xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 96fc3e30a7c3f7bba53384bf41dad5f78306fac4)
1 /*	$NetBSD: if_bge.c,v 1.202 2012/09/17 11:54:36 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.202 2012/09/17 11:54:36 tsutsui Exp $");
83 
84 #include "vlan.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96 
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 
102 #include <sys/rnd.h>
103 
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110 
111 /* Headers for TCP  Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h>			/* for struct ip */
115 #include <netinet/tcp.h>		/* for struct tcphdr */
116 
117 
118 #include <net/bpf.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128 
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131 
132 #include <prop/proplib.h>
133 
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135 
136 
137 /*
138  * Tunable thresholds for rx-side bge interrupt mitigation.
139  */
140 
141 /*
142  * The pairs of values below were obtained from empirical measurement
143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144  * interrupt for every N packets received, where N is, approximately,
145  * the second value (rx_max_bds) in each pair.  The values are chosen
146  * such that moving from one pair to the succeeding pair was observed
147  * to roughly halve interrupt rate under sustained input packet load.
148  * The values were empirically chosen to avoid overflowing internal
149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
150  * results in internal wrapping and higher interrupt rates.
151  * The limit of 46 frames was chosen to match NFS workloads.
152  *
153  * These values also work well on bcm5701, bcm5704C, and (less
154  * tested) bcm5703.  On other chipsets, (including the Altima chip
155  * family), the larger values may overflow internal chip limits,
156  * leading to increasing interrupt rates rather than lower interrupt
157  * rates.
158  *
159  * Applications using heavy interrupt mitigation (interrupting every
160  * 32 or 46 frames) in both directions may need to increase the TCP
161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162  * full link bandwidth, due to ACKs and window updates lingering
163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164  */
165 static const struct bge_load_rx_thresh {
166 	int rx_ticks;
167 	int rx_max_bds; }
168 bge_rx_threshes[] = {
169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
170 	{ 32,   2 },
171 	{ 50,   4 },
172 	{ 100,  8 },
173 	{ 192, 16 },
174 	{ 416, 32 },
175 	{ 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178 
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182 
183 static int bge_rxthresh_nodenum;
184 
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186 
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static void bge_release_resources(struct bge_softc *);
190 
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxeof(struct bge_softc *);
199 
200 static void bge_asf_driver_up (struct bge_softc *);
201 static void bge_tick(void *);
202 static void bge_stats_update(struct bge_softc *);
203 static void bge_stats_update_regs(struct bge_softc *);
204 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
205 
206 static int bge_intr(void *);
207 static void bge_start(struct ifnet *);
208 static int bge_ifflags_cb(struct ethercom *);
209 static int bge_ioctl(struct ifnet *, u_long, void *);
210 static int bge_init(struct ifnet *);
211 static void bge_stop(struct ifnet *, int);
212 static void bge_watchdog(struct ifnet *);
213 static int bge_ifmedia_upd(struct ifnet *);
214 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
215 
216 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
217 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
218 
219 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
221 static void bge_setmulti(struct bge_softc *);
222 
223 static void bge_handle_events(struct bge_softc *);
224 static int bge_alloc_jumbo_mem(struct bge_softc *);
225 #if 0 /* XXX */
226 static void bge_free_jumbo_mem(struct bge_softc *);
227 #endif
228 static void *bge_jalloc(struct bge_softc *);
229 static void bge_jfree(struct mbuf *, void *, size_t, void *);
230 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
231 			       bus_dmamap_t);
232 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
233 static int bge_init_rx_ring_std(struct bge_softc *);
234 static void bge_free_rx_ring_std(struct bge_softc *);
235 static int bge_init_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_tx_ring(struct bge_softc *);
238 static int bge_init_tx_ring(struct bge_softc *);
239 
240 static int bge_chipinit(struct bge_softc *);
241 static int bge_blockinit(struct bge_softc *);
242 static int bge_setpowerstate(struct bge_softc *, int);
243 static uint32_t bge_readmem_ind(struct bge_softc *, int);
244 static void bge_writemem_ind(struct bge_softc *, int, int);
245 static void bge_writembx(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249 
250 static int bge_miibus_readreg(device_t, int, int);
251 static void bge_miibus_writereg(device_t, int, int, int);
252 static void bge_miibus_statchg(struct ifnet *);
253 
254 #define	BGE_RESET_START 1
255 #define	BGE_RESET_STOP  2
256 static void bge_sig_post_reset(struct bge_softc *, int);
257 static void bge_sig_legacy(struct bge_softc *, int);
258 static void bge_sig_pre_reset(struct bge_softc *, int);
259 static void bge_stop_fw(struct bge_softc *);
260 static int bge_reset(struct bge_softc *);
261 static void bge_link_upd(struct bge_softc *);
262 static void sysctl_bge_init(struct bge_softc *);
263 static int sysctl_bge_verify(SYSCTLFN_PROTO);
264 
265 #ifdef BGE_DEBUG
266 #define DPRINTF(x)	if (bgedebug) printf x
267 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
268 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
269 int	bgedebug = 0;
270 int	bge_tso_debug = 0;
271 void		bge_debug_info(struct bge_softc *);
272 #else
273 #define DPRINTF(x)
274 #define DPRINTFN(n,x)
275 #define BGE_TSO_PRINTF(x)
276 #endif
277 
278 #ifdef BGE_EVENT_COUNTERS
279 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
280 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
281 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
282 #else
283 #define	BGE_EVCNT_INCR(ev)	/* nothing */
284 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
285 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
286 #endif
287 
288 static const struct bge_product {
289 	pci_vendor_id_t		bp_vendor;
290 	pci_product_id_t	bp_product;
291 	const char		*bp_name;
292 } bge_products[] = {
293 	/*
294 	 * The BCM5700 documentation seems to indicate that the hardware
295 	 * still has the Alteon vendor ID burned into it, though it
296 	 * should always be overridden by the value in the EEPROM.  We'll
297 	 * check for it anyway.
298 	 */
299 	{ PCI_VENDOR_ALTEON,
300 	  PCI_PRODUCT_ALTEON_BCM5700,
301 	  "Broadcom BCM5700 Gigabit Ethernet",
302 	  },
303 	{ PCI_VENDOR_ALTEON,
304 	  PCI_PRODUCT_ALTEON_BCM5701,
305 	  "Broadcom BCM5701 Gigabit Ethernet",
306 	  },
307 	{ PCI_VENDOR_ALTIMA,
308 	  PCI_PRODUCT_ALTIMA_AC1000,
309 	  "Altima AC1000 Gigabit Ethernet",
310 	  },
311 	{ PCI_VENDOR_ALTIMA,
312 	  PCI_PRODUCT_ALTIMA_AC1001,
313 	  "Altima AC1001 Gigabit Ethernet",
314 	   },
315 	{ PCI_VENDOR_ALTIMA,
316 	  PCI_PRODUCT_ALTIMA_AC9100,
317 	  "Altima AC9100 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_BROADCOM,
320 	  PCI_PRODUCT_BROADCOM_BCM5700,
321 	  "Broadcom BCM5700 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_BROADCOM,
324 	  PCI_PRODUCT_BROADCOM_BCM5701,
325 	  "Broadcom BCM5701 Gigabit Ethernet",
326 	  },
327 	{ PCI_VENDOR_BROADCOM,
328 	  PCI_PRODUCT_BROADCOM_BCM5702,
329 	  "Broadcom BCM5702 Gigabit Ethernet",
330 	  },
331 	{ PCI_VENDOR_BROADCOM,
332 	  PCI_PRODUCT_BROADCOM_BCM5702X,
333 	  "Broadcom BCM5702X Gigabit Ethernet" },
334 	{ PCI_VENDOR_BROADCOM,
335 	  PCI_PRODUCT_BROADCOM_BCM5703,
336 	  "Broadcom BCM5703 Gigabit Ethernet",
337 	  },
338 	{ PCI_VENDOR_BROADCOM,
339 	  PCI_PRODUCT_BROADCOM_BCM5703X,
340 	  "Broadcom BCM5703X Gigabit Ethernet",
341 	  },
342 	{ PCI_VENDOR_BROADCOM,
343 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
344 	  "Broadcom BCM5703 Gigabit Ethernet",
345 	  },
346 	{ PCI_VENDOR_BROADCOM,
347 	  PCI_PRODUCT_BROADCOM_BCM5704C,
348 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
349 	  },
350 	{ PCI_VENDOR_BROADCOM,
351 	  PCI_PRODUCT_BROADCOM_BCM5704S,
352 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
353 	  },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5705,
356 	  "Broadcom BCM5705 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5705F,
360 	  "Broadcom BCM5705F Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5705K,
364 	  "Broadcom BCM5705K Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5705M,
368 	  "Broadcom BCM5705M Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
372 	  "Broadcom BCM5705M Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5714,
376 	  "Broadcom BCM5714 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5714S,
380 	  "Broadcom BCM5714S Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5715,
384 	  "Broadcom BCM5715 Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5715S,
388 	  "Broadcom BCM5715S Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5717,
392 	  "Broadcom BCM5717 Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5718,
396 	  "Broadcom BCM5718 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5720,
400 	  "Broadcom BCM5720 Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5721,
404 	  "Broadcom BCM5721 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5722,
408 	  "Broadcom BCM5722 Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5723,
412 	  "Broadcom BCM5723 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5724,
416 	  "Broadcom BCM5724 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5750,
420 	  "Broadcom BCM5750 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5750M,
424 	  "Broadcom BCM5750M Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5751,
428 	  "Broadcom BCM5751 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5751F,
432 	  "Broadcom BCM5751F Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5751M,
436 	  "Broadcom BCM5751M Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5752,
440 	  "Broadcom BCM5752 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5752M,
444 	  "Broadcom BCM5752M Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5753,
448 	  "Broadcom BCM5753 Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5753F,
452 	  "Broadcom BCM5753F Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5753M,
456 	  "Broadcom BCM5753M Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5754,
460 	  "Broadcom BCM5754 Gigabit Ethernet",
461 	},
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5754M,
464 	  "Broadcom BCM5754M Gigabit Ethernet",
465 	},
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5755,
468 	  "Broadcom BCM5755 Gigabit Ethernet",
469 	},
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5755M,
472 	  "Broadcom BCM5755M Gigabit Ethernet",
473 	},
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5756,
476 	  "Broadcom BCM5756 Gigabit Ethernet",
477 	},
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5761,
480 	  "Broadcom BCM5761 Gigabit Ethernet",
481 	},
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5761E,
484 	  "Broadcom BCM5761E Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5761S,
488 	  "Broadcom BCM5761S Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
492 	  "Broadcom BCM5761SE Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5764,
496 	  "Broadcom BCM5764 Gigabit Ethernet",
497 	  },
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5780,
500 	  "Broadcom BCM5780 Gigabit Ethernet",
501 	  },
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5780S,
504 	  "Broadcom BCM5780S Gigabit Ethernet",
505 	  },
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5781,
508 	  "Broadcom BCM5781 Gigabit Ethernet",
509 	  },
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5782,
512 	  "Broadcom BCM5782 Gigabit Ethernet",
513 	},
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5784M,
516 	  "BCM5784M NetLink 1000baseT Ethernet",
517 	},
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5786,
520 	  "Broadcom BCM5786 Gigabit Ethernet",
521 	},
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5787,
524 	  "Broadcom BCM5787 Gigabit Ethernet",
525 	},
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5787M,
528 	  "Broadcom BCM5787M Gigabit Ethernet",
529 	},
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5788,
532 	  "Broadcom BCM5788 Gigabit Ethernet",
533 	  },
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5789,
536 	  "Broadcom BCM5789 Gigabit Ethernet",
537 	  },
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5901,
540 	  "Broadcom BCM5901 Fast Ethernet",
541 	  },
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
544 	  "Broadcom BCM5901A2 Fast Ethernet",
545 	  },
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5903M,
548 	  "Broadcom BCM5903M Fast Ethernet",
549 	  },
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5906,
552 	  "Broadcom BCM5906 Fast Ethernet",
553 	  },
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5906M,
556 	  "Broadcom BCM5906M Fast Ethernet",
557 	  },
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM57760,
560 	  "Broadcom BCM57760 Fast Ethernet",
561 	  },
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM57761,
564 	  "Broadcom BCM57761 Fast Ethernet",
565 	  },
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM57762,
568 	  "Broadcom BCM57762 Gigabit Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM57765,
572 	  "Broadcom BCM57765 Fast Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM57780,
576 	  "Broadcom BCM57780 Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM57781,
580 	  "Broadcom BCM57781 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM57785,
584 	  "Broadcom BCM57785 Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM57788,
588 	  "Broadcom BCM57788 Fast Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM57790,
592 	  "Broadcom BCM57790 Fast Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57791,
596 	  "Broadcom BCM57791 Fast Ethernet",
597 	  },
598 	{ PCI_VENDOR_BROADCOM,
599 	  PCI_PRODUCT_BROADCOM_BCM57795,
600 	  "Broadcom BCM57795 Fast Ethernet",
601 	  },
602 	{ PCI_VENDOR_SCHNEIDERKOCH,
603 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
604 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
605 	  },
606 	{ PCI_VENDOR_3COM,
607 	  PCI_PRODUCT_3COM_3C996,
608 	  "3Com 3c996 Gigabit Ethernet",
609 	  },
610 	{ PCI_VENDOR_FUJITSU4,
611 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
612 	  "Fujitsu PW008GE4 Gigabit Ethernet",
613 	  },
614 	{ PCI_VENDOR_FUJITSU4,
615 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
616 	  "Fujitsu PW008GE5 Gigabit Ethernet",
617 	  },
618 	{ PCI_VENDOR_FUJITSU4,
619 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
620 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
621 	  },
622 	{ 0,
623 	  0,
624 	  NULL },
625 };
626 
627 /*
628  * XXX: how to handle variants based on 5750 and derivatives:
629  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
630  * in general behave like a 5705, except with additional quirks.
631  * This driver's current handling of the 5721 is wrong;
632  * how we map ASIC revision to "quirks" needs more thought.
633  * (defined here until the thought is done).
634  */
635 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
636 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
637 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
638 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
639 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
640 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
641 
642 static const struct bge_revision {
643 	uint32_t		br_chipid;
644 	const char		*br_name;
645 } bge_revisions[] = {
646 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
647 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
648 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
649 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
650 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
651 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
652 	/* This is treated like a BCM5700 Bx */
653 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
654 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
655 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
656 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
657 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
658 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
659 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
660 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
661 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
662 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
663 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
664 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
665 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
666 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
667 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
668 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
669 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
670 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
671 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
672 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
673 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
674 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
675 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
676 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
677 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
678 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
679 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
680 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
681 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
682 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
683 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
684 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
685 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
686 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
687 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
688 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
689 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
690 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
691 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
692 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
693 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
694 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
695 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
696 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
697 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
698 	/* 5754 and 5787 share the same ASIC ID */
699 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
700 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
701 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
702 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
703 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
704 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
705 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
706 
707 	{ 0, NULL }
708 };
709 
710 /*
711  * Some defaults for major revisions, so that newer steppings
712  * that we don't know about have a shot at working.
