1 /* $NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $ 36 */ 37 38 /* 39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD. 40 * 41 * NetBSD version by: 42 * 43 * Frank van der Linden <fvdl@wasabisystems.com> 44 * Jason Thorpe <thorpej@wasabisystems.com> 45 * Jonathan Stone <jonathan@dsg.stanford.edu> 46 * 47 * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com> 48 * Senior Engineer, Wind River Systems 49 */ 50 51 /* 52 * The Broadcom BCM5700 is based on technology originally developed by 53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 57 * frames, highly configurable RX filtering, and 16 RX and TX queues 58 * (which, along with RX filter rules, can be used for QOS applications). 59 * Other features, such as TCP segmentation, may be available as part 60 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 61 * firmware images can be stored in hardware and need not be compiled 62 * into the driver. 63 * 64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. 66 * 67 * The BCM5701 is a single-chip solution incorporating both the BCM5700 68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 69 * does not support external SSRAM. 70 * 71 * Broadcom also produces a variation of the BCM5700 under the "Altima" 72 * brand name, which is functionally similar but lacks PCI-X support. 73 * 74 * Without external SSRAM, you can only have at most 4 TX rings, 75 * and the use of the mini RX ring is disabled. This seems to imply 76 * that these features are simply not available on the BCM5701. As a 77 * result, this driver does not implement any support for the mini RX 78 * ring. 79 */ 80 81 #include <sys/cdefs.h> 82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $"); 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/callout.h> 87 #include <sys/sockio.h> 88 #include <sys/mbuf.h> 89 #include <sys/malloc.h> 90 #include <sys/kernel.h> 91 #include <sys/device.h> 92 #include <sys/socket.h> 93 #include <sys/sysctl.h> 94 95 #include <net/if.h> 96 #include <net/if_dl.h> 97 #include <net/if_media.h> 98 #include <net/if_ether.h> 99 100 #include <sys/rndsource.h> 101 102 #ifdef INET 103 #include <netinet/in.h> 104 #include <netinet/in_systm.h> 105 #include <netinet/in_var.h> 106 #include <netinet/ip.h> 107 #endif 108 109 /* Headers for TCP Segmentation Offload (TSO) */ 110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */ 111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */ 112 #include <netinet/ip.h> /* for struct ip */ 113 #include <netinet/tcp.h> /* for struct tcphdr */ 114 115 116 #include <net/bpf.h> 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 #include <dev/pci/pcidevs.h> 121 122 #include <dev/mii/mii.h> 123 #include <dev/mii/miivar.h> 124 #include <dev/mii/miidevs.h> 125 #include <dev/mii/brgphyreg.h> 126 127 #include <dev/pci/if_bgereg.h> 128 #include <dev/pci/if_bgevar.h> 129 130 #include <prop/proplib.h> 131 132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 133 134 135 /* 136 * Tunable thresholds for rx-side bge interrupt mitigation. 137 */ 138 139 /* 140 * The pairs of values below were obtained from empirical measurement 141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive 142 * interrupt for every N packets received, where N is, approximately, 143 * the second value (rx_max_bds) in each pair. The values are chosen 144 * such that moving from one pair to the succeeding pair was observed 145 * to roughly halve interrupt rate under sustained input packet load. 146 * The values were empirically chosen to avoid overflowing internal 147 * limits on the bcm5700: increasing rx_ticks much beyond 600 148 * results in internal wrapping and higher interrupt rates. 149 * The limit of 46 frames was chosen to match NFS workloads. 150 * 151 * These values also work well on bcm5701, bcm5704C, and (less 152 * tested) bcm5703. On other chipsets, (including the Altima chip 153 * family), the larger values may overflow internal chip limits, 154 * leading to increasing interrupt rates rather than lower interrupt 155 * rates. 156 * 157 * Applications using heavy interrupt mitigation (interrupting every 158 * 32 or 46 frames) in both directions may need to increase the TCP 159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain 160 * full link bandwidth, due to ACKs and window updates lingering 161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window. 162 */ 163 static const struct bge_load_rx_thresh { 164 int rx_ticks; 165 int rx_max_bds; } 166 bge_rx_threshes[] = { 167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */ 168 { 32, 2 }, 169 { 50, 4 }, 170 { 100, 8 }, 171 { 192, 16 }, 172 { 416, 32 }, 173 { 598, 46 } 174 }; 175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0])) 176 177 /* XXX patchable; should be sysctl'able */ 178 static int bge_auto_thresh = 1; 179 static int bge_rx_thresh_lvl; 180 181 static int bge_rxthresh_nodenum; 182 183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 184 185 static uint32_t bge_chipid(const struct pci_attach_args *); 186 static int bge_can_use_msi(struct bge_softc *); 187 static int bge_probe(device_t, cfdata_t, void *); 188 static void bge_attach(device_t, device_t, void *); 189 static int bge_detach(device_t, int); 190 static void bge_release_resources(struct bge_softc *); 191 192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]); 193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 197 198 static void bge_txeof(struct bge_softc *); 199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 200 static void bge_rxeof(struct bge_softc *); 201 202 static void bge_asf_driver_up (struct bge_softc *); 203 static void bge_tick(void *); 204 static void bge_stats_update(struct bge_softc *); 205 static void bge_stats_update_regs(struct bge_softc *); 206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *); 207 208 static int bge_intr(void *); 209 static void bge_start(struct ifnet *); 210 static int bge_ifflags_cb(struct ethercom *); 211 static int bge_ioctl(struct ifnet *, u_long, void *); 212 static int bge_init(struct ifnet *); 213 static void bge_stop(struct ifnet *, int); 214 static void bge_watchdog(struct ifnet *); 215 static int bge_ifmedia_upd(struct ifnet *); 216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 217 218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int); 220 221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 222 static int bge_read_eeprom(struct bge_softc *, void *, int, int); 223 static void bge_setmulti(struct bge_softc *); 224 225 static void bge_handle_events(struct bge_softc *); 226 static int bge_alloc_jumbo_mem(struct bge_softc *); 227 #if 0 /* XXX */ 228 static void bge_free_jumbo_mem(struct bge_softc *); 229 #endif 230 static void *bge_jalloc(struct bge_softc *); 231 static void bge_jfree(struct mbuf *, void *, size_t, void *); 232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, 233 bus_dmamap_t); 234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); 235 static int bge_init_rx_ring_std(struct bge_softc *); 236 static void bge_free_rx_ring_std(struct bge_softc *); 237 static int bge_init_rx_ring_jumbo(struct bge_softc *); 238 static void bge_free_rx_ring_jumbo(struct bge_softc *); 239 static void bge_free_tx_ring(struct bge_softc *); 240 static int bge_init_tx_ring(struct bge_softc *); 241 242 static int bge_chipinit(struct bge_softc *); 243 static int bge_blockinit(struct bge_softc *); 244 static int bge_phy_addr(struct bge_softc *); 245 static uint32_t bge_readmem_ind(struct bge_softc *, int); 246 static void bge_writemem_ind(struct bge_softc *, int, int); 247 static void bge_writembx(struct bge_softc *, int, int); 248 static void bge_writembx_flush(struct bge_softc *, int, int); 249 static void bge_writemem_direct(struct bge_softc *, int, int); 250 static void bge_writereg_ind(struct bge_softc *, int, int); 251 static void bge_set_max_readrq(struct bge_softc *); 252 253 static int bge_miibus_readreg(device_t, int, int); 254 static void bge_miibus_writereg(device_t, int, int, int); 255 static void bge_miibus_statchg(struct ifnet *); 256 257 #define BGE_RESET_SHUTDOWN 0 258 #define BGE_RESET_START 1 259 #define BGE_RESET_SUSPEND 2 260 static void bge_sig_post_reset(struct bge_softc *, int); 261 static void bge_sig_legacy(struct bge_softc *, int); 262 static void bge_sig_pre_reset(struct bge_softc *, int); 263 static void bge_wait_for_event_ack(struct bge_softc *); 264 static void bge_stop_fw(struct bge_softc *); 265 static int bge_reset(struct bge_softc *); 266 static void bge_link_upd(struct bge_softc *); 267 static void bge_sysctl_init(struct bge_softc *); 268 static int bge_sysctl_verify(SYSCTLFN_PROTO); 269 270 static void bge_ape_lock_init(struct bge_softc *); 271 static void bge_ape_read_fw_ver(struct bge_softc *); 272 static int bge_ape_lock(struct bge_softc *, int); 273 static void bge_ape_unlock(struct bge_softc *, int); 274 static void bge_ape_send_event(struct bge_softc *, uint32_t); 275 static void bge_ape_driver_state_change(struct bge_softc *, int); 276 277 #ifdef BGE_DEBUG 278 #define DPRINTF(x) if (bgedebug) printf x 279 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x 280 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0) 281 int bgedebug = 0; 282 int bge_tso_debug = 0; 283 void bge_debug_info(struct bge_softc *); 284 #else 285 #define DPRINTF(x) 286 #define DPRINTFN(n,x) 287 #define BGE_TSO_PRINTF(x) 288 #endif 289 290 #ifdef BGE_EVENT_COUNTERS 291 #define BGE_EVCNT_INCR(ev) (ev).ev_count++ 292 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val) 293 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val) 294 #else 295 #define BGE_EVCNT_INCR(ev) /* nothing */ 296 #define BGE_EVCNT_ADD(ev, val) /* nothing */ 297 #define BGE_EVCNT_UPD(ev, val) /* nothing */ 298 #endif 299 300 static const struct bge_product { 301 pci_vendor_id_t bp_vendor; 302 pci_product_id_t bp_product; 303 const char *bp_name; 304 } bge_products[] = { 305 /* 306 * The BCM5700 documentation seems to indicate that the hardware 307 * still has the Alteon vendor ID burned into it, though it 308 * should always be overridden by the value in the EEPROM. We'll 309 * check for it anyway. 310 */ 311 { PCI_VENDOR_ALTEON, 312 PCI_PRODUCT_ALTEON_BCM5700, 313 "Broadcom BCM5700 Gigabit Ethernet", 314 }, 315 { PCI_VENDOR_ALTEON, 316 PCI_PRODUCT_ALTEON_BCM5701, 317 "Broadcom BCM5701 Gigabit Ethernet", 318 }, 319 { PCI_VENDOR_ALTIMA, 320 PCI_PRODUCT_ALTIMA_AC1000, 321 "Altima AC1000 Gigabit Ethernet", 322 }, 323 { PCI_VENDOR_ALTIMA, 324 PCI_PRODUCT_ALTIMA_AC1001, 325 "Altima AC1001 Gigabit Ethernet", 326 }, 327 { PCI_VENDOR_ALTIMA, 328 PCI_PRODUCT_ALTIMA_AC1003, 329 "Altima AC1003 Gigabit Ethernet", 330 }, 331 { PCI_VENDOR_ALTIMA, 332 PCI_PRODUCT_ALTIMA_AC9100, 333 "Altima AC9100 Gigabit Ethernet", 334 }, 335 { PCI_VENDOR_APPLE, 336 PCI_PRODUCT_APPLE_BCM5701, 337 "APPLE BCM5701 Gigabit Ethernet", 338 }, 339 { PCI_VENDOR_BROADCOM, 340 PCI_PRODUCT_BROADCOM_BCM5700, 341 "Broadcom BCM5700 Gigabit Ethernet", 342 }, 343 { PCI_VENDOR_BROADCOM, 344 PCI_PRODUCT_BROADCOM_BCM5701, 345 "Broadcom BCM5701 Gigabit Ethernet", 346 }, 347 { PCI_VENDOR_BROADCOM, 348 PCI_PRODUCT_BROADCOM_BCM5702, 349 "Broadcom BCM5702 Gigabit Ethernet", 350 }, 351 { PCI_VENDOR_BROADCOM, 352 PCI_PRODUCT_BROADCOM_BCM5702X, 353 "Broadcom BCM5702X Gigabit Ethernet" }, 354 { PCI_VENDOR_BROADCOM, 355 PCI_PRODUCT_BROADCOM_BCM5703, 356 "Broadcom BCM5703 Gigabit Ethernet", 357 }, 358 { PCI_VENDOR_BROADCOM, 359 PCI_PRODUCT_BROADCOM_BCM5703X, 360 "Broadcom BCM5703X Gigabit Ethernet", 361 }, 362 { PCI_VENDOR_BROADCOM, 363 PCI_PRODUCT_BROADCOM_BCM5703_ALT, 364 "Broadcom BCM5703 Gigabit Ethernet", 365 }, 366 { PCI_VENDOR_BROADCOM, 367 PCI_PRODUCT_BROADCOM_BCM5704C, 368 "Broadcom BCM5704C Dual Gigabit Ethernet", 369 }, 370 { PCI_VENDOR_BROADCOM, 371 PCI_PRODUCT_BROADCOM_BCM5704S, 372 "Broadcom BCM5704S Dual Gigabit Ethernet", 373 }, 374 { PCI_VENDOR_BROADCOM, 375 PCI_PRODUCT_BROADCOM_BCM5705, 376 "Broadcom BCM5705 Gigabit Ethernet", 377 }, 378 { PCI_VENDOR_BROADCOM, 379 PCI_PRODUCT_BROADCOM_BCM5705F, 380 "Broadcom BCM5705F Gigabit Ethernet", 381 }, 382 { PCI_VENDOR_BROADCOM, 383 PCI_PRODUCT_BROADCOM_BCM5705K, 384 "Broadcom BCM5705K Gigabit Ethernet", 385 }, 386 { PCI_VENDOR_BROADCOM, 387 PCI_PRODUCT_BROADCOM_BCM5705M, 388 "Broadcom BCM5705M Gigabit Ethernet", 389 }, 390 { PCI_VENDOR_BROADCOM, 391 PCI_PRODUCT_BROADCOM_BCM5705M_ALT, 392 "Broadcom BCM5705M Gigabit Ethernet", 393 }, 394 { PCI_VENDOR_BROADCOM, 395 PCI_PRODUCT_BROADCOM_BCM5714, 396 "Broadcom BCM5714 Gigabit Ethernet", 397 }, 398 { PCI_VENDOR_BROADCOM, 399 PCI_PRODUCT_BROADCOM_BCM5714S, 400 "Broadcom BCM5714S Gigabit Ethernet", 401 }, 402 { PCI_VENDOR_BROADCOM, 403 PCI_PRODUCT_BROADCOM_BCM5715, 404 "Broadcom BCM5715 Gigabit Ethernet", 405 }, 406 { PCI_VENDOR_BROADCOM, 407 PCI_PRODUCT_BROADCOM_BCM5715S, 408 "Broadcom BCM5715S Gigabit Ethernet", 409 }, 410 { PCI_VENDOR_BROADCOM, 411 PCI_PRODUCT_BROADCOM_BCM5717, 412 "Broadcom BCM5717 Gigabit Ethernet", 413 }, 414 { PCI_VENDOR_BROADCOM, 415 PCI_PRODUCT_BROADCOM_BCM5718, 416 "Broadcom BCM5718 Gigabit Ethernet", 417 }, 418 { PCI_VENDOR_BROADCOM, 419 PCI_PRODUCT_BROADCOM_BCM5719, 420 "Broadcom BCM5719 Gigabit Ethernet", 421 }, 422 { PCI_VENDOR_BROADCOM, 423 PCI_PRODUCT_BROADCOM_BCM5720, 424 "Broadcom BCM5720 Gigabit Ethernet", 425 }, 426 { PCI_VENDOR_BROADCOM, 427 PCI_PRODUCT_BROADCOM_BCM5721, 428 "Broadcom BCM5721 Gigabit Ethernet", 429 }, 430 { PCI_VENDOR_BROADCOM, 431 PCI_PRODUCT_BROADCOM_BCM5722, 432 "Broadcom BCM5722 Gigabit Ethernet", 433 }, 434 { PCI_VENDOR_BROADCOM, 435 PCI_PRODUCT_BROADCOM_BCM5723, 436 "Broadcom BCM5723 Gigabit Ethernet", 437 }, 438 { PCI_VENDOR_BROADCOM, 439 PCI_PRODUCT_BROADCOM_BCM5750, 440 "Broadcom BCM5750 Gigabit Ethernet", 441 }, 442 { PCI_VENDOR_BROADCOM, 443 PCI_PRODUCT_BROADCOM_BCM5751, 444 "Broadcom BCM5751 Gigabit Ethernet", 445 }, 446 { PCI_VENDOR_BROADCOM, 447 PCI_PRODUCT_BROADCOM_BCM5751F, 448 "Broadcom BCM5751F Gigabit Ethernet", 449 }, 450 { PCI_VENDOR_BROADCOM, 451 PCI_PRODUCT_BROADCOM_BCM5751M, 452 "Broadcom BCM5751M Gigabit Ethernet", 453 }, 454 { PCI_VENDOR_BROADCOM, 455 PCI_PRODUCT_BROADCOM_BCM5752, 456 "Broadcom BCM5752 Gigabit Ethernet", 457 }, 458 { PCI_VENDOR_BROADCOM, 459 PCI_PRODUCT_BROADCOM_BCM5752M, 460 "Broadcom BCM5752M Gigabit Ethernet", 461 }, 462 { PCI_VENDOR_BROADCOM, 463 PCI_PRODUCT_BROADCOM_BCM5753, 464 "Broadcom BCM5753 Gigabit Ethernet", 465 }, 466 { PCI_VENDOR_BROADCOM, 467 PCI_PRODUCT_BROADCOM_BCM5753F, 468 "Broadcom BCM5753F Gigabit Ethernet", 469 }, 470 { PCI_VENDOR_BROADCOM, 471 PCI_PRODUCT_BROADCOM_BCM5753M, 472 "Broadcom BCM5753M Gigabit Ethernet", 473 }, 474 { PCI_VENDOR_BROADCOM, 475 PCI_PRODUCT_BROADCOM_BCM5754, 476 "Broadcom BCM5754 Gigabit Ethernet", 477 }, 478 { PCI_VENDOR_BROADCOM, 479 PCI_PRODUCT_BROADCOM_BCM5754M, 480 "Broadcom BCM5754M Gigabit Ethernet", 481 }, 482 { PCI_VENDOR_BROADCOM, 483 PCI_PRODUCT_BROADCOM_BCM5755, 484 "Broadcom BCM5755 Gigabit Ethernet", 485 }, 486 { PCI_VENDOR_BROADCOM, 487 PCI_PRODUCT_BROADCOM_BCM5755M, 488 "Broadcom BCM5755M Gigabit Ethernet", 489 }, 490 { PCI_VENDOR_BROADCOM, 491 PCI_PRODUCT_BROADCOM_BCM5756, 492 "Broadcom BCM5756 Gigabit Ethernet", 493 }, 494 { PCI_VENDOR_BROADCOM, 495 PCI_PRODUCT_BROADCOM_BCM5761, 496 "Broadcom BCM5761 Gigabit Ethernet", 497 }, 498 { PCI_VENDOR_BROADCOM, 499 PCI_PRODUCT_BROADCOM_BCM5761E, 500 "Broadcom BCM5761E Gigabit Ethernet", 501 }, 502 { PCI_VENDOR_BROADCOM, 503 PCI_PRODUCT_BROADCOM_BCM5761S, 504 "Broadcom BCM5761S Gigabit Ethernet", 505 }, 506 { PCI_VENDOR_BROADCOM, 507 PCI_PRODUCT_BROADCOM_BCM5761SE, 508 "Broadcom BCM5761SE Gigabit Ethernet", 509 }, 510 { PCI_VENDOR_BROADCOM, 511 PCI_PRODUCT_BROADCOM_BCM5764, 512 "Broadcom BCM5764 Gigabit Ethernet", 513 }, 514 { PCI_VENDOR_BROADCOM, 515 PCI_PRODUCT_BROADCOM_BCM5780, 516 "Broadcom BCM5780 Gigabit Ethernet", 517 }, 518 { PCI_VENDOR_BROADCOM, 519 PCI_PRODUCT_BROADCOM_BCM5780S, 520 "Broadcom BCM5780S Gigabit Ethernet", 521 }, 522 { PCI_VENDOR_BROADCOM, 523 PCI_PRODUCT_BROADCOM_BCM5781, 524 "Broadcom BCM5781 Gigabit Ethernet", 525 }, 526 { PCI_VENDOR_BROADCOM, 527 PCI_PRODUCT_BROADCOM_BCM5782, 528 "Broadcom BCM5782 Gigabit Ethernet", 529 }, 530 { PCI_VENDOR_BROADCOM, 531 PCI_PRODUCT_BROADCOM_BCM5784M, 532 "BCM5784M NetLink 1000baseT Ethernet", 533 }, 534 { PCI_VENDOR_BROADCOM, 535 PCI_PRODUCT_BROADCOM_BCM5785F, 536 "BCM5785F NetLink 10/100 Ethernet", 537 }, 538 { PCI_VENDOR_BROADCOM, 539 PCI_PRODUCT_BROADCOM_BCM5785G, 540 "BCM5785G NetLink 1000baseT Ethernet", 541 }, 542 { PCI_VENDOR_BROADCOM, 543 PCI_PRODUCT_BROADCOM_BCM5786, 544 "Broadcom BCM5786 Gigabit Ethernet", 545 }, 546 { PCI_VENDOR_BROADCOM, 547 PCI_PRODUCT_BROADCOM_BCM5787, 548 "Broadcom BCM5787 Gigabit Ethernet", 549 }, 550 { PCI_VENDOR_BROADCOM, 551 PCI_PRODUCT_BROADCOM_BCM5787F, 552 "Broadcom BCM5787F 10/100 Ethernet", 553 }, 554 { PCI_VENDOR_BROADCOM, 555 PCI_PRODUCT_BROADCOM_BCM5787M, 556 "Broadcom BCM5787M Gigabit Ethernet", 557 }, 558 { PCI_VENDOR_BROADCOM, 559 PCI_PRODUCT_BROADCOM_BCM5788, 560 "Broadcom BCM5788 Gigabit Ethernet", 561 }, 562 { PCI_VENDOR_BROADCOM, 563 PCI_PRODUCT_BROADCOM_BCM5789, 564 "Broadcom BCM5789 Gigabit Ethernet", 565 }, 566 { PCI_VENDOR_BROADCOM, 567 PCI_PRODUCT_BROADCOM_BCM5901, 568 "Broadcom BCM5901 Fast Ethernet", 569 }, 570 { PCI_VENDOR_BROADCOM, 571 PCI_PRODUCT_BROADCOM_BCM5901A2, 572 "Broadcom BCM5901A2 Fast Ethernet", 573 }, 574 { PCI_VENDOR_BROADCOM, 575 PCI_PRODUCT_BROADCOM_BCM5903M, 576 "Broadcom BCM5903M Fast Ethernet", 577 }, 578 { PCI_VENDOR_BROADCOM, 579 PCI_PRODUCT_BROADCOM_BCM5906, 580 "Broadcom BCM5906 Fast Ethernet", 581 }, 582 { PCI_VENDOR_BROADCOM, 583 PCI_PRODUCT_BROADCOM_BCM5906M, 584 "Broadcom BCM5906M Fast Ethernet", 585 }, 586 { PCI_VENDOR_BROADCOM, 587 PCI_PRODUCT_BROADCOM_BCM57760, 588 "Broadcom BCM57760 Fast Ethernet", 589 }, 590 { PCI_VENDOR_BROADCOM, 591 PCI_PRODUCT_BROADCOM_BCM57761, 592 "Broadcom BCM57761 Fast Ethernet", 593 }, 594 { PCI_VENDOR_BROADCOM, 595 PCI_PRODUCT_BROADCOM_BCM57762, 596 "Broadcom BCM57762 Gigabit Ethernet", 597 }, 598 { PCI_VENDOR_BROADCOM, 599 PCI_PRODUCT_BROADCOM_BCM57765, 600 "Broadcom BCM57765 Fast Ethernet", 601 }, 602 { PCI_VENDOR_BROADCOM, 603 PCI_PRODUCT_BROADCOM_BCM57766, 604 "Broadcom BCM57766 Fast Ethernet", 605 }, 606 { PCI_VENDOR_BROADCOM, 607 PCI_PRODUCT_BROADCOM_BCM57780, 608 "Broadcom BCM57780 Fast Ethernet", 609 }, 610 { PCI_VENDOR_BROADCOM, 611 PCI_PRODUCT_BROADCOM_BCM57781, 612 "Broadcom BCM57781 Fast Ethernet", 613 }, 614 { PCI_VENDOR_BROADCOM, 615 PCI_PRODUCT_BROADCOM_BCM57782, 616 "Broadcom BCM57782 Fast Ethernet", 617 }, 618 { PCI_VENDOR_BROADCOM, 619 PCI_PRODUCT_BROADCOM_BCM57785, 620 "Broadcom BCM57785 Fast Ethernet", 621 }, 622 { PCI_VENDOR_BROADCOM, 623 PCI_PRODUCT_BROADCOM_BCM57786, 624 "Broadcom BCM57786 Fast Ethernet", 625 }, 626 { PCI_VENDOR_BROADCOM, 627 PCI_PRODUCT_BROADCOM_BCM57788, 628 "Broadcom BCM57788 Fast Ethernet", 629 }, 630 { PCI_VENDOR_BROADCOM, 631 PCI_PRODUCT_BROADCOM_BCM57790, 632 "Broadcom BCM57790 Fast Ethernet", 633 }, 634 { PCI_VENDOR_BROADCOM, 635 PCI_PRODUCT_BROADCOM_BCM57791, 636 "Broadcom BCM57791 Fast Ethernet", 637 }, 638 { PCI_VENDOR_BROADCOM, 639 PCI_PRODUCT_BROADCOM_BCM57795, 640 "Broadcom BCM57795 Fast Ethernet", 641 }, 642 { PCI_VENDOR_SCHNEIDERKOCH, 643 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1, 644 "SysKonnect SK-9Dx1 Gigabit Ethernet", 645 }, 646 { PCI_VENDOR_3COM, 647 PCI_PRODUCT_3COM_3C996, 648 "3Com 3c996 Gigabit Ethernet", 649 }, 650 { PCI_VENDOR_FUJITSU4, 651 PCI_PRODUCT_FUJITSU4_PW008GE4, 652 "Fujitsu PW008GE4 Gigabit Ethernet", 653 }, 654 { PCI_VENDOR_FUJITSU4, 655 PCI_PRODUCT_FUJITSU4_PW008GE5, 656 "Fujitsu PW008GE5 Gigabit Ethernet", 657 }, 658 { PCI_VENDOR_FUJITSU4, 659 PCI_PRODUCT_FUJITSU4_PP250_450_LAN, 660 "Fujitsu Primepower 250/450 Gigabit Ethernet", 661 }, 662 { 0, 663 0, 664 NULL }, 665 }; 666 667 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE) 668 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY) 669 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS) 670 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY) 671 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS) 672 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS) 673 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY) 674 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS) 675 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS) 676 677 static const struct bge_revision { 678 uint32_t br_chipid; 679 const char *br_name; 680 } bge_revisions[] = { 681 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 682 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 683 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 684 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 685 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 686 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 687 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 688 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 689 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 690 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 691 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 692 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 693 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" }, 694 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" }, 695 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" }, 696 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" }, 697 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" }, 698 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 699 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 700 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 701 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 702 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 703 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 704 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 705 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 706 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 707 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 708 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 709 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 710 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 711 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 712 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 713 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 714 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 715 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 716 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 717 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 718 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 719 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 720 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 721 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 722 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 723 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 724 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 725 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 726 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 727 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 728 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 729 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 730 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 731 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, 732 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 733 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 734 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 735 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 736 { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" }, 737 /* 5754 and 5787 share the same ASIC ID */ 738 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 739 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 740 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 741 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" }, 742 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 743 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 744 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 745 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 746 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 747 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 748 749 { 0, NULL } 750 }; 751 752 /* 753 * Some defaults for major revisions, so that newer steppings 754 * that we don't know about have a shot at working. 