xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.294 2015/11/18 10:26:57 msaitoh Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99 
100 #include <sys/rndsource.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h>			/* for struct ip */
113 #include <netinet/tcp.h>		/* for struct tcphdr */
114 
115 
116 #include <net/bpf.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129 
130 #include <prop/proplib.h>
131 
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133 
134 
135 /*
136  * Tunable thresholds for rx-side bge interrupt mitigation.
137  */
138 
139 /*
140  * The pairs of values below were obtained from empirical measurement
141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142  * interrupt for every N packets received, where N is, approximately,
143  * the second value (rx_max_bds) in each pair.  The values are chosen
144  * such that moving from one pair to the succeeding pair was observed
145  * to roughly halve interrupt rate under sustained input packet load.
146  * The values were empirically chosen to avoid overflowing internal
147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
148  * results in internal wrapping and higher interrupt rates.
149  * The limit of 46 frames was chosen to match NFS workloads.
150  *
151  * These values also work well on bcm5701, bcm5704C, and (less
152  * tested) bcm5703.  On other chipsets, (including the Altima chip
153  * family), the larger values may overflow internal chip limits,
154  * leading to increasing interrupt rates rather than lower interrupt
155  * rates.
156  *
157  * Applications using heavy interrupt mitigation (interrupting every
158  * 32 or 46 frames) in both directions may need to increase the TCP
159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160  * full link bandwidth, due to ACKs and window updates lingering
161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162  */
163 static const struct bge_load_rx_thresh {
164 	int rx_ticks;
165 	int rx_max_bds; }
166 bge_rx_threshes[] = {
167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
168 	{ 32,   2 },
169 	{ 50,   4 },
170 	{ 100,  8 },
171 	{ 192, 16 },
172 	{ 416, 32 },
173 	{ 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176 
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180 
181 static int bge_rxthresh_nodenum;
182 
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184 
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_can_use_msi(struct bge_softc *);
187 static int bge_probe(device_t, cfdata_t, void *);
188 static void bge_attach(device_t, device_t, void *);
189 static int bge_detach(device_t, int);
190 static void bge_release_resources(struct bge_softc *);
191 
192 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
197 
198 static void bge_txeof(struct bge_softc *);
199 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
200 static void bge_rxeof(struct bge_softc *);
201 
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224 
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 			       bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241 
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_phy_addr(struct bge_softc *);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writembx_flush(struct bge_softc *, int, int);
249 static void bge_writemem_direct(struct bge_softc *, int, int);
250 static void bge_writereg_ind(struct bge_softc *, int, int);
251 static void bge_set_max_readrq(struct bge_softc *);
252 
253 static int bge_miibus_readreg(device_t, int, int);
254 static void bge_miibus_writereg(device_t, int, int, int);
255 static void bge_miibus_statchg(struct ifnet *);
256 
257 #define BGE_RESET_SHUTDOWN	0
258 #define	BGE_RESET_START		1
259 #define	BGE_RESET_SUSPEND	2
260 static void bge_sig_post_reset(struct bge_softc *, int);
261 static void bge_sig_legacy(struct bge_softc *, int);
262 static void bge_sig_pre_reset(struct bge_softc *, int);
263 static void bge_wait_for_event_ack(struct bge_softc *);
264 static void bge_stop_fw(struct bge_softc *);
265 static int bge_reset(struct bge_softc *);
266 static void bge_link_upd(struct bge_softc *);
267 static void bge_sysctl_init(struct bge_softc *);
268 static int bge_sysctl_verify(SYSCTLFN_PROTO);
269 
270 static void bge_ape_lock_init(struct bge_softc *);
271 static void bge_ape_read_fw_ver(struct bge_softc *);
272 static int bge_ape_lock(struct bge_softc *, int);
273 static void bge_ape_unlock(struct bge_softc *, int);
274 static void bge_ape_send_event(struct bge_softc *, uint32_t);
275 static void bge_ape_driver_state_change(struct bge_softc *, int);
276 
277 #ifdef BGE_DEBUG
278 #define DPRINTF(x)	if (bgedebug) printf x
279 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
280 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
281 int	bgedebug = 0;
282 int	bge_tso_debug = 0;
283 void		bge_debug_info(struct bge_softc *);
284 #else
285 #define DPRINTF(x)
286 #define DPRINTFN(n,x)
287 #define BGE_TSO_PRINTF(x)
288 #endif
289 
290 #ifdef BGE_EVENT_COUNTERS
291 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
292 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
293 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
294 #else
295 #define	BGE_EVCNT_INCR(ev)	/* nothing */
296 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
297 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
298 #endif
299 
300 static const struct bge_product {
301 	pci_vendor_id_t		bp_vendor;
302 	pci_product_id_t	bp_product;
303 	const char		*bp_name;
304 } bge_products[] = {
305 	/*
306 	 * The BCM5700 documentation seems to indicate that the hardware
307 	 * still has the Alteon vendor ID burned into it, though it
308 	 * should always be overridden by the value in the EEPROM.  We'll
309 	 * check for it anyway.
310 	 */
311 	{ PCI_VENDOR_ALTEON,
312 	  PCI_PRODUCT_ALTEON_BCM5700,
313 	  "Broadcom BCM5700 Gigabit Ethernet",
314 	  },
315 	{ PCI_VENDOR_ALTEON,
316 	  PCI_PRODUCT_ALTEON_BCM5701,
317 	  "Broadcom BCM5701 Gigabit Ethernet",
318 	  },
319 	{ PCI_VENDOR_ALTIMA,
320 	  PCI_PRODUCT_ALTIMA_AC1000,
321 	  "Altima AC1000 Gigabit Ethernet",
322 	  },
323 	{ PCI_VENDOR_ALTIMA,
324 	  PCI_PRODUCT_ALTIMA_AC1001,
325 	  "Altima AC1001 Gigabit Ethernet",
326 	   },
327 	{ PCI_VENDOR_ALTIMA,
328 	  PCI_PRODUCT_ALTIMA_AC1003,
329 	  "Altima AC1003 Gigabit Ethernet",
330 	   },
331 	{ PCI_VENDOR_ALTIMA,
332 	  PCI_PRODUCT_ALTIMA_AC9100,
333 	  "Altima AC9100 Gigabit Ethernet",
334 	  },
335 	{ PCI_VENDOR_APPLE,
336 	  PCI_PRODUCT_APPLE_BCM5701,
337 	  "APPLE BCM5701 Gigabit Ethernet",
338 	  },
339 	{ PCI_VENDOR_BROADCOM,
340 	  PCI_PRODUCT_BROADCOM_BCM5700,
341 	  "Broadcom BCM5700 Gigabit Ethernet",
342 	  },
343 	{ PCI_VENDOR_BROADCOM,
344 	  PCI_PRODUCT_BROADCOM_BCM5701,
345 	  "Broadcom BCM5701 Gigabit Ethernet",
346 	  },
347 	{ PCI_VENDOR_BROADCOM,
348 	  PCI_PRODUCT_BROADCOM_BCM5702,
349 	  "Broadcom BCM5702 Gigabit Ethernet",
350 	  },
351 	{ PCI_VENDOR_BROADCOM,
352 	  PCI_PRODUCT_BROADCOM_BCM5702X,
353 	  "Broadcom BCM5702X Gigabit Ethernet" },
354 	{ PCI_VENDOR_BROADCOM,
355 	  PCI_PRODUCT_BROADCOM_BCM5703,
356 	  "Broadcom BCM5703 Gigabit Ethernet",
357 	  },
358 	{ PCI_VENDOR_BROADCOM,
359 	  PCI_PRODUCT_BROADCOM_BCM5703X,
360 	  "Broadcom BCM5703X Gigabit Ethernet",
361 	  },
362 	{ PCI_VENDOR_BROADCOM,
363 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
364 	  "Broadcom BCM5703 Gigabit Ethernet",
365 	  },
366 	{ PCI_VENDOR_BROADCOM,
367 	  PCI_PRODUCT_BROADCOM_BCM5704C,
368 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
369 	  },
370 	{ PCI_VENDOR_BROADCOM,
371 	  PCI_PRODUCT_BROADCOM_BCM5704S,
372 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
373 	  },
374 	{ PCI_VENDOR_BROADCOM,
375 	  PCI_PRODUCT_BROADCOM_BCM5705,
376 	  "Broadcom BCM5705 Gigabit Ethernet",
377 	  },
378 	{ PCI_VENDOR_BROADCOM,
379 	  PCI_PRODUCT_BROADCOM_BCM5705F,
380 	  "Broadcom BCM5705F Gigabit Ethernet",
381 	  },
382 	{ PCI_VENDOR_BROADCOM,
383 	  PCI_PRODUCT_BROADCOM_BCM5705K,
384 	  "Broadcom BCM5705K Gigabit Ethernet",
385 	  },
386 	{ PCI_VENDOR_BROADCOM,
387 	  PCI_PRODUCT_BROADCOM_BCM5705M,
388 	  "Broadcom BCM5705M Gigabit Ethernet",
389 	  },
390 	{ PCI_VENDOR_BROADCOM,
391 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
392 	  "Broadcom BCM5705M Gigabit Ethernet",
393 	  },
394 	{ PCI_VENDOR_BROADCOM,
395 	  PCI_PRODUCT_BROADCOM_BCM5714,
396 	  "Broadcom BCM5714 Gigabit Ethernet",
397 	  },
398 	{ PCI_VENDOR_BROADCOM,
399 	  PCI_PRODUCT_BROADCOM_BCM5714S,
400 	  "Broadcom BCM5714S Gigabit Ethernet",
401 	  },
402 	{ PCI_VENDOR_BROADCOM,
403 	  PCI_PRODUCT_BROADCOM_BCM5715,
404 	  "Broadcom BCM5715 Gigabit Ethernet",
405 	  },
406 	{ PCI_VENDOR_BROADCOM,
407 	  PCI_PRODUCT_BROADCOM_BCM5715S,
408 	  "Broadcom BCM5715S Gigabit Ethernet",
409 	  },
410 	{ PCI_VENDOR_BROADCOM,
411 	  PCI_PRODUCT_BROADCOM_BCM5717,
412 	  "Broadcom BCM5717 Gigabit Ethernet",
413 	  },
414 	{ PCI_VENDOR_BROADCOM,
415 	  PCI_PRODUCT_BROADCOM_BCM5718,
416 	  "Broadcom BCM5718 Gigabit Ethernet",
417 	  },
418 	{ PCI_VENDOR_BROADCOM,
419 	  PCI_PRODUCT_BROADCOM_BCM5719,
420 	  "Broadcom BCM5719 Gigabit Ethernet",
421 	  },
422 	{ PCI_VENDOR_BROADCOM,
423 	  PCI_PRODUCT_BROADCOM_BCM5720,
424 	  "Broadcom BCM5720 Gigabit Ethernet",
425 	  },
426 	{ PCI_VENDOR_BROADCOM,
427 	  PCI_PRODUCT_BROADCOM_BCM5721,
428 	  "Broadcom BCM5721 Gigabit Ethernet",
429 	  },
430 	{ PCI_VENDOR_BROADCOM,
431 	  PCI_PRODUCT_BROADCOM_BCM5722,
432 	  "Broadcom BCM5722 Gigabit Ethernet",
433 	  },
434 	{ PCI_VENDOR_BROADCOM,
435 	  PCI_PRODUCT_BROADCOM_BCM5723,
436 	  "Broadcom BCM5723 Gigabit Ethernet",
437 	  },
438 	{ PCI_VENDOR_BROADCOM,
439 	  PCI_PRODUCT_BROADCOM_BCM5750,
440 	  "Broadcom BCM5750 Gigabit Ethernet",
441 	  },
442 	{ PCI_VENDOR_BROADCOM,
443 	  PCI_PRODUCT_BROADCOM_BCM5751,
444 	  "Broadcom BCM5751 Gigabit Ethernet",
445 	  },
446 	{ PCI_VENDOR_BROADCOM,
447 	  PCI_PRODUCT_BROADCOM_BCM5751F,
448 	  "Broadcom BCM5751F Gigabit Ethernet",
449 	  },
450 	{ PCI_VENDOR_BROADCOM,
451 	  PCI_PRODUCT_BROADCOM_BCM5751M,
452 	  "Broadcom BCM5751M Gigabit Ethernet",
453 	  },
454 	{ PCI_VENDOR_BROADCOM,
455 	  PCI_PRODUCT_BROADCOM_BCM5752,
456 	  "Broadcom BCM5752 Gigabit Ethernet",
457 	  },
458 	{ PCI_VENDOR_BROADCOM,
459 	  PCI_PRODUCT_BROADCOM_BCM5752M,
460 	  "Broadcom BCM5752M Gigabit Ethernet",
461 	  },
462 	{ PCI_VENDOR_BROADCOM,
463 	  PCI_PRODUCT_BROADCOM_BCM5753,
464 	  "Broadcom BCM5753 Gigabit Ethernet",
465 	  },
466 	{ PCI_VENDOR_BROADCOM,
467 	  PCI_PRODUCT_BROADCOM_BCM5753F,
468 	  "Broadcom BCM5753F Gigabit Ethernet",
469 	  },
470 	{ PCI_VENDOR_BROADCOM,
471 	  PCI_PRODUCT_BROADCOM_BCM5753M,
472 	  "Broadcom BCM5753M Gigabit Ethernet",
473 	  },
474 	{ PCI_VENDOR_BROADCOM,
475 	  PCI_PRODUCT_BROADCOM_BCM5754,
476 	  "Broadcom BCM5754 Gigabit Ethernet",
477 	},
478 	{ PCI_VENDOR_BROADCOM,
479 	  PCI_PRODUCT_BROADCOM_BCM5754M,
480 	  "Broadcom BCM5754M Gigabit Ethernet",
481 	},
482 	{ PCI_VENDOR_BROADCOM,
483 	  PCI_PRODUCT_BROADCOM_BCM5755,
484 	  "Broadcom BCM5755 Gigabit Ethernet",
485 	},
486 	{ PCI_VENDOR_BROADCOM,
487 	  PCI_PRODUCT_BROADCOM_BCM5755M,
488 	  "Broadcom BCM5755M Gigabit Ethernet",
489 	},
490 	{ PCI_VENDOR_BROADCOM,
491 	  PCI_PRODUCT_BROADCOM_BCM5756,
492 	  "Broadcom BCM5756 Gigabit Ethernet",
493 	},
494 	{ PCI_VENDOR_BROADCOM,
495 	  PCI_PRODUCT_BROADCOM_BCM5761,
496 	  "Broadcom BCM5761 Gigabit Ethernet",
497 	},
498 	{ PCI_VENDOR_BROADCOM,
499 	  PCI_PRODUCT_BROADCOM_BCM5761E,
500 	  "Broadcom BCM5761E Gigabit Ethernet",
501 	},
502 	{ PCI_VENDOR_BROADCOM,
503 	  PCI_PRODUCT_BROADCOM_BCM5761S,
504 	  "Broadcom BCM5761S Gigabit Ethernet",
505 	},
506 	{ PCI_VENDOR_BROADCOM,
507 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
508 	  "Broadcom BCM5761SE Gigabit Ethernet",
509 	},
510 	{ PCI_VENDOR_BROADCOM,
511 	  PCI_PRODUCT_BROADCOM_BCM5764,
512 	  "Broadcom BCM5764 Gigabit Ethernet",
513 	  },
514 	{ PCI_VENDOR_BROADCOM,
515 	  PCI_PRODUCT_BROADCOM_BCM5780,
516 	  "Broadcom BCM5780 Gigabit Ethernet",
517 	  },
518 	{ PCI_VENDOR_BROADCOM,
519 	  PCI_PRODUCT_BROADCOM_BCM5780S,
520 	  "Broadcom BCM5780S Gigabit Ethernet",
521 	  },
522 	{ PCI_VENDOR_BROADCOM,
523 	  PCI_PRODUCT_BROADCOM_BCM5781,
524 	  "Broadcom BCM5781 Gigabit Ethernet",
525 	  },
526 	{ PCI_VENDOR_BROADCOM,
527 	  PCI_PRODUCT_BROADCOM_BCM5782,
528 	  "Broadcom BCM5782 Gigabit Ethernet",
529 	},
530 	{ PCI_VENDOR_BROADCOM,
531 	  PCI_PRODUCT_BROADCOM_BCM5784M,
532 	  "BCM5784M NetLink 1000baseT Ethernet",
533 	},
534 	{ PCI_VENDOR_BROADCOM,
535 	  PCI_PRODUCT_BROADCOM_BCM5785F,
536 	  "BCM5785F NetLink 10/100 Ethernet",
537 	},
538 	{ PCI_VENDOR_BROADCOM,
539 	  PCI_PRODUCT_BROADCOM_BCM5785G,
540 	  "BCM5785G NetLink 1000baseT Ethernet",
541 	},
542 	{ PCI_VENDOR_BROADCOM,
543 	  PCI_PRODUCT_BROADCOM_BCM5786,
544 	  "Broadcom BCM5786 Gigabit Ethernet",
545 	},
546 	{ PCI_VENDOR_BROADCOM,
547 	  PCI_PRODUCT_BROADCOM_BCM5787,
548 	  "Broadcom BCM5787 Gigabit Ethernet",
549 	},
550 	{ PCI_VENDOR_BROADCOM,
551 	  PCI_PRODUCT_BROADCOM_BCM5787F,
552 	  "Broadcom BCM5787F 10/100 Ethernet",
553 	},
554 	{ PCI_VENDOR_BROADCOM,
555 	  PCI_PRODUCT_BROADCOM_BCM5787M,
556 	  "Broadcom BCM5787M Gigabit Ethernet",
557 	},
558 	{ PCI_VENDOR_BROADCOM,
559 	  PCI_PRODUCT_BROADCOM_BCM5788,
560 	  "Broadcom BCM5788 Gigabit Ethernet",
561 	  },
562 	{ PCI_VENDOR_BROADCOM,
563 	  PCI_PRODUCT_BROADCOM_BCM5789,
564 	  "Broadcom BCM5789 Gigabit Ethernet",
565 	  },
566 	{ PCI_VENDOR_BROADCOM,
567 	  PCI_PRODUCT_BROADCOM_BCM5901,
568 	  "Broadcom BCM5901 Fast Ethernet",
569 	  },
570 	{ PCI_VENDOR_BROADCOM,
571 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
572 	  "Broadcom BCM5901A2 Fast Ethernet",
573 	  },
574 	{ PCI_VENDOR_BROADCOM,
575 	  PCI_PRODUCT_BROADCOM_BCM5903M,
576 	  "Broadcom BCM5903M Fast Ethernet",
577 	  },
578 	{ PCI_VENDOR_BROADCOM,
579 	  PCI_PRODUCT_BROADCOM_BCM5906,
580 	  "Broadcom BCM5906 Fast Ethernet",
581 	  },
582 	{ PCI_VENDOR_BROADCOM,
583 	  PCI_PRODUCT_BROADCOM_BCM5906M,
584 	  "Broadcom BCM5906M Fast Ethernet",
585 	  },
586 	{ PCI_VENDOR_BROADCOM,
587 	  PCI_PRODUCT_BROADCOM_BCM57760,
588 	  "Broadcom BCM57760 Fast Ethernet",
589 	  },
590 	{ PCI_VENDOR_BROADCOM,
591 	  PCI_PRODUCT_BROADCOM_BCM57761,
592 	  "Broadcom BCM57761 Fast Ethernet",
593 	  },
594 	{ PCI_VENDOR_BROADCOM,
595 	  PCI_PRODUCT_BROADCOM_BCM57762,
596 	  "Broadcom BCM57762 Gigabit Ethernet",
597 	  },
598 	{ PCI_VENDOR_BROADCOM,
599 	  PCI_PRODUCT_BROADCOM_BCM57765,
600 	  "Broadcom BCM57765 Fast Ethernet",
601 	  },
602 	{ PCI_VENDOR_BROADCOM,
603 	  PCI_PRODUCT_BROADCOM_BCM57766,
604 	  "Broadcom BCM57766 Fast Ethernet",
605 	  },
606 	{ PCI_VENDOR_BROADCOM,
607 	  PCI_PRODUCT_BROADCOM_BCM57780,
608 	  "Broadcom BCM57780 Fast Ethernet",
609 	  },
610 	{ PCI_VENDOR_BROADCOM,
611 	  PCI_PRODUCT_BROADCOM_BCM57781,
612 	  "Broadcom BCM57781 Fast Ethernet",
613 	  },
614 	{ PCI_VENDOR_BROADCOM,
615 	  PCI_PRODUCT_BROADCOM_BCM57782,
616 	  "Broadcom BCM57782 Fast Ethernet",
617 	  },
618 	{ PCI_VENDOR_BROADCOM,
619 	  PCI_PRODUCT_BROADCOM_BCM57785,
620 	  "Broadcom BCM57785 Fast Ethernet",
621 	  },
622 	{ PCI_VENDOR_BROADCOM,
623 	  PCI_PRODUCT_BROADCOM_BCM57786,
624 	  "Broadcom BCM57786 Fast Ethernet",
625 	  },
626 	{ PCI_VENDOR_BROADCOM,
627 	  PCI_PRODUCT_BROADCOM_BCM57788,
628 	  "Broadcom BCM57788 Fast Ethernet",
629 	  },
630 	{ PCI_VENDOR_BROADCOM,
631 	  PCI_PRODUCT_BROADCOM_BCM57790,
632 	  "Broadcom BCM57790 Fast Ethernet",
633 	  },
634 	{ PCI_VENDOR_BROADCOM,
635 	  PCI_PRODUCT_BROADCOM_BCM57791,
636 	  "Broadcom BCM57791 Fast Ethernet",
637 	  },
638 	{ PCI_VENDOR_BROADCOM,
639 	  PCI_PRODUCT_BROADCOM_BCM57795,
640 	  "Broadcom BCM57795 Fast Ethernet",
641 	  },
642 	{ PCI_VENDOR_SCHNEIDERKOCH,
643 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
644 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
645 	  },
646 	{ PCI_VENDOR_3COM,
647 	  PCI_PRODUCT_3COM_3C996,
648 	  "3Com 3c996 Gigabit Ethernet",
649 	  },
650 	{ PCI_VENDOR_FUJITSU4,
651 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
652 	  "Fujitsu PW008GE4 Gigabit Ethernet",
653 	  },
654 	{ PCI_VENDOR_FUJITSU4,
655 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
656 	  "Fujitsu PW008GE5 Gigabit Ethernet",
657 	  },
658 	{ PCI_VENDOR_FUJITSU4,
659 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
660 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
661 	  },
662 	{ 0,
663 	  0,
664 	  NULL },
665 };
666 
667 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
668 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
669 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
670 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
671 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
672 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
673 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
674 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
675 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
676 
677 static const struct bge_revision {
678 	uint32_t		br_chipid;
679 	const char		*br_name;
680 } bge_revisions[] = {
681 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
682 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
683 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
684 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
685 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
686 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
687 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
688 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
689 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
690 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
691 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
692 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
693 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
694 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
695 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
696 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
697 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
698 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
699 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
700 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
701 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
702 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
703 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
704 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
705 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
706 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
707 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
708 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
709 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
710 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
711 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
712 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
713 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
714 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
715 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
716 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
717 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
718 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
719 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
720 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
721 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
722 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
723 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
724 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
725 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
726 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
727 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
728 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
729 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
730 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
731 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
732 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
733 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
734 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
735 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
736 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
737 	/* 5754 and 5787 share the same ASIC ID */
738 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
739 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
740 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
741 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
742 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
743 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
744 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
745 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
746 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
747 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
748 
749 	{ 0, NULL }
750 };
751 
752 /*
753  * Some defaults for major revisions, so that newer steppings
754  * that we don't know about have a shot at working.
