}
4239 #endif
4240 
4241 		/*
4242 		 * Pack the data into the transmit ring. If we
4243 		 * don't have room, set the OACTIVE flag and wait
4244 		 * for the NIC to drain the ring.
4245 		 */
4246 		if (bge_encap(sc, m_head, &prodidx)) {
4247 			ifp->if_flags |= IFF_OACTIVE;
4248 			break;
4249 		}
4250 
4251 		/* now we are committed to transmit the packet */
4252 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4253 		pkts++;
4254 
4255 		/*
4256 		 * If there's a BPF listener, bounce a copy of this frame
4257 		 * to him.
4258 		 */
4259 		bpf_mtap(ifp, m_head);
4260 	}
4261 	if (pkts == 0)
4262 		return;
4263 
4264 	/* Transmit */
4265 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4266 	/* 5700 b2 errata */
4267 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4268 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4269 
4270 	sc->bge_tx_prodidx = prodidx;
4271 
4272 	/*
4273 	 * Set a timeout in case the chip goes out to lunch.
4274 	 */
4275 	ifp->if_timer = 5;
4276 }
4277 
4278 static int
4279 bge_init(struct ifnet *ifp)
4280 {
4281 	struct bge_softc *sc = ifp->if_softc;
4282 	const uint16_t *m;
4283 	int s, error = 0;
4284 
4285 	s = splnet();
4286 
4287 	ifp = &sc->ethercom.ec_if;
4288 
4289 	/* Cancel pending I/O and flush buffers. */
4290 	bge_stop(ifp, 0);
4291 
4292 	bge_stop_fw(sc);
4293 	bge_sig_pre_reset(sc, BGE_RESET_START);
4294 	bge_reset(sc);
4295 	bge_sig_legacy(sc, BGE_RESET_START);
4296 	bge_sig_post_reset(sc, BGE_RESET_START);
4297 
4298 	bge_chipinit(sc);
4299 
4300 	/*
4301 	 * Init the various state machines, ring
4302 	 * control blocks and firmware.
4303 	 */
4304 	error = bge_blockinit(sc);
4305 	if (error != 0) {
4306 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4307 		    error);
4308 		splx(s);
4309 		return error;
4310 	}
4311 
4312 	ifp = &sc->ethercom.ec_if;
4313 
4314 	/* Specify MTU. */
4315 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4316 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4317 
4318 	/* Load our MAC address. */
4319 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4320 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4321 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4322 
4323 	/* Enable or disable promiscuous mode as needed. */
4324 	if (ifp->if_flags & IFF_PROMISC)
4325 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4326 	else
4327 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4328 
4329 	/* Program multicast filter. */
4330 	bge_setmulti(sc);
4331 
4332 	/* Init RX ring. */
4333 	bge_init_rx_ring_std(sc);
4334 
4335 	/*
4336 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4337 	 * memory to insure that the chip has in fact read the first
4338 	 * entry of the ring.
4339 	 */
4340 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4341 		uint32_t		v, i;
4342 		for (i = 0; i < 10; i++) {
4343 			DELAY(20);
4344 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4345 			if (v == (MCLBYTES - ETHER_ALIGN))
4346 				break;
4347 		}
4348 		if (i == 10)
4349 			aprint_error_dev(sc->bge_dev,
4350 			    "5705 A0 chip failed to load RX ring\n");
4351 	}
4352 
4353 	/* Init jumbo RX ring. */
4354 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4355 		bge_init_rx_ring_jumbo(sc);
4356 
4357 	/* Init our RX return ring index */
4358 	sc->bge_rx_saved_considx = 0;
4359 
4360 	/* Init TX ring. */
4361 	bge_init_tx_ring(sc);
4362 
4363 	/* Turn on transmitter */
4364 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4365 
4366 	/* Turn on receiver */
4367 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4368 
4369 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4370 
4371 	/* Tell firmware we're alive. */
4372 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4373 
4374 	/* Enable host interrupts. */
4375 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4376 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4377 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4378 
4379 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4380 		goto out;
4381 
4382 	ifp->if_flags |= IFF_RUNNING;
4383 	ifp->if_flags &= ~IFF_OACTIVE;
4384 
4385 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4386 
4387 out:
4388 	sc->bge_if_flags = ifp->if_flags;
4389 	splx(s);
4390 
4391 	return error;
4392 }
4393 
4394 /*
4395  * Set media options.