755 */ 756 static const struct bge_revision bge_majorrevs[] = { 757 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 758 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 759 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 760 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 761 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 762 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 763 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 764 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 765 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 766 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 767 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 768 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 769 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 770 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 771 /* 5754 and 5787 share the same ASIC ID */ 772 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 773 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 774 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 775 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 776 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 777 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 778 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 779 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 780 781 { 0, NULL } 782 }; 783 784 static int bge_allow_asf = 1; 785 786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc), 787 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 788 789 static uint32_t 790 bge_readmem_ind(struct bge_softc *sc, int off) 791 { 792 pcireg_t val; 793 794 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 795 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 796 return 0; 797 798 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 799 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA); 800 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 801 return val; 802 } 803 804 static void 805 bge_writemem_ind(struct bge_softc *sc, int off, int val) 806 { 807 808 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 809 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val); 810 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 811 } 812 813 /* 814 * PCI Express only 815 */ 816 static void 817 bge_set_max_readrq(struct bge_softc *sc) 818 { 819 pcireg_t val; 820 821 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 822 + PCIE_DCSR); 823 val &= ~PCIE_DCSR_MAX_READ_REQ; 824 switch (sc->bge_expmrq) { 825 case 2048: 826 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048; 827 break; 828 case 4096: 829 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096; 830 break; 831 default: 832 panic("incorrect expmrq value(%d)", sc->bge_expmrq); 833 break; 834 } 835 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 836 + PCIE_DCSR, val); 837 } 838 839 #ifdef notdef 840 static uint32_t 841 bge_readreg_ind(struct bge_softc *sc, int off) 842 { 843 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 844 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA)); 845 } 846 #endif 847 848 static void 849 bge_writereg_ind(struct bge_softc *sc, int off, int val) 850 { 851 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 852 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val); 853 } 854 855 static void 856 bge_writemem_direct(struct bge_softc *sc, int off, int val) 857 { 858 CSR_WRITE_4(sc, off, val); 859 } 860 861 static void 862 bge_writembx(struct bge_softc *sc, int off, int val) 863 { 864 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 865 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 866 867 CSR_WRITE_4(sc, off, val); 868 } 869 870 static void 871 bge_writembx_flush(struct bge_softc *sc, int off, int val) 872 { 873 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 874 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 875 876 CSR_WRITE_4_FLUSH(sc, off, val); 877 } 878 879 /* 880 * Clear all stale locks and select the lock for this driver instance. 881 */ 882 void 883 bge_ape_lock_init(struct bge_softc *sc) 884 { 885 struct pci_attach_args *pa = &(sc->bge_pa); 886 uint32_t bit, regbase; 887 int i; 888 889 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 890 regbase = BGE_APE_LOCK_GRANT; 891 else 892 regbase = BGE_APE_PER_LOCK_GRANT; 893 894 /* Clear any stale locks. */ 895 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 896 switch (i) { 897 case BGE_APE_LOCK_PHY0: 898 case BGE_APE_LOCK_PHY1: 899 case BGE_APE_LOCK_PHY2: 900 case BGE_APE_LOCK_PHY3: 901 bit = BGE_APE_LOCK_GRANT_DRIVER0; 902 break; 903 default: 904 if (pa->pa_function == 0) 905 bit = BGE_APE_LOCK_GRANT_DRIVER0; 906 else 907 bit = (1 << pa->pa_function); 908 } 909 APE_WRITE_4(sc, regbase + 4 * i, bit); 910 } 911 912 /* Select the PHY lock based on the device's function number. */ 913 switch (pa->pa_function) { 914 case 0: 915 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 916 break; 917 case 1: 918 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 919 break; 920 case 2: 921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 922 break; 923 case 3: 924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 925 break; 926 default: 927 printf("%s: PHY lock not supported on function\n", 928 device_xname(sc->bge_dev)); 929 break; 930 } 931 } 932 933 /* 934 * Check for APE firmware, set flags, and print version info. 935 */ 936 void 937 bge_ape_read_fw_ver(struct bge_softc *sc) 938 { 939 const char *fwtype; 940 uint32_t apedata, features; 941 942 /* Check for a valid APE signature in shared memory. */ 943 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 944 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 945 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 946 return; 947 } 948 949 /* Check if APE firmware is running. */ 950 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 951 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 952 printf("%s: APE signature found but FW status not ready! " 953 "0x%08x\n", device_xname(sc->bge_dev), apedata); 954 return; 955 } 956 957 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 958 959 /* Fetch the APE firwmare type and version. */ 960 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 961 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 962 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 963 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 964 fwtype = "NCSI"; 965 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 966 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 967 fwtype = "DASH"; 968 } else 969 fwtype = "UNKN"; 970 971 /* Print the APE firmware version. */ 972 aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype, 973 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 974 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 975 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 976 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 977 } 978 979 int 980 bge_ape_lock(struct bge_softc *sc, int locknum) 981 { 982 struct pci_attach_args *pa = &(sc->bge_pa); 983 uint32_t bit, gnt, req, status; 984 int i, off; 985 986 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 987 return (0); 988 989 /* Lock request/grant registers have different bases. */ 990 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) { 991 req = BGE_APE_LOCK_REQ; 992 gnt = BGE_APE_LOCK_GRANT; 993 } else { 994 req = BGE_APE_PER_LOCK_REQ; 995 gnt = BGE_APE_PER_LOCK_GRANT; 996 } 997 998 off = 4 * locknum; 999 1000 switch (locknum) { 1001 case BGE_APE_LOCK_GPIO: 1002 /* Lock required when using GPIO. */ 1003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1004 return (0); 1005 if (pa->pa_function == 0) 1006 bit = BGE_APE_LOCK_REQ_DRIVER0; 1007 else 1008 bit = (1 << pa->pa_function); 1009 break; 1010 case BGE_APE_LOCK_GRC: 1011 /* Lock required to reset the device. */ 1012 if (pa->pa_function == 0) 1013 bit = BGE_APE_LOCK_REQ_DRIVER0; 1014 else 1015 bit = (1 << pa->pa_function); 1016 break; 1017 case BGE_APE_LOCK_MEM: 1018 /* Lock required when accessing certain APE memory. */ 1019 if (pa->pa_function == 0) 1020 bit = BGE_APE_LOCK_REQ_DRIVER0; 1021 else 1022 bit = (1 << pa->pa_function); 1023 break; 1024 case BGE_APE_LOCK_PHY0: 1025 case BGE_APE_LOCK_PHY1: 1026 case BGE_APE_LOCK_PHY2: 1027 case BGE_APE_LOCK_PHY3: 1028 /* Lock required when accessing PHYs. */ 1029 bit = BGE_APE_LOCK_REQ_DRIVER0; 1030 break; 1031 default: 1032 return (EINVAL); 1033 } 1034 1035 /* Request a lock. */ 1036 APE_WRITE_4_FLUSH(sc, req + off, bit); 1037 1038 /* Wait up to 1 second to acquire lock. */ 1039 for (i = 0; i < 20000; i++) { 1040 status = APE_READ_4(sc, gnt + off); 1041 if (status == bit) 1042 break; 1043 DELAY(50); 1044 } 1045 1046 /* Handle any errors. */ 1047 if (status != bit) { 1048 printf("%s: APE lock %d request failed! " 1049 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 1050 device_xname(sc->bge_dev), 1051 locknum, req + off, bit & 0xFFFF, gnt + off, 1052 status & 0xFFFF); 1053 /* Revoke the lock request. */ 1054 APE_WRITE_4(sc, gnt + off, bit); 1055 return (EBUSY); 1056 } 1057 1058 return (0); 1059 } 1060 1061 void 1062 bge_ape_unlock(struct bge_softc *sc, int locknum) 1063 { 1064 struct pci_attach_args *pa = &(sc->bge_pa); 1065 uint32_t bit, gnt; 1066 int off; 1067 1068 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1069 return; 1070 1071 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1072 gnt = BGE_APE_LOCK_GRANT; 1073 else 1074 gnt = BGE_APE_PER_LOCK_GRANT; 1075 1076 off = 4 * locknum; 1077 1078 switch (locknum) { 1079 case BGE_APE_LOCK_GPIO: 1080 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1081 return; 1082 if (pa->pa_function == 0) 1083 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1084 else 1085 bit = (1 << pa->pa_function); 1086 break; 1087 case BGE_APE_LOCK_GRC: 1088 if (pa->pa_function == 0) 1089 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1090 else 1091 bit = (1 << pa->pa_function); 1092 break; 1093 case BGE_APE_LOCK_MEM: 1094 if (pa->pa_function == 0) 1095 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1096 else 1097 bit = (1 << pa->pa_function); 1098 break; 1099 case BGE_APE_LOCK_PHY0: 1100 case BGE_APE_LOCK_PHY1: 1101 case BGE_APE_LOCK_PHY2: 1102 case BGE_APE_LOCK_PHY3: 1103 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1104 break; 1105 default: 1106 return; 1107 } 1108 1109 /* Write and flush for consecutive bge_ape_lock() */ 1110 APE_WRITE_4_FLUSH(sc, gnt + off, bit); 1111 } 1112 1113 /* 1114 * Send an event to the APE firmware. 1115 */ 1116 void 1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 1118 { 1119 uint32_t apedata; 1120 int i; 1121 1122 /* NCSI does not support APE events. */ 1123 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1124 return; 1125 1126 /* Wait up to 1ms for APE to service previous event. */ 1127 for (i = 10; i > 0; i--) { 1128 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 1129 break; 1130 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 1131 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 1132 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 1133 BGE_APE_EVENT_STATUS_EVENT_PENDING); 1134 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 1135 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 1136 break; 1137 } 1138 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 1139 DELAY(100); 1140 } 1141 if (i == 0) { 1142 printf("%s: APE event 0x%08x send timed out\n", 1143 device_xname(sc->bge_dev), event); 1144 } 1145 } 1146 1147 void 1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 1149 { 1150 uint32_t apedata, event; 1151 1152 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1153 return; 1154 1155 switch (kind) { 1156 case BGE_RESET_START: 1157 /* If this is the first load, clear the load counter. */ 1158 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 1159 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 1160 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 1161 else { 1162 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 1163 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 1164 } 1165 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 1166 BGE_APE_HOST_SEG_SIG_MAGIC); 1167 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 1168 BGE_APE_HOST_SEG_LEN_MAGIC); 1169 1170 /* Add some version info if bge(4) supports it. */ 1171 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 1172 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 1173 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 1174 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 1175 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 1176 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 1177 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 1178 BGE_APE_HOST_DRVR_STATE_START); 1179 event = BGE_APE_EVENT_STATUS_STATE_START; 1180 break; 1181 case BGE_RESET_SHUTDOWN: 1182 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 1183 BGE_APE_HOST_DRVR_STATE_UNLOAD); 1184 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 1185 break; 1186 case BGE_RESET_SUSPEND: 1187 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 1188 break; 1189 default: 1190 return; 1191 } 1192 1193 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 1194 BGE_APE_EVENT_STATUS_STATE_CHNGE); 1195 } 1196 1197 static uint8_t 1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1199 { 1200 uint32_t access, byte = 0; 1201 int i; 1202 1203 /* Lock. */ 1204 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 1205 for (i = 0; i < 8000; i++) { 1206 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 1207 break; 1208 DELAY(20); 1209 } 1210 if (i == 8000) 1211 return 1; 1212 1213 /* Enable access. */ 1214 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 1215 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 1216 1217 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 1218 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 1219 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1220 DELAY(10); 1221 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 1222 DELAY(10); 1223 break; 1224 } 1225 } 1226 1227 if (i == BGE_TIMEOUT * 10) { 1228 aprint_error_dev(sc->bge_dev, "nvram read timed out\n"); 1229 return 1; 1230 } 1231 1232 /* Get result. */ 1233 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 1234 1235 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 1236 1237 /* Disable access. */ 1238 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1239 1240 /* Unlock. */ 1241 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1242 1243 return 0; 1244 } 1245 1246 /* 1247 * Read a sequence of bytes from NVRAM. 1248 */ 1249 static int 1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt) 1251 { 1252 int error = 0, i; 1253 uint8_t byte = 0; 1254 1255 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) 1256 return 1; 1257 1258 for (i = 0; i < cnt; i++) { 1259 error = bge_nvram_getbyte(sc, off + i, &byte); 1260 if (error) 1261 break; 1262 *(dest + i) = byte; 1263 } 1264 1265 return (error ? 1 : 0); 1266 } 1267 1268 /* 1269 * Read a byte of data stored in the EEPROM at address 'addr.' The 1270 * BCM570x supports both the traditional bitbang interface and an 1271 * auto access interface for reading the EEPROM. We use the auto 1272 * access method. 1273 */ 1274 static uint8_t 1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1276 { 1277 int i; 1278 uint32_t byte = 0; 1279 1280 /* 1281 * Enable use of auto EEPROM access so we can avoid 1282 * having to use the bitbang method. 1283 */ 1284 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1285 1286 /* Reset the EEPROM, load the clock period. */ 1287 CSR_WRITE_4(sc, BGE_EE_ADDR, 1288 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1289 DELAY(20); 1290 1291 /* Issue the read EEPROM command. */ 1292 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1293 1294 /* Wait for completion */ 1295 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1296 DELAY(10); 1297 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1298 break; 1299 } 1300 1301 if (i == BGE_TIMEOUT * 10) { 1302 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n"); 1303 return 1; 1304 } 1305 1306 /* Get result. */ 1307 byte = CSR_READ_4(sc, BGE_EE_DATA); 1308 1309 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1310 1311 return 0; 1312 } 1313 1314 /* 1315 * Read a sequence of bytes from the EEPROM. 1316 */ 1317 static int 1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt) 1319 { 1320 int error = 0, i; 1321 uint8_t byte = 0; 1322 char *dest = destv; 1323 1324 for (i = 0; i < cnt; i++) { 1325 error = bge_eeprom_getbyte(sc, off + i, &byte); 1326 if (error) 1327 break; 1328 *(dest + i) = byte; 1329 } 1330 1331 return (error ? 1 : 0); 1332 } 1333 1334 static int 1335 bge_miibus_readreg(device_t dev, int phy, int reg) 1336 { 1337 struct bge_softc *sc = device_private(dev); 1338 uint32_t val; 1339 uint32_t autopoll; 1340 int i; 1341 1342 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1343 return 0; 1344 1345 /* Reading with autopolling on may trigger PCI errors */ 1346 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1347 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1348 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1349 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1350 DELAY(80); 1351 } 1352 1353 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1354 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1355 1356 for (i = 0; i < BGE_TIMEOUT; i++) { 1357 delay(10); 1358 val = CSR_READ_4(sc, BGE_MI_COMM); 1359 if (!(val & BGE_MICOMM_BUSY)) { 1360 DELAY(5); 1361 val = CSR_READ_4(sc, BGE_MI_COMM); 1362 break; 1363 } 1364 } 1365 1366 if (i == BGE_TIMEOUT) { 1367 aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); 1368 val = 0; 1369 goto done; 1370 } 1371 1372 done: 1373 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1374 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1375 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1376 DELAY(80); 1377 } 1378 1379 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1380 1381 if (val & BGE_MICOMM_READFAIL) 1382 return 0; 1383 1384 return (val & 0xFFFF); 1385 } 1386 1387 static void 1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1389 { 1390 struct bge_softc *sc = device_private(dev); 1391 uint32_t autopoll; 1392 int i; 1393 1394 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 1395 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1396 return; 1397 1398 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1399 return; 1400 1401 /* Reading with autopolling on may trigger PCI errors */ 1402 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1403 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1404 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1405 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1406 DELAY(80); 1407 } 1408 1409 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1410 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1411 1412 for (i = 0; i < BGE_TIMEOUT; i++) { 1413 delay(10); 1414 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1415 delay(5); 1416 CSR_READ_4(sc, BGE_MI_COMM); 1417 break; 1418 } 1419 } 1420 1421 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1422 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1423 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1424 delay(80); 1425 } 1426 1427 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1428 1429 if (i == BGE_TIMEOUT) 1430 aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); 1431 } 1432 1433 static void 1434 bge_miibus_statchg(struct ifnet *ifp) 1435 { 1436 struct bge_softc *sc = ifp->if_softc; 1437 struct mii_data *mii = &sc->bge_mii; 1438 uint32_t mac_mode, rx_mode, tx_mode; 1439 1440 /* 1441 * Get flow control negotiation result. 1442 */ 1443 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1444 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) 1445 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1446 1447 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 1448 mii->mii_media_status & IFM_ACTIVE && 1449 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 1450 BGE_STS_SETBIT(sc, BGE_STS_LINK); 1451 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 1452 (!(mii->mii_media_status & IFM_ACTIVE) || 1453 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 1454 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 1455 1456 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) 1457 return; 1458 1459 /* Set the port mode (MII/GMII) to match the link speed. */ 1460 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1461 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1462 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1463 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1464 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1465 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1466 mac_mode |= BGE_PORTMODE_GMII; 1467 else 1468 mac_mode |= BGE_PORTMODE_MII; 1469 1470 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1471 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1472 if ((mii->mii_media_active & IFM_FDX) != 0) { 1473 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) 1474 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1475 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) 1476 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1477 } else 1478 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1479 1480 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode); 1481 DELAY(40); 1482 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1483 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1484 } 1485 1486 /* 1487 * Update rx threshold levels to values in a particular slot 1488 * of the interrupt-mitigation table bge_rx_threshes. 1489 */ 1490 static void 1491 bge_set_thresh(struct ifnet *ifp, int lvl) 1492 { 1493 struct bge_softc *sc = ifp->if_softc; 1494 int s; 1495 1496 /* For now, just save the new Rx-intr thresholds and record 1497 * that a threshold update is pending. Updating the hardware 1498 * registers here (even at splhigh()) is observed to 1499 * occasionaly cause glitches where Rx-interrupts are not 1500 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05 1501 */ 1502 s = splnet(); 1503 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks; 1504 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds; 1505 sc->bge_pending_rxintr_change = 1; 1506 splx(s); 1507 } 1508 1509 1510 /* 1511 * Update Rx thresholds of all bge devices 1512 */ 1513 static void 1514 bge_update_all_threshes(int lvl) 1515 { 1516 struct ifnet *ifp; 1517 const char * const namebuf = "bge"; 1518 int namelen; 1519 1520 if (lvl < 0) 1521 lvl = 0; 1522 else if (lvl >= NBGE_RX_THRESH) 1523 lvl = NBGE_RX_THRESH - 1; 1524 1525 namelen = strlen(namebuf); 1526 /* 1527 * Now search all the interfaces for this name/number 1528 */ 1529 IFNET_FOREACH(ifp) { 1530 if (strncmp(ifp->if_xname, namebuf, namelen) != 0) 1531 continue; 1532 /* We got a match: update if doing auto-threshold-tuning */ 1533 if (bge_auto_thresh) 1534 bge_set_thresh(ifp, lvl); 1535 } 1536 } 1537 1538 /* 1539 * Handle events that have triggered interrupts. 1540 */ 1541 static void 1542 bge_handle_events(struct bge_softc *sc) 1543 { 1544 1545 return; 1546 } 1547 1548 /* 1549 * Memory management for jumbo frames. 1550 */ 1551 1552 static int 1553 bge_alloc_jumbo_mem(struct bge_softc *sc) 1554 { 1555 char *ptr, *kva; 1556 bus_dma_segment_t seg; 1557 int i, rseg, state, error; 1558 struct bge_jpool_entry *entry; 1559 1560 state = error = 0; 1561 1562 /* Grab a big chunk o' storage. */ 1563 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0, 1564 &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 1565 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 1566 return ENOBUFS; 1567 } 1568 1569 state = 1; 1570 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva, 1571 BUS_DMA_NOWAIT)) { 1572 aprint_error_dev(sc->bge_dev, 1573 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM); 1574 error = ENOBUFS; 1575 goto out; 1576 } 1577 1578 state = 2; 1579 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0, 1580 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) { 1581 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 1582 error = ENOBUFS; 1583 goto out; 1584 } 1585 1586 state = 3; 1587 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1588 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) { 1589 aprint_error_dev(sc->bge_dev, "can't load DMA map\n"); 1590 error = ENOBUFS; 1591 goto out; 1592 } 1593 1594 state = 4; 1595 sc->bge_cdata.bge_jumbo_buf = (void *)kva; 1596 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf)); 1597 1598 SLIST_INIT(&sc->bge_jfree_listhead); 1599 SLIST_INIT(&sc->bge_jinuse_listhead); 1600 1601 /* 1602 * Now divide it up into 9K pieces and save the addresses 1603 * in an array. 1604 */ 1605 ptr = sc->bge_cdata.bge_jumbo_buf; 1606 for (i = 0; i < BGE_JSLOTS; i++) { 1607 sc->bge_cdata.bge_jslots[i] = ptr; 1608 ptr += BGE_JLEN; 1609 entry = malloc(sizeof(struct bge_jpool_entry), 1610 M_DEVBUF, M_NOWAIT); 1611 if (entry == NULL) { 1612 aprint_error_dev(sc->bge_dev, 1613 "no memory for jumbo buffer queue!\n"); 1614 error = ENOBUFS; 1615 goto out; 1616 } 1617 entry->slot = i; 1618 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 1619 entry, jpool_entries); 1620 } 1621 out: 1622 if (error != 0) { 1623 switch (state) { 1624 case 4: 1625 bus_dmamap_unload(sc->bge_dmatag, 1626 sc->bge_cdata.bge_rx_jumbo_map); 1627 case 3: 1628 bus_dmamap_destroy(sc->bge_dmatag, 1629 sc->bge_cdata.bge_rx_jumbo_map); 1630 case 2: 1631 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM); 1632 case 1: 1633 bus_dmamem_free(sc->bge_dmatag, &seg, rseg); 1634 break; 1635 default: 1636 break; 1637 } 1638 } 1639 1640 return error; 1641 } 1642 1643 /* 1644 * Allocate a jumbo buffer. 1645 */ 1646 static void * 1647 bge_jalloc(struct bge_softc *sc) 1648 { 1649 struct bge_jpool_entry *entry; 1650 1651 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 1652 1653 if (entry == NULL) { 1654 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n"); 1655 return NULL; 1656 } 1657 1658 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 1659 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 1660 return (sc->bge_cdata.bge_jslots[entry->slot]); 1661 } 1662 1663 /* 1664 * Release a jumbo buffer. 