xref: /netbsd-src/sys/dev/pci/if_bge.c (revision a4ddc2c8fb9af816efe3b1c375a5530aef0e89e9)
1 /*	$NetBSD: if_bge.c,v 1.223 2013/03/21 12:56:03 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.223 2013/03/21 12:56:03 msaitoh Exp $");
83 
84 #include "vlan.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96 
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 
102 #include <sys/rnd.h>
103 
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110 
111 /* Headers for TCP  Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h>			/* for struct ip */
115 #include <netinet/tcp.h>		/* for struct tcphdr */
116 
117 
118 #include <net/bpf.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128 
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131 
132 #include <prop/proplib.h>
133 
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135 
136 
137 /*
138  * Tunable thresholds for rx-side bge interrupt mitigation.
139  */
140 
141 /*
142  * The pairs of values below were obtained from empirical measurement
143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144  * interrupt for every N packets received, where N is, approximately,
145  * the second value (rx_max_bds) in each pair.  The values are chosen
146  * such that moving from one pair to the succeeding pair was observed
147  * to roughly halve interrupt rate under sustained input packet load.
148  * The values were empirically chosen to avoid overflowing internal
149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
150  * results in internal wrapping and higher interrupt rates.
151  * The limit of 46 frames was chosen to match NFS workloads.
152  *
153  * These values also work well on bcm5701, bcm5704C, and (less
154  * tested) bcm5703.  On other chipsets, (including the Altima chip
155  * family), the larger values may overflow internal chip limits,
156  * leading to increasing interrupt rates rather than lower interrupt
157  * rates.
158  *
159  * Applications using heavy interrupt mitigation (interrupting every
160  * 32 or 46 frames) in both directions may need to increase the TCP
161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162  * full link bandwidth, due to ACKs and window updates lingering
163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164  */
165 static const struct bge_load_rx_thresh {
166 	int rx_ticks;
167 	int rx_max_bds; }
168 bge_rx_threshes[] = {
169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
170 	{ 32,   2 },
171 	{ 50,   4 },
172 	{ 100,  8 },
173 	{ 192, 16 },
174 	{ 416, 32 },
175 	{ 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178 
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182 
183 static int bge_rxthresh_nodenum;
184 
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186 
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static void bge_release_resources(struct bge_softc *);
191 
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197 
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201 
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224 
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 			       bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241 
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252 
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256 
257 #define BGE_RESET_SHUTDOWN	0
258 #define	BGE_RESET_START		1
259 #define	BGE_RESET_SUSPEND	2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269 
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276 
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x)	if (bgedebug) printf x
279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
281 int	bgedebug = 0;
282 int	bge_tso_debug = 0;
283 void		bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289 
290 #ifdef BGE_EVENT_COUNTERS
291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
294 #else
295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
298 #endif
299 
300 static const struct bge_product {
301 	pci_vendor_id_t		bp_vendor;
302 	pci_product_id_t	bp_product;
303 	const char		*bp_name;
304 } bge_products[] = {
305 	/*
306 	 * The BCM5700 documentation seems to indicate that the hardware
307 	 * still has the Alteon vendor ID burned into it, though it
308 	 * should always be overridden by the value in the EEPROM.  We'll
309 	 * check for it anyway.
310 	 */
311 	{ PCI_VENDOR_ALTEON,
312 	  PCI_PRODUCT_ALTEON_BCM5700,
313 	  "Broadcom BCM5700 Gigabit Ethernet",
314 	  },
315 	{ PCI_VENDOR_ALTEON,
316 	  PCI_PRODUCT_ALTEON_BCM5701,
317 	  "Broadcom BCM5701 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_ALTIMA,
320 	  PCI_PRODUCT_ALTIMA_AC1000,
321 	  "Altima AC1000 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_ALTIMA,
324 	  PCI_PRODUCT_ALTIMA_AC1001,
325 	  "Altima AC1001 Gigabit Ethernet",
326 	   },
327 	{ PCI_VENDOR_ALTIMA,
328 	  PCI_PRODUCT_ALTIMA_AC1003,
329 	  "Altima AC1003 Gigabit Ethernet",
330 	   },
331 	{ PCI_VENDOR_ALTIMA,
332 	  PCI_PRODUCT_ALTIMA_AC9100,
333 	  "Altima AC9100 Gigabit Ethernet",
334 	  },
335 	{ PCI_VENDOR_APPLE,
336 	  PCI_PRODUCT_APPLE_BCM5701,
337 	  "APPLE BCM5701 Gigabit Ethernet",
338 	  },
339 	{ PCI_VENDOR_BROADCOM,
340 	  PCI_PRODUCT_BROADCOM_BCM5700,
341 	  "Broadcom BCM5700 Gigabit Ethernet",
342 	  },
343 	{ PCI_VENDOR_BROADCOM,
344 	  PCI_PRODUCT_BROADCOM_BCM5701,
345 	  "Broadcom BCM5701 Gigabit Ethernet",
346 	  },
347 	{ PCI_VENDOR_BROADCOM,
348 	  PCI_PRODUCT_BROADCOM_BCM5702,
349 	  "Broadcom BCM5702 Gigabit Ethernet",
350 	  },
351 	{ PCI_VENDOR_BROADCOM,
352 	  PCI_PRODUCT_BROADCOM_BCM5702X,
353 	  "Broadcom BCM5702X Gigabit Ethernet" },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5703,
356 	  "Broadcom BCM5703 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5703X,
360 	  "Broadcom BCM5703X Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 	  "Broadcom BCM5703 Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5704C,
368 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5704S,
372 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5705,
376 	  "Broadcom BCM5705 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5705F,
380 	  "Broadcom BCM5705F Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5705K,
384 	  "Broadcom BCM5705K Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5705M,
388 	  "Broadcom BCM5705M Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 	  "Broadcom BCM5705M Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5714,
396 	  "Broadcom BCM5714 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5714S,
400 	  "Broadcom BCM5714S Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5715,
404 	  "Broadcom BCM5715 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5715S,
408 	  "Broadcom BCM5715S Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5717,
412 	  "Broadcom BCM5717 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5718,
416 	  "Broadcom BCM5718 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5719,
420 	  "Broadcom BCM5719 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5720,
424 	  "Broadcom BCM5720 Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5721,
428 	  "Broadcom BCM5721 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5722,
432 	  "Broadcom BCM5722 Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5723,
436 	  "Broadcom BCM5723 Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5724,
440 	  "Broadcom BCM5724 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5750,
444 	  "Broadcom BCM5750 Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5750M,
448 	  "Broadcom BCM5750M Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5751,
452 	  "Broadcom BCM5751 Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5751F,
456 	  "Broadcom BCM5751F Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5751M,
460 	  "Broadcom BCM5751M Gigabit Ethernet",
461 	  },
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5752,
464 	  "Broadcom BCM5752 Gigabit Ethernet",
465 	  },
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5752M,
468 	  "Broadcom BCM5752M Gigabit Ethernet",
469 	  },
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5753,
472 	  "Broadcom BCM5753 Gigabit Ethernet",
473 	  },
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5753F,
476 	  "Broadcom BCM5753F Gigabit Ethernet",
477 	  },
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5753M,
480 	  "Broadcom BCM5753M Gigabit Ethernet",
481 	  },
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5754,
484 	  "Broadcom BCM5754 Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5754M,
488 	  "Broadcom BCM5754M Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5755,
492 	  "Broadcom BCM5755 Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5755M,
496 	  "Broadcom BCM5755M Gigabit Ethernet",
497 	},
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5756,
500 	  "Broadcom BCM5756 Gigabit Ethernet",
501 	},
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5761,
504 	  "Broadcom BCM5761 Gigabit Ethernet",
505 	},
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5761E,
508 	  "Broadcom BCM5761E Gigabit Ethernet",
509 	},
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5761S,
512 	  "Broadcom BCM5761S Gigabit Ethernet",
513 	},
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
516 	  "Broadcom BCM5761SE Gigabit Ethernet",
517 	},
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5764,
520 	  "Broadcom BCM5764 Gigabit Ethernet",
521 	  },
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5780,
524 	  "Broadcom BCM5780 Gigabit Ethernet",
525 	  },
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5780S,
528 	  "Broadcom BCM5780S Gigabit Ethernet",
529 	  },
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5781,
532 	  "Broadcom BCM5781 Gigabit Ethernet",
533 	  },
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5782,
536 	  "Broadcom BCM5782 Gigabit Ethernet",
537 	},
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5784M,
540 	  "BCM5784M NetLink 1000baseT Ethernet",
541 	},
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5785F,
544 	  "BCM5785F NetLink 10/100 Ethernet",
545 	},
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5785G,
548 	  "BCM5785G NetLink 1000baseT Ethernet",
549 	},
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5786,
552 	  "Broadcom BCM5786 Gigabit Ethernet",
553 	},
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5787,
556 	  "Broadcom BCM5787 Gigabit Ethernet",
557 	},
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM5787F,
560 	  "Broadcom BCM5787F 10/100 Ethernet",
561 	},
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM5787M,
564 	  "Broadcom BCM5787M Gigabit Ethernet",
565 	},
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM5788,
568 	  "Broadcom BCM5788 Gigabit Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM5789,
572 	  "Broadcom BCM5789 Gigabit Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM5901,
576 	  "Broadcom BCM5901 Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
580 	  "Broadcom BCM5901A2 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM5903M,
584 	  "Broadcom BCM5903M Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM5906,
588 	  "Broadcom BCM5906 Fast Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM5906M,
592 	  "Broadcom BCM5906M Fast Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57760,
596 	  "Broadcom BCM57760 Fast Ethernet",
597 	  },
598 	{ PCI_VENDOR_BROADCOM,
599 	  PCI_PRODUCT_BROADCOM_BCM57761,
600 	  "Broadcom BCM57761 Fast Ethernet",
601 	  },
602 	{ PCI_VENDOR_BROADCOM,
603 	  PCI_PRODUCT_BROADCOM_BCM57762,
604 	  "Broadcom BCM57762 Gigabit Ethernet",
605 	  },
606 	{ PCI_VENDOR_BROADCOM,
607 	  PCI_PRODUCT_BROADCOM_BCM57765,
608 	  "Broadcom BCM57765 Fast Ethernet",
609 	  },
610 	{ PCI_VENDOR_BROADCOM,
611 	  PCI_PRODUCT_BROADCOM_BCM57766,
612 	  "Broadcom BCM57766 Fast Ethernet",
613 	  },
614 	{ PCI_VENDOR_BROADCOM,
615 	  PCI_PRODUCT_BROADCOM_BCM57780,
616 	  "Broadcom BCM57780 Fast Ethernet",
617 	  },
618 	{ PCI_VENDOR_BROADCOM,
619 	  PCI_PRODUCT_BROADCOM_BCM57781,
620 	  "Broadcom BCM57781 Fast Ethernet",
621 	  },
622 	{ PCI_VENDOR_BROADCOM,
623 	  PCI_PRODUCT_BROADCOM_BCM57782,
624 	  "Broadcom BCM57782 Fast Ethernet",
625 	  },
626 	{ PCI_VENDOR_BROADCOM,
627 	  PCI_PRODUCT_BROADCOM_BCM57785,
628 	  "Broadcom BCM57785 Fast Ethernet",
629 	  },
630 	{ PCI_VENDOR_BROADCOM,
631 	  PCI_PRODUCT_BROADCOM_BCM57786,
632 	  "Broadcom BCM57786 Fast Ethernet",
633 	  },
634 	{ PCI_VENDOR_BROADCOM,
635 	  PCI_PRODUCT_BROADCOM_BCM57788,
636 	  "Broadcom BCM57788 Fast Ethernet",
637 	  },
638 	{ PCI_VENDOR_BROADCOM,
639 	  PCI_PRODUCT_BROADCOM_BCM57790,
640 	  "Broadcom BCM57790 Fast Ethernet",
641 	  },
642 	{ PCI_VENDOR_BROADCOM,
643 	  PCI_PRODUCT_BROADCOM_BCM57791,
644 	  "Broadcom BCM57791 Fast Ethernet",
645 	  },
646 	{ PCI_VENDOR_BROADCOM,
647 	  PCI_PRODUCT_BROADCOM_BCM57795,
648 	  "Broadcom BCM57795 Fast Ethernet",
649 	  },
650 	{ PCI_VENDOR_SCHNEIDERKOCH,
651 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
652 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
653 	  },
654 	{ PCI_VENDOR_3COM,
655 	  PCI_PRODUCT_3COM_3C996,
656 	  "3Com 3c996 Gigabit Ethernet",
657 	  },
658 	{ PCI_VENDOR_FUJITSU4,
659 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
660 	  "Fujitsu PW008GE4 Gigabit Ethernet",
661 	  },
662 	{ PCI_VENDOR_FUJITSU4,
663 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
664 	  "Fujitsu PW008GE5 Gigabit Ethernet",
665 	  },
666 	{ PCI_VENDOR_FUJITSU4,
667 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
668 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
669 	  },
670 	{ 0,
671 	  0,
672 	  NULL },
673 };
674 
675 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
676 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
677 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
678 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
679 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
680 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
681 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
682 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
683 
684 static const struct bge_revision {
685 	uint32_t		br_chipid;
686 	const char		*br_name;
687 } bge_revisions[] = {
688 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 	/* 5754 and 5787 share the same ASIC ID */
744 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754 
755 	{ 0, NULL }
756 };
757 
758 /*
759  * Some defaults for major revisions, so that newer steppings
760  * that we don't know about have a shot at working.
761  */
762 static const struct bge_revision bge_majorrevs[] = {
763 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 	/* 5754 and 5787 share the same ASIC ID */
778 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
786 
787 	{ 0, NULL }
788 };
789 
790 static int bge_allow_asf = 1;
791 
792 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
793     bge_probe, bge_attach, NULL, NULL);
794 
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 	pcireg_t val;
799 
800 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 		return 0;
803 
804 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 	return val;
808 }
809 
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813 
814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818 
819 /*
820  * PCI Express only
821  */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 	pcireg_t val;
826 
827 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 	    + PCI_PCIE_DCSR);
829 	val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
830 	switch (sc->bge_expmrq) {
831 	case 2048:
832 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 		break;
834 	case 4096:
835 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 		break;
837 	default:
838 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 		break;
840 	}
841 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 	    + PCI_PCIE_DCSR, val);
843 }
844 
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853 
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860 
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 	CSR_WRITE_4(sc, off, val);
865 }
866 
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872 
873 	CSR_WRITE_4(sc, off, val);
874 }
875 
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881 
882 	CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884 
885 /*
886  * Clear all stale locks and select the lock for this driver instance.
887  */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 	struct pci_attach_args *pa = &(sc->bge_pa);
892 	uint32_t bit, regbase;
893 	int i;
894 
895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 		regbase = BGE_APE_LOCK_GRANT;
897 	else
898 		regbase = BGE_APE_PER_LOCK_GRANT;
899 
900 	/* Clear any stale locks. */
901 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 		switch (i) {
903 		case BGE_APE_LOCK_PHY0:
904 		case BGE_APE_LOCK_PHY1:
905 		case BGE_APE_LOCK_PHY2:
906 		case BGE_APE_LOCK_PHY3:
907 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 			break;
909 		default:
910 			if (pa->pa_function != 0)
911 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 			else
913 				bit = (1 << pa->pa_function);
914 		}
915 		APE_WRITE_4(sc, regbase + 4 * i, bit);
916 	}
917 
918 	/* Select the PHY lock based on the device's function number. */
919 	switch (pa->pa_function) {
920 	case 0:
921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 		break;
923 	case 1:
924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 		break;
926 	case 2:
927 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 		break;
929 	case 3:
930 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 		break;
932 	default:
933 		printf("%s: PHY lock not supported on function\n",
934 		    device_xname(sc->bge_dev));
935 		break;
936 	}
937 }
938 
939 /*
940  * Check for APE firmware, set flags, and print version info.
941  */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 	const char *fwtype;
946 	uint32_t apedata, features;
947 
948 	/* Check for a valid APE signature in shared memory. */
949 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 		return;
953 	}
954 
955 	/* Check if APE firmware is running. */
956 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 		printf("%s: APE signature found but FW status not ready! "
959 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 		return;
961 	}
962 
963 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964 
965 	/* Fetch the APE firwmare type and version. */
966 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 		fwtype = "NCSI";
971 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 		fwtype = "DASH";
974 	} else
975 		fwtype = "UNKN";
976 
977 	/* Print the APE firmware version. */
978 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984 
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 	struct pci_attach_args *pa = &(sc->bge_pa);
989 	uint32_t bit, gnt, req, status;
990 	int i, off;
991 
992 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 		return (0);
994 
995 	/* Lock request/grant registers have different bases. */
996 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 		req = BGE_APE_LOCK_REQ;
998 		gnt = BGE_APE_LOCK_GRANT;
999 	} else {
1000 		req = BGE_APE_PER_LOCK_REQ;
1001 		gnt = BGE_APE_PER_LOCK_GRANT;
1002 	}
1003 
1004 	off = 4 * locknum;
1005 
1006 	switch (locknum) {
1007 	case BGE_APE_LOCK_GPIO:
1008 		/* Lock required when using GPIO. */
1009 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 			return (0);
1011 		if (pa->pa_function == 0)
1012 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 		else
1014 			bit = (1 << pa->pa_function);
1015 		break;
1016 	case BGE_APE_LOCK_GRC:
1017 		/* Lock required to reset the device. */
1018 		if (pa->pa_function == 0)
1019 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 		else
1021 			bit = (1 << pa->pa_function);
1022 		break;
1023 	case BGE_APE_LOCK_MEM:
1024 		/* Lock required when accessing certain APE memory. */
1025 		if (pa->pa_function == 0)
1026 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 		else
1028 			bit = (1 << pa->pa_function);
1029 		break;
1030 	case BGE_APE_LOCK_PHY0:
1031 	case BGE_APE_LOCK_PHY1:
1032 	case BGE_APE_LOCK_PHY2:
1033 	case BGE_APE_LOCK_PHY3:
1034 		/* Lock required when accessing PHYs. */
1035 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 		break;
1037 	default:
1038 		return (EINVAL);
1039 	}
1040 
1041 	/* Request a lock. */
1042 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1043 
1044 	/* Wait up to 1 second to acquire lock. */
1045 	for (i = 0; i < 20000; i++) {
1046 		status = APE_READ_4(sc, gnt + off);
1047 		if (status == bit)
1048 			break;
1049 		DELAY(50);
1050 	}
1051 
1052 	/* Handle any errors. */
1053 	if (status != bit) {
1054 		printf("%s: APE lock %d request failed! "
1055 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 		    device_xname(sc->bge_dev),
1057 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1058 		    status & 0xFFFF);
1059 		/* Revoke the lock request. */
1060 		APE_WRITE_4(sc, gnt + off, bit);
1061 		return (EBUSY);
1062 	}
1063 
1064 	return (0);
1065 }
1066 
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 	struct pci_attach_args *pa = &(sc->bge_pa);
1071 	uint32_t bit, gnt;
1072 	int off;
1073 
1074 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 		return;
1076 
1077 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 		gnt = BGE_APE_LOCK_GRANT;
1079 	else
1080 		gnt = BGE_APE_PER_LOCK_GRANT;
1081 
1082 	off = 4 * locknum;
1083 
1084 	switch (locknum) {
1085 	case BGE_APE_LOCK_GPIO:
1086 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 			return;
1088 		if (pa->pa_function == 0)
1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 		else
1091 			bit = (1 << pa->pa_function);
1092 		break;
1093 	case BGE_APE_LOCK_GRC:
1094 		if (pa->pa_function == 0)
1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 		else
1097 			bit = (1 << pa->pa_function);
1098 		break;
1099 	case BGE_APE_LOCK_MEM:
1100 		if (pa->pa_function == 0)
1101 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 		else
1103 			bit = (1 << pa->pa_function);
1104 		break;
1105 	case BGE_APE_LOCK_PHY0:
1106 	case BGE_APE_LOCK_PHY1:
1107 	case BGE_APE_LOCK_PHY2:
1108 	case BGE_APE_LOCK_PHY3:
1109 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 		break;
1111 	default:
1112 		return;
1113 	}
1114 
1115 	/* Write and flush for consecutive bge_ape_lock() */
1116 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118 
1119 /*
1120  * Send an event to the APE firmware.