755  */
756 static const struct bge_revision bge_majorrevs[] = {
757 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
758 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
759 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
760 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
761 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
762 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
763 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
764 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
765 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
766 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
767 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
768 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
769 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
770 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
771 	/* 5754 and 5787 share the same ASIC ID */
772 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
773 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
774 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
775 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
776 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
777 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
778 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
779 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
780 
781 	{ 0, NULL }
782 };
783 
784 static int bge_allow_asf = 1;
785 
786 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
787     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
788 
789 static uint32_t
790 bge_readmem_ind(struct bge_softc *sc, int off)
791 {
792 	pcireg_t val;
793 
794 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
795 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
796 		return 0;
797 
798 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
799 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
800 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
801 	return val;
802 }
803 
804 static void
805 bge_writemem_ind(struct bge_softc *sc, int off, int val)
806 {
807 
808 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
809 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
810 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
811 }
812 
813 /*
814  * PCI Express only
815  */
816 static void
817 bge_set_max_readrq(struct bge_softc *sc)
818 {
819 	pcireg_t val;
820 
821 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
822 	    + PCIE_DCSR);
823 	val &= ~PCIE_DCSR_MAX_READ_REQ;
824 	switch (sc->bge_expmrq) {
825 	case 2048:
826 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
827 		break;
828 	case 4096:
829 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
830 		break;
831 	default:
832 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
833 		break;
834 	}
835 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
836 	    + PCIE_DCSR, val);
837 }
838 
839 #ifdef notdef
840 static uint32_t
841 bge_readreg_ind(struct bge_softc *sc, int off)
842 {
843 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
844 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
845 }
846 #endif
847 
848 static void
849 bge_writereg_ind(struct bge_softc *sc, int off, int val)
850 {
851 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
852 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
853 }
854 
855 static void
856 bge_writemem_direct(struct bge_softc *sc, int off, int val)
857 {
858 	CSR_WRITE_4(sc, off, val);
859 }
860 
861 static void
862 bge_writembx(struct bge_softc *sc, int off, int val)
863 {
864 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
865 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
866 
867 	CSR_WRITE_4(sc, off, val);
868 }
869 
870 static void
871 bge_writembx_flush(struct bge_softc *sc, int off, int val)
872 {
873 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
874 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
875 
876 	CSR_WRITE_4_FLUSH(sc, off, val);
877 }
878 
879 /*
880  * Clear all stale locks and select the lock for this driver instance.
881  */
882 void
883 bge_ape_lock_init(struct bge_softc *sc)
884 {
885 	struct pci_attach_args *pa = &(sc->bge_pa);
886 	uint32_t bit, regbase;
887 	int i;
888 
889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
890 		regbase = BGE_APE_LOCK_GRANT;
891 	else
892 		regbase = BGE_APE_PER_LOCK_GRANT;
893 
894 	/* Clear any stale locks. */
895 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
896 		switch (i) {
897 		case BGE_APE_LOCK_PHY0:
898 		case BGE_APE_LOCK_PHY1:
899 		case BGE_APE_LOCK_PHY2:
900 		case BGE_APE_LOCK_PHY3:
901 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
902 			break;
903 		default:
904 			if (pa->pa_function == 0)
905 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
906 			else
907 				bit = (1 << pa->pa_function);
908 		}
909 		APE_WRITE_4(sc, regbase + 4 * i, bit);
910 	}
911 
912 	/* Select the PHY lock based on the device's function number. */
913 	switch (pa->pa_function) {
914 	case 0:
915 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
916 		break;
917 	case 1:
918 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
919 		break;
920 	case 2:
921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
922 		break;
923 	case 3:
924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
925 		break;
926 	default:
927 		printf("%s: PHY lock not supported on function\n",
928 		    device_xname(sc->bge_dev));
929 		break;
930 	}
931 }
932 
933 /*
934  * Check for APE firmware, set flags, and print version info.
935  */
936 void
937 bge_ape_read_fw_ver(struct bge_softc *sc)
938 {
939 	const char *fwtype;
940 	uint32_t apedata, features;
941 
942 	/* Check for a valid APE signature in shared memory. */
943 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
944 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
945 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
946 		return;
947 	}
948 
949 	/* Check if APE firmware is running. */
950 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
951 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
952 		printf("%s: APE signature found but FW status not ready! "
953 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
954 		return;
955 	}
956 
957 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
958 
959 	/* Fetch the APE firwmare type and version. */
960 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
961 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
962 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
963 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
964 		fwtype = "NCSI";
965 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
966 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
967 		fwtype = "DASH";
968 	} else
969 		fwtype = "UNKN";
970 
971 	/* Print the APE firmware version. */
972 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
973 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
974 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
975 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
976 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
977 }
978 
979 int
980 bge_ape_lock(struct bge_softc *sc, int locknum)
981 {
982 	struct pci_attach_args *pa = &(sc->bge_pa);
983 	uint32_t bit, gnt, req, status;
984 	int i, off;
985 
986 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
987 		return (0);
988 
989 	/* Lock request/grant registers have different bases. */
990 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
991 		req = BGE_APE_LOCK_REQ;
992 		gnt = BGE_APE_LOCK_GRANT;
993 	} else {
994 		req = BGE_APE_PER_LOCK_REQ;
995 		gnt = BGE_APE_PER_LOCK_GRANT;
996 	}
997 
998 	off = 4 * locknum;
999 
1000 	switch (locknum) {
1001 	case BGE_APE_LOCK_GPIO:
1002 		/* Lock required when using GPIO. */
1003 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1004 			return (0);
1005 		if (pa->pa_function == 0)
1006 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1007 		else
1008 			bit = (1 << pa->pa_function);
1009 		break;
1010 	case BGE_APE_LOCK_GRC:
1011 		/* Lock required to reset the device. */
1012 		if (pa->pa_function == 0)
1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 		else
1015 			bit = (1 << pa->pa_function);
1016 		break;
1017 	case BGE_APE_LOCK_MEM:
1018 		/* Lock required when accessing certain APE memory. */
1019 		if (pa->pa_function == 0)
1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 		else
1022 			bit = (1 << pa->pa_function);
1023 		break;
1024 	case BGE_APE_LOCK_PHY0:
1025 	case BGE_APE_LOCK_PHY1:
1026 	case BGE_APE_LOCK_PHY2:
1027 	case BGE_APE_LOCK_PHY3:
1028 		/* Lock required when accessing PHYs. */
1029 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1030 		break;
1031 	default:
1032 		return (EINVAL);
1033 	}
1034 
1035 	/* Request a lock. */
1036 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1037 
1038 	/* Wait up to 1 second to acquire lock. */
1039 	for (i = 0; i < 20000; i++) {
1040 		status = APE_READ_4(sc, gnt + off);
1041 		if (status == bit)
1042 			break;
1043 		DELAY(50);
1044 	}
1045 
1046 	/* Handle any errors. */
1047 	if (status != bit) {
1048 		printf("%s: APE lock %d request failed! "
1049 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1050 		    device_xname(sc->bge_dev),
1051 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1052 		    status & 0xFFFF);
1053 		/* Revoke the lock request. */
1054 		APE_WRITE_4(sc, gnt + off, bit);
1055 		return (EBUSY);
1056 	}
1057 
1058 	return (0);
1059 }
1060 
1061 void
1062 bge_ape_unlock(struct bge_softc *sc, int locknum)
1063 {
1064 	struct pci_attach_args *pa = &(sc->bge_pa);
1065 	uint32_t bit, gnt;
1066 	int off;
1067 
1068 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1069 		return;
1070 
1071 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1072 		gnt = BGE_APE_LOCK_GRANT;
1073 	else
1074 		gnt = BGE_APE_PER_LOCK_GRANT;
1075 
1076 	off = 4 * locknum;
1077 
1078 	switch (locknum) {
1079 	case BGE_APE_LOCK_GPIO:
1080 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1081 			return;
1082 		if (pa->pa_function == 0)
1083 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1084 		else
1085 			bit = (1 << pa->pa_function);
1086 		break;
1087 	case BGE_APE_LOCK_GRC:
1088 		if (pa->pa_function == 0)
1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 		else
1091 			bit = (1 << pa->pa_function);
1092 		break;
1093 	case BGE_APE_LOCK_MEM:
1094 		if (pa->pa_function == 0)
1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 		else
1097 			bit = (1 << pa->pa_function);
1098 		break;
1099 	case BGE_APE_LOCK_PHY0:
1100 	case BGE_APE_LOCK_PHY1:
1101 	case BGE_APE_LOCK_PHY2:
1102 	case BGE_APE_LOCK_PHY3:
1103 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1104 		break;
1105 	default:
1106 		return;
1107 	}
1108 
1109 	/* Write and flush for consecutive bge_ape_lock() */
1110 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1111 }
1112 
1113 /*
1114  * Send an event to the APE firmware.
1115  */
1116 void
1117 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1118 {
1119 	uint32_t apedata;
1120 	int i;
1121 
1122 	/* NCSI does not support APE events. */
1123 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1124 		return;
1125 
1126 	/* Wait up to 1ms for APE to service previous event. */
1127 	for (i = 10; i > 0; i--) {
1128 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1129 			break;
1130 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1131 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1132 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1133 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1134 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1135 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1136 			break;
1137 		}
1138 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1139 		DELAY(100);
1140 	}
1141 	if (i == 0) {
1142 		printf("%s: APE event 0x%08x send timed out\n",
1143 		    device_xname(sc->bge_dev), event);
1144 	}
1145 }
1146 
1147 void
1148 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1149 {
1150 	uint32_t apedata, event;
1151 
1152 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1153 		return;
1154 
1155 	switch (kind) {
1156 	case BGE_RESET_START:
1157 		/* If this is the first load, clear the load counter. */
1158 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1159 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1160 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1161 		else {
1162 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1163 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1164 		}
1165 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1166 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1167 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1168 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1169 
1170 		/* Add some version info if bge(4) supports it. */
1171 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1172 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1173 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1174 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1175 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1176 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1178 		    BGE_APE_HOST_DRVR_STATE_START);
1179 		event = BGE_APE_EVENT_STATUS_STATE_START;
1180 		break;
1181 	case BGE_RESET_SHUTDOWN:
1182 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1183 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1184 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1185 		break;
1186 	case BGE_RESET_SUSPEND:
1187 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1188 		break;
1189 	default:
1190 		return;
1191 	}
1192 
1193 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1194 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1195 }
1196 
1197 static uint8_t
1198 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1199 {
1200 	uint32_t access, byte = 0;
1201 	int i;
1202 
1203 	/* Lock. */
1204 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1205 	for (i = 0; i < 8000; i++) {
1206 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1207 			break;
1208 		DELAY(20);
1209 	}
1210 	if (i == 8000)
1211 		return 1;
1212 
1213 	/* Enable access. */
1214 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1215 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1216 
1217 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1218 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1219 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1220 		DELAY(10);
1221 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1222 			DELAY(10);
1223 			break;
1224 		}
1225 	}
1226 
1227 	if (i == BGE_TIMEOUT * 10) {
1228 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1229 		return 1;
1230 	}
1231 
1232 	/* Get result. */
1233 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1234 
1235 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1236 
1237 	/* Disable access. */
1238 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1239 
1240 	/* Unlock. */
1241 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * Read a sequence of bytes from NVRAM.
1248  */
1249 static int
1250 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1251 {
1252 	int error = 0, i;
1253 	uint8_t byte = 0;
1254 
1255 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1256 		return 1;
1257 
1258 	for (i = 0; i < cnt; i++) {
1259 		error = bge_nvram_getbyte(sc, off + i, &byte);
1260 		if (error)
1261 			break;
1262 		*(dest + i) = byte;
1263 	}
1264 
1265 	return (error ? 1 : 0);
1266 }
1267 
1268 /*
1269  * Read a byte of data stored in the EEPROM at address 'addr.' The
1270  * BCM570x supports both the traditional bitbang interface and an
1271  * auto access interface for reading the EEPROM. We use the auto
1272  * access method.
1273  */
1274 static uint8_t
1275 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1276 {
1277 	int i;
1278 	uint32_t byte = 0;
1279 
1280 	/*
1281 	 * Enable use of auto EEPROM access so we can avoid
1282 	 * having to use the bitbang method.
1283 	 */
1284 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1285 
1286 	/* Reset the EEPROM, load the clock period. */
1287 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1288 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1289 	DELAY(20);
1290 
1291 	/* Issue the read EEPROM command. */
1292 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1293 
1294 	/* Wait for completion */
1295 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1296 		DELAY(10);
1297 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1298 			break;
1299 	}
1300 
1301 	if (i == BGE_TIMEOUT * 10) {
1302 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1303 		return 1;
1304 	}
1305 
1306 	/* Get result. */
1307 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1308 
1309 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1310 
1311 	return 0;
1312 }
1313 
1314 /*
1315  * Read a sequence of bytes from the EEPROM.
1316  */
1317 static int
1318 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1319 {
1320 	int error = 0, i;
1321 	uint8_t byte = 0;
1322 	char *dest = destv;
1323 
1324 	for (i = 0; i < cnt; i++) {
1325 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1326 		if (error)
1327 			break;
1328 		*(dest + i) = byte;
1329 	}
1330 
1331 	return (error ? 1 : 0);
1332 }
1333 
1334 static int
1335 bge_miibus_readreg(device_t dev, int phy, int reg)
1336 {
1337 	struct bge_softc *sc = device_private(dev);
1338 	uint32_t val;
1339 	uint32_t autopoll;
1340 	int i;
1341 
1342 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1343 		return 0;
1344 
1345 	/* Reading with autopolling on may trigger PCI errors */
1346 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1347 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1348 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1349 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1350 		DELAY(80);
1351 	}
1352 
1353 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1354 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1355 
1356 	for (i = 0; i < BGE_TIMEOUT; i++) {
1357 		delay(10);
1358 		val = CSR_READ_4(sc, BGE_MI_COMM);
1359 		if (!(val & BGE_MICOMM_BUSY)) {
1360 			DELAY(5);
1361 			val = CSR_READ_4(sc, BGE_MI_COMM);
1362 			break;
1363 		}
1364 	}
1365 
1366 	if (i == BGE_TIMEOUT) {
1367 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1368 		val = 0;
1369 		goto done;
1370 	}
1371 
1372 done:
1373 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1374 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1375 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1376 		DELAY(80);
1377 	}
1378 
1379 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1380 
1381 	if (val & BGE_MICOMM_READFAIL)
1382 		return 0;
1383 
1384 	return (val & 0xFFFF);
1385 }
1386 
1387 static void
1388 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1389 {
1390 	struct bge_softc *sc = device_private(dev);
1391 	uint32_t autopoll;
1392 	int i;
1393 
1394 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1395 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1396 		return;
1397 
1398 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1399 		return;
1400 
1401 	/* Reading with autopolling on may trigger PCI errors */
1402 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1403 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1404 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1405 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1406 		DELAY(80);
1407 	}
1408 
1409 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1410 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1411 
1412 	for (i = 0; i < BGE_TIMEOUT; i++) {
1413 		delay(10);
1414 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1415 			delay(5);
1416 			CSR_READ_4(sc, BGE_MI_COMM);
1417 			break;
1418 		}
1419 	}
1420 
1421 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1422 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1423 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1424 		delay(80);
1425 	}
1426 
1427 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1428 
1429 	if (i == BGE_TIMEOUT)
1430 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1431 }
1432 
1433 static void
1434 bge_miibus_statchg(struct ifnet *ifp)
1435 {
1436 	struct bge_softc *sc = ifp->if_softc;
1437 	struct mii_data *mii = &sc->bge_mii;
1438 	uint32_t mac_mode, rx_mode, tx_mode;
1439 
1440 	/*
1441 	 * Get flow control negotiation result.