1665 */ 1666 static void 1667 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 1668 { 1669 struct bge_jpool_entry *entry; 1670 struct bge_softc *sc; 1671 int i, s; 1672 1673 /* Extract the softc struct pointer. */ 1674 sc = (struct bge_softc *)arg; 1675 1676 if (sc == NULL) 1677 panic("bge_jfree: can't find softc pointer!"); 1678 1679 /* calculate the slot this buffer belongs to */ 1680 1681 i = ((char *)buf 1682 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 1683 1684 if ((i < 0) || (i >= BGE_JSLOTS)) 1685 panic("bge_jfree: asked to free buffer that we don't manage!"); 1686 1687 s = splvm(); 1688 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 1689 if (entry == NULL) 1690 panic("bge_jfree: buffer not in use!"); 1691 entry->slot = i; 1692 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 1693 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 1694 1695 if (__predict_true(m != NULL)) 1696 pool_cache_put(mb_cache, m); 1697 splx(s); 1698 } 1699 1700 1701 /* 1702 * Initialize a standard receive ring descriptor. 1703 */ 1704 static int 1705 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, 1706 bus_dmamap_t dmamap) 1707 { 1708 struct mbuf *m_new = NULL; 1709 struct bge_rx_bd *r; 1710 int error; 1711 1712 if (dmamap == NULL) { 1713 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1, 1714 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap); 1715 if (error != 0) 1716 return error; 1717 } 1718 1719 sc->bge_cdata.bge_rx_std_map[i] = dmamap; 1720 1721 if (m == NULL) { 1722 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1723 if (m_new == NULL) 1724 return ENOBUFS; 1725 1726 MCLGET(m_new, M_DONTWAIT); 1727 if (!(m_new->m_flags & M_EXT)) { 1728 m_freem(m_new); 1729 return ENOBUFS; 1730 } 1731 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1732 1733 } else { 1734 m_new = m; 1735 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1736 m_new->m_data = m_new->m_ext.ext_buf; 1737 } 1738 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1739 m_adj(m_new, ETHER_ALIGN); 1740 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new, 1741 BUS_DMA_READ|BUS_DMA_NOWAIT)) { 1742 m_freem(m_new); 1743 return ENOBUFS; 1744 } 1745 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, 1746 BUS_DMASYNC_PREREAD); 1747 1748 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 1749 r = &sc->bge_rdata->bge_rx_std_ring[i]; 1750 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr); 1751 r->bge_flags = BGE_RXBDFLAG_END; 1752 r->bge_len = m_new->m_len; 1753 r->bge_idx = i; 1754 1755 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1756 offsetof(struct bge_ring_data, bge_rx_std_ring) + 1757 i * sizeof (struct bge_rx_bd), 1758 sizeof (struct bge_rx_bd), 1759 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1760 1761 return 0; 1762 } 1763 1764 /* 1765 * Initialize a jumbo receive ring descriptor. This allocates 1766 * a jumbo buffer from the pool managed internally by the driver. 1767 */ 1768 static int 1769 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) 1770 { 1771 struct mbuf *m_new = NULL; 1772 struct bge_rx_bd *r; 1773 void *buf = NULL; 1774 1775 if (m == NULL) { 1776 1777 /* Allocate the mbuf. */ 1778 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1779 if (m_new == NULL) 1780 return ENOBUFS; 1781 1782 /* Allocate the jumbo buffer */ 1783 buf = bge_jalloc(sc); 1784 if (buf == NULL) { 1785 m_freem(m_new); 1786 aprint_error_dev(sc->bge_dev, 1787 "jumbo allocation failed -- packet dropped!\n"); 1788 return ENOBUFS; 1789 } 1790 1791 /* Attach the buffer to the mbuf. */ 1792 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 1793 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF, 1794 bge_jfree, sc); 1795 m_new->m_flags |= M_EXT_RW; 1796 } else { 1797 m_new = m; 1798 buf = m_new->m_data = m_new->m_ext.ext_buf; 1799 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 1800 } 1801 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1802 m_adj(m_new, ETHER_ALIGN); 1803 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1804 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN, 1805 BUS_DMASYNC_PREREAD); 1806 /* Set up the descriptor. */ 1807 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 1808 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 1809 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new)); 1810 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; 1811 r->bge_len = m_new->m_len; 1812 r->bge_idx = i; 1813 1814 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1815 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + 1816 i * sizeof (struct bge_rx_bd), 1817 sizeof (struct bge_rx_bd), 1818 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1819 1820 return 0; 1821 } 1822 1823 /* 1824 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 1825 * that's 1MB or memory, which is a lot. For now, we fill only the first 1826 * 256 ring entries and hope that our CPU is fast enough to keep up with 1827 * the NIC. 1828 */ 1829 static int 1830 bge_init_rx_ring_std(struct bge_softc *sc) 1831 { 1832 int i; 1833 1834 if (sc->bge_flags & BGEF_RXRING_VALID) 1835 return 0; 1836 1837 for (i = 0; i < BGE_SSLOTS; i++) { 1838 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS) 1839 return ENOBUFS; 1840 } 1841 1842 sc->bge_std = i - 1; 1843 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1844 1845 sc->bge_flags |= BGEF_RXRING_VALID; 1846 1847 return 0; 1848 } 1849 1850 static void 1851 bge_free_rx_ring_std(struct bge_softc *sc) 1852 { 1853 int i; 1854 1855 if (!(sc->bge_flags & BGEF_RXRING_VALID)) 1856 return; 1857 1858 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1859 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1860 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1861 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1862 bus_dmamap_destroy(sc->bge_dmatag, 1863 sc->bge_cdata.bge_rx_std_map[i]); 1864 } 1865 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0, 1866 sizeof(struct bge_rx_bd)); 1867 } 1868 1869 sc->bge_flags &= ~BGEF_RXRING_VALID; 1870 } 1871 1872 static int 1873 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1874 { 1875 int i; 1876 volatile struct bge_rcb *rcb; 1877 1878 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID) 1879 return 0; 1880 1881 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1882 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1883 return ENOBUFS; 1884 } 1885 1886 sc->bge_jumbo = i - 1; 1887 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID; 1888 1889 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1890 rcb->bge_maxlen_flags = 0; 1891 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1892 1893 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1894 1895 return 0; 1896 } 1897 1898 static void 1899 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1900 { 1901 int i; 1902 1903 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID)) 1904 return; 1905 1906 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1907 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1908 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1909 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1910 } 1911 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0, 1912 sizeof(struct bge_rx_bd)); 1913 } 1914 1915 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID; 1916 } 1917 1918 static void 1919 bge_free_tx_ring(struct bge_softc *sc) 1920 { 1921 int i; 1922 struct txdmamap_pool_entry *dma; 1923 1924 if (!(sc->bge_flags & BGEF_TXRING_VALID)) 1925 return; 1926 1927 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1928 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1929 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1930 sc->bge_cdata.bge_tx_chain[i] = NULL; 1931 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], 1932 link); 1933 sc->txdma[i] = 0; 1934 } 1935 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0, 1936 sizeof(struct bge_tx_bd)); 1937 } 1938 1939 while ((dma = SLIST_FIRST(&sc->txdma_list))) { 1940 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 1941 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap); 1942 free(dma, M_DEVBUF); 1943 } 1944 1945 sc->bge_flags &= ~BGEF_TXRING_VALID; 1946 } 1947 1948 static int 1949 bge_init_tx_ring(struct bge_softc *sc) 1950 { 1951 struct ifnet *ifp = &sc->ethercom.ec_if; 1952 int i; 1953 bus_dmamap_t dmamap; 1954 bus_size_t maxsegsz; 1955 struct txdmamap_pool_entry *dma; 1956 1957 if (sc->bge_flags & BGEF_TXRING_VALID) 1958 return 0; 1959 1960 sc->bge_txcnt = 0; 1961 sc->bge_tx_saved_considx = 0; 1962 1963 /* Initialize transmit producer index for host-memory send ring. */ 1964 sc->bge_tx_prodidx = 0; 1965 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1966 /* 5700 b2 errata */ 1967 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1968 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1969 1970 /* NIC-memory send ring not used; initialize to zero. */ 1971 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1972 /* 5700 b2 errata */ 1973 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1974 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1975 1976 /* Limit DMA segment size for some chips */ 1977 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) && 1978 (ifp->if_mtu <= ETHERMTU)) 1979 maxsegsz = 2048; 1980 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 1981 maxsegsz = 4096; 1982 else 1983 maxsegsz = ETHER_MAX_LEN_JUMBO; 1984 SLIST_INIT(&sc->txdma_list); 1985 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1986 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX, 1987 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT, 1988 &dmamap)) 1989 return ENOBUFS; 1990 if (dmamap == NULL) 1991 panic("dmamap NULL in bge_init_tx_ring"); 1992 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); 1993 if (dma == NULL) { 1994 aprint_error_dev(sc->bge_dev, 1995 "can't alloc txdmamap_pool_entry\n"); 1996 bus_dmamap_destroy(sc->bge_dmatag, dmamap); 1997 return ENOMEM; 1998 } 1999 dma->dmamap = dmamap; 2000 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 2001 } 2002 2003 sc->bge_flags |= BGEF_TXRING_VALID; 2004 2005 return 0; 2006 } 2007 2008 static void 2009 bge_setmulti(struct bge_softc *sc) 2010 { 2011 struct ethercom *ac = &sc->ethercom; 2012 struct ifnet *ifp = &ac->ec_if; 2013 struct ether_multi *enm; 2014 struct ether_multistep step; 2015 uint32_t hashes[4] = { 0, 0, 0, 0 }; 2016 uint32_t h; 2017 int i; 2018 2019 if (ifp->if_flags & IFF_PROMISC) 2020 goto allmulti; 2021 2022 /* Now program new ones. */ 2023 ETHER_FIRST_MULTI(step, ac, enm); 2024 while (enm != NULL) { 2025 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2026 /* 2027 * We must listen to a range of multicast addresses. 2028 * For now, just accept all multicasts, rather than 2029 * trying to set only those filter bits needed to match 2030 * the range. (At this time, the only use of address 2031 * ranges is for IP multicast routing, for which the 2032 * range is big enough to require all bits set.) 2033 */ 2034 goto allmulti; 2035 } 2036 2037 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2038 2039 /* Just want the 7 least-significant bits. */ 2040 h &= 0x7f; 2041 2042 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 2043 ETHER_NEXT_MULTI(step, enm); 2044 } 2045 2046 ifp->if_flags &= ~IFF_ALLMULTI; 2047 goto setit; 2048 2049 allmulti: 2050 ifp->if_flags |= IFF_ALLMULTI; 2051 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff; 2052 2053 setit: 2054 for (i = 0; i < 4; i++) 2055 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 2056 } 2057 2058 static void 2059 bge_sig_pre_reset(struct bge_softc *sc, int type) 2060 { 2061 2062 /* 2063 * Some chips don't like this so only do this if ASF is enabled 2064 */ 2065 if (sc->bge_asf_mode) 2066 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 2067 2068 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 2069 switch (type) { 2070 case BGE_RESET_START: 2071 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2072 BGE_FW_DRV_STATE_START); 2073 break; 2074 case BGE_RESET_SHUTDOWN: 2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2076 BGE_FW_DRV_STATE_UNLOAD); 2077 break; 2078 case BGE_RESET_SUSPEND: 2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2080 BGE_FW_DRV_STATE_SUSPEND); 2081 break; 2082 } 2083 } 2084 2085 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 2086 bge_ape_driver_state_change(sc, type); 2087 } 2088 2089 static void 2090 bge_sig_post_reset(struct bge_softc *sc, int type) 2091 { 2092 2093 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 2094 switch (type) { 2095 case BGE_RESET_START: 2096 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2097 BGE_FW_DRV_STATE_START_DONE); 2098 /* START DONE */ 2099 break; 2100 case BGE_RESET_SHUTDOWN: 2101 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2102 BGE_FW_DRV_STATE_UNLOAD_DONE); 2103 break; 2104 } 2105 } 2106 2107 if (type == BGE_RESET_SHUTDOWN) 2108 bge_ape_driver_state_change(sc, type); 2109 } 2110 2111 static void 2112 bge_sig_legacy(struct bge_softc *sc, int type) 2113 { 2114 2115 if (sc->bge_asf_mode) { 2116 switch (type) { 2117 case BGE_RESET_START: 2118 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2119 BGE_FW_DRV_STATE_START); 2120 break; 2121 case BGE_RESET_SHUTDOWN: 2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2123 BGE_FW_DRV_STATE_UNLOAD); 2124 break; 2125 } 2126 } 2127 } 2128 2129 static void 2130 bge_wait_for_event_ack(struct bge_softc *sc) 2131 { 2132 int i; 2133 2134 /* wait up to 2500usec */ 2135 for (i = 0; i < 250; i++) { 2136 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 2137 BGE_RX_CPU_DRV_EVENT)) 2138 break; 2139 DELAY(10); 2140 } 2141 } 2142 2143 static void 2144 bge_stop_fw(struct bge_softc *sc) 2145 { 2146 2147 if (sc->bge_asf_mode) { 2148 bge_wait_for_event_ack(sc); 2149 2150 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 2151 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 2152 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 2153 2154 bge_wait_for_event_ack(sc); 2155 } 2156 } 2157 2158 static int 2159 bge_poll_fw(struct bge_softc *sc) 2160 { 2161 uint32_t val; 2162 int i; 2163 2164 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2165 for (i = 0; i < BGE_TIMEOUT; i++) { 2166 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 2167 if (val & BGE_VCPU_STATUS_INIT_DONE) 2168 break; 2169 DELAY(100); 2170 } 2171 if (i >= BGE_TIMEOUT) { 2172 aprint_error_dev(sc->bge_dev, "reset timed out\n"); 2173 return -1; 2174 } 2175 } else { 2176 /* 2177 * Poll the value location we just wrote until 2178 * we see the 1's complement of the magic number. 2179 * This indicates that the firmware initialization 2180 * is complete. 2181 * XXX 1000ms for Flash and 10000ms for SEEPROM. 2182 */ 2183 for (i = 0; i < BGE_TIMEOUT; i++) { 2184 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 2185 if (val == ~BGE_SRAM_FW_MB_MAGIC) 2186 break; 2187 DELAY(10); 2188 } 2189 2190 if ((i >= BGE_TIMEOUT) 2191 && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) { 2192 aprint_error_dev(sc->bge_dev, 2193 "firmware handshake timed out, val = %x\n", val); 2194 return -1; 2195 } 2196 } 2197 2198 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2199 /* tg3 says we have to wait extra time */ 2200 delay(10 * 1000); 2201 } 2202 2203 return 0; 2204 } 2205 2206 int 2207 bge_phy_addr(struct bge_softc *sc) 2208 { 2209 struct pci_attach_args *pa = &(sc->bge_pa); 2210 int phy_addr = 1; 2211 2212 /* 2213 * PHY address mapping for various devices. 2214 * 2215 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2216 * ---------+-------+-------+-------+-------+ 2217 * BCM57XX | 1 | X | X | X | 2218 * BCM5704 | 1 | X | 1 | X | 2219 * BCM5717 | 1 | 8 | 2 | 9 | 2220 * BCM5719 | 1 | 8 | 2 | 9 | 2221 * BCM5720 | 1 | 8 | 2 | 9 | 2222 * 2223 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 2224 * ---------+-------+-------+-------+-------+ 2225 * BCM57XX | X | X | X | X | 2226 * BCM5704 | X | X | X | X | 2227 * BCM5717 | X | X | X | X | 2228 * BCM5719 | 3 | 10 | 4 | 11 | 2229 * BCM5720 | X | X | X | X | 2230 * 2231 * Other addresses may respond but they are not 2232 * IEEE compliant PHYs and should be ignored. 2233 */ 2234 switch (BGE_ASICREV(sc->bge_chipid)) { 2235 case BGE_ASICREV_BCM5717: 2236 case BGE_ASICREV_BCM5719: 2237 case BGE_ASICREV_BCM5720: 2238 phy_addr = pa->pa_function; 2239 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 2240 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) & 2241 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1; 2242 } else { 2243 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2244 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1; 2245 } 2246 } 2247 2248 return phy_addr; 2249 } 2250 2251 /* 2252 * Do endian, PCI and DMA initialization. Also check the on-board ROM 2253 * self-test results. 2254 */ 2255 static int 2256 bge_chipinit(struct bge_softc *sc) 2257 { 2258 uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg; 2259 int i; 2260 2261 /* Set endianness before we access any non-PCI registers. */ 2262 misc_ctl = BGE_INIT; 2263 if (sc->bge_flags & BGEF_TAGGED_STATUS) 2264 misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; 2265 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 2266 misc_ctl); 2267 2268 /* 2269 * Clear the MAC statistics block in the NIC's 2270 * internal memory. 2271 */ 2272 for (i = BGE_STATS_BLOCK; 2273 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 2274 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2275 2276 for (i = BGE_STATUS_BLOCK; 2277 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2279 2280 /* 5717 workaround from tg3 */ 2281 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2282 /* Save */ 2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2284 2285 /* Temporary modify MODE_CTL to control TLP */ 2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2287 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1); 2288 2289 /* Control TLP */ 2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2291 BGE_TLP_PHYCTL1); 2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1, 2293 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD); 2294 2295 /* Restore */ 2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2297 } 2298 2299 if (BGE_IS_57765_FAMILY(sc)) { 2300 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2301 /* Save */ 2302 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2303 2304 /* Temporary modify MODE_CTL to control TLP */ 2305 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2306 CSR_WRITE_4(sc, BGE_MODE_CTL, 2307 reg | BGE_MODECTL_PCIE_TLPADDR1); 2308 2309 /* Control TLP */ 2310 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2311 BGE_TLP_PHYCTL5); 2312 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5, 2313 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ); 2314 2315 /* Restore */ 2316 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2317 } 2318 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) { 2319 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL); 2320 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 2321 reg | BGE_CPMU_PADRNG_CTL_RDIV2); 2322 2323 /* Save */ 2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2325 2326 /* Temporary modify MODE_CTL to control TLP */ 2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2328 CSR_WRITE_4(sc, BGE_MODE_CTL, 2329 reg | BGE_MODECTL_PCIE_TLPADDR0); 2330 2331 /* Control TLP */ 2332 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2333 BGE_TLP_FTSMAX); 2334 reg &= ~BGE_TLP_FTSMAX_MSK; 2335 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX, 2336 reg | BGE_TLP_FTSMAX_VAL); 2337 2338 /* Restore */ 2339 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2340 } 2341 2342 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); 2343 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK; 2344 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; 2345 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); 2346 } 2347 2348 /* Set up the PCI DMA control register. */ 2349 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD; 2350 if (sc->bge_flags & BGEF_PCIE) { 2351 /* Read watermark not used, 128 bytes for write. */ 2352 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n", 2353 device_xname(sc->bge_dev))); 2354 if (sc->bge_mps >= 256) 2355 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2356 else 2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2358 } else if (sc->bge_flags & BGEF_PCIX) { 2359 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", 2360 device_xname(sc->bge_dev))); 2361 /* PCI-X bus */ 2362 if (BGE_IS_5714_FAMILY(sc)) { 2363 /* 256 bytes for read and write. */ 2364 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 2365 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 2366 2367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) 2368 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2369 else 2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 2371 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { 2372 /* 2373 * In the BCM5703, the DMA read watermark should 2374 * be set to less than or equal to the maximum 2375 * memory read byte count of the PCI-X command 2376 * register. 2377 */ 2378 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) | 2379 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2380 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2381 /* 1536 bytes for read, 384 bytes for write. */ 2382 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2383 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2384 } else { 2385 /* 384 bytes for read and write. */ 2386 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 2387 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 2388 (0x0F); 2389 } 2390 2391 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2392 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2393 uint32_t tmp; 2394 2395 /* Set ONEDMA_ATONCE for hardware workaround. */ 2396 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 2397 if (tmp == 6 || tmp == 7) 2398 dma_rw_ctl |= 2399 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2400 2401 /* Set PCI-X DMA write workaround. */ 2402 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 2403 } 2404 } else { 2405 /* Conventional PCI bus: 256 bytes for read and write. */ 2406 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", 2407 device_xname(sc->bge_dev))); 2408 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2409 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2410 2411 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && 2412 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) 2413 dma_rw_ctl |= 0x0F; 2414 } 2415 2416 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 2417 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) 2418 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 2419 BGE_PCIDMARWCTL_ASRT_ALL_BE; 2420 2421 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2422 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2423 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 2424 2425 if (BGE_IS_57765_PLUS(sc)) { 2426 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 2427 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 2428 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 2429 2430 /* 2431 * Enable HW workaround for controllers that misinterpret 2432 * a status tag update and leave interrupts permanently 2433 * disabled. 2434 */ 2435 if (!BGE_IS_57765_FAMILY(sc) && 2436 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717) 2437 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 2438 } 2439 2440 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, 2441 dma_rw_ctl); 2442 2443 /* 2444 * Set up general mode register. 2445 */ 2446 mode_ctl = BGE_DMA_SWAP_OPTIONS; 2447 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 2448 /* Retain Host-2-BMC settings written by APE firmware. */ 2449 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 2450 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 2451 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 2452 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 2453 } 2454 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 2455 BGE_MODECTL_TX_NO_PHDR_CSUM; 2456 2457 /* 2458 * BCM5701 B5 have a bug causing data corruption when using 2459 * 64-bit DMA reads, which can be terminated early and then 2460 * completed later as 32-bit accesses, in combination with 2461 * certain bridges. 2462 */ 2463 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 2464 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 2465 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 2466 2467 /* 2468 * Tell the firmware the driver is running 2469 */ 2470 if (sc->bge_asf_mode & ASF_STACKUP) 2471 mode_ctl |= BGE_MODECTL_STACKUP; 2472 2473 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2474 2475 /* 2476 * Disable memory write invalidate. Apparently it is not supported 2477 * properly by these devices. 