1121  */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 	uint32_t apedata;
1126 	int i;
1127 
1128 	/* NCSI does not support APE events. */
1129 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 		return;
1131 
1132 	/* Wait up to 1ms for APE to service previous event. */
1133 	for (i = 10; i > 0; i--) {
1134 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 			break;
1136 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 			break;
1143 		}
1144 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 		DELAY(100);
1146 	}
1147 	if (i == 0) {
1148 		printf("%s: APE event 0x%08x send timed out\n",
1149 		    device_xname(sc->bge_dev), event);
1150 	}
1151 }
1152 
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 	uint32_t apedata, event;
1157 
1158 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 		return;
1160 
1161 	switch (kind) {
1162 	case BGE_RESET_START:
1163 		/* If this is the first load, clear the load counter. */
1164 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 		else {
1168 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 		}
1171 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1173 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1175 
1176 		/* Add some version info if bge(4) supports it. */
1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 		    BGE_APE_HOST_DRVR_STATE_START);
1185 		event = BGE_APE_EVENT_STATUS_STATE_START;
1186 		break;
1187 	case BGE_RESET_SHUTDOWN:
1188 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 		break;
1192 	case BGE_RESET_SUSPEND:
1193 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 		break;
1195 	default:
1196 		return;
1197 	}
1198 
1199 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202 
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 	uint32_t access, byte = 0;
1207 	int i;
1208 
1209 	/* Lock. */
1210 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 	for (i = 0; i < 8000; i++) {
1212 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 			break;
1214 		DELAY(20);
1215 	}
1216 	if (i == 8000)
1217 		return 1;
1218 
1219 	/* Enable access. */
1220 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222 
1223 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 		DELAY(10);
1227 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 			DELAY(10);
1229 			break;
1230 		}
1231 	}
1232 
1233 	if (i == BGE_TIMEOUT * 10) {
1234 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 		return 1;
1236 	}
1237 
1238 	/* Get result. */
1239 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240 
1241 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242 
1243 	/* Disable access. */
1244 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245 
1246 	/* Unlock. */
1247 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Read a sequence of bytes from NVRAM.
1254  */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 	int error = 0, i;
1259 	uint8_t byte = 0;
1260 
1261 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 		return 1;
1263 
1264 	for (i = 0; i < cnt; i++) {
1265 		error = bge_nvram_getbyte(sc, off + i, &byte);
1266 		if (error)
1267 			break;
1268 		*(dest + i) = byte;
1269 	}
1270 
1271 	return (error ? 1 : 0);
1272 }
1273 
1274 /*
1275  * Read a byte of data stored in the EEPROM at address 'addr.' The
1276  * BCM570x supports both the traditional bitbang interface and an
1277  * auto access interface for reading the EEPROM. We use the auto
1278  * access method.
1279  */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 	int i;
1284 	uint32_t byte = 0;
1285 
1286 	/*
1287 	 * Enable use of auto EEPROM access so we can avoid
1288 	 * having to use the bitbang method.
1289 	 */
1290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291 
1292 	/* Reset the EEPROM, load the clock period. */
1293 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 	DELAY(20);
1296 
1297 	/* Issue the read EEPROM command. */
1298 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299 
1300 	/* Wait for completion */
1301 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 		DELAY(10);
1303 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 			break;
1305 	}
1306 
1307 	if (i == BGE_TIMEOUT * 10) {
1308 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 		return 1;
1310 	}
1311 
1312 	/* Get result. */
1313 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1314 
1315 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Read a sequence of bytes from the EEPROM.
1322  */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 	int error = 0, i;
1327 	uint8_t byte = 0;
1328 	char *dest = destv;
1329 
1330 	for (i = 0; i < cnt; i++) {
1331 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 		if (error)
1333 			break;
1334 		*(dest + i) = byte;
1335 	}
1336 
1337 	return (error ? 1 : 0);
1338 }
1339 
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 	struct bge_softc *sc = device_private(dev);
1344 	uint32_t val;
1345 	uint32_t autopoll;
1346 	int i;
1347 
1348 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 		return 0;
1350 
1351 	/* Reading with autopolling on may trigger PCI errors */
1352 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 		DELAY(80);
1357 	}
1358 
1359 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1361 
1362 	for (i = 0; i < BGE_TIMEOUT; i++) {
1363 		delay(10);
1364 		val = CSR_READ_4(sc, BGE_MI_COMM);
1365 		if (!(val & BGE_MICOMM_BUSY)) {
1366 			DELAY(5);
1367 			val = CSR_READ_4(sc, BGE_MI_COMM);
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (i == BGE_TIMEOUT) {
1373 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 		val = 0;
1375 		goto done;
1376 	}
1377 
1378 done:
1379 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 		DELAY(80);
1383 	}
1384 
1385 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386 
1387 	if (val & BGE_MICOMM_READFAIL)
1388 		return 0;
1389 
1390 	return (val & 0xFFFF);
1391 }
1392 
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 	struct bge_softc *sc = device_private(dev);
1397 	uint32_t autopoll;
1398 	int i;
1399 
1400 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 		return;
1402 
1403 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 		return;
1406 
1407 	/* Reading with autopolling on may trigger PCI errors */
1408 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 		DELAY(80);
1413 	}
1414 
1415 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417 
1418 	for (i = 0; i < BGE_TIMEOUT; i++) {
1419 		delay(10);
1420 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 			delay(5);
1422 			CSR_READ_4(sc, BGE_MI_COMM);
1423 			break;
1424 		}
1425 	}
1426 
1427 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 		delay(80);
1431 	}
1432 
1433 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434 
1435 	if (i == BGE_TIMEOUT)
1436 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438 
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 	struct bge_softc *sc = ifp->if_softc;
1443 	struct mii_data *mii = &sc->bge_mii;
1444 	uint32_t mac_mode, rx_mode, tx_mode;
1445 
1446 	/*
1447 	 * Get flow control negotiation result.
1448 	 */
1449 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1451 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1453 	}
1454 
1455 	/* Set the port mode (MII/GMII) to match the link speed. */
1456 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1457 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1458 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1459 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1460 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1461 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1462 		mac_mode |= BGE_PORTMODE_GMII;
1463 	else
1464 		mac_mode |= BGE_PORTMODE_MII;
1465 
1466 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1467 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1468 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1469 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1470 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1471 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1472 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1473 	} else
1474 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1475 
1476 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1477 	DELAY(40);
1478 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1479 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1480 }
1481 
1482 /*
1483  * Update rx threshold levels to values in a particular slot
1484  * of the interrupt-mitigation table bge_rx_threshes.
1485  */
1486 static void
1487 bge_set_thresh(struct ifnet *ifp, int lvl)
1488 {
1489 	struct bge_softc *sc = ifp->if_softc;
1490 	int s;
1491 
1492 	/* For now, just save the new Rx-intr thresholds and record
1493 	 * that a threshold update is pending.  Updating the hardware
1494 	 * registers here (even at splhigh()) is observed to
1495 	 * occasionaly cause glitches where Rx-interrupts are not
1496 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1497 	 */
1498 	s = splnet();
1499 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1500 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1501 	sc->bge_pending_rxintr_change = 1;
1502 	splx(s);
1503 }
1504 
1505 
1506 /*
1507  * Update Rx thresholds of all bge devices
1508  */
1509 static void
1510 bge_update_all_threshes(int lvl)
1511 {
1512 	struct ifnet *ifp;
1513 	const char * const namebuf = "bge";
1514 	int namelen;
1515 
1516 	if (lvl < 0)
1517 		lvl = 0;
1518 	else if (lvl >= NBGE_RX_THRESH)
1519 		lvl = NBGE_RX_THRESH - 1;
1520 
1521 	namelen = strlen(namebuf);
1522 	/*
1523 	 * Now search all the interfaces for this name/number
1524 	 */
1525 	IFNET_FOREACH(ifp) {
1526 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1527 		      continue;
1528 		/* We got a match: update if doing auto-threshold-tuning */
1529 		if (bge_auto_thresh)
1530 			bge_set_thresh(ifp, lvl);
1531 	}
1532 }
1533 
1534 /*
1535  * Handle events that have triggered interrupts.
1536  */
1537 static void
1538 bge_handle_events(struct bge_softc *sc)
1539 {
1540 
1541 	return;
1542 }
1543 
1544 /*
1545  * Memory management for jumbo frames.
1546  */
1547 
1548 static int
1549 bge_alloc_jumbo_mem(struct bge_softc *sc)
1550 {
1551 	char *ptr, *kva;
1552 	bus_dma_segment_t	seg;
1553 	int		i, rseg, state, error;
1554 	struct bge_jpool_entry   *entry;
1555 
1556 	state = error = 0;
1557 
1558 	/* Grab a big chunk o' storage. */
1559 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1560 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1561 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1562 		return ENOBUFS;
1563 	}
1564 
1565 	state = 1;
1566 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1567 	    BUS_DMA_NOWAIT)) {
1568 		aprint_error_dev(sc->bge_dev,
1569 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1570 		error = ENOBUFS;
1571 		goto out;
1572 	}
1573 
1574 	state = 2;
1575 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1576 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1577 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1578 		error = ENOBUFS;
1579 		goto out;
1580 	}
1581 
1582 	state = 3;
1583 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1584 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1585 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1586 		error = ENOBUFS;
1587 		goto out;
1588 	}
1589 
1590 	state = 4;
1591 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1592 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1593 
1594 	SLIST_INIT(&sc->bge_jfree_listhead);
1595 	SLIST_INIT(&sc->bge_jinuse_listhead);
1596 
1597 	/*
1598 	 * Now divide it up into 9K pieces and save the addresses
1599 	 * in an array.
1600 	 */
1601 	ptr = sc->bge_cdata.bge_jumbo_buf;
1602 	for (i = 0; i < BGE_JSLOTS; i++) {
1603 		sc->bge_cdata.bge_jslots[i] = ptr;
1604 		ptr += BGE_JLEN;
1605 		entry = malloc(sizeof(struct bge_jpool_entry),
1606 		    M_DEVBUF, M_NOWAIT);
1607 		if (entry == NULL) {
1608 			aprint_error_dev(sc->bge_dev,
1609 			    "no memory for jumbo buffer queue!\n");
1610 			error = ENOBUFS;
1611 			goto out;
1612 		}
1613 		entry->slot = i;
1614 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1615 				 entry, jpool_entries);
1616 	}
1617 out:
1618 	if (error != 0) {
1619 		switch (state) {
1620 		case 4:
1621 			bus_dmamap_unload(sc->bge_dmatag,
1622 			    sc->bge_cdata.bge_rx_jumbo_map);
1623 		case 3:
1624 			bus_dmamap_destroy(sc->bge_dmatag,
1625 			    sc->bge_cdata.bge_rx_jumbo_map);
1626 		case 2:
1627 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1628 		case 1:
1629 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1630 			break;
1631 		default:
1632 			break;
1633 		}
1634 	}
1635 
1636 	return error;
1637 }
1638 
1639 /*
1640  * Allocate a jumbo buffer.
1641  */
1642 static void *
1643 bge_jalloc(struct bge_softc *sc)
1644 {
1645 	struct bge_jpool_entry   *entry;
1646 
1647 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1648 
1649 	if (entry == NULL) {
1650 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1651 		return NULL;
1652 	}
1653 
1654 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1655 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1656 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1657 }
1658 
1659 /*
1660  * Release a jumbo buffer.
1661  */
1662 static void
1663 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1664 {
1665 	struct bge_jpool_entry *entry;
1666 	struct bge_softc *sc;
1667 	int i, s;
1668 
1669 	/* Extract the softc struct pointer. */
1670 	sc = (struct bge_softc *)arg;
1671 
1672 	if (sc == NULL)
1673 		panic("bge_jfree: can't find softc pointer!");
1674 
1675 	/* calculate the slot this buffer belongs to */
1676 
1677 	i = ((char *)buf
1678 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1679 
1680 	if ((i < 0) || (i >= BGE_JSLOTS))
1681 		panic("bge_jfree: asked to free buffer that we don't manage!");
1682 
1683 	s = splvm();
1684 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1685 	if (entry == NULL)
1686 		panic("bge_jfree: buffer not in use!");
1687 	entry->slot = i;
1688 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1689 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1690 
1691 	if (__predict_true(m != NULL))
1692   		pool_cache_put(mb_cache, m);
1693 	splx(s);
1694 }
1695 
1696 
1697 /*
1698  * Initialize a standard receive ring descriptor.
1699  */
1700 static int
1701 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1702     bus_dmamap_t dmamap)
1703 {
1704 	struct mbuf		*m_new = NULL;
1705 	struct bge_rx_bd	*r;
1706 	int			error;
1707 
1708 	if (dmamap == NULL) {
1709 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1710 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1711 		if (error != 0)
1712 			return error;
1713 	}
1714 
1715 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1716 
1717 	if (m == NULL) {
1718 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1719 		if (m_new == NULL)
1720 			return ENOBUFS;
1721 
1722 		MCLGET(m_new, M_DONTWAIT);
1723 		if (!(m_new->m_flags & M_EXT)) {
1724 			m_freem(m_new);
1725 			return ENOBUFS;
1726 		}
1727 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1728 
1729 	} else {
1730 		m_new = m;
1731 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732 		m_new->m_data = m_new->m_ext.ext_buf;
1733 	}
1734 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1735 	    m_adj(m_new, ETHER_ALIGN);
1736 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1737 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1738 		return ENOBUFS;
1739 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1740 	    BUS_DMASYNC_PREREAD);
1741 
1742 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1743 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1744 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1745 	r->bge_flags = BGE_RXBDFLAG_END;
1746 	r->bge_len = m_new->m_len;
1747 	r->bge_idx = i;
1748 
1749 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1750 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1751 		i * sizeof (struct bge_rx_bd),
1752 	    sizeof (struct bge_rx_bd),
1753 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1754 
1755 	return 0;
1756 }
1757 
1758 /*
1759  * Initialize a jumbo receive ring descriptor. This allocates
1760  * a jumbo buffer from the pool managed internally by the driver.
1761  */
1762 static int
1763 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1764 {
1765 	struct mbuf *m_new = NULL;
1766 	struct bge_rx_bd *r;
1767 	void *buf = NULL;
1768 
1769 	if (m == NULL) {
1770 
1771 		/* Allocate the mbuf. */
1772 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1773 		if (m_new == NULL)
1774 			return ENOBUFS;
1775 
1776 		/* Allocate the jumbo buffer */
1777 		buf = bge_jalloc(sc);
1778 		if (buf == NULL) {
1779 			m_freem(m_new);
1780 			aprint_error_dev(sc->bge_dev,
1781 			    "jumbo allocation failed -- packet dropped!\n");
1782 			return ENOBUFS;
1783 		}
1784 
1785 		/* Attach the buffer to the mbuf. */
1786 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1787 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1788 		    bge_jfree, sc);
1789 		m_new->m_flags |= M_EXT_RW;
1790 	} else {
1791 		m_new = m;
1792 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1793 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1794 	}
1795 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1796 	    m_adj(m_new, ETHER_ALIGN);
1797 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1798 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1799 	    BUS_DMASYNC_PREREAD);
1800 	/* Set up the descriptor. */
1801 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1802 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1803 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1804 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1805 	r->bge_len = m_new->m_len;
1806 	r->bge_idx = i;
1807 
1808 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1809 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1810 		i * sizeof (struct bge_rx_bd),
1811 	    sizeof (struct bge_rx_bd),
1812 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1813 
1814 	return 0;
1815 }
1816 
1817 /*
1818  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1819  * that's 1MB or memory, which is a lot. For now, we fill only the first
1820  * 256 ring entries and hope that our CPU is fast enough to keep up with
1821  * the NIC.
