xref: /netbsd-src/sys/dev/pci/if_bge.c (revision b62fc9e20372b08e1785ff6d769312d209fa2005)
1 /*	$NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.182 2010/04/05 07:20:25 joerg Exp $");
83 
84 #include "vlan.h"
85 #include "rnd.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #if NRND > 0
104 #include <sys/rnd.h>
105 #endif
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 /* Headers for TCP  Segmentation Offload (TSO) */
115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
117 #include <netinet/ip.h>			/* for struct ip */
118 #include <netinet/tcp.h>		/* for struct tcphdr */
119 
120 
121 #include <net/bpf.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/miidevs.h>
130 #include <dev/mii/brgphyreg.h>
131 
132 #include <dev/pci/if_bgereg.h>
133 #include <dev/pci/if_bgevar.h>
134 
135 #include <uvm/uvm_extern.h>
136 #include <prop/proplib.h>
137 
138 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
139 
140 
141 /*
142  * Tunable thresholds for rx-side bge interrupt mitigation.
143  */
144 
145 /*
146  * The pairs of values below were obtained from empirical measurement
147  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
148  * interrupt for every N packets received, where N is, approximately,
149  * the second value (rx_max_bds) in each pair.  The values are chosen
150  * such that moving from one pair to the succeeding pair was observed
151  * to roughly halve interrupt rate under sustained input packet load.
152  * The values were empirically chosen to avoid overflowing internal
153  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
154  * results in internal wrapping and higher interrupt rates.
155  * The limit of 46 frames was chosen to match NFS workloads.
156  *
157  * These values also work well on bcm5701, bcm5704C, and (less
158  * tested) bcm5703.  On other chipsets, (including the Altima chip
159  * family), the larger values may overflow internal chip limits,
160  * leading to increasing interrupt rates rather than lower interrupt
161  * rates.
162  *
163  * Applications using heavy interrupt mitigation (interrupting every
164  * 32 or 46 frames) in both directions may need to increase the TCP
165  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
166  * full link bandwidth, due to ACKs and window updates lingering
167  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
168  */
169 static const struct bge_load_rx_thresh {
170 	int rx_ticks;
171 	int rx_max_bds; }
172 bge_rx_threshes[] = {
173 	{ 32,   2 },
174 	{ 50,   4 },
175 	{ 100,  8 },
176 	{ 192, 16 },
177 	{ 416, 32 },
178 	{ 598, 46 }
179 };
180 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
181 
182 /* XXX patchable; should be sysctl'able */
183 static int bge_auto_thresh = 1;
184 static int bge_rx_thresh_lvl;
185 
186 static int bge_rxthresh_nodenum;
187 
188 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
189 
190 static int bge_probe(device_t, cfdata_t, void *);
191 static void bge_attach(device_t, device_t, void *);
192 static void bge_release_resources(struct bge_softc *);
193 
194 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
198 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
199 
200 static void bge_txeof(struct bge_softc *);
201 static void bge_rxeof(struct bge_softc *);
202 
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208 
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224 
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 			       bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241 
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_setpowerstate(struct bge_softc *, int);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251 
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(device_t);
255 
256 #define	BGE_RESET_START 1
257 #define	BGE_RESET_STOP  2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x)	if (bgedebug) printf x
267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
269 int	bgedebug = 0;
270 int	bge_tso_debug = 0;
271 void		bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277 
278 #ifdef BGE_EVENT_COUNTERS
279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
282 #else
283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
286 #endif
287 
288 static const struct bge_product {
289 	pci_vendor_id_t		bp_vendor;
290 	pci_product_id_t	bp_product;
291 	const char		*bp_name;
292 } bge_products[] = {
293 	/*
294 	 * The BCM5700 documentation seems to indicate that the hardware
295 	 * still has the Alteon vendor ID burned into it, though it
296 	 * should always be overridden by the value in the EEPROM.  We'll
297 	 * check for it anyway.
298 	 */
299 	{ PCI_VENDOR_ALTEON,
300 	  PCI_PRODUCT_ALTEON_BCM5700,
301 	  "Broadcom BCM5700 Gigabit Ethernet",
302 	  },
303 	{ PCI_VENDOR_ALTEON,
304 	  PCI_PRODUCT_ALTEON_BCM5701,
305 	  "Broadcom BCM5701 Gigabit Ethernet",
306 	  },
307 	{ PCI_VENDOR_ALTIMA,
308 	  PCI_PRODUCT_ALTIMA_AC1000,
309 	  "Altima AC1000 Gigabit Ethernet",
310 	  },
311 	{ PCI_VENDOR_ALTIMA,
312 	  PCI_PRODUCT_ALTIMA_AC1001,
313 	  "Altima AC1001 Gigabit Ethernet",
314 	   },
315 	{ PCI_VENDOR_ALTIMA,
316 	  PCI_PRODUCT_ALTIMA_AC9100,
317 	  "Altima AC9100 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_BROADCOM,
320 	  PCI_PRODUCT_BROADCOM_BCM5700,
321 	  "Broadcom BCM5700 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_BROADCOM,
324 	  PCI_PRODUCT_BROADCOM_BCM5701,
325 	  "Broadcom BCM5701 Gigabit Ethernet",
326 	  },
327 	{ PCI_VENDOR_BROADCOM,
328 	  PCI_PRODUCT_BROADCOM_BCM5702,
329 	  "Broadcom BCM5702 Gigabit Ethernet",
330 	  },
331 	{ PCI_VENDOR_BROADCOM,
332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
333 	  "Broadcom BCM5702X Gigabit Ethernet" },
334 	{ PCI_VENDOR_BROADCOM,
335 	  PCI_PRODUCT_BROADCOM_BCM5703,
336 	  "Broadcom BCM5703 Gigabit Ethernet",
337 	  },
338 	{ PCI_VENDOR_BROADCOM,
339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
340 	  "Broadcom BCM5703X Gigabit Ethernet",
341 	  },
342 	{ PCI_VENDOR_BROADCOM,
343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 	  "Broadcom BCM5703 Gigabit Ethernet",
345 	  },
346 	{ PCI_VENDOR_BROADCOM,
347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
349 	  },
350 	{ PCI_VENDOR_BROADCOM,
351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
353 	  },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5705,
356 	  "Broadcom BCM5705 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
360 	  "Broadcom BCM5705F Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
364 	  "Broadcom BCM5705K Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
368 	  "Broadcom BCM5705M Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 	  "Broadcom BCM5705M Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5714,
376 	  "Broadcom BCM5714 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
380 	  "Broadcom BCM5714S Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5715,
384 	  "Broadcom BCM5715 Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
388 	  "Broadcom BCM5715S Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5717,
392 	  "Broadcom BCM5717 Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5718,
396 	  "Broadcom BCM5718 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5720,
400 	  "Broadcom BCM5720 Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5721,
404 	  "Broadcom BCM5721 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5722,
408 	  "Broadcom BCM5722 Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5723,
412 	  "Broadcom BCM5723 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5724,
416 	  "Broadcom BCM5724 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5750,
420 	  "Broadcom BCM5750 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
424 	  "Broadcom BCM5750M Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5751,
428 	  "Broadcom BCM5751 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
432 	  "Broadcom BCM5751F Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
436 	  "Broadcom BCM5751M Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5752,
440 	  "Broadcom BCM5752 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
444 	  "Broadcom BCM5752M Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5753,
448 	  "Broadcom BCM5753 Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
452 	  "Broadcom BCM5753F Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
456 	  "Broadcom BCM5753M Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5754,
460 	  "Broadcom BCM5754 Gigabit Ethernet",
461 	},
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
464 	  "Broadcom BCM5754M Gigabit Ethernet",
465 	},
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5755,
468 	  "Broadcom BCM5755 Gigabit Ethernet",
469 	},
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
472 	  "Broadcom BCM5755M Gigabit Ethernet",
473 	},
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5756,
476 	  "Broadcom BCM5756 Gigabit Ethernet",
477 	},
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5761,
480 	  "Broadcom BCM5761 Gigabit Ethernet",
481 	},
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
484 	  "Broadcom BCM5761E Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
488 	  "Broadcom BCM5761S Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
492 	  "Broadcom BCM5761SE Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5764,
496 	  "Broadcom BCM5764 Gigabit Ethernet",
497 	  },
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5780,
500 	  "Broadcom BCM5780 Gigabit Ethernet",
501 	  },
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
504 	  "Broadcom BCM5780S Gigabit Ethernet",
505 	  },
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5781,
508 	  "Broadcom BCM5781 Gigabit Ethernet",
509 	  },
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5782,
512 	  "Broadcom BCM5782 Gigabit Ethernet",
513 	},
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
516 	  "BCM5784M NetLink 1000baseT Ethernet",
517 	},
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5786,
520 	  "Broadcom BCM5786 Gigabit Ethernet",
521 	},
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5787,
524 	  "Broadcom BCM5787 Gigabit Ethernet",
525 	},
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
528 	  "Broadcom BCM5787M Gigabit Ethernet",
529 	},
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5788,
532 	  "Broadcom BCM5788 Gigabit Ethernet",
533 	  },
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5789,
536 	  "Broadcom BCM5789 Gigabit Ethernet",
537 	  },
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5901,
540 	  "Broadcom BCM5901 Fast Ethernet",
541 	  },
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
544 	  "Broadcom BCM5901A2 Fast Ethernet",
545 	  },
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
548 	  "Broadcom BCM5903M Fast Ethernet",
549 	  },
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5906,
552 	  "Broadcom BCM5906 Fast Ethernet",
553 	  },
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
556 	  "Broadcom BCM5906M Fast Ethernet",
557 	  },
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM57760,
560 	  "Broadcom BCM57760 Fast Ethernet",
561 	  },
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM57761,
564 	  "Broadcom BCM57761 Fast Ethernet",
565 	  },
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM57765,
568 	  "Broadcom BCM57765 Fast Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM57780,
572 	  "Broadcom BCM57780 Fast Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM57781,
576 	  "Broadcom BCM57781 Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM57785,
580 	  "Broadcom BCM57785 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM57788,
584 	  "Broadcom BCM57788 Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM57790,
588 	  "Broadcom BCM57790 Fast Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM57791,
592 	  "Broadcom BCM57791 Fast Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57795,
596 	  "Broadcom BCM57795 Fast Ethernet",
597 	  },
598 	{ PCI_VENDOR_SCHNEIDERKOCH,
599 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
600 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
601 	  },
602 	{ PCI_VENDOR_3COM,
603 	  PCI_PRODUCT_3COM_3C996,
604 	  "3Com 3c996 Gigabit Ethernet",
605 	  },
606 	{ 0,
607 	  0,
608 	  NULL },
609 };
610 
611 /*
612  * XXX: how to handle variants based on 5750 and derivatives:
613  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
614  * in general behave like a 5705, except with additional quirks.
615  * This driver's current handling of the 5721 is wrong;
616  * how we map ASIC revision to "quirks" needs more thought.
617  * (defined here until the thought is done).
618  */
619 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
620 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
621 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
622 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
623 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
624 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
625 
626 static const struct bge_revision {
627 	uint32_t		br_chipid;
628 	const char		*br_name;
629 } bge_revisions[] = {
630 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
631 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
632 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
633 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
634 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
635 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
636 	/* This is treated like a BCM5700 Bx */
637 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
638 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
639 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
640 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
641 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
642 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
643 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
644 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
645 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
646 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
647 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
648 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
649 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
650 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
651 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
652 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
653 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
654 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
655 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
656 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
657 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
658 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
659 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
660 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
661 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
662 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
663 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
664 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
665 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
666 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
667 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
668 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
669 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
670 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
671 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
672 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
673 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
674 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
675 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
676 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
677 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
678 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
679 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
680 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
681 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
682 	/* 5754 and 5787 share the same ASIC ID */
683 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
684 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
685 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
686 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
687 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
688 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
689 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
690 
691 	{ 0, NULL }
692 };
693 
694 /*
695  * Some defaults for major revisions, so that newer steppings
696  * that we don't know about have a shot at working.
697  */
698 static const struct bge_revision bge_majorrevs[] = {
699 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
700 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
701 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
702 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
703 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
704 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
705 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
706 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
707 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
708 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
709 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
710 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
711 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
712 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
713 	/* 5754 and 5787 share the same ASIC ID */
714 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
715 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
716 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
717 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
718 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
719 
720 	{ 0, NULL }
721 };
722 
723 static int bge_allow_asf = 1;
724 
725 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
726     bge_probe, bge_attach, NULL, NULL);
727 
728 static uint32_t
729 bge_readmem_ind(struct bge_softc *sc, int off)
730 {
731 	pcireg_t val;
732 
733 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
734 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
735 	return val;
736 }
737 
738 static void
739 bge_writemem_ind(struct bge_softc *sc, int off, int val)
740 {
741 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
742 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
743 }
744 
745 /*
746  * PCI Express only
747  */
748 static void
749 bge_set_max_readrq(struct bge_softc *sc)
750 {
751 	device_t dev;
752 	pcireg_t val;
753 
754 	dev = sc->bge_dev;
755 
756 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
757 	    + PCI_PCIE_DCSR);
758 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
759 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
760 			printf("adjust device control 0x%04x ",
761 			    val);
762 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
763 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
764 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
765 		    + PCI_PCIE_DCSR, val);
766 			printf("-> 0x%04x\n", val);
767 	}
768 }
769 
770 #ifdef notdef
771 static uint32_t
772 bge_readreg_ind(struct bge_softc *sc, int off)
773 {
774 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
775 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
776 }
777 #endif
778 
779 static void
780 bge_writereg_ind(struct bge_softc *sc, int off, int val)
781 {
782 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
783 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
784 }
785 
786 static void
787 bge_writemem_direct(struct bge_softc *sc, int off, int val)
788 {
789 	CSR_WRITE_4(sc, off, val);
790 }
791 
792 static void
793 bge_writembx(struct bge_softc *sc, int off, int val)
794 {
795 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
796 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
797 
798 	CSR_WRITE_4(sc, off, val);
799 }
800 
801 static uint8_t
802 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
803 {
804 	uint32_t access, byte = 0;
805 	int i;
806 
807 	/* Lock. */
808 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
809 	for (i = 0; i < 8000; i++) {
810 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
811 			break;
812 		DELAY(20);
813 	}
814 	if (i == 8000)
815 		return 1;
816 
817 	/* Enable access. */
818 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
819 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
820 
821 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
822 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
823 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
824 		DELAY(10);
825 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
826 			DELAY(10);
827 			break;
828 		}
829 	}
830 
831 	if (i == BGE_TIMEOUT * 10) {
832 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
833 		return 1;
834 	}
835 
836 	/* Get result. */
837 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
838 
839 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
840 
841 	/* Disable access. */
842 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
843 
844 	/* Unlock. */
845 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
846 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
847 
848 	return 0;
849 }
850 
851 /*
852  * Read a sequence of bytes from NVRAM.
853  */
854 static int
855 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
856 {
857 	int err = 0, i;
858 	uint8_t byte = 0;
859 
860 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
861 		return 1;
862 
863 	for (i = 0; i < cnt; i++) {
864 		err = bge_nvram_getbyte(sc, off + i, &byte);
865 		if (err)
866 			break;
867 		*(dest + i) = byte;
868 	}
869 
870 	return (err ? 1 : 0);
871 }
872 
873 /*
874  * Read a byte of data stored in the EEPROM at address 'addr.' The
875  * BCM570x supports both the traditional bitbang interface and an
876  * auto access interface for reading the EEPROM. We use the auto
877  * access method.
878  */
879 static uint8_t
880 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
881 {
882 	int i;
883 	uint32_t byte = 0;
884 
885 	/*
886 	 * Enable use of auto EEPROM access so we can avoid
887 	 * having to use the bitbang method.