4396  */
4397 static int
4398 bge_ifmedia_upd(struct ifnet *ifp)
4399 {
4400 	struct bge_softc *sc = ifp->if_softc;
4401 	struct mii_data *mii = &sc->bge_mii;
4402 	struct ifmedia *ifm = &sc->bge_ifmedia;
4403 	int rc;
4404 
4405 	/* If this is a 1000baseX NIC, enable the TBI port. */
4406 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4407 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4408 			return EINVAL;
4409 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
4410 		case IFM_AUTO:
4411 			/*
4412 			 * The BCM5704 ASIC appears to have a special
4413 			 * mechanism for programming the autoneg
4414 			 * advertisement registers in TBI mode.
4415 			 */
4416 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4417 				uint32_t sgdig;
4418 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4419 				if (sgdig & BGE_SGDIGSTS_DONE) {
4420 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4421 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4422 					sgdig |= BGE_SGDIGCFG_AUTO |
4423 					    BGE_SGDIGCFG_PAUSE_CAP |
4424 					    BGE_SGDIGCFG_ASYM_PAUSE;
4425 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4426 					    sgdig | BGE_SGDIGCFG_SEND);
4427 					DELAY(5);
4428 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4429 				}
4430 			}
4431 			break;
4432 		case IFM_1000_SX:
4433 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4434 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4435 				    BGE_MACMODE_HALF_DUPLEX);
4436 			} else {
4437 				BGE_SETBIT(sc, BGE_MAC_MODE,
4438 				    BGE_MACMODE_HALF_DUPLEX);
4439 			}
4440 			break;
4441 		default:
4442 			return EINVAL;
4443 		}
4444 		/* XXX 802.3x flow control for 1000BASE-SX */
4445 		return 0;
4446 	}
4447 
4448 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4449 	if ((rc = mii_mediachg(mii)) == ENXIO)
4450 		return 0;
4451 
4452 	/*
4453 	 * Force an interrupt so that we will call bge_link_upd
4454 	 * if needed and clear any pending link state attention.
4455 	 * Without this we are not getting any further interrupts
4456 	 * for link state changes and thus will not UP the link and
4457 	 * not be able to send in bge_start. The only way to get
4458 	 * things working was to receive a packet and get a RX intr.
4459 	 */
4460 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4461 	    sc->bge_flags & BGE_IS_5788)
4462 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4463 	else
4464 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4465 
4466 	return rc;
4467 }
4468 
4469 /*
4470  * Report current media status.
4471  */
4472 static void
4473 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4474 {
4475 	struct bge_softc *sc = ifp->if_softc;
4476 	struct mii_data *mii = &sc->bge_mii;
4477 
4478 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4479 		ifmr->ifm_status = IFM_AVALID;
4480 		ifmr->ifm_active = IFM_ETHER;
4481 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4482 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4483 			ifmr->ifm_status |= IFM_ACTIVE;
4484 		ifmr->ifm_active |= IFM_1000_SX;
4485 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4486 			ifmr->ifm_active |= IFM_HDX;
4487 		else
4488 			ifmr->ifm_active |= IFM_FDX;
4489 		return;
4490 	}
4491 
4492 	mii_pollstat(mii);
4493 	ifmr->ifm_status = mii->mii_media_status;
4494 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4495 	    sc->bge_flowflags;
4496 }
4497 
4498 static int
4499 bge_ifflags_cb(struct ethercom *ec)
4500 {
4501 	struct ifnet *ifp = &ec->ec_if;
4502 	struct bge_softc *sc = ifp->if_softc;
4503 	int change = ifp->if_flags ^ sc->bge_if_flags;
4504 
4505 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4506 		return ENETRESET;
4507 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4508 		return 0;
4509 
4510 	if ((ifp->if_flags & IFF_PROMISC) == 0)
4511 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4512 	else
4513 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4514 
4515 	bge_setmulti(sc);
4516 
4517 	sc->bge_if_flags = ifp->if_flags;
4518 	return 0;
4519 }
4520 
4521 static int
4522 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4523 {
4524 	struct bge_softc *sc = ifp->if_softc;
4525 	struct ifreq *ifr = (struct ifreq *) data;
4526 	int s, error = 0;
4527 	struct mii_data *mii;
4528 
4529 	s = splnet();
4530 
4531 	switch (command) {
4532 	case SIOCSIFMEDIA:
4533 		/* XXX Flow control is not supported for 1000BASE-SX */
4534 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4535 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4536 			sc->bge_flowflags = 0;
4537 		}
4538 
4539 		/* Flow control requires full-duplex mode. */
4540 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4541 		    (ifr->ifr_media & IFM_FDX) == 0) {