1822  */
1823 static int
1824 bge_init_rx_ring_std(struct bge_softc *sc)
1825 {
1826 	int i;
1827 
1828 	if (sc->bge_flags & BGE_RXRING_VALID)
1829 		return 0;
1830 
1831 	for (i = 0; i < BGE_SSLOTS; i++) {
1832 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1833 			return ENOBUFS;
1834 	}
1835 
1836 	sc->bge_std = i - 1;
1837 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1838 
1839 	sc->bge_flags |= BGE_RXRING_VALID;
1840 
1841 	return 0;
1842 }
1843 
1844 static void
1845 bge_free_rx_ring_std(struct bge_softc *sc)
1846 {
1847 	int i;
1848 
1849 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1850 		return;
1851 
1852 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1853 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1854 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1855 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1856 			bus_dmamap_destroy(sc->bge_dmatag,
1857 			    sc->bge_cdata.bge_rx_std_map[i]);
1858 		}
1859 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1860 		    sizeof(struct bge_rx_bd));
1861 	}
1862 
1863 	sc->bge_flags &= ~BGE_RXRING_VALID;
1864 }
1865 
1866 static int
1867 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1868 {
1869 	int i;
1870 	volatile struct bge_rcb *rcb;
1871 
1872 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1873 		return 0;
1874 
1875 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1876 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1877 			return ENOBUFS;
1878 	}
1879 
1880 	sc->bge_jumbo = i - 1;
1881 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1882 
1883 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1884 	rcb->bge_maxlen_flags = 0;
1885 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1886 
1887 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1888 
1889 	return 0;
1890 }
1891 
1892 static void
1893 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1894 {
1895 	int i;
1896 
1897 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1898 		return;
1899 
1900 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1901 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1902 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1903 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1904 		}
1905 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1906 		    sizeof(struct bge_rx_bd));
1907 	}
1908 
1909 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1910 }
1911 
1912 static void
1913 bge_free_tx_ring(struct bge_softc *sc)
1914 {
1915 	int i;
1916 	struct txdmamap_pool_entry *dma;
1917 
1918 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1919 		return;
1920 
1921 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1922 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1923 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1924 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1925 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1926 					    link);
1927 			sc->txdma[i] = 0;
1928 		}
1929 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1930 		    sizeof(struct bge_tx_bd));
1931 	}
1932 
1933 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1934 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1935 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1936 		free(dma, M_DEVBUF);
1937 	}
1938 
1939 	sc->bge_flags &= ~BGE_TXRING_VALID;
1940 }
1941 
1942 static int
1943 bge_init_tx_ring(struct bge_softc *sc)
1944 {
1945 	int i;
1946 	bus_dmamap_t dmamap;
1947 	struct txdmamap_pool_entry *dma;
1948 
1949 	if (sc->bge_flags & BGE_TXRING_VALID)
1950 		return 0;
1951 
1952 	sc->bge_txcnt = 0;
1953 	sc->bge_tx_saved_considx = 0;
1954 
1955 	/* Initialize transmit producer index for host-memory send ring. */
1956 	sc->bge_tx_prodidx = 0;
1957 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1958 	/* 5700 b2 errata */
1959 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1960 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1961 
1962 	/* NIC-memory send ring not used; initialize to zero. */
1963 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1964 	/* 5700 b2 errata */
1965 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1966 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1967 
1968 	SLIST_INIT(&sc->txdma_list);
1969 	for (i = 0; i < BGE_RSLOTS; i++) {
1970 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1971 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1972 		    &dmamap))
1973 			return ENOBUFS;
1974 		if (dmamap == NULL)
1975 			panic("dmamap NULL in bge_init_tx_ring");
1976 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1977 		if (dma == NULL) {
1978 			aprint_error_dev(sc->bge_dev,
1979 			    "can't alloc txdmamap_pool_entry\n");
1980 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1981 			return ENOMEM;
1982 		}
1983 		dma->dmamap = dmamap;
1984 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1985 	}
1986 
1987 	sc->bge_flags |= BGE_TXRING_VALID;
1988 
1989 	return 0;
1990 }
1991 
1992 static void
1993 bge_setmulti(struct bge_softc *sc)
1994 {
1995 	struct ethercom		*ac = &sc->ethercom;
1996 	struct ifnet		*ifp = &ac->ec_if;
1997 	struct ether_multi	*enm;
1998 	struct ether_multistep  step;
1999 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2000 	uint32_t		h;
2001 	int			i;
2002 
2003 	if (ifp->if_flags & IFF_PROMISC)
2004 		goto allmulti;
2005 
2006 	/* Now program new ones. */
2007 	ETHER_FIRST_MULTI(step, ac, enm);
2008 	while (enm != NULL) {
2009 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2010 			/*
2011 			 * We must listen to a range of multicast addresses.
2012 			 * For now, just accept all multicasts, rather than
2013 			 * trying to set only those filter bits needed to match
2014 			 * the range.  (At this time, the only use of address
2015 			 * ranges is for IP multicast routing, for which the
2016 			 * range is big enough to require all bits set.)
2017 			 */
2018 			goto allmulti;
2019 		}
2020 
2021 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022 
2023 		/* Just want the 7 least-significant bits. */
2024 		h &= 0x7f;
2025 
2026 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2027 		ETHER_NEXT_MULTI(step, enm);
2028 	}
2029 
2030 	ifp->if_flags &= ~IFF_ALLMULTI;
2031 	goto setit;
2032 
2033  allmulti:
2034 	ifp->if_flags |= IFF_ALLMULTI;
2035 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2036 
2037  setit:
2038 	for (i = 0; i < 4; i++)
2039 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2040 }
2041 
2042 static void
2043 bge_sig_pre_reset(struct bge_softc *sc, int type)
2044 {
2045 
2046 	/*
2047 	 * Some chips don't like this so only do this if ASF is enabled
2048 	 */
2049 	if (sc->bge_asf_mode)
2050 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2051 
2052 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2053 		switch (type) {
2054 		case BGE_RESET_START:
2055 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2056 			    BGE_FW_DRV_STATE_START);
2057 			break;
2058 		case BGE_RESET_SHUTDOWN:
2059 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2060 			    BGE_FW_DRV_STATE_UNLOAD);
2061 			break;
2062 		case BGE_RESET_SUSPEND:
2063 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2064 			    BGE_FW_DRV_STATE_SUSPEND);
2065 			break;
2066 		}
2067 	}
2068 
2069 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2070 		bge_ape_driver_state_change(sc, type);
2071 }
2072 
2073 static void
2074 bge_sig_post_reset(struct bge_softc *sc, int type)
2075 {
2076 
2077 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2078 		switch (type) {
2079 		case BGE_RESET_START:
2080 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2081 			    BGE_FW_DRV_STATE_START_DONE);
2082 			/* START DONE */
2083 			break;
2084 		case BGE_RESET_SHUTDOWN:
2085 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2086 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2087 			break;
2088 		}
2089 	}
2090 
2091 	if (type == BGE_RESET_SHUTDOWN)
2092 		bge_ape_driver_state_change(sc, type);
2093 }
2094 
2095 static void
2096 bge_sig_legacy(struct bge_softc *sc, int type)
2097 {
2098 
2099 	if (sc->bge_asf_mode) {
2100 		switch (type) {
2101 		case BGE_RESET_START:
2102 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2103 			    BGE_FW_DRV_STATE_START);
2104 			break;
2105 		case BGE_RESET_SHUTDOWN:
2106 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2107 			    BGE_FW_DRV_STATE_UNLOAD);
2108 			break;
2109 		}
2110 	}
2111 }
2112 
2113 static void
2114 bge_wait_for_event_ack(struct bge_softc *sc)
2115 {
2116 	int i;
2117 
2118 	/* wait up to 2500usec */
2119 	for (i = 0; i < 250; i++) {
2120 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2121 			BGE_RX_CPU_DRV_EVENT))
2122 			break;
2123 		DELAY(10);
2124 	}
2125 }
2126 
2127 static void
2128 bge_stop_fw(struct bge_softc *sc)
2129 {
2130 
2131 	if (sc->bge_asf_mode) {
2132 		bge_wait_for_event_ack(sc);
2133 
2134 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2135 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2136 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2137 
2138 		bge_wait_for_event_ack(sc);
2139 	}
2140 }
2141 
2142 static int
2143 bge_poll_fw(struct bge_softc *sc)
2144 {
2145 	uint32_t val;
2146 	int i;
2147 
2148 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2149 		for (i = 0; i < BGE_TIMEOUT; i++) {
2150 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2151 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2152 				break;
2153 			DELAY(100);
2154 		}
2155 		if (i >= BGE_TIMEOUT) {
2156 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2157 			return -1;
2158 		}
2159 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2160 		/*
2161 		 * Poll the value location we just wrote until
2162 		 * we see the 1's complement of the magic number.
2163 		 * This indicates that the firmware initialization
2164 		 * is complete.
2165 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2166 		 */
2167 		for (i = 0; i < BGE_TIMEOUT; i++) {
2168 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2169 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2170 				break;
2171 			DELAY(10);
2172 		}
2173 
2174 		if (i >= BGE_TIMEOUT) {
2175 			aprint_error_dev(sc->bge_dev,
2176 			    "firmware handshake timed out, val = %x\n", val);
2177 			return -1;
2178 		}
2179 	}
2180 
2181 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2182 		/* tg3 says we have to wait extra time */
2183 		delay(10 * 1000);
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 int
2190 bge_phy_addr(struct bge_softc *sc)
2191 {
2192 	struct pci_attach_args *pa = &(sc->bge_pa);
2193 	int phy_addr = 1;
2194 
2195 	/*
2196 	 * PHY address mapping for various devices.
2197 	 *
2198 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2199 	 * ---------+-------+-------+-------+-------+
2200 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2201 	 * BCM5704  |   1   |   X   |   1   |   X   |
2202 	 * BCM5717  |   1   |   8   |   2   |   9   |
2203 	 * BCM5719  |   1   |   8   |   2   |   9   |
2204 	 * BCM5720  |   1   |   8   |   2   |   9   |
2205 	 *
2206 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2207 	 * ---------+-------+-------+-------+-------+
2208 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2209 	 * BCM5704  |   X   |   X   |   X   |   X   |
2210 	 * BCM5717  |   X   |   X   |   X   |   X   |
2211 	 * BCM5719  |   3   |   10  |   4   |   11  |
2212 	 * BCM5720  |   X   |   X   |   X   |   X   |
2213 	 *
2214 	 * Other addresses may respond but they are not
2215 	 * IEEE compliant PHYs and should be ignored.
2216 	 */
2217 	switch (BGE_ASICREV(sc->bge_chipid)) {
2218 	case BGE_ASICREV_BCM5717:
2219 	case BGE_ASICREV_BCM5719:
2220 	case BGE_ASICREV_BCM5720:
2221 		phy_addr = pa->pa_function;
2222 		if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2223 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2224 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2225 		} else {
2226 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2227 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2228 		}
2229 	}
2230 
2231 	return phy_addr;
2232 }
2233 
2234 /*
2235  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2236  * self-test results.
2237  */
2238 static int
2239 bge_chipinit(struct bge_softc *sc)
2240 {
2241 	uint32_t dma_rw_ctl, mode_ctl, reg;
2242 	int i;
2243 
2244 	/* Set endianness before we access any non-PCI registers. */
2245 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2246 	    BGE_INIT);
2247 
2248 	/*
2249 	 * Clear the MAC statistics block in the NIC's
2250 	 * internal memory.
2251 	 */
2252 	for (i = BGE_STATS_BLOCK;
2253 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2254 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2255 
2256 	for (i = BGE_STATUS_BLOCK;
2257 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2258 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2259 
2260 	/* 5717 workaround from tg3 */
2261 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2262 		/* Save */
2263 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2264 
2265 		/* Temporary modify MODE_CTL to control TLP */
2266 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2267 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2268 
2269 		/* Control TLP */
2270 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2271 		    BGE_TLP_PHYCTL1);
2272 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2273 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2274 
2275 		/* Restore */
2276 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2277 	}
2278 
2279 	/* XXX Should we use 57765_FAMILY? */
2280 	if (BGE_IS_57765_PLUS(sc)) {
2281 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2282 			/* Save */
2283 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284 
2285 			/* Temporary modify MODE_CTL to control TLP */
2286 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2288 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2289 
2290 			/* Control TLP */
2291 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2292 			    BGE_TLP_PHYCTL5);
2293 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2294 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2295 
2296 			/* Restore */
2297 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2298 		}
2299 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2300 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2301 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2302 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2303 
2304 			/* Save */
2305 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2306 
2307 			/* Temporary modify MODE_CTL to control TLP */
2308 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2309 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2310 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2311 
2312 			/* Control TLP */
2313 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2314 			    BGE_TLP_FTSMAX);
2315 			reg &= ~BGE_TLP_FTSMAX_MSK;
2316 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2317 			    reg | BGE_TLP_FTSMAX_VAL);
2318 
2319 			/* Restore */
2320 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2321 		}
2322 
2323 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2324 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2325 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2326 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2327 	}
2328 
2329 	/* Set up the PCI DMA control register. */
2330 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2331 	if (sc->bge_flags & BGE_PCIE) {
2332 		/* Read watermark not used, 128 bytes for write. */
2333 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2334 		    device_xname(sc->bge_dev)));
2335 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2336 	} else if (sc->bge_flags & BGE_PCIX) {
2337 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2338 		    device_xname(sc->bge_dev)));
2339 		/* PCI-X bus */
2340 		if (BGE_IS_5714_FAMILY(sc)) {
2341 			/* 256 bytes for read and write. */
2342 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2343 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2344 
2345 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2346 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2347 			else
2348 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2349 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2350 			/* 1536 bytes for read, 384 bytes for write. */
2351 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2352 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2353 		} else {
2354 			/* 384 bytes for read and write. */
2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2356 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2357 			    (0x0F);
2358 		}
2359 
2360 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2361 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2362 			uint32_t tmp;
2363 
2364 			/* Set ONEDMA_ATONCE for hardware workaround. */
2365 			tmp = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2366 			    BGE_PCI_CLKCTL) & 0x1f;
2367 			if (tmp == 6 || tmp == 7)
2368 				dma_rw_ctl |=
2369 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2370 
2371 			/* Set PCI-X DMA write workaround. */
2372 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2373 		}
2374 	} else {
2375 		/* Conventional PCI bus: 256 bytes for read and write. */
2376 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2377 		    device_xname(sc->bge_dev)));
2378 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2379 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2380 
2381 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2382 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2383 			dma_rw_ctl |= 0x0F;
2384 	}
2385 
2386 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2387 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2388 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2389 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2390 
2391 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2393 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2394 
2395 	if (BGE_IS_5717_PLUS(sc)) {
2396 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2397 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2398 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2399 
2400 		/*
2401 		 * Enable HW workaround for controllers that misinterpret
2402 		 * a status tag update and leave interrupts permanently
2403 		 * disabled.
2404 		 */
2405 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2406 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2407 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2408 	}
2409 
2410 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2411 	    dma_rw_ctl);
2412 
2413 	/*
2414 	 * Set up general mode register.
2415 	 */
2416 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2417 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2418 		/* Retain Host-2-BMC settings written by APE firmware. */
2419 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2420 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2421 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2422 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2423 	}
2424 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2425 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2426 
2427 	/*
2428 	 * BCM5701 B5 have a bug causing data corruption when using
2429 	 * 64-bit DMA reads, which can be terminated early and then
2430 	 * completed later as 32-bit accesses, in combination with
2431 	 * certain bridges.
2432 	 */
2433 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2434 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2435 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2436 
2437 	/*
2438 	 * Tell the firmware the driver is running
2439 	 */
2440 	if (sc->bge_asf_mode & ASF_STACKUP)
2441 		mode_ctl |= BGE_MODECTL_STACKUP;
2442 
2443 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2444 
2445 	/*
2446 	 * Disable memory write invalidate.  Apparently it is not supported
2447 	 * properly by these devices.
2448 	 */
2449 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2450 		   PCI_COMMAND_INVALIDATE_ENABLE);
2451 
2452 #ifdef __brokenalpha__
2453 	/*
2454 	 * Must insure that we do not cross an 8K (bytes) boundary
2455 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2456 	 * restriction on some ALPHA platforms with early revision
2457 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2458 	 */
2459 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2460 #endif
2461 
2462 	/* Set the timer prescaler (always 66MHz) */
2463 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2464 
2465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2466 		DELAY(40);	/* XXX */
2467 
2468 		/* Put PHY into ready state */
2469 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2470 		DELAY(40);
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int
2477 bge_blockinit(struct bge_softc *sc)
2478 {
2479 	volatile struct bge_rcb	 *rcb;
2480 	bus_size_t rcb_addr;
2481 	struct ifnet *ifp = &sc->ethercom.ec_if;
2482 	bge_hostaddr taddr;
2483 	uint32_t	dmactl, val;
2484 	int		i, limit;
2485 
2486 	/*
2487 	 * Initialize the memory window pointer register so that
2488 	 * we can access the first 32K of internal NIC RAM. This will
2489 	 * allow us to set up the TX send ring RCBs and the RX return
2490 	 * ring RCBs, plus other things which live in NIC memory.
2491 	 */
2492 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2493 
2494 	/* Step 33: Configure mbuf memory pool */
2495 	if (!BGE_IS_5705_PLUS(sc)) {
2496 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2497 		    BGE_BUFFPOOL_1);
2498 
2499 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2500 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2501 		else
2502 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2503 
2504 		/* Configure DMA resource pool */
2505 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2506 		    BGE_DMA_DESCRIPTORS);
2507 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2508 	}
2509 
2510 	/* Step 35: Configure mbuf pool watermarks */
2511 	/* new broadcom docs strongly recommend these: */
2512 	if (BGE_IS_5717_PLUS(sc)) {
2513 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2514 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2515 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2516 	} else if (BGE_IS_5705_PLUS(sc)) {
2517 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2518 
2519 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2520 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2521 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2522 		} else {
2523 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2524 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2525 		}
2526 	} else {
2527 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2528 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2529 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 	}
2531 
2532 	/* Step 36: Configure DMA resource watermarks */
2533 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2534 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2535 
2536 	/* Step 38: Enable buffer manager */
2537 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2538 	/*
2539 	 * Change the arbitration algorithm of TXMBUF read request to
2540 	 * round-robin instead of priority based for BCM5719.  When
2541 	 * TXFIFO is almost empty, RDMA will hold its request until
2542 	 * TXFIFO is not almost empty.
2543 	 */
2544 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2545 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2546 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2547 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2548 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2549 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2550 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2551 
2552 	/* Step 39: Poll for buffer manager start indication */
2553 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2554 		DELAY(10);
2555 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2556 			break;
2557 	}
2558 
2559 	if (i == BGE_TIMEOUT * 2) {
2560 		aprint_error_dev(sc->bge_dev,
2561 		    "buffer manager failed to start\n");
2562 		return ENXIO;
2563 	}
2564 
2565 	/* Step 40: Enable flow-through queues */
2566 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2567 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2568 
2569 	/* Wait until queue initialization is complete */
2570 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2571 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2572 			break;
2573 		DELAY(10);
2574 	}
2575 
2576 	if (i == BGE_TIMEOUT * 2) {
2577 		aprint_error_dev(sc->bge_dev,
2578 		    "flow-through queue init failed\n");
2579 		return ENXIO;
2580 	}
2581 
2582 	/*
2583 	 * Summary of rings supported by the controller:
2584 	 *
2585 	 * Standard Receive Producer Ring
2586 	 * - This ring is used to feed receive buffers for "standard"
2587 	 *   sized frames (typically 1536 bytes) to the controller.