888 	 */
889 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
890 
891 	/* Reset the EEPROM, load the clock period. */
892 	CSR_WRITE_4(sc, BGE_EE_ADDR,
893 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
894 	DELAY(20);
895 
896 	/* Issue the read EEPROM command. */
897 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
898 
899 	/* Wait for completion */
900 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
901 		DELAY(10);
902 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
903 			break;
904 	}
905 
906 	if (i == BGE_TIMEOUT * 10) {
907 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
908 		return 1;
909 	}
910 
911 	/* Get result. */
912 	byte = CSR_READ_4(sc, BGE_EE_DATA);
913 
914 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
915 
916 	return 0;
917 }
918 
919 /*
920  * Read a sequence of bytes from the EEPROM.
921  */
922 static int
923 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
924 {
925 	int err = 0, i;
926 	uint8_t byte = 0;
927 	char *dest = destv;
928 
929 	for (i = 0; i < cnt; i++) {
930 		err = bge_eeprom_getbyte(sc, off + i, &byte);
931 		if (err)
932 			break;
933 		*(dest + i) = byte;
934 	}
935 
936 	return (err ? 1 : 0);
937 }
938 
939 static int
940 bge_miibus_readreg(device_t dev, int phy, int reg)
941 {
942 	struct bge_softc *sc = device_private(dev);
943 	uint32_t val;
944 	uint32_t autopoll;
945 	int i;
946 
947 	/*
948 	 * Broadcom's own driver always assumes the internal
949 	 * PHY is at GMII address 1. On some chips, the PHY responds
950 	 * to accesses at all addresses, which could cause us to
951 	 * bogusly attach the PHY 32 times at probe type. Always
952 	 * restricting the lookup to address 1 is simpler than
953 	 * trying to figure out which chips revisions should be
954 	 * special-cased.
955 	 */
956 	if (phy != 1)
957 		return 0;
958 
959 	/* Reading with autopolling on may trigger PCI errors */
960 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
961 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
962 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
963 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
964 		DELAY(40);
965 	}
966 
967 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
968 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
969 
970 	for (i = 0; i < BGE_TIMEOUT; i++) {
971 		val = CSR_READ_4(sc, BGE_MI_COMM);
972 		if (!(val & BGE_MICOMM_BUSY))
973 			break;
974 		delay(10);
975 	}
976 
977 	if (i == BGE_TIMEOUT) {
978 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
979 		val = 0;
980 		goto done;
981 	}
982 
983 	val = CSR_READ_4(sc, BGE_MI_COMM);
984 
985 done:
986 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
987 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
988 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
989 		DELAY(40);
990 	}
991 
992 	if (val & BGE_MICOMM_READFAIL)
993 		return 0;
994 
995 	return (val & 0xFFFF);
996 }
997 
998 static void
999 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1000 {
1001 	struct bge_softc *sc = device_private(dev);
1002 	uint32_t autopoll;
1003 	int i;
1004 
1005 	if (phy!=1) {
1006 		return;
1007 	}
1008 
1009 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1010 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1011 		return;
1012 	}
1013 
1014 	/* Reading with autopolling on may trigger PCI errors */
1015 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1016 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1017 		delay(40);
1018 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1019 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1020 		delay(10); /* 40 usec is supposed to be adequate */
1021 	}
1022 
1023 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1024 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1025 
1026 	for (i = 0; i < BGE_TIMEOUT; i++) {
1027 		delay(10);
1028 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1029 			delay(5);
1030 			CSR_READ_4(sc, BGE_MI_COMM);
1031 			break;
1032 		}
1033 	}
1034 
1035 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1036 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1037 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1038 		delay(40);
1039 	}
1040 
1041 	if (i == BGE_TIMEOUT)
1042 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1043 }
1044 
1045 static void
1046 bge_miibus_statchg(device_t dev)
1047 {
1048 	struct bge_softc *sc = device_private(dev);
1049 	struct mii_data *mii = &sc->bge_mii;
1050 
1051 	/*
1052 	 * Get flow control negotiation result.
1053 	 */
1054 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1055 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1056 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1057 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1058 	}
1059 
1060 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1061 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1062 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1063 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1064 	else
1065 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1066 
1067 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1068 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1069 	else
1070 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1071 
1072 	/*
1073 	 * 802.3x flow control
1074 	 */
1075 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1076 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1077 	else
1078 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1079 
1080 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1081 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1082 	else
1083 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1084 }
1085 
1086 /*
1087  * Update rx threshold levels to values in a particular slot
1088  * of the interrupt-mitigation table bge_rx_threshes.
1089  */
1090 static void
1091 bge_set_thresh(struct ifnet *ifp, int lvl)
1092 {
1093 	struct bge_softc *sc = ifp->if_softc;
1094 	int s;
1095 
1096 	/* For now, just save the new Rx-intr thresholds and record
1097 	 * that a threshold update is pending.  Updating the hardware
1098 	 * registers here (even at splhigh()) is observed to
1099 	 * occasionaly cause glitches where Rx-interrupts are not
1100 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1101 	 */
1102 	s = splnet();
1103 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1104 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1105 	sc->bge_pending_rxintr_change = 1;
1106 	splx(s);
1107 
1108 	 return;
1109 }
1110 
1111 
1112 /*
1113  * Update Rx thresholds of all bge devices
1114  */
1115 static void
1116 bge_update_all_threshes(int lvl)
1117 {
1118 	struct ifnet *ifp;
1119 	const char * const namebuf = "bge";
1120 	int namelen;
1121 
1122 	if (lvl < 0)
1123 		lvl = 0;
1124 	else if (lvl >= NBGE_RX_THRESH)
1125 		lvl = NBGE_RX_THRESH - 1;
1126 
1127 	namelen = strlen(namebuf);
1128 	/*
1129 	 * Now search all the interfaces for this name/number
1130 	 */
1131 	IFNET_FOREACH(ifp) {
1132 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1133 		      continue;
1134 		/* We got a match: update if doing auto-threshold-tuning */
1135 		if (bge_auto_thresh)
1136 			bge_set_thresh(ifp, lvl);
1137 	}
1138 }
1139 
1140 /*
1141  * Handle events that have triggered interrupts.
1142  */
1143 static void
1144 bge_handle_events(struct bge_softc *sc)
1145 {
1146 
1147 	return;
1148 }
1149 
1150 /*
1151  * Memory management for jumbo frames.
1152  */
1153 
1154 static int
1155 bge_alloc_jumbo_mem(struct bge_softc *sc)
1156 {
1157 	char *ptr, *kva;
1158 	bus_dma_segment_t	seg;
1159 	int		i, rseg, state, error;
1160 	struct bge_jpool_entry   *entry;
1161 
1162 	state = error = 0;
1163 
1164 	/* Grab a big chunk o' storage. */
1165 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1166 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1167 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1168 		return ENOBUFS;
1169 	}
1170 
1171 	state = 1;
1172 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1173 	    BUS_DMA_NOWAIT)) {
1174 		aprint_error_dev(sc->bge_dev,
1175 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1176 		error = ENOBUFS;
1177 		goto out;
1178 	}
1179 
1180 	state = 2;
1181 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1182 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1183 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1184 		error = ENOBUFS;
1185 		goto out;
1186 	}
1187 
1188 	state = 3;
1189 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1190 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1191 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1192 		error = ENOBUFS;
1193 		goto out;
1194 	}
1195 
1196 	state = 4;
1197 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1198 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1199 
1200 	SLIST_INIT(&sc->bge_jfree_listhead);
1201 	SLIST_INIT(&sc->bge_jinuse_listhead);
1202 
1203 	/*
1204 	 * Now divide it up into 9K pieces and save the addresses
1205 	 * in an array.
1206 	 */
1207 	ptr = sc->bge_cdata.bge_jumbo_buf;
1208 	for (i = 0; i < BGE_JSLOTS; i++) {
1209 		sc->bge_cdata.bge_jslots[i] = ptr;
1210 		ptr += BGE_JLEN;
1211 		entry = malloc(sizeof(struct bge_jpool_entry),
1212 		    M_DEVBUF, M_NOWAIT);
1213 		if (entry == NULL) {
1214 			aprint_error_dev(sc->bge_dev,
1215 			    "no memory for jumbo buffer queue!\n");
1216 			error = ENOBUFS;
1217 			goto out;
1218 		}
1219 		entry->slot = i;
1220 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1221 				 entry, jpool_entries);
1222 	}
1223 out:
1224 	if (error != 0) {
1225 		switch (state) {
1226 		case 4:
1227 			bus_dmamap_unload(sc->bge_dmatag,
1228 			    sc->bge_cdata.bge_rx_jumbo_map);
1229 		case 3:
1230 			bus_dmamap_destroy(sc->bge_dmatag,
1231 			    sc->bge_cdata.bge_rx_jumbo_map);
1232 		case 2:
1233 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1234 		case 1:
1235 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1236 			break;
1237 		default:
1238 			break;
1239 		}
1240 	}
1241 
1242 	return error;
1243 }
1244 
1245 /*
1246  * Allocate a jumbo buffer.
1247  */
1248 static void *
1249 bge_jalloc(struct bge_softc *sc)
1250 {
1251 	struct bge_jpool_entry   *entry;
1252 
1253 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1254 
1255 	if (entry == NULL) {
1256 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1257 		return NULL;
1258 	}
1259 
1260 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1261 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1262 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1263 }
1264 
1265 /*
1266  * Release a jumbo buffer.
1267  */
1268 static void
1269 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1270 {
1271 	struct bge_jpool_entry *entry;
1272 	struct bge_softc *sc;
1273 	int i, s;
1274 
1275 	/* Extract the softc struct pointer. */
1276 	sc = (struct bge_softc *)arg;
1277 
1278 	if (sc == NULL)
1279 		panic("bge_jfree: can't find softc pointer!");
1280 
1281 	/* calculate the slot this buffer belongs to */
1282 
1283 	i = ((char *)buf
1284 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1285 
1286 	if ((i < 0) || (i >= BGE_JSLOTS))
1287 		panic("bge_jfree: asked to free buffer that we don't manage!");
1288 
1289 	s = splvm();
1290 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1291 	if (entry == NULL)
1292 		panic("bge_jfree: buffer not in use!");
1293 	entry->slot = i;
1294 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1295 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1296 
1297 	if (__predict_true(m != NULL))
1298   		pool_cache_put(mb_cache, m);
1299 	splx(s);
1300 }
1301 
1302 
1303 /*
1304  * Intialize a standard receive ring descriptor.
1305  */
1306 static int
1307 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1308     bus_dmamap_t dmamap)
1309 {
1310 	struct mbuf		*m_new = NULL;
1311 	struct bge_rx_bd	*r;
1312 	int			error;
1313 
1314 	if (dmamap == NULL) {
1315 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1316 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1317 		if (error != 0)
1318 			return error;
1319 	}
1320 
1321 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1322 
1323 	if (m == NULL) {
1324 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1325 		if (m_new == NULL)
1326 			return ENOBUFS;
1327 
1328 		MCLGET(m_new, M_DONTWAIT);
1329 		if (!(m_new->m_flags & M_EXT)) {
1330 			m_freem(m_new);
1331 			return ENOBUFS;
1332 		}
1333 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1334 
1335 	} else {
1336 		m_new = m;
1337 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1338 		m_new->m_data = m_new->m_ext.ext_buf;
1339 	}
1340 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1341 	    m_adj(m_new, ETHER_ALIGN);
1342 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1343 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1344 		return ENOBUFS;
1345 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1346 	    BUS_DMASYNC_PREREAD);
1347 
1348 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1349 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1350 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1351 	r->bge_flags = BGE_RXBDFLAG_END;
1352 	r->bge_len = m_new->m_len;
1353 	r->bge_idx = i;
1354 
1355 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1356 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1357 		i * sizeof (struct bge_rx_bd),
1358 	    sizeof (struct bge_rx_bd),
1359 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1360 
1361 	return 0;
1362 }
1363 
1364 /*
1365  * Initialize a jumbo receive ring descriptor. This allocates
1366  * a jumbo buffer from the pool managed internally by the driver.
1367  */
1368 static int
1369 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1370 {
1371 	struct mbuf *m_new = NULL;
1372 	struct bge_rx_bd *r;
1373 	void *buf = NULL;
1374 
1375 	if (m == NULL) {
1376 
1377 		/* Allocate the mbuf. */
1378 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1379 		if (m_new == NULL)
1380 			return ENOBUFS;
1381 
1382 		/* Allocate the jumbo buffer */
1383 		buf = bge_jalloc(sc);
1384 		if (buf == NULL) {
1385 			m_freem(m_new);
1386 			aprint_error_dev(sc->bge_dev,
1387 			    "jumbo allocation failed -- packet dropped!\n");
1388 			return ENOBUFS;
1389 		}
1390 
1391 		/* Attach the buffer to the mbuf. */
1392 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1393 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1394 		    bge_jfree, sc);
1395 		m_new->m_flags |= M_EXT_RW;
1396 	} else {
1397 		m_new = m;
1398 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1399 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1400 	}
1401 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1402 	    m_adj(m_new, ETHER_ALIGN);
1403 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1404 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1405 	    BUS_DMASYNC_PREREAD);
1406 	/* Set up the descriptor. */
1407 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1408 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1409 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1410 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1411 	r->bge_len = m_new->m_len;
1412 	r->bge_idx = i;
1413 
1414 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1415 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1416 		i * sizeof (struct bge_rx_bd),
1417 	    sizeof (struct bge_rx_bd),
1418 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1419 
1420 	return 0;
1421 }
1422 
1423 /*
1424  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1425  * that's 1MB or memory, which is a lot. For now, we fill only the first
1426  * 256 ring entries and hope that our CPU is fast enough to keep up with
1427  * the NIC.
1428  */
1429 static int
1430 bge_init_rx_ring_std(struct bge_softc *sc)
1431 {
1432 	int i;
1433 
1434 	if (sc->bge_flags & BGE_RXRING_VALID)
1435 		return 0;
1436 
1437 	for (i = 0; i < BGE_SSLOTS; i++) {
1438 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1439 			return ENOBUFS;
1440 	}
1441 
1442 	sc->bge_std = i - 1;
1443 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1444 
1445 	sc->bge_flags |= BGE_RXRING_VALID;
1446 
1447 	return 0;
1448 }
1449 
1450 static void
1451 bge_free_rx_ring_std(struct bge_softc *sc)
1452 {
1453 	int i;
1454 
1455 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1456 		return;
1457 
1458 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1459 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1460 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1461 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1462 			bus_dmamap_destroy(sc->bge_dmatag,
1463 			    sc->bge_cdata.bge_rx_std_map[i]);
1464 		}
1465 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1466 		    sizeof(struct bge_rx_bd));
1467 	}
1468 
1469 	sc->bge_flags &= ~BGE_RXRING_VALID;
1470 }
1471 
1472 static int
1473 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1474 {
1475 	int i;
1476 	volatile struct bge_rcb *rcb;
1477 
1478 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1479 		return 0;
1480 
1481 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1482 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1483 			return ENOBUFS;
1484 	};
1485 
1486 	sc->bge_jumbo = i - 1;
1487 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1488 
1489 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1490 	rcb->bge_maxlen_flags = 0;
1491 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1492 
1493 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1494 
1495 	return 0;
1496 }
1497 
1498 static void
1499 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1500 {
1501 	int i;
1502 
1503 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1504 		return;
1505 
1506 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1507 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1508 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1509 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1510 		}
1511 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1512 		    sizeof(struct bge_rx_bd));
1513 	}
1514 
1515 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1516 }
1517 
1518 static void
1519 bge_free_tx_ring(struct bge_softc *sc)
1520 {
1521 	int i, freed;
1522 	struct txdmamap_pool_entry *dma;
1523 
1524 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1525 		return;
1526 
1527 	freed = 0;
1528 
1529 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1530 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1531 			freed++;
1532 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1533 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1534 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1535 					    link);
1536 			sc->txdma[i] = 0;
1537 		}
1538 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1539 		    sizeof(struct bge_tx_bd));
1540 	}
1541 
1542 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1543 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1544 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1545 		free(dma, M_DEVBUF);
1546 	}
1547 
1548 	sc->bge_flags &= ~BGE_TXRING_VALID;
1549 }
1550 
1551 static int
1552 bge_init_tx_ring(struct bge_softc *sc)
1553 {
1554 	int i;
1555 	bus_dmamap_t dmamap;
1556 	struct txdmamap_pool_entry *dma;
1557 
1558 	if (sc->bge_flags & BGE_TXRING_VALID)
1559 		return 0;
1560 
1561 	sc->bge_txcnt = 0;
1562 	sc->bge_tx_saved_considx = 0;
1563 
1564 	/* Initialize transmit producer index for host-memory send ring. */
1565 	sc->bge_tx_prodidx = 0;
1566 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1567 	/* 5700 b2 errata */
1568 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1569 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1570 
1571 	/* NIC-memory send ring not used; initialize to zero. */
1572 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1573 	/* 5700 b2 errata */
1574 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1575 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1576 
1577 	SLIST_INIT(&sc->txdma_list);
1578 	for (i = 0; i < BGE_RSLOTS; i++) {
1579 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1580 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1581 		    &dmamap))
1582 			return ENOBUFS;
1583 		if (dmamap == NULL)
1584 			panic("dmamap NULL in bge_init_tx_ring");
1585 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1586 		if (dma == NULL) {
1587 			aprint_error_dev(sc->bge_dev,
1588 			    "can't alloc txdmamap_pool_entry\n");
1589 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1590 			return ENOMEM;
1591 		}
1592 		dma->dmamap = dmamap;
1593 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1594 	}
1595 
1596 	sc->bge_flags |= BGE_TXRING_VALID;
1597 
1598 	return 0;
1599 }
1600 
1601 static void
1602 bge_setmulti(struct bge_softc *sc)
1603 {
1604 	struct ethercom		*ac = &sc->ethercom;
1605 	struct ifnet		*ifp = &ac->ec_if;
1606 	struct ether_multi	*enm;
1607 	struct ether_multistep  step;
1608 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1609 	uint32_t		h;
1610 	int			i;
1611 
1612 	if (ifp->if_flags & IFF_PROMISC)
1613 		goto allmulti;
1614 
1615 	/* Now program new ones. */
1616 	ETHER_FIRST_MULTI(step, ac, enm);
1617 	while (enm != NULL) {
1618 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1619 			/*
1620 			 * We must listen to a range of multicast addresses.