2478 */ 2479 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, 2480 PCI_COMMAND_INVALIDATE_ENABLE); 2481 2482 #ifdef __brokenalpha__ 2483 /* 2484 * Must insure that we do not cross an 8K (bytes) boundary 2485 * for DMA reads. Our highest limit is 1K bytes. This is a 2486 * restriction on some ALPHA platforms with early revision 2487 * 21174 PCI chipsets, such as the AlphaPC 164lx 2488 */ 2489 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); 2490 #endif 2491 2492 /* Set the timer prescaler (always 66MHz) */ 2493 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 2494 2495 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2496 DELAY(40); /* XXX */ 2497 2498 /* Put PHY into ready state */ 2499 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 2500 DELAY(40); 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int 2507 bge_blockinit(struct bge_softc *sc) 2508 { 2509 volatile struct bge_rcb *rcb; 2510 bus_size_t rcb_addr; 2511 struct ifnet *ifp = &sc->ethercom.ec_if; 2512 bge_hostaddr taddr; 2513 uint32_t dmactl, mimode, val; 2514 int i, limit; 2515 2516 /* 2517 * Initialize the memory window pointer register so that 2518 * we can access the first 32K of internal NIC RAM. This will 2519 * allow us to set up the TX send ring RCBs and the RX return 2520 * ring RCBs, plus other things which live in NIC memory. 2521 */ 2522 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 2523 2524 if (!BGE_IS_5705_PLUS(sc)) { 2525 /* 57XX step 33 */ 2526 /* Configure mbuf memory pool */ 2527 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 2528 BGE_BUFFPOOL_1); 2529 2530 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2531 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 2532 else 2533 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 2534 2535 /* 57XX step 34 */ 2536 /* Configure DMA resource pool */ 2537 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 2538 BGE_DMA_DESCRIPTORS); 2539 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 2540 } 2541 2542 /* 5718 step 11, 57XX step 35 */ 2543 /* 2544 * Configure mbuf pool watermarks. New broadcom docs strongly 2545 * recommend these. 2546 */ 2547 if (BGE_IS_5717_PLUS(sc)) { 2548 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 2551 } else if (BGE_IS_5705_PLUS(sc)) { 2552 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2553 2554 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 2556 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 2557 } else { 2558 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 2559 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2560 } 2561 } else { 2562 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 2563 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 2564 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2565 } 2566 2567 /* 57XX step 36 */ 2568 /* Configure DMA resource watermarks */ 2569 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 2570 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 2571 2572 /* 5718 step 13, 57XX step 38 */ 2573 /* Enable buffer manager */ 2574 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN; 2575 /* 2576 * Change the arbitration algorithm of TXMBUF read request to 2577 * round-robin instead of priority based for BCM5719. When 2578 * TXFIFO is almost empty, RDMA will hold its request until 2579 * TXFIFO is not almost empty. 2580 */ 2581 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 2582 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 2583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2584 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2585 sc->bge_chipid == BGE_CHIPID_BCM5720_A0) 2586 val |= BGE_BMANMODE_LOMBUF_ATTN; 2587 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 2588 2589 /* 57XX step 39 */ 2590 /* Poll for buffer manager start indication */ 2591 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2592 DELAY(10); 2593 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2594 break; 2595 } 2596 2597 if (i == BGE_TIMEOUT * 2) { 2598 aprint_error_dev(sc->bge_dev, 2599 "buffer manager failed to start\n"); 2600 return ENXIO; 2601 } 2602 2603 /* 57XX step 40 */ 2604 /* Enable flow-through queues */ 2605 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2606 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2607 2608 /* Wait until queue initialization is complete */ 2609 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2610 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2611 break; 2612 DELAY(10); 2613 } 2614 2615 if (i == BGE_TIMEOUT * 2) { 2616 aprint_error_dev(sc->bge_dev, 2617 "flow-through queue init failed\n"); 2618 return ENXIO; 2619 } 2620 2621 /* 2622 * Summary of rings supported by the controller: 2623 * 2624 * Standard Receive Producer Ring 2625 * - This ring is used to feed receive buffers for "standard" 2626 * sized frames (typically 1536 bytes) to the controller. 2627 * 2628 * Jumbo Receive Producer Ring 2629 * - This ring is used to feed receive buffers for jumbo sized 2630 * frames (i.e. anything bigger than the "standard" frames) 2631 * to the controller. 2632 * 2633 * Mini Receive Producer Ring 2634 * - This ring is used to feed receive buffers for "mini" 2635 * sized frames to the controller. 2636 * - This feature required external memory for the controller 2637 * but was never used in a production system. Should always 2638 * be disabled. 2639 * 2640 * Receive Return Ring 2641 * - After the controller has placed an incoming frame into a 2642 * receive buffer that buffer is moved into a receive return 2643 * ring. The driver is then responsible to passing the 2644 * buffer up to the stack. Many versions of the controller 2645 * support multiple RR rings. 2646 * 2647 * Send Ring 2648 * - This ring is used for outgoing frames. Many versions of 2649 * the controller support multiple send rings. 2650 */ 2651 2652 /* 5718 step 15, 57XX step 41 */ 2653 /* Initialize the standard RX ring control block */ 2654 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 2655 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); 2656 /* 5718 step 16 */ 2657 if (BGE_IS_57765_PLUS(sc)) { 2658 /* 2659 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2660 * Bits 15-2 : Maximum RX frame size 2661 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2662 * Bit 0 : Reserved 2663 */ 2664 rcb->bge_maxlen_flags = 2665 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2666 } else if (BGE_IS_5705_PLUS(sc)) { 2667 /* 2668 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2669 * Bits 15-2 : Reserved (should be 0) 2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2671 * Bit 0 : Reserved 2672 */ 2673 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2674 } else { 2675 /* 2676 * Ring size is always XXX entries 2677 * Bits 31-16: Maximum RX frame size 2678 * Bits 15-2 : Reserved (should be 0) 2679 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2680 * Bit 0 : Reserved 2681 */ 2682 rcb->bge_maxlen_flags = 2683 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2684 } 2685 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2686 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2687 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2688 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2689 else 2690 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2691 /* Write the standard receive producer ring control block. */ 2692 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2693 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2694 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2695 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2696 2697 /* Reset the standard receive producer ring producer index. */ 2698 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2699 2700 /* 57XX step 42 */ 2701 /* 2702 * Initialize the jumbo RX ring control block 2703 * We set the 'ring disabled' bit in the flags 2704 * field until we're actually ready to start 2705 * using this ring (i.e. once we set the MTU 2706 * high enough to require it). 2707 */ 2708 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2709 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 2710 BGE_HOSTADDR(rcb->bge_hostaddr, 2711 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); 2712 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2713 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2714 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2715 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2716 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2717 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2718 else 2719 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2720 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2721 rcb->bge_hostaddr.bge_addr_hi); 2722 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2723 rcb->bge_hostaddr.bge_addr_lo); 2724 /* Program the jumbo receive producer ring RCB parameters. */ 2725 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2726 rcb->bge_maxlen_flags); 2727 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2728 /* Reset the jumbo receive producer ring producer index. */ 2729 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2730 } 2731 2732 /* 57XX step 43 */ 2733 /* Disable the mini receive producer ring RCB. */ 2734 if (BGE_IS_5700_FAMILY(sc)) { 2735 /* Set up dummy disabled mini ring RCB */ 2736 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 2737 rcb->bge_maxlen_flags = 2738 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2739 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2740 rcb->bge_maxlen_flags); 2741 /* Reset the mini receive producer ring producer index. */ 2742 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2743 2744 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 2745 offsetof(struct bge_ring_data, bge_info), 2746 sizeof (struct bge_gib), 2747 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2748 } 2749 2750 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2751 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2752 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2753 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2754 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2755 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2756 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2757 } 2758 /* 5718 step 14, 57XX step 44 */ 2759 /* 2760 * The BD ring replenish thresholds control how often the 2761 * hardware fetches new BD's from the producer rings in host 2762 * memory. Setting the value too low on a busy system can 2763 * starve the hardware and recue the throughpout. 2764 * 2765 * Set the BD ring replenish thresholds. The recommended 2766 * values are 1/8th the number of descriptors allocated to 2767 * each ring, but since we try to avoid filling the entire 2768 * ring we set these to the minimal value of 8. This needs to 2769 * be done on several of the supported chip revisions anyway, 2770 * to work around HW bugs. 2771 */ 2772 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8); 2773 if (BGE_IS_JUMBO_CAPABLE(sc)) 2774 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8); 2775 2776 /* 5718 step 18 */ 2777 if (BGE_IS_5717_PLUS(sc)) { 2778 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4); 2779 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4); 2780 } 2781 2782 /* 57XX step 45 */ 2783 /* 2784 * Disable all send rings by setting the 'ring disabled' bit 2785 * in the flags field of all the TX send ring control blocks, 2786 * located in NIC memory. 2787 */ 2788 if (BGE_IS_5700_FAMILY(sc)) { 2789 /* 5700 to 5704 had 16 send rings. */ 2790 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2791 } else if (BGE_IS_5717_PLUS(sc)) { 2792 limit = BGE_TX_RINGS_5717_MAX; 2793 } else if (BGE_IS_57765_FAMILY(sc)) { 2794 limit = BGE_TX_RINGS_57765_MAX; 2795 } else 2796 limit = 1; 2797 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2798 for (i = 0; i < limit; i++) { 2799 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2800 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2801 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2802 rcb_addr += sizeof(struct bge_rcb); 2803 } 2804 2805 /* 57XX step 46 and 47 */ 2806 /* Configure send ring RCB 0 (we use only the first ring) */ 2807 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2808 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); 2809 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2810 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2811 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2812 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2813 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2814 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717); 2815 else 2816 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 2817 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2818 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2819 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2820 2821 /* 57XX step 48 */ 2822 /* 2823 * Disable all receive return rings by setting the 2824 * 'ring diabled' bit in the flags field of all the receive 2825 * return ring control blocks, located in NIC memory. 2826 */ 2827 if (BGE_IS_5717_PLUS(sc)) { 2828 /* Should be 17, use 16 until we get an SRAM map. */ 2829 limit = 16; 2830 } else if (BGE_IS_5700_FAMILY(sc)) 2831 limit = BGE_RX_RINGS_MAX; 2832 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 2833 BGE_IS_57765_FAMILY(sc)) 2834 limit = 4; 2835 else 2836 limit = 1; 2837 /* Disable all receive return rings */ 2838 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2839 for (i = 0; i < limit; i++) { 2840 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); 2841 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); 2842 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2843 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 2844 BGE_RCB_FLAG_RING_DISABLED)); 2845 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2846 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2847 (i * (sizeof(uint64_t))), 0); 2848 rcb_addr += sizeof(struct bge_rcb); 2849 } 2850 2851 /* 57XX step 49 */ 2852 /* 2853 * Set up receive return ring 0. Note that the NIC address 2854 * for RX return rings is 0x0. The return rings live entirely 2855 * within the host, so the nicaddr field in the RCB isn't used. 2856 */ 2857 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2858 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); 2859 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2860 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2861 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); 2862 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2863 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2864 2865 /* 5718 step 24, 57XX step 53 */ 2866 /* Set random backoff seed for TX */ 2867 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2868 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] + 2869 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] + 2870 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) & 2871 BGE_TX_BACKOFF_SEED_MASK); 2872 2873 /* 5718 step 26, 57XX step 55 */ 2874 /* Set inter-packet gap */ 2875 val = 0x2620; 2876 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2877 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2878 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2879 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2880 2881 /* 5718 step 27, 57XX step 56 */ 2882 /* 2883 * Specify which ring to use for packets that don't match 2884 * any RX rules. 2885 */ 2886 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2887 2888 /* 5718 step 28, 57XX step 57 */ 2889 /* 2890 * Configure number of RX lists. One interrupt distribution 2891 * list, sixteen active lists, one bad frames class. 2892 */ 2893 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2894 2895 /* 5718 step 29, 57XX step 58 */ 2896 /* Inialize RX list placement stats mask. */ 2897 if (BGE_IS_575X_PLUS(sc)) { 2898 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK); 2899 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX; 2900 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val); 2901 } else 2902 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2903 2904 /* 5718 step 30, 57XX step 59 */ 2905 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2906 2907 /* 5718 step 33, 57XX step 62 */ 2908 /* Disable host coalescing until we get it set up */ 2909 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2910 2911 /* 5718 step 34, 57XX step 63 */ 2912 /* Poll to make sure it's shut down. */ 2913 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2914 DELAY(10); 2915 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2916 break; 2917 } 2918 2919 if (i == BGE_TIMEOUT * 2) { 2920 aprint_error_dev(sc->bge_dev, 2921 "host coalescing engine failed to idle\n"); 2922 return ENXIO; 2923 } 2924 2925 /* 5718 step 35, 36, 37 */ 2926 /* Set up host coalescing defaults */ 2927 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2928 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2929 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2930 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2931 if (!(BGE_IS_5705_PLUS(sc))) { 2932 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2933 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2934 } 2935 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 2936 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 2937 2938 /* Set up address of statistics block */ 2939 if (BGE_IS_5700_FAMILY(sc)) { 2940 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); 2941 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2942 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2943 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi); 2944 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo); 2945 } 2946 2947 /* 5718 step 38 */ 2948 /* Set up address of status block */ 2949 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); 2950 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2951 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); 2952 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); 2953 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 2954 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 2955 2956 /* Set up status block size. */ 2957 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 && 2958 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2959 val = BGE_STATBLKSZ_FULL; 2960 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ); 2961 } else { 2962 val = BGE_STATBLKSZ_32BYTE; 2963 bzero(&sc->bge_rdata->bge_status_block, 32); 2964 } 2965 2966 /* 5718 step 39, 57XX step 73 */ 2967 /* Turn on host coalescing state machine */ 2968 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2969 2970 /* 5718 step 40, 57XX step 74 */ 2971 /* Turn on RX BD completion state machine and enable attentions */ 2972 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2973 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2974 2975 /* 5718 step 41, 57XX step 75 */ 2976 /* Turn on RX list placement state machine */ 2977 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2978 2979 /* 57XX step 76 */ 2980 /* Turn on RX list selector state machine. */ 2981 if (!(BGE_IS_5705_PLUS(sc))) 2982 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2983 2984 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2985 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2986 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2987 BGE_MACMODE_FRMHDR_DMA_ENB; 2988 2989 if (sc->bge_flags & BGEF_FIBER_TBI) 2990 val |= BGE_PORTMODE_TBI; 2991 else if (sc->bge_flags & BGEF_FIBER_MII) 2992 val |= BGE_PORTMODE_GMII; 2993 else 2994 val |= BGE_PORTMODE_MII; 2995 2996 /* 5718 step 42 and 43, 57XX step 77 and 78 */ 2997 /* Allow APE to send/receive frames. */ 2998 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2999 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 3000 3001 /* Turn on DMA, clear stats */ 3002 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 3003 /* 5718 step 44 */ 3004 DELAY(40); 3005 3006 /* 5718 step 45, 57XX step 79 */ 3007 /* Set misc. local control, enable interrupts on attentions */ 3008 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 3009 if (BGE_IS_5717_PLUS(sc)) { 3010 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */ 3011 /* 5718 step 46 */ 3012 DELAY(100); 3013 } 3014 3015 /* 57XX step 81 */ 3016 /* Turn on DMA completion state machine */ 3017 if (!(BGE_IS_5705_PLUS(sc))) 3018 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3019 3020 /* 5718 step 47, 57XX step 82 */ 3021 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 3022 3023 /* 5718 step 48 */ 3024 /* Enable host coalescing bug fix. */ 3025 if (BGE_IS_5755_PLUS(sc)) 3026 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 3027 3028 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) 3029 val |= BGE_WDMAMODE_BURST_ALL_DATA; 3030 3031 /* Turn on write DMA state machine */ 3032 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val); 3033 /* 5718 step 49 */ 3034 DELAY(40); 3035 3036 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 3037 3038 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717) 3039 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 3040 3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3042 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3043 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 3044 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 3045 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 3046 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 3047 3048 if (sc->bge_flags & BGEF_PCIE) 3049 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 3050 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) { 3051 if (ifp->if_mtu <= ETHERMTU) 3052 val |= BGE_RDMAMODE_JMB_2K_MMRR; 3053 } 3054 if (sc->bge_flags & BGEF_TSO) 3055 val |= BGE_RDMAMODE_TSO4_ENABLE; 3056 3057 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 3058 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 3059 BGE_RDMAMODE_H2BNC_VLAN_DET; 3060 /* 3061 * Allow multiple outstanding read requests from 3062 * non-LSO read DMA engine. 3063 */ 3064 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 3065 } 3066 3067 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3068 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3069 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3070 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 || 3071 BGE_IS_57765_PLUS(sc)) { 3072 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 3073 /* 3074 * Adjust tx margin to prevent TX data corruption and 3075 * fix internal FIFO overflow. 3076 */ 3077 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3078 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 3079 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 3080 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 3081 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 3082 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 3083 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 3084 } 3085 /* 3086 * Enable fix for read DMA FIFO overruns. 3087 * The fix is to limit the number of RX BDs 3088 * the hardware would fetch at a fime. 3089 */ 3090 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 3091 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 3092 } 3093 3094 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) { 3095 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 3096 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 3097 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 3098 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 3099 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 3100 /* 3101 * Allow 4KB burst length reads for non-LSO frames. 3102 * Enable 512B burst length reads for buffer descriptors. 3103 */ 3104 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 3105 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 3106 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 3107 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 3108 } 3109 3110 /* Turn on read DMA state machine */ 3111 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val); 3112 /* 5718 step 52 */ 3113 delay(40); 3114 3115 /* 5718 step 56, 57XX step 84 */ 3116 /* Turn on RX data completion state machine */ 3117 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3118 3119 /* Turn on RX data and RX BD initiator state machine */ 3120 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 3121 3122 /* 57XX step 85 */ 3123 /* Turn on Mbuf cluster free state machine */ 3124 if (!BGE_IS_5705_PLUS(sc)) 3125 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3126 3127 /* 5718 step 57, 57XX step 86 */ 3128 /* Turn on send data completion state machine */ 3129 val = BGE_SDCMODE_ENABLE; 3130 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 3131 val |= BGE_SDCMODE_CDELAY; 3132 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 3133 3134 /* 5718 step 58 */ 3135 /* Turn on send BD completion state machine */ 3136 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3137 3138 /* 57XX step 88 */ 3139 /* Turn on RX BD initiator state machine */ 3140 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3141 3142 /* 5718 step 60, 57XX step 90 */ 3143 /* Turn on send data initiator state machine */ 3144 if (sc->bge_flags & BGEF_TSO) { 3145 /* XXX: magic value from Linux driver */ 3146 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 3147 BGE_SDIMODE_HW_LSO_PRE_DMA); 3148 } else 3149 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3150 3151 /* 5718 step 61, 57XX step 91 */ 3152 /* Turn on send BD initiator state machine */ 3153 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3154 3155 /* 5718 step 62, 57XX step 92 */ 3156 /* Turn on send BD selector state machine */ 3157 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3158 3159 /* 5718 step 31, 57XX step 60 */ 3160 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 3161 /* 5718 step 32, 57XX step 61 */ 3162 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 3163 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 3164 3165 /* ack/clear link change events */ 3166 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3167 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3168 BGE_MACSTAT_LINK_CHANGED); 3169 CSR_WRITE_4(sc, BGE_MI_STS, 0); 3170 3171 /* 3172 * Enable attention when the link has changed state for 3173 * devices that use auto polling. 