2588 	 *
2589 	 * Jumbo Receive Producer Ring
2590 	 * - This ring is used to feed receive buffers for jumbo sized
2591 	 *   frames (i.e. anything bigger than the "standard" frames)
2592 	 *   to the controller.
2593 	 *
2594 	 * Mini Receive Producer Ring
2595 	 * - This ring is used to feed receive buffers for "mini"
2596 	 *   sized frames to the controller.
2597 	 * - This feature required external memory for the controller
2598 	 *   but was never used in a production system.  Should always
2599 	 *   be disabled.
2600 	 *
2601 	 * Receive Return Ring
2602 	 * - After the controller has placed an incoming frame into a
2603 	 *   receive buffer that buffer is moved into a receive return
2604 	 *   ring.  The driver is then responsible to passing the
2605 	 *   buffer up to the stack.  Many versions of the controller
2606 	 *   support multiple RR rings.
2607 	 *
2608 	 * Send Ring
2609 	 * - This ring is used for outgoing frames.  Many versions of
2610 	 *   the controller support multiple send rings.
2611 	 */
2612 
2613 	/* Step 41: Initialize the standard RX ring control block */
2614 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2615 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2616 	if (BGE_IS_5717_PLUS(sc)) {
2617 		/*
2618 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2619 		 * Bits 15-2 : Maximum RX frame size
2620 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2621 		 * Bit 0     : Reserved
2622 		 */
2623 		rcb->bge_maxlen_flags =
2624 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2625 	} else if (BGE_IS_5705_PLUS(sc)) {
2626 		/*
2627 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2628 		 * Bits 15-2 : Reserved (should be 0)
2629 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2630 		 * Bit 0     : Reserved
2631 		 */
2632 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2633 	} else {
2634 		/*
2635 		 * Ring size is always XXX entries
2636 		 * Bits 31-16: Maximum RX frame size
2637 		 * Bits 15-2 : Reserved (should be 0)
2638 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2639 		 * Bit 0     : Reserved
2640 		 */
2641 		rcb->bge_maxlen_flags =
2642 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2643 	}
2644 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2646 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2647 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2648 	else
2649 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2650 	/* Write the standard receive producer ring control block. */
2651 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2652 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2653 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2654 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2655 
2656 	/* Reset the standard receive producer ring producer index. */
2657 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2658 
2659 	/*
2660 	 * Step 42: Initialize the jumbo RX ring control block
2661 	 * We set the 'ring disabled' bit in the flags
2662 	 * field until we're actually ready to start
2663 	 * using this ring (i.e. once we set the MTU
2664 	 * high enough to require it).
2665 	 */
2666 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2667 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2668 		BGE_HOSTADDR(rcb->bge_hostaddr,
2669 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2670 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2671 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2672 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2673 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2674 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2675 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2676 		else
2677 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2678 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2679 		    rcb->bge_hostaddr.bge_addr_hi);
2680 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2681 		    rcb->bge_hostaddr.bge_addr_lo);
2682 		/* Program the jumbo receive producer ring RCB parameters. */
2683 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2684 		    rcb->bge_maxlen_flags);
2685 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2686 		/* Reset the jumbo receive producer ring producer index. */
2687 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2688 	}
2689 
2690 	/* Disable the mini receive producer ring RCB. */
2691 	if (BGE_IS_5700_FAMILY(sc)) {
2692 		/* Set up dummy disabled mini ring RCB */
2693 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2694 		rcb->bge_maxlen_flags =
2695 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2696 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2697 		    rcb->bge_maxlen_flags);
2698 		/* Reset the mini receive producer ring producer index. */
2699 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2700 
2701 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2702 		    offsetof(struct bge_ring_data, bge_info),
2703 		    sizeof (struct bge_gib),
2704 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2705 	}
2706 
2707 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2708 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2709 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2710 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2711 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2712 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2713 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2714 	}
2715 	/*
2716 	 * The BD ring replenish thresholds control how often the
2717 	 * hardware fetches new BD's from the producer rings in host
2718 	 * memory.  Setting the value too low on a busy system can
2719 	 * starve the hardware and recue the throughpout.
2720 	 *
2721 	 * Set the BD ring replenish thresholds. The recommended
2722 	 * values are 1/8th the number of descriptors allocated to
2723 	 * each ring, but since we try to avoid filling the entire
2724 	 * ring we set these to the minimal value of 8.  This needs to
2725 	 * be done on several of the supported chip revisions anyway,
2726 	 * to work around HW bugs.
2727 	 */
2728 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2729 	if (BGE_IS_JUMBO_CAPABLE(sc))
2730 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2731 
2732 	if (BGE_IS_5717_PLUS(sc)) {
2733 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2734 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2735 	}
2736 
2737 	/*
2738 	 * Disable all send rings by setting the 'ring disabled' bit
2739 	 * in the flags field of all the TX send ring control blocks,
2740 	 * located in NIC memory.
2741 	 */
2742 	if (BGE_IS_5700_FAMILY(sc)) {
2743 		/* 5700 to 5704 had 16 send rings. */
2744 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2745 	} else
2746 		limit = 1;
2747 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2748 	for (i = 0; i < limit; i++) {
2749 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2750 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2751 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2752 		rcb_addr += sizeof(struct bge_rcb);
2753 	}
2754 
2755 	/* Configure send ring RCB 0 (we use only the first ring) */
2756 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2757 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2758 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2759 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2760 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2761 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2762 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2763 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2764 	else
2765 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2766 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2767 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2768 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2769 
2770 	/*
2771 	 * Disable all receive return rings by setting the
2772 	 * 'ring diabled' bit in the flags field of all the receive
2773 	 * return ring control blocks, located in NIC memory.
2774 	 */
2775 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2776 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2777 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2778 		/* Should be 17, use 16 until we get an SRAM map. */
2779 		limit = 16;
2780 	} else if (BGE_IS_5700_FAMILY(sc))
2781 		limit = BGE_RX_RINGS_MAX;
2782 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2783 	    BGE_IS_57765_PLUS(sc))
2784 		limit = 4;
2785 	else
2786 		limit = 1;
2787 	/* Disable all receive return rings */
2788 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2789 	for (i = 0; i < limit; i++) {
2790 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2791 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2792 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2793 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2794 			BGE_RCB_FLAG_RING_DISABLED));
2795 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2796 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2797 		    (i * (sizeof(uint64_t))), 0);
2798 		rcb_addr += sizeof(struct bge_rcb);
2799 	}
2800 
2801 	/*
2802 	 * Set up receive return ring 0.  Note that the NIC address
2803 	 * for RX return rings is 0x0.  The return rings live entirely
2804 	 * within the host, so the nicaddr field in the RCB isn't used.
2805 	 */
2806 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2807 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2808 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2809 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2810 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2811 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2812 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2813 
2814 	/* Set random backoff seed for TX */
2815 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2816 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2817 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2818 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2819 	    BGE_TX_BACKOFF_SEED_MASK);
2820 
2821 	/* Set inter-packet gap */
2822 	val = 0x2620;
2823 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2824 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2825 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2826 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2827 
2828 	/*
2829 	 * Specify which ring to use for packets that don't match
2830 	 * any RX rules.
2831 	 */
2832 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2833 
2834 	/*
2835 	 * Configure number of RX lists. One interrupt distribution
2836 	 * list, sixteen active lists, one bad frames class.
2837 	 */
2838 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2839 
2840 	/* Inialize RX list placement stats mask. */
2841 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2842 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2843 
2844 	/* Disable host coalescing until we get it set up */
2845 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2846 
2847 	/* Poll to make sure it's shut down. */
2848 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2849 		DELAY(10);
2850 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2851 			break;
2852 	}
2853 
2854 	if (i == BGE_TIMEOUT * 2) {
2855 		aprint_error_dev(sc->bge_dev,
2856 		    "host coalescing engine failed to idle\n");
2857 		return ENXIO;
2858 	}
2859 
2860 	/* Set up host coalescing defaults */
2861 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2862 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2863 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2864 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2865 	if (!(BGE_IS_5705_PLUS(sc))) {
2866 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2867 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2868 	}
2869 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2870 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2871 
2872 	/* Set up address of statistics block */
2873 	if (BGE_IS_5700_FAMILY(sc)) {
2874 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2875 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2876 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2877 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2878 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2879 	}
2880 
2881 	/* Set up address of status block */
2882 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2883 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2884 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2885 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2886 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2887 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2888 
2889 	/* Set up status block size. */
2890 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2891 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2892 		val = BGE_STATBLKSZ_FULL;
2893 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2894 	} else {
2895 		val = BGE_STATBLKSZ_32BYTE;
2896 		bzero(&sc->bge_rdata->bge_status_block, 32);
2897 	}
2898 
2899 	/* Turn on host coalescing state machine */
2900 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2901 
2902 	/* Turn on RX BD completion state machine and enable attentions */
2903 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2904 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2905 
2906 	/* Turn on RX list placement state machine */
2907 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2908 
2909 	/* Turn on RX list selector state machine. */
2910 	if (!(BGE_IS_5705_PLUS(sc)))
2911 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2912 
2913 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2914 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2915 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2916 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2917 
2918 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2919 		val |= BGE_PORTMODE_TBI;
2920 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2921 		val |= BGE_PORTMODE_GMII;
2922 	else
2923 		val |= BGE_PORTMODE_MII;
2924 
2925 	/* Allow APE to send/receive frames. */
2926 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2927 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2928 
2929 	/* Turn on DMA, clear stats */
2930 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2931 	DELAY(40);
2932 
2933 	/* Set misc. local control, enable interrupts on attentions */
2934 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2935 
2936 	/* Turn on DMA completion state machine */
2937 	if (!(BGE_IS_5705_PLUS(sc)))
2938 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2939 
2940 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2941 
2942 	/* Enable host coalescing bug fix. */
2943 	if (BGE_IS_5755_PLUS(sc))
2944 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2945 
2946 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2947 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2948 
2949 	/* Turn on write DMA state machine */
2950 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2951 	DELAY(40);
2952 
2953 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2954 
2955 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2956 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2957 
2958 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2959 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2960 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2961 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2962 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2963 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2964 
2965 	if (sc->bge_flags & BGE_PCIE)
2966 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2967 	if (sc->bge_flags & BGE_TSO)
2968 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2969 
2970 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2971 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2972 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
2973 		/*
2974 		 * Allow multiple outstanding read requests from
2975 		 * non-LSO read DMA engine.
2976 		 */
2977 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2978 	}
2979 
2980 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2981 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2982 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2983 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2984 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
2985 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
2986 		/*
2987 		 * Adjust tx margin to prevent TX data corruption and
2988 		 * fix internal FIFO overflow.
2989 		 */
2990 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
2991 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2992 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2993 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2994 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2995 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2996 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2997 		}
2998 		/*
2999 		 * Enable fix for read DMA FIFO overruns.
3000 		 * The fix is to limit the number of RX BDs
3001 		 * the hardware would fetch at a fime.
3002 		 */
3003 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3004 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3005 	}
3006 
3007 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3008 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3009 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3010 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3011 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3012 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3013 		/*
3014 		 * Allow 4KB burst length reads for non-LSO frames.
3015 		 * Enable 512B burst length reads for buffer descriptors.
3016 		 */
3017 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3018 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3019 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3020 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3021 	}
3022 
3023 	/* Turn on read DMA state machine */
3024 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3025 	delay(40);
3026 
3027 	/* Turn on RX data completion state machine */
3028 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3029 
3030 	/* Turn on RX BD initiator state machine */
3031 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3032 
3033 	/* Turn on RX data and RX BD initiator state machine */
3034 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3035 
3036 	/* Turn on Mbuf cluster free state machine */
3037 	if (!BGE_IS_5705_PLUS(sc))
3038 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3039 
3040 	/* Turn on send BD completion state machine */
3041 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3042 
3043 	/* Turn on send data completion state machine */
3044 	val = BGE_SDCMODE_ENABLE;
3045 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3046 		val |= BGE_SDCMODE_CDELAY;
3047 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3048 
3049 	/* Turn on send data initiator state machine */
3050 	if (sc->bge_flags & BGE_TSO) {
3051 		/* XXX: magic value from Linux driver */
3052 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3053 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3054 	} else
3055 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3056 
3057 	/* Turn on send BD initiator state machine */
3058 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3059 
3060 	/* Turn on send BD selector state machine */
3061 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3062 
3063 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3064 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3065 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3066 
3067 	/* ack/clear link change events */
3068 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3069 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3070 	    BGE_MACSTAT_LINK_CHANGED);
3071 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3072 
3073 	/*
3074 	 * Enable attention when the link has changed state for
3075 	 * devices that use auto polling.
3076 	 */
3077 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3078 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3079 	} else {
3080 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3081 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3082 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3083 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3084 			    BGE_EVTENB_MI_INTERRUPT);
3085 	}
3086 
3087 	/*
3088 	 * Clear any pending link state attention.
3089 	 * Otherwise some link state change events may be lost until attention
3090 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3091 	 * It's not necessary on newer BCM chips - perhaps enabling link
3092 	 * state change attentions implies clearing pending attention.
3093 	 */
3094 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3095 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3096 	    BGE_MACSTAT_LINK_CHANGED);
3097 
3098 	/* Enable link state change attentions. */
3099 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3100 
3101 	return 0;
3102 }
3103 
3104 static const struct bge_revision *
3105 bge_lookup_rev(uint32_t chipid)
3106 {
3107 	const struct bge_revision *br;
3108 
3109 	for (br = bge_revisions; br->br_name != NULL; br++) {
3110 		if (br->br_chipid == chipid)
3111 			return br;
3112 	}
3113 
3114 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3115 		if (br->br_chipid == BGE_ASICREV(chipid))
3116 			return br;
3117 	}
3118 
3119 	return NULL;
3120 }
3121 
3122 static const struct bge_product *
3123 bge_lookup(const struct pci_attach_args *pa)
3124 {
3125 	const struct bge_product *bp;
3126 
3127 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3128 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3129 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3130 			return bp;
3131 	}
3132 
3133 	return NULL;
3134 }
3135 
3136 static uint32_t
3137 bge_chipid(const struct pci_attach_args *pa)
3138 {
3139 	uint32_t id;
3140 
3141 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3142 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3143 
3144 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3145 		switch (PCI_PRODUCT(pa->pa_id)) {
3146 		case PCI_PRODUCT_BROADCOM_BCM5717:
3147 		case PCI_PRODUCT_BROADCOM_BCM5718:
3148 		case PCI_PRODUCT_BROADCOM_BCM5719:
3149 		case PCI_PRODUCT_BROADCOM_BCM5720:
3150 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3151 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3152 			    BGE_PCI_GEN2_PRODID_ASICREV);
3153 			break;
3154 		case PCI_PRODUCT_BROADCOM_BCM57761:
3155 		case PCI_PRODUCT_BROADCOM_BCM57762:
3156 		case PCI_PRODUCT_BROADCOM_BCM57765:
3157 		case PCI_PRODUCT_BROADCOM_BCM57766:
3158 		case PCI_PRODUCT_BROADCOM_BCM57781:
3159 		case PCI_PRODUCT_BROADCOM_BCM57785:
3160 		case PCI_PRODUCT_BROADCOM_BCM57791:
3161 		case PCI_PRODUCT_BROADCOM_BCM57795:
3162 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3163 			    BGE_PCI_GEN15_PRODID_ASICREV);
3164 			break;
3165 		default:
3166 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3167 			    BGE_PCI_PRODID_ASICREV);
3168 			break;
3169 		}
3170 	}
3171 
3172 	return id;
3173 }
3174 
3175 /*
3176  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3177  * against our list and return its name if we find a match. Note
3178  * that since the Broadcom controller contains VPD support, we
3179  * can get the device name string from the controller itself instead
3180  * of the compiled-in string. This is a little slow, but it guarantees
3181  * we'll always announce the right product name.
3182  */
3183 static int
3184 bge_probe(device_t parent, cfdata_t match, void *aux)
3185 {
3186 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3187 
3188 	if (bge_lookup(pa) != NULL)
3189 		return 1;
3190 
3191 	return 0;
3192 }
3193 
3194 static void
3195 bge_attach(device_t parent, device_t self, void *aux)
3196 {
3197 	struct bge_softc	*sc = device_private(self);
3198 	struct pci_attach_args	*pa = aux;
3199 	prop_dictionary_t dict;
3200 	const struct bge_product *bp;
3201 	const struct bge_revision *br;
3202 	pci_chipset_tag_t	pc;
3203 	pci_intr_handle_t	ih;
3204 	const char		*intrstr = NULL;
3205 	bus_dma_segment_t	seg;
3206 	int			rseg;
3207 	uint32_t		hwcfg = 0;
3208 	uint32_t		command;
3209 	struct ifnet		*ifp;
3210 	uint32_t		misccfg;
3211 	void *			kva;
3212 	u_char			eaddr[ETHER_ADDR_LEN];
3213 	pcireg_t		memtype, subid, reg;
3214 	bus_addr_t		memaddr;
3215 	bus_size_t		memsize, apesize;
3216 	uint32_t		pm_ctl;
3217 	bool			no_seeprom;
3218 	int			capmask;
3219 
3220 	bp = bge_lookup(pa);
3221 	KASSERT(bp != NULL);
3222 
3223 	sc->sc_pc = pa->pa_pc;
3224 	sc->sc_pcitag = pa->pa_tag;
3225 	sc->bge_dev = self;
3226 
3227 	sc->bge_pa = *pa;
3228 	pc = sc->sc_pc;
3229 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3230 
3231 	aprint_naive(": Ethernet controller\n");
3232 	aprint_normal(": %s\n", bp->bp_name);
3233 
3234 	/*
3235 	 * Map control/status registers.