713  */
714 static const struct bge_revision bge_majorrevs[] = {
715 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
716 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
717 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
718 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
719 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
720 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
721 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
722 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
723 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
724 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
725 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
726 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
727 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
728 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
729 	/* 5754 and 5787 share the same ASIC ID */
730 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
731 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
732 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
733 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
734 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
735 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
736 
737 	{ 0, NULL }
738 };
739 
740 static int bge_allow_asf = 1;
741 
742 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
743     bge_probe, bge_attach, NULL, NULL);
744 
745 static uint32_t
746 bge_readmem_ind(struct bge_softc *sc, int off)
747 {
748 	pcireg_t val;
749 
750 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
751 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
752 	return val;
753 }
754 
755 static void
756 bge_writemem_ind(struct bge_softc *sc, int off, int val)
757 {
758 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
759 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
760 }
761 
762 /*
763  * PCI Express only
764  */
765 static void
766 bge_set_max_readrq(struct bge_softc *sc)
767 {
768 	pcireg_t val;
769 
770 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
771 	    + PCI_PCIE_DCSR);
772 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
773 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
774 		aprint_verbose_dev(sc->bge_dev,
775 		    "adjust device control 0x%04x ", val);
776 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
777 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
778 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
779 		    + PCI_PCIE_DCSR, val);
780 		aprint_verbose("-> 0x%04x\n", val);
781 	}
782 }
783 
784 #ifdef notdef
785 static uint32_t
786 bge_readreg_ind(struct bge_softc *sc, int off)
787 {
788 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
789 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
790 }
791 #endif
792 
793 static void
794 bge_writereg_ind(struct bge_softc *sc, int off, int val)
795 {
796 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
798 }
799 
800 static void
801 bge_writemem_direct(struct bge_softc *sc, int off, int val)
802 {
803 	CSR_WRITE_4(sc, off, val);
804 }
805 
806 static void
807 bge_writembx(struct bge_softc *sc, int off, int val)
808 {
809 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
810 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
811 
812 	CSR_WRITE_4(sc, off, val);
813 }
814 
815 static uint8_t
816 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
817 {
818 	uint32_t access, byte = 0;
819 	int i;
820 
821 	/* Lock. */
822 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
823 	for (i = 0; i < 8000; i++) {
824 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
825 			break;
826 		DELAY(20);
827 	}
828 	if (i == 8000)
829 		return 1;
830 
831 	/* Enable access. */
832 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
833 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
834 
835 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
836 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
837 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
838 		DELAY(10);
839 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
840 			DELAY(10);
841 			break;
842 		}
843 	}
844 
845 	if (i == BGE_TIMEOUT * 10) {
846 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
847 		return 1;
848 	}
849 
850 	/* Get result. */
851 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
852 
853 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
854 
855 	/* Disable access. */
856 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
857 
858 	/* Unlock. */
859 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
860 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
861 
862 	return 0;
863 }
864 
865 /*
866  * Read a sequence of bytes from NVRAM.
867  */
868 static int
869 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
870 {
871 	int err = 0, i;
872 	uint8_t byte = 0;
873 
874 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
875 		return 1;
876 
877 	for (i = 0; i < cnt; i++) {
878 		err = bge_nvram_getbyte(sc, off + i, &byte);
879 		if (err)
880 			break;
881 		*(dest + i) = byte;
882 	}
883 
884 	return (err ? 1 : 0);
885 }
886 
887 /*
888  * Read a byte of data stored in the EEPROM at address 'addr.' The
889  * BCM570x supports both the traditional bitbang interface and an
890  * auto access interface for reading the EEPROM. We use the auto
891  * access method.
892  */
893 static uint8_t
894 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
895 {
896 	int i;
897 	uint32_t byte = 0;
898 
899 	/*
900 	 * Enable use of auto EEPROM access so we can avoid
901 	 * having to use the bitbang method.
902 	 */
903 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
904 
905 	/* Reset the EEPROM, load the clock period. */
906 	CSR_WRITE_4(sc, BGE_EE_ADDR,
907 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
908 	DELAY(20);
909 
910 	/* Issue the read EEPROM command. */
911 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
912 
913 	/* Wait for completion */
914 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
915 		DELAY(10);
916 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
917 			break;
918 	}
919 
920 	if (i == BGE_TIMEOUT * 10) {
921 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
922 		return 1;
923 	}
924 
925 	/* Get result. */
926 	byte = CSR_READ_4(sc, BGE_EE_DATA);
927 
928 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
929 
930 	return 0;
931 }
932 
933 /*
934  * Read a sequence of bytes from the EEPROM.
935  */
936 static int
937 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
938 {
939 	int err = 0, i;
940 	uint8_t byte = 0;
941 	char *dest = destv;
942 
943 	for (i = 0; i < cnt; i++) {
944 		err = bge_eeprom_getbyte(sc, off + i, &byte);
945 		if (err)
946 			break;
947 		*(dest + i) = byte;
948 	}
949 
950 	return (err ? 1 : 0);
951 }
952 
953 static int
954 bge_miibus_readreg(device_t dev, int phy, int reg)
955 {
956 	struct bge_softc *sc = device_private(dev);
957 	uint32_t val;
958 	uint32_t autopoll;
959 	int i;
960 
961 	/*
962 	 * Broadcom's own driver always assumes the internal
963 	 * PHY is at GMII address 1. On some chips, the PHY responds
964 	 * to accesses at all addresses, which could cause us to
965 	 * bogusly attach the PHY 32 times at probe type. Always
966 	 * restricting the lookup to address 1 is simpler than
967 	 * trying to figure out which chips revisions should be
968 	 * special-cased.
969 	 */
970 	if (phy != 1)
971 		return 0;
972 
973 	/* Reading with autopolling on may trigger PCI errors */
974 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
975 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
976 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
977 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
978 		DELAY(40);
979 	}
980 
981 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
982 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
983 
984 	for (i = 0; i < BGE_TIMEOUT; i++) {
985 		val = CSR_READ_4(sc, BGE_MI_COMM);
986 		if (!(val & BGE_MICOMM_BUSY))
987 			break;
988 		delay(10);
989 	}
990 
991 	if (i == BGE_TIMEOUT) {
992 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
993 		val = 0;
994 		goto done;
995 	}
996 
997 	val = CSR_READ_4(sc, BGE_MI_COMM);
998 
999 done:
1000 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1001 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1002 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1003 		DELAY(40);
1004 	}
1005 
1006 	if (val & BGE_MICOMM_READFAIL)
1007 		return 0;
1008 
1009 	return (val & 0xFFFF);
1010 }
1011 
1012 static void
1013 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1014 {
1015 	struct bge_softc *sc = device_private(dev);
1016 	uint32_t autopoll;
1017 	int i;
1018 
1019 	if (phy!=1) {
1020 		return;
1021 	}
1022 
1023 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1024 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1025 		return;
1026 	}
1027 
1028 	/* Reading with autopolling on may trigger PCI errors */
1029 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1030 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1031 		delay(40);
1032 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1033 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1034 		delay(10); /* 40 usec is supposed to be adequate */
1035 	}
1036 
1037 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1038 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1039 
1040 	for (i = 0; i < BGE_TIMEOUT; i++) {
1041 		delay(10);
1042 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1043 			delay(5);
1044 			CSR_READ_4(sc, BGE_MI_COMM);
1045 			break;
1046 		}
1047 	}
1048 
1049 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1050 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1051 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1052 		delay(40);
1053 	}
1054 
1055 	if (i == BGE_TIMEOUT)
1056 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1057 }
1058 
1059 static void
1060 bge_miibus_statchg(struct ifnet *ifp)
1061 {
1062 	struct bge_softc *sc = ifp->if_softc;
1063 	struct mii_data *mii = &sc->bge_mii;
1064 
1065 	/*
1066 	 * Get flow control negotiation result.
1067 	 */
1068 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1069 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1070 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1071 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1072 	}
1073 
1074 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1075 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1076 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1077 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1078 	else
1079 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1080 
1081 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1082 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1083 	else
1084 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1085 
1086 	/*
1087 	 * 802.3x flow control
1088 	 */
1089 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1090 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1091 	else
1092 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1093 
1094 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1095 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1096 	else
1097 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1098 }
1099 
1100 /*
1101  * Update rx threshold levels to values in a particular slot
1102  * of the interrupt-mitigation table bge_rx_threshes.
1103  */
1104 static void
1105 bge_set_thresh(struct ifnet *ifp, int lvl)
1106 {
1107 	struct bge_softc *sc = ifp->if_softc;
1108 	int s;
1109 
1110 	/* For now, just save the new Rx-intr thresholds and record
1111 	 * that a threshold update is pending.  Updating the hardware
1112 	 * registers here (even at splhigh()) is observed to
1113 	 * occasionaly cause glitches where Rx-interrupts are not
1114 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1115 	 */
1116 	s = splnet();
1117 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1118 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1119 	sc->bge_pending_rxintr_change = 1;
1120 	splx(s);
1121 
1122 	 return;
1123 }
1124 
1125 
1126 /*
1127  * Update Rx thresholds of all bge devices
1128  */
1129 static void
1130 bge_update_all_threshes(int lvl)
1131 {
1132 	struct ifnet *ifp;
1133 	const char * const namebuf = "bge";
1134 	int namelen;
1135 
1136 	if (lvl < 0)
1137 		lvl = 0;
1138 	else if (lvl >= NBGE_RX_THRESH)
1139 		lvl = NBGE_RX_THRESH - 1;
1140 
1141 	namelen = strlen(namebuf);
1142 	/*
1143 	 * Now search all the interfaces for this name/number
1144 	 */
1145 	IFNET_FOREACH(ifp) {
1146 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1147 		      continue;
1148 		/* We got a match: update if doing auto-threshold-tuning */
1149 		if (bge_auto_thresh)
1150 			bge_set_thresh(ifp, lvl);
1151 	}
1152 }
1153 
1154 /*
1155  * Handle events that have triggered interrupts.
1156  */
1157 static void
1158 bge_handle_events(struct bge_softc *sc)
1159 {
1160 
1161 	return;
1162 }
1163 
1164 /*
1165  * Memory management for jumbo frames.
1166  */
1167 
1168 static int
1169 bge_alloc_jumbo_mem(struct bge_softc *sc)
1170 {
1171 	char *ptr, *kva;
1172 	bus_dma_segment_t	seg;
1173 	int		i, rseg, state, error;
1174 	struct bge_jpool_entry   *entry;
1175 
1176 	state = error = 0;
1177 
1178 	/* Grab a big chunk o' storage. */
1179 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1180 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1181 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1182 		return ENOBUFS;
1183 	}
1184 
1185 	state = 1;
1186 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1187 	    BUS_DMA_NOWAIT)) {
1188 		aprint_error_dev(sc->bge_dev,
1189 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1190 		error = ENOBUFS;
1191 		goto out;
1192 	}
1193 
1194 	state = 2;
1195 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1196 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1197 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1198 		error = ENOBUFS;
1199 		goto out;
1200 	}
1201 
1202 	state = 3;
1203 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1204 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1205 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1206 		error = ENOBUFS;
1207 		goto out;
1208 	}
1209 
1210 	state = 4;
1211 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1212 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1213 
1214 	SLIST_INIT(&sc->bge_jfree_listhead);
1215 	SLIST_INIT(&sc->bge_jinuse_listhead);
1216 
1217 	/*
1218 	 * Now divide it up into 9K pieces and save the addresses
1219 	 * in an array.
1220 	 */
1221 	ptr = sc->bge_cdata.bge_jumbo_buf;
1222 	for (i = 0; i < BGE_JSLOTS; i++) {
1223 		sc->bge_cdata.bge_jslots[i] = ptr;
1224 		ptr += BGE_JLEN;
1225 		entry = malloc(sizeof(struct bge_jpool_entry),
1226 		    M_DEVBUF, M_NOWAIT);
1227 		if (entry == NULL) {
1228 			aprint_error_dev(sc->bge_dev,
1229 			    "no memory for jumbo buffer queue!\n");
1230 			error = ENOBUFS;
1231 			goto out;
1232 		}
1233 		entry->slot = i;
1234 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1235 				 entry, jpool_entries);
1236 	}
1237 out:
1238 	if (error != 0) {
1239 		switch (state) {
1240 		case 4:
1241 			bus_dmamap_unload(sc->bge_dmatag,
1242 			    sc->bge_cdata.bge_rx_jumbo_map);
1243 		case 3:
1244 			bus_dmamap_destroy(sc->bge_dmatag,
1245 			    sc->bge_cdata.bge_rx_jumbo_map);
1246 		case 2:
1247 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1248 		case 1:
1249 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1250 			break;
1251 		default:
1252 			break;
1253 		}
1254 	}
1255 
1256 	return error;
1257 }
1258 
1259 /*
1260  * Allocate a jumbo buffer.
1261  */
1262 static void *
1263 bge_jalloc(struct bge_softc *sc)
1264 {
1265 	struct bge_jpool_entry   *entry;
1266 
1267 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1268 
1269 	if (entry == NULL) {
1270 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1271 		return NULL;
1272 	}
1273 
1274 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1275 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1276 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1277 }
1278 
1279 /*
1280  * Release a jumbo buffer.
1281  */
1282 static void
1283 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1284 {
1285 	struct bge_jpool_entry *entry;
1286 	struct bge_softc *sc;
1287 	int i, s;
1288 
1289 	/* Extract the softc struct pointer. */
1290 	sc = (struct bge_softc *)arg;
1291 
1292 	if (sc == NULL)
1293 		panic("bge_jfree: can't find softc pointer!");
1294 
1295 	/* calculate the slot this buffer belongs to */
1296 
1297 	i = ((char *)buf
1298 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1299 
1300 	if ((i < 0) || (i >= BGE_JSLOTS))
1301 		panic("bge_jfree: asked to free buffer that we don't manage!");
1302 
1303 	s = splvm();
1304 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1305 	if (entry == NULL)
1306 		panic("bge_jfree: buffer not in use!");
1307 	entry->slot = i;
1308 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1309 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1310 
1311 	if (__predict_true(m != NULL))
1312   		pool_cache_put(mb_cache, m);
1313 	splx(s);
1314 }
1315 
1316 
1317 /*
1318  * Initialize a standard receive ring descriptor.
1319  */
1320 static int
1321 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1322     bus_dmamap_t dmamap)
1323 {
1324 	struct mbuf		*m_new = NULL;
1325 	struct bge_rx_bd	*r;
1326 	int			error;
1327 
1328 	if (dmamap == NULL) {
1329 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1330 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1331 		if (error != 0)
1332 			return error;
1333 	}
1334 
1335 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1336 
1337 	if (m == NULL) {
1338 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1339 		if (m_new == NULL)
1340 			return ENOBUFS;
1341 
1342 		MCLGET(m_new, M_DONTWAIT);
1343 		if (!(m_new->m_flags & M_EXT)) {
1344 			m_freem(m_new);
1345 			return ENOBUFS;
1346 		}
1347 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1348 
1349 	} else {
1350 		m_new = m;
1351 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1352 		m_new->m_data = m_new->m_ext.ext_buf;
1353 	}
1354 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1355 	    m_adj(m_new, ETHER_ALIGN);
1356 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1357 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1358 		return ENOBUFS;
1359 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1360 	    BUS_DMASYNC_PREREAD);
1361 
1362 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1363 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1364 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1365 	r->bge_flags = BGE_RXBDFLAG_END;
1366 	r->bge_len = m_new->m_len;
1367 	r->bge_idx = i;
1368 
1369 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1370 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1371 		i * sizeof (struct bge_rx_bd),
1372 	    sizeof (struct bge_rx_bd),
1373 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1374 
1375 	return 0;
1376 }
1377 
1378 /*
1379  * Initialize a jumbo receive ring descriptor. This allocates
1380  * a jumbo buffer from the pool managed internally by the driver.
1381  */
1382 static int
1383 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1384 {
1385 	struct mbuf *m_new = NULL;
1386 	struct bge_rx_bd *r;
1387 	void *buf = NULL;
1388 
1389 	if (m == NULL) {
1390 
1391 		/* Allocate the mbuf. */
1392 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1393 		if (m_new == NULL)
1394 			return ENOBUFS;
1395 
1396 		/* Allocate the jumbo buffer */
1397 		buf = bge_jalloc(sc);
1398 		if (buf == NULL) {
1399 			m_freem(m_new);
1400 			aprint_error_dev(sc->bge_dev,
1401 			    "jumbo allocation failed -- packet dropped!\n");
1402 			return ENOBUFS;
1403 		}
1404 
1405 		/* Attach the buffer to the mbuf. */
1406 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1407 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1408 		    bge_jfree, sc);
1409 		m_new->m_flags |= M_EXT_RW;
1410 	} else {
1411 		m_new = m;
1412 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1413 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1414 	}
1415 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1416 	    m_adj(m_new, ETHER_ALIGN);
1417 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1418 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1419 	    BUS_DMASYNC_PREREAD);
1420 	/* Set up the descriptor. */
1421 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1422 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1423 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1424 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1425 	r->bge_len = m_new->m_len;
1426 	r->bge_idx = i;
1427 
1428 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1429 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1430 		i * sizeof (struct bge_rx_bd),
1431 	    sizeof (struct bge_rx_bd),
1432 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1439  * that's 1MB or memory, which is a lot. For now, we fill only the first
1440  * 256 ring entries and hope that our CPU is fast enough to keep up with
1441  * the NIC.