1442 	 */
1443 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1444 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1445 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1446 
1447 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1448 	    mii->mii_media_status & IFM_ACTIVE &&
1449 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1450 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1451 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1452 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1453 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1454 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1455 
1456 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1457 		return;
1458 
1459 	/* Set the port mode (MII/GMII) to match the link speed. */
1460 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1461 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1462 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1463 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1464 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1465 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1466 		mac_mode |= BGE_PORTMODE_GMII;
1467 	else
1468 		mac_mode |= BGE_PORTMODE_MII;
1469 
1470 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1471 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1472 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1473 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1474 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1475 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1476 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1477 	} else
1478 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1479 
1480 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1481 	DELAY(40);
1482 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1483 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1484 }
1485 
1486 /*
1487  * Update rx threshold levels to values in a particular slot
1488  * of the interrupt-mitigation table bge_rx_threshes.
1489  */
1490 static void
1491 bge_set_thresh(struct ifnet *ifp, int lvl)
1492 {
1493 	struct bge_softc *sc = ifp->if_softc;
1494 	int s;
1495 
1496 	/* For now, just save the new Rx-intr thresholds and record
1497 	 * that a threshold update is pending.  Updating the hardware
1498 	 * registers here (even at splhigh()) is observed to
1499 	 * occasionaly cause glitches where Rx-interrupts are not
1500 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1501 	 */
1502 	s = splnet();
1503 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1504 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1505 	sc->bge_pending_rxintr_change = 1;
1506 	splx(s);
1507 }
1508 
1509 
1510 /*
1511  * Update Rx thresholds of all bge devices
1512  */
1513 static void
1514 bge_update_all_threshes(int lvl)
1515 {
1516 	struct ifnet *ifp;
1517 	const char * const namebuf = "bge";
1518 	int namelen;
1519 
1520 	if (lvl < 0)
1521 		lvl = 0;
1522 	else if (lvl >= NBGE_RX_THRESH)
1523 		lvl = NBGE_RX_THRESH - 1;
1524 
1525 	namelen = strlen(namebuf);
1526 	/*
1527 	 * Now search all the interfaces for this name/number
1528 	 */
1529 	IFNET_FOREACH(ifp) {
1530 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1531 		      continue;
1532 		/* We got a match: update if doing auto-threshold-tuning */
1533 		if (bge_auto_thresh)
1534 			bge_set_thresh(ifp, lvl);
1535 	}
1536 }
1537 
1538 /*
1539  * Handle events that have triggered interrupts.
1540  */
1541 static void
1542 bge_handle_events(struct bge_softc *sc)
1543 {
1544 
1545 	return;
1546 }
1547 
1548 /*
1549  * Memory management for jumbo frames.
1550  */
1551 
1552 static int
1553 bge_alloc_jumbo_mem(struct bge_softc *sc)
1554 {
1555 	char *ptr, *kva;
1556 	bus_dma_segment_t	seg;
1557 	int		i, rseg, state, error;
1558 	struct bge_jpool_entry   *entry;
1559 
1560 	state = error = 0;
1561 
1562 	/* Grab a big chunk o' storage. */
1563 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1564 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1565 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1566 		return ENOBUFS;
1567 	}
1568 
1569 	state = 1;
1570 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1571 	    BUS_DMA_NOWAIT)) {
1572 		aprint_error_dev(sc->bge_dev,
1573 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1574 		error = ENOBUFS;
1575 		goto out;
1576 	}
1577 
1578 	state = 2;
1579 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1580 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1581 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1582 		error = ENOBUFS;
1583 		goto out;
1584 	}
1585 
1586 	state = 3;
1587 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1588 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1589 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1590 		error = ENOBUFS;
1591 		goto out;
1592 	}
1593 
1594 	state = 4;
1595 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1596 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1597 
1598 	SLIST_INIT(&sc->bge_jfree_listhead);
1599 	SLIST_INIT(&sc->bge_jinuse_listhead);
1600 
1601 	/*
1602 	 * Now divide it up into 9K pieces and save the addresses
1603 	 * in an array.
1604 	 */
1605 	ptr = sc->bge_cdata.bge_jumbo_buf;
1606 	for (i = 0; i < BGE_JSLOTS; i++) {
1607 		sc->bge_cdata.bge_jslots[i] = ptr;
1608 		ptr += BGE_JLEN;
1609 		entry = malloc(sizeof(struct bge_jpool_entry),
1610 		    M_DEVBUF, M_NOWAIT);
1611 		if (entry == NULL) {
1612 			aprint_error_dev(sc->bge_dev,
1613 			    "no memory for jumbo buffer queue!\n");
1614 			error = ENOBUFS;
1615 			goto out;
1616 		}
1617 		entry->slot = i;
1618 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1619 				 entry, jpool_entries);
1620 	}
1621 out:
1622 	if (error != 0) {
1623 		switch (state) {
1624 		case 4:
1625 			bus_dmamap_unload(sc->bge_dmatag,
1626 			    sc->bge_cdata.bge_rx_jumbo_map);
1627 		case 3:
1628 			bus_dmamap_destroy(sc->bge_dmatag,
1629 			    sc->bge_cdata.bge_rx_jumbo_map);
1630 		case 2:
1631 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1632 		case 1:
1633 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1634 			break;
1635 		default:
1636 			break;
1637 		}
1638 	}
1639 
1640 	return error;
1641 }
1642 
1643 /*
1644  * Allocate a jumbo buffer.
1645  */
1646 static void *
1647 bge_jalloc(struct bge_softc *sc)
1648 {
1649 	struct bge_jpool_entry   *entry;
1650 
1651 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1652 
1653 	if (entry == NULL) {
1654 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1655 		return NULL;
1656 	}
1657 
1658 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1659 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1660 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1661 }
1662 
1663 /*
1664  * Release a jumbo buffer.
1665  */
1666 static void
1667 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1668 {
1669 	struct bge_jpool_entry *entry;
1670 	struct bge_softc *sc;
1671 	int i, s;
1672 
1673 	/* Extract the softc struct pointer. */
1674 	sc = (struct bge_softc *)arg;
1675 
1676 	if (sc == NULL)
1677 		panic("bge_jfree: can't find softc pointer!");
1678 
1679 	/* calculate the slot this buffer belongs to */
1680 
1681 	i = ((char *)buf
1682 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1683 
1684 	if ((i < 0) || (i >= BGE_JSLOTS))
1685 		panic("bge_jfree: asked to free buffer that we don't manage!");
1686 
1687 	s = splvm();
1688 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1689 	if (entry == NULL)
1690 		panic("bge_jfree: buffer not in use!");
1691 	entry->slot = i;
1692 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1693 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1694 
1695 	if (__predict_true(m != NULL))
1696   		pool_cache_put(mb_cache, m);
1697 	splx(s);
1698 }
1699 
1700 
1701 /*
1702  * Initialize a standard receive ring descriptor.
1703  */
1704 static int
1705 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1706     bus_dmamap_t dmamap)
1707 {
1708 	struct mbuf		*m_new = NULL;
1709 	struct bge_rx_bd	*r;
1710 	int			error;
1711 
1712 	if (dmamap == NULL) {
1713 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1714 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1715 		if (error != 0)
1716 			return error;
1717 	}
1718 
1719 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1720 
1721 	if (m == NULL) {
1722 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1723 		if (m_new == NULL)
1724 			return ENOBUFS;
1725 
1726 		MCLGET(m_new, M_DONTWAIT);
1727 		if (!(m_new->m_flags & M_EXT)) {
1728 			m_freem(m_new);
1729 			return ENOBUFS;
1730 		}
1731 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1732 
1733 	} else {
1734 		m_new = m;
1735 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1736 		m_new->m_data = m_new->m_ext.ext_buf;
1737 	}
1738 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1739 	    m_adj(m_new, ETHER_ALIGN);
1740 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1741 	    BUS_DMA_READ|BUS_DMA_NOWAIT)) {
1742 		m_freem(m_new);
1743 		return ENOBUFS;
1744 	}
1745 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1746 	    BUS_DMASYNC_PREREAD);
1747 
1748 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1749 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1750 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1751 	r->bge_flags = BGE_RXBDFLAG_END;
1752 	r->bge_len = m_new->m_len;
1753 	r->bge_idx = i;
1754 
1755 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1756 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1757 		i * sizeof (struct bge_rx_bd),
1758 	    sizeof (struct bge_rx_bd),
1759 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1760 
1761 	return 0;
1762 }
1763 
1764 /*
1765  * Initialize a jumbo receive ring descriptor. This allocates
1766  * a jumbo buffer from the pool managed internally by the driver.
1767  */
1768 static int
1769 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1770 {
1771 	struct mbuf *m_new = NULL;
1772 	struct bge_rx_bd *r;
1773 	void *buf = NULL;
1774 
1775 	if (m == NULL) {
1776 
1777 		/* Allocate the mbuf. */
1778 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1779 		if (m_new == NULL)
1780 			return ENOBUFS;
1781 
1782 		/* Allocate the jumbo buffer */
1783 		buf = bge_jalloc(sc);
1784 		if (buf == NULL) {
1785 			m_freem(m_new);
1786 			aprint_error_dev(sc->bge_dev,
1787 			    "jumbo allocation failed -- packet dropped!\n");
1788 			return ENOBUFS;
1789 		}
1790 
1791 		/* Attach the buffer to the mbuf. */
1792 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1793 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1794 		    bge_jfree, sc);
1795 		m_new->m_flags |= M_EXT_RW;
1796 	} else {
1797 		m_new = m;
1798 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1799 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1800 	}
1801 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1802 	    m_adj(m_new, ETHER_ALIGN);
1803 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1804 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1805 	    BUS_DMASYNC_PREREAD);
1806 	/* Set up the descriptor. */
1807 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1808 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1809 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1810 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1811 	r->bge_len = m_new->m_len;
1812 	r->bge_idx = i;
1813 
1814 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1815 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1816 		i * sizeof (struct bge_rx_bd),
1817 	    sizeof (struct bge_rx_bd),
1818 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1819 
1820 	return 0;
1821 }
1822 
1823 /*
1824  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1825  * that's 1MB or memory, which is a lot. For now, we fill only the first
1826  * 256 ring entries and hope that our CPU is fast enough to keep up with
1827  * the NIC.
1828  */
1829 static int
1830 bge_init_rx_ring_std(struct bge_softc *sc)
1831 {
1832 	int i;
1833 
1834 	if (sc->bge_flags & BGEF_RXRING_VALID)
1835 		return 0;
1836 
1837 	for (i = 0; i < BGE_SSLOTS; i++) {
1838 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1839 			return ENOBUFS;
1840 	}
1841 
1842 	sc->bge_std = i - 1;
1843 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1844 
1845 	sc->bge_flags |= BGEF_RXRING_VALID;
1846 
1847 	return 0;
1848 }
1849 
1850 static void
1851 bge_free_rx_ring_std(struct bge_softc *sc)
1852 {
1853 	int i;
1854 
1855 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1856 		return;
1857 
1858 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1859 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1860 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1861 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1862 			bus_dmamap_destroy(sc->bge_dmatag,
1863 			    sc->bge_cdata.bge_rx_std_map[i]);
1864 		}
1865 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1866 		    sizeof(struct bge_rx_bd));
1867 	}
1868 
1869 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1870 }
1871 
1872 static int
1873 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1874 {
1875 	int i;
1876 	volatile struct bge_rcb *rcb;
1877 
1878 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1879 		return 0;
1880 
1881 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1882 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1883 			return ENOBUFS;
1884 	}
1885 
1886 	sc->bge_jumbo = i - 1;
1887 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1888 
1889 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1890 	rcb->bge_maxlen_flags = 0;
1891 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1892 
1893 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1894 
1895 	return 0;
1896 }
1897 
1898 static void
1899 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1900 {
1901 	int i;
1902 
1903 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1904 		return;
1905 
1906 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1907 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1908 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1909 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1910 		}
1911 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1912 		    sizeof(struct bge_rx_bd));
1913 	}
1914 
1915 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1916 }
1917 
1918 static void
1919 bge_free_tx_ring(struct bge_softc *sc)
1920 {
1921 	int i;
1922 	struct txdmamap_pool_entry *dma;
1923 
1924 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1925 		return;
1926 
1927 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1928 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1929 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1930 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1931 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1932 					    link);
1933 			sc->txdma[i] = 0;
1934 		}
1935 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1936 		    sizeof(struct bge_tx_bd));
1937 	}
1938 
1939 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1940 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1941 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1942 		free(dma, M_DEVBUF);
1943 	}
1944 
1945 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1946 }
1947 
1948 static int
1949 bge_init_tx_ring(struct bge_softc *sc)
1950 {
1951 	struct ifnet *ifp = &sc->ethercom.ec_if;
1952 	int i;
1953 	bus_dmamap_t dmamap;
1954 	bus_size_t maxsegsz;
1955 	struct txdmamap_pool_entry *dma;
1956 
1957 	if (sc->bge_flags & BGEF_TXRING_VALID)
1958 		return 0;
1959 
1960 	sc->bge_txcnt = 0;
1961 	sc->bge_tx_saved_considx = 0;
1962 
1963 	/* Initialize transmit producer index for host-memory send ring. */
1964 	sc->bge_tx_prodidx = 0;
1965 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1966 	/* 5700 b2 errata */
1967 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1968 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1969 
1970 	/* NIC-memory send ring not used; initialize to zero. */
1971 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1972 	/* 5700 b2 errata */
1973 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1974 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1975 
1976 	/* Limit DMA segment size for some chips */
1977 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1978 	    (ifp->if_mtu <= ETHERMTU))
1979 		maxsegsz = 2048;
1980 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1981 		maxsegsz = 4096;
1982 	else
1983 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1984 	SLIST_INIT(&sc->txdma_list);
1985 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1986 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1987 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1988 		    &dmamap))
1989 			return ENOBUFS;
1990 		if (dmamap == NULL)
1991 			panic("dmamap NULL in bge_init_tx_ring");
1992 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1993 		if (dma == NULL) {
1994 			aprint_error_dev(sc->bge_dev,
1995 			    "can't alloc txdmamap_pool_entry\n");
1996 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1997 			return ENOMEM;
1998 		}
1999 		dma->dmamap = dmamap;
2000 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2001 	}
2002 
2003 	sc->bge_flags |= BGEF_TXRING_VALID;
2004 
2005 	return 0;
2006 }
2007 
2008 static void
2009 bge_setmulti(struct bge_softc *sc)
2010 {
2011 	struct ethercom		*ac = &sc->ethercom;
2012 	struct ifnet		*ifp = &ac->ec_if;
2013 	struct ether_multi	*enm;
2014 	struct ether_multistep  step;
2015 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2016 	uint32_t		h;
2017 	int			i;
2018 
2019 	if (ifp->if_flags & IFF_PROMISC)
2020 		goto allmulti;
2021 
2022 	/* Now program new ones. */
2023 	ETHER_FIRST_MULTI(step, ac, enm);
2024 	while (enm != NULL) {
2025 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2026 			/*
2027 			 * We must listen to a range of multicast addresses.
2028 			 * For now, just accept all multicasts, rather than
2029 			 * trying to set only those filter bits needed to match
2030 			 * the range.  (At this time, the only use of address
2031 			 * ranges is for IP multicast routing, for which the
2032 			 * range is big enough to require all bits set.)
2033 			 */
2034 			goto allmulti;
2035 		}
2036 
2037 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2038 
2039 		/* Just want the 7 least-significant bits. */
2040 		h &= 0x7f;
2041 
2042 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2043 		ETHER_NEXT_MULTI(step, enm);
2044 	}
2045 
2046 	ifp->if_flags &= ~IFF_ALLMULTI;
2047 	goto setit;
2048 
2049  allmulti:
2050 	ifp->if_flags |= IFF_ALLMULTI;
2051 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2052 
2053  setit:
2054 	for (i = 0; i < 4; i++)
2055 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2056 }
2057 
2058 static void
2059 bge_sig_pre_reset(struct bge_softc *sc, int type)
2060 {
2061 
2062 	/*
2063 	 * Some chips don't like this so only do this if ASF is enabled
2064 	 */
2065 	if (sc->bge_asf_mode)
2066 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2067 
2068 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2069 		switch (type) {
2070 		case BGE_RESET_START:
2071 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2072 			    BGE_FW_DRV_STATE_START);
2073 			break;
2074 		case BGE_RESET_SHUTDOWN:
2075 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 			    BGE_FW_DRV_STATE_UNLOAD);
2077 			break;
2078 		case BGE_RESET_SUSPEND:
2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 			    BGE_FW_DRV_STATE_SUSPEND);
2081 			break;
2082 		}
2083 	}
2084 
2085 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2086 		bge_ape_driver_state_change(sc, type);
2087 }
2088 
2089 static void
2090 bge_sig_post_reset(struct bge_softc *sc, int type)
2091 {
2092 
2093 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2094 		switch (type) {
2095 		case BGE_RESET_START:
2096 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2097 			    BGE_FW_DRV_STATE_START_DONE);
2098 			/* START DONE */
2099 			break;
2100 		case BGE_RESET_SHUTDOWN:
2101 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2102 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2103 			break;
2104 		}
2105 	}
2106 
2107 	if (type == BGE_RESET_SHUTDOWN)
2108 		bge_ape_driver_state_change(sc, type);
2109 }
2110 
2111 static void
2112 bge_sig_legacy(struct bge_softc *sc, int type)
2113 {
2114 
2115 	if (sc->bge_asf_mode) {
2116 		switch (type) {
2117 		case BGE_RESET_START:
2118 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2119 			    BGE_FW_DRV_STATE_START);
2120 			break;
2121 		case BGE_RESET_SHUTDOWN:
2122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 			    BGE_FW_DRV_STATE_UNLOAD);
2124 			break;
2125 		}
2126 	}
2127 }
2128 
2129 static void
2130 bge_wait_for_event_ack(struct bge_softc *sc)
2131 {
2132 	int i;
2133 
2134 	/* wait up to 2500usec */
2135 	for (i = 0; i < 250; i++) {
2136 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2137 			BGE_RX_CPU_DRV_EVENT))
2138 			break;
2139 		DELAY(10);
2140 	}
2141 }
2142 
2143 static void
2144 bge_stop_fw(struct bge_softc *sc)
2145 {
2146 
2147 	if (sc->bge_asf_mode) {
2148 		bge_wait_for_event_ack(sc);
2149 
2150 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2151 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2152 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2153 
2154 		bge_wait_for_event_ack(sc);
2155 	}
2156 }
2157 
2158 static int
2159 bge_poll_fw(struct bge_softc *sc)
2160 {
2161 	uint32_t val;
2162 	int i;
2163 
2164 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2165 		for (i = 0; i < BGE_TIMEOUT; i++) {
2166 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2167 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2168 				break;
2169 			DELAY(100);
2170 		}
2171 		if (i >= BGE_TIMEOUT) {
2172 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2173 			return -1;
2174 		}
2175 	} else {
2176 		/*
2177 		 * Poll the value location we just wrote until
2178 		 * we see the 1's complement of the magic number.