3236 	 */
3237 	DPRINTFN(5, ("Map control/status regs\n"));
3238 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3239 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3240 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3241 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3242 
3243 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3244 		aprint_error_dev(sc->bge_dev,
3245 		    "failed to enable memory mapping!\n");
3246 		return;
3247 	}
3248 
3249 	DPRINTFN(5, ("pci_mem_find\n"));
3250 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3251 	switch (memtype) {
3252 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3253 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3254 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3255 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3256 		    &memaddr, &memsize) == 0)
3257 			break;
3258 	default:
3259 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3260 		return;
3261 	}
3262 
3263 	DPRINTFN(5, ("pci_intr_map\n"));
3264 	if (pci_intr_map(pa, &ih)) {
3265 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3266 		return;
3267 	}
3268 
3269 	DPRINTFN(5, ("pci_intr_string\n"));
3270 	intrstr = pci_intr_string(pc, ih);
3271 
3272 	DPRINTFN(5, ("pci_intr_establish\n"));
3273 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3274 
3275 	if (sc->bge_intrhand == NULL) {
3276 		aprint_error_dev(sc->bge_dev,
3277 		    "couldn't establish interrupt%s%s\n",
3278 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3279 		return;
3280 	}
3281 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3282 
3283 	/* Save various chip information. */
3284 	sc->bge_chipid = bge_chipid(pa);
3285 	sc->bge_phy_addr = bge_phy_addr(sc);
3286 
3287 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3288 	        &sc->bge_pciecap, NULL) != 0)
3289 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3290 		/* PCIe */
3291 		sc->bge_flags |= BGE_PCIE;
3292 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3293 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3294 			sc->bge_expmrq = 2048;
3295 		else
3296 			sc->bge_expmrq = 4096;
3297 		bge_set_max_readrq(sc);
3298 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3299 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3300 		/* PCI-X */
3301 		sc->bge_flags |= BGE_PCIX;
3302 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3303 			&sc->bge_pcixcap, NULL) == 0)
3304 			aprint_error_dev(sc->bge_dev,
3305 			    "unable to find PCIX capability\n");
3306 	}
3307 
3308 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3309 		/*
3310 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3311 		 * can clobber the chip's PCI config-space power control
3312 		 * registers, leaving the card in D3 powersave state. We do
3313 		 * not have memory-mapped registers in this state, so force
3314 		 * device into D0 state before starting initialization.
3315 		 */
3316 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3317 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3318 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3319 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3320 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3321 	}
3322 
3323 	/* Save chipset family. */
3324 	switch (BGE_ASICREV(sc->bge_chipid)) {
3325 	case BGE_ASICREV_BCM57765:
3326 	case BGE_ASICREV_BCM57766:
3327 		sc->bge_flags |= BGE_57765_PLUS;
3328 		/* FALLTHROUGH */
3329 	case BGE_ASICREV_BCM5717:
3330 	case BGE_ASICREV_BCM5719:
3331 	case BGE_ASICREV_BCM5720:
3332 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3333 		    BGE_5705_PLUS;
3334 		break;
3335 	case BGE_ASICREV_BCM5755:
3336 	case BGE_ASICREV_BCM5761:
3337 	case BGE_ASICREV_BCM5784:
3338 	case BGE_ASICREV_BCM5785:
3339 	case BGE_ASICREV_BCM5787:
3340 	case BGE_ASICREV_BCM57780:
3341 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3342 		break;
3343 	case BGE_ASICREV_BCM5700:
3344 	case BGE_ASICREV_BCM5701:
3345 	case BGE_ASICREV_BCM5703:
3346 	case BGE_ASICREV_BCM5704:
3347 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3348 		break;
3349 	case BGE_ASICREV_BCM5714_A0:
3350 	case BGE_ASICREV_BCM5780:
3351 	case BGE_ASICREV_BCM5714:
3352 		sc->bge_flags |= BGE_5714_FAMILY;
3353 		/* FALLTHROUGH */
3354 	case BGE_ASICREV_BCM5750:
3355 	case BGE_ASICREV_BCM5752:
3356 	case BGE_ASICREV_BCM5906:
3357 		sc->bge_flags |= BGE_575X_PLUS;
3358 		/* FALLTHROUGH */
3359 	case BGE_ASICREV_BCM5705:
3360 		sc->bge_flags |= BGE_5705_PLUS;
3361 		break;
3362 	}
3363 
3364 	/* Identify chips with APE processor. */
3365 	switch (BGE_ASICREV(sc->bge_chipid)) {
3366 	case BGE_ASICREV_BCM5717:
3367 	case BGE_ASICREV_BCM5719:
3368 	case BGE_ASICREV_BCM5720:
3369 	case BGE_ASICREV_BCM5761:
3370 		sc->bge_flags |= BGE_APE;
3371 		break;
3372 	}
3373 
3374 	/* Chips with APE need BAR2 access for APE registers/memory. */
3375 	if ((sc->bge_flags & BGE_APE) != 0) {
3376 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3377 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3378 		    &sc->bge_apetag, &sc->bge_apehandle, NULL, &apesize)) {
3379 			aprint_error_dev(sc->bge_dev,
3380 			    "couldn't map BAR2 memory\n");
3381 			return;
3382 		}
3383 
3384 		/* Enable APE register/memory access by host driver. */
3385 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3386 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3387 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3388 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3389 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3390 
3391 		bge_ape_lock_init(sc);
3392 		bge_ape_read_fw_ver(sc);
3393 	}
3394 
3395 	/* Identify the chips that use an CPMU. */
3396 	if (BGE_IS_5717_PLUS(sc) ||
3397 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3398 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3399 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3400 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3401 		sc->bge_flags |= BGE_CPMU_PRESENT;
3402 
3403 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3404 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3405 	else
3406 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3407 
3408 	/*
3409 	 * When using the BCM5701 in PCI-X mode, data corruption has
3410 	 * been observed in the first few bytes of some received packets.
3411 	 * Aligning the packet buffer in memory eliminates the corruption.
3412 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3413 	 * which do not support unaligned accesses, we will realign the
3414 	 * payloads by copying the received packets.
3415 	 */
3416 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3417 	    sc->bge_flags & BGE_PCIX)
3418 		sc->bge_flags |= BGE_RX_ALIGNBUG;
3419 
3420 	if (BGE_IS_5700_FAMILY(sc))
3421 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
3422 
3423 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3424 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3425 
3426 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3427 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3428 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3429 		sc->bge_flags |= BGE_IS_5788;
3430 
3431 	/*
3432 	 * Some controllers seem to require a special firmware to use
3433 	 * TSO. But the firmware is not available to FreeBSD and Linux
3434 	 * claims that the TSO performed by the firmware is slower than
3435 	 * hardware based TSO. Moreover the firmware based TSO has one
3436 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3437 	 * header is greater than 80 bytes. The workaround for the TSO
3438 	 * bug exist but it seems it's too expensive than not using
3439 	 * TSO at all. Some hardwares also have the TSO bug so limit
3440 	 * the TSO to the controllers that are not affected TSO issues
3441 	 * (e.g. 5755 or higher).
3442 	 */
3443 	if (BGE_IS_5755_PLUS(sc)) {
3444 		/*
3445 		 * BCM5754 and BCM5787 shares the same ASIC id so
3446 		 * explicit device id check is required.
3447 		 */
3448 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3449 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3450 			sc->bge_flags |= BGE_TSO;
3451 	}
3452 
3453 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3454 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3455 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3456 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3457 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3458 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3459 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3460 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3461 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3462 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3463 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3464 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3465 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3466 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3467 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3468 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3469 		capmask &= ~BMSR_EXTSTAT;
3470 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3471 	}
3472 
3473 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3474 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3475 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3476 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3477 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3478 
3479 	/* Set various PHY bug flags. */
3480 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3481 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3482 		sc->bge_flags |= BGE_PHY_CRC_BUG;
3483 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3484 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3485 		sc->bge_flags |= BGE_PHY_ADC_BUG;
3486 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3487 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3488 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3489 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3490 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3491 		sc->bge_flags |= BGE_PHY_NO_3LED;
3492 	if (BGE_IS_5705_PLUS(sc) &&
3493 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3494 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3495 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3496 	    !BGE_IS_5717_PLUS(sc)) {
3497 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3498 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3499 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3500 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3501 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3502 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3503 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
3504 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3505 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3506 		} else
3507 			sc->bge_flags |= BGE_PHY_BER_BUG;
3508 	}
3509 
3510 	/*
3511 	 * SEEPROM check.
3512 	 * First check if firmware knows we do not have SEEPROM.
3513 	 */
3514 	if (prop_dictionary_get_bool(device_properties(self),
3515 	     "without-seeprom", &no_seeprom) && no_seeprom)
3516 	 	sc->bge_flags |= BGE_NO_EEPROM;
3517 
3518 	/* Now check the 'ROM failed' bit on the RX CPU */
3519 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3520 		sc->bge_flags |= BGE_NO_EEPROM;
3521 
3522 	sc->bge_asf_mode = 0;
3523 	/* No ASF if APE present. */
3524 	if ((sc->bge_flags & BGE_APE) == 0) {
3525 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3526 			BGE_SRAM_DATA_SIG_MAGIC)) {
3527 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3528 			    BGE_HWCFG_ASF) {
3529 				sc->bge_asf_mode |= ASF_ENABLE;
3530 				sc->bge_asf_mode |= ASF_STACKUP;
3531 				if (BGE_IS_575X_PLUS(sc))
3532 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3533 			}
3534 		}
3535 	}
3536 
3537 	bge_stop_fw(sc);
3538 	bge_sig_pre_reset(sc, BGE_RESET_START);
3539 	if (bge_reset(sc))
3540 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3541 
3542 	bge_sig_legacy(sc, BGE_RESET_START);
3543 	bge_sig_post_reset(sc, BGE_RESET_START);
3544 
3545 	if (bge_chipinit(sc)) {
3546 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3547 		bge_release_resources(sc);
3548 		return;
3549 	}
3550 
3551 	/*
3552 	 * Get station address from the EEPROM.
3553 	 */
3554 	if (bge_get_eaddr(sc, eaddr)) {
3555 		aprint_error_dev(sc->bge_dev,
3556 		    "failed to read station address\n");
3557 		bge_release_resources(sc);
3558 		return;
3559 	}
3560 
3561 	br = bge_lookup_rev(sc->bge_chipid);
3562 
3563 	if (br == NULL) {
3564 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3565 		    sc->bge_chipid);
3566 	} else {
3567 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3568 		    br->br_name, sc->bge_chipid);
3569 	}
3570 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3571 
3572 	/* Allocate the general information block and ring buffers. */
3573 	if (pci_dma64_available(pa))
3574 		sc->bge_dmatag = pa->pa_dmat64;
3575 	else
3576 		sc->bge_dmatag = pa->pa_dmat;
3577 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3578 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3579 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
3580 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3581 		return;
3582 	}
3583 	DPRINTFN(5, ("bus_dmamem_map\n"));
3584 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
3585 			   sizeof(struct bge_ring_data), &kva,
3586 			   BUS_DMA_NOWAIT)) {
3587 		aprint_error_dev(sc->bge_dev,
3588 		    "can't map DMA buffers (%zu bytes)\n",
3589 		    sizeof(struct bge_ring_data));
3590 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3591 		return;
3592 	}
3593 	DPRINTFN(5, ("bus_dmamem_create\n"));
3594 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3595 	    sizeof(struct bge_ring_data), 0,
3596 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3597 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3598 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3599 				 sizeof(struct bge_ring_data));
3600 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3601 		return;
3602 	}
3603 	DPRINTFN(5, ("bus_dmamem_load\n"));
3604 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3605 			    sizeof(struct bge_ring_data), NULL,
3606 			    BUS_DMA_NOWAIT)) {
3607 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3608 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3609 				 sizeof(struct bge_ring_data));
3610 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
3611 		return;
3612 	}
3613 
3614 	DPRINTFN(5, ("bzero\n"));
3615 	sc->bge_rdata = (struct bge_ring_data *)kva;
3616 
3617 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3618 
3619 	/* Try to allocate memory for jumbo buffers. */
3620 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3621 		if (bge_alloc_jumbo_mem(sc)) {
3622 			aprint_error_dev(sc->bge_dev,
3623 			    "jumbo buffer allocation failed\n");
3624 		} else
3625 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3626 	}
3627 
3628 	/* Set default tuneable values. */
3629 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3630 	sc->bge_rx_coal_ticks = 150;
3631 	sc->bge_rx_max_coal_bds = 64;
3632 	sc->bge_tx_coal_ticks = 300;
3633 	sc->bge_tx_max_coal_bds = 400;
3634 	if (BGE_IS_5705_PLUS(sc)) {
3635 		sc->bge_tx_coal_ticks = (12 * 5);
3636 		sc->bge_tx_max_coal_bds = (12 * 5);
3637 			aprint_verbose_dev(sc->bge_dev,
3638 			    "setting short Tx thresholds\n");
3639 	}
3640 
3641 	if (BGE_IS_5717_PLUS(sc))
3642 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3643 	else if (BGE_IS_5705_PLUS(sc))
3644 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3645 	else
3646 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3647 
3648 	/* Set up ifnet structure */
3649 	ifp = &sc->ethercom.ec_if;
3650 	ifp->if_softc = sc;
3651 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3652 	ifp->if_ioctl = bge_ioctl;
3653 	ifp->if_stop = bge_stop;
3654 	ifp->if_start = bge_start;
3655 	ifp->if_init = bge_init;
3656 	ifp->if_watchdog = bge_watchdog;
3657 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3658 	IFQ_SET_READY(&ifp->if_snd);
3659 	DPRINTFN(5, ("strcpy if_xname\n"));
3660 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3661 
3662 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3663 		sc->ethercom.ec_if.if_capabilities |=
3664 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3665 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3666 		sc->ethercom.ec_if.if_capabilities |=
3667 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3668 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3669 #endif
3670 	sc->ethercom.ec_capabilities |=
3671 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3672 
3673 	if (sc->bge_flags & BGE_TSO)
3674 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3675 
3676 	/*
3677 	 * Do MII setup.
3678 	 */
3679 	DPRINTFN(5, ("mii setup\n"));
3680 	sc->bge_mii.mii_ifp = ifp;
3681 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3682 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3683 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3684 
3685 	/*
3686 	 * Figure out what sort of media we have by checking the hardware
3687 	 * config word in the first 32k of NIC internal memory, or fall back to
3688 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
3689 	 * this value appears to be unset. If that's the case, we have to rely
3690 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
3691 	 * the SysKonnect SK-9D41.
3692 	 */
3693 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3694 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3695 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3696 		bge_read_eeprom(sc, (void *)&hwcfg,
3697 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3698 		hwcfg = be32toh(hwcfg);
3699 	}
3700 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3701 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3702 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3703 		if (BGE_IS_5714_FAMILY(sc))
3704 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
3705 		else
3706 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
3707 	}
3708 
3709 	/* set phyflags and chipid before mii_attach() */
3710 	dict = device_properties(self);
3711 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3712 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3713 
3714 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3715 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3716 		    bge_ifmedia_sts);
3717 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3718 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3719 			    0, NULL);
3720 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3721 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3722 		/* Pretend the user requested this setting */
3723 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3724 	} else {
3725 		/*
3726 		 * Do transceiver setup and tell the firmware the
3727 		 * driver is down so we can try to get access the
3728 		 * probe if ASF is running.  Retry a couple of times
3729 		 * if we get a conflict with the ASF firmware accessing
3730 		 * the PHY.
3731 		 */
3732 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3733 		bge_asf_driver_up(sc);
3734 
3735 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3736 			     bge_ifmedia_sts);
3737 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3738 			   sc->bge_phy_addr, MII_OFFSET_ANY,
3739 			   MIIF_DOPAUSE);
3740 
3741 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3742 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3743 			ifmedia_add(&sc->bge_mii.mii_media,
3744 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3745 			ifmedia_set(&sc->bge_mii.mii_media,
3746 				    IFM_ETHER|IFM_MANUAL);
3747 		} else
3748 			ifmedia_set(&sc->bge_mii.mii_media,
3749 				    IFM_ETHER|IFM_AUTO);
3750 
3751 		/*
3752 		 * Now tell the firmware we are going up after probing the PHY
3753 		 */
3754 		if (sc->bge_asf_mode & ASF_STACKUP)
3755 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3756 	}
3757 
3758 	/*
3759 	 * Call MI attach routine.
3760 	 */
3761 	DPRINTFN(5, ("if_attach\n"));
3762 	if_attach(ifp);
3763 	DPRINTFN(5, ("ether_ifattach\n"));
3764 	ether_ifattach(ifp, eaddr);
3765 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3766 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3767 		RND_TYPE_NET, 0);
3768 #ifdef BGE_EVENT_COUNTERS
3769 	/*
3770 	 * Attach event counters.
3771 	 */
3772 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3773 	    NULL, device_xname(sc->bge_dev), "intr");
3774 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3775 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3776 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3777 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3778 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3779 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3780 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3781 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3782 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3783 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3784 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3785 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3786 #endif /* BGE_EVENT_COUNTERS */
3787 	DPRINTFN(5, ("callout_init\n"));
3788 	callout_init(&sc->bge_timeout, 0);
3789 
3790 	if (pmf_device_register(self, NULL, NULL))
3791 		pmf_class_network_register(self, ifp);
3792 	else
3793 		aprint_error_dev(self, "couldn't establish power handler\n");
3794 
3795 	bge_sysctl_init(sc);
3796 
3797 #ifdef BGE_DEBUG
3798 	bge_debug_info(sc);
3799 #endif
3800 }
3801 
3802 static void
3803 bge_release_resources(struct bge_softc *sc)
3804 {
3805 	if (sc->bge_vpd_prodname != NULL)
3806 		free(sc->bge_vpd_prodname, M_DEVBUF);
3807 
3808 	if (sc->bge_vpd_readonly != NULL)
3809 		free(sc->bge_vpd_readonly, M_DEVBUF);
3810 }
3811 
3812 static int
3813 bge_reset(struct bge_softc *sc)
3814 {
3815 	uint32_t cachesize, command;
3816 	uint32_t reset, mac_mode, mac_mode_mask;
3817 	pcireg_t devctl, reg;
3818 	int i, val;
3819 	void (*write_op)(struct bge_softc *, int, int);
3820 
3821 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3822 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3823 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3824 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3825 
3826 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3827 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3828 	    	if (sc->bge_flags & BGE_PCIE)
3829 			write_op = bge_writemem_direct;
3830 		else
3831 			write_op = bge_writemem_ind;
3832 	} else
3833 		write_op = bge_writereg_ind;
3834 
3835 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3836 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3837 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3838 		for (i = 0; i < 8000; i++) {
3839 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3840 			    BGE_NVRAMSWARB_GNT1)
3841 				break;
3842 			DELAY(20);
3843 		}
3844 		if (i == 8000) {
3845 			printf("%s: NVRAM lock timedout!\n",
3846 			    device_xname(sc->bge_dev));
3847 		}
3848 	}
3849 	/* Take APE lock when performing reset. */
3850 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3851 
3852 	/* Save some important PCI state. */
3853 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3854 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3855 
3856 	/* Step 5b-5d: */
3857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3858 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3859 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3860 
3861 	/* XXX ???: Disable fastboot on controllers that support it. */
3862 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3863 	    BGE_IS_5755_PLUS(sc))
3864 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3865 
3866 	/*
3867 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3868 	 * When firmware finishes its initialization it will
3869 	 * write ~BGE_MAGIC_NUMBER to the same location.