4542 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4543 		}
4544 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4545 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4546 				/* We can do both TXPAUSE and RXPAUSE. */
4547 				ifr->ifr_media |=
4548 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4549 			}
4550 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4551 		}
4552 		/* FALLTHROUGH */
4553 	case SIOCGIFMEDIA:
4554 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4555 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4556 			    command);
4557 		} else {
4558 			mii = &sc->bge_mii;
4559 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4560 			    command);
4561 		}
4562 		break;
4563 	default:
4564 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4565 			break;
4566 
4567 		error = 0;
4568 
4569 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4570 			;
4571 		else if (ifp->if_flags & IFF_RUNNING)
4572 			bge_setmulti(sc);
4573 		break;
4574 	}
4575 
4576 	splx(s);
4577 
4578 	return error;
4579 }
4580 
4581 static void
4582 bge_watchdog(struct ifnet *ifp)
4583 {
4584 	struct bge_softc *sc;
4585 
4586 	sc = ifp->if_softc;
4587 
4588 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4589 
4590 	ifp->if_flags &= ~IFF_RUNNING;
4591 	bge_init(ifp);
4592 
4593 	ifp->if_oerrors++;
4594 }
4595 
4596 static void
4597 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4598 {
4599 	int i;
4600 
4601 	BGE_CLRBIT(sc, reg, bit);
4602 
4603 	for (i = 0; i < 1000; i++) {
4604 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4605 			return;
4606 		delay(100);
4607 	}
4608 
4609 	/*
4610 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4611 	 * on some environment (and once after boot?)
4612 	 */
4613 	if (reg != BGE_SRS_MODE)
4614 		aprint_error_dev(sc->bge_dev,
4615 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4616 		    (u_long)reg, bit);
4617 }
4618 
4619 /*
4620  * Stop the adapter and free any mbufs allocated to the
4621  * RX and TX lists.
4622  */
4623 static void
4624 bge_stop(struct ifnet *ifp, int disable)
4625 {
4626 	struct bge_softc *sc = ifp->if_softc;
4627 
4628 	callout_stop(&sc->bge_timeout);
4629 
4630 	/*
4631 	 * Tell firmware we're shutting down.
4632 	 */
4633 	bge_stop_fw(sc);
4634 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4635 
4636 	/* Disable host interrupts. */
4637 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4638 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4639 
4640 	/*
4641 	 * Disable all of the receiver blocks
4642 	 */
4643 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4644 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4645 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4646 	if (BGE_IS_5700_FAMILY(sc))
4647 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4648 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4649 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4650 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4651 
4652 	/*
4653 	 * Disable all of the transmit blocks
4654 	 */
4655 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4656 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4657 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4658 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4659 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4660 	if (BGE_IS_5700_FAMILY(sc))
4661 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4662 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4663 
4664 	/*
4665 	 * Shut down all of the memory managers and related
4666 	 * state machines.
4667 	 */
4668 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4669 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4670 	if (BGE_IS_5700_FAMILY(sc))
4671 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4672 
4673 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4674 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4675 
4676 	if (BGE_IS_5700_FAMILY(sc)) {
4677 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4678 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4679 	}
4680 
4681 	bge_reset(sc);
4682 	bge_sig_legacy(sc, BGE_RESET_STOP);
4683 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4684 
4685 	/*
4686 	 * Keep the ASF firmware running if up.
4687 	 */
4688 	if (sc->bge_asf_mode & ASF_STACKUP)
4689 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4690 	else
4691 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4692 
4693 	/* Free the RX lists. */
4694 	bge_free_rx_ring_std(sc);
4695 
4696 	/* Free jumbo RX list. */
4697 	if (BGE_IS_JUMBO_CAPABLE(sc))
4698 		bge_free_rx_ring_jumbo(sc);
4699 
4700 	/* Free TX buffers. */
4701 	bge_free_tx_ring(sc);
4702 
4703 	/*
4704 	 * Isolate/power down the PHY.