2179 		 * This indicates that the firmware initialization
2180 		 * is complete.
2181 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2182 		 */
2183 		for (i = 0; i < BGE_TIMEOUT; i++) {
2184 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2185 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2186 				break;
2187 			DELAY(10);
2188 		}
2189 
2190 		if ((i >= BGE_TIMEOUT)
2191 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
2192 			aprint_error_dev(sc->bge_dev,
2193 			    "firmware handshake timed out, val = %x\n", val);
2194 			return -1;
2195 		}
2196 	}
2197 
2198 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2199 		/* tg3 says we have to wait extra time */
2200 		delay(10 * 1000);
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 int
2207 bge_phy_addr(struct bge_softc *sc)
2208 {
2209 	struct pci_attach_args *pa = &(sc->bge_pa);
2210 	int phy_addr = 1;
2211 
2212 	/*
2213 	 * PHY address mapping for various devices.
2214 	 *
2215 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2216 	 * ---------+-------+-------+-------+-------+
2217 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2218 	 * BCM5704  |   1   |   X   |   1   |   X   |
2219 	 * BCM5717  |   1   |   8   |   2   |   9   |
2220 	 * BCM5719  |   1   |   8   |   2   |   9   |
2221 	 * BCM5720  |   1   |   8   |   2   |   9   |
2222 	 *
2223 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2224 	 * ---------+-------+-------+-------+-------+
2225 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2226 	 * BCM5704  |   X   |   X   |   X   |   X   |
2227 	 * BCM5717  |   X   |   X   |   X   |   X   |
2228 	 * BCM5719  |   3   |   10  |   4   |   11  |
2229 	 * BCM5720  |   X   |   X   |   X   |   X   |
2230 	 *
2231 	 * Other addresses may respond but they are not
2232 	 * IEEE compliant PHYs and should be ignored.
2233 	 */
2234 	switch (BGE_ASICREV(sc->bge_chipid)) {
2235 	case BGE_ASICREV_BCM5717:
2236 	case BGE_ASICREV_BCM5719:
2237 	case BGE_ASICREV_BCM5720:
2238 		phy_addr = pa->pa_function;
2239 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2240 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2241 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2242 		} else {
2243 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2244 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2245 		}
2246 	}
2247 
2248 	return phy_addr;
2249 }
2250 
2251 /*
2252  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2253  * self-test results.
2254  */
2255 static int
2256 bge_chipinit(struct bge_softc *sc)
2257 {
2258 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2259 	int i;
2260 
2261 	/* Set endianness before we access any non-PCI registers. */
2262 	misc_ctl = BGE_INIT;
2263 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
2264 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2265 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 	    misc_ctl);
2267 
2268 	/*
2269 	 * Clear the MAC statistics block in the NIC's
2270 	 * internal memory.
2271 	 */
2272 	for (i = BGE_STATS_BLOCK;
2273 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275 
2276 	for (i = BGE_STATUS_BLOCK;
2277 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279 
2280 	/* 5717 workaround from tg3 */
2281 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 		/* Save */
2283 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284 
2285 		/* Temporary modify MODE_CTL to control TLP */
2286 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288 
2289 		/* Control TLP */
2290 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 		    BGE_TLP_PHYCTL1);
2292 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294 
2295 		/* Restore */
2296 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 	}
2298 
2299 	if (BGE_IS_57765_FAMILY(sc)) {
2300 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 			/* Save */
2302 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303 
2304 			/* Temporary modify MODE_CTL to control TLP */
2305 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2308 
2309 			/* Control TLP */
2310 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 			    BGE_TLP_PHYCTL5);
2312 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314 
2315 			/* Restore */
2316 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 		}
2318 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322 
2323 			/* Save */
2324 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325 
2326 			/* Temporary modify MODE_CTL to control TLP */
2327 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2330 
2331 			/* Control TLP */
2332 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 			    BGE_TLP_FTSMAX);
2334 			reg &= ~BGE_TLP_FTSMAX_MSK;
2335 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 			    reg | BGE_TLP_FTSMAX_VAL);
2337 
2338 			/* Restore */
2339 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 		}
2341 
2342 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 	}
2347 
2348 	/* Set up the PCI DMA control register. */
2349 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 	if (sc->bge_flags & BGEF_PCIE) {
2351 		/* Read watermark not used, 128 bytes for write. */
2352 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 		    device_xname(sc->bge_dev)));
2354 		if (sc->bge_mps >= 256)
2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 		else
2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 	} else if (sc->bge_flags & BGEF_PCIX) {
2359 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 		    device_xname(sc->bge_dev)));
2361 		/* PCI-X bus */
2362 		if (BGE_IS_5714_FAMILY(sc)) {
2363 			/* 256 bytes for read and write. */
2364 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366 
2367 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 			else
2370 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2372 			/*
2373 			 * In the BCM5703, the DMA read watermark should
2374 			 * be set to less than or equal to the maximum
2375 			 * memory read byte count of the PCI-X command
2376 			 * register.
2377 			 */
2378 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2379 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2380 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2381 			/* 1536 bytes for read, 384 bytes for write. */
2382 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2383 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2384 		} else {
2385 			/* 384 bytes for read and write. */
2386 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2387 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2388 			    (0x0F);
2389 		}
2390 
2391 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2393 			uint32_t tmp;
2394 
2395 			/* Set ONEDMA_ATONCE for hardware workaround. */
2396 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2397 			if (tmp == 6 || tmp == 7)
2398 				dma_rw_ctl |=
2399 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2400 
2401 			/* Set PCI-X DMA write workaround. */
2402 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2403 		}
2404 	} else {
2405 		/* Conventional PCI bus: 256 bytes for read and write. */
2406 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2407 		    device_xname(sc->bge_dev)));
2408 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2409 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2410 
2411 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2412 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2413 			dma_rw_ctl |= 0x0F;
2414 	}
2415 
2416 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2417 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2418 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2419 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2420 
2421 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2422 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2423 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2424 
2425 	if (BGE_IS_57765_PLUS(sc)) {
2426 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2427 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2428 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2429 
2430 		/*
2431 		 * Enable HW workaround for controllers that misinterpret
2432 		 * a status tag update and leave interrupts permanently
2433 		 * disabled.
2434 		 */
2435 		if (!BGE_IS_57765_FAMILY(sc) &&
2436 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2437 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2438 	}
2439 
2440 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2441 	    dma_rw_ctl);
2442 
2443 	/*
2444 	 * Set up general mode register.
2445 	 */
2446 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2447 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2448 		/* Retain Host-2-BMC settings written by APE firmware. */
2449 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2450 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2451 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2452 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2453 	}
2454 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2455 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2456 
2457 	/*
2458 	 * BCM5701 B5 have a bug causing data corruption when using
2459 	 * 64-bit DMA reads, which can be terminated early and then
2460 	 * completed later as 32-bit accesses, in combination with
2461 	 * certain bridges.
2462 	 */
2463 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2464 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2465 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2466 
2467 	/*
2468 	 * Tell the firmware the driver is running
2469 	 */
2470 	if (sc->bge_asf_mode & ASF_STACKUP)
2471 		mode_ctl |= BGE_MODECTL_STACKUP;
2472 
2473 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2474 
2475 	/*
2476 	 * Disable memory write invalidate.  Apparently it is not supported
2477 	 * properly by these devices.
2478 	 */
2479 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2480 		   PCI_COMMAND_INVALIDATE_ENABLE);
2481 
2482 #ifdef __brokenalpha__
2483 	/*
2484 	 * Must insure that we do not cross an 8K (bytes) boundary
2485 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2486 	 * restriction on some ALPHA platforms with early revision
2487 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2488 	 */
2489 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2490 #endif
2491 
2492 	/* Set the timer prescaler (always 66MHz) */
2493 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2494 
2495 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2496 		DELAY(40);	/* XXX */
2497 
2498 		/* Put PHY into ready state */
2499 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2500 		DELAY(40);
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int
2507 bge_blockinit(struct bge_softc *sc)
2508 {
2509 	volatile struct bge_rcb	 *rcb;
2510 	bus_size_t rcb_addr;
2511 	struct ifnet *ifp = &sc->ethercom.ec_if;
2512 	bge_hostaddr taddr;
2513 	uint32_t	dmactl, mimode, val;
2514 	int		i, limit;
2515 
2516 	/*
2517 	 * Initialize the memory window pointer register so that
2518 	 * we can access the first 32K of internal NIC RAM. This will
2519 	 * allow us to set up the TX send ring RCBs and the RX return
2520 	 * ring RCBs, plus other things which live in NIC memory.
2521 	 */
2522 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2523 
2524 	if (!BGE_IS_5705_PLUS(sc)) {
2525 		/* 57XX step 33 */
2526 		/* Configure mbuf memory pool */
2527 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2528 		    BGE_BUFFPOOL_1);
2529 
2530 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2531 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2532 		else
2533 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2534 
2535 		/* 57XX step 34 */
2536 		/* Configure DMA resource pool */
2537 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2538 		    BGE_DMA_DESCRIPTORS);
2539 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2540 	}
2541 
2542 	/* 5718 step 11, 57XX step 35 */
2543 	/*
2544 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2545 	 * recommend these.
2546 	 */
2547 	if (BGE_IS_5717_PLUS(sc)) {
2548 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2549 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2550 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2551 	} else if (BGE_IS_5705_PLUS(sc)) {
2552 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2553 
2554 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2555 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2556 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2557 		} else {
2558 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2559 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2560 		}
2561 	} else {
2562 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2563 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2564 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2565 	}
2566 
2567 	/* 57XX step 36 */
2568 	/* Configure DMA resource watermarks */
2569 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2570 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2571 
2572 	/* 5718 step 13, 57XX step 38 */
2573 	/* Enable buffer manager */
2574 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2575 	/*
2576 	 * Change the arbitration algorithm of TXMBUF read request to
2577 	 * round-robin instead of priority based for BCM5719.  When
2578 	 * TXFIFO is almost empty, RDMA will hold its request until
2579 	 * TXFIFO is not almost empty.
2580 	 */
2581 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2582 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2583 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2584 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2585 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2586 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2587 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2588 
2589 	/* 57XX step 39 */
2590 	/* Poll for buffer manager start indication */
2591 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2592 		DELAY(10);
2593 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2594 			break;
2595 	}
2596 
2597 	if (i == BGE_TIMEOUT * 2) {
2598 		aprint_error_dev(sc->bge_dev,
2599 		    "buffer manager failed to start\n");
2600 		return ENXIO;
2601 	}
2602 
2603 	/* 57XX step 40 */
2604 	/* Enable flow-through queues */
2605 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2606 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2607 
2608 	/* Wait until queue initialization is complete */
2609 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2610 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2611 			break;
2612 		DELAY(10);
2613 	}
2614 
2615 	if (i == BGE_TIMEOUT * 2) {
2616 		aprint_error_dev(sc->bge_dev,
2617 		    "flow-through queue init failed\n");
2618 		return ENXIO;
2619 	}
2620 
2621 	/*
2622 	 * Summary of rings supported by the controller:
2623 	 *
2624 	 * Standard Receive Producer Ring
2625 	 * - This ring is used to feed receive buffers for "standard"
2626 	 *   sized frames (typically 1536 bytes) to the controller.
2627 	 *
2628 	 * Jumbo Receive Producer Ring
2629 	 * - This ring is used to feed receive buffers for jumbo sized
2630 	 *   frames (i.e. anything bigger than the "standard" frames)
2631 	 *   to the controller.
2632 	 *
2633 	 * Mini Receive Producer Ring
2634 	 * - This ring is used to feed receive buffers for "mini"
2635 	 *   sized frames to the controller.
2636 	 * - This feature required external memory for the controller
2637 	 *   but was never used in a production system.  Should always
2638 	 *   be disabled.
2639 	 *
2640 	 * Receive Return Ring
2641 	 * - After the controller has placed an incoming frame into a
2642 	 *   receive buffer that buffer is moved into a receive return
2643 	 *   ring.  The driver is then responsible to passing the
2644 	 *   buffer up to the stack.  Many versions of the controller
2645 	 *   support multiple RR rings.
2646 	 *
2647 	 * Send Ring
2648 	 * - This ring is used for outgoing frames.  Many versions of
2649 	 *   the controller support multiple send rings.
2650 	 */
2651 
2652 	/* 5718 step 15, 57XX step 41 */
2653 	/* Initialize the standard RX ring control block */
2654 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2655 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2656 	/* 5718 step 16 */
2657 	if (BGE_IS_57765_PLUS(sc)) {
2658 		/*
2659 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2660 		 * Bits 15-2 : Maximum RX frame size
2661 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2662 		 * Bit 0     : Reserved
2663 		 */
2664 		rcb->bge_maxlen_flags =
2665 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2666 	} else if (BGE_IS_5705_PLUS(sc)) {
2667 		/*
2668 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2669 		 * Bits 15-2 : Reserved (should be 0)
2670 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2671 		 * Bit 0     : Reserved
2672 		 */
2673 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2674 	} else {
2675 		/*
2676 		 * Ring size is always XXX entries
2677 		 * Bits 31-16: Maximum RX frame size
2678 		 * Bits 15-2 : Reserved (should be 0)
2679 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2680 		 * Bit 0     : Reserved
2681 		 */
2682 		rcb->bge_maxlen_flags =
2683 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2684 	}
2685 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2686 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2687 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2688 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2689 	else
2690 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2691 	/* Write the standard receive producer ring control block. */
2692 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2693 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2694 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2695 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2696 
2697 	/* Reset the standard receive producer ring producer index. */
2698 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2699 
2700 	/* 57XX step 42 */
2701 	/*
2702 	 * Initialize the jumbo RX ring control block
2703 	 * We set the 'ring disabled' bit in the flags
2704 	 * field until we're actually ready to start
2705 	 * using this ring (i.e. once we set the MTU
2706 	 * high enough to require it).
2707 	 */
2708 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2709 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2710 		BGE_HOSTADDR(rcb->bge_hostaddr,
2711 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2712 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2713 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2714 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2715 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2716 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2717 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2718 		else
2719 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2720 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2721 		    rcb->bge_hostaddr.bge_addr_hi);
2722 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2723 		    rcb->bge_hostaddr.bge_addr_lo);
2724 		/* Program the jumbo receive producer ring RCB parameters. */
2725 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2726 		    rcb->bge_maxlen_flags);
2727 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2728 		/* Reset the jumbo receive producer ring producer index. */
2729 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2730 	}
2731 
2732 	/* 57XX step 43 */
2733 	/* Disable the mini receive producer ring RCB. */
2734 	if (BGE_IS_5700_FAMILY(sc)) {
2735 		/* Set up dummy disabled mini ring RCB */
2736 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2737 		rcb->bge_maxlen_flags =
2738 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2739 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2740 		    rcb->bge_maxlen_flags);
2741 		/* Reset the mini receive producer ring producer index. */
2742 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2743 
2744 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2745 		    offsetof(struct bge_ring_data, bge_info),
2746 		    sizeof (struct bge_gib),
2747 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2748 	}
2749 
2750 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2751 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2752 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2753 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2754 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2755 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2756 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2757 	}
2758 	/* 5718 step 14, 57XX step 44 */
2759 	/*
2760 	 * The BD ring replenish thresholds control how often the
2761 	 * hardware fetches new BD's from the producer rings in host
2762 	 * memory.  Setting the value too low on a busy system can
2763 	 * starve the hardware and recue the throughpout.
2764 	 *
2765 	 * Set the BD ring replenish thresholds. The recommended
2766 	 * values are 1/8th the number of descriptors allocated to
2767 	 * each ring, but since we try to avoid filling the entire
2768 	 * ring we set these to the minimal value of 8.  This needs to
2769 	 * be done on several of the supported chip revisions anyway,
2770 	 * to work around HW bugs.
2771 	 */
2772 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2773 	if (BGE_IS_JUMBO_CAPABLE(sc))
2774 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2775 
2776 	/* 5718 step 18 */
2777 	if (BGE_IS_5717_PLUS(sc)) {
2778 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2779 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2780 	}
2781 
2782 	/* 57XX step 45 */
2783 	/*
2784 	 * Disable all send rings by setting the 'ring disabled' bit
2785 	 * in the flags field of all the TX send ring control blocks,
2786 	 * located in NIC memory.
2787 	 */
2788 	if (BGE_IS_5700_FAMILY(sc)) {
2789 		/* 5700 to 5704 had 16 send rings. */
2790 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2791 	} else if (BGE_IS_5717_PLUS(sc)) {
2792 		limit = BGE_TX_RINGS_5717_MAX;
2793 	} else if (BGE_IS_57765_FAMILY(sc)) {
2794 		limit = BGE_TX_RINGS_57765_MAX;
2795 	} else
2796 		limit = 1;
2797 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2798 	for (i = 0; i < limit; i++) {
2799 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2800 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2801 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2802 		rcb_addr += sizeof(struct bge_rcb);
2803 	}
2804 
2805 	/* 57XX step 46 and 47 */
2806 	/* Configure send ring RCB 0 (we use only the first ring) */
2807 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2808 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2809 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2810 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2811 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2812 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2813 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2814 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2815 	else
2816 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2817 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2818 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2819 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2820 
2821 	/* 57XX step 48 */
2822 	/*
2823 	 * Disable all receive return rings by setting the
2824 	 * 'ring diabled' bit in the flags field of all the receive
2825 	 * return ring control blocks, located in NIC memory.