1442  */
1443 static int
1444 bge_init_rx_ring_std(struct bge_softc *sc)
1445 {
1446 	int i;
1447 
1448 	if (sc->bge_flags & BGE_RXRING_VALID)
1449 		return 0;
1450 
1451 	for (i = 0; i < BGE_SSLOTS; i++) {
1452 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1453 			return ENOBUFS;
1454 	}
1455 
1456 	sc->bge_std = i - 1;
1457 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1458 
1459 	sc->bge_flags |= BGE_RXRING_VALID;
1460 
1461 	return 0;
1462 }
1463 
1464 static void
1465 bge_free_rx_ring_std(struct bge_softc *sc)
1466 {
1467 	int i;
1468 
1469 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1470 		return;
1471 
1472 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1473 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1474 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1475 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1476 			bus_dmamap_destroy(sc->bge_dmatag,
1477 			    sc->bge_cdata.bge_rx_std_map[i]);
1478 		}
1479 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1480 		    sizeof(struct bge_rx_bd));
1481 	}
1482 
1483 	sc->bge_flags &= ~BGE_RXRING_VALID;
1484 }
1485 
1486 static int
1487 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1488 {
1489 	int i;
1490 	volatile struct bge_rcb *rcb;
1491 
1492 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1493 		return 0;
1494 
1495 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1496 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1497 			return ENOBUFS;
1498 	};
1499 
1500 	sc->bge_jumbo = i - 1;
1501 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1502 
1503 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1504 	rcb->bge_maxlen_flags = 0;
1505 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1506 
1507 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1508 
1509 	return 0;
1510 }
1511 
1512 static void
1513 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1514 {
1515 	int i;
1516 
1517 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1518 		return;
1519 
1520 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1521 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1522 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1523 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1524 		}
1525 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1526 		    sizeof(struct bge_rx_bd));
1527 	}
1528 
1529 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1530 }
1531 
1532 static void
1533 bge_free_tx_ring(struct bge_softc *sc)
1534 {
1535 	int i, freed;
1536 	struct txdmamap_pool_entry *dma;
1537 
1538 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1539 		return;
1540 
1541 	freed = 0;
1542 
1543 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1544 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1545 			freed++;
1546 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1547 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1548 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1549 					    link);
1550 			sc->txdma[i] = 0;
1551 		}
1552 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1553 		    sizeof(struct bge_tx_bd));
1554 	}
1555 
1556 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1557 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1558 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1559 		free(dma, M_DEVBUF);
1560 	}
1561 
1562 	sc->bge_flags &= ~BGE_TXRING_VALID;
1563 }
1564 
1565 static int
1566 bge_init_tx_ring(struct bge_softc *sc)
1567 {
1568 	int i;
1569 	bus_dmamap_t dmamap;
1570 	struct txdmamap_pool_entry *dma;
1571 
1572 	if (sc->bge_flags & BGE_TXRING_VALID)
1573 		return 0;
1574 
1575 	sc->bge_txcnt = 0;
1576 	sc->bge_tx_saved_considx = 0;
1577 
1578 	/* Initialize transmit producer index for host-memory send ring. */
1579 	sc->bge_tx_prodidx = 0;
1580 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1581 	/* 5700 b2 errata */
1582 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1583 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1584 
1585 	/* NIC-memory send ring not used; initialize to zero. */
1586 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1587 	/* 5700 b2 errata */
1588 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1589 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1590 
1591 	SLIST_INIT(&sc->txdma_list);
1592 	for (i = 0; i < BGE_RSLOTS; i++) {
1593 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1594 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1595 		    &dmamap))
1596 			return ENOBUFS;
1597 		if (dmamap == NULL)
1598 			panic("dmamap NULL in bge_init_tx_ring");
1599 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1600 		if (dma == NULL) {
1601 			aprint_error_dev(sc->bge_dev,
1602 			    "can't alloc txdmamap_pool_entry\n");
1603 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1604 			return ENOMEM;
1605 		}
1606 		dma->dmamap = dmamap;
1607 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1608 	}
1609 
1610 	sc->bge_flags |= BGE_TXRING_VALID;
1611 
1612 	return 0;
1613 }
1614 
1615 static void
1616 bge_setmulti(struct bge_softc *sc)
1617 {
1618 	struct ethercom		*ac = &sc->ethercom;
1619 	struct ifnet		*ifp = &ac->ec_if;
1620 	struct ether_multi	*enm;
1621 	struct ether_multistep  step;
1622 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1623 	uint32_t		h;
1624 	int			i;
1625 
1626 	if (ifp->if_flags & IFF_PROMISC)
1627 		goto allmulti;
1628 
1629 	/* Now program new ones. */
1630 	ETHER_FIRST_MULTI(step, ac, enm);
1631 	while (enm != NULL) {
1632 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1633 			/*
1634 			 * We must listen to a range of multicast addresses.
1635 			 * For now, just accept all multicasts, rather than
1636 			 * trying to set only those filter bits needed to match
1637 			 * the range.  (At this time, the only use of address
1638 			 * ranges is for IP multicast routing, for which the
1639 			 * range is big enough to require all bits set.)
1640 			 */
1641 			goto allmulti;
1642 		}
1643 
1644 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1645 
1646 		/* Just want the 7 least-significant bits. */
1647 		h &= 0x7f;
1648 
1649 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1650 		ETHER_NEXT_MULTI(step, enm);
1651 	}
1652 
1653 	ifp->if_flags &= ~IFF_ALLMULTI;
1654 	goto setit;
1655 
1656  allmulti:
1657 	ifp->if_flags |= IFF_ALLMULTI;
1658 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1659 
1660  setit:
1661 	for (i = 0; i < 4; i++)
1662 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1663 }
1664 
1665 static void
1666 bge_sig_pre_reset(struct bge_softc *sc, int type)
1667 {
1668 	/*
1669 	 * Some chips don't like this so only do this if ASF is enabled
1670 	 */
1671 	if (sc->bge_asf_mode)
1672 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1673 
1674 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1675 		switch (type) {
1676 		case BGE_RESET_START:
1677 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1678 			break;
1679 		case BGE_RESET_STOP:
1680 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1681 			break;
1682 		}
1683 	}
1684 }
1685 
1686 static void
1687 bge_sig_post_reset(struct bge_softc *sc, int type)
1688 {
1689 
1690 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1691 		switch (type) {
1692 		case BGE_RESET_START:
1693 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1694 			/* START DONE */
1695 			break;
1696 		case BGE_RESET_STOP:
1697 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1698 			break;
1699 		}
1700 	}
1701 }
1702 
1703 static void
1704 bge_sig_legacy(struct bge_softc *sc, int type)
1705 {
1706 
1707 	if (sc->bge_asf_mode) {
1708 		switch (type) {
1709 		case BGE_RESET_START:
1710 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1711 			break;
1712 		case BGE_RESET_STOP:
1713 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1714 			break;
1715 		}
1716 	}
1717 }
1718 
1719 static void
1720 bge_stop_fw(struct bge_softc *sc)
1721 {
1722 	int i;
1723 
1724 	if (sc->bge_asf_mode) {
1725 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1726 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1727 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1728 
1729 		for (i = 0; i < 100; i++) {
1730 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1731 				break;
1732 			DELAY(10);
1733 		}
1734 	}
1735 }
1736 
1737 static int
1738 bge_poll_fw(struct bge_softc *sc)
1739 {
1740 	uint32_t val;
1741 	int i;
1742 
1743 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1744 		for (i = 0; i < BGE_TIMEOUT; i++) {
1745 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1746 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1747 				break;
1748 			DELAY(100);
1749 		}
1750 		if (i >= BGE_TIMEOUT) {
1751 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1752 			return -1;
1753 		}
1754 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1755 		/*
1756 		 * Poll the value location we just wrote until
1757 		 * we see the 1's complement of the magic number.
1758 		 * This indicates that the firmware initialization
1759 		 * is complete.
1760 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1761 		 */
1762 		for (i = 0; i < BGE_TIMEOUT; i++) {
1763 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1764 			if (val == ~BGE_MAGIC_NUMBER)
1765 				break;
1766 			DELAY(10);
1767 		}
1768 
1769 		if (i >= BGE_TIMEOUT) {
1770 			aprint_error_dev(sc->bge_dev,
1771 			    "firmware handshake timed out, val = %x\n", val);
1772 			return -1;
1773 		}
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 /*
1780  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1781  * self-test results.
1782  */
1783 static int
1784 bge_chipinit(struct bge_softc *sc)
1785 {
1786 	int i;
1787 	uint32_t dma_rw_ctl;
1788 
1789 	/* Set endianness before we access any non-PCI registers. */
1790 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1791 	    BGE_INIT);
1792 
1793 	/* Set power state to D0. */
1794 	bge_setpowerstate(sc, 0);
1795 
1796 	/* Clear the MAC control register */
1797 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1798 
1799 	/*
1800 	 * Clear the MAC statistics block in the NIC's
1801 	 * internal memory.
1802 	 */
1803 	for (i = BGE_STATS_BLOCK;
1804 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1805 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1806 
1807 	for (i = BGE_STATUS_BLOCK;
1808 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1809 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1810 
1811 	/* Set up the PCI DMA control register. */
1812 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1813 	if (sc->bge_flags & BGE_PCIE) {
1814 		/* Read watermark not used, 128 bytes for write. */
1815 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1816 		    device_xname(sc->bge_dev)));
1817 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1818 	} else if (sc->bge_flags & BGE_PCIX) {
1819 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1820 		    device_xname(sc->bge_dev)));
1821 		/* PCI-X bus */
1822 		if (BGE_IS_5714_FAMILY(sc)) {
1823 			/* 256 bytes for read and write. */
1824 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1825 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1826 
1827 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1828 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1829 			else
1830 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1831 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1832 			/* 1536 bytes for read, 384 bytes for write. */
1833 			dma_rw_ctl |=
1834 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1835 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1836 		} else {
1837 			/* 384 bytes for read and write. */
1838 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1839 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1840 			    (0x0F);
1841 		}
1842 
1843 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1844 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1845 			uint32_t tmp;
1846 
1847 			/* Set ONEDMA_ATONCE for hardware workaround. */
1848 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1849 			if (tmp == 6 || tmp == 7)
1850 				dma_rw_ctl |=
1851 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1852 
1853 			/* Set PCI-X DMA write workaround. */
1854 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1855 		}
1856 	} else {
1857 		/* Conventional PCI bus: 256 bytes for read and write. */
1858 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1859 		    device_xname(sc->bge_dev)));
1860 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1861 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1862 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1863 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1864 			dma_rw_ctl |= 0x0F;
1865 	}
1866 
1867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1868 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1869 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1870 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1871 
1872 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1873 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1874 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1875 
1876 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1877 	    dma_rw_ctl);
1878 
1879 	/*
1880 	 * Set up general mode register.
1881 	 */
1882 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1883 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1884 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1885 
1886 	/*
1887 	 * BCM5701 B5 have a bug causing data corruption when using
1888 	 * 64-bit DMA reads, which can be terminated early and then
1889 	 * completed later as 32-bit accesses, in combination with
1890 	 * certain bridges.
1891 	 */
1892 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1893 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1894 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1895 
1896 	/*
1897 	 * Tell the firmware the driver is running
1898 	 */
1899 	if (sc->bge_asf_mode & ASF_STACKUP)
1900 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1901 
1902 	/*
1903 	 * Disable memory write invalidate.  Apparently it is not supported
1904 	 * properly by these devices.
1905 	 */
1906 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1907 		   PCI_COMMAND_INVALIDATE_ENABLE);
1908 
1909 #ifdef __brokenalpha__
1910 	/*
1911 	 * Must insure that we do not cross an 8K (bytes) boundary
1912 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1913 	 * restriction on some ALPHA platforms with early revision
1914 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1915 	 */
1916 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1917 #endif
1918 
1919 	/* Set the timer prescaler (always 66MHz) */
1920 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1921 
1922 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1923 		DELAY(40);	/* XXX */
1924 
1925 		/* Put PHY into ready state */
1926 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1927 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1928 		DELAY(40);
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 bge_blockinit(struct bge_softc *sc)
1936 {
1937 	volatile struct bge_rcb	 *rcb;
1938 	bus_size_t rcb_addr;
1939 	int i;
1940 	struct ifnet *ifp = &sc->ethercom.ec_if;
1941 	bge_hostaddr taddr;
1942 	uint32_t val;
1943 
1944 	/*
1945 	 * Initialize the memory window pointer register so that
1946 	 * we can access the first 32K of internal NIC RAM. This will
1947 	 * allow us to set up the TX send ring RCBs and the RX return
1948 	 * ring RCBs, plus other things which live in NIC memory.
1949 	 */
1950 
1951 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1952 
1953 	/* Step 33: Configure mbuf memory pool */
1954 	if (BGE_IS_5700_FAMILY(sc)) {
1955 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1956 		    BGE_BUFFPOOL_1);
1957 
1958 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1959 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1960 		else
1961 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1962 
1963 		/* Configure DMA resource pool */
1964 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1965 		    BGE_DMA_DESCRIPTORS);
1966 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1967 	}
1968 
1969 	/* Step 35: Configure mbuf pool watermarks */
1970 #ifdef ORIG_WPAUL_VALUES
1971 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1972 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1973 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1974 #else
1975 
1976 	/* new broadcom docs strongly recommend these: */
1977 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
1978 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
1979 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
1980 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1981 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1982 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1983 	} else if (BGE_IS_5705_PLUS(sc)) {
1984 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1985 
1986 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1987 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1988 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1989 		} else {
1990 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1991 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1992 		}
1993 	} else if (!BGE_IS_5705_PLUS(sc)) {
1994 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1995 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1996 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1997 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1998 		} else {
1999 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
2000 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
2001 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
2002 		}
2003 	} else {
2004 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2005 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2006 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2007 	}
2008 #endif
2009 
2010 	/* Step 36: Configure DMA resource watermarks */
2011 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2012 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2013 
2014 	/* Step 38: Enable buffer manager */
2015 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
2016 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2017 
2018 	/* Step 39: Poll for buffer manager start indication */
2019 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2020 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2021 			break;
2022 		DELAY(10);
2023 	}
2024 
2025 	if (i == BGE_TIMEOUT * 2) {
2026 		aprint_error_dev(sc->bge_dev,
2027 		    "buffer manager failed to start\n");
2028 		return ENXIO;
2029 	}
2030 
2031 	/* Step 40: Enable flow-through queues */
2032 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2033 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2034 
2035 	/* Wait until queue initialization is complete */
2036 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2037 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2038 			break;
2039 		DELAY(10);
2040 	}
2041 
2042 	if (i == BGE_TIMEOUT * 2) {
2043 		aprint_error_dev(sc->bge_dev,
2044 		    "flow-through queue init failed\n");
2045 		return ENXIO;
2046 	}
2047 
2048 	/* Step 41: Initialize the standard RX ring control block */
2049 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2050 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2051 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2052 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2053 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2054 		rcb->bge_maxlen_flags =
2055 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2056 	else if (BGE_IS_5705_PLUS(sc))
2057 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2058 	else
2059 		rcb->bge_maxlen_flags =
2060 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2061 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2062 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2063 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2064 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2065 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2066 
2067 	/*
2068 	 * Step 42: Initialize the jumbo RX ring control block
2069 	 * We set the 'ring disabled' bit in the flags
2070 	 * field until we're actually ready to start
2071 	 * using this ring (i.e. once we set the MTU
2072 	 * high enough to require it).
2073 	 */
2074 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2075 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2076 		BGE_HOSTADDR(rcb->bge_hostaddr,
2077 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2078 		rcb->bge_maxlen_flags =
2079 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2080 			BGE_RCB_FLAG_RING_DISABLED);
2081 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2082 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2083 		    rcb->bge_hostaddr.bge_addr_hi);
2084 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2085 		    rcb->bge_hostaddr.bge_addr_lo);
2086 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2087 		    rcb->bge_maxlen_flags);
2088 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2089 
2090 		/* Set up dummy disabled mini ring RCB */
2091 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2092 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2093 		    BGE_RCB_FLAG_RING_DISABLED);
2094 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2095 		    rcb->bge_maxlen_flags);
2096 
2097 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2098 		    offsetof(struct bge_ring_data, bge_info),
2099 		    sizeof (struct bge_gib),
2100 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2101 	}
2102 
2103 	/*
2104 	 * Set the BD ring replenish thresholds. The recommended
2105 	 * values are 1/8th the number of descriptors allocated to
2106 	 * each ring.