1621 			 * For now, just accept all multicasts, rather than
1622 			 * trying to set only those filter bits needed to match
1623 			 * the range.  (At this time, the only use of address
1624 			 * ranges is for IP multicast routing, for which the
1625 			 * range is big enough to require all bits set.)
1626 			 */
1627 			goto allmulti;
1628 		}
1629 
1630 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1631 
1632 		/* Just want the 7 least-significant bits. */
1633 		h &= 0x7f;
1634 
1635 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1636 		ETHER_NEXT_MULTI(step, enm);
1637 	}
1638 
1639 	ifp->if_flags &= ~IFF_ALLMULTI;
1640 	goto setit;
1641 
1642  allmulti:
1643 	ifp->if_flags |= IFF_ALLMULTI;
1644 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1645 
1646  setit:
1647 	for (i = 0; i < 4; i++)
1648 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1649 }
1650 
1651 static void
1652 bge_sig_pre_reset(struct bge_softc *sc, int type)
1653 {
1654 	/*
1655 	 * Some chips don't like this so only do this if ASF is enabled
1656 	 */
1657 	if (sc->bge_asf_mode)
1658 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1659 
1660 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1661 		switch (type) {
1662 		case BGE_RESET_START:
1663 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1664 			break;
1665 		case BGE_RESET_STOP:
1666 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1667 			break;
1668 		}
1669 	}
1670 }
1671 
1672 static void
1673 bge_sig_post_reset(struct bge_softc *sc, int type)
1674 {
1675 
1676 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1677 		switch (type) {
1678 		case BGE_RESET_START:
1679 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1680 			/* START DONE */
1681 			break;
1682 		case BGE_RESET_STOP:
1683 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1684 			break;
1685 		}
1686 	}
1687 }
1688 
1689 static void
1690 bge_sig_legacy(struct bge_softc *sc, int type)
1691 {
1692 
1693 	if (sc->bge_asf_mode) {
1694 		switch (type) {
1695 		case BGE_RESET_START:
1696 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1697 			break;
1698 		case BGE_RESET_STOP:
1699 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1700 			break;
1701 		}
1702 	}
1703 }
1704 
1705 static void
1706 bge_stop_fw(struct bge_softc *sc)
1707 {
1708 	int i;
1709 
1710 	if (sc->bge_asf_mode) {
1711 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1712 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1713 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1714 
1715 		for (i = 0; i < 100; i++) {
1716 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1717 				break;
1718 			DELAY(10);
1719 		}
1720 	}
1721 }
1722 
1723 static int
1724 bge_poll_fw(struct bge_softc *sc)
1725 {
1726 	uint32_t val;
1727 	int i;
1728 
1729 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1730 		for (i = 0; i < BGE_TIMEOUT; i++) {
1731 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1732 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1733 				break;
1734 			DELAY(100);
1735 		}
1736 		if (i >= BGE_TIMEOUT) {
1737 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1738 			return -1;
1739 		}
1740 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1741 		/*
1742 		 * Poll the value location we just wrote until
1743 		 * we see the 1's complement of the magic number.
1744 		 * This indicates that the firmware initialization
1745 		 * is complete.
1746 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1747 		 */
1748 		for (i = 0; i < BGE_TIMEOUT; i++) {
1749 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1750 			if (val == ~BGE_MAGIC_NUMBER)
1751 				break;
1752 			DELAY(10);
1753 		}
1754 
1755 		if (i >= BGE_TIMEOUT) {
1756 			aprint_error_dev(sc->bge_dev,
1757 			    "firmware handshake timed out, val = %x\n", val);
1758 			return -1;
1759 		}
1760 	}
1761 
1762 	return 0;
1763 }
1764 
1765 /*
1766  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1767  * self-test results.
1768  */
1769 static int
1770 bge_chipinit(struct bge_softc *sc)
1771 {
1772 	int i;
1773 	uint32_t dma_rw_ctl;
1774 
1775 	/* Set endianness before we access any non-PCI registers. */
1776 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1777 	    BGE_INIT);
1778 
1779 	/* Set power state to D0. */
1780 	bge_setpowerstate(sc, 0);
1781 
1782 	/* Clear the MAC control register */
1783 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1784 
1785 	/*
1786 	 * Clear the MAC statistics block in the NIC's
1787 	 * internal memory.
1788 	 */
1789 	for (i = BGE_STATS_BLOCK;
1790 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1791 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1792 
1793 	for (i = BGE_STATUS_BLOCK;
1794 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1795 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1796 
1797 	/* Set up the PCI DMA control register. */
1798 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1799 	if (sc->bge_flags & BGE_PCIE) {
1800 		/* Read watermark not used, 128 bytes for write. */
1801 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1802 		    device_xname(sc->bge_dev)));
1803 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1804 	} else if (sc->bge_flags & BGE_PCIX) {
1805 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1806 		    device_xname(sc->bge_dev)));
1807 		/* PCI-X bus */
1808 		if (BGE_IS_5714_FAMILY(sc)) {
1809 			/* 256 bytes for read and write. */
1810 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1811 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1812 
1813 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1814 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1815 			else
1816 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1817 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1818 			/* 1536 bytes for read, 384 bytes for write. */
1819 			dma_rw_ctl |=
1820 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1821 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1822 		} else {
1823 			/* 384 bytes for read and write. */
1824 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1825 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1826 			    (0x0F);
1827 		}
1828 
1829 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1830 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1831 			uint32_t tmp;
1832 
1833 			/* Set ONEDMA_ATONCE for hardware workaround. */
1834 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1835 			if (tmp == 6 || tmp == 7)
1836 				dma_rw_ctl |=
1837 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1838 
1839 			/* Set PCI-X DMA write workaround. */
1840 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1841 		}
1842 	} else {
1843 		/* Conventional PCI bus: 256 bytes for read and write. */
1844 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1845 		    device_xname(sc->bge_dev)));
1846 		dma_rw_ctl = (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1847 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1848 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1849 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1850 			dma_rw_ctl |= 0x0F;
1851 	}
1852 
1853 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1854 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1855 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1856 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1857 
1858 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1859 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1860 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1861 
1862 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1863 	    dma_rw_ctl);
1864 
1865 	/*
1866 	 * Set up general mode register.
1867 	 */
1868 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1869 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1870 	    BGE_MODECTL_TX_NO_PHDR_CSUM | BGE_MODECTL_RX_NO_PHDR_CSUM);
1871 
1872 	/*
1873 	 * BCM5701 B5 have a bug causing data corruption when using
1874 	 * 64-bit DMA reads, which can be terminated early and then
1875 	 * completed later as 32-bit accesses, in combination with
1876 	 * certain bridges.
1877 	 */
1878 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1879 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1880 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1881 
1882 	/*
1883 	 * Tell the firmware the driver is running
1884 	 */
1885 	if (sc->bge_asf_mode & ASF_STACKUP)
1886 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1887 
1888 	/*
1889 	 * Disable memory write invalidate.  Apparently it is not supported
1890 	 * properly by these devices.
1891 	 */
1892 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1893 		   PCI_COMMAND_INVALIDATE_ENABLE);
1894 
1895 #ifdef __brokenalpha__
1896 	/*
1897 	 * Must insure that we do not cross an 8K (bytes) boundary
1898 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1899 	 * restriction on some ALPHA platforms with early revision
1900 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1901 	 */
1902 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1903 #endif
1904 
1905 	/* Set the timer prescaler (always 66MHz) */
1906 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1907 
1908 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1909 		DELAY(40);	/* XXX */
1910 
1911 		/* Put PHY into ready state */
1912 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1913 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1914 		DELAY(40);
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 static int
1921 bge_blockinit(struct bge_softc *sc)
1922 {
1923 	volatile struct bge_rcb	 *rcb;
1924 	bus_size_t rcb_addr;
1925 	int i;
1926 	struct ifnet *ifp = &sc->ethercom.ec_if;
1927 	bge_hostaddr taddr;
1928 	uint32_t val;
1929 
1930 	/*
1931 	 * Initialize the memory window pointer register so that
1932 	 * we can access the first 32K of internal NIC RAM. This will
1933 	 * allow us to set up the TX send ring RCBs and the RX return
1934 	 * ring RCBs, plus other things which live in NIC memory.
1935 	 */
1936 
1937 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1938 
1939 	/* Step 33: Configure mbuf memory pool */
1940 	if (BGE_IS_5700_FAMILY(sc)) {
1941 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1942 		    BGE_BUFFPOOL_1);
1943 
1944 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1945 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1946 		else
1947 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1948 
1949 		/* Configure DMA resource pool */
1950 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1951 		    BGE_DMA_DESCRIPTORS);
1952 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1953 	}
1954 
1955 	/* Step 35: Configure mbuf pool watermarks */
1956 #ifdef ORIG_WPAUL_VALUES
1957 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1958 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1959 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1960 #else
1961 
1962 	/* new broadcom docs strongly recommend these: */
1963 	if (!BGE_IS_5705_PLUS(sc)) {
1964 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1965 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1966 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1967 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1968 		} else {
1969 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1970 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1971 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1972 		}
1973 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1974 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1975 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1976 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1977 	} else {
1978 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1979 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1981 	}
1982 #endif
1983 
1984 	/* Step 36: Configure DMA resource watermarks */
1985 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1986 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1987 
1988 	/* Step 38: Enable buffer manager */
1989 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1990 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
1991 
1992 	/* Step 39: Poll for buffer manager start indication */
1993 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
1994 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1995 			break;
1996 		DELAY(10);
1997 	}
1998 
1999 	if (i == BGE_TIMEOUT * 2) {
2000 		aprint_error_dev(sc->bge_dev,
2001 		    "buffer manager failed to start\n");
2002 		return ENXIO;
2003 	}
2004 
2005 	/* Step 40: Enable flow-through queues */
2006 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2007 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2008 
2009 	/* Wait until queue initialization is complete */
2010 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2011 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2012 			break;
2013 		DELAY(10);
2014 	}
2015 
2016 	if (i == BGE_TIMEOUT * 2) {
2017 		aprint_error_dev(sc->bge_dev,
2018 		    "flow-through queue init failed\n");
2019 		return ENXIO;
2020 	}
2021 
2022 	/* Step 41: Initialize the standard RX ring control block */
2023 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2024 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2025 	if (BGE_IS_5705_PLUS(sc))
2026 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2027 	else
2028 		rcb->bge_maxlen_flags =
2029 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2030 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2031 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2032 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2033 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2034 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2035 
2036 	/*
2037 	 * Step 42: Initialize the jumbo RX ring control block
2038 	 * We set the 'ring disabled' bit in the flags
2039 	 * field until we're actually ready to start
2040 	 * using this ring (i.e. once we set the MTU
2041 	 * high enough to require it).
2042 	 */
2043 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2044 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2045 		BGE_HOSTADDR(rcb->bge_hostaddr,
2046 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2047 		rcb->bge_maxlen_flags =
2048 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2049 			BGE_RCB_FLAG_RING_DISABLED);
2050 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2051 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2052 		    rcb->bge_hostaddr.bge_addr_hi);
2053 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2054 		    rcb->bge_hostaddr.bge_addr_lo);
2055 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2056 		    rcb->bge_maxlen_flags);
2057 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2058 
2059 		/* Set up dummy disabled mini ring RCB */
2060 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2061 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2062 		    BGE_RCB_FLAG_RING_DISABLED);
2063 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2064 		    rcb->bge_maxlen_flags);
2065 
2066 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2067 		    offsetof(struct bge_ring_data, bge_info),
2068 		    sizeof (struct bge_gib),
2069 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2070 	}
2071 
2072 	/*
2073 	 * Set the BD ring replenish thresholds. The recommended
2074 	 * values are 1/8th the number of descriptors allocated to
2075 	 * each ring.
2076 	 */
2077 	i = BGE_STD_RX_RING_CNT / 8;
2078 
2079 	/*
2080 	 * Use a value of 8 for the following chips to workaround HW errata.
2081 	 * Some of these chips have been added based on empirical
2082 	 * evidence (they don't work unless this is done).
2083 	 */
2084 	if (BGE_IS_5705_PLUS(sc))
2085 		i = 8;
2086 
2087 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2088 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2089 
2090 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2091 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2092 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2093 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2094 	}
2095 
2096 	/*
2097 	 * Disable all unused send rings by setting the 'ring disabled'
2098 	 * bit in the flags field of all the TX send ring control blocks.
2099 	 * These are located in NIC memory.
2100 	 */
2101 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2102 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2103 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2104 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2105 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2106 		rcb_addr += sizeof(struct bge_rcb);
2107 	}
2108 
2109 	/* Configure TX RCB 0 (we use only the first ring) */
2110 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2111 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2112 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2113 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2114 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2115 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2116 	if (BGE_IS_5700_FAMILY(sc))
2117 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2118 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2119 
2120 	/* Disable all unused RX return rings */
2121 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2122 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2123 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2124 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2125 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2126 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2127 			BGE_RCB_FLAG_RING_DISABLED));
2128 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2129 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2130 		    (i * (sizeof(uint64_t))), 0);
2131 		rcb_addr += sizeof(struct bge_rcb);
2132 	}
2133 
2134 	/* Initialize RX ring indexes */
2135 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2136 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2137 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2138 
2139 	/*
2140 	 * Set up RX return ring 0
2141 	 * Note that the NIC address for RX return rings is 0x00000000.
2142 	 * The return rings live entirely within the host, so the
2143 	 * nicaddr field in the RCB isn't used.
2144 	 */
2145 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2146 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2147 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2148 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2149 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2150 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2151 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2152 
2153 	/* Set random backoff seed for TX */
2154 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2155 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2156 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2157 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2158 	    BGE_TX_BACKOFF_SEED_MASK);
2159 
2160 	/* Set inter-packet gap */
2161 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2162 
2163 	/*
2164 	 * Specify which ring to use for packets that don't match
2165 	 * any RX rules.