2826 	 */
2827 	if (BGE_IS_5717_PLUS(sc)) {
2828 		/* Should be 17, use 16 until we get an SRAM map. */
2829 		limit = 16;
2830 	} else if (BGE_IS_5700_FAMILY(sc))
2831 		limit = BGE_RX_RINGS_MAX;
2832 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2833 	    BGE_IS_57765_FAMILY(sc))
2834 		limit = 4;
2835 	else
2836 		limit = 1;
2837 	/* Disable all receive return rings */
2838 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2839 	for (i = 0; i < limit; i++) {
2840 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2841 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2842 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2843 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2844 			BGE_RCB_FLAG_RING_DISABLED));
2845 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2846 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2847 		    (i * (sizeof(uint64_t))), 0);
2848 		rcb_addr += sizeof(struct bge_rcb);
2849 	}
2850 
2851 	/* 57XX step 49 */
2852 	/*
2853 	 * Set up receive return ring 0.  Note that the NIC address
2854 	 * for RX return rings is 0x0.  The return rings live entirely
2855 	 * within the host, so the nicaddr field in the RCB isn't used.
2856 	 */
2857 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2858 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2859 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2860 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2861 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2862 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2863 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2864 
2865 	/* 5718 step 24, 57XX step 53 */
2866 	/* Set random backoff seed for TX */
2867 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2868 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2869 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2870 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2871 	    BGE_TX_BACKOFF_SEED_MASK);
2872 
2873 	/* 5718 step 26, 57XX step 55 */
2874 	/* Set inter-packet gap */
2875 	val = 0x2620;
2876 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2877 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2878 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2879 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2880 
2881 	/* 5718 step 27, 57XX step 56 */
2882 	/*
2883 	 * Specify which ring to use for packets that don't match
2884 	 * any RX rules.
2885 	 */
2886 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2887 
2888 	/* 5718 step 28, 57XX step 57 */
2889 	/*
2890 	 * Configure number of RX lists. One interrupt distribution
2891 	 * list, sixteen active lists, one bad frames class.
2892 	 */
2893 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2894 
2895 	/* 5718 step 29, 57XX step 58 */
2896 	/* Inialize RX list placement stats mask. */
2897 	if (BGE_IS_575X_PLUS(sc)) {
2898 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2899 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2900 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2901 	} else
2902 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2903 
2904 	/* 5718 step 30, 57XX step 59 */
2905 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2906 
2907 	/* 5718 step 33, 57XX step 62 */
2908 	/* Disable host coalescing until we get it set up */
2909 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2910 
2911 	/* 5718 step 34, 57XX step 63 */
2912 	/* Poll to make sure it's shut down. */
2913 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2914 		DELAY(10);
2915 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2916 			break;
2917 	}
2918 
2919 	if (i == BGE_TIMEOUT * 2) {
2920 		aprint_error_dev(sc->bge_dev,
2921 		    "host coalescing engine failed to idle\n");
2922 		return ENXIO;
2923 	}
2924 
2925 	/* 5718 step 35, 36, 37 */
2926 	/* Set up host coalescing defaults */
2927 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2928 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2929 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2930 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2931 	if (!(BGE_IS_5705_PLUS(sc))) {
2932 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2933 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2934 	}
2935 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2936 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2937 
2938 	/* Set up address of statistics block */
2939 	if (BGE_IS_5700_FAMILY(sc)) {
2940 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2941 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2942 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2943 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2944 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2945 	}
2946 
2947 	/* 5718 step 38 */
2948 	/* Set up address of status block */
2949 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2950 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2951 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2952 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2953 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2954 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2955 
2956 	/* Set up status block size. */
2957 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2958 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2959 		val = BGE_STATBLKSZ_FULL;
2960 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2961 	} else {
2962 		val = BGE_STATBLKSZ_32BYTE;
2963 		bzero(&sc->bge_rdata->bge_status_block, 32);
2964 	}
2965 
2966 	/* 5718 step 39, 57XX step 73 */
2967 	/* Turn on host coalescing state machine */
2968 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2969 
2970 	/* 5718 step 40, 57XX step 74 */
2971 	/* Turn on RX BD completion state machine and enable attentions */
2972 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2973 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2974 
2975 	/* 5718 step 41, 57XX step 75 */
2976 	/* Turn on RX list placement state machine */
2977 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2978 
2979 	/* 57XX step 76 */
2980 	/* Turn on RX list selector state machine. */
2981 	if (!(BGE_IS_5705_PLUS(sc)))
2982 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2983 
2984 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2985 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2986 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2987 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2988 
2989 	if (sc->bge_flags & BGEF_FIBER_TBI)
2990 		val |= BGE_PORTMODE_TBI;
2991 	else if (sc->bge_flags & BGEF_FIBER_MII)
2992 		val |= BGE_PORTMODE_GMII;
2993 	else
2994 		val |= BGE_PORTMODE_MII;
2995 
2996 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2997 	/* Allow APE to send/receive frames. */
2998 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2999 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3000 
3001 	/* Turn on DMA, clear stats */
3002 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
3003 	/* 5718 step 44 */
3004 	DELAY(40);
3005 
3006 	/* 5718 step 45, 57XX step 79 */
3007 	/* Set misc. local control, enable interrupts on attentions */
3008 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3009 	if (BGE_IS_5717_PLUS(sc)) {
3010 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3011 		/* 5718 step 46 */
3012 		DELAY(100);
3013 	}
3014 
3015 	/* 57XX step 81 */
3016 	/* Turn on DMA completion state machine */
3017 	if (!(BGE_IS_5705_PLUS(sc)))
3018 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3019 
3020 	/* 5718 step 47, 57XX step 82 */
3021 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3022 
3023 	/* 5718 step 48 */
3024 	/* Enable host coalescing bug fix. */
3025 	if (BGE_IS_5755_PLUS(sc))
3026 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3027 
3028 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3029 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
3030 
3031 	/* Turn on write DMA state machine */
3032 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3033 	/* 5718 step 49 */
3034 	DELAY(40);
3035 
3036 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3037 
3038 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3039 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3040 
3041 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3042 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3043 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3044 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3045 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3046 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3047 
3048 	if (sc->bge_flags & BGEF_PCIE)
3049 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3050 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3051 		if (ifp->if_mtu <= ETHERMTU)
3052 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
3053 	}
3054 	if (sc->bge_flags & BGEF_TSO)
3055 		val |= BGE_RDMAMODE_TSO4_ENABLE;
3056 
3057 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3058 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3059 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
3060 		/*
3061 		 * Allow multiple outstanding read requests from
3062 		 * non-LSO read DMA engine.
3063 		 */
3064 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3065 	}
3066 
3067 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3068 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3069 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3070 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3071 	    BGE_IS_57765_PLUS(sc)) {
3072 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3073 		/*
3074 		 * Adjust tx margin to prevent TX data corruption and
3075 		 * fix internal FIFO overflow.
3076 		 */
3077 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3078 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3079 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3080 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3081 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3082 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3083 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3084 		}
3085 		/*
3086 		 * Enable fix for read DMA FIFO overruns.
3087 		 * The fix is to limit the number of RX BDs
3088 		 * the hardware would fetch at a fime.
3089 		 */
3090 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3091 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3092 	}
3093 
3094 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3095 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3098 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3100 		/*
3101 		 * Allow 4KB burst length reads for non-LSO frames.
3102 		 * Enable 512B burst length reads for buffer descriptors.
3103 		 */
3104 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3105 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3106 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3107 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3108 	}
3109 
3110 	/* Turn on read DMA state machine */
3111 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3112 	/* 5718 step 52 */
3113 	delay(40);
3114 
3115 	/* 5718 step 56, 57XX step 84 */
3116 	/* Turn on RX data completion state machine */
3117 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3118 
3119 	/* Turn on RX data and RX BD initiator state machine */
3120 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3121 
3122 	/* 57XX step 85 */
3123 	/* Turn on Mbuf cluster free state machine */
3124 	if (!BGE_IS_5705_PLUS(sc))
3125 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3126 
3127 	/* 5718 step 57, 57XX step 86 */
3128 	/* Turn on send data completion state machine */
3129 	val = BGE_SDCMODE_ENABLE;
3130 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3131 		val |= BGE_SDCMODE_CDELAY;
3132 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3133 
3134 	/* 5718 step 58 */
3135 	/* Turn on send BD completion state machine */
3136 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3137 
3138 	/* 57XX step 88 */
3139 	/* Turn on RX BD initiator state machine */
3140 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3141 
3142 	/* 5718 step 60, 57XX step 90 */
3143 	/* Turn on send data initiator state machine */
3144 	if (sc->bge_flags & BGEF_TSO) {
3145 		/* XXX: magic value from Linux driver */
3146 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3147 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3148 	} else
3149 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3150 
3151 	/* 5718 step 61, 57XX step 91 */
3152 	/* Turn on send BD initiator state machine */
3153 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3154 
3155 	/* 5718 step 62, 57XX step 92 */
3156 	/* Turn on send BD selector state machine */
3157 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3158 
3159 	/* 5718 step 31, 57XX step 60 */
3160 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3161 	/* 5718 step 32, 57XX step 61 */
3162 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3163 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3164 
3165 	/* ack/clear link change events */
3166 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3167 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3168 	    BGE_MACSTAT_LINK_CHANGED);
3169 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3170 
3171 	/*
3172 	 * Enable attention when the link has changed state for
3173 	 * devices that use auto polling.
3174 	 */
3175 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3176 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3177 	} else {
3178 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3179 			mimode = BGE_MIMODE_500KHZ_CONST;
3180 		else
3181 			mimode = BGE_MIMODE_BASE;
3182 		/* 5718 step 68. 5718 step 69 (optionally). */
3183 		if (BGE_IS_5700_FAMILY(sc) ||
3184 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3185 			mimode |= BGE_MIMODE_AUTOPOLL;
3186 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3187 		}
3188 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3189 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3190 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3191 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3192 			    BGE_EVTENB_MI_INTERRUPT);
3193 	}
3194 
3195 	/*
3196 	 * Clear any pending link state attention.
3197 	 * Otherwise some link state change events may be lost until attention
3198 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3199 	 * It's not necessary on newer BCM chips - perhaps enabling link
3200 	 * state change attentions implies clearing pending attention.
3201 	 */
3202 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3203 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3204 	    BGE_MACSTAT_LINK_CHANGED);
3205 
3206 	/* Enable link state change attentions. */
3207 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3208 
3209 	return 0;
3210 }
3211 
3212 static const struct bge_revision *
3213 bge_lookup_rev(uint32_t chipid)
3214 {
3215 	const struct bge_revision *br;
3216 
3217 	for (br = bge_revisions; br->br_name != NULL; br++) {
3218 		if (br->br_chipid == chipid)
3219 			return br;
3220 	}
3221 
3222 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3223 		if (br->br_chipid == BGE_ASICREV(chipid))
3224 			return br;
3225 	}
3226 
3227 	return NULL;
3228 }
3229 
3230 static const struct bge_product *
3231 bge_lookup(const struct pci_attach_args *pa)
3232 {
3233 	const struct bge_product *bp;
3234 
3235 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3236 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3237 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3238 			return bp;
3239 	}
3240 
3241 	return NULL;
3242 }
3243 
3244 static uint32_t
3245 bge_chipid(const struct pci_attach_args *pa)
3246 {
3247 	uint32_t id;
3248 
3249 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3250 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3251 
3252 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3253 		switch (PCI_PRODUCT(pa->pa_id)) {
3254 		case PCI_PRODUCT_BROADCOM_BCM5717:
3255 		case PCI_PRODUCT_BROADCOM_BCM5718:
3256 		case PCI_PRODUCT_BROADCOM_BCM5719:
3257 		case PCI_PRODUCT_BROADCOM_BCM5720:
3258 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3259 			    BGE_PCI_GEN2_PRODID_ASICREV);
3260 			break;
3261 		case PCI_PRODUCT_BROADCOM_BCM57761:
3262 		case PCI_PRODUCT_BROADCOM_BCM57762:
3263 		case PCI_PRODUCT_BROADCOM_BCM57765:
3264 		case PCI_PRODUCT_BROADCOM_BCM57766:
3265 		case PCI_PRODUCT_BROADCOM_BCM57781:
3266 		case PCI_PRODUCT_BROADCOM_BCM57785:
3267 		case PCI_PRODUCT_BROADCOM_BCM57791:
3268 		case PCI_PRODUCT_BROADCOM_BCM57795:
3269 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3270 			    BGE_PCI_GEN15_PRODID_ASICREV);
3271 			break;
3272 		default:
3273 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3274 			    BGE_PCI_PRODID_ASICREV);
3275 			break;
3276 		}
3277 	}
3278 
3279 	return id;
3280 }
3281 
3282 /*
3283  * Return true if MSI can be used with this device.
3284  */
3285 static int
3286 bge_can_use_msi(struct bge_softc *sc)
3287 {
3288 	int can_use_msi = 0;
3289 
3290 	switch (BGE_ASICREV(sc->bge_chipid)) {
3291 	case BGE_ASICREV_BCM5714_A0:
3292 	case BGE_ASICREV_BCM5714:
3293 		/*
3294 		 * Apparently, MSI doesn't work when these chips are
3295 		 * configured in single-port mode.
3296 		 */
3297 		break;
3298 	case BGE_ASICREV_BCM5750:
3299 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3300 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3301 			can_use_msi = 1;
3302 		break;
3303 	default:
3304 		if (BGE_IS_575X_PLUS(sc))
3305 			can_use_msi = 1;
3306 	}
3307 	return (can_use_msi);
3308 }
3309 
3310 /*
3311  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3312  * against our list and return its name if we find a match. Note
3313  * that since the Broadcom controller contains VPD support, we
3314  * can get the device name string from the controller itself instead
3315  * of the compiled-in string. This is a little slow, but it guarantees
3316  * we'll always announce the right product name.
3317  */
3318 static int
3319 bge_probe(device_t parent, cfdata_t match, void *aux)
3320 {
3321 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3322 
3323 	if (bge_lookup(pa) != NULL)
3324 		return 1;
3325 
3326 	return 0;
3327 }
3328 
3329 static void
3330 bge_attach(device_t parent, device_t self, void *aux)
3331 {
3332 	struct bge_softc	*sc = device_private(self);
3333 	struct pci_attach_args	*pa = aux;
3334 	prop_dictionary_t dict;
3335 	const struct bge_product *bp;
3336 	const struct bge_revision *br;
3337 	pci_chipset_tag_t	pc;
3338 	int counts[PCI_INTR_TYPE_SIZE];
3339 	pci_intr_type_t intr_type, max_type;
3340 	const char		*intrstr = NULL;
3341 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3342 	uint32_t		command;
3343 	struct ifnet		*ifp;
3344 	uint32_t		misccfg, mimode;
3345 	void *			kva;
3346 	u_char			eaddr[ETHER_ADDR_LEN];
3347 	pcireg_t		memtype, subid, reg;
3348 	bus_addr_t		memaddr;
3349 	uint32_t		pm_ctl;
3350 	bool			no_seeprom;
3351 	int			capmask;
3352 	int			mii_flags;
3353 	int			map_flags;
3354 	char intrbuf[PCI_INTRSTR_LEN];
3355 
3356 	bp = bge_lookup(pa);
3357 	KASSERT(bp != NULL);
3358 
3359 	sc->sc_pc = pa->pa_pc;
3360 	sc->sc_pcitag = pa->pa_tag;
3361 	sc->bge_dev = self;
3362 
3363 	sc->bge_pa = *pa;
3364 	pc = sc->sc_pc;
3365 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3366 
3367 	aprint_naive(": Ethernet controller\n");
3368 	aprint_normal(": %s\n", bp->bp_name);
3369 
3370 	/*
3371 	 * Map control/status registers.
3372 	 */
3373 	DPRINTFN(5, ("Map control/status regs\n"));
3374 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3375 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3376 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3377 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3378 
3379 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3380 		aprint_error_dev(sc->bge_dev,
3381 		    "failed to enable memory mapping!\n");
3382 		return;
3383 	}
3384 
3385 	DPRINTFN(5, ("pci_mem_find\n"));
3386 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3387 	switch (memtype) {
3388 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3389 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3390 #if 0
3391 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3392 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3393 		    &memaddr, &sc->bge_bsize) == 0)
3394 			break;
3395 #else
3396 		/*
3397 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3398 		 * system get NMI on boot (PR#48451). This problem might not be
3399 		 * the driver's bug but our PCI common part's bug. Until we
3400 		 * find a real reason, we ignore the prefetchable bit.
3401 		 */
3402 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3403 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3404 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3405 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3406 			    map_flags, &sc->bge_bhandle) == 0) {
3407 				sc->bge_btag = pa->pa_memt;
3408 				break;
3409 			}
3410 		}
3411 #endif
3412 	default:
3413 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3414 		return;
3415 	}
3416 
3417 	/* Save various chip information. */
3418 	sc->bge_chipid = bge_chipid(pa);
3419 	sc->bge_phy_addr = bge_phy_addr(sc);
3420 
3421 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3422 	        &sc->bge_pciecap, NULL) != 0)
3423 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3424 		/* PCIe */
3425 		sc->bge_flags |= BGEF_PCIE;
3426 		/* Extract supported maximum payload size. */
3427 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3428 		    sc->bge_pciecap + PCIE_DCAP);
3429 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3430 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3431 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3432 			sc->bge_expmrq = 2048;
3433 		else
3434 			sc->bge_expmrq = 4096;
3435 		bge_set_max_readrq(sc);
3436 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3437 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3438 		/* PCI-X */
3439 		sc->bge_flags |= BGEF_PCIX;
3440 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3441 			&sc->bge_pcixcap, NULL) == 0)
3442 			aprint_error_dev(sc->bge_dev,
3443 			    "unable to find PCIX capability\n");
3444 	}
3445 
3446 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3447 		/*
3448 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3449 		 * can clobber the chip's PCI config-space power control
3450 		 * registers, leaving the card in D3 powersave state. We do
3451 		 * not have memory-mapped registers in this state, so force
3452 		 * device into D0 state before starting initialization.