2107 	 */
2108 	i = BGE_STD_RX_RING_CNT / 8;
2109 
2110 	/*
2111 	 * Use a value of 8 for the following chips to workaround HW errata.
2112 	 * Some of these chips have been added based on empirical
2113 	 * evidence (they don't work unless this is done).
2114 	 */
2115 	if (BGE_IS_5705_PLUS(sc))
2116 		i = 8;
2117 
2118 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2119 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2120 
2121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2122 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2123 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2124 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2125 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2126 	}
2127 
2128 	/*
2129 	 * Disable all unused send rings by setting the 'ring disabled'
2130 	 * bit in the flags field of all the TX send ring control blocks.
2131 	 * These are located in NIC memory.
2132 	 */
2133 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2134 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2135 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2136 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2137 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2138 		rcb_addr += sizeof(struct bge_rcb);
2139 	}
2140 
2141 	/* Configure TX RCB 0 (we use only the first ring) */
2142 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2143 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2144 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2145 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2146 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2147 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2148 	if (BGE_IS_5700_FAMILY(sc))
2149 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2150 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2151 
2152 	/* Disable all unused RX return rings */
2153 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2154 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2155 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2156 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2157 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2158 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2159 			BGE_RCB_FLAG_RING_DISABLED));
2160 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2161 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2162 		    (i * (sizeof(uint64_t))), 0);
2163 		rcb_addr += sizeof(struct bge_rcb);
2164 	}
2165 
2166 	/* Initialize RX ring indexes */
2167 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2168 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2169 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2170 
2171 	/*
2172 	 * Set up RX return ring 0
2173 	 * Note that the NIC address for RX return rings is 0x00000000.
2174 	 * The return rings live entirely within the host, so the
2175 	 * nicaddr field in the RCB isn't used.
2176 	 */
2177 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2178 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2179 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2180 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2181 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2182 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2183 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2184 
2185 	/* Set random backoff seed for TX */
2186 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2187 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2188 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2189 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2190 	    BGE_TX_BACKOFF_SEED_MASK);
2191 
2192 	/* Set inter-packet gap */
2193 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2194 
2195 	/*
2196 	 * Specify which ring to use for packets that don't match
2197 	 * any RX rules.
2198 	 */
2199 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2200 
2201 	/*
2202 	 * Configure number of RX lists. One interrupt distribution
2203 	 * list, sixteen active lists, one bad frames class.
2204 	 */
2205 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2206 
2207 	/* Inialize RX list placement stats mask. */
2208 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2209 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2210 
2211 	/* Disable host coalescing until we get it set up */
2212 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2213 
2214 	/* Poll to make sure it's shut down. */
2215 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2216 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2217 			break;
2218 		DELAY(10);
2219 	}
2220 
2221 	if (i == BGE_TIMEOUT * 2) {
2222 		aprint_error_dev(sc->bge_dev,
2223 		    "host coalescing engine failed to idle\n");
2224 		return ENXIO;
2225 	}
2226 
2227 	/* Set up host coalescing defaults */
2228 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2229 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2230 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2231 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2232 	if (BGE_IS_5700_FAMILY(sc)) {
2233 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2234 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2235 	}
2236 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2237 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2238 
2239 	/* Set up address of statistics block */
2240 	if (BGE_IS_5700_FAMILY(sc)) {
2241 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2242 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2243 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2244 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2245 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2246 	}
2247 
2248 	/* Set up address of status block */
2249 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2250 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2251 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2252 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2253 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2254 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2255 
2256 	/* Turn on host coalescing state machine */
2257 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2258 
2259 	/* Turn on RX BD completion state machine and enable attentions */
2260 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2261 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2262 
2263 	/* Turn on RX list placement state machine */
2264 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2265 
2266 	/* Turn on RX list selector state machine. */
2267 	if (BGE_IS_5700_FAMILY(sc))
2268 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2269 
2270 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2271 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2272 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2273 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2274 
2275 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2276 		val |= BGE_PORTMODE_TBI;
2277 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2278 		val |= BGE_PORTMODE_GMII;
2279 	else
2280 		val |= BGE_PORTMODE_MII;
2281 
2282 	/* Turn on DMA, clear stats */
2283 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2284 
2285 	/* Set misc. local control, enable interrupts on attentions */
2286 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2287 
2288 #ifdef notdef
2289 	/* Assert GPIO pins for PHY reset */
2290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2291 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2292 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2293 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2294 #endif
2295 
2296 #if defined(not_quite_yet)
2297 	/* Linux driver enables enable gpio pin #1 on 5700s */
2298 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2299 		sc->bge_local_ctrl_reg |=
2300 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2301 	}
2302 #endif
2303 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2304 
2305 	/* Turn on DMA completion state machine */
2306 	if (BGE_IS_5700_FAMILY(sc))
2307 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2308 
2309 	/* Turn on write DMA state machine */
2310 	{
2311 		uint32_t bge_wdma_mode =
2312 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2313 
2314 		/* Enable host coalescing bug fix; see Linux tg3.c */
2315 		if (BGE_IS_5755_PLUS(sc))
2316 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2317 
2318 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2319 	}
2320 
2321 	/* Turn on read DMA state machine */
2322 	{
2323 		uint32_t dma_read_modebits;
2324 
2325 		dma_read_modebits =
2326 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2327 
2328 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2329 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2330 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2331 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2332 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2333 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2334 
2335 		if (sc->bge_flags & BGE_PCIE)
2336 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2337 		if (sc->bge_flags & BGE_TSO)
2338 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2339 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2340 		delay(40);
2341 	}
2342 
2343 	/* Turn on RX data completion state machine */
2344 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2345 
2346 	/* Turn on RX BD initiator state machine */
2347 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2348 
2349 	/* Turn on RX data and RX BD initiator state machine */
2350 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2351 
2352 	/* Turn on Mbuf cluster free state machine */
2353 	if (BGE_IS_5700_FAMILY(sc))
2354 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2355 
2356 	/* Turn on send BD completion state machine */
2357 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2358 
2359 	/* Turn on send data completion state machine */
2360 	val = BGE_SDCMODE_ENABLE;
2361 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2362 		val |= BGE_SDCMODE_CDELAY;
2363 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2364 
2365 	/* Turn on send data initiator state machine */
2366 	if (sc->bge_flags & BGE_TSO) {
2367 		/* XXX: magic value from Linux driver */
2368 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2369 	} else
2370 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2371 
2372 	/* Turn on send BD initiator state machine */
2373 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2374 
2375 	/* Turn on send BD selector state machine */
2376 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2377 
2378 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2379 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2380 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2381 
2382 	/* ack/clear link change events */
2383 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2384 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2385 	    BGE_MACSTAT_LINK_CHANGED);
2386 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2387 
2388 	/* Enable PHY auto polling (for MII/GMII only) */
2389 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2390 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2391 	} else {
2392 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2393 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2394 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2395 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2396 			    BGE_EVTENB_MI_INTERRUPT);
2397 	}
2398 
2399 	/*
2400 	 * Clear any pending link state attention.
2401 	 * Otherwise some link state change events may be lost until attention
2402 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2403 	 * It's not necessary on newer BCM chips - perhaps enabling link
2404 	 * state change attentions implies clearing pending attention.
2405 	 */
2406 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2407 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2408 	    BGE_MACSTAT_LINK_CHANGED);
2409 
2410 	/* Enable link state change attentions. */
2411 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2412 
2413 	return 0;
2414 }
2415 
2416 static const struct bge_revision *
2417 bge_lookup_rev(uint32_t chipid)
2418 {
2419 	const struct bge_revision *br;
2420 
2421 	for (br = bge_revisions; br->br_name != NULL; br++) {
2422 		if (br->br_chipid == chipid)
2423 			return br;
2424 	}
2425 
2426 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2427 		if (br->br_chipid == BGE_ASICREV(chipid))
2428 			return br;
2429 	}
2430 
2431 	return NULL;
2432 }
2433 
2434 static const struct bge_product *
2435 bge_lookup(const struct pci_attach_args *pa)
2436 {
2437 	const struct bge_product *bp;
2438 
2439 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2440 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2441 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2442 			return bp;
2443 	}
2444 
2445 	return NULL;
2446 }
2447 
2448 static int
2449 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2450 {
2451 #ifdef NOTYET
2452 	uint32_t pm_ctl = 0;
2453 
2454 	/* XXX FIXME: make sure indirect accesses enabled? */
2455 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2456 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2457 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2458 
2459 	/* clear the PME_assert bit and power state bits, enable PME */
2460 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2461 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2462 	pm_ctl |= (1 << 8);
2463 
2464 	if (powerlevel == 0) {
2465 		pm_ctl |= PCIM_PSTAT_D0;
2466 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2467 		    pm_ctl, 2);
2468 		DELAY(10000);
2469 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2470 		DELAY(10000);
2471 
2472 #ifdef NOTYET
2473 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2474 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2475 #endif
2476 		DELAY(40); DELAY(40); DELAY(40);
2477 		DELAY(10000);	/* above not quite adequate on 5700 */
2478 		return 0;
2479 	}
2480 
2481 
2482 	/*
2483 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2484 	 * GMII gpio pins. Example code assumes all hardware vendors
2485 	 * followed Broadcom's sample pcb layout. Until we verify that
2486 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2487 	 */
2488 	aprint_error_dev(sc->bge_dev,
2489 	    "power state %d unimplemented; check GPIO pins\n",
2490 	    powerlevel);
2491 #endif
2492 	return EOPNOTSUPP;
2493 }
2494 
2495 
2496 /*
2497  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2498  * against our list and return its name if we find a match. Note
2499  * that since the Broadcom controller contains VPD support, we
2500  * can get the device name string from the controller itself instead
2501  * of the compiled-in string. This is a little slow, but it guarantees
2502  * we'll always announce the right product name.
2503  */
2504 static int
2505 bge_probe(device_t parent, cfdata_t match, void *aux)
2506 {
2507 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2508 
2509 	if (bge_lookup(pa) != NULL)
2510 		return 1;
2511 
2512 	return 0;
2513 }
2514 
2515 static void
2516 bge_attach(device_t parent, device_t self, void *aux)
2517 {
2518 	struct bge_softc	*sc = device_private(self);
2519 	struct pci_attach_args	*pa = aux;
2520 	prop_dictionary_t dict;
2521 	const struct bge_product *bp;
2522 	const struct bge_revision *br;
2523 	pci_chipset_tag_t	pc;
2524 	pci_intr_handle_t	ih;
2525 	const char		*intrstr = NULL;
2526 	bus_dma_segment_t	seg;
2527 	int			rseg;
2528 	uint32_t		hwcfg = 0;
2529 	uint32_t		command;
2530 	struct ifnet		*ifp;
2531 	uint32_t		misccfg;
2532 	void *			kva;
2533 	u_char			eaddr[ETHER_ADDR_LEN];
2534 	pcireg_t		memtype, subid;
2535 	bus_addr_t		memaddr;
2536 	bus_size_t		memsize;
2537 	uint32_t		pm_ctl;
2538 	bool			no_seeprom;
2539 
2540 	bp = bge_lookup(pa);
2541 	KASSERT(bp != NULL);
2542 
2543 	sc->sc_pc = pa->pa_pc;
2544 	sc->sc_pcitag = pa->pa_tag;
2545 	sc->bge_dev = self;
2546 
2547 	pc = sc->sc_pc;
2548 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2549 
2550 	aprint_naive(": Ethernet controller\n");
2551 	aprint_normal(": %s\n", bp->bp_name);
2552 
2553 	/*
2554 	 * Map control/status registers.
2555 	 */
2556 	DPRINTFN(5, ("Map control/status regs\n"));
2557 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2558 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2559 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2560 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2561 
2562 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2563 		aprint_error_dev(sc->bge_dev,
2564 		    "failed to enable memory mapping!\n");
2565 		return;
2566 	}
2567 
2568 	DPRINTFN(5, ("pci_mem_find\n"));
2569 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2570 	switch (memtype) {
2571 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2572 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2573 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2574 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2575 		    &memaddr, &memsize) == 0)
2576 			break;
2577 	default:
2578 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2579 		return;
2580 	}
2581 
2582 	DPRINTFN(5, ("pci_intr_map\n"));
2583 	if (pci_intr_map(pa, &ih)) {
2584 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2585 		return;
2586 	}
2587 
2588 	DPRINTFN(5, ("pci_intr_string\n"));
2589 	intrstr = pci_intr_string(pc, ih);
2590 
2591 	DPRINTFN(5, ("pci_intr_establish\n"));
2592 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2593 
2594 	if (sc->bge_intrhand == NULL) {
2595 		aprint_error_dev(sc->bge_dev,
2596 		    "couldn't establish interrupt%s%s\n",
2597 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2598 		return;
2599 	}
2600 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2601 
2602 	/*
2603 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2604 	 * can clobber the chip's PCI config-space power control registers,
2605 	 * leaving the card in D3 powersave state.
2606 	 * We do not have memory-mapped registers in this state,
2607 	 * so force device into D0 state before starting initialization.
2608 	 */
2609 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2610 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2611 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2612 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2613 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2614 
2615 	/*
2616 	 * Save ASIC rev.
2617 	 */
2618 	sc->bge_chipid =
2619 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2620 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
2621 
2622 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2623 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2624 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2625 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2626 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2627 			    BGE_PCI_GEN2_PRODID_ASICREV);
2628 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2629 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57762 ||
2630 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2631 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2632 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2633 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2634 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2635 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2636 			    BGE_PCI_GEN15_PRODID_ASICREV);
2637 		else
2638 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2639 			    BGE_PCI_PRODID_ASICREV);
2640 	}
2641 
2642 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2643 	        &sc->bge_pciecap, NULL) != 0)
2644 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2645 		/* PCIe */
2646 		sc->bge_flags |= BGE_PCIE;
2647 		bge_set_max_readrq(sc);
2648 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2649 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
2650 		/* PCI-X */
2651 		sc->bge_flags |= BGE_PCIX;
2652 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2653 			&sc->bge_pcixcap, NULL) == 0)
2654 			aprint_error_dev(sc->bge_dev,
2655 			    "unable to find PCIX capability\n");
2656 	}
2657 
2658 	/* chipid */
2659 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2660 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2662 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2663 		sc->bge_flags |= BGE_5700_FAMILY;
2664 
2665 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2666 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2667 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2668 		sc->bge_flags |= BGE_5714_FAMILY;
2669 
2670 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
2671 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2672 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2673 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2674 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2675 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2676 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2677 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766 ||
2679 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2680 		sc->bge_flags |= BGE_5755_PLUS;
2681 
2682 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2683 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2684 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2685 	    BGE_IS_5755_PLUS(sc) ||
2686 	    BGE_IS_5714_FAMILY(sc))
2687 		sc->bge_flags |= BGE_5750_PLUS;
2688 
2689 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2690 	    BGE_IS_5750_OR_BEYOND(sc))
2691 		sc->bge_flags |= BGE_5705_PLUS;
2692 
2693 	/*
2694 	 * When using the BCM5701 in PCI-X mode, data corruption has
2695 	 * been observed in the first few bytes of some received packets.
2696 	 * Aligning the packet buffer in memory eliminates the corruption.
2697 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2698 	 * which do not support unaligned accesses, we will realign the
2699 	 * payloads by copying the received packets.
2700 	 */
2701 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2702 	    sc->bge_flags & BGE_PCIX)
2703 		sc->bge_flags |= BGE_RX_ALIGNBUG;
2704 
2705 	if (BGE_IS_5700_FAMILY(sc))
2706 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
2707 
2708 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2709 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2710 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2711 		sc->bge_flags |= BGE_NO_3LED;
2712 
2713 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2714 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2715 
2716 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2717 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2718 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2719 		sc->bge_flags |= BGE_IS_5788;
2720 
2721 	/*
2722 	 * Some controllers seem to require a special firmware to use
2723 	 * TSO. But the firmware is not available to FreeBSD and Linux
2724 	 * claims that the TSO performed by the firmware is slower than
2725 	 * hardware based TSO. Moreover the firmware based TSO has one
2726 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2727 	 * header is greater than 80 bytes. The workaround for the TSO
2728 	 * bug exist but it seems it's too expensive than not using
2729 	 * TSO at all. Some hardwares also have the TSO bug so limit
2730 	 * the TSO to the controllers that are not affected TSO issues
2731 	 * (e.g. 5755 or higher).