3174 */ 3175 if (sc->bge_flags & BGEF_FIBER_TBI) { 3176 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 3177 } else { 3178 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) 3179 mimode = BGE_MIMODE_500KHZ_CONST; 3180 else 3181 mimode = BGE_MIMODE_BASE; 3182 /* 5718 step 68. 5718 step 69 (optionally). */ 3183 if (BGE_IS_5700_FAMILY(sc) || 3184 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) { 3185 mimode |= BGE_MIMODE_AUTOPOLL; 3186 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 3187 } 3188 mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr); 3189 CSR_WRITE_4(sc, BGE_MI_MODE, mimode); 3190 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) 3191 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 3192 BGE_EVTENB_MI_INTERRUPT); 3193 } 3194 3195 /* 3196 * Clear any pending link state attention. 3197 * Otherwise some link state change events may be lost until attention 3198 * is cleared by bge_intr() -> bge_link_upd() sequence. 3199 * It's not necessary on newer BCM chips - perhaps enabling link 3200 * state change attentions implies clearing pending attention. 3201 */ 3202 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3203 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3204 BGE_MACSTAT_LINK_CHANGED); 3205 3206 /* Enable link state change attentions. */ 3207 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 3208 3209 return 0; 3210 } 3211 3212 static const struct bge_revision * 3213 bge_lookup_rev(uint32_t chipid) 3214 { 3215 const struct bge_revision *br; 3216 3217 for (br = bge_revisions; br->br_name != NULL; br++) { 3218 if (br->br_chipid == chipid) 3219 return br; 3220 } 3221 3222 for (br = bge_majorrevs; br->br_name != NULL; br++) { 3223 if (br->br_chipid == BGE_ASICREV(chipid)) 3224 return br; 3225 } 3226 3227 return NULL; 3228 } 3229 3230 static const struct bge_product * 3231 bge_lookup(const struct pci_attach_args *pa) 3232 { 3233 const struct bge_product *bp; 3234 3235 for (bp = bge_products; bp->bp_name != NULL; bp++) { 3236 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor && 3237 PCI_PRODUCT(pa->pa_id) == bp->bp_product) 3238 return bp; 3239 } 3240 3241 return NULL; 3242 } 3243 3244 static uint32_t 3245 bge_chipid(const struct pci_attach_args *pa) 3246 { 3247 uint32_t id; 3248 3249 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) 3250 >> BGE_PCIMISCCTL_ASICREV_SHIFT; 3251 3252 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 3253 switch (PCI_PRODUCT(pa->pa_id)) { 3254 case PCI_PRODUCT_BROADCOM_BCM5717: 3255 case PCI_PRODUCT_BROADCOM_BCM5718: 3256 case PCI_PRODUCT_BROADCOM_BCM5719: 3257 case PCI_PRODUCT_BROADCOM_BCM5720: 3258 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3259 BGE_PCI_GEN2_PRODID_ASICREV); 3260 break; 3261 case PCI_PRODUCT_BROADCOM_BCM57761: 3262 case PCI_PRODUCT_BROADCOM_BCM57762: 3263 case PCI_PRODUCT_BROADCOM_BCM57765: 3264 case PCI_PRODUCT_BROADCOM_BCM57766: 3265 case PCI_PRODUCT_BROADCOM_BCM57781: 3266 case PCI_PRODUCT_BROADCOM_BCM57785: 3267 case PCI_PRODUCT_BROADCOM_BCM57791: 3268 case PCI_PRODUCT_BROADCOM_BCM57795: 3269 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3270 BGE_PCI_GEN15_PRODID_ASICREV); 3271 break; 3272 default: 3273 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3274 BGE_PCI_PRODID_ASICREV); 3275 break; 3276 } 3277 } 3278 3279 return id; 3280 } 3281 3282 /* 3283 * Return true if MSI can be used with this device. 3284 */ 3285 static int 3286 bge_can_use_msi(struct bge_softc *sc) 3287 { 3288 int can_use_msi = 0; 3289 3290 switch (BGE_ASICREV(sc->bge_chipid)) { 3291 case BGE_ASICREV_BCM5714_A0: 3292 case BGE_ASICREV_BCM5714: 3293 /* 3294 * Apparently, MSI doesn't work when these chips are 3295 * configured in single-port mode. 3296 */ 3297 break; 3298 case BGE_ASICREV_BCM5750: 3299 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX && 3300 BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX) 3301 can_use_msi = 1; 3302 break; 3303 default: 3304 if (BGE_IS_575X_PLUS(sc)) 3305 can_use_msi = 1; 3306 } 3307 return (can_use_msi); 3308 } 3309 3310 /* 3311 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 3312 * against our list and return its name if we find a match. Note 3313 * that since the Broadcom controller contains VPD support, we 3314 * can get the device name string from the controller itself instead 3315 * of the compiled-in string. This is a little slow, but it guarantees 3316 * we'll always announce the right product name. 3317 */ 3318 static int 3319 bge_probe(device_t parent, cfdata_t match, void *aux) 3320 { 3321 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 3322 3323 if (bge_lookup(pa) != NULL) 3324 return 1; 3325 3326 return 0; 3327 } 3328 3329 static void 3330 bge_attach(device_t parent, device_t self, void *aux) 3331 { 3332 struct bge_softc *sc = device_private(self); 3333 struct pci_attach_args *pa = aux; 3334 prop_dictionary_t dict; 3335 const struct bge_product *bp; 3336 const struct bge_revision *br; 3337 pci_chipset_tag_t pc; 3338 int counts[PCI_INTR_TYPE_SIZE]; 3339 pci_intr_type_t intr_type, max_type; 3340 const char *intrstr = NULL; 3341 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5; 3342 uint32_t command; 3343 struct ifnet *ifp; 3344 uint32_t misccfg, mimode; 3345 void * kva; 3346 u_char eaddr[ETHER_ADDR_LEN]; 3347 pcireg_t memtype, subid, reg; 3348 bus_addr_t memaddr; 3349 uint32_t pm_ctl; 3350 bool no_seeprom; 3351 int capmask; 3352 int mii_flags; 3353 int map_flags; 3354 char intrbuf[PCI_INTRSTR_LEN]; 3355 3356 bp = bge_lookup(pa); 3357 KASSERT(bp != NULL); 3358 3359 sc->sc_pc = pa->pa_pc; 3360 sc->sc_pcitag = pa->pa_tag; 3361 sc->bge_dev = self; 3362 3363 sc->bge_pa = *pa; 3364 pc = sc->sc_pc; 3365 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG); 3366 3367 aprint_naive(": Ethernet controller\n"); 3368 aprint_normal(": %s\n", bp->bp_name); 3369 3370 /* 3371 * Map control/status registers. 3372 */ 3373 DPRINTFN(5, ("Map control/status regs\n")); 3374 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3375 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; 3376 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command); 3377 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3378 3379 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 3380 aprint_error_dev(sc->bge_dev, 3381 "failed to enable memory mapping!\n"); 3382 return; 3383 } 3384 3385 DPRINTFN(5, ("pci_mem_find\n")); 3386 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0); 3387 switch (memtype) { 3388 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 3389 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 3390 #if 0 3391 if (pci_mapreg_map(pa, BGE_PCI_BAR0, 3392 memtype, 0, &sc->bge_btag, &sc->bge_bhandle, 3393 &memaddr, &sc->bge_bsize) == 0) 3394 break; 3395 #else 3396 /* 3397 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based 3398 * system get NMI on boot (PR#48451). This problem might not be 3399 * the driver's bug but our PCI common part's bug. Until we 3400 * find a real reason, we ignore the prefetchable bit. 3401 */ 3402 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0, 3403 memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) { 3404 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; 3405 if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize, 3406 map_flags, &sc->bge_bhandle) == 0) { 3407 sc->bge_btag = pa->pa_memt; 3408 break; 3409 } 3410 } 3411 #endif 3412 default: 3413 aprint_error_dev(sc->bge_dev, "can't find mem space\n"); 3414 return; 3415 } 3416 3417 /* Save various chip information. */ 3418 sc->bge_chipid = bge_chipid(pa); 3419 sc->bge_phy_addr = bge_phy_addr(sc); 3420 3421 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, 3422 &sc->bge_pciecap, NULL) != 0) 3423 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) { 3424 /* PCIe */ 3425 sc->bge_flags |= BGEF_PCIE; 3426 /* Extract supported maximum payload size. */ 3427 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 3428 sc->bge_pciecap + PCIE_DCAP); 3429 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD); 3430 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 3431 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 3432 sc->bge_expmrq = 2048; 3433 else 3434 sc->bge_expmrq = 4096; 3435 bge_set_max_readrq(sc); 3436 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) & 3437 BGE_PCISTATE_PCI_BUSMODE) == 0) { 3438 /* PCI-X */ 3439 sc->bge_flags |= BGEF_PCIX; 3440 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, 3441 &sc->bge_pcixcap, NULL) == 0) 3442 aprint_error_dev(sc->bge_dev, 3443 "unable to find PCIX capability\n"); 3444 } 3445 3446 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) { 3447 /* 3448 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) 3449 * can clobber the chip's PCI config-space power control 3450 * registers, leaving the card in D3 powersave state. We do 3451 * not have memory-mapped registers in this state, so force 3452 * device into D0 state before starting initialization. 3453 */ 3454 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD); 3455 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3); 3456 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ 3457 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl); 3458 DELAY(1000); /* 27 usec is allegedly sufficent */ 3459 } 3460 3461 /* Save chipset family. */ 3462 switch (BGE_ASICREV(sc->bge_chipid)) { 3463 case BGE_ASICREV_BCM5717: 3464 case BGE_ASICREV_BCM5719: 3465 case BGE_ASICREV_BCM5720: 3466 sc->bge_flags |= BGEF_5717_PLUS; 3467 /* FALLTHROUGH */ 3468 case BGE_ASICREV_BCM57765: 3469 case BGE_ASICREV_BCM57766: 3470 if (!BGE_IS_5717_PLUS(sc)) 3471 sc->bge_flags |= BGEF_57765_FAMILY; 3472 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS | 3473 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE; 3474 /* Jumbo frame on BCM5719 A0 does not work. */ 3475 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && 3476 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) 3477 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE; 3478 break; 3479 case BGE_ASICREV_BCM5755: 3480 case BGE_ASICREV_BCM5761: 3481 case BGE_ASICREV_BCM5784: 3482 case BGE_ASICREV_BCM5785: 3483 case BGE_ASICREV_BCM5787: 3484 case BGE_ASICREV_BCM57780: 3485 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS; 3486 break; 3487 case BGE_ASICREV_BCM5700: 3488 case BGE_ASICREV_BCM5701: 3489 case BGE_ASICREV_BCM5703: 3490 case BGE_ASICREV_BCM5704: 3491 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE; 3492 break; 3493 case BGE_ASICREV_BCM5714_A0: 3494 case BGE_ASICREV_BCM5780: 3495 case BGE_ASICREV_BCM5714: 3496 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE; 3497 /* FALLTHROUGH */ 3498 case BGE_ASICREV_BCM5750: 3499 case BGE_ASICREV_BCM5752: 3500 case BGE_ASICREV_BCM5906: 3501 sc->bge_flags |= BGEF_575X_PLUS; 3502 /* FALLTHROUGH */ 3503 case BGE_ASICREV_BCM5705: 3504 sc->bge_flags |= BGEF_5705_PLUS; 3505 break; 3506 } 3507 3508 /* Identify chips with APE processor. */ 3509 switch (BGE_ASICREV(sc->bge_chipid)) { 3510 case BGE_ASICREV_BCM5717: 3511 case BGE_ASICREV_BCM5719: 3512 case BGE_ASICREV_BCM5720: 3513 case BGE_ASICREV_BCM5761: 3514 sc->bge_flags |= BGEF_APE; 3515 break; 3516 } 3517 3518 /* 3519 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3520 * not actually a MAC controller bug but an issue with the embedded 3521 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3522 */ 3523 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0)) 3524 sc->bge_flags |= BGEF_40BIT_BUG; 3525 3526 /* Chips with APE need BAR2 access for APE registers/memory. */ 3527 if ((sc->bge_flags & BGEF_APE) != 0) { 3528 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2); 3529 #if 0 3530 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0, 3531 &sc->bge_apetag, &sc->bge_apehandle, NULL, 3532 &sc->bge_apesize)) { 3533 aprint_error_dev(sc->bge_dev, 3534 "couldn't map BAR2 memory\n"); 3535 return; 3536 } 3537 #else 3538 /* 3539 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based 3540 * system get NMI on boot (PR#48451). This problem might not be 3541 * the driver's bug but our PCI common part's bug. Until we 3542 * find a real reason, we ignore the prefetchable bit. 3543 */ 3544 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2, 3545 memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) { 3546 aprint_error_dev(sc->bge_dev, 3547 "couldn't map BAR2 memory\n"); 3548 return; 3549 } 3550 3551 map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE; 3552 if (bus_space_map(pa->pa_memt, memaddr, 3553 sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) { 3554 aprint_error_dev(sc->bge_dev, 3555 "couldn't map BAR2 memory\n"); 3556 return; 3557 } 3558 sc->bge_apetag = pa->pa_memt; 3559 #endif 3560 3561 /* Enable APE register/memory access by host driver. */ 3562 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); 3563 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3564 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3565 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3566 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg); 3567 3568 bge_ape_lock_init(sc); 3569 bge_ape_read_fw_ver(sc); 3570 } 3571 3572 /* Identify the chips that use an CPMU. */ 3573 if (BGE_IS_5717_PLUS(sc) || 3574 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3575 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3576 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3577 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 3578 sc->bge_flags |= BGEF_CPMU_PRESENT; 3579 3580 /* Set MI_MODE */ 3581 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr); 3582 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) 3583 mimode |= BGE_MIMODE_500KHZ_CONST; 3584 else 3585 mimode |= BGE_MIMODE_BASE; 3586 CSR_WRITE_4(sc, BGE_MI_MODE, mimode); 3587 3588 /* 3589 * When using the BCM5701 in PCI-X mode, data corruption has 3590 * been observed in the first few bytes of some received packets. 3591 * Aligning the packet buffer in memory eliminates the corruption. 3592 * Unfortunately, this misaligns the packet payloads. On platforms 3593 * which do not support unaligned accesses, we will realign the 3594 * payloads by copying the received packets. 3595 */ 3596 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 3597 sc->bge_flags & BGEF_PCIX) 3598 sc->bge_flags |= BGEF_RX_ALIGNBUG; 3599 3600 if (BGE_IS_5700_FAMILY(sc)) 3601 sc->bge_flags |= BGEF_JUMBO_CAPABLE; 3602 3603 misccfg = CSR_READ_4(sc, BGE_MISC_CFG); 3604 misccfg &= BGE_MISCCFG_BOARD_ID_MASK; 3605 3606 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3607 (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3608 misccfg == BGE_MISCCFG_BOARD_ID_5788M)) 3609 sc->bge_flags |= BGEF_IS_5788; 3610 3611 /* 3612 * Some controllers seem to require a special firmware to use 3613 * TSO. But the firmware is not available to FreeBSD and Linux 3614 * claims that the TSO performed by the firmware is slower than 3615 * hardware based TSO. Moreover the firmware based TSO has one 3616 * known bug which can't handle TSO if ethernet header + IP/TCP 3617 * header is greater than 80 bytes. The workaround for the TSO 3618 * bug exist but it seems it's too expensive than not using 3619 * TSO at all. Some hardwares also have the TSO bug so limit 3620 * the TSO to the controllers that are not affected TSO issues 3621 * (e.g. 5755 or higher). 3622 */ 3623 if (BGE_IS_5755_PLUS(sc)) { 3624 /* 3625 * BCM5754 and BCM5787 shares the same ASIC id so 3626 * explicit device id check is required. 3627 */ 3628 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) && 3629 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M)) 3630 sc->bge_flags |= BGEF_TSO; 3631 } 3632 3633 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */ 3634 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && 3635 (misccfg == 0x4000 || misccfg == 0x8000)) || 3636 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3637 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3638 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || 3639 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || 3640 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || 3641 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3642 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || 3643 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || 3644 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || 3645 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 || 3646 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 || 3647 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 || 3648 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 3649 /* These chips are 10/100 only. */ 3650 capmask &= ~BMSR_EXTSTAT; 3651 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3652 } 3653 3654 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3655 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3656 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3657 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3658 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3659 3660 /* Set various PHY bug flags. */ 3661 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3662 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3663 sc->bge_phy_flags |= BGEPHYF_CRC_BUG; 3664 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || 3665 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) 3666 sc->bge_phy_flags |= BGEPHYF_ADC_BUG; 3667 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3668 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG; 3669 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3670 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && 3671 PCI_VENDOR(subid) == PCI_VENDOR_DELL) 3672 sc->bge_phy_flags |= BGEPHYF_NO_3LED; 3673 if (BGE_IS_5705_PLUS(sc) && 3674 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 && 3675 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && 3676 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 && 3677 !BGE_IS_57765_PLUS(sc)) { 3678 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 3679 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3680 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3681 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { 3682 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && 3683 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) 3684 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG; 3685 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) 3686 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM; 3687 } else 3688 sc->bge_phy_flags |= BGEPHYF_BER_BUG; 3689 } 3690 3691 /* 3692 * SEEPROM check. 3693 * First check if firmware knows we do not have SEEPROM. 3694 */ 3695 if (prop_dictionary_get_bool(device_properties(self), 3696 "without-seeprom", &no_seeprom) && no_seeprom) 3697 sc->bge_flags |= BGEF_NO_EEPROM; 3698 3699 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 3700 sc->bge_flags |= BGEF_NO_EEPROM; 3701 3702 /* Now check the 'ROM failed' bit on the RX CPU */ 3703 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) 3704 sc->bge_flags |= BGEF_NO_EEPROM; 3705 3706 sc->bge_asf_mode = 0; 3707 /* No ASF if APE present. */ 3708 if ((sc->bge_flags & BGEF_APE) == 0) { 3709 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3710 BGE_SRAM_DATA_SIG_MAGIC)) { 3711 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3712 BGE_HWCFG_ASF) { 3713 sc->bge_asf_mode |= ASF_ENABLE; 3714 sc->bge_asf_mode |= ASF_STACKUP; 3715 if (BGE_IS_575X_PLUS(sc)) 3716 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3717 } 3718 } 3719 } 3720 3721 /* MSI-X will be used in future */ 3722 counts[PCI_INTR_TYPE_MSI] = 1; 3723 counts[PCI_INTR_TYPE_INTX] = 1; 3724 /* Check MSI capability */ 3725 if (bge_can_use_msi(sc) != 0) { 3726 max_type = PCI_INTR_TYPE_MSI; 3727 sc->bge_flags |= BGEF_MSI; 3728 } else 3729 max_type = PCI_INTR_TYPE_INTX; 3730 3731 alloc_retry: 3732 if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) { 3733 aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n"); 3734 return; 3735 } 3736 3737 DPRINTFN(5, ("pci_intr_string\n")); 3738 intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf, 3739 sizeof(intrbuf)); 3740 DPRINTFN(5, ("pci_intr_establish\n")); 3741 sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET, 3742 bge_intr, sc); 3743 if (sc->bge_intrhand == NULL) { 3744 intr_type = pci_intr_type(sc->bge_pihp[0]); 3745 aprint_error_dev(sc->bge_dev,"unable to establish %s\n", 3746 (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx"); 3747 pci_intr_release(pc, sc->bge_pihp, 1); 3748 switch (intr_type) { 3749 case PCI_INTR_TYPE_MSI: 3750 /* The next try is for INTx: Disable MSI */ 3751 max_type = PCI_INTR_TYPE_INTX; 3752 counts[PCI_INTR_TYPE_INTX] = 1; 3753 sc->bge_flags &= ~BGEF_MSI; 3754 goto alloc_retry; 3755 case PCI_INTR_TYPE_INTX: 3756 default: 3757 /* See below */ 3758 break; 3759 } 3760 } 3761 3762 if (sc->bge_intrhand == NULL) { 3763 aprint_error_dev(sc->bge_dev, 3764 "couldn't establish interrupt%s%s\n", 3765 intrstr ? " at " : "", intrstr ? intrstr : ""); 3766 return; 3767 } 3768 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr); 3769 3770 /* 3771 * All controllers except BCM5700 supports tagged status but 3772 * we use tagged status only for MSI case on BCM5717. Otherwise 3773 * MSI on BCM5717 does not work. 3774 */ 3775 if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI) 3776 sc->bge_flags |= BGEF_TAGGED_STATUS; 3777 3778 /* 3779 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM 3780 * lock in bge_reset(). 3781 */ 3782 CSR_WRITE_4(sc, BGE_EE_ADDR, 3783 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 3784 delay(1000); 3785 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 3786 3787 bge_stop_fw(sc); 3788 bge_sig_pre_reset(sc, BGE_RESET_START); 3789 if (bge_reset(sc)) 3790 aprint_error_dev(sc->bge_dev, "chip reset failed\n"); 3791 3792 /* 3793 * Read the hardware config word in the first 32k of NIC internal 3794 * memory, or fall back to the config word in the EEPROM. 3795 * Note: on some BCM5700 cards, this value appears to be unset. 3796 */ 3797 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0; 3798 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3799 BGE_SRAM_DATA_SIG_MAGIC) { 3800 uint32_t tmp; 3801 3802 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3803 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >> 3804 BGE_SRAM_DATA_VER_SHIFT; 3805 if ((0 < tmp) && (tmp < 0x100)) 3806 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2); 3807 if (sc->bge_flags & BGEF_PCIE) 3808 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3); 3809 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) 3810 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4); 3811 if (BGE_IS_5717_PLUS(sc)) 3812 hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5); 3813 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) { 3814 bge_read_eeprom(sc, (void *)&hwcfg, 3815 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 3816 hwcfg = be32toh(hwcfg); 3817 } 3818 aprint_normal_dev(sc->bge_dev, 3819 "HW config %08x, %08x, %08x, %08x %08x\n", 3820 hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5); 3821 3822 bge_sig_legacy(sc, BGE_RESET_START); 3823 bge_sig_post_reset(sc, BGE_RESET_START); 3824 3825 if (bge_chipinit(sc)) { 3826 aprint_error_dev(sc->bge_dev, "chip initialization failed\n"); 3827 bge_release_resources(sc); 3828 return; 3829 } 3830 3831 /* 3832 * Get station address from the EEPROM. 