3453 		 */
3454 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3455 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3456 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3457 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3458 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3459 	}
3460 
3461 	/* Save chipset family. */
3462 	switch (BGE_ASICREV(sc->bge_chipid)) {
3463 	case BGE_ASICREV_BCM5717:
3464 	case BGE_ASICREV_BCM5719:
3465 	case BGE_ASICREV_BCM5720:
3466 		sc->bge_flags |= BGEF_5717_PLUS;
3467 		/* FALLTHROUGH */
3468 	case BGE_ASICREV_BCM57765:
3469 	case BGE_ASICREV_BCM57766:
3470 		if (!BGE_IS_5717_PLUS(sc))
3471 			sc->bge_flags |= BGEF_57765_FAMILY;
3472 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3473 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3474 		/* Jumbo frame on BCM5719 A0 does not work. */
3475 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3476 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3477 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3478 		break;
3479 	case BGE_ASICREV_BCM5755:
3480 	case BGE_ASICREV_BCM5761:
3481 	case BGE_ASICREV_BCM5784:
3482 	case BGE_ASICREV_BCM5785:
3483 	case BGE_ASICREV_BCM5787:
3484 	case BGE_ASICREV_BCM57780:
3485 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3486 		break;
3487 	case BGE_ASICREV_BCM5700:
3488 	case BGE_ASICREV_BCM5701:
3489 	case BGE_ASICREV_BCM5703:
3490 	case BGE_ASICREV_BCM5704:
3491 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3492 		break;
3493 	case BGE_ASICREV_BCM5714_A0:
3494 	case BGE_ASICREV_BCM5780:
3495 	case BGE_ASICREV_BCM5714:
3496 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3497 		/* FALLTHROUGH */
3498 	case BGE_ASICREV_BCM5750:
3499 	case BGE_ASICREV_BCM5752:
3500 	case BGE_ASICREV_BCM5906:
3501 		sc->bge_flags |= BGEF_575X_PLUS;
3502 		/* FALLTHROUGH */
3503 	case BGE_ASICREV_BCM5705:
3504 		sc->bge_flags |= BGEF_5705_PLUS;
3505 		break;
3506 	}
3507 
3508 	/* Identify chips with APE processor. */
3509 	switch (BGE_ASICREV(sc->bge_chipid)) {
3510 	case BGE_ASICREV_BCM5717:
3511 	case BGE_ASICREV_BCM5719:
3512 	case BGE_ASICREV_BCM5720:
3513 	case BGE_ASICREV_BCM5761:
3514 		sc->bge_flags |= BGEF_APE;
3515 		break;
3516 	}
3517 
3518 	/*
3519 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3520 	 * not actually a MAC controller bug but an issue with the embedded
3521 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3522 	 */
3523 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3524 		sc->bge_flags |= BGEF_40BIT_BUG;
3525 
3526 	/* Chips with APE need BAR2 access for APE registers/memory. */
3527 	if ((sc->bge_flags & BGEF_APE) != 0) {
3528 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3529 #if 0
3530 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3531 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3532 			&sc->bge_apesize)) {
3533 			aprint_error_dev(sc->bge_dev,
3534 			    "couldn't map BAR2 memory\n");
3535 			return;
3536 		}
3537 #else
3538 		/*
3539 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3540 		 * system get NMI on boot (PR#48451). This problem might not be
3541 		 * the driver's bug but our PCI common part's bug. Until we
3542 		 * find a real reason, we ignore the prefetchable bit.
3543 		 */
3544 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3545 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3546 			aprint_error_dev(sc->bge_dev,
3547 			    "couldn't map BAR2 memory\n");
3548 			return;
3549 		}
3550 
3551 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3552 		if (bus_space_map(pa->pa_memt, memaddr,
3553 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3554 			aprint_error_dev(sc->bge_dev,
3555 			    "couldn't map BAR2 memory\n");
3556 			return;
3557 		}
3558 		sc->bge_apetag = pa->pa_memt;
3559 #endif
3560 
3561 		/* Enable APE register/memory access by host driver. */
3562 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3563 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3564 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3565 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3566 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3567 
3568 		bge_ape_lock_init(sc);
3569 		bge_ape_read_fw_ver(sc);
3570 	}
3571 
3572 	/* Identify the chips that use an CPMU. */
3573 	if (BGE_IS_5717_PLUS(sc) ||
3574 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3575 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3576 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3577 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3578 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3579 
3580 	/* Set MI_MODE */
3581 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3582 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3583 		mimode |= BGE_MIMODE_500KHZ_CONST;
3584 	else
3585 		mimode |= BGE_MIMODE_BASE;
3586 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3587 
3588 	/*
3589 	 * When using the BCM5701 in PCI-X mode, data corruption has
3590 	 * been observed in the first few bytes of some received packets.
3591 	 * Aligning the packet buffer in memory eliminates the corruption.
3592 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3593 	 * which do not support unaligned accesses, we will realign the
3594 	 * payloads by copying the received packets.
3595 	 */
3596 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3597 	    sc->bge_flags & BGEF_PCIX)
3598 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3599 
3600 	if (BGE_IS_5700_FAMILY(sc))
3601 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3602 
3603 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3604 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3605 
3606 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3607 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3608 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3609 		sc->bge_flags |= BGEF_IS_5788;
3610 
3611 	/*
3612 	 * Some controllers seem to require a special firmware to use
3613 	 * TSO. But the firmware is not available to FreeBSD and Linux
3614 	 * claims that the TSO performed by the firmware is slower than
3615 	 * hardware based TSO. Moreover the firmware based TSO has one
3616 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3617 	 * header is greater than 80 bytes. The workaround for the TSO
3618 	 * bug exist but it seems it's too expensive than not using
3619 	 * TSO at all. Some hardwares also have the TSO bug so limit
3620 	 * the TSO to the controllers that are not affected TSO issues
3621 	 * (e.g. 5755 or higher).
3622 	 */
3623 	if (BGE_IS_5755_PLUS(sc)) {
3624 		/*
3625 		 * BCM5754 and BCM5787 shares the same ASIC id so
3626 		 * explicit device id check is required.
3627 		 */
3628 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3629 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3630 			sc->bge_flags |= BGEF_TSO;
3631 	}
3632 
3633 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3634 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3635 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3636 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3637 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3638 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3639 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3640 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3641 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3642 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3643 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3644 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3645 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3646 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3647 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3648 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3649 		/* These chips are 10/100 only. */
3650 		capmask &= ~BMSR_EXTSTAT;
3651 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3652 	}
3653 
3654 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3655 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3656 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3657 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3658 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3659 
3660 	/* Set various PHY bug flags. */
3661 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3662 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3663 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3664 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3665 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3666 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3667 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3668 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3669 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3670 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3671 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3672 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3673 	if (BGE_IS_5705_PLUS(sc) &&
3674 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3675 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3676 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3677 	    !BGE_IS_57765_PLUS(sc)) {
3678 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3679 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3680 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3681 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3682 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3683 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3684 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3685 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3686 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3687 		} else
3688 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3689 	}
3690 
3691 	/*
3692 	 * SEEPROM check.
3693 	 * First check if firmware knows we do not have SEEPROM.
3694 	 */
3695 	if (prop_dictionary_get_bool(device_properties(self),
3696 	     "without-seeprom", &no_seeprom) && no_seeprom)
3697 	 	sc->bge_flags |= BGEF_NO_EEPROM;
3698 
3699 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3700 		sc->bge_flags |= BGEF_NO_EEPROM;
3701 
3702 	/* Now check the 'ROM failed' bit on the RX CPU */
3703 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3704 		sc->bge_flags |= BGEF_NO_EEPROM;
3705 
3706 	sc->bge_asf_mode = 0;
3707 	/* No ASF if APE present. */
3708 	if ((sc->bge_flags & BGEF_APE) == 0) {
3709 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3710 			BGE_SRAM_DATA_SIG_MAGIC)) {
3711 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3712 			    BGE_HWCFG_ASF) {
3713 				sc->bge_asf_mode |= ASF_ENABLE;
3714 				sc->bge_asf_mode |= ASF_STACKUP;
3715 				if (BGE_IS_575X_PLUS(sc))
3716 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3717 			}
3718 		}
3719 	}
3720 
3721 	/* MSI-X will be used in future */
3722 	counts[PCI_INTR_TYPE_MSI] = 1;
3723 	counts[PCI_INTR_TYPE_INTX] = 1;
3724 	/* Check MSI capability */
3725 	if (bge_can_use_msi(sc) != 0) {
3726 		max_type = PCI_INTR_TYPE_MSI;
3727 		sc->bge_flags |= BGEF_MSI;
3728 	} else
3729 		max_type = PCI_INTR_TYPE_INTX;
3730 
3731 alloc_retry:
3732 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3733 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3734 		return;
3735 	}
3736 
3737 	DPRINTFN(5, ("pci_intr_string\n"));
3738 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3739 	    sizeof(intrbuf));
3740 	DPRINTFN(5, ("pci_intr_establish\n"));
3741 	sc->bge_intrhand = pci_intr_establish(pc, sc->bge_pihp[0], IPL_NET,
3742 	    bge_intr, sc);
3743 	if (sc->bge_intrhand == NULL) {
3744 		intr_type = pci_intr_type(sc->bge_pihp[0]);
3745 		aprint_error_dev(sc->bge_dev,"unable to establish %s\n",
3746 		    (intr_type == PCI_INTR_TYPE_MSI) ? "MSI" : "INTx");
3747 		pci_intr_release(pc, sc->bge_pihp, 1);
3748 		switch (intr_type) {
3749 		case PCI_INTR_TYPE_MSI:
3750 			/* The next try is for INTx: Disable MSI */
3751 			max_type = PCI_INTR_TYPE_INTX;
3752 			counts[PCI_INTR_TYPE_INTX] = 1;
3753 			sc->bge_flags &= ~BGEF_MSI;
3754 			goto alloc_retry;
3755 		case PCI_INTR_TYPE_INTX:
3756 		default:
3757 			/* See below */
3758 			break;
3759 		}
3760 	}
3761 
3762 	if (sc->bge_intrhand == NULL) {
3763 		aprint_error_dev(sc->bge_dev,
3764 		    "couldn't establish interrupt%s%s\n",
3765 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3766 		return;
3767 	}
3768 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3769 
3770 	/*
3771 	 * All controllers except BCM5700 supports tagged status but
3772 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3773 	 * MSI on BCM5717 does not work.
3774 	 */
3775 	if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3776 		sc->bge_flags |= BGEF_TAGGED_STATUS;
3777 
3778 	/*
3779 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3780 	 * lock in bge_reset().
3781 	 */
3782 	CSR_WRITE_4(sc, BGE_EE_ADDR,
3783 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3784 	delay(1000);
3785 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3786 
3787 	bge_stop_fw(sc);
3788 	bge_sig_pre_reset(sc, BGE_RESET_START);
3789 	if (bge_reset(sc))
3790 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3791 
3792 	/*
3793 	 * Read the hardware config word in the first 32k of NIC internal
3794 	 * memory, or fall back to the config word in the EEPROM.
3795 	 * Note: on some BCM5700 cards, this value appears to be unset.
3796 	 */
3797 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3798 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3799 	    BGE_SRAM_DATA_SIG_MAGIC) {
3800 		uint32_t tmp;
3801 
3802 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3803 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3804 		    BGE_SRAM_DATA_VER_SHIFT;
3805 		if ((0 < tmp) && (tmp < 0x100))
3806 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3807 		if (sc->bge_flags & BGEF_PCIE)
3808 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3809 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3810 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3811 		if (BGE_IS_5717_PLUS(sc))
3812 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3813 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3814 		bge_read_eeprom(sc, (void *)&hwcfg,
3815 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3816 		hwcfg = be32toh(hwcfg);
3817 	}
3818 	aprint_normal_dev(sc->bge_dev,
3819 	    "HW config %08x, %08x, %08x, %08x %08x\n",
3820 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3821 
3822 	bge_sig_legacy(sc, BGE_RESET_START);
3823 	bge_sig_post_reset(sc, BGE_RESET_START);
3824 
3825 	if (bge_chipinit(sc)) {
3826 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3827 		bge_release_resources(sc);
3828 		return;
3829 	}
3830 
3831 	/*
3832 	 * Get station address from the EEPROM.
3833 	 */
3834 	if (bge_get_eaddr(sc, eaddr)) {
3835 		aprint_error_dev(sc->bge_dev,
3836 		    "failed to read station address\n");
3837 		bge_release_resources(sc);
3838 		return;
3839 	}
3840 
3841 	br = bge_lookup_rev(sc->bge_chipid);
3842 
3843 	if (br == NULL) {
3844 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3845 		    sc->bge_chipid);
3846 	} else {
3847 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3848 		    br->br_name, sc->bge_chipid);
3849 	}
3850 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3851 
3852 	/* Allocate the general information block and ring buffers. */
3853 	if (pci_dma64_available(pa))
3854 		sc->bge_dmatag = pa->pa_dmat64;
3855 	else
3856 		sc->bge_dmatag = pa->pa_dmat;
3857 
3858 	/* 40bit DMA workaround */
3859 	if (sizeof(bus_addr_t) > 4) {
3860 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3861 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3862 
3863 			if (bus_dmatag_subregion(olddmatag, 0,
3864 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3865 				BUS_DMA_NOWAIT) != 0) {
3866 				aprint_error_dev(self,
3867 				    "WARNING: failed to restrict dma range,"
3868 				    " falling back to parent bus dma range\n");
3869 				sc->bge_dmatag = olddmatag;
3870 			}
3871 		}
3872 	}
3873 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3874 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3875 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3876 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3877 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3878 		return;
3879 	}
3880 	DPRINTFN(5, ("bus_dmamem_map\n"));
3881 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3882 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3883 			   BUS_DMA_NOWAIT)) {
3884 		aprint_error_dev(sc->bge_dev,
3885 		    "can't map DMA buffers (%zu bytes)\n",
3886 		    sizeof(struct bge_ring_data));
3887 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3888 		    sc->bge_ring_rseg);
3889 		return;
3890 	}
3891 	DPRINTFN(5, ("bus_dmamem_create\n"));
3892 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3893 	    sizeof(struct bge_ring_data), 0,
3894 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3895 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3896 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3897 				 sizeof(struct bge_ring_data));
3898 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3899 		    sc->bge_ring_rseg);
3900 		return;
3901 	}
3902 	DPRINTFN(5, ("bus_dmamem_load\n"));
3903 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3904 			    sizeof(struct bge_ring_data), NULL,
3905 			    BUS_DMA_NOWAIT)) {
3906 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3907 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3908 				 sizeof(struct bge_ring_data));
3909 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3910 		    sc->bge_ring_rseg);
3911 		return;
3912 	}
3913 
3914 	DPRINTFN(5, ("bzero\n"));
3915 	sc->bge_rdata = (struct bge_ring_data *)kva;
3916 
3917 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3918 
3919 	/* Try to allocate memory for jumbo buffers. */
3920 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3921 		if (bge_alloc_jumbo_mem(sc)) {
3922 			aprint_error_dev(sc->bge_dev,
3923 			    "jumbo buffer allocation failed\n");
3924 		} else
3925 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3926 	}
3927 
3928 	/* Set default tuneable values. */
3929 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3930 	sc->bge_rx_coal_ticks = 150;
3931 	sc->bge_rx_max_coal_bds = 64;
3932 	sc->bge_tx_coal_ticks = 300;
3933 	sc->bge_tx_max_coal_bds = 400;
3934 	if (BGE_IS_5705_PLUS(sc)) {
3935 		sc->bge_tx_coal_ticks = (12 * 5);
3936 		sc->bge_tx_max_coal_bds = (12 * 5);
3937 			aprint_verbose_dev(sc->bge_dev,
3938 			    "setting short Tx thresholds\n");
3939 	}
3940 
3941 	if (BGE_IS_5717_PLUS(sc))
3942 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3943 	else if (BGE_IS_5705_PLUS(sc))
3944 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3945 	else
3946 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3947 
3948 	/* Set up ifnet structure */
3949 	ifp = &sc->ethercom.ec_if;
3950 	ifp->if_softc = sc;
3951 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3952 	ifp->if_ioctl = bge_ioctl;
3953 	ifp->if_stop = bge_stop;
3954 	ifp->if_start = bge_start;
3955 	ifp->if_init = bge_init;
3956 	ifp->if_watchdog = bge_watchdog;
3957 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3958 	IFQ_SET_READY(&ifp->if_snd);
3959 	DPRINTFN(5, ("strcpy if_xname\n"));
3960 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3961 
3962 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3963 		sc->ethercom.ec_if.if_capabilities |=
3964 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3965 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3966 		sc->ethercom.ec_if.if_capabilities |=
3967 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3968 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3969 #endif
3970 	sc->ethercom.ec_capabilities |=
3971 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3972 
3973 	if (sc->bge_flags & BGEF_TSO)
3974 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3975 
3976 	/*
3977 	 * Do MII setup.
3978 	 */
3979 	DPRINTFN(5, ("mii setup\n"));
3980 	sc->bge_mii.mii_ifp = ifp;
3981 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3982 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3983 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3984 
3985 	/*
3986 	 * Figure out what sort of media we have by checking the hardware
3987 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3988 	 * unset. If that's the case, we have to rely on identifying the NIC
3989 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3990 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3991 	 */
3992 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3993 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3994 		if (BGE_IS_5705_PLUS(sc)) {
3995 			sc->bge_flags |= BGEF_FIBER_MII;
3996 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3997 		} else
3998 			sc->bge_flags |= BGEF_FIBER_TBI;
3999 	}
4000 
4001 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
4002 	if (BGE_IS_JUMBO_CAPABLE(sc))
4003 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
4004 
4005 	/* set phyflags and chipid before mii_attach() */
4006 	dict = device_properties(self);
4007 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
4008 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
4009 
4010 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4011 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
4012 		    bge_ifmedia_sts);
4013 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
4014 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
4015 			    0, NULL);
4016 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
4017 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
4018 		/* Pretend the user requested this setting */
4019 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
4020 	} else {
4021 		/*
4022 		 * Do transceiver setup and tell the firmware the
4023 		 * driver is down so we can try to get access the
4024 		 * probe if ASF is running.  Retry a couple of times
4025 		 * if we get a conflict with the ASF firmware accessing
4026 		 * the PHY.
4027 		 */
4028 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4029 		bge_asf_driver_up(sc);
4030 
4031 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
4032 			     bge_ifmedia_sts);
4033 		mii_flags = MIIF_DOPAUSE;
4034 		if (sc->bge_flags & BGEF_FIBER_MII)
4035 			mii_flags |= MIIF_HAVEFIBER;
4036 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask, sc->bge_phy_addr,
4037 		    MII_OFFSET_ANY, mii_flags);
4038 
4039 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
4040 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
4041 			ifmedia_add(&sc->bge_mii.mii_media,
4042 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
4043 			ifmedia_set(&sc->bge_mii.mii_media,
4044 				    IFM_ETHER|IFM_MANUAL);
4045 		} else
4046 			ifmedia_set(&sc->bge_mii.mii_media,
4047 				    IFM_ETHER|IFM_AUTO);
4048 
4049 		/*
4050 		 * Now tell the firmware we are going up after probing the PHY
4051 		 */
4052 		if (sc->bge_asf_mode & ASF_STACKUP)
4053 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4054 	}
4055 
4056 	/*
4057 	 * Call MI attach routine.
4058 	 */
4059 	DPRINTFN(5, ("if_attach\n"));
4060 	if_attach(ifp);
4061 	DPRINTFN(5, ("ether_ifattach\n"));
4062 	ether_ifattach(ifp, eaddr);
4063 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
4064 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
4065 		RND_TYPE_NET, RND_FLAG_DEFAULT);
4066 #ifdef BGE_EVENT_COUNTERS
4067 	/*
4068 	 * Attach event counters.