2732 	 */
2733 	if (BGE_IS_5755_PLUS(sc)) {
2734 		/*
2735 		 * BCM5754 and BCM5787 shares the same ASIC id so
2736 		 * explicit device id check is required.
2737 		 */
2738 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2739 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2740 			sc->bge_flags |= BGE_TSO;
2741 	}
2742 
2743 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2744 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2745 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2746 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2747 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2748 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2749 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2750 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2751 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2752 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2753 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2754 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2755 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2756 		sc->bge_flags |= BGE_10_100_ONLY;
2757 
2758 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2759 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2760 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2761 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2762 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2763 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2764 
2765 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2766 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2767 		sc->bge_flags |= BGE_PHY_CRC_BUG;
2768 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2769 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2770 		sc->bge_flags |= BGE_PHY_ADC_BUG;
2771 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2772 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2773 
2774 	if (BGE_IS_5705_PLUS(sc) &&
2775 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2776 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2777 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2778 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2779 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766 &&
2780 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2781 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2782 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2783 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2784 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2785 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2786 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2787 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
2788 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2789 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2790 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2791 			sc->bge_flags |= BGE_PHY_BER_BUG;
2792 	}
2793 
2794 	/*
2795 	 * SEEPROM check.
2796 	 * First check if firmware knows we do not have SEEPROM.
2797 	 */
2798 	if (prop_dictionary_get_bool(device_properties(self),
2799 	     "without-seeprom", &no_seeprom) && no_seeprom)
2800 	 	sc->bge_flags |= BGE_NO_EEPROM;
2801 
2802 	/* Now check the 'ROM failed' bit on the RX CPU */
2803 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2804 		sc->bge_flags |= BGE_NO_EEPROM;
2805 
2806 	/* Try to reset the chip. */
2807 	DPRINTFN(5, ("bge_reset\n"));
2808 	bge_reset(sc);
2809 
2810 	sc->bge_asf_mode = 0;
2811 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2812 	    == BGE_MAGIC_NUMBER)) {
2813 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2814 		    & BGE_HWCFG_ASF) {
2815 			sc->bge_asf_mode |= ASF_ENABLE;
2816 			sc->bge_asf_mode |= ASF_STACKUP;
2817 			if (BGE_IS_5750_OR_BEYOND(sc)) {
2818 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2819 			}
2820 		}
2821 	}
2822 
2823 	/* Try to reset the chip again the nice way. */
2824 	bge_stop_fw(sc);
2825 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2826 	if (bge_reset(sc))
2827 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2828 
2829 	bge_sig_legacy(sc, BGE_RESET_STOP);
2830 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2831 
2832 	if (bge_chipinit(sc)) {
2833 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2834 		bge_release_resources(sc);
2835 		return;
2836 	}
2837 
2838 	/*
2839 	 * Get station address from the EEPROM
2840 	 */
2841 	if (bge_get_eaddr(sc, eaddr)) {
2842 		aprint_error_dev(sc->bge_dev,
2843 		    "failed to read station address\n");
2844 		bge_release_resources(sc);
2845 		return;
2846 	}
2847 
2848 	br = bge_lookup_rev(sc->bge_chipid);
2849 
2850 	if (br == NULL) {
2851 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2852 		    sc->bge_chipid);
2853 	} else {
2854 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2855 		    br->br_name, sc->bge_chipid);
2856 	}
2857 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2858 
2859 	/* Allocate the general information block and ring buffers. */
2860 	if (pci_dma64_available(pa))
2861 		sc->bge_dmatag = pa->pa_dmat64;
2862 	else
2863 		sc->bge_dmatag = pa->pa_dmat;
2864 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2865 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2866 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2867 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2868 		return;
2869 	}
2870 	DPRINTFN(5, ("bus_dmamem_map\n"));
2871 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2872 			   sizeof(struct bge_ring_data), &kva,
2873 			   BUS_DMA_NOWAIT)) {
2874 		aprint_error_dev(sc->bge_dev,
2875 		    "can't map DMA buffers (%zu bytes)\n",
2876 		    sizeof(struct bge_ring_data));
2877 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2878 		return;
2879 	}
2880 	DPRINTFN(5, ("bus_dmamem_create\n"));
2881 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2882 	    sizeof(struct bge_ring_data), 0,
2883 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2884 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2885 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2886 				 sizeof(struct bge_ring_data));
2887 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2888 		return;
2889 	}
2890 	DPRINTFN(5, ("bus_dmamem_load\n"));
2891 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2892 			    sizeof(struct bge_ring_data), NULL,
2893 			    BUS_DMA_NOWAIT)) {
2894 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2895 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2896 				 sizeof(struct bge_ring_data));
2897 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2898 		return;
2899 	}
2900 
2901 	DPRINTFN(5, ("bzero\n"));
2902 	sc->bge_rdata = (struct bge_ring_data *)kva;
2903 
2904 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2905 
2906 	/* Try to allocate memory for jumbo buffers. */
2907 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2908 		if (bge_alloc_jumbo_mem(sc)) {
2909 			aprint_error_dev(sc->bge_dev,
2910 			    "jumbo buffer allocation failed\n");
2911 		} else
2912 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2913 	}
2914 
2915 	/* Set default tuneable values. */
2916 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2917 	sc->bge_rx_coal_ticks = 150;
2918 	sc->bge_rx_max_coal_bds = 64;
2919 #ifdef ORIG_WPAUL_VALUES
2920 	sc->bge_tx_coal_ticks = 150;
2921 	sc->bge_tx_max_coal_bds = 128;
2922 #else
2923 	sc->bge_tx_coal_ticks = 300;
2924 	sc->bge_tx_max_coal_bds = 400;
2925 #endif
2926 	if (BGE_IS_5705_PLUS(sc)) {
2927 		sc->bge_tx_coal_ticks = (12 * 5);
2928 		sc->bge_tx_max_coal_bds = (12 * 5);
2929 			aprint_verbose_dev(sc->bge_dev,
2930 			    "setting short Tx thresholds\n");
2931 	}
2932 
2933 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2934 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2935 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766)
2936 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2937 	else if (BGE_IS_5705_PLUS(sc))
2938 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2939 	else
2940 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2941 
2942 	/* Set up ifnet structure */
2943 	ifp = &sc->ethercom.ec_if;
2944 	ifp->if_softc = sc;
2945 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2946 	ifp->if_ioctl = bge_ioctl;
2947 	ifp->if_stop = bge_stop;
2948 	ifp->if_start = bge_start;
2949 	ifp->if_init = bge_init;
2950 	ifp->if_watchdog = bge_watchdog;
2951 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2952 	IFQ_SET_READY(&ifp->if_snd);
2953 	DPRINTFN(5, ("strcpy if_xname\n"));
2954 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2955 
2956 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2957 		sc->ethercom.ec_if.if_capabilities |=
2958 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2959 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
2960 		sc->ethercom.ec_if.if_capabilities |=
2961 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2962 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2963 #endif
2964 	sc->ethercom.ec_capabilities |=
2965 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2966 
2967 	if (sc->bge_flags & BGE_TSO)
2968 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2969 
2970 	/*
2971 	 * Do MII setup.
2972 	 */
2973 	DPRINTFN(5, ("mii setup\n"));
2974 	sc->bge_mii.mii_ifp = ifp;
2975 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2976 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2977 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2978 
2979 	/*
2980 	 * Figure out what sort of media we have by checking the
2981 	 * hardware config word in the first 32k of NIC internal memory,
2982 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2983 	 * cards, this value appears to be unset. If that's the
2984 	 * case, we have to rely on identifying the NIC by its PCI
2985 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2986 	 */
2987 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2988 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2989 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2990 		bge_read_eeprom(sc, (void *)&hwcfg,
2991 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2992 		hwcfg = be32toh(hwcfg);
2993 	}
2994 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2995 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2996 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2997 		if (BGE_IS_5714_FAMILY(sc))
2998 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
2999 		else
3000 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
3001 	}
3002 
3003 	/* set phyflags and chipid before mii_attach() */
3004 	dict = device_properties(self);
3005 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3006 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3007 
3008 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3009 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3010 		    bge_ifmedia_sts);
3011 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3012 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3013 			    0, NULL);
3014 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3015 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3016 		/* Pretend the user requested this setting */
3017 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3018 	} else {
3019 		/*
3020 		 * Do transceiver setup and tell the firmware the
3021 		 * driver is down so we can try to get access the
3022 		 * probe if ASF is running.  Retry a couple of times
3023 		 * if we get a conflict with the ASF firmware accessing
3024 		 * the PHY.
3025 		 */
3026 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3027 		bge_asf_driver_up(sc);
3028 
3029 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3030 			     bge_ifmedia_sts);
3031 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3032 			   MII_PHY_ANY, MII_OFFSET_ANY,
3033 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
3034 
3035 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3036 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3037 			ifmedia_add(&sc->bge_mii.mii_media,
3038 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3039 			ifmedia_set(&sc->bge_mii.mii_media,
3040 				    IFM_ETHER|IFM_MANUAL);
3041 		} else
3042 			ifmedia_set(&sc->bge_mii.mii_media,
3043 				    IFM_ETHER|IFM_AUTO);
3044 
3045 		/*
3046 		 * Now tell the firmware we are going up after probing the PHY
3047 		 */
3048 		if (sc->bge_asf_mode & ASF_STACKUP)
3049 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3050 	}
3051 
3052 	/*
3053 	 * Call MI attach routine.
3054 	 */
3055 	DPRINTFN(5, ("if_attach\n"));
3056 	if_attach(ifp);
3057 	DPRINTFN(5, ("ether_ifattach\n"));
3058 	ether_ifattach(ifp, eaddr);
3059 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3060 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3061 		RND_TYPE_NET, 0);
3062 #ifdef BGE_EVENT_COUNTERS
3063 	/*
3064 	 * Attach event counters.
3065 	 */
3066 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3067 	    NULL, device_xname(sc->bge_dev), "intr");
3068 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3069 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3070 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3071 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3072 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3073 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3074 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3075 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3076 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3077 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3078 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3079 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3080 #endif /* BGE_EVENT_COUNTERS */
3081 	DPRINTFN(5, ("callout_init\n"));
3082 	callout_init(&sc->bge_timeout, 0);
3083 
3084 	if (pmf_device_register(self, NULL, NULL))
3085 		pmf_class_network_register(self, ifp);
3086 	else
3087 		aprint_error_dev(self, "couldn't establish power handler\n");
3088 
3089 	sysctl_bge_init(sc);
3090 
3091 #ifdef BGE_DEBUG
3092 	bge_debug_info(sc);
3093 #endif
3094 }
3095 
3096 static void
3097 bge_release_resources(struct bge_softc *sc)
3098 {
3099 	if (sc->bge_vpd_prodname != NULL)
3100 		free(sc->bge_vpd_prodname, M_DEVBUF);
3101 
3102 	if (sc->bge_vpd_readonly != NULL)
3103 		free(sc->bge_vpd_readonly, M_DEVBUF);
3104 }
3105 
3106 static int
3107 bge_reset(struct bge_softc *sc)
3108 {
3109 	uint32_t cachesize, command, pcistate, marbmode;
3110 #if 0
3111 	uint32_t new_pcistate;
3112 #endif
3113 	pcireg_t devctl, reg;
3114 	int i, val;
3115 	void (*write_op)(struct bge_softc *, int, int);
3116 
3117 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3118 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3119 	    	if (sc->bge_flags & BGE_PCIE)
3120 			write_op = bge_writemem_direct;
3121 		else
3122 			write_op = bge_writemem_ind;
3123 	} else
3124 		write_op = bge_writereg_ind;
3125 
3126 	/* Save some important PCI state. */
3127 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3128 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3129 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3130 
3131 	/* Step 5a: Enable memory arbiter. */
3132 	marbmode = 0;
3133 	if (BGE_IS_5714_FAMILY(sc))
3134 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3135 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3136 
3137 	/* Step 5b-5d: */
3138 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3139 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3140 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3141 
3142 	/* XXX ???: Disable fastboot on controllers that support it. */
3143 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3144 	    BGE_IS_5755_PLUS(sc))
3145 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3146 
3147 	/*
3148 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3149 	 * When firmware finishes its initialization it will
3150 	 * write ~BGE_MAGIC_NUMBER to the same location.
3151 	 */
3152 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3153 
3154 	/* Step 7: */
3155 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3156 	/*
3157 	 * XXX: from FreeBSD/Linux; no documentation
3158 	 */
3159 	if (sc->bge_flags & BGE_PCIE) {
3160 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3161 			/* PCI Express 1.0 system */
3162 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3163 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3164 			/*
3165 			 * Prevent PCI Express link training
3166 			 * during global reset.
3167 			 */
3168 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3169 			val |= (1<<29);
3170 		}
3171 	}
3172 
3173 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3174 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3175 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3176 		    i | BGE_VCPU_STATUS_DRV_RESET);
3177 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3178 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3179 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3180 	}
3181 
3182 	/*
3183 	 * Set GPHY Power Down Override to leave GPHY
3184 	 * powered up in D0 uninitialized.
3185 	 */
3186 	if (BGE_IS_5705_PLUS(sc))
3187 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3188 
3189 	/* XXX 5721, 5751 and 5752 */
3190 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3191 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3192 
3193 	/* Issue global reset */
3194 	write_op(sc, BGE_MISC_CFG, val);
3195 
3196 	/* Step 8: wait for complete */
3197 	if (sc->bge_flags & BGE_PCIE)
3198 		delay(100*1000); /* too big */
3199 	else
3200 		delay(100);
3201 
3202 	/* From Linux: dummy read to flush PCI posted writes */
3203 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3204 
3205 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3206 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3207 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3208 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3209 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
3210 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3211 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3212 
3213 	/* Step 11: disable PCI-X Relaxed Ordering. */
3214 	if (sc->bge_flags & BGE_PCIX) {
3215 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3216 		    + PCI_PCIX_CMD);
3217 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3218 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3219 	}
3220 
3221 	if (sc->bge_flags & BGE_PCIE) {
3222 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3223 			DELAY(500000);
3224 			/* XXX: Magic Numbers */
3225 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3226 			    BGE_PCI_UNKNOWN0);
3227 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3228 			    BGE_PCI_UNKNOWN0,
3229 			    reg | (1 << 15));
3230 		}
3231 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3232 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3233 		/* Clear enable no snoop and disable relaxed ordering. */
3234 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3235 		/* Set PCIE max payload size to 128. */
3236 		devctl &= ~(0x00e0);
3237 		/* Clear device status register. Write 1b to clear */
3238 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3239 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3240 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3241 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3242 	}
3243 
3244 	/* Step 12: Enable memory arbiter. */
3245 	marbmode = 0;
3246 	if (BGE_IS_5714_FAMILY(sc))
3247 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3248 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3249 
3250 	/* Step 17: Poll until the firmware initialization is complete */
3251 	bge_poll_fw(sc);
3252 
3253 	/* XXX 5721, 5751 and 5752 */
3254 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3255 		/* Step 19: */
3256 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3257 		/* Step 20: */
3258 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3259 	}
3260 
3261 	/*
3262 	 * Step 18: wirte mac mode
3263 	 * XXX Write 0x0c for 5703S and 5704S
3264 	 */
3265 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3266 
3267 
3268 	/* Step 21: 5822 B0 errata */
3269 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3270 		pcireg_t msidata;
3271 
3272 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3273 		    BGE_PCI_MSI_DATA);
3274 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3275 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3276 		    msidata);
3277 	}
3278 
3279 	/* Step 23: restore cache line size */
3280 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3281 
3282 #if 0
3283 	/*
3284 	 * XXX Wait for the value of the PCISTATE register to
3285 	 * return to its original pre-reset state. This is a
3286 	 * fairly good indicator of reset completion. If we don't
3287 	 * wait for the reset to fully complete, trying to read
3288 	 * from the device's non-PCI registers may yield garbage
3289 	 * results.
3290 	 */
3291 	for (i = 0; i < BGE_TIMEOUT; i++) {
3292 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3293 		    BGE_PCI_PCISTATE);
3294 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3295 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3296 			break;
3297 		DELAY(10);
3298 	}
3299 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3300 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3301 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3302 	}
3303 #endif
3304 
3305 	/* Step 28: Fix up byte swapping */
3306 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3307 
3308 	/* Tell the ASF firmware we are up */
3309 	if (sc->bge_asf_mode & ASF_STACKUP)
3310 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3311 
3312 	/*
3313 	 * The 5704 in TBI mode apparently needs some special
3314 	 * adjustment to insure the SERDES drive level is set
3315 	 * to 1.2V.