4705 	 */
4706 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4707 		mii_down(&sc->bge_mii);
4708 
4709 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4710 
4711 	/* Clear MAC's link state (PHY may still have link UP). */
4712 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4713 
4714 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4715 }
4716 
4717 static void
4718 bge_link_upd(struct bge_softc *sc)
4719 {
4720 	struct ifnet *ifp = &sc->ethercom.ec_if;
4721 	struct mii_data *mii = &sc->bge_mii;
4722 	uint32_t status;
4723 	int link;
4724 
4725 	/* Clear 'pending link event' flag */
4726 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4727 
4728 	/*
4729 	 * Process link state changes.
4730 	 * Grrr. The link status word in the status block does
4731 	 * not work correctly on the BCM5700 rev AX and BX chips,
4732 	 * according to all available information. Hence, we have
4733 	 * to enable MII interrupts in order to properly obtain
4734 	 * async link changes. Unfortunately, this also means that
4735 	 * we have to read the MAC status register to detect link
4736 	 * changes, thereby adding an additional register access to
4737 	 * the interrupt handler.
4738 	 */
4739 
4740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4741 		status = CSR_READ_4(sc, BGE_MAC_STS);
4742 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4743 			mii_pollstat(mii);
4744 
4745 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4746 			    mii->mii_media_status & IFM_ACTIVE &&
4747 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4748 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4749 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4750 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4751 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4752 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4753 
4754 			/* Clear the interrupt */
4755 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4756 			    BGE_EVTENB_MI_INTERRUPT);
4757 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4758 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4759 			    BRGPHY_INTRS);
4760 		}
4761 		return;
4762 	}
4763 
4764 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4765 		status = CSR_READ_4(sc, BGE_MAC_STS);
4766 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4767 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4768 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4769 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4770 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4771 					    BGE_MACMODE_TBI_SEND_CFGS);
4772 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4773 				if_link_state_change(ifp, LINK_STATE_UP);
4774 			}
4775 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4776 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4777 			if_link_state_change(ifp, LINK_STATE_DOWN);
4778 		}
4779 	/*
4780 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4781 	 * This should not happen since mii callouts are locked now, but
4782 	 * we keep this check for debug.
4783 	 */
4784 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4785 		/*
4786 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4787 		 * bit in status word always set. Workaround this bug by
4788 		 * reading PHY link status directly.
4789 		 */
4790 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4791 		    BGE_STS_LINK : 0;
4792 
4793 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4794 			mii_pollstat(mii);
4795 
4796 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4797 			    mii->mii_media_status & IFM_ACTIVE &&
4798 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4799 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4800 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4801 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4802 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4803 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4804 		}
4805 	}
4806 
4807 	/* Clear the attention */
4808 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4809 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4810 	    BGE_MACSTAT_LINK_CHANGED);
4811 }
4812 
4813 static int
4814 sysctl_bge_verify(SYSCTLFN_ARGS)
4815 {
4816 	int error, t;
4817 	struct sysctlnode node;
4818 
4819 	node = *rnode;
4820 	t = *(int*)rnode->sysctl_data;
4821 	node.sysctl_data = &t;
4822 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4823 	if (error || newp == NULL)
4824 		return error;
4825 
4826 #if 0
4827 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4828 	    node.sysctl_num, rnode->sysctl_num));
4829 #endif
4830 
4831 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4832 		if (t < 0 || t >= NBGE_RX_THRESH)
4833 			return EINVAL;
4834 		bge_update_all_threshes(t);
4835 	} else
4836 		return EINVAL;
4837 
4838 	*(int*)rnode->sysctl_data = t;
4839 
4840 	return 0;
4841 }
4842 
4843 /*
4844  * Set up sysctl(3) MIB, hw.bge.*.