4069 	 */
4070 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
4071 	    NULL, device_xname(sc->bge_dev), "intr");
4072 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
4073 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
4074 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4075 	    NULL, device_xname(sc->bge_dev), "tx_xon");
4076 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4077 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
4078 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4079 	    NULL, device_xname(sc->bge_dev), "rx_xon");
4080 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4081 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
4082 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4083 	    NULL, device_xname(sc->bge_dev), "xoffentered");
4084 #endif /* BGE_EVENT_COUNTERS */
4085 	DPRINTFN(5, ("callout_init\n"));
4086 	callout_init(&sc->bge_timeout, 0);
4087 
4088 	if (pmf_device_register(self, NULL, NULL))
4089 		pmf_class_network_register(self, ifp);
4090 	else
4091 		aprint_error_dev(self, "couldn't establish power handler\n");
4092 
4093 	bge_sysctl_init(sc);
4094 
4095 #ifdef BGE_DEBUG
4096 	bge_debug_info(sc);
4097 #endif
4098 }
4099 
4100 /*
4101  * Stop all chip I/O so that the kernel's probe routines don't
4102  * get confused by errant DMAs when rebooting.
4103  */
4104 static int
4105 bge_detach(device_t self, int flags __unused)
4106 {
4107 	struct bge_softc *sc = device_private(self);
4108 	struct ifnet *ifp = &sc->ethercom.ec_if;
4109 	int s;
4110 
4111 	s = splnet();
4112 	/* Stop the interface. Callouts are stopped in it. */
4113 	bge_stop(ifp, 1);
4114 	splx(s);
4115 
4116 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4117 
4118 	/* Delete all remaining media. */
4119 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
4120 
4121 	ether_ifdetach(ifp);
4122 	if_detach(ifp);
4123 
4124 	bge_release_resources(sc);
4125 
4126 	return 0;
4127 }
4128 
4129 static void
4130 bge_release_resources(struct bge_softc *sc)
4131 {
4132 
4133 	/* Disestablish the interrupt handler */
4134 	if (sc->bge_intrhand != NULL) {
4135 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4136 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4137 		sc->bge_intrhand = NULL;
4138 	}
4139 
4140 	if (sc->bge_dmatag != NULL) {
4141 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4142 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4143 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4144 		    sizeof(struct bge_ring_data));
4145 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4146 		    sc->bge_ring_rseg);
4147 	}
4148 
4149 	/* Unmap the device registers */
4150 	if (sc->bge_bsize != 0) {
4151 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4152 		sc->bge_bsize = 0;
4153 	}
4154 
4155 	/* Unmap the APE registers */
4156 	if (sc->bge_apesize != 0) {
4157 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4158 		    sc->bge_apesize);
4159 		sc->bge_apesize = 0;
4160 	}
4161 }
4162 
4163 static int
4164 bge_reset(struct bge_softc *sc)
4165 {
4166 	uint32_t cachesize, command;
4167 	uint32_t reset, mac_mode, mac_mode_mask;
4168 	pcireg_t devctl, reg;
4169 	int i, val;
4170 	void (*write_op)(struct bge_softc *, int, int);
4171 
4172 	/* Make mask for BGE_MAC_MODE register. */
4173 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4174 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4175 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4176 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4177 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4178 
4179 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4180 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4181 	    	if (sc->bge_flags & BGEF_PCIE)
4182 			write_op = bge_writemem_direct;
4183 		else
4184 			write_op = bge_writemem_ind;
4185 	} else
4186 		write_op = bge_writereg_ind;
4187 
4188 	/* 57XX step 4 */
4189 	/* Acquire the NVM lock */
4190 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4191 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4192 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4193 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4194 		for (i = 0; i < 8000; i++) {
4195 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4196 			    BGE_NVRAMSWARB_GNT1)
4197 				break;
4198 			DELAY(20);
4199 		}
4200 		if (i == 8000) {
4201 			printf("%s: NVRAM lock timedout!\n",
4202 			    device_xname(sc->bge_dev));
4203 		}
4204 	}
4205 
4206 	/* Take APE lock when performing reset. */
4207 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4208 
4209 	/* 57XX step 3 */
4210 	/* Save some important PCI state. */
4211 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4212 	/* 5718 reset step 3 */
4213 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4214 
4215 	/* 5718 reset step 5, 57XX step 5b-5d */
4216 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4217 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4218 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4219 
4220 	/* XXX ???: Disable fastboot on controllers that support it. */
4221 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4222 	    BGE_IS_5755_PLUS(sc))
4223 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4224 
4225 	/* 5718 reset step 2, 57XX step 6 */
4226 	/*
4227 	 * Write the magic number to SRAM at offset 0xB50.
4228 	 * When firmware finishes its initialization it will
4229 	 * write ~BGE_MAGIC_NUMBER to the same location.
4230 	 */
4231 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4232 
4233 	/* 5718 reset step 6, 57XX step 7 */
4234 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4235 	/*
4236 	 * XXX: from FreeBSD/Linux; no documentation
4237 	 */
4238 	if (sc->bge_flags & BGEF_PCIE) {
4239 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4240 		    !BGE_IS_57765_PLUS(sc) &&
4241 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4242 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4243 			/* PCI Express 1.0 system */
4244 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4245 			    BGE_PHY_PCIE_SCRAM_MODE);
4246 		}
4247 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4248 			/*
4249 			 * Prevent PCI Express link training
4250 			 * during global reset.
4251 			 */
4252 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4253 			reset |= (1 << 29);
4254 		}
4255 	}
4256 
4257 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4258 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4259 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4260 		    i | BGE_VCPU_STATUS_DRV_RESET);
4261 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4262 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4263 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4264 	}
4265 
4266 	/*
4267 	 * Set GPHY Power Down Override to leave GPHY
4268 	 * powered up in D0 uninitialized.
4269 	 */
4270 	if (BGE_IS_5705_PLUS(sc) &&
4271 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4272 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4273 
4274 	/* Issue global reset */
4275 	write_op(sc, BGE_MISC_CFG, reset);
4276 
4277 	/* 5718 reset step 7, 57XX step 8 */
4278 	if (sc->bge_flags & BGEF_PCIE)
4279 		delay(100*1000); /* too big */
4280 	else
4281 		delay(1000);
4282 
4283 	if (sc->bge_flags & BGEF_PCIE) {
4284 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4285 			DELAY(500000);
4286 			/* XXX: Magic Numbers */
4287 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4288 			    BGE_PCI_UNKNOWN0);
4289 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4290 			    BGE_PCI_UNKNOWN0,
4291 			    reg | (1 << 15));
4292 		}
4293 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4294 		    sc->bge_pciecap + PCIE_DCSR);
4295 		/* Clear enable no snoop and disable relaxed ordering. */
4296 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4297 		    PCIE_DCSR_ENA_NO_SNOOP);
4298 
4299 		/* Set PCIE max payload size to 128 for older PCIe devices */
4300 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4301 			devctl &= ~(0x00e0);
4302 		/* Clear device status register. Write 1b to clear */
4303 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4304 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4305 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4306 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4307 		bge_set_max_readrq(sc);
4308 	}
4309 
4310 	/* From Linux: dummy read to flush PCI posted writes */
4311 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4312 
4313 	/*
4314 	 * Reset some of the PCI state that got zapped by reset
4315 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4316 	 * set, too.
4317 	 */
4318 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4319 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4320 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4321 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4322 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4323 	    (sc->bge_flags & BGEF_PCIX) != 0)
4324 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4325 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4326 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4327 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4328 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4330 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4331 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4332 
4333 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4334 	if (sc->bge_flags & BGEF_PCIX) {
4335 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4336 		    + PCIX_CMD);
4337 		/* Set max memory read byte count to 2K */
4338 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4339 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4340 			reg |= PCIX_CMD_BCNT_2048;
4341 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4342 			/*
4343 			 * For 5704, set max outstanding split transaction
4344 			 * field to 0 (0 means it supports 1 request)
4345 			 */
4346 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4347 			    | PCIX_CMD_BYTECNT_MASK);
4348 			reg |= PCIX_CMD_BCNT_2048;
4349 		}
4350 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4351 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4352 	}
4353 
4354 	/* 5718 reset step 10, 57XX step 12 */
4355 	/* Enable memory arbiter. */
4356 	if (BGE_IS_5714_FAMILY(sc)) {
4357 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4358 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4359 	} else
4360 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4361 
4362 	/* XXX 5721, 5751 and 5752 */
4363 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4364 		/* Step 19: */
4365 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4366 		/* Step 20: */
4367 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4368 	}
4369 
4370 	/* 5718 reset step 12, 57XX step 15 and 16 */
4371 	/* Fix up byte swapping */
4372 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4373 
4374 	/* 5718 reset step 13, 57XX step 17 */
4375 	/* Poll until the firmware initialization is complete */
4376 	bge_poll_fw(sc);
4377 
4378 	/* 57XX step 21 */
4379 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4380 		pcireg_t msidata;
4381 
4382 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4383 		    BGE_PCI_MSI_DATA);
4384 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4385 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4386 		    msidata);
4387 	}
4388 
4389 	/* 57XX step 18 */
4390 	/* Write mac mode. */
4391 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4392 	/* Restore mac_mode_mask's bits using mac_mode */
4393 	val = (val & ~mac_mode_mask) | mac_mode;
4394 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4395 	DELAY(40);
4396 
4397 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4398 
4399 	/*
4400 	 * The 5704 in TBI mode apparently needs some special
4401 	 * adjustment to insure the SERDES drive level is set
4402 	 * to 1.2V.
4403 	 */
4404 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4405 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4406 		uint32_t serdescfg;
4407 
4408 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4409 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4410 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4411 	}
4412 
4413 	if (sc->bge_flags & BGEF_PCIE &&
4414 	    !BGE_IS_57765_PLUS(sc) &&
4415 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4416 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4417 		uint32_t v;
4418 
4419 		/* Enable PCI Express bug fix */
4420 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4421 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4422 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4423 	}
4424 
4425 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4426 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4427 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4428 
4429 	return 0;
4430 }
4431 
4432 /*
4433  * Frame reception handling. This is called if there's a frame
4434  * on the receive return list.
4435  *
4436  * Note: we have to be able to handle two possibilities here:
4437  * 1) the frame is from the jumbo receive ring
4438  * 2) the frame is from the standard receive ring
4439  */
4440 
4441 static void
4442 bge_rxeof(struct bge_softc *sc)
4443 {
4444 	struct ifnet *ifp;
4445 	uint16_t rx_prod, rx_cons;
4446 	int stdcnt = 0, jumbocnt = 0;
4447 	bus_dmamap_t dmamap;
4448 	bus_addr_t offset, toff;
4449 	bus_size_t tlen;
4450 	int tosync;
4451 
4452 	rx_cons = sc->bge_rx_saved_considx;
4453 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4454 
4455 	/* Nothing to do */
4456 	if (rx_cons == rx_prod)
4457 		return;
4458 
4459 	ifp = &sc->ethercom.ec_if;
4460 
4461 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4462 	    offsetof(struct bge_ring_data, bge_status_block),
4463 	    sizeof (struct bge_status_block),
4464 	    BUS_DMASYNC_POSTREAD);
4465 
4466 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4467 	tosync = rx_prod - rx_cons;
4468 
4469 	if (tosync != 0)
4470 		rnd_add_uint32(&sc->rnd_source, tosync);
4471 
4472 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4473 
4474 	if (tosync < 0) {
4475 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4476 		    sizeof (struct bge_rx_bd);
4477 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4478 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4479 		tosync = -tosync;
4480 	}
4481 
4482 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4483 	    offset, tosync * sizeof (struct bge_rx_bd),
4484 	    BUS_DMASYNC_POSTREAD);
4485 
4486 	while (rx_cons != rx_prod) {
4487 		struct bge_rx_bd	*cur_rx;
4488 		uint32_t		rxidx;
4489 		struct mbuf		*m = NULL;
4490 
4491 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4492 
4493 		rxidx = cur_rx->bge_idx;
4494 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4495 
4496 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4497 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4498 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4499 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4500 			jumbocnt++;
4501 			bus_dmamap_sync(sc->bge_dmatag,
4502 			    sc->bge_cdata.bge_rx_jumbo_map,
4503 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4504 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4505 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4506 				ifp->if_ierrors++;
4507 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4508 				continue;
4509 			}
4510 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4511 					     NULL)== ENOBUFS) {
4512 				ifp->if_ierrors++;
4513 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4514 				continue;
4515 			}
4516 		} else {
4517 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4518 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4519 
4520 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4521 			stdcnt++;
4522 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4523 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4524 			if (dmamap == NULL) {
4525 				ifp->if_ierrors++;
4526 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4527 				continue;
4528 			}
4529 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4530 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4531 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4532 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4533 				ifp->if_ierrors++;
4534 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4535 				continue;
4536 			}
4537 			if (bge_newbuf_std(sc, sc->bge_std,
4538 			    NULL, dmamap) == ENOBUFS) {
4539 				ifp->if_ierrors++;
4540 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4541 				continue;
4542 			}
4543 		}
4544 
4545 		ifp->if_ipackets++;
4546 #ifndef __NO_STRICT_ALIGNMENT
4547 		/*
4548 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4549 		 * the Rx buffer has the layer-2 header unaligned.
4550 		 * If our CPU requires alignment, re-align by copying.
4551 		 */
4552 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4553 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4554 				cur_rx->bge_len);
4555 			m->m_data += ETHER_ALIGN;
4556 		}
4557 #endif
4558 
4559 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4560 		m->m_pkthdr.rcvif = ifp;
4561 
4562 		/*
4563 		 * Handle BPF listeners. Let the BPF user see the packet.
4564 		 */
4565 		bpf_mtap(ifp, m);
4566 
4567 		bge_rxcsum(sc, cur_rx, m);
4568 
4569 		/*
4570 		 * If we received a packet with a vlan tag, pass it
4571 		 * to vlan_input() instead of ether_input().
4572 		 */
4573 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4574 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4575 		}
4576 
4577 		(*ifp->if_input)(ifp, m);
4578 	}
4579 
4580 	sc->bge_rx_saved_considx = rx_cons;
4581 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4582 	if (stdcnt)
4583 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4584 	if (jumbocnt)
4585 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4586 }
4587 
4588 static void
4589 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4590 {
4591 
4592 	if (BGE_IS_57765_PLUS(sc)) {
4593 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4594 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4595 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4596 			if ((cur_rx->bge_error_flag &
4597 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4598 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4599 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4600 				m->m_pkthdr.csum_data =
4601 				    cur_rx->bge_tcp_udp_csum;
4602 				m->m_pkthdr.csum_flags |=
4603 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4604 					M_CSUM_DATA);
4605 			}
4606 		}
4607 	} else {
4608 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4609 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4610 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4611 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4612 		/*
4613 		 * Rx transport checksum-offload may also
4614 		 * have bugs with packets which, when transmitted,
4615 		 * were `runts' requiring padding.
4616 		 */
4617 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4618 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4619 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4620 			m->m_pkthdr.csum_data =
4621 			    cur_rx->bge_tcp_udp_csum;
4622 			m->m_pkthdr.csum_flags |=
4623 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4624 				M_CSUM_DATA);
4625 		}
4626 	}
4627 }
4628 
4629 static void
4630 bge_txeof(struct bge_softc *sc)
4631 {
4632 	struct bge_tx_bd *cur_tx = NULL;
4633 	struct ifnet *ifp;
4634 	struct txdmamap_pool_entry *dma;
4635 	bus_addr_t offset, toff;
4636 	bus_size_t tlen;
4637 	int tosync;
4638 	struct mbuf *m;
4639 
4640 	ifp = &sc->ethercom.ec_if;
4641 
4642 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4643 	    offsetof(struct bge_ring_data, bge_status_block),
4644 	    sizeof (struct bge_status_block),
4645 	    BUS_DMASYNC_POSTREAD);
4646 
4647 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4648 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4649 	    sc->bge_tx_saved_considx;
4650 
4651 	if (tosync != 0)
4652 		rnd_add_uint32(&sc->rnd_source, tosync);
4653 
4654 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4655 
4656 	if (tosync < 0) {
4657 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4658 		    sizeof (struct bge_tx_bd);
4659 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4660 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4661 		tosync = -tosync;
4662 	}
4663 
4664 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4665 	    offset, tosync * sizeof (struct bge_tx_bd),
4666 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4667 
4668 	/*
4669 	 * Go through our tx ring and free mbufs for those
4670 	 * frames that have been sent.
4671 	 */
4672 	while (sc->bge_tx_saved_considx !=
4673 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4674 		uint32_t		idx = 0;
4675 
4676 		idx = sc->bge_tx_saved_considx;
4677 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4678 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4679 			ifp->if_opackets++;
4680 		m = sc->bge_cdata.bge_tx_chain[idx];
4681 		if (m != NULL) {
4682 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4683 			dma = sc->txdma[idx];
4684 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4685 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4686 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4687 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4688 			sc->txdma[idx] = NULL;
4689 
4690 			m_freem(m);
4691 		}
4692 		sc->bge_txcnt--;
4693 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4694 		ifp->if_timer = 0;
4695 	}
4696 
4697 	if (cur_tx != NULL)
4698 		ifp->if_flags &= ~IFF_OACTIVE;
4699 }
4700 
4701 static int
4702 bge_intr(void *xsc)
4703 {
4704 	struct bge_softc *sc;
4705 	struct ifnet *ifp;
4706 	uint32_t pcistate, statusword, statustag;
4707 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4708 
4709 	sc = xsc;
4710 	ifp = &sc->ethercom.ec_if;
4711 
4712 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4713 	if (BGE_IS_5717_PLUS(sc))
4714 		intrmask = 0;
4715 
4716 	/* It is possible for the interrupt to arrive before
4717 	 * the status block is updated prior to the interrupt.
4718 	 * Reading the PCI State register will confirm whether the
4719 	 * interrupt is ours and will flush the status block.