3870 	 */
3871 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
3872 
3873 	/* Step 7: */
3874 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
3875 	/*
3876 	 * XXX: from FreeBSD/Linux; no documentation
3877 	 */
3878 	if (sc->bge_flags & BGE_PCIE) {
3879 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
3880 		    !BGE_IS_57765_PLUS(sc) &&
3881 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
3882 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
3883 			/* PCI Express 1.0 system */
3884 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
3885 			    BGE_PHY_PCIE_SCRAM_MODE);
3886 		}
3887 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3888 			/*
3889 			 * Prevent PCI Express link training
3890 			 * during global reset.
3891 			 */
3892 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3893 			reset |= (1 << 29);
3894 		}
3895 	}
3896 
3897 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3898 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3899 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3900 		    i | BGE_VCPU_STATUS_DRV_RESET);
3901 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3902 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3903 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3904 	}
3905 
3906 	/*
3907 	 * Set GPHY Power Down Override to leave GPHY
3908 	 * powered up in D0 uninitialized.
3909 	 */
3910 	if (BGE_IS_5705_PLUS(sc) &&
3911 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3912 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
3913 
3914 	/* Issue global reset */
3915 	write_op(sc, BGE_MISC_CFG, reset);
3916 
3917 	/* Step 8: wait for complete */
3918 	if (sc->bge_flags & BGE_PCIE)
3919 		delay(100*1000); /* too big */
3920 	else
3921 		delay(1000);
3922 
3923 	if (sc->bge_flags & BGE_PCIE) {
3924 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3925 			DELAY(500000);
3926 			/* XXX: Magic Numbers */
3927 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3928 			    BGE_PCI_UNKNOWN0);
3929 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3930 			    BGE_PCI_UNKNOWN0,
3931 			    reg | (1 << 15));
3932 		}
3933 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3934 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3935 		/* Clear enable no snoop and disable relaxed ordering. */
3936 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
3937 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
3938 
3939 		/* Set PCIE max payload size to 128 for older PCIe devices */
3940 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
3941 			devctl &= ~(0x00e0);
3942 		/* Clear device status register. Write 1b to clear */
3943 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3944 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3945 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3946 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3947 		bge_set_max_readrq(sc);
3948 	}
3949 
3950 	/* From Linux: dummy read to flush PCI posted writes */
3951 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3952 
3953 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3954 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3955 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3956 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3957 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
3958 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
3959 	    (sc->bge_flags & BGE_PCIX) != 0)
3960 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
3961 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3962 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3963 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3964 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3965 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
3966 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3967 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3968 
3969 	/* Step 11: disable PCI-X Relaxed Ordering. */
3970 	if (sc->bge_flags & BGE_PCIX) {
3971 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3972 		    + PCI_PCIX_CMD);
3973 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3974 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3975 	}
3976 
3977 	/* Step 12: Enable memory arbiter. */
3978 	if (BGE_IS_5714_FAMILY(sc)) {
3979 		val = CSR_READ_4(sc, BGE_MARB_MODE);
3980 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
3981 	} else
3982 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3983 
3984 	/* XXX 5721, 5751 and 5752 */
3985 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3986 		/* Step 19: */
3987 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3988 		/* Step 20: */
3989 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3990 	}
3991 
3992 	/* Step 28: Fix up byte swapping */
3993 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3994 
3995 	/*
3996 	 * Wait for the bootcode to complete initialization.
3997 	 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
3998 	 * Section 7".
3999 	 */
4000 	if (BGE_IS_5717_PLUS(sc)) {
4001 		for (i = 0; i < 1000*1000; i++) {
4002 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4003 			if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4004 				break;
4005 			DELAY(10);
4006 		}
4007 	}
4008 
4009 	/* Step 21: 5822 B0 errata */
4010 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4011 		pcireg_t msidata;
4012 
4013 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4014 		    BGE_PCI_MSI_DATA);
4015 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4016 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4017 		    msidata);
4018 	}
4019 
4020 	/*
4021 	 * Step 18: wirte mac mode
4022 	 * XXX Write 0x0c for 5703S and 5704S
4023 	 */
4024 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4025 	val = (val & ~mac_mode_mask) | mac_mode;
4026 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4027 	DELAY(40);
4028 
4029 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4030 
4031 	/* Step 17: Poll until the firmware initialization is complete */
4032 	bge_poll_fw(sc);
4033 
4034 	/*
4035 	 * The 5704 in TBI mode apparently needs some special
4036 	 * adjustment to insure the SERDES drive level is set
4037 	 * to 1.2V.
4038 	 */
4039 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4040 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4041 		uint32_t serdescfg;
4042 
4043 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4044 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4045 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4046 	}
4047 
4048 	if (sc->bge_flags & BGE_PCIE &&
4049 	    !BGE_IS_57765_PLUS(sc) &&
4050 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4051 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4052 		uint32_t v;
4053 
4054 		/* Enable PCI Express bug fix */
4055 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4056 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4057 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4058 	}
4059 
4060 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4061 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4062 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4063 
4064 	return 0;
4065 }
4066 
4067 /*
4068  * Frame reception handling. This is called if there's a frame
4069  * on the receive return list.
4070  *
4071  * Note: we have to be able to handle two possibilities here:
4072  * 1) the frame is from the jumbo receive ring
4073  * 2) the frame is from the standard receive ring
4074  */
4075 
4076 static void
4077 bge_rxeof(struct bge_softc *sc)
4078 {
4079 	struct ifnet *ifp;
4080 	uint16_t rx_prod, rx_cons;
4081 	int stdcnt = 0, jumbocnt = 0;
4082 	bus_dmamap_t dmamap;
4083 	bus_addr_t offset, toff;
4084 	bus_size_t tlen;
4085 	int tosync;
4086 
4087 	rx_cons = sc->bge_rx_saved_considx;
4088 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4089 
4090 	/* Nothing to do */
4091 	if (rx_cons == rx_prod)
4092 		return;
4093 
4094 	ifp = &sc->ethercom.ec_if;
4095 
4096 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4097 	    offsetof(struct bge_ring_data, bge_status_block),
4098 	    sizeof (struct bge_status_block),
4099 	    BUS_DMASYNC_POSTREAD);
4100 
4101 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4102 	tosync = rx_prod - rx_cons;
4103 
4104 	if (tosync != 0)
4105 		rnd_add_uint32(&sc->rnd_source, tosync);
4106 
4107 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4108 
4109 	if (tosync < 0) {
4110 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4111 		    sizeof (struct bge_rx_bd);
4112 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4113 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4114 		tosync = -tosync;
4115 	}
4116 
4117 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4118 	    offset, tosync * sizeof (struct bge_rx_bd),
4119 	    BUS_DMASYNC_POSTREAD);
4120 
4121 	while (rx_cons != rx_prod) {
4122 		struct bge_rx_bd	*cur_rx;
4123 		uint32_t		rxidx;
4124 		struct mbuf		*m = NULL;
4125 
4126 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4127 
4128 		rxidx = cur_rx->bge_idx;
4129 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4130 
4131 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4132 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4133 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4134 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4135 			jumbocnt++;
4136 			bus_dmamap_sync(sc->bge_dmatag,
4137 			    sc->bge_cdata.bge_rx_jumbo_map,
4138 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4139 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4140 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4141 				ifp->if_ierrors++;
4142 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4143 				continue;
4144 			}
4145 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4146 					     NULL)== ENOBUFS) {
4147 				ifp->if_ierrors++;
4148 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4149 				continue;
4150 			}
4151 		} else {
4152 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4153 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4154 
4155 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4156 			stdcnt++;
4157 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4158 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4159 			if (dmamap == NULL) {
4160 				ifp->if_ierrors++;
4161 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4162 				continue;
4163 			}
4164 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4165 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4166 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4167 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4168 				ifp->if_ierrors++;
4169 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4170 				continue;
4171 			}
4172 			if (bge_newbuf_std(sc, sc->bge_std,
4173 			    NULL, dmamap) == ENOBUFS) {
4174 				ifp->if_ierrors++;
4175 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4176 				continue;
4177 			}
4178 		}
4179 
4180 		ifp->if_ipackets++;
4181 #ifndef __NO_STRICT_ALIGNMENT
4182 		/*
4183 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4184 		 * the Rx buffer has the layer-2 header unaligned.
4185 		 * If our CPU requires alignment, re-align by copying.
4186 		 */
4187 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4188 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4189 				cur_rx->bge_len);
4190 			m->m_data += ETHER_ALIGN;
4191 		}
4192 #endif
4193 
4194 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4195 		m->m_pkthdr.rcvif = ifp;
4196 
4197 		/*
4198 		 * Handle BPF listeners. Let the BPF user see the packet.
4199 		 */
4200 		bpf_mtap(ifp, m);
4201 
4202 		bge_rxcsum(sc, cur_rx, m);
4203 
4204 		/*
4205 		 * If we received a packet with a vlan tag, pass it
4206 		 * to vlan_input() instead of ether_input().
4207 		 */
4208 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4209 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4210 		}
4211 
4212 		(*ifp->if_input)(ifp, m);
4213 	}
4214 
4215 	sc->bge_rx_saved_considx = rx_cons;
4216 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4217 	if (stdcnt)
4218 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4219 	if (jumbocnt)
4220 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4221 }
4222 
4223 static void
4224 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4225 {
4226 
4227 	if (BGE_IS_5717_PLUS(sc)) {
4228 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4229 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4230 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4231 			if ((cur_rx->bge_error_flag &
4232 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4233 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4234 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4235 				m->m_pkthdr.csum_data =
4236 				    cur_rx->bge_tcp_udp_csum;
4237 				m->m_pkthdr.csum_flags |=
4238 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4239 					M_CSUM_DATA);
4240 			}
4241 		}
4242 	} else {
4243 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4244 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4245 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4246 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4247 		/*
4248 		 * Rx transport checksum-offload may also
4249 		 * have bugs with packets which, when transmitted,
4250 		 * were `runts' requiring padding.
4251 		 */
4252 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4253 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4254 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4255 			m->m_pkthdr.csum_data =
4256 			    cur_rx->bge_tcp_udp_csum;
4257 			m->m_pkthdr.csum_flags |=
4258 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4259 				M_CSUM_DATA);
4260 		}
4261 	}
4262 }
4263 
4264 static void
4265 bge_txeof(struct bge_softc *sc)
4266 {
4267 	struct bge_tx_bd *cur_tx = NULL;
4268 	struct ifnet *ifp;
4269 	struct txdmamap_pool_entry *dma;
4270 	bus_addr_t offset, toff;
4271 	bus_size_t tlen;
4272 	int tosync;
4273 	struct mbuf *m;
4274 
4275 	ifp = &sc->ethercom.ec_if;
4276 
4277 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4278 	    offsetof(struct bge_ring_data, bge_status_block),
4279 	    sizeof (struct bge_status_block),
4280 	    BUS_DMASYNC_POSTREAD);
4281 
4282 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4283 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4284 	    sc->bge_tx_saved_considx;
4285 
4286 	if (tosync != 0)
4287 		rnd_add_uint32(&sc->rnd_source, tosync);
4288 
4289 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4290 
4291 	if (tosync < 0) {
4292 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4293 		    sizeof (struct bge_tx_bd);
4294 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4295 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4296 		tosync = -tosync;
4297 	}
4298 
4299 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4300 	    offset, tosync * sizeof (struct bge_tx_bd),
4301 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4302 
4303 	/*
4304 	 * Go through our tx ring and free mbufs for those
4305 	 * frames that have been sent.
4306 	 */
4307 	while (sc->bge_tx_saved_considx !=
4308 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4309 		uint32_t		idx = 0;
4310 
4311 		idx = sc->bge_tx_saved_considx;
4312 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4313 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4314 			ifp->if_opackets++;
4315 		m = sc->bge_cdata.bge_tx_chain[idx];
4316 		if (m != NULL) {
4317 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4318 			dma = sc->txdma[idx];
4319 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4320 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4321 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4322 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4323 			sc->txdma[idx] = NULL;
4324 
4325 			m_freem(m);
4326 		}
4327 		sc->bge_txcnt--;
4328 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4329 		ifp->if_timer = 0;
4330 	}
4331 
4332 	if (cur_tx != NULL)
4333 		ifp->if_flags &= ~IFF_OACTIVE;
4334 }
4335 
4336 static int
4337 bge_intr(void *xsc)
4338 {
4339 	struct bge_softc *sc;
4340 	struct ifnet *ifp;
4341 	uint32_t statusword;
4342 
4343 	sc = xsc;
4344 	ifp = &sc->ethercom.ec_if;
4345 
4346 	/* It is possible for the interrupt to arrive before
4347 	 * the status block is updated prior to the interrupt.
4348 	 * Reading the PCI State register will confirm whether the
4349 	 * interrupt is ours and will flush the status block.
4350 	 */
4351 
4352 	/* read status word from status block */
4353 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4354 
4355 	if ((statusword & BGE_STATFLAG_UPDATED) ||
4356 	    (!(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
4357 		BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4358 		/* Ack interrupt and stop others from occuring. */
4359 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4360 
4361 		BGE_EVCNT_INCR(sc->bge_ev_intr);
4362 
4363 		/* clear status word */
4364 		sc->bge_rdata->bge_status_block.bge_status = 0;
4365 
4366 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4367 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4368 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4369 			bge_link_upd(sc);
4370 
4371 		if (ifp->if_flags & IFF_RUNNING) {
4372 			/* Check RX return ring producer/consumer */
4373 			bge_rxeof(sc);
4374 
4375 			/* Check TX ring producer/consumer */
4376 			bge_txeof(sc);
4377 		}
4378 
4379 		if (sc->bge_pending_rxintr_change) {
4380 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4381 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4382 			uint32_t junk;
4383 
4384 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4385 			DELAY(10);
4386 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4387 
4388 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4389 			DELAY(10);
4390 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4391 
4392 			sc->bge_pending_rxintr_change = 0;
4393 		}
4394 		bge_handle_events(sc);
4395 
4396 		/* Re-enable interrupts. */
4397 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4398 
4399 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4400 			bge_start(ifp);
4401 
4402 		return 1;
4403 	} else
4404 		return 0;
4405 }
4406 
4407 static void
4408 bge_asf_driver_up(struct bge_softc *sc)
4409 {
4410 	if (sc->bge_asf_mode & ASF_STACKUP) {
4411 		/* Send ASF heartbeat aprox. every 2s */
4412 		if (sc->bge_asf_count)
4413 			sc->bge_asf_count --;
4414 		else {
4415 			sc->bge_asf_count = 2;
4416 
4417 			bge_wait_for_event_ack(sc);
4418 
4419 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4420 			    BGE_FW_CMD_DRV_ALIVE);
4421 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4422 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4423 			    BGE_FW_HB_TIMEOUT_SEC);
4424 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4425 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4426 			    BGE_RX_CPU_DRV_EVENT);
4427 		}
4428 	}
4429 }
4430 
4431 static void
4432 bge_tick(void *xsc)
4433 {
4434 	struct bge_softc *sc = xsc;
4435 	struct mii_data *mii = &sc->bge_mii;
4436 	int s;
4437 
4438 	s = splnet();
4439 
4440 	if (BGE_IS_5705_PLUS(sc))
4441 		bge_stats_update_regs(sc);
4442 	else
4443 		bge_stats_update(sc);
4444 
4445 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4446 		/*
4447 		 * Since in TBI mode auto-polling can't be used we should poll
4448 		 * link status manually. Here we register pending link event
4449 		 * and trigger interrupt.
4450 		 */
4451 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4452 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4453 	} else {
4454 		/*
4455 		 * Do not touch PHY if we have link up. This could break
4456 		 * IPMI/ASF mode or produce extra input errors.
4457 		 * (extra input errors was reported for bcm5701 & bcm5704).
4458 		 */
4459 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4460 			mii_tick(mii);
4461 	}
4462 
4463 	bge_asf_driver_up(sc);
4464 
4465 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4466 
4467 	splx(s);
4468 }
4469 
4470 static void
4471 bge_stats_update_regs(struct bge_softc *sc)
4472 {
4473 	struct ifnet *ifp = &sc->ethercom.ec_if;
4474 
4475 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4476 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4477 
4478 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4479 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4480 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4481 }
4482 
4483 static void
4484 bge_stats_update(struct bge_softc *sc)
4485 {
4486 	struct ifnet *ifp = &sc->ethercom.ec_if;
4487 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4488 
4489 #define READ_STAT(sc, stats, stat) \
4490 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4491 
4492 	ifp->if_collisions +=
4493 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4494 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4495 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4496 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4497 	  ifp->if_collisions;
4498 
4499 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4500 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4501 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4502 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4503 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4504 		      READ_STAT(sc, stats,
4505 		      		xoffPauseFramesReceived.bge_addr_lo));
4506 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4507 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4508 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4509 		      READ_STAT(sc, stats,
4510 		      		macControlFramesReceived.bge_addr_lo));
4511 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4512 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4513 
4514 #undef READ_STAT
4515 
4516 #ifdef notdef
4517 	ifp->if_collisions +=
4518 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4519 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4520 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4521 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4522 	   ifp->if_collisions;
4523 #endif
4524 }
4525 
4526 /*
4527  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4528  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4529  * but when such padded frames employ the  bge IP/TCP checksum offload,
4530  * the hardware checksum assist gives incorrect results (possibly
4531  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4532  * If we pad such runts with zeros, the onboard checksum comes out correct.
4533  */
4534 static inline int
4535 bge_cksum_pad(struct mbuf *pkt)
4536 {
4537 	struct mbuf *last = NULL;
4538 	int padlen;
4539 
4540 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4541 
4542 	/* if there's only the packet-header and we can pad there, use it. */
4543 	if (pkt->m_pkthdr.len == pkt->m_len &&
4544 	    M_TRAILINGSPACE(pkt) >= padlen) {
4545 		last = pkt;
4546 	} else {
4547 		/*
4548 		 * Walk packet chain to find last mbuf. We will either
4549 		 * pad there, or append a new mbuf and pad it
4550 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4551 		 */
4552 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4553 	      	       continue; /* do nothing */
4554 		}
4555 
4556 		/* `last' now points to last in chain. */
4557 		if (M_TRAILINGSPACE(last) < padlen) {
4558 			/* Allocate new empty mbuf, pad it. Compact later. */
4559 			struct mbuf *n;
4560 			MGET(n, M_DONTWAIT, MT_DATA);
4561 			if (n == NULL)
4562 				return ENOBUFS;
4563 			n->m_len = 0;
4564 			last->m_next = n;
4565 			last = n;
4566 		}
4567 	}
4568 
4569 	KDASSERT(!M_READONLY(last));
4570 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4571 
4572 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4573 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4574 	last->m_len += padlen;
4575 	pkt->m_pkthdr.len += padlen;
4576 	return 0;
4577 }
4578 
4579 /*
4580  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4581  */
4582 static inline int
4583 bge_compact_dma_runt(struct mbuf *pkt)
4584 {
4585 	struct mbuf	*m, *prev;
4586 	int 		totlen, prevlen;
4587 
4588 	prev = NULL;
4589 	totlen = 0;
4590 	prevlen = -1;
4591 
4592 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4593 		int mlen = m->m_len;
4594 		int shortfall = 8 - mlen ;
4595 
4596 		totlen += mlen;
4597 		if (mlen == 0)
4598 			continue;
4599 		if (mlen >= 8)
4600 			continue;
4601 
4602 		/* If we get here, mbuf data is too small for DMA engine.