2166 	 */
2167 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2168 
2169 	/*
2170 	 * Configure number of RX lists. One interrupt distribution
2171 	 * list, sixteen active lists, one bad frames class.
2172 	 */
2173 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2174 
2175 	/* Inialize RX list placement stats mask. */
2176 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2177 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2178 
2179 	/* Disable host coalescing until we get it set up */
2180 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2181 
2182 	/* Poll to make sure it's shut down. */
2183 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2184 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2185 			break;
2186 		DELAY(10);
2187 	}
2188 
2189 	if (i == BGE_TIMEOUT * 2) {
2190 		aprint_error_dev(sc->bge_dev,
2191 		    "host coalescing engine failed to idle\n");
2192 		return ENXIO;
2193 	}
2194 
2195 	/* Set up host coalescing defaults */
2196 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2197 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2198 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2199 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2200 	if (BGE_IS_5700_FAMILY(sc)) {
2201 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2202 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2203 	}
2204 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2205 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2206 
2207 	/* Set up address of statistics block */
2208 	if (BGE_IS_5700_FAMILY(sc)) {
2209 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2210 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2211 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2212 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2213 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2214 	}
2215 
2216 	/* Set up address of status block */
2217 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2218 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2219 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2220 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2221 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2222 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2223 
2224 	/* Turn on host coalescing state machine */
2225 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2226 
2227 	/* Turn on RX BD completion state machine and enable attentions */
2228 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2229 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2230 
2231 	/* Turn on RX list placement state machine */
2232 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2233 
2234 	/* Turn on RX list selector state machine. */
2235 	if (BGE_IS_5700_FAMILY(sc))
2236 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2237 
2238 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2239 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2240 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2241 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2242 
2243 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2244 		val |= BGE_PORTMODE_TBI;
2245 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2246 		val |= BGE_PORTMODE_GMII;
2247 	else
2248 		val |= BGE_PORTMODE_MII;
2249 
2250 	/* Turn on DMA, clear stats */
2251 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2252 
2253 	/* Set misc. local control, enable interrupts on attentions */
2254 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2255 
2256 #ifdef notdef
2257 	/* Assert GPIO pins for PHY reset */
2258 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2259 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2260 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2261 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2262 #endif
2263 
2264 #if defined(not_quite_yet)
2265 	/* Linux driver enables enable gpio pin #1 on 5700s */
2266 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2267 		sc->bge_local_ctrl_reg |=
2268 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2269 	}
2270 #endif
2271 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2272 
2273 	/* Turn on DMA completion state machine */
2274 	if (BGE_IS_5700_FAMILY(sc))
2275 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2276 
2277 	/* Turn on write DMA state machine */
2278 	{
2279 		uint32_t bge_wdma_mode =
2280 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2281 
2282 		/* Enable host coalescing bug fix; see Linux tg3.c */
2283 		if (BGE_IS_5755_PLUS(sc))
2284 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2285 
2286 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2287 	}
2288 
2289 	/* Turn on read DMA state machine */
2290 	{
2291 		uint32_t dma_read_modebits;
2292 
2293 		dma_read_modebits =
2294 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2295 
2296 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2297 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2298 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2299 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2300 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2301 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2302 
2303 		if (sc->bge_flags & BGE_PCIE)
2304 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2305 		if (sc->bge_flags & BGE_TSO)
2306 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2307 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2308 		delay(40);
2309 	}
2310 
2311 	/* Turn on RX data completion state machine */
2312 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2313 
2314 	/* Turn on RX BD initiator state machine */
2315 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2316 
2317 	/* Turn on RX data and RX BD initiator state machine */
2318 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2319 
2320 	/* Turn on Mbuf cluster free state machine */
2321 	if (BGE_IS_5700_FAMILY(sc))
2322 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2323 
2324 	/* Turn on send BD completion state machine */
2325 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2326 
2327 	/* Turn on send data completion state machine */
2328 	val = BGE_SDCMODE_ENABLE;
2329 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2330 		val |= BGE_SDCMODE_CDELAY;
2331 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2332 
2333 	/* Turn on send data initiator state machine */
2334 	if (sc->bge_flags & BGE_TSO) {
2335 		/* XXX: magic value from Linux driver */
2336 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2337 	} else
2338 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2339 
2340 	/* Turn on send BD initiator state machine */
2341 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2342 
2343 	/* Turn on send BD selector state machine */
2344 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2345 
2346 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2347 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2348 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2349 
2350 	/* ack/clear link change events */
2351 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2352 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2353 	    BGE_MACSTAT_LINK_CHANGED);
2354 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2355 
2356 	/* Enable PHY auto polling (for MII/GMII only) */
2357 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2358 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2359 	} else {
2360 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2361 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2362 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2363 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2364 			    BGE_EVTENB_MI_INTERRUPT);
2365 	}
2366 
2367 	/*
2368 	 * Clear any pending link state attention.
2369 	 * Otherwise some link state change events may be lost until attention
2370 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2371 	 * It's not necessary on newer BCM chips - perhaps enabling link
2372 	 * state change attentions implies clearing pending attention.
2373 	 */
2374 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2375 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2376 	    BGE_MACSTAT_LINK_CHANGED);
2377 
2378 	/* Enable link state change attentions. */
2379 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2380 
2381 	return 0;
2382 }
2383 
2384 static const struct bge_revision *
2385 bge_lookup_rev(uint32_t chipid)
2386 {
2387 	const struct bge_revision *br;
2388 
2389 	for (br = bge_revisions; br->br_name != NULL; br++) {
2390 		if (br->br_chipid == chipid)
2391 			return br;
2392 	}
2393 
2394 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2395 		if (br->br_chipid == BGE_ASICREV(chipid))
2396 			return br;
2397 	}
2398 
2399 	return NULL;
2400 }
2401 
2402 static const struct bge_product *
2403 bge_lookup(const struct pci_attach_args *pa)
2404 {
2405 	const struct bge_product *bp;
2406 
2407 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2408 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2409 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2410 			return bp;
2411 	}
2412 
2413 	return NULL;
2414 }
2415 
2416 static int
2417 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2418 {
2419 #ifdef NOTYET
2420 	uint32_t pm_ctl = 0;
2421 
2422 	/* XXX FIXME: make sure indirect accesses enabled? */
2423 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2424 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2425 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2426 
2427 	/* clear the PME_assert bit and power state bits, enable PME */
2428 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2429 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2430 	pm_ctl |= (1 << 8);
2431 
2432 	if (powerlevel == 0) {
2433 		pm_ctl |= PCIM_PSTAT_D0;
2434 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2435 		    pm_ctl, 2);
2436 		DELAY(10000);
2437 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2438 		DELAY(10000);
2439 
2440 #ifdef NOTYET
2441 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2442 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2443 #endif
2444 		DELAY(40); DELAY(40); DELAY(40);
2445 		DELAY(10000);	/* above not quite adequate on 5700 */
2446 		return 0;
2447 	}
2448 
2449 
2450 	/*
2451 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2452 	 * GMII gpio pins. Example code assumes all hardware vendors
2453 	 * followed Broadom's sample pcb layout. Until we verify that
2454 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2455 	 */
2456 	aprint_error_dev(sc->bge_dev,
2457 	    "power state %d unimplemented; check GPIO pins\n",
2458 	    powerlevel);
2459 #endif
2460 	return EOPNOTSUPP;
2461 }
2462 
2463 
2464 /*
2465  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2466  * against our list and return its name if we find a match. Note
2467  * that since the Broadcom controller contains VPD support, we
2468  * can get the device name string from the controller itself instead
2469  * of the compiled-in string. This is a little slow, but it guarantees
2470  * we'll always announce the right product name.
2471  */
2472 static int
2473 bge_probe(device_t parent, cfdata_t match, void *aux)
2474 {
2475 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2476 
2477 	if (bge_lookup(pa) != NULL)
2478 		return 1;
2479 
2480 	return 0;
2481 }
2482 
2483 static void
2484 bge_attach(device_t parent, device_t self, void *aux)
2485 {
2486 	struct bge_softc	*sc = device_private(self);
2487 	struct pci_attach_args	*pa = aux;
2488 	prop_dictionary_t dict;
2489 	const struct bge_product *bp;
2490 	const struct bge_revision *br;
2491 	pci_chipset_tag_t	pc;
2492 	pci_intr_handle_t	ih;
2493 	const char		*intrstr = NULL;
2494 	bus_dma_segment_t	seg;
2495 	int			rseg;
2496 	uint32_t		hwcfg = 0;
2497 	uint32_t		command;
2498 	struct ifnet		*ifp;
2499 	uint32_t		misccfg;
2500 	void *			kva;
2501 	u_char			eaddr[ETHER_ADDR_LEN];
2502 	pcireg_t		memtype, subid;
2503 	bus_addr_t		memaddr;
2504 	bus_size_t		memsize;
2505 	uint32_t		pm_ctl;
2506 	bool			no_seeprom;
2507 
2508 	bp = bge_lookup(pa);
2509 	KASSERT(bp != NULL);
2510 
2511 	sc->sc_pc = pa->pa_pc;
2512 	sc->sc_pcitag = pa->pa_tag;
2513 	sc->bge_dev = self;
2514 
2515 	pc = sc->sc_pc;
2516 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2517 
2518 	aprint_naive(": Ethernet controller\n");
2519 	aprint_normal(": %s\n", bp->bp_name);
2520 
2521 	/*
2522 	 * Map control/status registers.
2523 	 */
2524 	DPRINTFN(5, ("Map control/status regs\n"));
2525 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2526 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2527 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2528 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2529 
2530 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2531 		aprint_error_dev(sc->bge_dev,
2532 		    "failed to enable memory mapping!\n");
2533 		return;
2534 	}
2535 
2536 	DPRINTFN(5, ("pci_mem_find\n"));
2537 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2538 	switch (memtype) {
2539 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2540 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2541 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2542 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2543 		    &memaddr, &memsize) == 0)
2544 			break;
2545 	default:
2546 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2547 		return;
2548 	}
2549 
2550 	DPRINTFN(5, ("pci_intr_map\n"));
2551 	if (pci_intr_map(pa, &ih)) {
2552 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2553 		return;
2554 	}
2555 
2556 	DPRINTFN(5, ("pci_intr_string\n"));
2557 	intrstr = pci_intr_string(pc, ih);
2558 
2559 	DPRINTFN(5, ("pci_intr_establish\n"));
2560 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2561 
2562 	if (sc->bge_intrhand == NULL) {
2563 		aprint_error_dev(sc->bge_dev,
2564 		    "couldn't establish interrupt%s%s\n",
2565 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2566 		return;
2567 	}
2568 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2569 
2570 	/*
2571 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2572 	 * can clobber the chip's PCI config-space power control registers,
2573 	 * leaving the card in D3 powersave state.
2574 	 * We do not have memory-mapped registers in this state,
2575 	 * so force device into D0 state before starting initialization.
2576 	 */
2577 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2578 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2579 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2580 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2581 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2582 
2583 	/*
2584 	 * Save ASIC rev.
2585 	 */
2586 	sc->bge_chipid =
2587 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2588 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
2589 
2590 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2591 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2592 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2593 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2594 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2595 			    BGE_PCI_GEN2_PRODID_ASICREV);
2596 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2597 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2598 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2599 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2600 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2601 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2602 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2603 			    BGE_PCI_GEN15_PRODID_ASICREV);
2604 		else
2605 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2606 			    BGE_PCI_PRODID_ASICREV);
2607 	}
2608 
2609 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2610 	        &sc->bge_pciecap, NULL) != 0) {
2611 		/* PCIe */
2612 		sc->bge_flags |= BGE_PCIE;
2613 		bge_set_max_readrq(sc);
2614 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2615 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
2616 		/* PCI-X */
2617 		sc->bge_flags |= BGE_PCIX;
2618 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2619 			&sc->bge_pcixcap, NULL) == 0)
2620 			aprint_error_dev(sc->bge_dev,
2621 			    "unable to find PCIX capability\n");
2622 	}
2623 
2624 	/* chipid */
2625 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2626 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2627 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2628 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2629 		sc->bge_flags |= BGE_5700_FAMILY;
2630 
2631 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2632 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2633 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2634 		sc->bge_flags |= BGE_5714_FAMILY;
2635 
2636 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
2637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2641 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2642 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2643 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2645 		sc->bge_flags |= BGE_5755_PLUS;
2646 
2647 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2649 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2650 	    BGE_IS_5755_PLUS(sc) ||
2651 	    BGE_IS_5714_FAMILY(sc))
2652 		sc->bge_flags |= BGE_5750_PLUS;
2653 
2654 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2655 	    BGE_IS_5750_OR_BEYOND(sc))
2656 		sc->bge_flags |= BGE_5705_PLUS;
2657 
2658 	/*
2659 	 * When using the BCM5701 in PCI-X mode, data corruption has
2660 	 * been observed in the first few bytes of some received packets.
2661 	 * Aligning the packet buffer in memory eliminates the corruption.
2662 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2663 	 * which do not support unaligned accesses, we will realign the
2664 	 * payloads by copying the received packets.
2665 	 */
2666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2667 	    sc->bge_flags & BGE_PCIX)
2668 		sc->bge_flags |= BGE_RX_ALIGNBUG;
2669 
2670 	if (BGE_IS_5700_FAMILY(sc))
2671 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
2672 
2673 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2674 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2675 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2676 		sc->bge_flags |= BGE_NO_3LED;
2677 
2678 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2679 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2680 
2681 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2682 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2683 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2684 		sc->bge_flags |= BGE_IS_5788;
2685 
2686 	/*
2687 	 * Some controllers seem to require a special firmware to use
2688 	 * TSO. But the firmware is not available to FreeBSD and Linux
2689 	 * claims that the TSO performed by the firmware is slower than
2690 	 * hardware based TSO. Moreover the firmware based TSO has one
2691 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2692 	 * header is greater than 80 bytes. The workaround for the TSO
2693 	 * bug exist but it seems it's too expensive than not using
2694 	 * TSO at all. Some hardwares also have the TSO bug so limit
2695 	 * the TSO to the controllers that are not affected TSO issues
2696 	 * (e.g. 5755 or higher).
2697 	 */
2698 	if (BGE_IS_5755_PLUS(sc)) {
2699 		/*
2700 		 * BCM5754 and BCM5787 shares the same ASIC id so
2701 		 * explicit device id check is required.
2702 		 */
2703 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2704 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2705 			sc->bge_flags |= BGE_TSO;
2706 	}
2707 
2708 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2709 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2710 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2711 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2712 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2713 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2714 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2715 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2716 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2717 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2718 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2719 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2720 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2721 		sc->bge_flags |= BGE_10_100_ONLY;
2722 
2723 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2724 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2725 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2726 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2727 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2728 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2729 
2730 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2731 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2732 		sc->bge_flags |= BGE_PHY_CRC_BUG;
2733 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2734 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2735 		sc->bge_flags |= BGE_PHY_ADC_BUG;
2736 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2737 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2738 
2739 	if (BGE_IS_5705_PLUS(sc) &&
2740 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2741 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2742 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2743 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2744 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2745 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2746 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2747 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2748 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2749 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2750 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2751 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
2752 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2753 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2754 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2755 			sc->bge_flags |= BGE_PHY_BER_BUG;
2756 	}
2757 
2758 	/*
2759 	 * SEEPROM check.
2760 	 * First check if firmware knows we do not have SEEPROM.