3316 	 */
3317 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3318 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3319 		uint32_t serdescfg;
3320 
3321 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3322 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3323 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3324 	}
3325 
3326 	if (sc->bge_flags & BGE_PCIE &&
3327 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3328 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3329 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3330 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
3331 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57766) {
3332 		uint32_t v;
3333 
3334 		/* Enable PCI Express bug fix */
3335 		v = CSR_READ_4(sc, 0x7c00);
3336 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3337 	}
3338 	DELAY(10000);
3339 
3340 	return 0;
3341 }
3342 
3343 /*
3344  * Frame reception handling. This is called if there's a frame
3345  * on the receive return list.
3346  *
3347  * Note: we have to be able to handle two possibilities here:
3348  * 1) the frame is from the jumbo receive ring
3349  * 2) the frame is from the standard receive ring
3350  */
3351 
3352 static void
3353 bge_rxeof(struct bge_softc *sc)
3354 {
3355 	struct ifnet *ifp;
3356 	uint16_t rx_prod, rx_cons;
3357 	int stdcnt = 0, jumbocnt = 0;
3358 	bus_dmamap_t dmamap;
3359 	bus_addr_t offset, toff;
3360 	bus_size_t tlen;
3361 	int tosync;
3362 
3363 	rx_cons = sc->bge_rx_saved_considx;
3364 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3365 
3366 	/* Nothing to do */
3367 	if (rx_cons == rx_prod)
3368 		return;
3369 
3370 	ifp = &sc->ethercom.ec_if;
3371 
3372 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3373 	    offsetof(struct bge_ring_data, bge_status_block),
3374 	    sizeof (struct bge_status_block),
3375 	    BUS_DMASYNC_POSTREAD);
3376 
3377 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3378 	tosync = rx_prod - rx_cons;
3379 
3380 	if (tosync != 0)
3381 		rnd_add_uint32(&sc->rnd_source, tosync);
3382 
3383 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3384 
3385 	if (tosync < 0) {
3386 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
3387 		    sizeof (struct bge_rx_bd);
3388 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3389 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3390 		tosync = -tosync;
3391 	}
3392 
3393 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3394 	    offset, tosync * sizeof (struct bge_rx_bd),
3395 	    BUS_DMASYNC_POSTREAD);
3396 
3397 	while (rx_cons != rx_prod) {
3398 		struct bge_rx_bd	*cur_rx;
3399 		uint32_t		rxidx;
3400 		struct mbuf		*m = NULL;
3401 
3402 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3403 
3404 		rxidx = cur_rx->bge_idx;
3405 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3406 
3407 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3408 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3409 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3410 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3411 			jumbocnt++;
3412 			bus_dmamap_sync(sc->bge_dmatag,
3413 			    sc->bge_cdata.bge_rx_jumbo_map,
3414 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3415 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3416 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3417 				ifp->if_ierrors++;
3418 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3419 				continue;
3420 			}
3421 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3422 					     NULL)== ENOBUFS) {
3423 				ifp->if_ierrors++;
3424 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3425 				continue;
3426 			}
3427 		} else {
3428 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3429 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3430 
3431 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3432 			stdcnt++;
3433 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3434 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3435 			if (dmamap == NULL) {
3436 				ifp->if_ierrors++;
3437 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3438 				continue;
3439 			}
3440 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3441 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3442 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3443 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3444 				ifp->if_ierrors++;
3445 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3446 				continue;
3447 			}
3448 			if (bge_newbuf_std(sc, sc->bge_std,
3449 			    NULL, dmamap) == ENOBUFS) {
3450 				ifp->if_ierrors++;
3451 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3452 				continue;
3453 			}
3454 		}
3455 
3456 		ifp->if_ipackets++;
3457 #ifndef __NO_STRICT_ALIGNMENT
3458 		/*
3459 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3460 		 * the Rx buffer has the layer-2 header unaligned.
3461 		 * If our CPU requires alignment, re-align by copying.
3462 		 */
3463 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3464 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3465 				cur_rx->bge_len);
3466 			m->m_data += ETHER_ALIGN;
3467 		}
3468 #endif
3469 
3470 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3471 		m->m_pkthdr.rcvif = ifp;
3472 
3473 		/*
3474 		 * Handle BPF listeners. Let the BPF user see the packet.
3475 		 */
3476 		bpf_mtap(ifp, m);
3477 
3478 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3479 
3480 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3481 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3482 		/*
3483 		 * Rx transport checksum-offload may also
3484 		 * have bugs with packets which, when transmitted,
3485 		 * were `runts' requiring padding.
3486 		 */
3487 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3488 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3489 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3490 			m->m_pkthdr.csum_data =
3491 			    cur_rx->bge_tcp_udp_csum;
3492 			m->m_pkthdr.csum_flags |=
3493 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3494 			     M_CSUM_DATA);
3495 		}
3496 
3497 		/*
3498 		 * If we received a packet with a vlan tag, pass it
3499 		 * to vlan_input() instead of ether_input().
3500 		 */
3501 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3502 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3503 		}
3504 
3505 		(*ifp->if_input)(ifp, m);
3506 	}
3507 
3508 	sc->bge_rx_saved_considx = rx_cons;
3509 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3510 	if (stdcnt)
3511 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3512 	if (jumbocnt)
3513 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3514 }
3515 
3516 static void
3517 bge_txeof(struct bge_softc *sc)
3518 {
3519 	struct bge_tx_bd *cur_tx = NULL;
3520 	struct ifnet *ifp;
3521 	struct txdmamap_pool_entry *dma;
3522 	bus_addr_t offset, toff;
3523 	bus_size_t tlen;
3524 	int tosync;
3525 	struct mbuf *m;
3526 
3527 	ifp = &sc->ethercom.ec_if;
3528 
3529 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3530 	    offsetof(struct bge_ring_data, bge_status_block),
3531 	    sizeof (struct bge_status_block),
3532 	    BUS_DMASYNC_POSTREAD);
3533 
3534 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3535 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3536 	    sc->bge_tx_saved_considx;
3537 
3538 	if (tosync != 0)
3539 		rnd_add_uint32(&sc->rnd_source, tosync);
3540 
3541 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3542 
3543 	if (tosync < 0) {
3544 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3545 		    sizeof (struct bge_tx_bd);
3546 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3547 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3548 		tosync = -tosync;
3549 	}
3550 
3551 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3552 	    offset, tosync * sizeof (struct bge_tx_bd),
3553 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3554 
3555 	/*
3556 	 * Go through our tx ring and free mbufs for those
3557 	 * frames that have been sent.
3558 	 */
3559 	while (sc->bge_tx_saved_considx !=
3560 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3561 		uint32_t		idx = 0;
3562 
3563 		idx = sc->bge_tx_saved_considx;
3564 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3565 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3566 			ifp->if_opackets++;
3567 		m = sc->bge_cdata.bge_tx_chain[idx];
3568 		if (m != NULL) {
3569 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3570 			dma = sc->txdma[idx];
3571 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3572 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3573 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3574 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3575 			sc->txdma[idx] = NULL;
3576 
3577 			m_freem(m);
3578 		}
3579 		sc->bge_txcnt--;
3580 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3581 		ifp->if_timer = 0;
3582 	}
3583 
3584 	if (cur_tx != NULL)
3585 		ifp->if_flags &= ~IFF_OACTIVE;
3586 }
3587 
3588 static int
3589 bge_intr(void *xsc)
3590 {
3591 	struct bge_softc *sc;
3592 	struct ifnet *ifp;
3593 	uint32_t statusword;
3594 
3595 	sc = xsc;
3596 	ifp = &sc->ethercom.ec_if;
3597 
3598 	/* It is possible for the interrupt to arrive before
3599 	 * the status block is updated prior to the interrupt.
3600 	 * Reading the PCI State register will confirm whether the
3601 	 * interrupt is ours and will flush the status block.
3602 	 */
3603 
3604 	/* read status word from status block */
3605 	statusword = sc->bge_rdata->bge_status_block.bge_status;
3606 
3607 	if ((statusword & BGE_STATFLAG_UPDATED) ||
3608 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3609 		/* Ack interrupt and stop others from occuring. */
3610 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3611 
3612 		BGE_EVCNT_INCR(sc->bge_ev_intr);
3613 
3614 		/* clear status word */
3615 		sc->bge_rdata->bge_status_block.bge_status = 0;
3616 
3617 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3618 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3619 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3620 			bge_link_upd(sc);
3621 
3622 		if (ifp->if_flags & IFF_RUNNING) {
3623 			/* Check RX return ring producer/consumer */
3624 			bge_rxeof(sc);
3625 
3626 			/* Check TX ring producer/consumer */
3627 			bge_txeof(sc);
3628 		}
3629 
3630 		if (sc->bge_pending_rxintr_change) {
3631 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3632 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3633 			uint32_t junk;
3634 
3635 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3636 			DELAY(10);
3637 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3638 
3639 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3640 			DELAY(10);
3641 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3642 
3643 			sc->bge_pending_rxintr_change = 0;
3644 		}
3645 		bge_handle_events(sc);
3646 
3647 		/* Re-enable interrupts. */
3648 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3649 
3650 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3651 			bge_start(ifp);
3652 
3653 		return 1;
3654 	} else
3655 		return 0;
3656 }
3657 
3658 static void
3659 bge_asf_driver_up(struct bge_softc *sc)
3660 {
3661 	if (sc->bge_asf_mode & ASF_STACKUP) {
3662 		/* Send ASF heartbeat aprox. every 2s */
3663 		if (sc->bge_asf_count)
3664 			sc->bge_asf_count --;
3665 		else {
3666 			sc->bge_asf_count = 2;
3667 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3668 			    BGE_FW_DRV_ALIVE);
3669 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3670 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3671 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3672 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3673 		}
3674 	}
3675 }
3676 
3677 static void
3678 bge_tick(void *xsc)
3679 {
3680 	struct bge_softc *sc = xsc;
3681 	struct mii_data *mii = &sc->bge_mii;
3682 	int s;
3683 
3684 	s = splnet();
3685 
3686 	if (BGE_IS_5705_PLUS(sc))
3687 		bge_stats_update_regs(sc);
3688 	else
3689 		bge_stats_update(sc);
3690 
3691 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3692 		/*
3693 		 * Since in TBI mode auto-polling can't be used we should poll
3694 		 * link status manually. Here we register pending link event
3695 		 * and trigger interrupt.
3696 		 */
3697 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3698 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3699 	} else {
3700 		/*
3701 		 * Do not touch PHY if we have link up. This could break
3702 		 * IPMI/ASF mode or produce extra input errors.
3703 		 * (extra input errors was reported for bcm5701 & bcm5704).
3704 		 */
3705 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3706 			mii_tick(mii);
3707 	}
3708 
3709 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3710 
3711 	splx(s);
3712 }
3713 
3714 static void
3715 bge_stats_update_regs(struct bge_softc *sc)
3716 {
3717 	struct ifnet *ifp = &sc->ethercom.ec_if;
3718 
3719 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3720 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3721 
3722 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3723 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3724 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3725 }
3726 
3727 static void
3728 bge_stats_update(struct bge_softc *sc)
3729 {
3730 	struct ifnet *ifp = &sc->ethercom.ec_if;
3731 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3732 
3733 #define READ_STAT(sc, stats, stat) \
3734 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3735 
3736 	ifp->if_collisions +=
3737 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3738 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3739 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3740 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3741 	  ifp->if_collisions;
3742 
3743 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3744 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3745 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3746 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3747 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3748 		      READ_STAT(sc, stats,
3749 		      		xoffPauseFramesReceived.bge_addr_lo));
3750 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3751 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3752 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3753 		      READ_STAT(sc, stats,
3754 		      		macControlFramesReceived.bge_addr_lo));
3755 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3756 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3757 
3758 #undef READ_STAT
3759 
3760 #ifdef notdef
3761 	ifp->if_collisions +=
3762 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3763 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3764 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3765 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3766 	   ifp->if_collisions;
3767 #endif
3768 }
3769 
3770 /*
3771  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3772  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3773  * but when such padded frames employ the  bge IP/TCP checksum offload,
3774  * the hardware checksum assist gives incorrect results (possibly
3775  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3776  * If we pad such runts with zeros, the onboard checksum comes out correct.
3777  */
3778 static inline int
3779 bge_cksum_pad(struct mbuf *pkt)
3780 {
3781 	struct mbuf *last = NULL;
3782 	int padlen;
3783 
3784 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3785 
3786 	/* if there's only the packet-header and we can pad there, use it. */
3787 	if (pkt->m_pkthdr.len == pkt->m_len &&
3788 	    M_TRAILINGSPACE(pkt) >= padlen) {
3789 		last = pkt;
3790 	} else {
3791 		/*
3792 		 * Walk packet chain to find last mbuf. We will either
3793 		 * pad there, or append a new mbuf and pad it
3794 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3795 		 */
3796 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3797 	      	       continue; /* do nothing */
3798 		}
3799 
3800 		/* `last' now points to last in chain. */
3801 		if (M_TRAILINGSPACE(last) < padlen) {
3802 			/* Allocate new empty mbuf, pad it. Compact later. */
3803 			struct mbuf *n;
3804 			MGET(n, M_DONTWAIT, MT_DATA);
3805 			if (n == NULL)
3806 				return ENOBUFS;
3807 			n->m_len = 0;
3808 			last->m_next = n;
3809 			last = n;
3810 		}
3811 	}
3812 
3813 	KDASSERT(!M_READONLY(last));
3814 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3815 
3816 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3817 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3818 	last->m_len += padlen;
3819 	pkt->m_pkthdr.len += padlen;
3820 	return 0;
3821 }
3822 
3823 /*
3824  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3825  */
3826 static inline int
3827 bge_compact_dma_runt(struct mbuf *pkt)
3828 {
3829 	struct mbuf	*m, *prev;
3830 	int 		totlen, prevlen;
3831 
3832 	prev = NULL;
3833 	totlen = 0;
3834 	prevlen = -1;
3835 
3836 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3837 		int mlen = m->m_len;
3838 		int shortfall = 8 - mlen ;
3839 
3840 		totlen += mlen;
3841 		if (mlen == 0) {
3842 			continue;
3843 		}
3844 		if (mlen >= 8)
3845 			continue;
3846 
3847 		/* If we get here, mbuf data is too small for DMA engine.
3848 		 * Try to fix by shuffling data to prev or next in chain.
3849 		 * If that fails, do a compacting deep-copy of the whole chain.
3850 		 */
3851 
3852 		/* Internal frag. If fits in prev, copy it there. */
3853 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3854 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3855 			prev->m_len += mlen;
3856 			m->m_len = 0;
3857 			/* XXX stitch chain */
3858 			prev->m_next = m_free(m);
3859 			m = prev;
3860 			continue;
3861 		}
3862 		else if (m->m_next != NULL &&
3863 			     M_TRAILINGSPACE(m) >= shortfall &&
3864 			     m->m_next->m_len >= (8 + shortfall)) {
3865 		    /* m is writable and have enough data in next, pull up. */
3866 
3867 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3868 			    shortfall);
3869 			m->m_len += shortfall;
3870 			m->m_next->m_len -= shortfall;
3871 			m->m_next->m_data += shortfall;
3872 		}
3873 		else if (m->m_next == NULL || 1) {
3874 		  	/* Got a runt at the very end of the packet.
3875 			 * borrow data from the tail of the preceding mbuf and
3876 			 * update its length in-place. (The original data is still
3877 			 * valid, so we can do this even if prev is not writable.)
3878 			 */
3879 
3880 			/* if we'd make prev a runt, just move all of its data. */
3881 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3882 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3883 
3884 			if ((prev->m_len - shortfall) < 8)
3885 				shortfall = prev->m_len;
3886 
3887 #ifdef notyet	/* just do the safe slow thing for now */
3888 			if (!M_READONLY(m)) {
3889 				if (M_LEADINGSPACE(m) < shorfall) {
3890 					void *m_dat;
3891 					m_dat = (m->m_flags & M_PKTHDR) ?