4845  */
4846 static void
4847 sysctl_bge_init(struct bge_softc *sc)
4848 {
4849 	int rc, bge_root_num;
4850 	const struct sysctlnode *node;
4851 
4852 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4853 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4854 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4855 		goto err;
4856 	}
4857 
4858 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4859 	    0, CTLTYPE_NODE, "bge",
4860 	    SYSCTL_DESCR("BGE interface controls"),
4861 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4862 		goto err;
4863 	}
4864 
4865 	bge_root_num = node->sysctl_num;
4866 
4867 	/* BGE Rx interrupt mitigation level */
4868 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4869 	    CTLFLAG_READWRITE,
4870 	    CTLTYPE_INT, "rx_lvl",
4871 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4872 	    sysctl_bge_verify, 0,
4873 	    &bge_rx_thresh_lvl,
4874 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4875 	    CTL_EOL)) != 0) {
4876 		goto err;
4877 	}
4878 
4879 	bge_rxthresh_nodenum = node->sysctl_num;
4880 
4881 	return;
4882 
4883 err:
4884 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4885 }
4886 
4887 #ifdef BGE_DEBUG
4888 void
4889 bge_debug_info(struct bge_softc *sc)
4890 {
4891 
4892 	printf("Hardware Flags:\n");
4893 	if (BGE_IS_5755_PLUS(sc))
4894 		printf(" - 5755 Plus\n");
4895 	if (BGE_IS_5750_OR_BEYOND(sc))
4896 		printf(" - 5750 Plus\n");
4897 	if (BGE_IS_5705_PLUS(sc))
4898 		printf(" - 5705 Plus\n");
4899 	if (BGE_IS_5714_FAMILY(sc))
4900 		printf(" - 5714 Family\n");
4901 	if (BGE_IS_5700_FAMILY(sc))
4902 		printf(" - 5700 Family\n");
4903 	if (sc->bge_flags & BGE_IS_5788)
4904 		printf(" - 5788\n");
4905 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4906 		printf(" - Supports Jumbo Frames\n");
4907 	if (sc->bge_flags & BGE_NO_EEPROM)
4908 		printf(" - No EEPROM\n");
4909 	if (sc->bge_flags & BGE_PCIX)
4910 		printf(" - PCI-X Bus\n");
4911 	if (sc->bge_flags & BGE_PCIE)
4912 		printf(" - PCI Express Bus\n");
4913 	if (sc->bge_flags & BGE_NO_3LED)
4914 		printf(" - No 3 LEDs\n");
4915 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
4916 		printf(" - RX Alignment Bug\n");
4917 	if (sc->bge_flags & BGE_TSO)
4918 		printf(" - TSO\n");
4919 }
4920 #endif /* BGE_DEBUG */
4921 
4922 static int
4923 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4924 {
4925 	prop_dictionary_t dict;
4926 	prop_data_t ea;
4927 
4928 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4929 		return 1;
4930 
4931 	dict = device_properties(sc->bge_dev);
4932 	ea = prop_dictionary_get(dict, "mac-address");
4933 	if (ea != NULL) {
4934 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4935 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4936 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4937 		return 0;
4938 	}
4939 
4940 	return 1;
4941 }
4942 
4943 static int
4944 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4945 {
4946 	uint32_t mac_addr;
4947 
4948 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4949 	if ((mac_addr >> 16) == 0x484b) {
4950 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4951 		ether_addr[1] = (uint8_t)mac_addr;
4952 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4953 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4954 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4955 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4956 		ether_addr[5] = (uint8_t)mac_addr;
4957 		return 0;
4958 	}
4959 	return 1;
4960 }
4961 
4962 static int
4963 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4964 {
4965 	int mac_offset = BGE_EE_MAC_OFFSET;
4966 
4967 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4968 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4969 
4970 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4971 	    ETHER_ADDR_LEN));
4972 }
4973 
4974 static int
4975 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4976 {
4977 
4978 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4979 		return 1;
4980 
4981 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4982 	   ETHER_ADDR_LEN));
4983 }
4984 
4985 static int
4986 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4987 {
4988 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4989 		/* NOTE: Order is critical */
4990 		bge_get_eaddr_fw,
4991 		bge_get_eaddr_mem,
4992 		bge_get_eaddr_nvram,
4993 		bge_get_eaddr_eeprom,
4994 		NULL
4995 	};
4996 	const bge_eaddr_fcn_t *func;
4997 
4998 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4999 		if ((*func)(sc, eaddr) == 0)
5000 			break;
5001 	}
5002 	return (*func == NULL ? ENXIO : 0);
5003 }
5004