2761 	 */
2762 	if (prop_dictionary_get_bool(device_properties(self),
2763 	     "without-seeprom", &no_seeprom) && no_seeprom)
2764 	 	sc->bge_flags |= BGE_NO_EEPROM;
2765 
2766 	/* Now check the 'ROM failed' bit on the RX CPU */
2767 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2768 		sc->bge_flags |= BGE_NO_EEPROM;
2769 
2770 	/* Try to reset the chip. */
2771 	DPRINTFN(5, ("bge_reset\n"));
2772 	bge_reset(sc);
2773 
2774 	sc->bge_asf_mode = 0;
2775 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2776 	    == BGE_MAGIC_NUMBER)) {
2777 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2778 		    & BGE_HWCFG_ASF) {
2779 			sc->bge_asf_mode |= ASF_ENABLE;
2780 			sc->bge_asf_mode |= ASF_STACKUP;
2781 			if (BGE_IS_5750_OR_BEYOND(sc)) {
2782 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2783 			}
2784 		}
2785 	}
2786 
2787 	/* Try to reset the chip again the nice way. */
2788 	bge_stop_fw(sc);
2789 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2790 	if (bge_reset(sc))
2791 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2792 
2793 	bge_sig_legacy(sc, BGE_RESET_STOP);
2794 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2795 
2796 	if (bge_chipinit(sc)) {
2797 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2798 		bge_release_resources(sc);
2799 		return;
2800 	}
2801 
2802 	/*
2803 	 * Get station address from the EEPROM
2804 	 */
2805 	if (bge_get_eaddr(sc, eaddr)) {
2806 		aprint_error_dev(sc->bge_dev,
2807 		    "failed to read station address\n");
2808 		bge_release_resources(sc);
2809 		return;
2810 	}
2811 
2812 	br = bge_lookup_rev(sc->bge_chipid);
2813 
2814 	if (br == NULL) {
2815 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2816 		    sc->bge_chipid);
2817 	} else {
2818 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2819 		    br->br_name, sc->bge_chipid);
2820 	}
2821 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2822 
2823 	/* Allocate the general information block and ring buffers. */
2824 	if (pci_dma64_available(pa))
2825 		sc->bge_dmatag = pa->pa_dmat64;
2826 	else
2827 		sc->bge_dmatag = pa->pa_dmat;
2828 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2829 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2830 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2831 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2832 		return;
2833 	}
2834 	DPRINTFN(5, ("bus_dmamem_map\n"));
2835 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2836 			   sizeof(struct bge_ring_data), &kva,
2837 			   BUS_DMA_NOWAIT)) {
2838 		aprint_error_dev(sc->bge_dev,
2839 		    "can't map DMA buffers (%zu bytes)\n",
2840 		    sizeof(struct bge_ring_data));
2841 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2842 		return;
2843 	}
2844 	DPRINTFN(5, ("bus_dmamem_create\n"));
2845 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2846 	    sizeof(struct bge_ring_data), 0,
2847 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2848 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2849 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2850 				 sizeof(struct bge_ring_data));
2851 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2852 		return;
2853 	}
2854 	DPRINTFN(5, ("bus_dmamem_load\n"));
2855 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2856 			    sizeof(struct bge_ring_data), NULL,
2857 			    BUS_DMA_NOWAIT)) {
2858 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2859 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2860 				 sizeof(struct bge_ring_data));
2861 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2862 		return;
2863 	}
2864 
2865 	DPRINTFN(5, ("bzero\n"));
2866 	sc->bge_rdata = (struct bge_ring_data *)kva;
2867 
2868 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2869 
2870 	/* Try to allocate memory for jumbo buffers. */
2871 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2872 		if (bge_alloc_jumbo_mem(sc)) {
2873 			aprint_error_dev(sc->bge_dev,
2874 			    "jumbo buffer allocation failed\n");
2875 		} else
2876 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2877 	}
2878 
2879 	/* Set default tuneable values. */
2880 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2881 	sc->bge_rx_coal_ticks = 150;
2882 	sc->bge_rx_max_coal_bds = 64;
2883 #ifdef ORIG_WPAUL_VALUES
2884 	sc->bge_tx_coal_ticks = 150;
2885 	sc->bge_tx_max_coal_bds = 128;
2886 #else
2887 	sc->bge_tx_coal_ticks = 300;
2888 	sc->bge_tx_max_coal_bds = 400;
2889 #endif
2890 	if (BGE_IS_5705_PLUS(sc)) {
2891 		sc->bge_tx_coal_ticks = (12 * 5);
2892 		sc->bge_tx_max_coal_bds = (12 * 5);
2893 			aprint_verbose_dev(sc->bge_dev,
2894 			    "setting short Tx thresholds\n");
2895 	}
2896 
2897 	if (BGE_IS_5705_PLUS(sc))
2898 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2899 	else
2900 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2901 
2902 	/* Set up ifnet structure */
2903 	ifp = &sc->ethercom.ec_if;
2904 	ifp->if_softc = sc;
2905 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2906 	ifp->if_ioctl = bge_ioctl;
2907 	ifp->if_stop = bge_stop;
2908 	ifp->if_start = bge_start;
2909 	ifp->if_init = bge_init;
2910 	ifp->if_watchdog = bge_watchdog;
2911 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2912 	IFQ_SET_READY(&ifp->if_snd);
2913 	DPRINTFN(5, ("strcpy if_xname\n"));
2914 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2915 
2916 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2917 		sc->ethercom.ec_if.if_capabilities |=
2918 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2919 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
2920 		sc->ethercom.ec_if.if_capabilities |=
2921 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2922 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2923 #endif
2924 	sc->ethercom.ec_capabilities |=
2925 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2926 
2927 	if (sc->bge_flags & BGE_TSO)
2928 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2929 
2930 	/*
2931 	 * Do MII setup.
2932 	 */
2933 	DPRINTFN(5, ("mii setup\n"));
2934 	sc->bge_mii.mii_ifp = ifp;
2935 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2936 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2937 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2938 
2939 	/*
2940 	 * Figure out what sort of media we have by checking the
2941 	 * hardware config word in the first 32k of NIC internal memory,
2942 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2943 	 * cards, this value appears to be unset. If that's the
2944 	 * case, we have to rely on identifying the NIC by its PCI
2945 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2946 	 */
2947 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2948 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2949 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2950 		bge_read_eeprom(sc, (void *)&hwcfg,
2951 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2952 		hwcfg = be32toh(hwcfg);
2953 	}
2954 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2955 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2956 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2957 		if (BGE_IS_5714_FAMILY(sc))
2958 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
2959 		else
2960 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
2961 	}
2962 
2963 	/* set phyflags before mii_attach() */
2964 	dict = device_properties(self);
2965 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2966 
2967 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2968 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2969 		    bge_ifmedia_sts);
2970 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2971 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2972 			    0, NULL);
2973 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2974 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2975 		/* Pretend the user requested this setting */
2976 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2977 	} else {
2978 		/*
2979 		 * Do transceiver setup and tell the firmware the
2980 		 * driver is down so we can try to get access the
2981 		 * probe if ASF is running.  Retry a couple of times
2982 		 * if we get a conflict with the ASF firmware accessing
2983 		 * the PHY.
2984 		 */
2985 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2986 		bge_asf_driver_up(sc);
2987 
2988 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2989 			     bge_ifmedia_sts);
2990 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2991 			   MII_PHY_ANY, MII_OFFSET_ANY,
2992 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
2993 
2994 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2995 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2996 			ifmedia_add(&sc->bge_mii.mii_media,
2997 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2998 			ifmedia_set(&sc->bge_mii.mii_media,
2999 				    IFM_ETHER|IFM_MANUAL);
3000 		} else
3001 			ifmedia_set(&sc->bge_mii.mii_media,
3002 				    IFM_ETHER|IFM_AUTO);
3003 
3004 		/*
3005 		 * Now tell the firmware we are going up after probing the PHY
3006 		 */
3007 		if (sc->bge_asf_mode & ASF_STACKUP)
3008 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3009 	}
3010 
3011 	/*
3012 	 * Call MI attach routine.
3013 	 */
3014 	DPRINTFN(5, ("if_attach\n"));
3015 	if_attach(ifp);
3016 	DPRINTFN(5, ("ether_ifattach\n"));
3017 	ether_ifattach(ifp, eaddr);
3018 #if NRND > 0
3019 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3020 		RND_TYPE_NET, 0);
3021 #endif
3022 #ifdef BGE_EVENT_COUNTERS
3023 	/*
3024 	 * Attach event counters.
3025 	 */
3026 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3027 	    NULL, device_xname(sc->bge_dev), "intr");
3028 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3029 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3030 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3031 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3032 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3033 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3034 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3035 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3036 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3037 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3038 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3039 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3040 #endif /* BGE_EVENT_COUNTERS */
3041 	DPRINTFN(5, ("callout_init\n"));
3042 	callout_init(&sc->bge_timeout, 0);
3043 
3044 	if (pmf_device_register(self, NULL, NULL))
3045 		pmf_class_network_register(self, ifp);
3046 	else
3047 		aprint_error_dev(self, "couldn't establish power handler\n");
3048 
3049 #ifdef BGE_DEBUG
3050 	bge_debug_info(sc);
3051 #endif
3052 }
3053 
3054 static void
3055 bge_release_resources(struct bge_softc *sc)
3056 {
3057 	if (sc->bge_vpd_prodname != NULL)
3058 		free(sc->bge_vpd_prodname, M_DEVBUF);
3059 
3060 	if (sc->bge_vpd_readonly != NULL)
3061 		free(sc->bge_vpd_readonly, M_DEVBUF);
3062 }
3063 
3064 static int
3065 bge_reset(struct bge_softc *sc)
3066 {
3067 	uint32_t cachesize, command, pcistate, marbmode;
3068 #if 0
3069 	uint32_t new_pcistate;
3070 #endif
3071 	pcireg_t devctl, reg;
3072 	int i, val;
3073 	void (*write_op)(struct bge_softc *, int, int);
3074 
3075 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3076 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3077 	    	if (sc->bge_flags & BGE_PCIE)
3078 			write_op = bge_writemem_direct;
3079 		else
3080 			write_op = bge_writemem_ind;
3081 	} else
3082 		write_op = bge_writereg_ind;
3083 
3084 	/* Save some important PCI state. */
3085 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3086 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3087 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3088 
3089 	/* Step 5a: Enable memory arbiter. */
3090 	marbmode = 0;
3091 	if (BGE_IS_5714_FAMILY(sc))
3092 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3093 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3094 
3095 	/* Step 5b-5d: */
3096 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3097 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3098 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3099 
3100 	/* XXX ???: Disable fastboot on controllers that support it. */
3101 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3102 	    BGE_IS_5755_PLUS(sc))
3103 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3104 
3105 	/*
3106 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3107 	 * When firmware finishes its initialization it will
3108 	 * write ~BGE_MAGIC_NUMBER to the same location.
3109 	 */
3110 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3111 
3112 	/* Step 7: */
3113 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3114 	/*
3115 	 * XXX: from FreeBSD/Linux; no documentation
3116 	 */
3117 	if (sc->bge_flags & BGE_PCIE) {
3118 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3119 			/* PCI Express 1.0 system */
3120 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3121 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3122 			/*
3123 			 * Prevent PCI Express link training
3124 			 * during global reset.
3125 			 */
3126 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3127 			val |= (1<<29);
3128 		}
3129 	}
3130 
3131 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3132 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3133 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3134 		    i | BGE_VCPU_STATUS_DRV_RESET);
3135 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3136 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3137 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3138 	}
3139 
3140 	/*
3141 	 * Set GPHY Power Down Override to leave GPHY
3142 	 * powered up in D0 uninitialized.
3143 	 */
3144 	if (BGE_IS_5705_PLUS(sc))
3145 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3146 
3147 	/* XXX 5721, 5751 and 5752 */
3148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3149 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3150 
3151 	/* Issue global reset */
3152 	write_op(sc, BGE_MISC_CFG, val);
3153 
3154 	/* Step 8: wait for complete */
3155 	if (sc->bge_flags & BGE_PCIE)
3156 		delay(100*1000); /* too big */
3157 	else
3158 		delay(100);
3159 
3160 	/* From Linux: dummy read to flush PCI posted writes */
3161 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3162 
3163 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3164 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3165 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3166 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3167 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
3168 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3169 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3170 
3171 	/* Step 11: disable PCI-X Relaxed Ordering. */
3172 	if (sc->bge_flags & BGE_PCIX) {
3173 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3174 		    + PCI_PCIX_CMD);
3175 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3176 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3177 	}
3178 
3179 	if (sc->bge_flags & BGE_PCIE) {
3180 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3181 			DELAY(500000);
3182 			/* XXX: Magic Numbers */
3183 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3184 			    BGE_PCI_UNKNOWN0);
3185 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3186 			    BGE_PCI_UNKNOWN0,
3187 			    reg | (1 << 15));
3188 		}
3189 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3190 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3191 		/* Clear enable no snoop and disable relaxed ordering. */
3192 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3193 		/* Set PCIE max payload size to 128. */
3194 		devctl &= ~(0x00e0);
3195 		/* Clear device status register. Write 1b to clear */
3196 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3197 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3198 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3199 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3200 	}
3201 
3202 	/* Step 12: Enable memory arbiter. */
3203 	marbmode = 0;
3204 	if (BGE_IS_5714_FAMILY(sc))
3205 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3206 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3207 
3208 	/* Step 17: Poll until the firmware iitializeation is complete */
3209 	bge_poll_fw(sc);
3210 
3211 	/* XXX 5721, 5751 and 5752 */
3212 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3213 		/* Step 19: */
3214 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3215 		/* Step 20: */
3216 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3217 	}
3218 
3219 	/*
3220 	 * Step 18: wirte mac mode
3221 	 * XXX Write 0x0c for 5703S and 5704S
3222 	 */
3223 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3224 
3225 
3226 	/* Step 21: 5822 B0 errata */
3227 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3228 		pcireg_t msidata;
3229 
3230 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3231 		    BGE_PCI_MSI_DATA);
3232 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3233 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3234 		    msidata);
3235 	}
3236 
3237 	/* Step 23: restore cache line size */
3238 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3239 
3240 #if 0
3241 	/*
3242 	 * XXX Wait for the value of the PCISTATE register to
3243 	 * return to its original pre-reset state. This is a
3244 	 * fairly good indicator of reset completion. If we don't
3245 	 * wait for the reset to fully complete, trying to read
3246 	 * from the device's non-PCI registers may yield garbage
3247 	 * results.
3248 	 */
3249 	for (i = 0; i < BGE_TIMEOUT; i++) {
3250 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3251 		    BGE_PCI_PCISTATE);
3252 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3253 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3254 			break;
3255 		DELAY(10);
3256 	}
3257 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3258 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3259 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3260 	}
3261 #endif
3262 
3263 	/* Step 28: Fix up byte swapping */
3264 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3265 
3266 	/* Tell the ASF firmware we are up */
3267 	if (sc->bge_asf_mode & ASF_STACKUP)
3268 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3269 
3270 	/*
3271 	 * The 5704 in TBI mode apparently needs some special
3272 	 * adjustment to insure the SERDES drive level is set
3273 	 * to 1.2V.
3274 	 */
3275 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3276 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3277 		uint32_t serdescfg;
3278 
3279 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3280 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3281 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3282 	}
3283 
3284 	if (sc->bge_flags & BGE_PCIE &&
3285 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3286 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3287 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3288 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3289 		uint32_t v;
3290 
3291 		/* Enable PCI Express bug fix */
3292 		v = CSR_READ_4(sc, 0x7c00);
3293 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3294 	}
3295 	DELAY(10000);
3296 
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Frame reception handling. This is called if there's a frame
3302  * on the receive return list.