3833 */ 3834 if (bge_get_eaddr(sc, eaddr)) { 3835 aprint_error_dev(sc->bge_dev, 3836 "failed to read station address\n"); 3837 bge_release_resources(sc); 3838 return; 3839 } 3840 3841 br = bge_lookup_rev(sc->bge_chipid); 3842 3843 if (br == NULL) { 3844 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)", 3845 sc->bge_chipid); 3846 } else { 3847 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)", 3848 br->br_name, sc->bge_chipid); 3849 } 3850 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr)); 3851 3852 /* Allocate the general information block and ring buffers. */ 3853 if (pci_dma64_available(pa)) 3854 sc->bge_dmatag = pa->pa_dmat64; 3855 else 3856 sc->bge_dmatag = pa->pa_dmat; 3857 3858 /* 40bit DMA workaround */ 3859 if (sizeof(bus_addr_t) > 4) { 3860 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) { 3861 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */ 3862 3863 if (bus_dmatag_subregion(olddmatag, 0, 3864 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag), 3865 BUS_DMA_NOWAIT) != 0) { 3866 aprint_error_dev(self, 3867 "WARNING: failed to restrict dma range," 3868 " falling back to parent bus dma range\n"); 3869 sc->bge_dmatag = olddmatag; 3870 } 3871 } 3872 } 3873 DPRINTFN(5, ("bus_dmamem_alloc\n")); 3874 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), 3875 PAGE_SIZE, 0, &sc->bge_ring_seg, 1, 3876 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) { 3877 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 3878 return; 3879 } 3880 DPRINTFN(5, ("bus_dmamem_map\n")); 3881 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg, 3882 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva, 3883 BUS_DMA_NOWAIT)) { 3884 aprint_error_dev(sc->bge_dev, 3885 "can't map DMA buffers (%zu bytes)\n", 3886 sizeof(struct bge_ring_data)); 3887 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3888 sc->bge_ring_rseg); 3889 return; 3890 } 3891 DPRINTFN(5, ("bus_dmamem_create\n")); 3892 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, 3893 sizeof(struct bge_ring_data), 0, 3894 BUS_DMA_NOWAIT, &sc->bge_ring_map)) { 3895 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 3896 bus_dmamem_unmap(sc->bge_dmatag, kva, 3897 sizeof(struct bge_ring_data)); 3898 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3899 sc->bge_ring_rseg); 3900 return; 3901 } 3902 DPRINTFN(5, ("bus_dmamem_load\n")); 3903 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, 3904 sizeof(struct bge_ring_data), NULL, 3905 BUS_DMA_NOWAIT)) { 3906 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 3907 bus_dmamem_unmap(sc->bge_dmatag, kva, 3908 sizeof(struct bge_ring_data)); 3909 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3910 sc->bge_ring_rseg); 3911 return; 3912 } 3913 3914 DPRINTFN(5, ("bzero\n")); 3915 sc->bge_rdata = (struct bge_ring_data *)kva; 3916 3917 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data)); 3918 3919 /* Try to allocate memory for jumbo buffers. */ 3920 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3921 if (bge_alloc_jumbo_mem(sc)) { 3922 aprint_error_dev(sc->bge_dev, 3923 "jumbo buffer allocation failed\n"); 3924 } else 3925 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3926 } 3927 3928 /* Set default tuneable values. */ 3929 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3930 sc->bge_rx_coal_ticks = 150; 3931 sc->bge_rx_max_coal_bds = 64; 3932 sc->bge_tx_coal_ticks = 300; 3933 sc->bge_tx_max_coal_bds = 400; 3934 if (BGE_IS_5705_PLUS(sc)) { 3935 sc->bge_tx_coal_ticks = (12 * 5); 3936 sc->bge_tx_max_coal_bds = (12 * 5); 3937 aprint_verbose_dev(sc->bge_dev, 3938 "setting short Tx thresholds\n"); 3939 } 3940 3941 if (BGE_IS_5717_PLUS(sc)) 3942 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3943 else if (BGE_IS_5705_PLUS(sc)) 3944 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3945 else 3946 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3947 3948 /* Set up ifnet structure */ 3949 ifp = &sc->ethercom.ec_if; 3950 ifp->if_softc = sc; 3951 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3952 ifp->if_ioctl = bge_ioctl; 3953 ifp->if_stop = bge_stop; 3954 ifp->if_start = bge_start; 3955 ifp->if_init = bge_init; 3956 ifp->if_watchdog = bge_watchdog; 3957 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN)); 3958 IFQ_SET_READY(&ifp->if_snd); 3959 DPRINTFN(5, ("strcpy if_xname\n")); 3960 strcpy(ifp->if_xname, device_xname(sc->bge_dev)); 3961 3962 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) 3963 sc->ethercom.ec_if.if_capabilities |= 3964 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx; 3965 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */ 3966 sc->ethercom.ec_if.if_capabilities |= 3967 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 3968 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 3969 #endif 3970 sc->ethercom.ec_capabilities |= 3971 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 3972 3973 if (sc->bge_flags & BGEF_TSO) 3974 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4; 3975 3976 /* 3977 * Do MII setup. 3978 */ 3979 DPRINTFN(5, ("mii setup\n")); 3980 sc->bge_mii.mii_ifp = ifp; 3981 sc->bge_mii.mii_readreg = bge_miibus_readreg; 3982 sc->bge_mii.mii_writereg = bge_miibus_writereg; 3983 sc->bge_mii.mii_statchg = bge_miibus_statchg; 3984 3985 /* 3986 * Figure out what sort of media we have by checking the hardware 3987 * config word. Note: on some BCM5700 cards, this value appears to be 3988 * unset. If that's the case, we have to rely on identifying the NIC 3989 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41. 3990 * The SysKonnect SK-9D41 is a 1000baseSX card. 3991 */ 3992 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 || 3993 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3994 if (BGE_IS_5705_PLUS(sc)) { 3995 sc->bge_flags |= BGEF_FIBER_MII; 3996 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3997 } else 3998 sc->bge_flags |= BGEF_FIBER_TBI; 3999 } 4000 4001 /* Set bge_phy_flags before prop_dictionary_set_uint32() */ 4002 if (BGE_IS_JUMBO_CAPABLE(sc)) 4003 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE; 4004 4005 /* set phyflags and chipid before mii_attach() */ 4006 dict = device_properties(self); 4007 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags); 4008 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid); 4009 4010 if (sc->bge_flags & BGEF_FIBER_TBI) { 4011 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 4012 bge_ifmedia_sts); 4013 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL); 4014 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX, 4015 0, NULL); 4016 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 4017 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 4018 /* Pretend the user requested this setting */ 4019 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 4020 } else { 4021 /* 4022 * Do transceiver setup and tell the firmware the 4023 * driver is down so we can try to get access the 4024 * probe if ASF is running. Retry a couple of times 4025 * if we get a conflict with the ASF firmware accessing 4026 * the PHY. 4027 */ 4028 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4029 bge_asf_driver_up(sc); 4030 4031 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd, 4032 bge_ifmedia_sts); 4033 mii_flags = MIIF_DOPAUSE; 4034 if (sc->bge_flags & BGEF_FIBER_MII) 4035 mii_flags |= MIIF_HAVEFIBER; 4036 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr, 4037 MII_OFFSET_ANY, mii_flags); 4038 4039 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) { 4040 aprint_error_dev(sc->bge_dev, "no PHY found!\n"); 4041 ifmedia_add(&sc->bge_mii.mii_media, 4042 IFM_ETHER|IFM_MANUAL, 0, NULL); 4043 ifmedia_set(&sc->bge_mii.mii_media, 4044 IFM_ETHER|IFM_MANUAL); 4045 } else 4046 ifmedia_set(&sc->bge_mii.mii_media, 4047 IFM_ETHER|IFM_AUTO); 4048 4049 /* 4050 * Now tell the firmware we are going up after probing the PHY 4051 */ 4052 if (sc->bge_asf_mode & ASF_STACKUP) 4053 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 4054 } 4055 4056 /* 4057 * Call MI attach routine. 4058 */ 4059 DPRINTFN(5, ("if_attach\n")); 4060 if_attach(ifp); 4061 DPRINTFN(5, ("ether_ifattach\n")); 4062 ether_ifattach(ifp, eaddr); 4063 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb); 4064 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev), 4065 RND_TYPE_NET, RND_FLAG_DEFAULT); 4066 #ifdef BGE_EVENT_COUNTERS 4067 /* 4068 * Attach event counters. 4069 */ 4070 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR, 4071 NULL, device_xname(sc->bge_dev), "intr"); 4072 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC, 4073 NULL, device_xname(sc->bge_dev), "tx_xoff"); 4074 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC, 4075 NULL, device_xname(sc->bge_dev), "tx_xon"); 4076 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC, 4077 NULL, device_xname(sc->bge_dev), "rx_xoff"); 4078 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC, 4079 NULL, device_xname(sc->bge_dev), "rx_xon"); 4080 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC, 4081 NULL, device_xname(sc->bge_dev), "rx_macctl"); 4082 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC, 4083 NULL, device_xname(sc->bge_dev), "xoffentered"); 4084 #endif /* BGE_EVENT_COUNTERS */ 4085 DPRINTFN(5, ("callout_init\n")); 4086 callout_init(&sc->bge_timeout, 0); 4087 4088 if (pmf_device_register(self, NULL, NULL)) 4089 pmf_class_network_register(self, ifp); 4090 else 4091 aprint_error_dev(self, "couldn't establish power handler\n"); 4092 4093 bge_sysctl_init(sc); 4094 4095 #ifdef BGE_DEBUG 4096 bge_debug_info(sc); 4097 #endif 4098 } 4099 4100 /* 4101 * Stop all chip I/O so that the kernel's probe routines don't 4102 * get confused by errant DMAs when rebooting. 4103 */ 4104 static int 4105 bge_detach(device_t self, int flags __unused) 4106 { 4107 struct bge_softc *sc = device_private(self); 4108 struct ifnet *ifp = &sc->ethercom.ec_if; 4109 int s; 4110 4111 s = splnet(); 4112 /* Stop the interface. Callouts are stopped in it. */ 4113 bge_stop(ifp, 1); 4114 splx(s); 4115 4116 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY); 4117 4118 /* Delete all remaining media. */ 4119 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY); 4120 4121 ether_ifdetach(ifp); 4122 if_detach(ifp); 4123 4124 bge_release_resources(sc); 4125 4126 return 0; 4127 } 4128 4129 static void 4130 bge_release_resources(struct bge_softc *sc) 4131 { 4132 4133 /* Disestablish the interrupt handler */ 4134 if (sc->bge_intrhand != NULL) { 4135 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand); 4136 pci_intr_release(sc->sc_pc, sc->bge_pihp, 1); 4137 sc->bge_intrhand = NULL; 4138 } 4139 4140 if (sc->bge_dmatag != NULL) { 4141 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); 4142 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 4143 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata, 4144 sizeof(struct bge_ring_data)); 4145 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 4146 sc->bge_ring_rseg); 4147 } 4148 4149 /* Unmap the device registers */ 4150 if (sc->bge_bsize != 0) { 4151 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); 4152 sc->bge_bsize = 0; 4153 } 4154 4155 /* Unmap the APE registers */ 4156 if (sc->bge_apesize != 0) { 4157 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, 4158 sc->bge_apesize); 4159 sc->bge_apesize = 0; 4160 } 4161 } 4162 4163 static int 4164 bge_reset(struct bge_softc *sc) 4165 { 4166 uint32_t cachesize, command; 4167 uint32_t reset, mac_mode, mac_mode_mask; 4168 pcireg_t devctl, reg; 4169 int i, val; 4170 void (*write_op)(struct bge_softc *, int, int); 4171 4172 /* Make mask for BGE_MAC_MODE register. */ 4173 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4174 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4175 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4176 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */ 4177 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4178 4179 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4180 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) { 4181 if (sc->bge_flags & BGEF_PCIE) 4182 write_op = bge_writemem_direct; 4183 else 4184 write_op = bge_writemem_ind; 4185 } else 4186 write_op = bge_writereg_ind; 4187 4188 /* 57XX step 4 */ 4189 /* Acquire the NVM lock */ 4190 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 && 4191 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 && 4192 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) { 4193 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4194 for (i = 0; i < 8000; i++) { 4195 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4196 BGE_NVRAMSWARB_GNT1) 4197 break; 4198 DELAY(20); 4199 } 4200 if (i == 8000) { 4201 printf("%s: NVRAM lock timedout!\n", 4202 device_xname(sc->bge_dev)); 4203 } 4204 } 4205 4206 /* Take APE lock when performing reset. */ 4207 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4208 4209 /* 57XX step 3 */ 4210 /* Save some important PCI state. */ 4211 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ); 4212 /* 5718 reset step 3 */ 4213 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4214 4215 /* 5718 reset step 5, 57XX step 5b-5d */ 4216 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4217 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4218 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4219 4220 /* XXX ???: Disable fastboot on controllers that support it. */ 4221 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || 4222 BGE_IS_5755_PLUS(sc)) 4223 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); 4224 4225 /* 5718 reset step 2, 57XX step 6 */ 4226 /* 4227 * Write the magic number to SRAM at offset 0xB50. 4228 * When firmware finishes its initialization it will 4229 * write ~BGE_MAGIC_NUMBER to the same location. 4230 */ 4231 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4232 4233 /* 5718 reset step 6, 57XX step 7 */ 4234 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4235 /* 4236 * XXX: from FreeBSD/Linux; no documentation 4237 */ 4238 if (sc->bge_flags & BGEF_PCIE) { 4239 if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) && 4240 !BGE_IS_57765_PLUS(sc) && 4241 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) == 4242 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) { 4243 /* PCI Express 1.0 system */ 4244 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG, 4245 BGE_PHY_PCIE_SCRAM_MODE); 4246 } 4247 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4248 /* 4249 * Prevent PCI Express link training 4250 * during global reset. 4251 */ 4252 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4253 reset |= (1 << 29); 4254 } 4255 } 4256 4257 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 4258 i = CSR_READ_4(sc, BGE_VCPU_STATUS); 4259 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4260 i | BGE_VCPU_STATUS_DRV_RESET); 4261 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4262 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4263 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4264 } 4265 4266 /* 4267 * Set GPHY Power Down Override to leave GPHY 4268 * powered up in D0 uninitialized. 4269 */ 4270 if (BGE_IS_5705_PLUS(sc) && 4271 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4272 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4273 4274 /* Issue global reset */ 4275 write_op(sc, BGE_MISC_CFG, reset); 4276 4277 /* 5718 reset step 7, 57XX step 8 */ 4278 if (sc->bge_flags & BGEF_PCIE) 4279 delay(100*1000); /* too big */ 4280 else 4281 delay(1000); 4282 4283 if (sc->bge_flags & BGEF_PCIE) { 4284 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4285 DELAY(500000); 4286 /* XXX: Magic Numbers */ 4287 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4288 BGE_PCI_UNKNOWN0); 4289 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4290 BGE_PCI_UNKNOWN0, 4291 reg | (1 << 15)); 4292 } 4293 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4294 sc->bge_pciecap + PCIE_DCSR); 4295 /* Clear enable no snoop and disable relaxed ordering. */ 4296 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD | 4297 PCIE_DCSR_ENA_NO_SNOOP); 4298 4299 /* Set PCIE max payload size to 128 for older PCIe devices */ 4300 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4301 devctl &= ~(0x00e0); 4302 /* Clear device status register. Write 1b to clear */ 4303 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED 4304 | PCIE_DCSR_NFED | PCIE_DCSR_CED; 4305 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4306 sc->bge_pciecap + PCIE_DCSR, devctl); 4307 bge_set_max_readrq(sc); 4308 } 4309 4310 /* From Linux: dummy read to flush PCI posted writes */ 4311 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4312 4313 /* 4314 * Reset some of the PCI state that got zapped by reset 4315 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be 4316 * set, too. 4317 */ 4318 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4319 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4320 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4321 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4322 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4323 (sc->bge_flags & BGEF_PCIX) != 0) 4324 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4325 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4326 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4327 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4328 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4329 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val); 4330 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize); 4331 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command); 4332 4333 /* 57xx step 11: disable PCI-X Relaxed Ordering. */ 4334 if (sc->bge_flags & BGEF_PCIX) { 4335 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4336 + PCIX_CMD); 4337 /* Set max memory read byte count to 2K */ 4338 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { 4339 reg &= ~PCIX_CMD_BYTECNT_MASK; 4340 reg |= PCIX_CMD_BCNT_2048; 4341 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){ 4342 /* 4343 * For 5704, set max outstanding split transaction 4344 * field to 0 (0 means it supports 1 request) 4345 */ 4346 reg &= ~(PCIX_CMD_SPLTRANS_MASK 4347 | PCIX_CMD_BYTECNT_MASK); 4348 reg |= PCIX_CMD_BCNT_2048; 4349 } 4350 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4351 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER); 4352 } 4353 4354 /* 5718 reset step 10, 57XX step 12 */ 4355 /* Enable memory arbiter. */ 4356 if (BGE_IS_5714_FAMILY(sc)) { 4357 val = CSR_READ_4(sc, BGE_MARB_MODE); 4358 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4359 } else 4360 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4361 4362 /* XXX 5721, 5751 and 5752 */ 4363 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) { 4364 /* Step 19: */ 4365 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25); 4366 /* Step 20: */ 4367 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT); 4368 } 4369 4370 /* 5718 reset step 12, 57XX step 15 and 16 */ 4371 /* Fix up byte swapping */ 4372 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS); 4373 4374 /* 5718 reset step 13, 57XX step 17 */ 4375 /* Poll until the firmware initialization is complete */ 4376 bge_poll_fw(sc); 4377 4378 /* 57XX step 21 */ 4379 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) { 4380 pcireg_t msidata; 4381 4382 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4383 BGE_PCI_MSI_DATA); 4384 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16); 4385 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA, 4386 msidata); 4387 } 4388 4389 /* 57XX step 18 */ 4390 /* Write mac mode. */ 4391 val = CSR_READ_4(sc, BGE_MAC_MODE); 4392 /* Restore mac_mode_mask's bits using mac_mode */ 4393 val = (val & ~mac_mode_mask) | mac_mode; 4394 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 4395 DELAY(40); 4396 4397 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4398 4399 /* 4400 * The 5704 in TBI mode apparently needs some special 4401 * adjustment to insure the SERDES drive level is set 4402 * to 1.2V. 4403 */ 4404 if (sc->bge_flags & BGEF_FIBER_TBI && 4405 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 4406 uint32_t serdescfg; 4407 4408 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 4409 serdescfg = (serdescfg & ~0xFFF) | 0x880; 4410 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 4411 } 4412 4413 if (sc->bge_flags & BGEF_PCIE && 4414 !BGE_IS_57765_PLUS(sc) && 4415 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4416 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) { 4417 uint32_t v; 4418 4419 /* Enable PCI Express bug fix */ 4420 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG); 4421 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG, 4422 v | BGE_TLP_DATA_FIFO_PROTECT); 4423 } 4424 4425 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 4426 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4427 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4428 4429 return 0; 4430 } 4431 4432 /* 4433 * Frame reception handling. This is called if there's a frame 4434 * on the receive return list. 4435 * 4436 * Note: we have to be able to handle two possibilities here: 4437 * 1) the frame is from the jumbo receive ring 4438 * 2) the frame is from the standard receive ring 4439 */ 4440 4441 static void 4442 bge_rxeof(struct bge_softc *sc) 4443 { 4444 struct ifnet *ifp; 4445 uint16_t rx_prod, rx_cons; 4446 int stdcnt = 0, jumbocnt = 0; 4447 bus_dmamap_t dmamap; 4448 bus_addr_t offset, toff; 4449 bus_size_t tlen; 4450 int tosync; 4451 4452 rx_cons = sc->bge_rx_saved_considx; 4453 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; 4454 4455 /* Nothing to do */ 4456 if (rx_cons == rx_prod) 4457 return; 4458 4459 ifp = &sc->ethercom.ec_if; 4460 4461 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4462 offsetof(struct bge_ring_data, bge_status_block), 4463 sizeof (struct bge_status_block), 4464 BUS_DMASYNC_POSTREAD); 4465 4466 offset = offsetof(struct bge_ring_data, bge_rx_return_ring); 4467 tosync = rx_prod - rx_cons; 4468 4469 if (tosync != 0) 4470 rnd_add_uint32(&sc->rnd_source, tosync); 4471 4472 toff = offset + (rx_cons * sizeof (struct bge_rx_bd)); 4473 4474 if (tosync < 0) { 4475 tlen = (sc->bge_return_ring_cnt - rx_cons) * 4476 sizeof (struct bge_rx_bd); 4477 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4478 toff, tlen, BUS_DMASYNC_POSTREAD); 4479 tosync = -tosync; 4480 } 4481 4482 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4483 offset, tosync * sizeof (struct bge_rx_bd), 4484 BUS_DMASYNC_POSTREAD); 4485 4486 while (rx_cons != rx_prod) { 4487 struct bge_rx_bd *cur_rx; 4488 uint32_t rxidx; 4489 struct mbuf *m = NULL; 4490 4491 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; 4492 4493 rxidx = cur_rx->bge_idx; 4494 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4495 4496 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4497 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4498 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4499 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 4500 jumbocnt++; 4501 bus_dmamap_sync(sc->bge_dmatag, 4502 sc->bge_cdata.bge_rx_jumbo_map, 4503 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, 4504 BGE_JLEN, BUS_DMASYNC_POSTREAD); 4505 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4506 ifp->if_ierrors++; 4507 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4508 continue; 4509 } 4510 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 4511 NULL)== ENOBUFS) { 4512 ifp->if_ierrors++; 4513 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4514 continue; 4515 } 4516 } else { 4517 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4518 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4519 4520 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 4521 stdcnt++; 4522 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; 4523 sc->bge_cdata.bge_rx_std_map[rxidx] = 0; 4524 if (dmamap == NULL) { 4525 ifp->if_ierrors++; 4526 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4527 continue; 4528 } 4529 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, 4530 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 4531 bus_dmamap_unload(sc->bge_dmatag, dmamap); 4532 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4533 ifp->if_ierrors++; 4534 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4535 continue; 4536 } 4537 if (bge_newbuf_std(sc, sc->bge_std, 4538 NULL, dmamap) == ENOBUFS) { 4539 ifp->if_ierrors++; 4540 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4541 continue; 4542 } 4543 } 4544 4545 ifp->if_ipackets++; 4546 #ifndef __NO_STRICT_ALIGNMENT 4547 /* 4548 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect, 4549 * the Rx buffer has the layer-2 header unaligned. 4550 * If our CPU requires alignment, re-align by copying. 4551 */ 4552 if (sc->bge_flags & BGEF_RX_ALIGNBUG) { 4553 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data, 4554 cur_rx->bge_len); 4555 m->m_data += ETHER_ALIGN; 4556 } 4557 #endif 4558 4559 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4560 m->m_pkthdr.rcvif = ifp; 4561 4562 /* 4563 * Handle BPF listeners. Let the BPF user see the packet. 4564 */ 4565 bpf_mtap(ifp, m); 4566 4567 bge_rxcsum(sc, cur_rx, m); 4568 4569 /* 4570 * If we received a packet with a vlan tag, pass it 4571 * to vlan_input() instead of ether_input(). 4572 */ 4573 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4574 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue); 4575 } 4576 4577 (*ifp->if_input)(ifp, m); 4578 } 4579 4580 sc->bge_rx_saved_considx = rx_cons; 4581 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4582 if (stdcnt) 4583 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 4584 if (jumbocnt) 4585 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 4586 } 4587 4588 static void 4589 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4590 { 4591 4592 if (BGE_IS_57765_PLUS(sc)) { 4593 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4594 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4595 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4596 if ((cur_rx->bge_error_flag & 4597 BGE_RXERRFLAG_IP_CSUM_NOK) != 0) 4598 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4599 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4600 m->m_pkthdr.csum_data = 4601 cur_rx->bge_tcp_udp_csum; 4602 m->m_pkthdr.csum_flags |= 4603 (M_CSUM_TCPv4|M_CSUM_UDPv4| 4604 M_CSUM_DATA); 4605 } 4606 } 4607 } else { 4608 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4609 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4610 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0) 4611 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4612 /* 4613 * Rx transport checksum-offload may also 4614 * have bugs with packets which, when transmitted, 4615 * were `runts' requiring padding. 