3892 					  m->m_pktdat : m->dat;
3893 					memmove(m_dat, mtod(m, void*), m->m_len);
3894 					m->m_data = m_dat;
3895 				    }
3896 			} else
3897 #endif	/* just do the safe slow thing */
3898 			{
3899 				struct mbuf * n = NULL;
3900 				int newprevlen = prev->m_len - shortfall;
3901 
3902 				MGET(n, M_NOWAIT, MT_DATA);
3903 				if (n == NULL)
3904 				   return ENOBUFS;
3905 				KASSERT(m->m_len + shortfall < MLEN
3906 					/*,
3907 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3908 
3909 				/* first copy the data we're stealing from prev */
3910 				memcpy(n->m_data, prev->m_data + newprevlen,
3911 				    shortfall);
3912 
3913 				/* update prev->m_len accordingly */
3914 				prev->m_len -= shortfall;
3915 
3916 				/* copy data from runt m */
3917 				memcpy(n->m_data + shortfall, m->m_data,
3918 				    m->m_len);
3919 
3920 				/* n holds what we stole from prev, plus m */
3921 				n->m_len = shortfall + m->m_len;
3922 
3923 				/* stitch n into chain and free m */
3924 				n->m_next = m->m_next;
3925 				prev->m_next = n;
3926 				/* KASSERT(m->m_next == NULL); */
3927 				m->m_next = NULL;
3928 				m_free(m);
3929 				m = n;	/* for continuing loop */
3930 			}
3931 		}
3932 		prevlen = m->m_len;
3933 	}
3934 	return 0;
3935 }
3936 
3937 /*
3938  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3939  * pointers to descriptors.
3940  */
3941 static int
3942 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3943 {
3944 	struct bge_tx_bd	*f = NULL;
3945 	uint32_t		frag, cur;
3946 	uint16_t		csum_flags = 0;
3947 	uint16_t		txbd_tso_flags = 0;
3948 	struct txdmamap_pool_entry *dma;
3949 	bus_dmamap_t dmamap;
3950 	int			i = 0;
3951 	struct m_tag		*mtag;
3952 	int			use_tso, maxsegsize, error;
3953 
3954 	cur = frag = *txidx;
3955 
3956 	if (m_head->m_pkthdr.csum_flags) {
3957 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3958 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3959 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3960 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3961 	}
3962 
3963 	/*
3964 	 * If we were asked to do an outboard checksum, and the NIC
3965 	 * has the bug where it sometimes adds in the Ethernet padding,
3966 	 * explicitly pad with zeros so the cksum will be correct either way.
3967 	 * (For now, do this for all chip versions, until newer
3968 	 * are confirmed to not require the workaround.)
3969 	 */
3970 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3971 #ifdef notyet
3972 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3973 #endif
3974 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3975 		goto check_dma_bug;
3976 
3977 	if (bge_cksum_pad(m_head) != 0)
3978 	    return ENOBUFS;
3979 
3980 check_dma_bug:
3981 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3982 		goto doit;
3983 
3984 	/*
3985 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3986 	 * less than eight bytes.  If we encounter a teeny mbuf
3987 	 * at the end of a chain, we can pad.  Otherwise, copy.
3988 	 */
3989 	if (bge_compact_dma_runt(m_head) != 0)
3990 		return ENOBUFS;
3991 
3992 doit:
3993 	dma = SLIST_FIRST(&sc->txdma_list);
3994 	if (dma == NULL)
3995 		return ENOBUFS;
3996 	dmamap = dma->dmamap;
3997 
3998 	/*
3999 	 * Set up any necessary TSO state before we start packing...
4000 	 */
4001 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4002 	if (!use_tso) {
4003 		maxsegsize = 0;
4004 	} else {	/* TSO setup */
4005 		unsigned  mss;
4006 		struct ether_header *eh;
4007 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4008 		struct mbuf * m0 = m_head;
4009 		struct ip *ip;
4010 		struct tcphdr *th;
4011 		int iphl, hlen;
4012 
4013 		/*
4014 		 * XXX It would be nice if the mbuf pkthdr had offset
4015 		 * fields for the protocol headers.
4016 		 */
4017 
4018 		eh = mtod(m0, struct ether_header *);
4019 		switch (htons(eh->ether_type)) {
4020 		case ETHERTYPE_IP:
4021 			offset = ETHER_HDR_LEN;
4022 			break;
4023 
4024 		case ETHERTYPE_VLAN:
4025 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4026 			break;
4027 
4028 		default:
4029 			/*
4030 			 * Don't support this protocol or encapsulation.
4031 			 */
4032 			return ENOBUFS;
4033 		}
4034 
4035 		/*
4036 		 * TCP/IP headers are in the first mbuf; we can do
4037 		 * this the easy way.
4038 		 */
4039 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4040 		hlen = iphl + offset;
4041 		if (__predict_false(m0->m_len <
4042 				    (hlen + sizeof(struct tcphdr)))) {
4043 
4044 			aprint_debug_dev(sc->bge_dev,
4045 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4046 			    "not handled yet\n",
4047 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4048 #ifdef NOTYET
4049 			/*
4050 			 * XXX jonathan@NetBSD.org: untested.
4051 			 * how to force  this branch to be taken?
4052 			 */
4053 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4054 
4055 			m_copydata(m0, offset, sizeof(ip), &ip);
4056 			m_copydata(m0, hlen, sizeof(th), &th);
4057 
4058 			ip.ip_len = 0;
4059 
4060 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4061 			    sizeof(ip.ip_len), &ip.ip_len);
4062 
4063 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4064 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4065 
4066 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4067 			    sizeof(th.th_sum), &th.th_sum);
4068 
4069 			hlen += th.th_off << 2;
4070 			iptcp_opt_words	= hlen;
4071 #else
4072 			/*
4073 			 * if_wm "hard" case not yet supported, can we not
4074 			 * mandate it out of existence?
4075 			 */
4076 			(void) ip; (void)th; (void) ip_tcp_hlen;
4077 
4078 			return ENOBUFS;
4079 #endif
4080 		} else {
4081 			ip = (struct ip *) (mtod(m0, char *) + offset);
4082 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4083 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4084 
4085 			/* Total IP/TCP options, in 32-bit words */
4086 			iptcp_opt_words = (ip_tcp_hlen
4087 					   - sizeof(struct tcphdr)
4088 					   - sizeof(struct ip)) >> 2;
4089 		}
4090 		if (BGE_IS_5750_OR_BEYOND(sc)) {
4091 			th->th_sum = 0;
4092 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4093 		} else {
4094 			/*
4095 			 * XXX jonathan@NetBSD.org: 5705 untested.
4096 			 * Requires TSO firmware patch for 5701/5703/5704.
4097 			 */
4098 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4099 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4100 		}
4101 
4102 		mss = m_head->m_pkthdr.segsz;
4103 		txbd_tso_flags |=
4104 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4105 		    BGE_TXBDFLAG_CPU_POST_DMA;
4106 
4107 		/*
4108 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4109 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4110 		 * the NIC copies 40 bytes of IP/TCP header from the
4111 		 * supplied header into the IP/TCP header portion of
4112 		 * each post-TSO-segment. If the supplied packet has IP or
4113 		 * TCP options, we need to tell the NIC to copy those extra
4114 		 * bytes into each  post-TSO header, in addition to the normal
4115 		 * 40-byte IP/TCP header (and to leave space accordingly).
4116 		 * Unfortunately, the driver encoding of option length
4117 		 * varies across different ASIC families.
4118 		 */
4119 		tcp_seg_flags = 0;
4120 		if (iptcp_opt_words) {
4121 			if (BGE_IS_5705_PLUS(sc)) {
4122 				tcp_seg_flags =
4123 					iptcp_opt_words << 11;
4124 			} else {
4125 				txbd_tso_flags |=
4126 					iptcp_opt_words << 12;
4127 			}
4128 		}
4129 		maxsegsize = mss | tcp_seg_flags;
4130 		ip->ip_len = htons(mss + ip_tcp_hlen);
4131 
4132 	}	/* TSO setup */
4133 
4134 	/*
4135 	 * Start packing the mbufs in this chain into
4136 	 * the fragment pointers. Stop when we run out
4137 	 * of fragments or hit the end of the mbuf chain.
4138 	 */
4139 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4140 	    BUS_DMA_NOWAIT);
4141 	if (error)
4142 		return ENOBUFS;
4143 	/*
4144 	 * Sanity check: avoid coming within 16 descriptors
4145 	 * of the end of the ring.
4146 	 */
4147 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4148 		BGE_TSO_PRINTF(("%s: "
4149 		    " dmamap_load_mbuf too close to ring wrap\n",
4150 		    device_xname(sc->bge_dev)));
4151 		goto fail_unload;
4152 	}
4153 
4154 	mtag = sc->ethercom.ec_nvlans ?
4155 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4156 
4157 
4158 	/* Iterate over dmap-map fragments. */
4159 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4160 		f = &sc->bge_rdata->bge_tx_ring[frag];
4161 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4162 			break;
4163 
4164 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4165 		f->bge_len = dmamap->dm_segs[i].ds_len;
4166 
4167 		/*
4168 		 * For 5751 and follow-ons, for TSO we must turn
4169 		 * off checksum-assist flag in the tx-descr, and
4170 		 * supply the ASIC-revision-specific encoding
4171 		 * of TSO flags and segsize.
4172 		 */
4173 		if (use_tso) {
4174 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4175 				f->bge_rsvd = maxsegsize;
4176 				f->bge_flags = csum_flags | txbd_tso_flags;
4177 			} else {
4178 				f->bge_rsvd = 0;
4179 				f->bge_flags =
4180 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4181 			}
4182 		} else {
4183 			f->bge_rsvd = 0;
4184 			f->bge_flags = csum_flags;
4185 		}
4186 
4187 		if (mtag != NULL) {
4188 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4189 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4190 		} else {
4191 			f->bge_vlan_tag = 0;
4192 		}
4193 		cur = frag;
4194 		BGE_INC(frag, BGE_TX_RING_CNT);
4195 	}
4196 
4197 	if (i < dmamap->dm_nsegs) {
4198 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4199 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4200 		goto fail_unload;
4201 	}
4202 
4203 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4204 	    BUS_DMASYNC_PREWRITE);
4205 
4206 	if (frag == sc->bge_tx_saved_considx) {
4207 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4208 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4209 
4210 		goto fail_unload;
4211 	}
4212 
4213 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4214 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4215 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4216 	sc->txdma[cur] = dma;
4217 	sc->bge_txcnt += dmamap->dm_nsegs;
4218 
4219 	*txidx = frag;
4220 
4221 	return 0;
4222 
4223 fail_unload:
4224 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4225 
4226 	return ENOBUFS;
4227 }
4228 
4229 /*
4230  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4231  * to the mbuf data regions directly in the transmit descriptors.
4232  */
4233 static void
4234 bge_start(struct ifnet *ifp)
4235 {
4236 	struct bge_softc *sc;
4237 	struct mbuf *m_head = NULL;
4238 	uint32_t prodidx;
4239 	int pkts = 0;
4240 
4241 	sc = ifp->if_softc;
4242 
4243 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4244 		return;
4245 
4246 	prodidx = sc->bge_tx_prodidx;
4247 
4248 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4249 		IFQ_POLL(&ifp->if_snd, m_head);
4250 		if (m_head == NULL)
4251 			break;
4252 
4253 #if 0
4254 		/*
4255 		 * XXX
4256 		 * safety overkill.  If this is a fragmented packet chain
4257 		 * with delayed TCP/UDP checksums, then only encapsulate
4258 		 * it if we have enough descriptors to handle the entire
4259 		 * chain at once.
4260 		 * (paranoia -- may not actually be needed)
4261 		 */
4262 		if (m_head->m_flags & M_FIRSTFRAG &&
4263 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4264 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4265 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4266 				ifp->if_flags |= IFF_OACTIVE;
4267 				break;
4268 			}
4269 		}
4270 #endif
4271 
4272 		/*
4273 		 * Pack the data into the transmit ring. If we
4274 		 * don't have room, set the OACTIVE flag and wait
4275 		 * for the NIC to drain the ring.
4276 		 */
4277 		if (bge_encap(sc, m_head, &prodidx)) {
4278 			ifp->if_flags |= IFF_OACTIVE;
4279 			break;
4280 		}
4281 
4282 		/* now we are committed to transmit the packet */
4283 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4284 		pkts++;
4285 
4286 		/*
4287 		 * If there's a BPF listener, bounce a copy of this frame
4288 		 * to him.
4289 		 */
4290 		bpf_mtap(ifp, m_head);
4291 	}
4292 	if (pkts == 0)
4293 		return;
4294 
4295 	/* Transmit */
4296 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4297 	/* 5700 b2 errata */
4298 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4299 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4300 
4301 	sc->bge_tx_prodidx = prodidx;
4302 
4303 	/*
4304 	 * Set a timeout in case the chip goes out to lunch.
4305 	 */
4306 	ifp->if_timer = 5;
4307 }
4308 
4309 static int
4310 bge_init(struct ifnet *ifp)
4311 {
4312 	struct bge_softc *sc = ifp->if_softc;
4313 	const uint16_t *m;
4314 	int s, error = 0;
4315 
4316 	s = splnet();
4317 
4318 	ifp = &sc->ethercom.ec_if;
4319 
4320 	/* Cancel pending I/O and flush buffers. */
4321 	bge_stop(ifp, 0);
4322 
4323 	bge_stop_fw(sc);
4324 	bge_sig_pre_reset(sc, BGE_RESET_START);
4325 	bge_reset(sc);
4326 	bge_sig_legacy(sc, BGE_RESET_START);
4327 	bge_sig_post_reset(sc, BGE_RESET_START);
4328 
4329 	bge_chipinit(sc);
4330 
4331 	/*
4332 	 * Init the various state machines, ring
4333 	 * control blocks and firmware.
4334 	 */
4335 	error = bge_blockinit(sc);
4336 	if (error != 0) {
4337 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4338 		    error);
4339 		splx(s);
4340 		return error;
4341 	}
4342 
4343 	ifp = &sc->ethercom.ec_if;
4344 
4345 	/* Specify MTU. */
4346 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4347 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4348 
4349 	/* Load our MAC address. */
4350 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4351 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4352 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4353 
4354 	/* Enable or disable promiscuous mode as needed. */
4355 	if (ifp->if_flags & IFF_PROMISC)
4356 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4357 	else
4358 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4359 
4360 	/* Program multicast filter. */
4361 	bge_setmulti(sc);
4362 
4363 	/* Init RX ring. */
4364 	bge_init_rx_ring_std(sc);
4365 
4366 	/*
4367 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4368 	 * memory to insure that the chip has in fact read the first
4369 	 * entry of the ring.
4370 	 */
4371 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4372 		uint32_t		v, i;
4373 		for (i = 0; i < 10; i++) {
4374 			DELAY(20);
4375 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4376 			if (v == (MCLBYTES - ETHER_ALIGN))
4377 				break;
4378 		}
4379 		if (i == 10)
4380 			aprint_error_dev(sc->bge_dev,
4381 			    "5705 A0 chip failed to load RX ring\n");
4382 	}
4383 
4384 	/* Init jumbo RX ring. */
4385 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4386 		bge_init_rx_ring_jumbo(sc);
4387 
4388 	/* Init our RX return ring index */
4389 	sc->bge_rx_saved_considx = 0;
4390 
4391 	/* Init TX ring. */
4392 	bge_init_tx_ring(sc);
4393 
4394 	/* Turn on transmitter */
4395 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4396 
4397 	/* Turn on receiver */
4398 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4399 
4400 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4401 
4402 	/* Tell firmware we're alive. */
4403 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4404 
4405 	/* Enable host interrupts. */
4406 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4407 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4408 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4409 
4410 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4411 		goto out;
4412 
4413 	ifp->if_flags |= IFF_RUNNING;
4414 	ifp->if_flags &= ~IFF_OACTIVE;
4415 
4416 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4417 
4418 out:
4419 	sc->bge_if_flags = ifp->if_flags;
4420 	splx(s);
4421 
4422 	return error;
4423 }
4424 
4425 /*
4426  * Set media options.