3303  *
3304  * Note: we have to be able to handle two possibilities here:
3305  * 1) the frame is from the jumbo recieve ring
3306  * 2) the frame is from the standard receive ring
3307  */
3308 
3309 static void
3310 bge_rxeof(struct bge_softc *sc)
3311 {
3312 	struct ifnet *ifp;
3313 	uint16_t rx_prod, rx_cons;
3314 	int stdcnt = 0, jumbocnt = 0;
3315 	bus_dmamap_t dmamap;
3316 	bus_addr_t offset, toff;
3317 	bus_size_t tlen;
3318 	int tosync;
3319 
3320 	rx_cons = sc->bge_rx_saved_considx;
3321 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3322 
3323 	/* Nothing to do */
3324 	if (rx_cons == rx_prod)
3325 		return;
3326 
3327 	ifp = &sc->ethercom.ec_if;
3328 
3329 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3330 	    offsetof(struct bge_ring_data, bge_status_block),
3331 	    sizeof (struct bge_status_block),
3332 	    BUS_DMASYNC_POSTREAD);
3333 
3334 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3335 	tosync = rx_prod - rx_cons;
3336 
3337 #if NRND > 0
3338 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3339 		rnd_add_uint32(&sc->rnd_source, tosync);
3340 #endif
3341 
3342 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3343 
3344 	if (tosync < 0) {
3345 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
3346 		    sizeof (struct bge_rx_bd);
3347 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3348 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3349 		tosync = -tosync;
3350 	}
3351 
3352 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3353 	    offset, tosync * sizeof (struct bge_rx_bd),
3354 	    BUS_DMASYNC_POSTREAD);
3355 
3356 	while (rx_cons != rx_prod) {
3357 		struct bge_rx_bd	*cur_rx;
3358 		uint32_t		rxidx;
3359 		struct mbuf		*m = NULL;
3360 
3361 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3362 
3363 		rxidx = cur_rx->bge_idx;
3364 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3365 
3366 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3367 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3368 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3369 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3370 			jumbocnt++;
3371 			bus_dmamap_sync(sc->bge_dmatag,
3372 			    sc->bge_cdata.bge_rx_jumbo_map,
3373 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3374 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3375 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3376 				ifp->if_ierrors++;
3377 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3378 				continue;
3379 			}
3380 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3381 					     NULL)== ENOBUFS) {
3382 				ifp->if_ierrors++;
3383 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3384 				continue;
3385 			}
3386 		} else {
3387 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3388 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3389 
3390 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3391 			stdcnt++;
3392 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3393 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3394 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3395 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3396 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3397 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3398 				ifp->if_ierrors++;
3399 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3400 				continue;
3401 			}
3402 			if (bge_newbuf_std(sc, sc->bge_std,
3403 			    NULL, dmamap) == ENOBUFS) {
3404 				ifp->if_ierrors++;
3405 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3406 				continue;
3407 			}
3408 		}
3409 
3410 		ifp->if_ipackets++;
3411 #ifndef __NO_STRICT_ALIGNMENT
3412 		/*
3413 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3414 		 * the Rx buffer has the layer-2 header unaligned.
3415 		 * If our CPU requires alignment, re-align by copying.
3416 		 */
3417 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3418 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3419 				cur_rx->bge_len);
3420 			m->m_data += ETHER_ALIGN;
3421 		}
3422 #endif
3423 
3424 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3425 		m->m_pkthdr.rcvif = ifp;
3426 
3427 		/*
3428 		 * Handle BPF listeners. Let the BPF user see the packet.
3429 		 */
3430 		bpf_mtap(ifp, m);
3431 
3432 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3433 
3434 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3435 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3436 		/*
3437 		 * Rx transport checksum-offload may also
3438 		 * have bugs with packets which, when transmitted,
3439 		 * were `runts' requiring padding.
3440 		 */
3441 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3442 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3443 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3444 			m->m_pkthdr.csum_data =
3445 			    cur_rx->bge_tcp_udp_csum;
3446 			m->m_pkthdr.csum_flags |=
3447 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3448 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3449 		}
3450 
3451 		/*
3452 		 * If we received a packet with a vlan tag, pass it
3453 		 * to vlan_input() instead of ether_input().
3454 		 */
3455 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3456 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3457 		}
3458 
3459 		(*ifp->if_input)(ifp, m);
3460 	}
3461 
3462 	sc->bge_rx_saved_considx = rx_cons;
3463 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3464 	if (stdcnt)
3465 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3466 	if (jumbocnt)
3467 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3468 }
3469 
3470 static void
3471 bge_txeof(struct bge_softc *sc)
3472 {
3473 	struct bge_tx_bd *cur_tx = NULL;
3474 	struct ifnet *ifp;
3475 	struct txdmamap_pool_entry *dma;
3476 	bus_addr_t offset, toff;
3477 	bus_size_t tlen;
3478 	int tosync;
3479 	struct mbuf *m;
3480 
3481 	ifp = &sc->ethercom.ec_if;
3482 
3483 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3484 	    offsetof(struct bge_ring_data, bge_status_block),
3485 	    sizeof (struct bge_status_block),
3486 	    BUS_DMASYNC_POSTREAD);
3487 
3488 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3489 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3490 	    sc->bge_tx_saved_considx;
3491 
3492 #if NRND > 0
3493 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3494 		rnd_add_uint32(&sc->rnd_source, tosync);
3495 #endif
3496 
3497 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3498 
3499 	if (tosync < 0) {
3500 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3501 		    sizeof (struct bge_tx_bd);
3502 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3503 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3504 		tosync = -tosync;
3505 	}
3506 
3507 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3508 	    offset, tosync * sizeof (struct bge_tx_bd),
3509 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3510 
3511 	/*
3512 	 * Go through our tx ring and free mbufs for those
3513 	 * frames that have been sent.
3514 	 */
3515 	while (sc->bge_tx_saved_considx !=
3516 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3517 		uint32_t		idx = 0;
3518 
3519 		idx = sc->bge_tx_saved_considx;
3520 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3521 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3522 			ifp->if_opackets++;
3523 		m = sc->bge_cdata.bge_tx_chain[idx];
3524 		if (m != NULL) {
3525 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3526 			dma = sc->txdma[idx];
3527 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3528 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3529 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3530 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3531 			sc->txdma[idx] = NULL;
3532 
3533 			m_freem(m);
3534 		}
3535 		sc->bge_txcnt--;
3536 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3537 		ifp->if_timer = 0;
3538 	}
3539 
3540 	if (cur_tx != NULL)
3541 		ifp->if_flags &= ~IFF_OACTIVE;
3542 }
3543 
3544 static int
3545 bge_intr(void *xsc)
3546 {
3547 	struct bge_softc *sc;
3548 	struct ifnet *ifp;
3549 	uint32_t statusword;
3550 
3551 	sc = xsc;
3552 	ifp = &sc->ethercom.ec_if;
3553 
3554 	/* It is possible for the interrupt to arrive before
3555 	 * the status block is updated prior to the interrupt.
3556 	 * Reading the PCI State register will confirm whether the
3557 	 * interrupt is ours and will flush the status block.
3558 	 */
3559 
3560 	/* read status word from status block */
3561 	statusword = sc->bge_rdata->bge_status_block.bge_status;
3562 
3563 	if ((statusword & BGE_STATFLAG_UPDATED) ||
3564 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3565 		/* Ack interrupt and stop others from occuring. */
3566 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3567 
3568 		BGE_EVCNT_INCR(sc->bge_ev_intr);
3569 
3570 		/* clear status word */
3571 		sc->bge_rdata->bge_status_block.bge_status = 0;
3572 
3573 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3574 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3575 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3576 			bge_link_upd(sc);
3577 
3578 		if (ifp->if_flags & IFF_RUNNING) {
3579 			/* Check RX return ring producer/consumer */
3580 			bge_rxeof(sc);
3581 
3582 			/* Check TX ring producer/consumer */
3583 			bge_txeof(sc);
3584 		}
3585 
3586 		if (sc->bge_pending_rxintr_change) {
3587 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3588 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3589 			uint32_t junk;
3590 
3591 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3592 			DELAY(10);
3593 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3594 
3595 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3596 			DELAY(10);
3597 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3598 
3599 			sc->bge_pending_rxintr_change = 0;
3600 		}
3601 		bge_handle_events(sc);
3602 
3603 		/* Re-enable interrupts. */
3604 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3605 
3606 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3607 			bge_start(ifp);
3608 
3609 		return 1;
3610 	} else
3611 		return 0;
3612 }
3613 
3614 static void
3615 bge_asf_driver_up(struct bge_softc *sc)
3616 {
3617 	if (sc->bge_asf_mode & ASF_STACKUP) {
3618 		/* Send ASF heartbeat aprox. every 2s */
3619 		if (sc->bge_asf_count)
3620 			sc->bge_asf_count --;
3621 		else {
3622 			sc->bge_asf_count = 2;
3623 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3624 			    BGE_FW_DRV_ALIVE);
3625 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3626 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3627 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3628 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3629 		}
3630 	}
3631 }
3632 
3633 static void
3634 bge_tick(void *xsc)
3635 {
3636 	struct bge_softc *sc = xsc;
3637 	struct mii_data *mii = &sc->bge_mii;
3638 	int s;
3639 
3640 	s = splnet();
3641 
3642 	if (BGE_IS_5705_PLUS(sc))
3643 		bge_stats_update_regs(sc);
3644 	else
3645 		bge_stats_update(sc);
3646 
3647 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3648 		/*
3649 		 * Since in TBI mode auto-polling can't be used we should poll
3650 		 * link status manually. Here we register pending link event
3651 		 * and trigger interrupt.
3652 		 */
3653 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3654 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3655 	} else {
3656 		/*
3657 		 * Do not touch PHY if we have link up. This could break
3658 		 * IPMI/ASF mode or produce extra input errors.
3659 		 * (extra input errors was reported for bcm5701 & bcm5704).
3660 		 */
3661 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3662 			mii_tick(mii);
3663 	}
3664 
3665 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3666 
3667 	splx(s);
3668 }
3669 
3670 static void
3671 bge_stats_update_regs(struct bge_softc *sc)
3672 {
3673 	struct ifnet *ifp = &sc->ethercom.ec_if;
3674 
3675 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3676 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3677 
3678 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3679 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3680 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3681 }
3682 
3683 static void
3684 bge_stats_update(struct bge_softc *sc)
3685 {
3686 	struct ifnet *ifp = &sc->ethercom.ec_if;
3687 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3688 
3689 #define READ_STAT(sc, stats, stat) \
3690 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3691 
3692 	ifp->if_collisions +=
3693 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3694 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3695 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3696 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3697 	  ifp->if_collisions;
3698 
3699 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3700 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3701 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3702 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3703 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3704 		      READ_STAT(sc, stats,
3705 		      		xoffPauseFramesReceived.bge_addr_lo));
3706 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3707 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3708 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3709 		      READ_STAT(sc, stats,
3710 		      		macControlFramesReceived.bge_addr_lo));
3711 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3712 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3713 
3714 #undef READ_STAT
3715 
3716 #ifdef notdef
3717 	ifp->if_collisions +=
3718 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3719 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3720 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3721 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3722 	   ifp->if_collisions;
3723 #endif
3724 }
3725 
3726 /*
3727  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3728  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3729  * but when such padded frames employ the  bge IP/TCP checksum offload,
3730  * the hardware checksum assist gives incorrect results (possibly
3731  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3732  * If we pad such runts with zeros, the onboard checksum comes out correct.
3733  */
3734 static inline int
3735 bge_cksum_pad(struct mbuf *pkt)
3736 {
3737 	struct mbuf *last = NULL;
3738 	int padlen;
3739 
3740 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3741 
3742 	/* if there's only the packet-header and we can pad there, use it. */
3743 	if (pkt->m_pkthdr.len == pkt->m_len &&
3744 	    M_TRAILINGSPACE(pkt) >= padlen) {
3745 		last = pkt;
3746 	} else {
3747 		/*
3748 		 * Walk packet chain to find last mbuf. We will either
3749 		 * pad there, or append a new mbuf and pad it
3750 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3751 		 */
3752 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3753 	      	       continue; /* do nothing */
3754 		}
3755 
3756 		/* `last' now points to last in chain. */
3757 		if (M_TRAILINGSPACE(last) < padlen) {
3758 			/* Allocate new empty mbuf, pad it. Compact later. */
3759 			struct mbuf *n;
3760 			MGET(n, M_DONTWAIT, MT_DATA);
3761 			if (n == NULL)
3762 				return ENOBUFS;
3763 			n->m_len = 0;
3764 			last->m_next = n;
3765 			last = n;
3766 		}
3767 	}
3768 
3769 	KDASSERT(!M_READONLY(last));
3770 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3771 
3772 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3773 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3774 	last->m_len += padlen;
3775 	pkt->m_pkthdr.len += padlen;
3776 	return 0;
3777 }
3778 
3779 /*
3780  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3781  */
3782 static inline int
3783 bge_compact_dma_runt(struct mbuf *pkt)
3784 {
3785 	struct mbuf	*m, *prev;
3786 	int 		totlen, prevlen;
3787 
3788 	prev = NULL;
3789 	totlen = 0;
3790 	prevlen = -1;
3791 
3792 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3793 		int mlen = m->m_len;
3794 		int shortfall = 8 - mlen ;
3795 
3796 		totlen += mlen;
3797 		if (mlen == 0) {
3798 			continue;
3799 		}
3800 		if (mlen >= 8)
3801 			continue;
3802 
3803 		/* If we get here, mbuf data is too small for DMA engine.
3804 		 * Try to fix by shuffling data to prev or next in chain.
3805 		 * If that fails, do a compacting deep-copy of the whole chain.
3806 		 */
3807 
3808 		/* Internal frag. If fits in prev, copy it there. */
3809 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3810 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3811 			prev->m_len += mlen;
3812 			m->m_len = 0;
3813 			/* XXX stitch chain */
3814 			prev->m_next = m_free(m);
3815 			m = prev;
3816 			continue;
3817 		}
3818 		else if (m->m_next != NULL &&
3819 			     M_TRAILINGSPACE(m) >= shortfall &&
3820 			     m->m_next->m_len >= (8 + shortfall)) {
3821 		    /* m is writable and have enough data in next, pull up. */
3822 
3823 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3824 			    shortfall);
3825 			m->m_len += shortfall;
3826 			m->m_next->m_len -= shortfall;
3827 			m->m_next->m_data += shortfall;
3828 		}
3829 		else if (m->m_next == NULL || 1) {
3830 		  	/* Got a runt at the very end of the packet.
3831 			 * borrow data from the tail of the preceding mbuf and
3832 			 * update its length in-place. (The original data is still
3833 			 * valid, so we can do this even if prev is not writable.)
3834 			 */
3835 
3836 			/* if we'd make prev a runt, just move all of its data. */
3837 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3838 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3839 
3840 			if ((prev->m_len - shortfall) < 8)
3841 				shortfall = prev->m_len;
3842 
3843 #ifdef notyet	/* just do the safe slow thing for now */
3844 			if (!M_READONLY(m)) {
3845 				if (M_LEADINGSPACE(m) < shorfall) {
3846 					void *m_dat;
3847 					m_dat = (m->m_flags & M_PKTHDR) ?
3848 					  m->m_pktdat : m->dat;
3849 					memmove(m_dat, mtod(m, void*), m->m_len);
3850 					m->m_data = m_dat;
3851 				    }
3852 			} else
3853 #endif	/* just do the safe slow thing */
3854 			{
3855 				struct mbuf * n = NULL;
3856 				int newprevlen = prev->m_len - shortfall;
3857 
3858 				MGET(n, M_NOWAIT, MT_DATA);
3859 				if (n == NULL)
3860 				   return ENOBUFS;
3861 				KASSERT(m->m_len + shortfall < MLEN
3862 					/*,
3863 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3864 
3865 				/* first copy the data we're stealing from prev */
3866 				memcpy(n->m_data, prev->m_data + newprevlen,
3867 				    shortfall);
3868 
3869 				/* update prev->m_len accordingly */
3870 				prev->m_len -= shortfall;
3871 
3872 				/* copy data from runt m */
3873 				memcpy(n->m_data + shortfall, m->m_data,
3874 				    m->m_len);
3875 
3876 				/* n holds what we stole from prev, plus m */
3877 				n->m_len = shortfall + m->m_len;
3878 
3879 				/* stitch n into chain and free m */
3880 				n->m_next = m->m_next;
3881 				prev->m_next = n;
3882 				/* KASSERT(m->m_next == NULL); */
3883 				m->m_next = NULL;
3884 				m_free(m);
3885 				m = n;	/* for continuing loop */
3886 			}
3887 		}
3888 		prevlen = m->m_len;
3889 	}
3890 	return 0;
3891 }
3892 
3893 /*
3894  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3895  * pointers to descriptors.