4603 		 * Try to fix by shuffling data to prev or next in chain.
4604 		 * If that fails, do a compacting deep-copy of the whole chain.
4605 		 */
4606 
4607 		/* Internal frag. If fits in prev, copy it there. */
4608 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4609 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4610 			prev->m_len += mlen;
4611 			m->m_len = 0;
4612 			/* XXX stitch chain */
4613 			prev->m_next = m_free(m);
4614 			m = prev;
4615 			continue;
4616 		}
4617 		else if (m->m_next != NULL &&
4618 			     M_TRAILINGSPACE(m) >= shortfall &&
4619 			     m->m_next->m_len >= (8 + shortfall)) {
4620 		    /* m is writable and have enough data in next, pull up. */
4621 
4622 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
4623 			    shortfall);
4624 			m->m_len += shortfall;
4625 			m->m_next->m_len -= shortfall;
4626 			m->m_next->m_data += shortfall;
4627 		}
4628 		else if (m->m_next == NULL || 1) {
4629 		  	/* Got a runt at the very end of the packet.
4630 			 * borrow data from the tail of the preceding mbuf and
4631 			 * update its length in-place. (The original data is still
4632 			 * valid, so we can do this even if prev is not writable.)
4633 			 */
4634 
4635 			/* if we'd make prev a runt, just move all of its data. */
4636 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4637 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4638 
4639 			if ((prev->m_len - shortfall) < 8)
4640 				shortfall = prev->m_len;
4641 
4642 #ifdef notyet	/* just do the safe slow thing for now */
4643 			if (!M_READONLY(m)) {
4644 				if (M_LEADINGSPACE(m) < shorfall) {
4645 					void *m_dat;
4646 					m_dat = (m->m_flags & M_PKTHDR) ?
4647 					  m->m_pktdat : m->dat;
4648 					memmove(m_dat, mtod(m, void*), m->m_len);
4649 					m->m_data = m_dat;
4650 				    }
4651 			} else
4652 #endif	/* just do the safe slow thing */
4653 			{
4654 				struct mbuf * n = NULL;
4655 				int newprevlen = prev->m_len - shortfall;
4656 
4657 				MGET(n, M_NOWAIT, MT_DATA);
4658 				if (n == NULL)
4659 				   return ENOBUFS;
4660 				KASSERT(m->m_len + shortfall < MLEN
4661 					/*,
4662 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4663 
4664 				/* first copy the data we're stealing from prev */
4665 				memcpy(n->m_data, prev->m_data + newprevlen,
4666 				    shortfall);
4667 
4668 				/* update prev->m_len accordingly */
4669 				prev->m_len -= shortfall;
4670 
4671 				/* copy data from runt m */
4672 				memcpy(n->m_data + shortfall, m->m_data,
4673 				    m->m_len);
4674 
4675 				/* n holds what we stole from prev, plus m */
4676 				n->m_len = shortfall + m->m_len;
4677 
4678 				/* stitch n into chain and free m */
4679 				n->m_next = m->m_next;
4680 				prev->m_next = n;
4681 				/* KASSERT(m->m_next == NULL); */
4682 				m->m_next = NULL;
4683 				m_free(m);
4684 				m = n;	/* for continuing loop */
4685 			}
4686 		}
4687 		prevlen = m->m_len;
4688 	}
4689 	return 0;
4690 }
4691 
4692 /*
4693  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4694  * pointers to descriptors.
4695  */
4696 static int
4697 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4698 {
4699 	struct bge_tx_bd	*f = NULL;
4700 	uint32_t		frag, cur;
4701 	uint16_t		csum_flags = 0;
4702 	uint16_t		txbd_tso_flags = 0;
4703 	struct txdmamap_pool_entry *dma;
4704 	bus_dmamap_t dmamap;
4705 	int			i = 0;
4706 	struct m_tag		*mtag;
4707 	int			use_tso, maxsegsize, error;
4708 
4709 	cur = frag = *txidx;
4710 
4711 	if (m_head->m_pkthdr.csum_flags) {
4712 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4713 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4714 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4715 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4716 	}
4717 
4718 	/*
4719 	 * If we were asked to do an outboard checksum, and the NIC
4720 	 * has the bug where it sometimes adds in the Ethernet padding,
4721 	 * explicitly pad with zeros so the cksum will be correct either way.
4722 	 * (For now, do this for all chip versions, until newer
4723 	 * are confirmed to not require the workaround.)
4724 	 */
4725 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4726 #ifdef notyet
4727 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4728 #endif
4729 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4730 		goto check_dma_bug;
4731 
4732 	if (bge_cksum_pad(m_head) != 0)
4733 	    return ENOBUFS;
4734 
4735 check_dma_bug:
4736 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4737 		goto doit;
4738 
4739 	/*
4740 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4741 	 * less than eight bytes.  If we encounter a teeny mbuf
4742 	 * at the end of a chain, we can pad.  Otherwise, copy.
4743 	 */
4744 	if (bge_compact_dma_runt(m_head) != 0)
4745 		return ENOBUFS;
4746 
4747 doit:
4748 	dma = SLIST_FIRST(&sc->txdma_list);
4749 	if (dma == NULL)
4750 		return ENOBUFS;
4751 	dmamap = dma->dmamap;
4752 
4753 	/*
4754 	 * Set up any necessary TSO state before we start packing...
4755 	 */
4756 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4757 	if (!use_tso) {
4758 		maxsegsize = 0;
4759 	} else {	/* TSO setup */
4760 		unsigned  mss;
4761 		struct ether_header *eh;
4762 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4763 		struct mbuf * m0 = m_head;
4764 		struct ip *ip;
4765 		struct tcphdr *th;
4766 		int iphl, hlen;
4767 
4768 		/*
4769 		 * XXX It would be nice if the mbuf pkthdr had offset
4770 		 * fields for the protocol headers.
4771 		 */
4772 
4773 		eh = mtod(m0, struct ether_header *);
4774 		switch (htons(eh->ether_type)) {
4775 		case ETHERTYPE_IP:
4776 			offset = ETHER_HDR_LEN;
4777 			break;
4778 
4779 		case ETHERTYPE_VLAN:
4780 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4781 			break;
4782 
4783 		default:
4784 			/*
4785 			 * Don't support this protocol or encapsulation.
4786 			 */
4787 			return ENOBUFS;
4788 		}
4789 
4790 		/*
4791 		 * TCP/IP headers are in the first mbuf; we can do
4792 		 * this the easy way.
4793 		 */
4794 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4795 		hlen = iphl + offset;
4796 		if (__predict_false(m0->m_len <
4797 				    (hlen + sizeof(struct tcphdr)))) {
4798 
4799 			aprint_debug_dev(sc->bge_dev,
4800 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4801 			    "not handled yet\n",
4802 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4803 #ifdef NOTYET
4804 			/*
4805 			 * XXX jonathan@NetBSD.org: untested.
4806 			 * how to force  this branch to be taken?
4807 			 */
4808 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4809 
4810 			m_copydata(m0, offset, sizeof(ip), &ip);
4811 			m_copydata(m0, hlen, sizeof(th), &th);
4812 
4813 			ip.ip_len = 0;
4814 
4815 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4816 			    sizeof(ip.ip_len), &ip.ip_len);
4817 
4818 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4819 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4820 
4821 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4822 			    sizeof(th.th_sum), &th.th_sum);
4823 
4824 			hlen += th.th_off << 2;
4825 			iptcp_opt_words	= hlen;
4826 #else
4827 			/*
4828 			 * if_wm "hard" case not yet supported, can we not
4829 			 * mandate it out of existence?
4830 			 */
4831 			(void) ip; (void)th; (void) ip_tcp_hlen;
4832 
4833 			return ENOBUFS;
4834 #endif
4835 		} else {
4836 			ip = (struct ip *) (mtod(m0, char *) + offset);
4837 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4838 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4839 
4840 			/* Total IP/TCP options, in 32-bit words */
4841 			iptcp_opt_words = (ip_tcp_hlen
4842 					   - sizeof(struct tcphdr)
4843 					   - sizeof(struct ip)) >> 2;
4844 		}
4845 		if (BGE_IS_575X_PLUS(sc)) {
4846 			th->th_sum = 0;
4847 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4848 		} else {
4849 			/*
4850 			 * XXX jonathan@NetBSD.org: 5705 untested.
4851 			 * Requires TSO firmware patch for 5701/5703/5704.
4852 			 */
4853 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4854 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4855 		}
4856 
4857 		mss = m_head->m_pkthdr.segsz;
4858 		txbd_tso_flags |=
4859 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4860 		    BGE_TXBDFLAG_CPU_POST_DMA;
4861 
4862 		/*
4863 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4864 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4865 		 * the NIC copies 40 bytes of IP/TCP header from the
4866 		 * supplied header into the IP/TCP header portion of
4867 		 * each post-TSO-segment. If the supplied packet has IP or
4868 		 * TCP options, we need to tell the NIC to copy those extra
4869 		 * bytes into each  post-TSO header, in addition to the normal
4870 		 * 40-byte IP/TCP header (and to leave space accordingly).
4871 		 * Unfortunately, the driver encoding of option length
4872 		 * varies across different ASIC families.
4873 		 */
4874 		tcp_seg_flags = 0;
4875 		if (iptcp_opt_words) {
4876 			if (BGE_IS_5705_PLUS(sc)) {
4877 				tcp_seg_flags =
4878 					iptcp_opt_words << 11;
4879 			} else {
4880 				txbd_tso_flags |=
4881 					iptcp_opt_words << 12;
4882 			}
4883 		}
4884 		maxsegsize = mss | tcp_seg_flags;
4885 		ip->ip_len = htons(mss + ip_tcp_hlen);
4886 
4887 	}	/* TSO setup */
4888 
4889 	/*
4890 	 * Start packing the mbufs in this chain into
4891 	 * the fragment pointers. Stop when we run out
4892 	 * of fragments or hit the end of the mbuf chain.
4893 	 */
4894 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4895 	    BUS_DMA_NOWAIT);
4896 	if (error)
4897 		return ENOBUFS;
4898 	/*
4899 	 * Sanity check: avoid coming within 16 descriptors
4900 	 * of the end of the ring.
4901 	 */
4902 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4903 		BGE_TSO_PRINTF(("%s: "
4904 		    " dmamap_load_mbuf too close to ring wrap\n",
4905 		    device_xname(sc->bge_dev)));
4906 		goto fail_unload;
4907 	}
4908 
4909 	mtag = sc->ethercom.ec_nvlans ?
4910 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4911 
4912 
4913 	/* Iterate over dmap-map fragments. */
4914 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4915 		f = &sc->bge_rdata->bge_tx_ring[frag];
4916 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4917 			break;
4918 
4919 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4920 		f->bge_len = dmamap->dm_segs[i].ds_len;
4921 
4922 		/*
4923 		 * For 5751 and follow-ons, for TSO we must turn
4924 		 * off checksum-assist flag in the tx-descr, and
4925 		 * supply the ASIC-revision-specific encoding
4926 		 * of TSO flags and segsize.
4927 		 */
4928 		if (use_tso) {
4929 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
4930 				f->bge_rsvd = maxsegsize;
4931 				f->bge_flags = csum_flags | txbd_tso_flags;
4932 			} else {
4933 				f->bge_rsvd = 0;
4934 				f->bge_flags =
4935 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4936 			}
4937 		} else {
4938 			f->bge_rsvd = 0;
4939 			f->bge_flags = csum_flags;
4940 		}
4941 
4942 		if (mtag != NULL) {
4943 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4944 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4945 		} else {
4946 			f->bge_vlan_tag = 0;
4947 		}
4948 		cur = frag;
4949 		BGE_INC(frag, BGE_TX_RING_CNT);
4950 	}
4951 
4952 	if (i < dmamap->dm_nsegs) {
4953 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4954 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4955 		goto fail_unload;
4956 	}
4957 
4958 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4959 	    BUS_DMASYNC_PREWRITE);
4960 
4961 	if (frag == sc->bge_tx_saved_considx) {
4962 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4963 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4964 
4965 		goto fail_unload;
4966 	}
4967 
4968 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4969 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4970 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4971 	sc->txdma[cur] = dma;
4972 	sc->bge_txcnt += dmamap->dm_nsegs;
4973 
4974 	*txidx = frag;
4975 
4976 	return 0;
4977 
4978 fail_unload:
4979 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4980 
4981 	return ENOBUFS;
4982 }
4983 
4984 /*
4985  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4986  * to the mbuf data regions directly in the transmit descriptors.
4987  */
4988 static void
4989 bge_start(struct ifnet *ifp)
4990 {
4991 	struct bge_softc *sc;
4992 	struct mbuf *m_head = NULL;
4993 	uint32_t prodidx;
4994 	int pkts = 0;
4995 
4996 	sc = ifp->if_softc;
4997 
4998 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4999 		return;
5000 
5001 	prodidx = sc->bge_tx_prodidx;
5002 
5003 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5004 		IFQ_POLL(&ifp->if_snd, m_head);
5005 		if (m_head == NULL)
5006 			break;
5007 
5008 #if 0
5009 		/*
5010 		 * XXX
5011 		 * safety overkill.  If this is a fragmented packet chain
5012 		 * with delayed TCP/UDP checksums, then only encapsulate
5013 		 * it if we have enough descriptors to handle the entire
5014 		 * chain at once.
5015 		 * (paranoia -- may not actually be needed)
5016 		 */
5017 		if (m_head->m_flags & M_FIRSTFRAG &&
5018 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5019 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5020 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5021 				ifp->if_flags |= IFF_OACTIVE;
5022 				break;
5023 			}
5024 		}
5025 #endif
5026 
5027 		/*
5028 		 * Pack the data into the transmit ring. If we
5029 		 * don't have room, set the OACTIVE flag and wait
5030 		 * for the NIC to drain the ring.
5031 		 */
5032 		if (bge_encap(sc, m_head, &prodidx)) {
5033 			ifp->if_flags |= IFF_OACTIVE;
5034 			break;
5035 		}
5036 
5037 		/* now we are committed to transmit the packet */
5038 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5039 		pkts++;
5040 
5041 		/*
5042 		 * If there's a BPF listener, bounce a copy of this frame
5043 		 * to him.
5044 		 */
5045 		bpf_mtap(ifp, m_head);
5046 	}
5047 	if (pkts == 0)
5048 		return;
5049 
5050 	/* Transmit */
5051 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5052 	/* 5700 b2 errata */
5053 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5054 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5055 
5056 	sc->bge_tx_prodidx = prodidx;
5057 
5058 	/*
5059 	 * Set a timeout in case the chip goes out to lunch.
5060 	 */
5061 	ifp->if_timer = 5;
5062 }
5063 
5064 static int
5065 bge_init(struct ifnet *ifp)
5066 {
5067 	struct bge_softc *sc = ifp->if_softc;
5068 	const uint16_t *m;
5069 	uint32_t mode;
5070 	int s, error = 0;
5071 
5072 	s = splnet();
5073 
5074 	ifp = &sc->ethercom.ec_if;
5075 
5076 	/* Cancel pending I/O and flush buffers. */
5077 	bge_stop(ifp, 0);
5078 
5079 	bge_stop_fw(sc);
5080 	bge_sig_pre_reset(sc, BGE_RESET_START);
5081 	bge_reset(sc);
5082 	bge_sig_legacy(sc, BGE_RESET_START);
5083 	bge_sig_post_reset(sc, BGE_RESET_START);
5084 
5085 	bge_chipinit(sc);
5086 
5087 	/*
5088 	 * Init the various state machines, ring
5089 	 * control blocks and firmware.
5090 	 */
5091 	error = bge_blockinit(sc);
5092 	if (error != 0) {
5093 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5094 		    error);
5095 		splx(s);
5096 		return error;
5097 	}
5098 
5099 	ifp = &sc->ethercom.ec_if;
5100 
5101 	/* Specify MTU. */
5102 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5103 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5104 
5105 	/* Load our MAC address. */
5106 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5107 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5108 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5109 
5110 	/* Enable or disable promiscuous mode as needed. */
5111 	if (ifp->if_flags & IFF_PROMISC)
5112 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5113 	else
5114 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5115 
5116 	/* Program multicast filter. */
5117 	bge_setmulti(sc);
5118 
5119 	/* Init RX ring. */
5120 	bge_init_rx_ring_std(sc);
5121 
5122 	/*
5123 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5124 	 * memory to insure that the chip has in fact read the first
5125 	 * entry of the ring.
5126 	 */
5127 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5128 		uint32_t		v, i;
5129 		for (i = 0; i < 10; i++) {
5130 			DELAY(20);
5131 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5132 			if (v == (MCLBYTES - ETHER_ALIGN))
5133 				break;
5134 		}
5135 		if (i == 10)
5136 			aprint_error_dev(sc->bge_dev,
5137 			    "5705 A0 chip failed to load RX ring\n");
5138 	}
5139 
5140 	/* Init jumbo RX ring. */
5141 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5142 		bge_init_rx_ring_jumbo(sc);
5143 
5144 	/* Init our RX return ring index */
5145 	sc->bge_rx_saved_considx = 0;
5146 
5147 	/* Init TX ring. */
5148 	bge_init_tx_ring(sc);
5149 
5150 	/* Enable TX MAC state machine lockup fix. */
5151 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5152 	if (BGE_IS_5755_PLUS(sc) ||
5153 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5154 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5155 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5156 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5157 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5158 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5159 	}
5160 
5161 	/* Turn on transmitter */
5162 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5163 	DELAY(100);
5164 
5165 	/* Turn on receiver */
5166 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5167 	if (BGE_IS_5755_PLUS(sc))
5168 		mode |= BGE_RXMODE_IPV6_ENABLE;
5169 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5170 	DELAY(10);
5171 
5172 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5173 
5174 	/* Tell firmware we're alive. */
5175 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5176 
5177 	/* Enable host interrupts. */
5178 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5179 	    BGE_PCIMISCCTL_CLEAR_INTA);
5180 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5181 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
5182 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5183 
5184 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5185 		goto out;
5186 
5187 	ifp->if_flags |= IFF_RUNNING;
5188 	ifp->if_flags &= ~IFF_OACTIVE;
5189 
5190 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5191 
5192 out:
5193 	sc->bge_if_flags = ifp->if_flags;
5194 	splx(s);
5195 
5196 	return error;
5197 }
5198 
5199 /*
5200  * Set media options.