4427  */
4428 static int
4429 bge_ifmedia_upd(struct ifnet *ifp)
4430 {
4431 	struct bge_softc *sc = ifp->if_softc;
4432 	struct mii_data *mii = &sc->bge_mii;
4433 	struct ifmedia *ifm = &sc->bge_ifmedia;
4434 	int rc;
4435 
4436 	/* If this is a 1000baseX NIC, enable the TBI port. */
4437 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4438 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4439 			return EINVAL;
4440 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
4441 		case IFM_AUTO:
4442 			/*
4443 			 * The BCM5704 ASIC appears to have a special
4444 			 * mechanism for programming the autoneg
4445 			 * advertisement registers in TBI mode.
4446 			 */
4447 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4448 				uint32_t sgdig;
4449 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4450 				if (sgdig & BGE_SGDIGSTS_DONE) {
4451 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4452 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4453 					sgdig |= BGE_SGDIGCFG_AUTO |
4454 					    BGE_SGDIGCFG_PAUSE_CAP |
4455 					    BGE_SGDIGCFG_ASYM_PAUSE;
4456 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4457 					    sgdig | BGE_SGDIGCFG_SEND);
4458 					DELAY(5);
4459 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4460 				}
4461 			}
4462 			break;
4463 		case IFM_1000_SX:
4464 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4465 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4466 				    BGE_MACMODE_HALF_DUPLEX);
4467 			} else {
4468 				BGE_SETBIT(sc, BGE_MAC_MODE,
4469 				    BGE_MACMODE_HALF_DUPLEX);
4470 			}
4471 			break;
4472 		default:
4473 			return EINVAL;
4474 		}
4475 		/* XXX 802.3x flow control for 1000BASE-SX */
4476 		return 0;
4477 	}
4478 
4479 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4480 	if ((rc = mii_mediachg(mii)) == ENXIO)
4481 		return 0;
4482 
4483 	/*
4484 	 * Force an interrupt so that we will call bge_link_upd
4485 	 * if needed and clear any pending link state attention.
4486 	 * Without this we are not getting any further interrupts
4487 	 * for link state changes and thus will not UP the link and
4488 	 * not be able to send in bge_start. The only way to get
4489 	 * things working was to receive a packet and get a RX intr.
4490 	 */
4491 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4492 	    sc->bge_flags & BGE_IS_5788)
4493 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4494 	else
4495 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4496 
4497 	return rc;
4498 }
4499 
4500 /*
4501  * Report current media status.
4502  */
4503 static void
4504 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4505 {
4506 	struct bge_softc *sc = ifp->if_softc;
4507 	struct mii_data *mii = &sc->bge_mii;
4508 
4509 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4510 		ifmr->ifm_status = IFM_AVALID;
4511 		ifmr->ifm_active = IFM_ETHER;
4512 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4513 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4514 			ifmr->ifm_status |= IFM_ACTIVE;
4515 		ifmr->ifm_active |= IFM_1000_SX;
4516 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4517 			ifmr->ifm_active |= IFM_HDX;
4518 		else
4519 			ifmr->ifm_active |= IFM_FDX;
4520 		return;
4521 	}
4522 
4523 	mii_pollstat(mii);
4524 	ifmr->ifm_status = mii->mii_media_status;
4525 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4526 	    sc->bge_flowflags;
4527 }
4528 
4529 static int
4530 bge_ifflags_cb(struct ethercom *ec)
4531 {
4532 	struct ifnet *ifp = &ec->ec_if;
4533 	struct bge_softc *sc = ifp->if_softc;
4534 	int change = ifp->if_flags ^ sc->bge_if_flags;
4535 
4536 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4537 		return ENETRESET;
4538 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4539 		return 0;
4540 
4541 	if ((ifp->if_flags & IFF_PROMISC) == 0)
4542 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4543 	else
4544 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4545 
4546 	bge_setmulti(sc);
4547 
4548 	sc->bge_if_flags = ifp->if_flags;
4549 	return 0;
4550 }
4551 
4552 static int
4553 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4554 {
4555 	struct bge_softc *sc = ifp->if_softc;
4556 	struct ifreq *ifr = (struct ifreq *) data;
4557 	int s, error = 0;
4558 	struct mii_data *mii;
4559 
4560 	s = splnet();
4561 
4562 	switch (command) {
4563 	case SIOCSIFMEDIA:
4564 		/* XXX Flow control is not supported for 1000BASE-SX */
4565 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4566 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4567 			sc->bge_flowflags = 0;
4568 		}
4569 
4570 		/* Flow control requires full-duplex mode. */
4571 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4572 		    (ifr->ifr_media & IFM_FDX) == 0) {
4573 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4574 		}
4575 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4576 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4577 				/* We can do both TXPAUSE and RXPAUSE. */
4578 				ifr->ifr_media |=
4579 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4580 			}
4581 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4582 		}
4583 		/* FALLTHROUGH */
4584 	case SIOCGIFMEDIA:
4585 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4586 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4587 			    command);
4588 		} else {
4589 			mii = &sc->bge_mii;
4590 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4591 			    command);
4592 		}
4593 		break;
4594 	default:
4595 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4596 			break;
4597 
4598 		error = 0;
4599 
4600 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4601 			;
4602 		else if (ifp->if_flags & IFF_RUNNING)
4603 			bge_setmulti(sc);
4604 		break;
4605 	}
4606 
4607 	splx(s);
4608 
4609 	return error;
4610 }
4611 
4612 static void
4613 bge_watchdog(struct ifnet *ifp)
4614 {
4615 	struct bge_softc *sc;
4616 
4617 	sc = ifp->if_softc;
4618 
4619 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4620 
4621 	ifp->if_flags &= ~IFF_RUNNING;
4622 	bge_init(ifp);
4623 
4624 	ifp->if_oerrors++;
4625 }
4626 
4627 static void
4628 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4629 {
4630 	int i;
4631 
4632 	BGE_CLRBIT(sc, reg, bit);
4633 
4634 	for (i = 0; i < 1000; i++) {
4635 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4636 			return;
4637 		delay(100);
4638 	}
4639 
4640 	/*
4641 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4642 	 * on some environment (and once after boot?)
4643 	 */
4644 	if (reg != BGE_SRS_MODE)
4645 		aprint_error_dev(sc->bge_dev,
4646 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4647 		    (u_long)reg, bit);
4648 }
4649 
4650 /*
4651  * Stop the adapter and free any mbufs allocated to the
4652  * RX and TX lists.
4653  */
4654 static void
4655 bge_stop(struct ifnet *ifp, int disable)
4656 {
4657 	struct bge_softc *sc = ifp->if_softc;
4658 
4659 	callout_stop(&sc->bge_timeout);
4660 
4661 	/*
4662 	 * Tell firmware we're shutting down.
4663 	 */
4664 	bge_stop_fw(sc);
4665 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4666 
4667 	/* Disable host interrupts. */
4668 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4669 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4670 
4671 	/*
4672 	 * Disable all of the receiver blocks
4673 	 */
4674 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4675 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4676 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4677 	if (BGE_IS_5700_FAMILY(sc))
4678 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4679 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4680 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4681 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4682 
4683 	/*
4684 	 * Disable all of the transmit blocks
4685 	 */
4686 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4687 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4688 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4689 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4690 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4691 	if (BGE_IS_5700_FAMILY(sc))
4692 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4693 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4694 
4695 	/*
4696 	 * Shut down all of the memory managers and related
4697 	 * state machines.
4698 	 */
4699 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4700 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4701 	if (BGE_IS_5700_FAMILY(sc))
4702 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4703 
4704 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4705 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4706 
4707 	if (BGE_IS_5700_FAMILY(sc)) {
4708 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4709 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4710 	}
4711 
4712 	bge_reset(sc);
4713 	bge_sig_legacy(sc, BGE_RESET_STOP);
4714 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4715 
4716 	/*
4717 	 * Keep the ASF firmware running if up.
4718 	 */
4719 	if (sc->bge_asf_mode & ASF_STACKUP)
4720 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4721 	else
4722 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4723 
4724 	/* Free the RX lists. */
4725 	bge_free_rx_ring_std(sc);
4726 
4727 	/* Free jumbo RX list. */
4728 	if (BGE_IS_JUMBO_CAPABLE(sc))
4729 		bge_free_rx_ring_jumbo(sc);
4730 
4731 	/* Free TX buffers. */
4732 	bge_free_tx_ring(sc);
4733 
4734 	/*
4735 	 * Isolate/power down the PHY.
4736 	 */
4737 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4738 		mii_down(&sc->bge_mii);
4739 
4740 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4741 
4742 	/* Clear MAC's link state (PHY may still have link UP). */
4743 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4744 
4745 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4746 }
4747 
4748 static void
4749 bge_link_upd(struct bge_softc *sc)
4750 {
4751 	struct ifnet *ifp = &sc->ethercom.ec_if;
4752 	struct mii_data *mii = &sc->bge_mii;
4753 	uint32_t status;
4754 	int link;
4755 
4756 	/* Clear 'pending link event' flag */
4757 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4758 
4759 	/*
4760 	 * Process link state changes.
4761 	 * Grrr. The link status word in the status block does
4762 	 * not work correctly on the BCM5700 rev AX and BX chips,
4763 	 * according to all available information. Hence, we have
4764 	 * to enable MII interrupts in order to properly obtain
4765 	 * async link changes. Unfortunately, this also means that
4766 	 * we have to read the MAC status register to detect link
4767 	 * changes, thereby adding an additional register access to
4768 	 * the interrupt handler.
4769 	 */
4770 
4771 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4772 		status = CSR_READ_4(sc, BGE_MAC_STS);
4773 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4774 			mii_pollstat(mii);
4775 
4776 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4777 			    mii->mii_media_status & IFM_ACTIVE &&
4778 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4779 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4780 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4781 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4782 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4783 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4784 
4785 			/* Clear the interrupt */
4786 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4787 			    BGE_EVTENB_MI_INTERRUPT);
4788 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4789 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4790 			    BRGPHY_INTRS);
4791 		}
4792 		return;
4793 	}
4794 
4795 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4796 		status = CSR_READ_4(sc, BGE_MAC_STS);
4797 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4798 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4799 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4800 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4801 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4802 					    BGE_MACMODE_TBI_SEND_CFGS);
4803 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4804 				if_link_state_change(ifp, LINK_STATE_UP);
4805 			}
4806 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4807 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4808 			if_link_state_change(ifp, LINK_STATE_DOWN);
4809 		}
4810 	/*
4811 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4812 	 * This should not happen since mii callouts are locked now, but
4813 	 * we keep this check for debug.
4814 	 */
4815 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4816 		/*
4817 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4818 		 * bit in status word always set. Workaround this bug by
4819 		 * reading PHY link status directly.
4820 		 */
4821 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4822 		    BGE_STS_LINK : 0;
4823 
4824 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4825 			mii_pollstat(mii);
4826 
4827 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4828 			    mii->mii_media_status & IFM_ACTIVE &&
4829 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4830 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4831 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4832 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4833 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4834 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4835 		}
4836 	}
4837 
4838 	/* Clear the attention */
4839 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4840 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4841 	    BGE_MACSTAT_LINK_CHANGED);
4842 }
4843 
4844 static int
4845 sysctl_bge_verify(SYSCTLFN_ARGS)
4846 {
4847 	int error, t;
4848 	struct sysctlnode node;
4849 
4850 	node = *rnode;
4851 	t = *(int*)rnode->sysctl_data;
4852 	node.sysctl_data = &t;
4853 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4854 	if (error || newp == NULL)
4855 		return error;
4856 
4857 #if 0
4858 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4859 	    node.sysctl_num, rnode->sysctl_num));
4860 #endif
4861 
4862 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4863 		if (t < 0 || t >= NBGE_RX_THRESH)
4864 			return EINVAL;
4865 		bge_update_all_threshes(t);
4866 	} else
4867 		return EINVAL;
4868 
4869 	*(int*)rnode->sysctl_data = t;
4870 
4871 	return 0;
4872 }
4873 
4874 /*
4875  * Set up sysctl(3) MIB, hw.bge.*.
4876  */
4877 static void
4878 sysctl_bge_init(struct bge_softc *sc)
4879 {
4880 	int rc, bge_root_num;
4881 	const struct sysctlnode *node;
4882 
4883 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4884 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4885 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4886 		goto err;
4887 	}
4888 
4889 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4890 	    0, CTLTYPE_NODE, "bge",
4891 	    SYSCTL_DESCR("BGE interface controls"),
4892 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4893 		goto err;
4894 	}
4895 
4896 	bge_root_num = node->sysctl_num;
4897 
4898 	/* BGE Rx interrupt mitigation level */
4899 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4900 	    CTLFLAG_READWRITE,
4901 	    CTLTYPE_INT, "rx_lvl",
4902 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4903 	    sysctl_bge_verify, 0,
4904 	    &bge_rx_thresh_lvl,
4905 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4906 	    CTL_EOL)) != 0) {
4907 		goto err;
4908 	}
4909 
4910 	bge_rxthresh_nodenum = node->sysctl_num;
4911 
4912 	return;
4913 
4914 err:
4915 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4916 }
4917 
4918 #ifdef BGE_DEBUG
4919 void
4920 bge_debug_info(struct bge_softc *sc)
4921 {
4922 
4923 	printf("Hardware Flags:\n");
4924 	if (BGE_IS_5755_PLUS(sc))
4925 		printf(" - 5755 Plus\n");
4926 	if (BGE_IS_5750_OR_BEYOND(sc))
4927 		printf(" - 5750 Plus\n");
4928 	if (BGE_IS_5705_PLUS(sc))
4929 		printf(" - 5705 Plus\n");
4930 	if (BGE_IS_5714_FAMILY(sc))
4931 		printf(" - 5714 Family\n");
4932 	if (BGE_IS_5700_FAMILY(sc))
4933 		printf(" - 5700 Family\n");
4934 	if (sc->bge_flags & BGE_IS_5788)
4935 		printf(" - 5788\n");
4936 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4937 		printf(" - Supports Jumbo Frames\n");
4938 	if (sc->bge_flags & BGE_NO_EEPROM)
4939 		printf(" - No EEPROM\n");
4940 	if (sc->bge_flags & BGE_PCIX)
4941 		printf(" - PCI-X Bus\n");
4942 	if (sc->bge_flags & BGE_PCIE)
4943 		printf(" - PCI Express Bus\n");
4944 	if (sc->bge_flags & BGE_NO_3LED)
4945 		printf(" - No 3 LEDs\n");
4946 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
4947 		printf(" - RX Alignment Bug\n");
4948 	if (sc->bge_flags & BGE_TSO)
4949 		printf(" - TSO\n");
4950 }
4951 #endif /* BGE_DEBUG */
4952 
4953 static int
4954 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4955 {
4956 	prop_dictionary_t dict;
4957 	prop_data_t ea;
4958 
4959 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4960 		return 1;
4961 
4962 	dict = device_properties(sc->bge_dev);
4963 	ea = prop_dictionary_get(dict, "mac-address");
4964 	if (ea != NULL) {
4965 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4966 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4967 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4968 		return 0;
4969 	}
4970 
4971 	return 1;
4972 }
4973 
4974 static int
4975 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4976 {
4977 	uint32_t mac_addr;
4978 
4979 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4980 	if ((mac_addr >> 16) == 0x484b) {
4981 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4982 		ether_addr[1] = (uint8_t)mac_addr;
4983 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4984 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4985 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4986 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4987 		ether_addr[5] = (uint8_t)mac_addr;
4988 		return 0;
4989 	}
4990 	return 1;
4991 }
4992 
4993 static int
4994 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4995 {
4996 	int mac_offset = BGE_EE_MAC_OFFSET;
4997 
4998 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4999 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5000 
5001 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5002 	    ETHER_ADDR_LEN));
5003 }
5004 
5005 static int
5006 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5007 {
5008 
5009 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5010 		return 1;
5011 
5012 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5013 	   ETHER_ADDR_LEN));
5014 }
5015 
5016 static int
5017 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5018 {
5019 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5020 		/* NOTE: Order is critical */
5021 		bge_get_eaddr_fw,
5022 		bge_get_eaddr_mem,
5023 		bge_get_eaddr_nvram,
5024 		bge_get_eaddr_eeprom,
5025 		NULL
5026 	};
5027 	const bge_eaddr_fcn_t *func;
5028 
5029 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5030 		if ((*func)(sc, eaddr) == 0)
5031 			break;
5032 	}
5033 	return (*func == NULL ? ENXIO : 0);
5034 }
5035