3896  */
3897 static int
3898 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3899 {
3900 	struct bge_tx_bd	*f = NULL;
3901 	uint32_t		frag, cur;
3902 	uint16_t		csum_flags = 0;
3903 	uint16_t		txbd_tso_flags = 0;
3904 	struct txdmamap_pool_entry *dma;
3905 	bus_dmamap_t dmamap;
3906 	int			i = 0;
3907 	struct m_tag		*mtag;
3908 	int			use_tso, maxsegsize, error;
3909 
3910 	cur = frag = *txidx;
3911 
3912 	if (m_head->m_pkthdr.csum_flags) {
3913 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3914 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3915 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3916 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3917 	}
3918 
3919 	/*
3920 	 * If we were asked to do an outboard checksum, and the NIC
3921 	 * has the bug where it sometimes adds in the Ethernet padding,
3922 	 * explicitly pad with zeros so the cksum will be correct either way.
3923 	 * (For now, do this for all chip versions, until newer
3924 	 * are confirmed to not require the workaround.)
3925 	 */
3926 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3927 #ifdef notyet
3928 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3929 #endif
3930 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3931 		goto check_dma_bug;
3932 
3933 	if (bge_cksum_pad(m_head) != 0)
3934 	    return ENOBUFS;
3935 
3936 check_dma_bug:
3937 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3938 		goto doit;
3939 
3940 	/*
3941 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3942 	 * less than eight bytes.  If we encounter a teeny mbuf
3943 	 * at the end of a chain, we can pad.  Otherwise, copy.
3944 	 */
3945 	if (bge_compact_dma_runt(m_head) != 0)
3946 		return ENOBUFS;
3947 
3948 doit:
3949 	dma = SLIST_FIRST(&sc->txdma_list);
3950 	if (dma == NULL)
3951 		return ENOBUFS;
3952 	dmamap = dma->dmamap;
3953 
3954 	/*
3955 	 * Set up any necessary TSO state before we start packing...
3956 	 */
3957 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3958 	if (!use_tso) {
3959 		maxsegsize = 0;
3960 	} else {	/* TSO setup */
3961 		unsigned  mss;
3962 		struct ether_header *eh;
3963 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3964 		struct mbuf * m0 = m_head;
3965 		struct ip *ip;
3966 		struct tcphdr *th;
3967 		int iphl, hlen;
3968 
3969 		/*
3970 		 * XXX It would be nice if the mbuf pkthdr had offset
3971 		 * fields for the protocol headers.
3972 		 */
3973 
3974 		eh = mtod(m0, struct ether_header *);
3975 		switch (htons(eh->ether_type)) {
3976 		case ETHERTYPE_IP:
3977 			offset = ETHER_HDR_LEN;
3978 			break;
3979 
3980 		case ETHERTYPE_VLAN:
3981 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3982 			break;
3983 
3984 		default:
3985 			/*
3986 			 * Don't support this protocol or encapsulation.
3987 			 */
3988 			return ENOBUFS;
3989 		}
3990 
3991 		/*
3992 		 * TCP/IP headers are in the first mbuf; we can do
3993 		 * this the easy way.
3994 		 */
3995 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3996 		hlen = iphl + offset;
3997 		if (__predict_false(m0->m_len <
3998 				    (hlen + sizeof(struct tcphdr)))) {
3999 
4000 			aprint_debug_dev(sc->bge_dev,
4001 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4002 			    "not handled yet\n",
4003 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4004 #ifdef NOTYET
4005 			/*
4006 			 * XXX jonathan@NetBSD.org: untested.
4007 			 * how to force  this branch to be taken?
4008 			 */
4009 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4010 
4011 			m_copydata(m0, offset, sizeof(ip), &ip);
4012 			m_copydata(m0, hlen, sizeof(th), &th);
4013 
4014 			ip.ip_len = 0;
4015 
4016 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4017 			    sizeof(ip.ip_len), &ip.ip_len);
4018 
4019 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4020 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4021 
4022 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4023 			    sizeof(th.th_sum), &th.th_sum);
4024 
4025 			hlen += th.th_off << 2;
4026 			iptcp_opt_words	= hlen;
4027 #else
4028 			/*
4029 			 * if_wm "hard" case not yet supported, can we not
4030 			 * mandate it out of existence?
4031 			 */
4032 			(void) ip; (void)th; (void) ip_tcp_hlen;
4033 
4034 			return ENOBUFS;
4035 #endif
4036 		} else {
4037 			ip = (struct ip *) (mtod(m0, char *) + offset);
4038 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4039 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4040 
4041 			/* Total IP/TCP options, in 32-bit words */
4042 			iptcp_opt_words = (ip_tcp_hlen
4043 					   - sizeof(struct tcphdr)
4044 					   - sizeof(struct ip)) >> 2;
4045 		}
4046 		if (BGE_IS_5750_OR_BEYOND(sc)) {
4047 			th->th_sum = 0;
4048 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4049 		} else {
4050 			/*
4051 			 * XXX jonathan@NetBSD.org: 5705 untested.
4052 			 * Requires TSO firmware patch for 5701/5703/5704.
4053 			 */
4054 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4055 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4056 		}
4057 
4058 		mss = m_head->m_pkthdr.segsz;
4059 		txbd_tso_flags |=
4060 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4061 		    BGE_TXBDFLAG_CPU_POST_DMA;
4062 
4063 		/*
4064 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4065 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4066 		 * the NIC copies 40 bytes of IP/TCP header from the
4067 		 * supplied header into the IP/TCP header portion of
4068 		 * each post-TSO-segment. If the supplied packet has IP or
4069 		 * TCP options, we need to tell the NIC to copy those extra
4070 		 * bytes into each  post-TSO header, in addition to the normal
4071 		 * 40-byte IP/TCP header (and to leave space accordingly).
4072 		 * Unfortunately, the driver encoding of option length
4073 		 * varies across different ASIC families.
4074 		 */
4075 		tcp_seg_flags = 0;
4076 		if (iptcp_opt_words) {
4077 			if (BGE_IS_5705_PLUS(sc)) {
4078 				tcp_seg_flags =
4079 					iptcp_opt_words << 11;
4080 			} else {
4081 				txbd_tso_flags |=
4082 					iptcp_opt_words << 12;
4083 			}
4084 		}
4085 		maxsegsize = mss | tcp_seg_flags;
4086 		ip->ip_len = htons(mss + ip_tcp_hlen);
4087 
4088 	}	/* TSO setup */
4089 
4090 	/*
4091 	 * Start packing the mbufs in this chain into
4092 	 * the fragment pointers. Stop when we run out
4093 	 * of fragments or hit the end of the mbuf chain.
4094 	 */
4095 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4096 	    BUS_DMA_NOWAIT);
4097 	if (error)
4098 		return ENOBUFS;
4099 	/*
4100 	 * Sanity check: avoid coming within 16 descriptors
4101 	 * of the end of the ring.
4102 	 */
4103 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4104 		BGE_TSO_PRINTF(("%s: "
4105 		    " dmamap_load_mbuf too close to ring wrap\n",
4106 		    device_xname(sc->bge_dev)));
4107 		goto fail_unload;
4108 	}
4109 
4110 	mtag = sc->ethercom.ec_nvlans ?
4111 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4112 
4113 
4114 	/* Iterate over dmap-map fragments. */
4115 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4116 		f = &sc->bge_rdata->bge_tx_ring[frag];
4117 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4118 			break;
4119 
4120 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4121 		f->bge_len = dmamap->dm_segs[i].ds_len;
4122 
4123 		/*
4124 		 * For 5751 and follow-ons, for TSO we must turn
4125 		 * off checksum-assist flag in the tx-descr, and
4126 		 * supply the ASIC-revision-specific encoding
4127 		 * of TSO flags and segsize.
4128 		 */
4129 		if (use_tso) {
4130 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4131 				f->bge_rsvd = maxsegsize;
4132 				f->bge_flags = csum_flags | txbd_tso_flags;
4133 			} else {
4134 				f->bge_rsvd = 0;
4135 				f->bge_flags =
4136 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4137 			}
4138 		} else {
4139 			f->bge_rsvd = 0;
4140 			f->bge_flags = csum_flags;
4141 		}
4142 
4143 		if (mtag != NULL) {
4144 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4145 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4146 		} else {
4147 			f->bge_vlan_tag = 0;
4148 		}
4149 		cur = frag;
4150 		BGE_INC(frag, BGE_TX_RING_CNT);
4151 	}
4152 
4153 	if (i < dmamap->dm_nsegs) {
4154 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4155 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4156 		goto fail_unload;
4157 	}
4158 
4159 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4160 	    BUS_DMASYNC_PREWRITE);
4161 
4162 	if (frag == sc->bge_tx_saved_considx) {
4163 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4164 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4165 
4166 		goto fail_unload;
4167 	}
4168 
4169 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4170 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4171 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4172 	sc->txdma[cur] = dma;
4173 	sc->bge_txcnt += dmamap->dm_nsegs;
4174 
4175 	*txidx = frag;
4176 
4177 	return 0;
4178 
4179 fail_unload:
4180 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4181 
4182 	return ENOBUFS;
4183 }
4184 
4185 /*
4186  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4187  * to the mbuf data regions directly in the transmit descriptors.
4188  */
4189 static void
4190 bge_start(struct ifnet *ifp)
4191 {
4192 	struct bge_softc *sc;
4193 	struct mbuf *m_head = NULL;
4194 	uint32_t prodidx;
4195 	int pkts = 0;
4196 
4197 	sc = ifp->if_softc;
4198 
4199 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4200 		return;
4201 
4202 	prodidx = sc->bge_tx_prodidx;
4203 
4204 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4205 		IFQ_POLL(&ifp->if_snd, m_head);
4206 		if (m_head == NULL)
4207 			break;
4208 
4209 #if 0
4210 		/*
4211 		 * XXX
4212 		 * safety overkill.  If this is a fragmented packet chain
4213 		 * with delayed TCP/UDP checksums, then only encapsulate
4214 		 * it if we have enough descriptors to handle the entire
4215 		 * chain at once.
4216 		 * (paranoia -- may not actually be needed)
4217 		 */
4218 		if (m_head->m_flags & M_FIRSTFRAG &&
4219 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4220 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4221 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4222 				ifp->if_flags |= IFF_OACTIVE;
4223 				break;
4224 			}
4225 		}
4226 #endif
4227 
4228 		/*
4229 		 * Pack the data into the transmit ring. If we
4230 		 * don't have room, set the OACTIVE flag and wait
4231 		 * for the NIC to drain the ring.
4232 		 */
4233 		if (bge_encap(sc, m_head, &prodidx)) {
4234 			ifp->if_flags |= IFF_OACTIVE;
4235 			break;
4236 		}
4237 
4238 		/* now we are committed to transmit the packet */
4239 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4240 		pkts++;
4241 
4242 		/*
4243 		 * If there's a BPF listener, bounce a copy of this frame
4244 		 * to him.
4245 		 */
4246 		bpf_mtap(ifp, m_head);
4247 	}
4248 	if (pkts == 0)
4249 		return;
4250 
4251 	/* Transmit */
4252 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4253 	/* 5700 b2 errata */
4254 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4255 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4256 
4257 	sc->bge_tx_prodidx = prodidx;
4258 
4259 	/*
4260 	 * Set a timeout in case the chip goes out to lunch.
4261 	 */
4262 	ifp->if_timer = 5;
4263 }
4264 
4265 static int
4266 bge_init(struct ifnet *ifp)
4267 {
4268 	struct bge_softc *sc = ifp->if_softc;
4269 	const uint16_t *m;
4270 	int s, error = 0;
4271 
4272 	s = splnet();
4273 
4274 	ifp = &sc->ethercom.ec_if;
4275 
4276 	/* Cancel pending I/O and flush buffers. */
4277 	bge_stop(ifp, 0);
4278 
4279 	bge_stop_fw(sc);
4280 	bge_sig_pre_reset(sc, BGE_RESET_START);
4281 	bge_reset(sc);
4282 	bge_sig_legacy(sc, BGE_RESET_START);
4283 	bge_sig_post_reset(sc, BGE_RESET_START);
4284 
4285 	bge_chipinit(sc);
4286 
4287 	/*
4288 	 * Init the various state machines, ring
4289 	 * control blocks and firmware.
4290 	 */
4291 	error = bge_blockinit(sc);
4292 	if (error != 0) {
4293 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4294 		    error);
4295 		splx(s);
4296 		return error;
4297 	}
4298 
4299 	ifp = &sc->ethercom.ec_if;
4300 
4301 	/* Specify MTU. */
4302 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4303 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4304 
4305 	/* Load our MAC address. */
4306 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4307 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4308 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4309 
4310 	/* Enable or disable promiscuous mode as needed. */
4311 	if (ifp->if_flags & IFF_PROMISC)
4312 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4313 	else
4314 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4315 
4316 	/* Program multicast filter. */
4317 	bge_setmulti(sc);
4318 
4319 	/* Init RX ring. */
4320 	bge_init_rx_ring_std(sc);
4321 
4322 	/*
4323 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4324 	 * memory to insure that the chip has in fact read the first
4325 	 * entry of the ring.
4326 	 */
4327 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4328 		uint32_t		v, i;
4329 		for (i = 0; i < 10; i++) {
4330 			DELAY(20);
4331 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4332 			if (v == (MCLBYTES - ETHER_ALIGN))
4333 				break;
4334 		}
4335 		if (i == 10)
4336 			aprint_error_dev(sc->bge_dev,
4337 			    "5705 A0 chip failed to load RX ring\n");
4338 	}
4339 
4340 	/* Init jumbo RX ring. */
4341 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4342 		bge_init_rx_ring_jumbo(sc);
4343 
4344 	/* Init our RX return ring index */
4345 	sc->bge_rx_saved_considx = 0;
4346 
4347 	/* Init TX ring. */
4348 	bge_init_tx_ring(sc);
4349 
4350 	/* Turn on transmitter */
4351 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4352 
4353 	/* Turn on receiver */
4354 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4355 
4356 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4357 
4358 	/* Tell firmware we're alive. */
4359 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4360 
4361 	/* Enable host interrupts. */
4362 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4363 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4364 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4365 
4366 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4367 		goto out;
4368 
4369 	ifp->if_flags |= IFF_RUNNING;
4370 	ifp->if_flags &= ~IFF_OACTIVE;
4371 
4372 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4373 
4374 out:
4375 	splx(s);
4376 
4377 	return error;
4378 }
4379 
4380 /*
4381  * Set media options.
4382  */
4383 static int
4384 bge_ifmedia_upd(struct ifnet *ifp)
4385 {
4386 	struct bge_softc *sc = ifp->if_softc;
4387 	struct mii_data *mii = &sc->bge_mii;
4388 	struct ifmedia *ifm = &sc->bge_ifmedia;
4389 	int rc;
4390 
4391 	/* If this is a 1000baseX NIC, enable the TBI port. */
4392 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4393 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4394 			return EINVAL;
4395 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
4396 		case IFM_AUTO:
4397 			/*
4398 			 * The BCM5704 ASIC appears to have a special
4399 			 * mechanism for programming the autoneg
4400 			 * advertisement registers in TBI mode.
4401 			 */
4402 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4403 				uint32_t sgdig;
4404 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4405 				if (sgdig & BGE_SGDIGSTS_DONE) {
4406 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4407 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4408 					sgdig |= BGE_SGDIGCFG_AUTO |
4409 					    BGE_SGDIGCFG_PAUSE_CAP |
4410 					    BGE_SGDIGCFG_ASYM_PAUSE;
4411 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4412 					    sgdig | BGE_SGDIGCFG_SEND);
4413 					DELAY(5);
4414 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4415 				}
4416 			}
4417 			break;
4418 		case IFM_1000_SX:
4419 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4420 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4421 				    BGE_MACMODE_HALF_DUPLEX);
4422 			} else {
4423 				BGE_SETBIT(sc, BGE_MAC_MODE,
4424 				    BGE_MACMODE_HALF_DUPLEX);
4425 			}
4426 			break;
4427 		default:
4428 			return EINVAL;
4429 		}
4430 		/* XXX 802.3x flow control for 1000BASE-SX */
4431 		return 0;
4432 	}
4433 
4434 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4435 	if ((rc = mii_mediachg(mii)) == ENXIO)
4436 		return 0;
4437 
4438 	/*
4439 	 * Force an interrupt so that we will call bge_link_upd
4440 	 * if needed and clear any pending link state attention.