4616 */ 4617 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4618 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/ 4619 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) { 4620 m->m_pkthdr.csum_data = 4621 cur_rx->bge_tcp_udp_csum; 4622 m->m_pkthdr.csum_flags |= 4623 (M_CSUM_TCPv4|M_CSUM_UDPv4| 4624 M_CSUM_DATA); 4625 } 4626 } 4627 } 4628 4629 static void 4630 bge_txeof(struct bge_softc *sc) 4631 { 4632 struct bge_tx_bd *cur_tx = NULL; 4633 struct ifnet *ifp; 4634 struct txdmamap_pool_entry *dma; 4635 bus_addr_t offset, toff; 4636 bus_size_t tlen; 4637 int tosync; 4638 struct mbuf *m; 4639 4640 ifp = &sc->ethercom.ec_if; 4641 4642 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4643 offsetof(struct bge_ring_data, bge_status_block), 4644 sizeof (struct bge_status_block), 4645 BUS_DMASYNC_POSTREAD); 4646 4647 offset = offsetof(struct bge_ring_data, bge_tx_ring); 4648 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx - 4649 sc->bge_tx_saved_considx; 4650 4651 if (tosync != 0) 4652 rnd_add_uint32(&sc->rnd_source, tosync); 4653 4654 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd)); 4655 4656 if (tosync < 0) { 4657 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) * 4658 sizeof (struct bge_tx_bd); 4659 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4660 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 4661 tosync = -tosync; 4662 } 4663 4664 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4665 offset, tosync * sizeof (struct bge_tx_bd), 4666 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 4667 4668 /* 4669 * Go through our tx ring and free mbufs for those 4670 * frames that have been sent. 4671 */ 4672 while (sc->bge_tx_saved_considx != 4673 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { 4674 uint32_t idx = 0; 4675 4676 idx = sc->bge_tx_saved_considx; 4677 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 4678 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4679 ifp->if_opackets++; 4680 m = sc->bge_cdata.bge_tx_chain[idx]; 4681 if (m != NULL) { 4682 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4683 dma = sc->txdma[idx]; 4684 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0, 4685 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4686 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap); 4687 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 4688 sc->txdma[idx] = NULL; 4689 4690 m_freem(m); 4691 } 4692 sc->bge_txcnt--; 4693 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4694 ifp->if_timer = 0; 4695 } 4696 4697 if (cur_tx != NULL) 4698 ifp->if_flags &= ~IFF_OACTIVE; 4699 } 4700 4701 static int 4702 bge_intr(void *xsc) 4703 { 4704 struct bge_softc *sc; 4705 struct ifnet *ifp; 4706 uint32_t pcistate, statusword, statustag; 4707 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE; 4708 4709 sc = xsc; 4710 ifp = &sc->ethercom.ec_if; 4711 4712 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */ 4713 if (BGE_IS_5717_PLUS(sc)) 4714 intrmask = 0; 4715 4716 /* It is possible for the interrupt to arrive before 4717 * the status block is updated prior to the interrupt. 4718 * Reading the PCI State register will confirm whether the 4719 * interrupt is ours and will flush the status block. 4720 */ 4721 pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE); 4722 4723 /* read status word from status block */ 4724 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4725 offsetof(struct bge_ring_data, bge_status_block), 4726 sizeof (struct bge_status_block), 4727 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4728 statusword = sc->bge_rdata->bge_status_block.bge_status; 4729 statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24; 4730 4731 if (sc->bge_flags & BGEF_TAGGED_STATUS) { 4732 if (sc->bge_lasttag == statustag && 4733 (~pcistate & intrmask)) { 4734 return (0); 4735 } 4736 sc->bge_lasttag = statustag; 4737 } else { 4738 if (!(statusword & BGE_STATFLAG_UPDATED) && 4739 !(~pcistate & intrmask)) { 4740 return (0); 4741 } 4742 statustag = 0; 4743 } 4744 /* Ack interrupt and stop others from occurring. */ 4745 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 4746 BGE_EVCNT_INCR(sc->bge_ev_intr); 4747 4748 /* clear status word */ 4749 sc->bge_rdata->bge_status_block.bge_status = 0; 4750 4751 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4752 offsetof(struct bge_ring_data, bge_status_block), 4753 sizeof (struct bge_status_block), 4754 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4755 4756 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 4757 statusword & BGE_STATFLAG_LINKSTATE_CHANGED || 4758 BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) 4759 bge_link_upd(sc); 4760 4761 if (ifp->if_flags & IFF_RUNNING) { 4762 /* Check RX return ring producer/consumer */ 4763 bge_rxeof(sc); 4764 4765 /* Check TX ring producer/consumer */ 4766 bge_txeof(sc); 4767 } 4768 4769 if (sc->bge_pending_rxintr_change) { 4770 uint32_t rx_ticks = sc->bge_rx_coal_ticks; 4771 uint32_t rx_bds = sc->bge_rx_max_coal_bds; 4772 4773 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks); 4774 DELAY(10); 4775 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS); 4776 4777 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds); 4778 DELAY(10); 4779 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS); 4780 4781 sc->bge_pending_rxintr_change = 0; 4782 } 4783 bge_handle_events(sc); 4784 4785 /* Re-enable interrupts. */ 4786 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag); 4787 4788 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd)) 4789 bge_start(ifp); 4790 4791 return 1; 4792 } 4793 4794 static void 4795 bge_asf_driver_up(struct bge_softc *sc) 4796 { 4797 if (sc->bge_asf_mode & ASF_STACKUP) { 4798 /* Send ASF heartbeat aprox. every 2s */ 4799 if (sc->bge_asf_count) 4800 sc->bge_asf_count --; 4801 else { 4802 sc->bge_asf_count = 2; 4803 4804 bge_wait_for_event_ack(sc); 4805 4806 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4807 BGE_FW_CMD_DRV_ALIVE3); 4808 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4809 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4810 BGE_FW_HB_TIMEOUT_SEC); 4811 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 4812 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4813 BGE_RX_CPU_DRV_EVENT); 4814 } 4815 } 4816 } 4817 4818 static void 4819 bge_tick(void *xsc) 4820 { 4821 struct bge_softc *sc = xsc; 4822 struct mii_data *mii = &sc->bge_mii; 4823 int s; 4824 4825 s = splnet(); 4826 4827 if (BGE_IS_5705_PLUS(sc)) 4828 bge_stats_update_regs(sc); 4829 else 4830 bge_stats_update(sc); 4831 4832 if (sc->bge_flags & BGEF_FIBER_TBI) { 4833 /* 4834 * Since in TBI mode auto-polling can't be used we should poll 4835 * link status manually. Here we register pending link event 4836 * and trigger interrupt. 4837 */ 4838 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 4839 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4840 } else { 4841 /* 4842 * Do not touch PHY if we have link up. This could break 4843 * IPMI/ASF mode or produce extra input errors. 4844 * (extra input errors was reported for bcm5701 & bcm5704). 4845 */ 4846 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) 4847 mii_tick(mii); 4848 } 4849 4850 bge_asf_driver_up(sc); 4851 4852 if (!sc->bge_detaching) 4853 callout_reset(&sc->bge_timeout, hz, bge_tick, sc); 4854 4855 splx(s); 4856 } 4857 4858 static void 4859 bge_stats_update_regs(struct bge_softc *sc) 4860 { 4861 struct ifnet *ifp = &sc->ethercom.ec_if; 4862 4863 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS + 4864 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)); 4865 4866 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4867 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4868 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4869 } 4870 4871 static void 4872 bge_stats_update(struct bge_softc *sc) 4873 { 4874 struct ifnet *ifp = &sc->ethercom.ec_if; 4875 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4876 4877 #define READ_STAT(sc, stats, stat) \ 4878 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4879 4880 ifp->if_collisions += 4881 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) + 4882 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) + 4883 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) + 4884 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) - 4885 ifp->if_collisions; 4886 4887 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff, 4888 READ_STAT(sc, stats, outXoffSent.bge_addr_lo)); 4889 BGE_EVCNT_UPD(sc->bge_ev_tx_xon, 4890 READ_STAT(sc, stats, outXonSent.bge_addr_lo)); 4891 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff, 4892 READ_STAT(sc, stats, 4893 xoffPauseFramesReceived.bge_addr_lo)); 4894 BGE_EVCNT_UPD(sc->bge_ev_rx_xon, 4895 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo)); 4896 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl, 4897 READ_STAT(sc, stats, 4898 macControlFramesReceived.bge_addr_lo)); 4899 BGE_EVCNT_UPD(sc->bge_ev_xoffentered, 4900 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo)); 4901 4902 #undef READ_STAT 4903 4904 #ifdef notdef 4905 ifp->if_collisions += 4906 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 4907 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 4908 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 4909 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 4910 ifp->if_collisions; 4911 #endif 4912 } 4913 4914 /* 4915 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4916 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4917 * but when such padded frames employ the bge IP/TCP checksum offload, 4918 * the hardware checksum assist gives incorrect results (possibly 4919 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4920 * If we pad such runts with zeros, the onboard checksum comes out correct. 4921 */ 4922 static inline int 4923 bge_cksum_pad(struct mbuf *pkt) 4924 { 4925 struct mbuf *last = NULL; 4926 int padlen; 4927 4928 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len; 4929 4930 /* if there's only the packet-header and we can pad there, use it. */ 4931 if (pkt->m_pkthdr.len == pkt->m_len && 4932 M_TRAILINGSPACE(pkt) >= padlen) { 4933 last = pkt; 4934 } else { 4935 /* 4936 * Walk packet chain to find last mbuf. We will either 4937 * pad there, or append a new mbuf and pad it 4938 * (thus perhaps avoiding the bcm5700 dma-min bug). 4939 */ 4940 for (last = pkt; last->m_next != NULL; last = last->m_next) { 4941 continue; /* do nothing */ 4942 } 4943 4944 /* `last' now points to last in chain. */ 4945 if (M_TRAILINGSPACE(last) < padlen) { 4946 /* Allocate new empty mbuf, pad it. Compact later. */ 4947 struct mbuf *n; 4948 MGET(n, M_DONTWAIT, MT_DATA); 4949 if (n == NULL) 4950 return ENOBUFS; 4951 n->m_len = 0; 4952 last->m_next = n; 4953 last = n; 4954 } 4955 } 4956 4957 KDASSERT(!M_READONLY(last)); 4958 KDASSERT(M_TRAILINGSPACE(last) >= padlen); 4959 4960 /* Now zero the pad area, to avoid the bge cksum-assist bug */ 4961 memset(mtod(last, char *) + last->m_len, 0, padlen); 4962 last->m_len += padlen; 4963 pkt->m_pkthdr.len += padlen; 4964 return 0; 4965 } 4966 4967 /* 4968 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. 4969 */ 4970 static inline int 4971 bge_compact_dma_runt(struct mbuf *pkt) 4972 { 4973 struct mbuf *m, *prev; 4974 int totlen; 4975 4976 prev = NULL; 4977 totlen = 0; 4978 4979 for (m = pkt; m != NULL; prev = m,m = m->m_next) { 4980 int mlen = m->m_len; 4981 int shortfall = 8 - mlen ; 4982 4983 totlen += mlen; 4984 if (mlen == 0) 4985 continue; 4986 if (mlen >= 8) 4987 continue; 4988 4989 /* If we get here, mbuf data is too small for DMA engine. 4990 * Try to fix by shuffling data to prev or next in chain. 4991 * If that fails, do a compacting deep-copy of the whole chain. 4992 */ 4993 4994 /* Internal frag. If fits in prev, copy it there. */ 4995 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) { 4996 memcpy(prev->m_data + prev->m_len, m->m_data, mlen); 4997 prev->m_len += mlen; 4998 m->m_len = 0; 4999 /* XXX stitch chain */ 5000 prev->m_next = m_free(m); 5001 m = prev; 5002 continue; 5003 } 5004 else if (m->m_next != NULL && 5005 M_TRAILINGSPACE(m) >= shortfall && 5006 m->m_next->m_len >= (8 + shortfall)) { 5007 /* m is writable and have enough data in next, pull up. */ 5008 5009 memcpy(m->m_data + m->m_len, m->m_next->m_data, 5010 shortfall); 5011 m->m_len += shortfall; 5012 m->m_next->m_len -= shortfall; 5013 m->m_next->m_data += shortfall; 5014 } 5015 else if (m->m_next == NULL || 1) { 5016 /* Got a runt at the very end of the packet. 5017 * borrow data from the tail of the preceding mbuf and 5018 * update its length in-place. (The original data is still 5019 * valid, so we can do this even if prev is not writable.) 5020 */ 5021 5022 /* if we'd make prev a runt, just move all of its data. */ 5023 KASSERT(prev != NULL /*, ("runt but null PREV")*/); 5024 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); 5025 5026 if ((prev->m_len - shortfall) < 8) 5027 shortfall = prev->m_len; 5028 5029 #ifdef notyet /* just do the safe slow thing for now */ 5030 if (!M_READONLY(m)) { 5031 if (M_LEADINGSPACE(m) < shorfall) { 5032 void *m_dat; 5033 m_dat = (m->m_flags & M_PKTHDR) ? 5034 m->m_pktdat : m->dat; 5035 memmove(m_dat, mtod(m, void*), m->m_len); 5036 m->m_data = m_dat; 5037 } 5038 } else 5039 #endif /* just do the safe slow thing */ 5040 { 5041 struct mbuf * n = NULL; 5042 int newprevlen = prev->m_len - shortfall; 5043 5044 MGET(n, M_NOWAIT, MT_DATA); 5045 if (n == NULL) 5046 return ENOBUFS; 5047 KASSERT(m->m_len + shortfall < MLEN 5048 /*, 5049 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); 5050 5051 /* first copy the data we're stealing from prev */ 5052 memcpy(n->m_data, prev->m_data + newprevlen, 5053 shortfall); 5054 5055 /* update prev->m_len accordingly */ 5056 prev->m_len -= shortfall; 5057 5058 /* copy data from runt m */ 5059 memcpy(n->m_data + shortfall, m->m_data, 5060 m->m_len); 5061 5062 /* n holds what we stole from prev, plus m */ 5063 n->m_len = shortfall + m->m_len; 5064 5065 /* stitch n into chain and free m */ 5066 n->m_next = m->m_next; 5067 prev->m_next = n; 5068 /* KASSERT(m->m_next == NULL); */ 5069 m->m_next = NULL; 5070 m_free(m); 5071 m = n; /* for continuing loop */ 5072 } 5073 } 5074 } 5075 return 0; 5076 } 5077 5078 /* 5079 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 5080 * pointers to descriptors. 5081 */ 5082 static int 5083 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx) 5084 { 5085 struct bge_tx_bd *f = NULL; 5086 uint32_t frag, cur; 5087 uint16_t csum_flags = 0; 5088 uint16_t txbd_tso_flags = 0; 5089 struct txdmamap_pool_entry *dma; 5090 bus_dmamap_t dmamap; 5091 int i = 0; 5092 struct m_tag *mtag; 5093 int use_tso, maxsegsize, error; 5094 5095 cur = frag = *txidx; 5096 5097 if (m_head->m_pkthdr.csum_flags) { 5098 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) 5099 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 5100 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) 5101 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 5102 } 5103 5104 /* 5105 * If we were asked to do an outboard checksum, and the NIC 5106 * has the bug where it sometimes adds in the Ethernet padding, 5107 * explicitly pad with zeros so the cksum will be correct either way. 5108 * (For now, do this for all chip versions, until newer 5109 * are confirmed to not require the workaround.) 5110 */ 5111 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 || 5112 #ifdef notyet 5113 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 || 5114 #endif 5115 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD) 5116 goto check_dma_bug; 5117 5118 if (bge_cksum_pad(m_head) != 0) 5119 return ENOBUFS; 5120 5121 check_dma_bug: 5122 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) 5123 goto doit; 5124 5125 /* 5126 * bcm5700 Revision B silicon cannot handle DMA descriptors with 5127 * less than eight bytes. If we encounter a teeny mbuf 5128 * at the end of a chain, we can pad. Otherwise, copy. 5129 */ 5130 if (bge_compact_dma_runt(m_head) != 0) 5131 return ENOBUFS; 5132 5133 doit: 5134 dma = SLIST_FIRST(&sc->txdma_list); 5135 if (dma == NULL) 5136 return ENOBUFS; 5137 dmamap = dma->dmamap; 5138 5139 /* 5140 * Set up any necessary TSO state before we start packing... 5141 */ 5142 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 5143 if (!use_tso) { 5144 maxsegsize = 0; 5145 } else { /* TSO setup */ 5146 unsigned mss; 5147 struct ether_header *eh; 5148 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset; 5149 struct mbuf * m0 = m_head; 5150 struct ip *ip; 5151 struct tcphdr *th; 5152 int iphl, hlen; 5153 5154 /* 5155 * XXX It would be nice if the mbuf pkthdr had offset 5156 * fields for the protocol headers. 5157 */ 5158 5159 eh = mtod(m0, struct ether_header *); 5160 switch (htons(eh->ether_type)) { 5161 case ETHERTYPE_IP: 5162 offset = ETHER_HDR_LEN; 5163 break; 5164 5165 case ETHERTYPE_VLAN: 5166 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 5167 break; 5168 5169 default: 5170 /* 5171 * Don't support this protocol or encapsulation. 5172 */ 5173 return ENOBUFS; 5174 } 5175 5176 /* 5177 * TCP/IP headers are in the first mbuf; we can do 5178 * this the easy way. 5179 */ 5180 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 5181 hlen = iphl + offset; 5182 if (__predict_false(m0->m_len < 5183 (hlen + sizeof(struct tcphdr)))) { 5184 5185 aprint_debug_dev(sc->bge_dev, 5186 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd," 5187 "not handled yet\n", 5188 m0->m_len, hlen+ sizeof(struct tcphdr)); 5189 #ifdef NOTYET 5190 /* 5191 * XXX jonathan@NetBSD.org: untested. 5192 * how to force this branch to be taken? 5193 */ 5194 BGE_EVCNT_INCR(sc->bge_ev_txtsopain); 5195 5196 m_copydata(m0, offset, sizeof(ip), &ip); 5197 m_copydata(m0, hlen, sizeof(th), &th); 5198 5199 ip.ip_len = 0; 5200 5201 m_copyback(m0, hlen + offsetof(struct ip, ip_len), 5202 sizeof(ip.ip_len), &ip.ip_len); 5203 5204 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 5205 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 5206 5207 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 5208 sizeof(th.th_sum), &th.th_sum); 5209 5210 hlen += th.th_off << 2; 5211 iptcp_opt_words = hlen; 5212 #else 5213 /* 5214 * if_wm "hard" case not yet supported, can we not 5215 * mandate it out of existence? 5216 */ 5217 (void) ip; (void)th; (void) ip_tcp_hlen; 5218 5219 return ENOBUFS; 5220 #endif 5221 } else { 5222 ip = (struct ip *) (mtod(m0, char *) + offset); 5223 th = (struct tcphdr *) (mtod(m0, char *) + hlen); 5224 ip_tcp_hlen = iphl + (th->th_off << 2); 5225 5226 /* Total IP/TCP options, in 32-bit words */ 5227 iptcp_opt_words = (ip_tcp_hlen 5228 - sizeof(struct tcphdr) 5229 - sizeof(struct ip)) >> 2; 5230 } 5231 if (BGE_IS_575X_PLUS(sc)) { 5232 th->th_sum = 0; 5233 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM); 5234 } else { 5235 /* 5236 * XXX jonathan@NetBSD.org: 5705 untested. 5237 * Requires TSO firmware patch for 5701/5703/5704. 5238 */ 5239 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 5240 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 5241 } 5242 5243 mss = m_head->m_pkthdr.segsz; 5244 txbd_tso_flags |= 5245 BGE_TXBDFLAG_CPU_PRE_DMA | 5246 BGE_TXBDFLAG_CPU_POST_DMA; 5247 5248 /* 5249 * Our NIC TSO-assist assumes TSO has standard, optionless 5250 * IPv4 and TCP headers, which total 40 bytes. By default, 5251 * the NIC copies 40 bytes of IP/TCP header from the 5252 * supplied header into the IP/TCP header portion of 5253 * each post-TSO-segment. If the supplied packet has IP or 5254 * TCP options, we need to tell the NIC to copy those extra 5255 * bytes into each post-TSO header, in addition to the normal 5256 * 40-byte IP/TCP header (and to leave space accordingly). 5257 * Unfortunately, the driver encoding of option length 5258 * varies across different ASIC families. 5259 */ 5260 tcp_seg_flags = 0; 5261 if (iptcp_opt_words) { 5262 if (BGE_IS_5705_PLUS(sc)) { 5263 tcp_seg_flags = 5264 iptcp_opt_words << 11; 5265 } else { 5266 txbd_tso_flags |= 5267 iptcp_opt_words << 12; 5268 } 5269 } 5270 maxsegsize = mss | tcp_seg_flags; 5271 ip->ip_len = htons(mss + ip_tcp_hlen); 5272 5273 } /* TSO setup */ 5274 5275 /* 5276 * Start packing the mbufs in this chain into 5277 * the fragment pointers. Stop when we run out 5278 * of fragments or hit the end of the mbuf chain. 5279 */ 5280 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head, 5281 BUS_DMA_NOWAIT); 5282 if (error) 5283 return ENOBUFS; 5284 /* 5285 * Sanity check: avoid coming within 16 descriptors 5286 * of the end of the ring. 5287 */ 5288 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) { 5289 BGE_TSO_PRINTF(("%s: " 5290 " dmamap_load_mbuf too close to ring wrap\n", 5291 device_xname(sc->bge_dev))); 5292 goto fail_unload; 5293 } 5294 5295 mtag = sc->ethercom.ec_nvlans ? 5296 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL; 5297 5298 5299 /* Iterate over dmap-map fragments. */ 5300 for (i = 0; i < dmamap->dm_nsegs; i++) { 5301 f = &sc->bge_rdata->bge_tx_ring[frag]; 5302 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 5303 break; 5304 5305 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); 5306 f->bge_len = dmamap->dm_segs[i].ds_len; 5307 5308 /* 5309 * For 5751 and follow-ons, for TSO we must turn 5310 * off checksum-assist flag in the tx-descr, and 5311 * supply the ASIC-revision-specific encoding 5312 * of TSO flags and segsize. 5313 */ 5314 if (use_tso) { 5315 if (BGE_IS_575X_PLUS(sc) || i == 0) { 5316 f->bge_rsvd = maxsegsize; 5317 f->bge_flags = csum_flags | txbd_tso_flags; 5318 } else { 5319 f->bge_rsvd = 0; 5320 f->bge_flags = 5321 (csum_flags | txbd_tso_flags) & 0x0fff; 5322 } 5323 } else { 5324 f->bge_rsvd = 0; 5325 f->bge_flags = csum_flags; 5326 } 5327 5328 if (mtag != NULL) { 5329 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 5330 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag); 5331 } else { 5332 f->bge_vlan_tag = 0; 5333 } 5334 cur = frag; 5335 BGE_INC(frag, BGE_TX_RING_CNT); 5336 } 5337 5338 if (i < dmamap->dm_nsegs) { 5339 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n", 5340 device_xname(sc->bge_dev), i, dmamap->dm_nsegs)); 5341 goto fail_unload; 5342 } 5343 5344 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, 5345 BUS_DMASYNC_PREWRITE); 5346 5347 if (frag == sc->bge_tx_saved_considx) { 5348 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n", 5349 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx)); 5350 5351 goto fail_unload; 5352 } 5353 5354 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 5355 sc->bge_cdata.bge_tx_chain[cur] = m_head; 5356 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 5357 sc->txdma[cur] = dma; 5358 sc->bge_txcnt += dmamap->dm_nsegs; 5359 5360 *txidx = frag; 5361 5362 return 0; 5363 5364 fail_unload: 5365 bus_dmamap_unload(sc->bge_dmatag, dmamap); 5366 5367 return ENOBUFS; 5368 } 5369 5370 /* 5371 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5372 * to the mbuf data regions directly in the transmit descriptors. 5373 */ 5374 static void 5375 bge_start(struct ifnet *ifp) 5376 { 5377 struct bge_softc *sc; 5378 struct mbuf *m_head = NULL; 5379 uint32_t prodidx; 5380 int pkts = 0; 5381 5382 sc = ifp->if_softc; 5383 5384 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 5385 return; 5386 5387 prodidx = sc->bge_tx_prodidx; 5388 5389 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 5390 IFQ_POLL(&ifp->if_snd, m_head); 5391 if (m_head == NULL) 5392 break; 5393 5394 #if 0 5395 /* 5396 * XXX 5397 * safety overkill. If this is a fragmented packet chain 5398 * with delayed TCP/UDP checksums, then only encapsulate 5399 * it if we have enough descriptors to handle the entire 5400 * chain at once. 5401 * (paranoia -- may not actually be needed) 5402 */ 5403 if (m_head->m_flags & M_FIRSTFRAG && 5404 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 5405 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 5406 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) { 5407 ifp->if_flags |= IFF_OACTIVE; 5408 break; 5409 } 5410 } 5411 #endif 5412 5413 /* 5414 * Pack the data into the transmit ring. If we 5415 * don't have room, set the OACTIVE flag and wait 5416 * for the NIC to drain the ring. 5417 */ 5418 if (bge_encap(sc, m_head, &prodidx)) { 5419 ifp->if_flags |= IFF_OACTIVE; 5420 break; 5421 } 5422 5423 /* now we are committed to transmit the packet */ 5424 IFQ_DEQUEUE(&ifp->if_snd, m_head); 5425 pkts++; 5426 5427 /* 5428 * If there's a BPF listener, bounce a copy of this frame 5429 * to him. 5430 */ 5431 bpf_mtap(ifp, m_head); 5432 } 5433 if (pkts == 0) 5434 return; 5435 5436 /* Transmit */ 5437 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5438 /* 5700 b2 errata */ 5439 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 5440 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5441 5442 sc->bge_tx_prodidx = prodidx; 5443 5444 /* 5445 * Set a timeout in case the chip goes out to lunch. 