5201  */
5202 static int
5203 bge_ifmedia_upd(struct ifnet *ifp)
5204 {
5205 	struct bge_softc *sc = ifp->if_softc;
5206 	struct mii_data *mii = &sc->bge_mii;
5207 	struct ifmedia *ifm = &sc->bge_ifmedia;
5208 	int rc;
5209 
5210 	/* If this is a 1000baseX NIC, enable the TBI port. */
5211 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5212 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5213 			return EINVAL;
5214 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5215 		case IFM_AUTO:
5216 			/*
5217 			 * The BCM5704 ASIC appears to have a special
5218 			 * mechanism for programming the autoneg
5219 			 * advertisement registers in TBI mode.
5220 			 */
5221 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5222 				uint32_t sgdig;
5223 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5224 				if (sgdig & BGE_SGDIGSTS_DONE) {
5225 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5226 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5227 					sgdig |= BGE_SGDIGCFG_AUTO |
5228 					    BGE_SGDIGCFG_PAUSE_CAP |
5229 					    BGE_SGDIGCFG_ASYM_PAUSE;
5230 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5231 					    sgdig | BGE_SGDIGCFG_SEND);
5232 					DELAY(5);
5233 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5234 					    sgdig);
5235 				}
5236 			}
5237 			break;
5238 		case IFM_1000_SX:
5239 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5240 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5241 				    BGE_MACMODE_HALF_DUPLEX);
5242 			} else {
5243 				BGE_SETBIT(sc, BGE_MAC_MODE,
5244 				    BGE_MACMODE_HALF_DUPLEX);
5245 			}
5246 			DELAY(40);
5247 			break;
5248 		default:
5249 			return EINVAL;
5250 		}
5251 		/* XXX 802.3x flow control for 1000BASE-SX */
5252 		return 0;
5253 	}
5254 
5255 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5256 	if ((rc = mii_mediachg(mii)) == ENXIO)
5257 		return 0;
5258 
5259 	/*
5260 	 * Force an interrupt so that we will call bge_link_upd
5261 	 * if needed and clear any pending link state attention.
5262 	 * Without this we are not getting any further interrupts
5263 	 * for link state changes and thus will not UP the link and
5264 	 * not be able to send in bge_start. The only way to get
5265 	 * things working was to receive a packet and get a RX intr.
5266 	 */
5267 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5268 	    sc->bge_flags & BGE_IS_5788)
5269 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5270 	else
5271 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5272 
5273 	return rc;
5274 }
5275 
5276 /*
5277  * Report current media status.
5278  */
5279 static void
5280 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5281 {
5282 	struct bge_softc *sc = ifp->if_softc;
5283 	struct mii_data *mii = &sc->bge_mii;
5284 
5285 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5286 		ifmr->ifm_status = IFM_AVALID;
5287 		ifmr->ifm_active = IFM_ETHER;
5288 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5289 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5290 			ifmr->ifm_status |= IFM_ACTIVE;
5291 		ifmr->ifm_active |= IFM_1000_SX;
5292 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5293 			ifmr->ifm_active |= IFM_HDX;
5294 		else
5295 			ifmr->ifm_active |= IFM_FDX;
5296 		return;
5297 	}
5298 
5299 	mii_pollstat(mii);
5300 	ifmr->ifm_status = mii->mii_media_status;
5301 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5302 	    sc->bge_flowflags;
5303 }
5304 
5305 static int
5306 bge_ifflags_cb(struct ethercom *ec)
5307 {
5308 	struct ifnet *ifp = &ec->ec_if;
5309 	struct bge_softc *sc = ifp->if_softc;
5310 	int change = ifp->if_flags ^ sc->bge_if_flags;
5311 
5312 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5313 		return ENETRESET;
5314 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5315 		return 0;
5316 
5317 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5318 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5319 	else
5320 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5321 
5322 	bge_setmulti(sc);
5323 
5324 	sc->bge_if_flags = ifp->if_flags;
5325 	return 0;
5326 }
5327 
5328 static int
5329 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5330 {
5331 	struct bge_softc *sc = ifp->if_softc;
5332 	struct ifreq *ifr = (struct ifreq *) data;
5333 	int s, error = 0;
5334 	struct mii_data *mii;
5335 
5336 	s = splnet();
5337 
5338 	switch (command) {
5339 	case SIOCSIFMEDIA:
5340 		/* XXX Flow control is not supported for 1000BASE-SX */
5341 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5342 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5343 			sc->bge_flowflags = 0;
5344 		}
5345 
5346 		/* Flow control requires full-duplex mode. */
5347 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5348 		    (ifr->ifr_media & IFM_FDX) == 0) {
5349 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5350 		}
5351 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5352 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5353 				/* We can do both TXPAUSE and RXPAUSE. */
5354 				ifr->ifr_media |=
5355 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5356 			}
5357 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5358 		}
5359 		/* FALLTHROUGH */
5360 	case SIOCGIFMEDIA:
5361 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5362 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5363 			    command);
5364 		} else {
5365 			mii = &sc->bge_mii;
5366 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5367 			    command);
5368 		}
5369 		break;
5370 	default:
5371 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5372 			break;
5373 
5374 		error = 0;
5375 
5376 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5377 			;
5378 		else if (ifp->if_flags & IFF_RUNNING)
5379 			bge_setmulti(sc);
5380 		break;
5381 	}
5382 
5383 	splx(s);
5384 
5385 	return error;
5386 }
5387 
5388 static void
5389 bge_watchdog(struct ifnet *ifp)
5390 {
5391 	struct bge_softc *sc;
5392 
5393 	sc = ifp->if_softc;
5394 
5395 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5396 
5397 	ifp->if_flags &= ~IFF_RUNNING;
5398 	bge_init(ifp);
5399 
5400 	ifp->if_oerrors++;
5401 }
5402 
5403 static void
5404 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5405 {
5406 	int i;
5407 
5408 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5409 
5410 	for (i = 0; i < 1000; i++) {
5411 		delay(100);
5412 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5413 			return;
5414 	}
5415 
5416 	/*
5417 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5418 	 * on some environment (and once after boot?)
5419 	 */
5420 	if (reg != BGE_SRS_MODE)
5421 		aprint_error_dev(sc->bge_dev,
5422 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5423 		    (u_long)reg, bit);
5424 }
5425 
5426 /*
5427  * Stop the adapter and free any mbufs allocated to the
5428  * RX and TX lists.
5429  */
5430 static void
5431 bge_stop(struct ifnet *ifp, int disable)
5432 {
5433 	struct bge_softc *sc = ifp->if_softc;
5434 
5435 	callout_stop(&sc->bge_timeout);
5436 
5437 	/* Disable host interrupts. */
5438 	PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
5439 	    BGE_PCIMISCCTL_MASK_PCI_INTR);
5440 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5441 
5442 	/*
5443 	 * Tell firmware we're shutting down.
5444 	 */
5445 	bge_stop_fw(sc);
5446 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5447 
5448 	/*
5449 	 * Disable all of the receiver blocks.
5450 	 */
5451 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5452 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5453 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5454 	if (BGE_IS_5700_FAMILY(sc))
5455 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5456 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5457 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5458 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5459 
5460 	/*
5461 	 * Disable all of the transmit blocks.
5462 	 */
5463 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5464 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5465 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5466 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5467 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5468 	if (BGE_IS_5700_FAMILY(sc))
5469 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5470 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5471 
5472 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5473 	delay(40);
5474 
5475 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5476 
5477 	/*
5478 	 * Shut down all of the memory managers and related
5479 	 * state machines.
5480 	 */
5481 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5482 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5483 	if (BGE_IS_5700_FAMILY(sc))
5484 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5485 
5486 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5487 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5488 
5489 	if (BGE_IS_5700_FAMILY(sc)) {
5490 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5491 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5492 	}
5493 
5494 	bge_reset(sc);
5495 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5496 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5497 
5498 	/*
5499 	 * Keep the ASF firmware running if up.
5500 	 */
5501 	if (sc->bge_asf_mode & ASF_STACKUP)
5502 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5503 	else
5504 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5505 
5506 	/* Free the RX lists. */
5507 	bge_free_rx_ring_std(sc);
5508 
5509 	/* Free jumbo RX list. */
5510 	if (BGE_IS_JUMBO_CAPABLE(sc))
5511 		bge_free_rx_ring_jumbo(sc);
5512 
5513 	/* Free TX buffers. */
5514 	bge_free_tx_ring(sc);
5515 
5516 	/*
5517 	 * Isolate/power down the PHY.
5518 	 */
5519 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5520 		mii_down(&sc->bge_mii);
5521 
5522 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5523 
5524 	/* Clear MAC's link state (PHY may still have link UP). */
5525 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5526 
5527 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5528 }
5529 
5530 static void
5531 bge_link_upd(struct bge_softc *sc)
5532 {
5533 	struct ifnet *ifp = &sc->ethercom.ec_if;
5534 	struct mii_data *mii = &sc->bge_mii;
5535 	uint32_t status;
5536 	int link;
5537 
5538 	/* Clear 'pending link event' flag */
5539 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5540 
5541 	/*
5542 	 * Process link state changes.
5543 	 * Grrr. The link status word in the status block does
5544 	 * not work correctly on the BCM5700 rev AX and BX chips,
5545 	 * according to all available information. Hence, we have
5546 	 * to enable MII interrupts in order to properly obtain
5547 	 * async link changes. Unfortunately, this also means that
5548 	 * we have to read the MAC status register to detect link
5549 	 * changes, thereby adding an additional register access to
5550 	 * the interrupt handler.
5551 	 */
5552 
5553 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5554 		status = CSR_READ_4(sc, BGE_MAC_STS);
5555 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5556 			mii_pollstat(mii);
5557 
5558 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5559 			    mii->mii_media_status & IFM_ACTIVE &&
5560 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5561 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5562 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5563 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5564 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5565 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5566 
5567 			/* Clear the interrupt */
5568 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5569 			    BGE_EVTENB_MI_INTERRUPT);
5570 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5571 			    BRGPHY_MII_ISR);
5572 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5573 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
5574 		}
5575 		return;
5576 	}
5577 
5578 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5579 		status = CSR_READ_4(sc, BGE_MAC_STS);
5580 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5581 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5582 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5583 				if (BGE_ASICREV(sc->bge_chipid)
5584 				    == BGE_ASICREV_BCM5704) {
5585 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5586 					    BGE_MACMODE_TBI_SEND_CFGS);
5587 					DELAY(40);
5588 				}
5589 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5590 				if_link_state_change(ifp, LINK_STATE_UP);
5591 			}
5592 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5593 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5594 			if_link_state_change(ifp, LINK_STATE_DOWN);
5595 		}
5596 	/*
5597 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5598 	 * This should not happen since mii callouts are locked now, but
5599 	 * we keep this check for debug.
5600 	 */
5601 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5602 		/*
5603 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5604 		 * bit in status word always set. Workaround this bug by
5605 		 * reading PHY link status directly.
5606 		 */
5607 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5608 		    BGE_STS_LINK : 0;
5609 
5610 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5611 			mii_pollstat(mii);
5612 
5613 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5614 			    mii->mii_media_status & IFM_ACTIVE &&
5615 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5616 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5617 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5618 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5619 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5620 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5621 		}
5622 	}
5623 
5624 	/* Clear the attention */
5625 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5626 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5627 	    BGE_MACSTAT_LINK_CHANGED);
5628 }
5629 
5630 static int
5631 bge_sysctl_verify(SYSCTLFN_ARGS)
5632 {
5633 	int error, t;
5634 	struct sysctlnode node;
5635 
5636 	node = *rnode;
5637 	t = *(int*)rnode->sysctl_data;
5638 	node.sysctl_data = &t;
5639 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
5640 	if (error || newp == NULL)
5641 		return error;
5642 
5643 #if 0
5644 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5645 	    node.sysctl_num, rnode->sysctl_num));
5646 #endif
5647 
5648 	if (node.sysctl_num == bge_rxthresh_nodenum) {
5649 		if (t < 0 || t >= NBGE_RX_THRESH)
5650 			return EINVAL;
5651 		bge_update_all_threshes(t);
5652 	} else
5653 		return EINVAL;
5654 
5655 	*(int*)rnode->sysctl_data = t;
5656 
5657 	return 0;
5658 }
5659 
5660 /*
5661  * Set up sysctl(3) MIB, hw.bge.*.
5662  */
5663 static void
5664 bge_sysctl_init(struct bge_softc *sc)
5665 {
5666 	int rc, bge_root_num;
5667 	const struct sysctlnode *node;
5668 
5669 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5670 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5671 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5672 		goto out;
5673 	}
5674 
5675 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5676 	    0, CTLTYPE_NODE, "bge",
5677 	    SYSCTL_DESCR("BGE interface controls"),
5678 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5679 		goto out;
5680 	}
5681 
5682 	bge_root_num = node->sysctl_num;
5683 
5684 	/* BGE Rx interrupt mitigation level */
5685 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5686 	    CTLFLAG_READWRITE,
5687 	    CTLTYPE_INT, "rx_lvl",
5688 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5689 	    bge_sysctl_verify, 0,
5690 	    &bge_rx_thresh_lvl,
5691 	    0, CTL_HW, bge_root_num, CTL_CREATE,
5692 	    CTL_EOL)) != 0) {
5693 		goto out;
5694 	}
5695 
5696 	bge_rxthresh_nodenum = node->sysctl_num;
5697 
5698 	return;
5699 
5700 out:
5701 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5702 }
5703 
5704 #ifdef BGE_DEBUG
5705 void
5706 bge_debug_info(struct bge_softc *sc)
5707 {
5708 
5709 	printf("Hardware Flags:\n");
5710 	if (BGE_IS_57765_PLUS(sc))
5711 		printf(" - 57765 Plus\n");
5712 	if (BGE_IS_5717_PLUS(sc))
5713 		printf(" - 5717 Plus\n");
5714 	if (BGE_IS_5755_PLUS(sc))
5715 		printf(" - 5755 Plus\n");
5716 	if (BGE_IS_575X_PLUS(sc))
5717 		printf(" - 575X Plus\n");
5718 	if (BGE_IS_5705_PLUS(sc))
5719 		printf(" - 5705 Plus\n");
5720 	if (BGE_IS_5714_FAMILY(sc))
5721 		printf(" - 5714 Family\n");
5722 	if (BGE_IS_5700_FAMILY(sc))
5723 		printf(" - 5700 Family\n");
5724 	if (sc->bge_flags & BGE_IS_5788)
5725 		printf(" - 5788\n");
5726 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5727 		printf(" - Supports Jumbo Frames\n");
5728 	if (sc->bge_flags & BGE_NO_EEPROM)
5729 		printf(" - No EEPROM\n");
5730 	if (sc->bge_flags & BGE_PCIX)
5731 		printf(" - PCI-X Bus\n");
5732 	if (sc->bge_flags & BGE_PCIE)
5733 		printf(" - PCI Express Bus\n");
5734 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
5735 		printf(" - RX Alignment Bug\n");
5736 	if (sc->bge_flags & BGE_APE)
5737 		printf(" - APE\n");
5738 	if (sc->bge_flags & BGE_CPMU_PRESENT)
5739 		printf(" - CPMU\n");
5740 	if (sc->bge_flags & BGE_TSO)
5741 		printf(" - TSO\n");
5742 
5743 	if (sc->bge_flags & BGE_PHY_NO_3LED)
5744 		printf(" - No 3 LEDs\n");
5745 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
5746 		printf(" - CRC bug\n");
5747 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
5748 		printf(" - ADC bug\n");
5749 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5750 		printf(" - 5704 A0 bug\n");
5751 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5752 		printf(" - jitter bug\n");
5753 	if (sc->bge_flags & BGE_PHY_BER_BUG)
5754 		printf(" - BER bug\n");
5755 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5756 		printf(" - adjust trim\n");
5757 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5758 		printf(" - no wirespeed\n");
5759 }
5760 #endif /* BGE_DEBUG */
5761 
5762 static int
5763 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5764 {
5765 	prop_dictionary_t dict;
5766 	prop_data_t ea;
5767 
5768 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5769 		return 1;
5770 
5771 	dict = device_properties(sc->bge_dev);
5772 	ea = prop_dictionary_get(dict, "mac-address");
5773 	if (ea != NULL) {
5774 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5775 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5776 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5777 		return 0;
5778 	}
5779 
5780 	return 1;
5781 }
5782 
5783 static int
5784 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5785 {
5786 	uint32_t mac_addr;
5787 
5788 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5789 	if ((mac_addr >> 16) == 0x484b) {
5790 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5791 		ether_addr[1] = (uint8_t)mac_addr;
5792 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5793 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5794 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5795 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5796 		ether_addr[5] = (uint8_t)mac_addr;
5797 		return 0;
5798 	}
5799 	return 1;
5800 }
5801 
5802 static int
5803 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5804 {
5805 	int mac_offset = BGE_EE_MAC_OFFSET;
5806 
5807 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5808 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5809 
5810 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5811 	    ETHER_ADDR_LEN));
5812 }
5813 
5814 static int
5815 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5816 {
5817 
5818 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5819 		return 1;
5820 
5821 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5822 	   ETHER_ADDR_LEN));
5823 }
5824 
5825 static int
5826 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5827 {
5828 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5829 		/* NOTE: Order is critical */
5830 		bge_get_eaddr_fw,
5831 		bge_get_eaddr_mem,
5832 		bge_get_eaddr_nvram,
5833 		bge_get_eaddr_eeprom,
5834 		NULL
5835 	};
5836 	const bge_eaddr_fcn_t *func;
5837 
5838 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5839 		if ((*func)(sc, eaddr) == 0)
5840 			break;
5841 	}
5842 	return (*func == NULL ? ENXIO : 0);
5843 }
5844