4441 	 * Without this we are not getting any further interrupts
4442 	 * for link state changes and thus will not UP the link and
4443 	 * not be able to send in bge_start. The only way to get
4444 	 * things working was to receive a packet and get a RX intr.
4445 	 */
4446 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4447 	    sc->bge_flags & BGE_IS_5788)
4448 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4449 	else
4450 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4451 
4452 	return rc;
4453 }
4454 
4455 /*
4456  * Report current media status.
4457  */
4458 static void
4459 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4460 {
4461 	struct bge_softc *sc = ifp->if_softc;
4462 	struct mii_data *mii = &sc->bge_mii;
4463 
4464 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4465 		ifmr->ifm_status = IFM_AVALID;
4466 		ifmr->ifm_active = IFM_ETHER;
4467 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4468 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4469 			ifmr->ifm_status |= IFM_ACTIVE;
4470 		ifmr->ifm_active |= IFM_1000_SX;
4471 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4472 			ifmr->ifm_active |= IFM_HDX;
4473 		else
4474 			ifmr->ifm_active |= IFM_FDX;
4475 		return;
4476 	}
4477 
4478 	mii_pollstat(mii);
4479 	ifmr->ifm_status = mii->mii_media_status;
4480 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4481 	    sc->bge_flowflags;
4482 }
4483 
4484 static int
4485 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4486 {
4487 	struct bge_softc *sc = ifp->if_softc;
4488 	struct ifreq *ifr = (struct ifreq *) data;
4489 	int s, error = 0;
4490 	struct mii_data *mii;
4491 
4492 	s = splnet();
4493 
4494 	switch (command) {
4495 	case SIOCSIFFLAGS:
4496 		if ((error = ifioctl_common(ifp, command, data)) != 0)
4497 			break;
4498 		if (ifp->if_flags & IFF_UP) {
4499 			/*
4500 			 * If only the state of the PROMISC flag changed,
4501 			 * then just use the 'set promisc mode' command
4502 			 * instead of reinitializing the entire NIC. Doing
4503 			 * a full re-init means reloading the firmware and
4504 			 * waiting for it to start up, which may take a
4505 			 * second or two.
4506 			 */
4507 			if (ifp->if_flags & IFF_RUNNING &&
4508 			    ifp->if_flags & IFF_PROMISC &&
4509 			    !(sc->bge_if_flags & IFF_PROMISC)) {
4510 				BGE_SETBIT(sc, BGE_RX_MODE,
4511 				    BGE_RXMODE_RX_PROMISC);
4512 			} else if (ifp->if_flags & IFF_RUNNING &&
4513 			    !(ifp->if_flags & IFF_PROMISC) &&
4514 			    sc->bge_if_flags & IFF_PROMISC) {
4515 				BGE_CLRBIT(sc, BGE_RX_MODE,
4516 				    BGE_RXMODE_RX_PROMISC);
4517 			} else if (!(sc->bge_if_flags & IFF_UP))
4518 				bge_init(ifp);
4519 		} else {
4520 			if (ifp->if_flags & IFF_RUNNING)
4521 				bge_stop(ifp, 1);
4522 		}
4523 		sc->bge_if_flags = ifp->if_flags;
4524 		error = 0;
4525 		break;
4526 	case SIOCSIFMEDIA:
4527 		/* XXX Flow control is not supported for 1000BASE-SX */
4528 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4529 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4530 			sc->bge_flowflags = 0;
4531 		}
4532 
4533 		/* Flow control requires full-duplex mode. */
4534 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4535 		    (ifr->ifr_media & IFM_FDX) == 0) {
4536 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4537 		}
4538 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4539 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4540 				/* We can do both TXPAUSE and RXPAUSE. */
4541 				ifr->ifr_media |=
4542 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4543 			}
4544 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4545 		}
4546 		/* FALLTHROUGH */
4547 	case SIOCGIFMEDIA:
4548 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4549 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4550 			    command);
4551 		} else {
4552 			mii = &sc->bge_mii;
4553 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4554 			    command);
4555 		}
4556 		break;
4557 	default:
4558 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4559 			break;
4560 
4561 		error = 0;
4562 
4563 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4564 			;
4565 		else if (ifp->if_flags & IFF_RUNNING)
4566 			bge_setmulti(sc);
4567 		break;
4568 	}
4569 
4570 	splx(s);
4571 
4572 	return error;
4573 }
4574 
4575 static void
4576 bge_watchdog(struct ifnet *ifp)
4577 {
4578 	struct bge_softc *sc;
4579 
4580 	sc = ifp->if_softc;
4581 
4582 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4583 
4584 	ifp->if_flags &= ~IFF_RUNNING;
4585 	bge_init(ifp);
4586 
4587 	ifp->if_oerrors++;
4588 }
4589 
4590 static void
4591 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4592 {
4593 	int i;
4594 
4595 	BGE_CLRBIT(sc, reg, bit);
4596 
4597 	for (i = 0; i < 1000; i++) {
4598 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4599 			return;
4600 		delay(100);
4601 	}
4602 
4603 	/*
4604 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4605 	 * on some environment (and once after boot?)
4606 	 */
4607 	if (reg != BGE_SRS_MODE)
4608 		aprint_error_dev(sc->bge_dev,
4609 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4610 		    (u_long)reg, bit);
4611 }
4612 
4613 /*
4614  * Stop the adapter and free any mbufs allocated to the
4615  * RX and TX lists.
4616  */
4617 static void
4618 bge_stop(struct ifnet *ifp, int disable)
4619 {
4620 	struct bge_softc *sc = ifp->if_softc;
4621 
4622 	callout_stop(&sc->bge_timeout);
4623 
4624 	/*
4625 	 * Tell firmware we're shutting down.
4626 	 */
4627 	bge_stop_fw(sc);
4628 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4629 
4630 	/* Disable host interrupts. */
4631 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4632 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4633 
4634 	/*
4635 	 * Disable all of the receiver blocks
4636 	 */
4637 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4638 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4639 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4640 	if (BGE_IS_5700_FAMILY(sc))
4641 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4642 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4643 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4644 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4645 
4646 	/*
4647 	 * Disable all of the transmit blocks
4648 	 */
4649 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4650 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4651 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4652 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4653 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4654 	if (BGE_IS_5700_FAMILY(sc))
4655 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4656 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4657 
4658 	/*
4659 	 * Shut down all of the memory managers and related
4660 	 * state machines.
4661 	 */
4662 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4663 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4664 	if (BGE_IS_5700_FAMILY(sc))
4665 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4666 
4667 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4668 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4669 
4670 	if (BGE_IS_5700_FAMILY(sc)) {
4671 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4672 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4673 	}
4674 
4675 	bge_reset(sc);
4676 	bge_sig_legacy(sc, BGE_RESET_STOP);
4677 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4678 
4679 	/*
4680 	 * Keep the ASF firmware running if up.
4681 	 */
4682 	if (sc->bge_asf_mode & ASF_STACKUP)
4683 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4684 	else
4685 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4686 
4687 	/* Free the RX lists. */
4688 	bge_free_rx_ring_std(sc);
4689 
4690 	/* Free jumbo RX list. */
4691 	if (BGE_IS_JUMBO_CAPABLE(sc))
4692 		bge_free_rx_ring_jumbo(sc);
4693 
4694 	/* Free TX buffers. */
4695 	bge_free_tx_ring(sc);
4696 
4697 	/*
4698 	 * Isolate/power down the PHY.
4699 	 */
4700 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4701 		mii_down(&sc->bge_mii);
4702 
4703 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4704 
4705 	/* Clear MAC's link state (PHY may still have link UP). */
4706 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4707 
4708 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4709 }
4710 
4711 static void
4712 bge_link_upd(struct bge_softc *sc)
4713 {
4714 	struct ifnet *ifp = &sc->ethercom.ec_if;
4715 	struct mii_data *mii = &sc->bge_mii;
4716 	uint32_t status;
4717 	int link;
4718 
4719 	/* Clear 'pending link event' flag */
4720 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4721 
4722 	/*
4723 	 * Process link state changes.
4724 	 * Grrr. The link status word in the status block does
4725 	 * not work correctly on the BCM5700 rev AX and BX chips,
4726 	 * according to all available information. Hence, we have
4727 	 * to enable MII interrupts in order to properly obtain
4728 	 * async link changes. Unfortunately, this also means that
4729 	 * we have to read the MAC status register to detect link
4730 	 * changes, thereby adding an additional register access to
4731 	 * the interrupt handler.
4732 	 */
4733 
4734 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4735 		status = CSR_READ_4(sc, BGE_MAC_STS);
4736 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4737 			mii_pollstat(mii);
4738 
4739 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4740 			    mii->mii_media_status & IFM_ACTIVE &&
4741 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4742 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4743 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4744 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4745 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4746 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4747 
4748 			/* Clear the interrupt */
4749 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4750 			    BGE_EVTENB_MI_INTERRUPT);
4751 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4752 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4753 			    BRGPHY_INTRS);
4754 		}
4755 		return;
4756 	}
4757 
4758 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4759 		status = CSR_READ_4(sc, BGE_MAC_STS);
4760 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4761 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4762 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4763 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4764 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4765 					    BGE_MACMODE_TBI_SEND_CFGS);
4766 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4767 				if_link_state_change(ifp, LINK_STATE_UP);
4768 			}
4769 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4770 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4771 			if_link_state_change(ifp, LINK_STATE_DOWN);
4772 		}
4773 	/*
4774 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4775 	 * This should not happen since mii callouts are locked now, but
4776 	 * we keep this check for debug.
4777 	 */
4778 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4779 		/*
4780 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4781 		 * bit in status word always set. Workaround this bug by
4782 		 * reading PHY link status directly.
4783 		 */
4784 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4785 		    BGE_STS_LINK : 0;
4786 
4787 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4788 			mii_pollstat(mii);
4789 
4790 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4791 			    mii->mii_media_status & IFM_ACTIVE &&
4792 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4793 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4794 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4795 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4796 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4797 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4798 		}
4799 	}
4800 
4801 	/* Clear the attention */
4802 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4803 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4804 	    BGE_MACSTAT_LINK_CHANGED);
4805 }
4806 
4807 static int
4808 sysctl_bge_verify(SYSCTLFN_ARGS)
4809 {
4810 	int error, t;
4811 	struct sysctlnode node;
4812 
4813 	node = *rnode;
4814 	t = *(int*)rnode->sysctl_data;
4815 	node.sysctl_data = &t;
4816 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4817 	if (error || newp == NULL)
4818 		return error;
4819 
4820 #if 0
4821 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4822 	    node.sysctl_num, rnode->sysctl_num));
4823 #endif
4824 
4825 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4826 		if (t < 0 || t >= NBGE_RX_THRESH)
4827 			return EINVAL;
4828 		bge_update_all_threshes(t);
4829 	} else
4830 		return EINVAL;
4831 
4832 	*(int*)rnode->sysctl_data = t;
4833 
4834 	return 0;
4835 }
4836 
4837 /*
4838  * Set up sysctl(3) MIB, hw.bge.*.
4839  *
4840  * TBD condition SYSCTL_PERMANENT on being an LKM or not
4841  */
4842 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4843 {
4844 	int rc, bge_root_num;
4845 	const struct sysctlnode *node;
4846 
4847 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4848 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4849 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4850 		goto err;
4851 	}
4852 
4853 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4854 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4855 	    SYSCTL_DESCR("BGE interface controls"),
4856 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4857 		goto err;
4858 	}
4859 
4860 	bge_root_num = node->sysctl_num;
4861 
4862 	/* BGE Rx interrupt mitigation level */
4863 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4864 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4865 	    CTLTYPE_INT, "rx_lvl",
4866 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4867 	    sysctl_bge_verify, 0,
4868 	    &bge_rx_thresh_lvl,
4869 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4870 	    CTL_EOL)) != 0) {
4871 		goto err;
4872 	}
4873 
4874 	bge_rxthresh_nodenum = node->sysctl_num;
4875 
4876 	return;
4877 
4878 err:
4879 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4880 }
4881 
4882 #ifdef BGE_DEBUG
4883 void
4884 bge_debug_info(struct bge_softc *sc)
4885 {
4886 
4887 	printf("Hardware Flags:\n");
4888 	if (BGE_IS_5755_PLUS(sc))
4889 		printf(" - 5755 Plus\n");
4890 	if (BGE_IS_5750_OR_BEYOND(sc))
4891 		printf(" - 5750 Plus\n");
4892 	if (BGE_IS_5705_PLUS(sc))
4893 		printf(" - 5705 Plus\n");
4894 	if (BGE_IS_5714_FAMILY(sc))
4895 		printf(" - 5714 Family\n");
4896 	if (BGE_IS_5700_FAMILY(sc))
4897 		printf(" - 5700 Family\n");
4898 	if (sc->bge_flags & BGE_IS_5788)
4899 		printf(" - 5788\n");
4900 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4901 		printf(" - Supports Jumbo Frames\n");
4902 	if (sc->bge_flags & BGE_NO_EEPROM)
4903 		printf(" - No EEPROM\n");
4904 	if (sc->bge_flags & BGE_PCIX)
4905 		printf(" - PCI-X Bus\n");
4906 	if (sc->bge_flags & BGE_PCIE)
4907 		printf(" - PCI Express Bus\n");
4908 	if (sc->bge_flags & BGE_NO_3LED)
4909 		printf(" - No 3 LEDs\n");
4910 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
4911 		printf(" - RX Alignment Bug\n");
4912 	if (sc->bge_flags & BGE_TSO)
4913 		printf(" - TSO\n");
4914 }
4915 #endif /* BGE_DEBUG */
4916 
4917 static int
4918 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4919 {
4920 	prop_dictionary_t dict;
4921 	prop_data_t ea;
4922 
4923 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4924 		return 1;
4925 
4926 	dict = device_properties(sc->bge_dev);
4927 	ea = prop_dictionary_get(dict, "mac-address");
4928 	if (ea != NULL) {
4929 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4930 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4931 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4932 		return 0;
4933 	}
4934 
4935 	return 1;
4936 }
4937 
4938 static int
4939 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4940 {
4941 	uint32_t mac_addr;
4942 
4943 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4944 	if ((mac_addr >> 16) == 0x484b) {
4945 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4946 		ether_addr[1] = (uint8_t)mac_addr;
4947 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4948 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4949 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4950 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4951 		ether_addr[5] = (uint8_t)mac_addr;
4952 		return 0;
4953 	}
4954 	return 1;
4955 }
4956 
4957 static int
4958 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4959 {
4960 	int mac_offset = BGE_EE_MAC_OFFSET;
4961 
4962 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4963 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4964 
4965 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4966 	    ETHER_ADDR_LEN));
4967 }
4968 
4969 static int
4970 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4971 {
4972 
4973 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4974 		return 1;
4975 
4976 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4977 	   ETHER_ADDR_LEN));
4978 }
4979 
4980 static int
4981 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4982 {
4983 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4984 		/* NOTE: Order is critical */
4985 		bge_get_eaddr_fw,
4986 		bge_get_eaddr_mem,
4987 		bge_get_eaddr_nvram,
4988 		bge_get_eaddr_eeprom,
4989 		NULL
4990 	};
4991 	const bge_eaddr_fcn_t *func;
4992 
4993 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4994 		if ((*func)(sc, eaddr) == 0)
4995 			break;
4996 	}
4997 	return (*func == NULL ? ENXIO : 0);
4998 }
4999