5446 */ 5447 ifp->if_timer = 5; 5448 } 5449 5450 static int 5451 bge_init(struct ifnet *ifp) 5452 { 5453 struct bge_softc *sc = ifp->if_softc; 5454 const uint16_t *m; 5455 uint32_t mode, reg; 5456 int s, error = 0; 5457 5458 s = splnet(); 5459 5460 ifp = &sc->ethercom.ec_if; 5461 5462 /* Cancel pending I/O and flush buffers. */ 5463 bge_stop(ifp, 0); 5464 5465 bge_stop_fw(sc); 5466 bge_sig_pre_reset(sc, BGE_RESET_START); 5467 bge_reset(sc); 5468 bge_sig_legacy(sc, BGE_RESET_START); 5469 5470 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 5471 reg = CSR_READ_4(sc, BGE_CPMU_CTRL); 5472 reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE | 5473 BGE_CPMU_CTRL_LINK_IDLE_MODE); 5474 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); 5475 5476 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); 5477 reg &= ~BGE_CPMU_LSPD_10MB_CLK; 5478 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; 5479 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); 5480 5481 reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD); 5482 reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK; 5483 reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25; 5484 CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg); 5485 5486 reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC); 5487 reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK; 5488 reg |= BGE_CPMU_HST_ACC_MACCLK_6_25; 5489 CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg); 5490 } 5491 5492 bge_sig_post_reset(sc, BGE_RESET_START); 5493 5494 bge_chipinit(sc); 5495 5496 /* 5497 * Init the various state machines, ring 5498 * control blocks and firmware. 5499 */ 5500 error = bge_blockinit(sc); 5501 if (error != 0) { 5502 aprint_error_dev(sc->bge_dev, "initialization error %d\n", 5503 error); 5504 splx(s); 5505 return error; 5506 } 5507 5508 ifp = &sc->ethercom.ec_if; 5509 5510 /* 5718 step 25, 57XX step 54 */ 5511 /* Specify MTU. */ 5512 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 5513 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 5514 5515 /* 5718 step 23 */ 5516 /* Load our MAC address. */ 5517 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]); 5518 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5519 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5520 5521 /* Enable or disable promiscuous mode as needed. */ 5522 if (ifp->if_flags & IFF_PROMISC) 5523 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5524 else 5525 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5526 5527 /* Program multicast filter. */ 5528 bge_setmulti(sc); 5529 5530 /* Init RX ring. */ 5531 bge_init_rx_ring_std(sc); 5532 5533 /* 5534 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5535 * memory to insure that the chip has in fact read the first 5536 * entry of the ring. 5537 */ 5538 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5539 uint32_t v, i; 5540 for (i = 0; i < 10; i++) { 5541 DELAY(20); 5542 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5543 if (v == (MCLBYTES - ETHER_ALIGN)) 5544 break; 5545 } 5546 if (i == 10) 5547 aprint_error_dev(sc->bge_dev, 5548 "5705 A0 chip failed to load RX ring\n"); 5549 } 5550 5551 /* Init jumbo RX ring. */ 5552 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 5553 bge_init_rx_ring_jumbo(sc); 5554 5555 /* Init our RX return ring index */ 5556 sc->bge_rx_saved_considx = 0; 5557 5558 /* Init TX ring. */ 5559 bge_init_tx_ring(sc); 5560 5561 /* 5718 step 63, 57XX step 94 */ 5562 /* Enable TX MAC state machine lockup fix. */ 5563 mode = CSR_READ_4(sc, BGE_TX_MODE); 5564 if (BGE_IS_5755_PLUS(sc) || 5565 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 5566 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5567 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 5568 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5569 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5570 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5571 } 5572 5573 /* Turn on transmitter */ 5574 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5575 /* 5718 step 64 */ 5576 DELAY(100); 5577 5578 /* 5718 step 65, 57XX step 95 */ 5579 /* Turn on receiver */ 5580 mode = CSR_READ_4(sc, BGE_RX_MODE); 5581 if (BGE_IS_5755_PLUS(sc)) 5582 mode |= BGE_RXMODE_IPV6_ENABLE; 5583 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5584 /* 5718 step 66 */ 5585 DELAY(10); 5586 5587 /* 5718 step 12, 57XX step 37 */ 5588 /* 5589 * XXX Doucments of 5718 series and 577xx say the recommended value 5590 * is 1, but tg3 set 1 only on 57765 series. 5591 */ 5592 if (BGE_IS_57765_PLUS(sc)) 5593 reg = 1; 5594 else 5595 reg = 2; 5596 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg); 5597 5598 /* Tell firmware we're alive. */ 5599 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5600 5601 /* Enable host interrupts. */ 5602 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5603 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5604 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0); 5605 5606 if ((error = bge_ifmedia_upd(ifp)) != 0) 5607 goto out; 5608 5609 ifp->if_flags |= IFF_RUNNING; 5610 ifp->if_flags &= ~IFF_OACTIVE; 5611 5612 callout_reset(&sc->bge_timeout, hz, bge_tick, sc); 5613 5614 out: 5615 sc->bge_if_flags = ifp->if_flags; 5616 splx(s); 5617 5618 return error; 5619 } 5620 5621 /* 5622 * Set media options. 5623 */ 5624 static int 5625 bge_ifmedia_upd(struct ifnet *ifp) 5626 { 5627 struct bge_softc *sc = ifp->if_softc; 5628 struct mii_data *mii = &sc->bge_mii; 5629 struct ifmedia *ifm = &sc->bge_ifmedia; 5630 int rc; 5631 5632 /* If this is a 1000baseX NIC, enable the TBI port. */ 5633 if (sc->bge_flags & BGEF_FIBER_TBI) { 5634 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5635 return EINVAL; 5636 switch (IFM_SUBTYPE(ifm->ifm_media)) { 5637 case IFM_AUTO: 5638 /* 5639 * The BCM5704 ASIC appears to have a special 5640 * mechanism for programming the autoneg 5641 * advertisement registers in TBI mode. 5642 */ 5643 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 5644 uint32_t sgdig; 5645 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5646 if (sgdig & BGE_SGDIGSTS_DONE) { 5647 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5648 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5649 sgdig |= BGE_SGDIGCFG_AUTO | 5650 BGE_SGDIGCFG_PAUSE_CAP | 5651 BGE_SGDIGCFG_ASYM_PAUSE; 5652 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5653 sgdig | BGE_SGDIGCFG_SEND); 5654 DELAY(5); 5655 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5656 sgdig); 5657 } 5658 } 5659 break; 5660 case IFM_1000_SX: 5661 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5662 BGE_CLRBIT(sc, BGE_MAC_MODE, 5663 BGE_MACMODE_HALF_DUPLEX); 5664 } else { 5665 BGE_SETBIT(sc, BGE_MAC_MODE, 5666 BGE_MACMODE_HALF_DUPLEX); 5667 } 5668 DELAY(40); 5669 break; 5670 default: 5671 return EINVAL; 5672 } 5673 /* XXX 802.3x flow control for 1000BASE-SX */ 5674 return 0; 5675 } 5676 5677 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) && 5678 (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) { 5679 uint32_t reg; 5680 5681 reg = CSR_READ_4(sc, BGE_CPMU_CTRL); 5682 if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) { 5683 reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY; 5684 CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg); 5685 } 5686 } 5687 5688 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 5689 if ((rc = mii_mediachg(mii)) == ENXIO) 5690 return 0; 5691 5692 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 5693 uint32_t reg; 5694 5695 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK); 5696 if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK) 5697 == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) { 5698 reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK; 5699 delay(40); 5700 CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg); 5701 } 5702 } 5703 5704 /* 5705 * Force an interrupt so that we will call bge_link_upd 5706 * if needed and clear any pending link state attention. 5707 * Without this we are not getting any further interrupts 5708 * for link state changes and thus will not UP the link and 5709 * not be able to send in bge_start. The only way to get 5710 * things working was to receive a packet and get a RX intr. 5711 */ 5712 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 5713 sc->bge_flags & BGEF_IS_5788) 5714 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5715 else 5716 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5717 5718 return rc; 5719 } 5720 5721 /* 5722 * Report current media status. 5723 */ 5724 static void 5725 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5726 { 5727 struct bge_softc *sc = ifp->if_softc; 5728 struct mii_data *mii = &sc->bge_mii; 5729 5730 if (sc->bge_flags & BGEF_FIBER_TBI) { 5731 ifmr->ifm_status = IFM_AVALID; 5732 ifmr->ifm_active = IFM_ETHER; 5733 if (CSR_READ_4(sc, BGE_MAC_STS) & 5734 BGE_MACSTAT_TBI_PCS_SYNCHED) 5735 ifmr->ifm_status |= IFM_ACTIVE; 5736 ifmr->ifm_active |= IFM_1000_SX; 5737 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5738 ifmr->ifm_active |= IFM_HDX; 5739 else 5740 ifmr->ifm_active |= IFM_FDX; 5741 return; 5742 } 5743 5744 mii_pollstat(mii); 5745 ifmr->ifm_status = mii->mii_media_status; 5746 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | 5747 sc->bge_flowflags; 5748 } 5749 5750 static int 5751 bge_ifflags_cb(struct ethercom *ec) 5752 { 5753 struct ifnet *ifp = &ec->ec_if; 5754 struct bge_softc *sc = ifp->if_softc; 5755 int change = ifp->if_flags ^ sc->bge_if_flags; 5756 5757 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 5758 return ENETRESET; 5759 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0) 5760 return 0; 5761 5762 if ((ifp->if_flags & IFF_PROMISC) == 0) 5763 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5764 else 5765 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5766 5767 bge_setmulti(sc); 5768 5769 sc->bge_if_flags = ifp->if_flags; 5770 return 0; 5771 } 5772 5773 static int 5774 bge_ioctl(struct ifnet *ifp, u_long command, void *data) 5775 { 5776 struct bge_softc *sc = ifp->if_softc; 5777 struct ifreq *ifr = (struct ifreq *) data; 5778 int s, error = 0; 5779 struct mii_data *mii; 5780 5781 s = splnet(); 5782 5783 switch (command) { 5784 case SIOCSIFMEDIA: 5785 /* XXX Flow control is not supported for 1000BASE-SX */ 5786 if (sc->bge_flags & BGEF_FIBER_TBI) { 5787 ifr->ifr_media &= ~IFM_ETH_FMASK; 5788 sc->bge_flowflags = 0; 5789 } 5790 5791 /* Flow control requires full-duplex mode. */ 5792 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 5793 (ifr->ifr_media & IFM_FDX) == 0) { 5794 ifr->ifr_media &= ~IFM_ETH_FMASK; 5795 } 5796 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 5797 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 5798 /* We can do both TXPAUSE and RXPAUSE. */ 5799 ifr->ifr_media |= 5800 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 5801 } 5802 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 5803 } 5804 /* FALLTHROUGH */ 5805 case SIOCGIFMEDIA: 5806 if (sc->bge_flags & BGEF_FIBER_TBI) { 5807 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, 5808 command); 5809 } else { 5810 mii = &sc->bge_mii; 5811 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 5812 command); 5813 } 5814 break; 5815 default: 5816 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 5817 break; 5818 5819 error = 0; 5820 5821 if (command != SIOCADDMULTI && command != SIOCDELMULTI) 5822 ; 5823 else if (ifp->if_flags & IFF_RUNNING) 5824 bge_setmulti(sc); 5825 break; 5826 } 5827 5828 splx(s); 5829 5830 return error; 5831 } 5832 5833 static void 5834 bge_watchdog(struct ifnet *ifp) 5835 { 5836 struct bge_softc *sc; 5837 5838 sc = ifp->if_softc; 5839 5840 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n"); 5841 5842 ifp->if_flags &= ~IFF_RUNNING; 5843 bge_init(ifp); 5844 5845 ifp->if_oerrors++; 5846 } 5847 5848 static void 5849 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit) 5850 { 5851 int i; 5852 5853 BGE_CLRBIT_FLUSH(sc, reg, bit); 5854 5855 for (i = 0; i < 1000; i++) { 5856 delay(100); 5857 if ((CSR_READ_4(sc, reg) & bit) == 0) 5858 return; 5859 } 5860 5861 /* 5862 * Doesn't print only when the register is BGE_SRS_MODE. It occurs 5863 * on some environment (and once after boot?) 5864 */ 5865 if (reg != BGE_SRS_MODE) 5866 aprint_error_dev(sc->bge_dev, 5867 "block failed to stop: reg 0x%lx, bit 0x%08x\n", 5868 (u_long)reg, bit); 5869 } 5870 5871 /* 5872 * Stop the adapter and free any mbufs allocated to the 5873 * RX and TX lists. 5874 */ 5875 static void 5876 bge_stop(struct ifnet *ifp, int disable) 5877 { 5878 struct bge_softc *sc = ifp->if_softc; 5879 5880 if (disable) { 5881 sc->bge_detaching = 1; 5882 callout_halt(&sc->bge_timeout, NULL); 5883 } else 5884 callout_stop(&sc->bge_timeout); 5885 5886 /* Disable host interrupts. */ 5887 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5888 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 5889 5890 /* 5891 * Tell firmware we're shutting down. 5892 */ 5893 bge_stop_fw(sc); 5894 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5895 5896 /* 5897 * Disable all of the receiver blocks. 5898 */ 5899 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5900 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5901 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5902 if (BGE_IS_5700_FAMILY(sc)) 5903 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5904 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5905 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5906 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5907 5908 /* 5909 * Disable all of the transmit blocks. 5910 */ 5911 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5912 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5913 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5914 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5915 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5916 if (BGE_IS_5700_FAMILY(sc)) 5917 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5918 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5919 5920 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB); 5921 delay(40); 5922 5923 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 5924 5925 /* 5926 * Shut down all of the memory managers and related 5927 * state machines. 5928 */ 5929 /* 5718 step 5a,5b */ 5930 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5931 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5932 if (BGE_IS_5700_FAMILY(sc)) 5933 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5934 5935 /* 5718 step 5c,5d */ 5936 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5937 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5938 5939 if (BGE_IS_5700_FAMILY(sc)) { 5940 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5941 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5942 } 5943 5944 bge_reset(sc); 5945 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 5946 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 5947 5948 /* 5949 * Keep the ASF firmware running if up. 5950 */ 5951 if (sc->bge_asf_mode & ASF_STACKUP) 5952 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5953 else 5954 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5955 5956 /* Free the RX lists. */ 5957 bge_free_rx_ring_std(sc); 5958 5959 /* Free jumbo RX list. */ 5960 if (BGE_IS_JUMBO_CAPABLE(sc)) 5961 bge_free_rx_ring_jumbo(sc); 5962 5963 /* Free TX buffers. */ 5964 bge_free_tx_ring(sc); 5965 5966 /* 5967 * Isolate/power down the PHY. 5968 */ 5969 if (!(sc->bge_flags & BGEF_FIBER_TBI)) 5970 mii_down(&sc->bge_mii); 5971 5972 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5973 5974 /* Clear MAC's link state (PHY may still have link UP). */ 5975 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 5976 5977 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5978 } 5979 5980 static void 5981 bge_link_upd(struct bge_softc *sc) 5982 { 5983 struct ifnet *ifp = &sc->ethercom.ec_if; 5984 struct mii_data *mii = &sc->bge_mii; 5985 uint32_t status; 5986 int link; 5987 5988 /* Clear 'pending link event' flag */ 5989 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); 5990 5991 /* 5992 * Process link state changes. 5993 * Grrr. The link status word in the status block does 5994 * not work correctly on the BCM5700 rev AX and BX chips, 5995 * according to all available information. Hence, we have 5996 * to enable MII interrupts in order to properly obtain 5997 * async link changes. Unfortunately, this also means that 5998 * we have to read the MAC status register to detect link 5999 * changes, thereby adding an additional register access to 6000 * the interrupt handler. 6001 */ 6002 6003 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { 6004 status = CSR_READ_4(sc, BGE_MAC_STS); 6005 if (status & BGE_MACSTAT_MI_INTERRUPT) { 6006 mii_pollstat(mii); 6007 6008 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 6009 mii->mii_media_status & IFM_ACTIVE && 6010 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 6011 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6012 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 6013 (!(mii->mii_media_status & IFM_ACTIVE) || 6014 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 6015 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6016 6017 /* Clear the interrupt */ 6018 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 6019 BGE_EVTENB_MI_INTERRUPT); 6020 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 6021 BRGPHY_MII_ISR); 6022 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 6023 BRGPHY_MII_IMR, BRGPHY_INTRS); 6024 } 6025 return; 6026 } 6027 6028 if (sc->bge_flags & BGEF_FIBER_TBI) { 6029 status = CSR_READ_4(sc, BGE_MAC_STS); 6030 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 6031 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { 6032 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6033 if (BGE_ASICREV(sc->bge_chipid) 6034 == BGE_ASICREV_BCM5704) { 6035 BGE_CLRBIT(sc, BGE_MAC_MODE, 6036 BGE_MACMODE_TBI_SEND_CFGS); 6037 DELAY(40); 6038 } 6039 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 6040 if_link_state_change(ifp, LINK_STATE_UP); 6041 } 6042 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { 6043 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6044 if_link_state_change(ifp, LINK_STATE_DOWN); 6045 } 6046 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { 6047 /* 6048 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED 6049 * bit in status word always set. Workaround this bug by 6050 * reading PHY link status directly. 6051 */ 6052 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? 6053 BGE_STS_LINK : 0; 6054 6055 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { 6056 mii_pollstat(mii); 6057 6058 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 6059 mii->mii_media_status & IFM_ACTIVE && 6060 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 6061 BGE_STS_SETBIT(sc, BGE_STS_LINK); 6062 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 6063 (!(mii->mii_media_status & IFM_ACTIVE) || 6064 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 6065 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 6066 } 6067 } else { 6068 /* 6069 * For controllers that call mii_tick, we have to poll 6070 * link status. 6071 */ 6072 mii_pollstat(mii); 6073 } 6074 6075 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) { 6076 uint32_t reg, scale; 6077 6078 reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) & 6079 BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK; 6080 if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5) 6081 scale = 65; 6082 else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25) 6083 scale = 6; 6084 else 6085 scale = 12; 6086 6087 reg = CSR_READ_4(sc, BGE_MISC_CFG) & 6088 ~BGE_MISCCFG_TIMER_PRESCALER; 6089 reg |= scale << 1; 6090 CSR_WRITE_4(sc, BGE_MISC_CFG, reg); 6091 } 6092 /* Clear the attention */ 6093 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 6094 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 6095 BGE_MACSTAT_LINK_CHANGED); 6096 } 6097 6098 static int 6099 bge_sysctl_verify(SYSCTLFN_ARGS) 6100 { 6101 int error, t; 6102 struct sysctlnode node; 6103 6104 node = *rnode; 6105 t = *(int*)rnode->sysctl_data; 6106 node.sysctl_data = &t; 6107 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 6108 if (error || newp == NULL) 6109 return error; 6110 6111 #if 0 6112 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t, 6113 node.sysctl_num, rnode->sysctl_num)); 6114 #endif 6115 6116 if (node.sysctl_num == bge_rxthresh_nodenum) { 6117 if (t < 0 || t >= NBGE_RX_THRESH) 6118 return EINVAL; 6119 bge_update_all_threshes(t); 6120 } else 6121 return EINVAL; 6122 6123 *(int*)rnode->sysctl_data = t; 6124 6125 return 0; 6126 } 6127 6128 /* 6129 * Set up sysctl(3) MIB, hw.bge.*. 6130 */ 6131 static void 6132 bge_sysctl_init(struct bge_softc *sc) 6133 { 6134 int rc, bge_root_num; 6135 const struct sysctlnode *node; 6136 6137 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 6138 0, CTLTYPE_NODE, "bge", 6139 SYSCTL_DESCR("BGE interface controls"), 6140 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 6141 goto out; 6142 } 6143 6144 bge_root_num = node->sysctl_num; 6145 6146 /* BGE Rx interrupt mitigation level */ 6147 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 6148 CTLFLAG_READWRITE, 6149 CTLTYPE_INT, "rx_lvl", 6150 SYSCTL_DESCR("BGE receive interrupt mitigation level"), 6151 bge_sysctl_verify, 0, 6152 &bge_rx_thresh_lvl, 6153 0, CTL_HW, bge_root_num, CTL_CREATE, 6154 CTL_EOL)) != 0) { 6155 goto out; 6156 } 6157 6158 bge_rxthresh_nodenum = node->sysctl_num; 6159 6160 return; 6161 6162 out: 6163 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 6164 } 6165 6166 #ifdef BGE_DEBUG 6167 void 6168 bge_debug_info(struct bge_softc *sc) 6169 { 6170 6171 printf("Hardware Flags:\n"); 6172 if (BGE_IS_57765_PLUS(sc)) 6173 printf(" - 57765 Plus\n"); 6174 if (BGE_IS_5717_PLUS(sc)) 6175 printf(" - 5717 Plus\n"); 6176 if (BGE_IS_5755_PLUS(sc)) 6177 printf(" - 5755 Plus\n"); 6178 if (BGE_IS_575X_PLUS(sc)) 6179 printf(" - 575X Plus\n"); 6180 if (BGE_IS_5705_PLUS(sc)) 6181 printf(" - 5705 Plus\n"); 6182 if (BGE_IS_5714_FAMILY(sc)) 6183 printf(" - 5714 Family\n"); 6184 if (BGE_IS_5700_FAMILY(sc)) 6185 printf(" - 5700 Family\n"); 6186 if (sc->bge_flags & BGEF_IS_5788) 6187 printf(" - 5788\n"); 6188 if (sc->bge_flags & BGEF_JUMBO_CAPABLE) 6189 printf(" - Supports Jumbo Frames\n"); 6190 if (sc->bge_flags & BGEF_NO_EEPROM) 6191 printf(" - No EEPROM\n"); 6192 if (sc->bge_flags & BGEF_PCIX) 6193 printf(" - PCI-X Bus\n"); 6194 if (sc->bge_flags & BGEF_PCIE) 6195 printf(" - PCI Express Bus\n"); 6196 if (sc->bge_flags & BGEF_RX_ALIGNBUG) 6197 printf(" - RX Alignment Bug\n"); 6198 if (sc->bge_flags & BGEF_APE) 6199 printf(" - APE\n"); 6200 if (sc->bge_flags & BGEF_CPMU_PRESENT) 6201 printf(" - CPMU\n"); 6202 if (sc->bge_flags & BGEF_TSO) 6203 printf(" - TSO\n"); 6204 if (sc->bge_flags & BGEF_TAGGED_STATUS) 6205 printf(" - TAGGED_STATUS\n"); 6206 6207 /* PHY related */ 6208 if (sc->bge_phy_flags & BGEPHYF_NO_3LED) 6209 printf(" - No 3 LEDs\n"); 6210 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG) 6211 printf(" - CRC bug\n"); 6212 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG) 6213 printf(" - ADC bug\n"); 6214 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG) 6215 printf(" - 5704 A0 bug\n"); 6216 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG) 6217 printf(" - jitter bug\n"); 6218 if (sc->bge_phy_flags & BGEPHYF_BER_BUG) 6219 printf(" - BER bug\n"); 6220 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM) 6221 printf(" - adjust trim\n"); 6222 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED) 6223 printf(" - no wirespeed\n"); 6224 6225 /* ASF related */ 6226 if (sc->bge_asf_mode & ASF_ENABLE) 6227 printf(" - ASF enable\n"); 6228 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) 6229 printf(" - ASF new handshake\n"); 6230 if (sc->bge_asf_mode & ASF_STACKUP) 6231 printf(" - ASF stackup\n"); 6232 } 6233 #endif /* BGE_DEBUG */ 6234 6235 static int 6236 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6237 { 6238 prop_dictionary_t dict; 6239 prop_data_t ea; 6240 6241 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) 6242 return 1; 6243 6244 dict = device_properties(sc->bge_dev); 6245 ea = prop_dictionary_get(dict, "mac-address"); 6246 if (ea != NULL) { 6247 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 6248 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 6249 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN); 6250 return 0; 6251 } 6252 6253 return 1; 6254 } 6255 6256 static int 6257 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6258 { 6259 uint32_t mac_addr; 6260 6261 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6262 if ((mac_addr >> 16) == 0x484b) { 6263 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6264 ether_addr[1] = (uint8_t)mac_addr; 6265 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6266 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6267 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6268 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6269 ether_addr[5] = (uint8_t)mac_addr; 6270 return 0; 6271 } 6272 return 1; 6273 } 6274 6275 static int 6276 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6277 { 6278 int mac_offset = BGE_EE_MAC_OFFSET; 6279 6280 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6281 mac_offset = BGE_EE_MAC_OFFSET_5906; 6282 6283 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6284 ETHER_ADDR_LEN)); 6285 } 6286 6287 static int 6288 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6289 { 6290 6291 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6292 return 1; 6293 6294 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6295 ETHER_ADDR_LEN)); 6296 } 6297 6298 static int 6299 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6300 { 6301 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6302 /* NOTE: Order is critical */ 6303 bge_get_eaddr_fw, 6304 bge_get_eaddr_mem, 6305 bge_get_eaddr_nvram, 6306 bge_get_eaddr_eeprom, 6307 NULL 6308 }; 6309 const bge_eaddr_fcn_t *func; 6310 6311 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6312 if ((*func)(sc, eaddr) == 0) 6313 break; 6314 } 6315 return (*func == NULL ? ENXIO : 0); 6316 } 6317