4720 	 */
4721 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4722 
4723 	/* read status word from status block */
4724 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4725 	    offsetof(struct bge_ring_data, bge_status_block),
4726 	    sizeof (struct bge_status_block),
4727 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4728 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4729 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4730 
4731 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4732 		if (sc->bge_lasttag == statustag &&
4733 		    (~pcistate & intrmask)) {
4734 			return (0);
4735 		}
4736 		sc->bge_lasttag = statustag;
4737 	} else {
4738 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
4739 		    !(~pcistate & intrmask)) {
4740 			return (0);
4741 		}
4742 		statustag = 0;
4743 	}
4744 	/* Ack interrupt and stop others from occurring. */
4745 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4746 	BGE_EVCNT_INCR(sc->bge_ev_intr);
4747 
4748 	/* clear status word */
4749 	sc->bge_rdata->bge_status_block.bge_status = 0;
4750 
4751 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4752 	    offsetof(struct bge_ring_data, bge_status_block),
4753 	    sizeof (struct bge_status_block),
4754 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4755 
4756 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4757 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4758 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4759 		bge_link_upd(sc);
4760 
4761 	if (ifp->if_flags & IFF_RUNNING) {
4762 		/* Check RX return ring producer/consumer */
4763 		bge_rxeof(sc);
4764 
4765 		/* Check TX ring producer/consumer */
4766 		bge_txeof(sc);
4767 	}
4768 
4769 	if (sc->bge_pending_rxintr_change) {
4770 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4771 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4772 
4773 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4774 		DELAY(10);
4775 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4776 
4777 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4778 		DELAY(10);
4779 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4780 
4781 		sc->bge_pending_rxintr_change = 0;
4782 	}
4783 	bge_handle_events(sc);
4784 
4785 	/* Re-enable interrupts. */
4786 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4787 
4788 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4789 		bge_start(ifp);
4790 
4791 	return 1;
4792 }
4793 
4794 static void
4795 bge_asf_driver_up(struct bge_softc *sc)
4796 {
4797 	if (sc->bge_asf_mode & ASF_STACKUP) {
4798 		/* Send ASF heartbeat aprox. every 2s */
4799 		if (sc->bge_asf_count)
4800 			sc->bge_asf_count --;
4801 		else {
4802 			sc->bge_asf_count = 2;
4803 
4804 			bge_wait_for_event_ack(sc);
4805 
4806 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4807 			    BGE_FW_CMD_DRV_ALIVE3);
4808 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4809 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4810 			    BGE_FW_HB_TIMEOUT_SEC);
4811 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4812 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4813 			    BGE_RX_CPU_DRV_EVENT);
4814 		}
4815 	}
4816 }
4817 
4818 static void
4819 bge_tick(void *xsc)
4820 {
4821 	struct bge_softc *sc = xsc;
4822 	struct mii_data *mii = &sc->bge_mii;
4823 	int s;
4824 
4825 	s = splnet();
4826 
4827 	if (BGE_IS_5705_PLUS(sc))
4828 		bge_stats_update_regs(sc);
4829 	else
4830 		bge_stats_update(sc);
4831 
4832 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4833 		/*
4834 		 * Since in TBI mode auto-polling can't be used we should poll
4835 		 * link status manually. Here we register pending link event
4836 		 * and trigger interrupt.
4837 		 */
4838 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4839 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4840 	} else {
4841 		/*
4842 		 * Do not touch PHY if we have link up. This could break
4843 		 * IPMI/ASF mode or produce extra input errors.
4844 		 * (extra input errors was reported for bcm5701 & bcm5704).
4845 		 */
4846 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4847 			mii_tick(mii);
4848 	}
4849 
4850 	bge_asf_driver_up(sc);
4851 
4852 	if (!sc->bge_detaching)
4853 		callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4854 
4855 	splx(s);
4856 }
4857 
4858 static void
4859 bge_stats_update_regs(struct bge_softc *sc)
4860 {
4861 	struct ifnet *ifp = &sc->ethercom.ec_if;
4862 
4863 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4864 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4865 
4866 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4867 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4868 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4869 }
4870 
4871 static void
4872 bge_stats_update(struct bge_softc *sc)
4873 {
4874 	struct ifnet *ifp = &sc->ethercom.ec_if;
4875 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4876 
4877 #define READ_STAT(sc, stats, stat) \
4878 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4879 
4880 	ifp->if_collisions +=
4881 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4882 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4883 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4884 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4885 	  ifp->if_collisions;
4886 
4887 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4888 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4889 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4890 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4891 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4892 		      READ_STAT(sc, stats,
4893 		      		xoffPauseFramesReceived.bge_addr_lo));
4894 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4895 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4896 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4897 		      READ_STAT(sc, stats,
4898 		      		macControlFramesReceived.bge_addr_lo));
4899 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4900 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4901 
4902 #undef READ_STAT
4903 
4904 #ifdef notdef
4905 	ifp->if_collisions +=
4906 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4907 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4908 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4909 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4910 	   ifp->if_collisions;
4911 #endif
4912 }
4913 
4914 /*
4915  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4916  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4917  * but when such padded frames employ the  bge IP/TCP checksum offload,
4918  * the hardware checksum assist gives incorrect results (possibly
4919  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4920  * If we pad such runts with zeros, the onboard checksum comes out correct.
4921  */
4922 static inline int
4923 bge_cksum_pad(struct mbuf *pkt)
4924 {
4925 	struct mbuf *last = NULL;
4926 	int padlen;
4927 
4928 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4929 
4930 	/* if there's only the packet-header and we can pad there, use it. */
4931 	if (pkt->m_pkthdr.len == pkt->m_len &&
4932 	    M_TRAILINGSPACE(pkt) >= padlen) {
4933 		last = pkt;
4934 	} else {
4935 		/*
4936 		 * Walk packet chain to find last mbuf. We will either
4937 		 * pad there, or append a new mbuf and pad it
4938 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4939 		 */
4940 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4941 	      	       continue; /* do nothing */
4942 		}
4943 
4944 		/* `last' now points to last in chain. */
4945 		if (M_TRAILINGSPACE(last) < padlen) {
4946 			/* Allocate new empty mbuf, pad it. Compact later. */
4947 			struct mbuf *n;
4948 			MGET(n, M_DONTWAIT, MT_DATA);
4949 			if (n == NULL)
4950 				return ENOBUFS;
4951 			n->m_len = 0;
4952 			last->m_next = n;
4953 			last = n;
4954 		}
4955 	}
4956 
4957 	KDASSERT(!M_READONLY(last));
4958 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4959 
4960 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4961 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4962 	last->m_len += padlen;
4963 	pkt->m_pkthdr.len += padlen;
4964 	return 0;
4965 }
4966 
4967 /*
4968  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4969  */
4970 static inline int
4971 bge_compact_dma_runt(struct mbuf *pkt)
4972 {
4973 	struct mbuf	*m, *prev;
4974 	int 		totlen;
4975 
4976 	prev = NULL;
4977 	totlen = 0;
4978 
4979 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4980 		int mlen = m->m_len;
4981 		int shortfall = 8 - mlen ;
4982 
4983 		totlen += mlen;
4984 		if (mlen == 0)
4985 			continue;
4986 		if (mlen >= 8)
4987 			continue;
4988 
4989 		/* If we get here, mbuf data is too small for DMA engine.
4990 		 * Try to fix by shuffling data to prev or next in chain.
4991 		 * If that fails, do a compacting deep-copy of the whole chain.
4992 		 */
4993 
4994 		/* Internal frag. If fits in prev, copy it there. */
4995 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4996 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4997 			prev->m_len += mlen;
4998 			m->m_len = 0;
4999 			/* XXX stitch chain */
5000 			prev->m_next = m_free(m);
5001 			m = prev;
5002 			continue;
5003 		}
5004 		else if (m->m_next != NULL &&
5005 			     M_TRAILINGSPACE(m) >= shortfall &&
5006 			     m->m_next->m_len >= (8 + shortfall)) {
5007 		    /* m is writable and have enough data in next, pull up. */
5008 
5009 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
5010 			    shortfall);
5011 			m->m_len += shortfall;
5012 			m->m_next->m_len -= shortfall;
5013 			m->m_next->m_data += shortfall;
5014 		}
5015 		else if (m->m_next == NULL || 1) {
5016 		  	/* Got a runt at the very end of the packet.
5017 			 * borrow data from the tail of the preceding mbuf and
5018 			 * update its length in-place. (The original data is still
5019 			 * valid, so we can do this even if prev is not writable.)
5020 			 */
5021 
5022 			/* if we'd make prev a runt, just move all of its data. */
5023 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5024 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5025 
5026 			if ((prev->m_len - shortfall) < 8)
5027 				shortfall = prev->m_len;
5028 
5029 #ifdef notyet	/* just do the safe slow thing for now */
5030 			if (!M_READONLY(m)) {
5031 				if (M_LEADINGSPACE(m) < shorfall) {
5032 					void *m_dat;
5033 					m_dat = (m->m_flags & M_PKTHDR) ?
5034 					  m->m_pktdat : m->dat;
5035 					memmove(m_dat, mtod(m, void*), m->m_len);
5036 					m->m_data = m_dat;
5037 				    }
5038 			} else
5039 #endif	/* just do the safe slow thing */
5040 			{
5041 				struct mbuf * n = NULL;
5042 				int newprevlen = prev->m_len - shortfall;
5043 
5044 				MGET(n, M_NOWAIT, MT_DATA);
5045 				if (n == NULL)
5046 				   return ENOBUFS;
5047 				KASSERT(m->m_len + shortfall < MLEN
5048 					/*,
5049 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5050 
5051 				/* first copy the data we're stealing from prev */
5052 				memcpy(n->m_data, prev->m_data + newprevlen,
5053 				    shortfall);
5054 
5055 				/* update prev->m_len accordingly */
5056 				prev->m_len -= shortfall;
5057 
5058 				/* copy data from runt m */
5059 				memcpy(n->m_data + shortfall, m->m_data,
5060 				    m->m_len);
5061 
5062 				/* n holds what we stole from prev, plus m */
5063 				n->m_len = shortfall + m->m_len;
5064 
5065 				/* stitch n into chain and free m */
5066 				n->m_next = m->m_next;
5067 				prev->m_next = n;
5068 				/* KASSERT(m->m_next == NULL); */
5069 				m->m_next = NULL;
5070 				m_free(m);
5071 				m = n;	/* for continuing loop */
5072 			}
5073 		}
5074 	}
5075 	return 0;
5076 }
5077 
5078 /*
5079  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5080  * pointers to descriptors.
5081  */
5082 static int
5083 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5084 {
5085 	struct bge_tx_bd	*f = NULL;
5086 	uint32_t		frag, cur;
5087 	uint16_t		csum_flags = 0;
5088 	uint16_t		txbd_tso_flags = 0;
5089 	struct txdmamap_pool_entry *dma;
5090 	bus_dmamap_t dmamap;
5091 	int			i = 0;
5092 	struct m_tag		*mtag;
5093 	int			use_tso, maxsegsize, error;
5094 
5095 	cur = frag = *txidx;
5096 
5097 	if (m_head->m_pkthdr.csum_flags) {
5098 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5099 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5100 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
5101 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5102 	}
5103 
5104 	/*
5105 	 * If we were asked to do an outboard checksum, and the NIC
5106 	 * has the bug where it sometimes adds in the Ethernet padding,
5107 	 * explicitly pad with zeros so the cksum will be correct either way.
5108 	 * (For now, do this for all chip versions, until newer
5109 	 * are confirmed to not require the workaround.)
5110 	 */
5111 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5112 #ifdef notyet
5113 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5114 #endif
5115 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5116 		goto check_dma_bug;
5117 
5118 	if (bge_cksum_pad(m_head) != 0)
5119 	    return ENOBUFS;
5120 
5121 check_dma_bug:
5122 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5123 		goto doit;
5124 
5125 	/*
5126 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5127 	 * less than eight bytes.  If we encounter a teeny mbuf
5128 	 * at the end of a chain, we can pad.  Otherwise, copy.
5129 	 */
5130 	if (bge_compact_dma_runt(m_head) != 0)
5131 		return ENOBUFS;
5132 
5133 doit:
5134 	dma = SLIST_FIRST(&sc->txdma_list);
5135 	if (dma == NULL)
5136 		return ENOBUFS;
5137 	dmamap = dma->dmamap;
5138 
5139 	/*
5140 	 * Set up any necessary TSO state before we start packing...
5141 	 */
5142 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5143 	if (!use_tso) {
5144 		maxsegsize = 0;
5145 	} else {	/* TSO setup */
5146 		unsigned  mss;
5147 		struct ether_header *eh;
5148 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5149 		struct mbuf * m0 = m_head;
5150 		struct ip *ip;
5151 		struct tcphdr *th;
5152 		int iphl, hlen;
5153 
5154 		/*
5155 		 * XXX It would be nice if the mbuf pkthdr had offset
5156 		 * fields for the protocol headers.
5157 		 */
5158 
5159 		eh = mtod(m0, struct ether_header *);
5160 		switch (htons(eh->ether_type)) {
5161 		case ETHERTYPE_IP:
5162 			offset = ETHER_HDR_LEN;
5163 			break;
5164 
5165 		case ETHERTYPE_VLAN:
5166 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5167 			break;
5168 
5169 		default:
5170 			/*
5171 			 * Don't support this protocol or encapsulation.
5172 			 */
5173 			return ENOBUFS;
5174 		}
5175 
5176 		/*
5177 		 * TCP/IP headers are in the first mbuf; we can do
5178 		 * this the easy way.
5179 		 */
5180 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5181 		hlen = iphl + offset;
5182 		if (__predict_false(m0->m_len <
5183 				    (hlen + sizeof(struct tcphdr)))) {
5184 
5185 			aprint_debug_dev(sc->bge_dev,
5186 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5187 			    "not handled yet\n",
5188 			     m0->m_len, hlen+ sizeof(struct tcphdr));
5189 #ifdef NOTYET
5190 			/*
5191 			 * XXX jonathan@NetBSD.org: untested.
5192 			 * how to force  this branch to be taken?
5193 			 */
5194 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5195 
5196 			m_copydata(m0, offset, sizeof(ip), &ip);
5197 			m_copydata(m0, hlen, sizeof(th), &th);
5198 
5199 			ip.ip_len = 0;
5200 
5201 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5202 			    sizeof(ip.ip_len), &ip.ip_len);
5203 
5204 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5205 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5206 
5207 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5208 			    sizeof(th.th_sum), &th.th_sum);
5209 
5210 			hlen += th.th_off << 2;
5211 			iptcp_opt_words	= hlen;
5212 #else
5213 			/*
5214 			 * if_wm "hard" case not yet supported, can we not
5215 			 * mandate it out of existence?
5216 			 */
5217 			(void) ip; (void)th; (void) ip_tcp_hlen;
5218 
5219 			return ENOBUFS;
5220 #endif
5221 		} else {
5222 			ip = (struct ip *) (mtod(m0, char *) + offset);
5223 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5224 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5225 
5226 			/* Total IP/TCP options, in 32-bit words */
5227 			iptcp_opt_words = (ip_tcp_hlen
5228 					   - sizeof(struct tcphdr)
5229 					   - sizeof(struct ip)) >> 2;
5230 		}
5231 		if (BGE_IS_575X_PLUS(sc)) {
5232 			th->th_sum = 0;
5233 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5234 		} else {
5235 			/*
5236 			 * XXX jonathan@NetBSD.org: 5705 untested.
5237 			 * Requires TSO firmware patch for 5701/5703/5704.
5238 			 */
5239 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5240 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5241 		}
5242 
5243 		mss = m_head->m_pkthdr.segsz;
5244 		txbd_tso_flags |=
5245 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5246 		    BGE_TXBDFLAG_CPU_POST_DMA;
5247 
5248 		/*
5249 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5250 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5251 		 * the NIC copies 40 bytes of IP/TCP header from the
5252 		 * supplied header into the IP/TCP header portion of
5253 		 * each post-TSO-segment. If the supplied packet has IP or
5254 		 * TCP options, we need to tell the NIC to copy those extra
5255 		 * bytes into each  post-TSO header, in addition to the normal
5256 		 * 40-byte IP/TCP header (and to leave space accordingly).
5257 		 * Unfortunately, the driver encoding of option length
5258 		 * varies across different ASIC families.
5259 		 */
5260 		tcp_seg_flags = 0;
5261 		if (iptcp_opt_words) {
5262 			if (BGE_IS_5705_PLUS(sc)) {
5263 				tcp_seg_flags =
5264 					iptcp_opt_words << 11;
5265 			} else {
5266 				txbd_tso_flags |=
5267 					iptcp_opt_words << 12;
5268 			}
5269 		}
5270 		maxsegsize = mss | tcp_seg_flags;
5271 		ip->ip_len = htons(mss + ip_tcp_hlen);
5272 
5273 	}	/* TSO setup */
5274 
5275 	/*
5276 	 * Start packing the mbufs in this chain into
5277 	 * the fragment pointers. Stop when we run out
5278 	 * of fragments or hit the end of the mbuf chain.
5279 	 */
5280 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5281 	    BUS_DMA_NOWAIT);
5282 	if (error)
5283 		return ENOBUFS;
5284 	/*
5285 	 * Sanity check: avoid coming within 16 descriptors
5286 	 * of the end of the ring.
5287 	 */
5288 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5289 		BGE_TSO_PRINTF(("%s: "
5290 		    " dmamap_load_mbuf too close to ring wrap\n",
5291 		    device_xname(sc->bge_dev)));
5292 		goto fail_unload;
5293 	}
5294 
5295 	mtag = sc->ethercom.ec_nvlans ?
5296 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5297 
5298 
5299 	/* Iterate over dmap-map fragments. */
5300 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5301 		f = &sc->bge_rdata->bge_tx_ring[frag];
5302 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5303 			break;
5304 
5305 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5306 		f->bge_len = dmamap->dm_segs[i].ds_len;
5307 
5308 		/*
5309 		 * For 5751 and follow-ons, for TSO we must turn
5310 		 * off checksum-assist flag in the tx-descr, and
5311 		 * supply the ASIC-revision-specific encoding
5312 		 * of TSO flags and segsize.
5313 		 */
5314 		if (use_tso) {
5315 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5316 				f->bge_rsvd = maxsegsize;
5317 				f->bge_flags = csum_flags | txbd_tso_flags;
5318 			} else {
5319 				f->bge_rsvd = 0;
5320 				f->bge_flags =
5321 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5322 			}
5323 		} else {
5324 			f->bge_rsvd = 0;
5325 			f->bge_flags = csum_flags;
5326 		}
5327 
5328 		if (mtag != NULL) {
5329 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5330 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5331 		} else {
5332 			f->bge_vlan_tag = 0;
5333 		}
5334 		cur = frag;
5335 		BGE_INC(frag, BGE_TX_RING_CNT);
5336 	}
5337 
5338 	if (i < dmamap->dm_nsegs) {
5339 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5340 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5341 		goto fail_unload;
5342 	}
5343 
5344 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5345 	    BUS_DMASYNC_PREWRITE);
5346 
5347 	if (frag == sc->bge_tx_saved_considx) {
5348 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5349 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5350 
5351 		goto fail_unload;
5352 	}
5353 
5354 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5355 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5356 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5357 	sc->txdma[cur] = dma;
5358 	sc->bge_txcnt += dmamap->dm_nsegs;
5359 
5360 	*txidx = frag;
5361 
5362 	return 0;
5363 
5364 fail_unload:
5365 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
5366 
5367 	return ENOBUFS;
5368 }
5369 
5370 /*
5371  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5372  * to the mbuf data regions directly in the transmit descriptors.
5373  */
5374 static void
5375 bge_start(struct ifnet *ifp)
5376 {
5377 	struct bge_softc *sc;
5378 	struct mbuf *m_head = NULL;
5379 	uint32_t prodidx;
5380 	int pkts = 0;
5381 
5382 	sc = ifp->if_softc;
5383 
5384 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5385 		return;
5386 
5387 	prodidx = sc->bge_tx_prodidx;
5388 
5389 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5390 		IFQ_POLL(&ifp->if_snd, m_head);
5391 		if (m_head == NULL)
5392 			break;
5393 
5394 #if 0
5395 		/*
5396 		 * XXX
5397 		 * safety overkill.  If this is a fragmented packet chain
5398 		 * with delayed TCP/UDP checksums, then only encapsulate
5399 		 * it if we have enough descriptors to handle the entire
5400 		 * chain at once.
5401 		 * (paranoia -- may not actually be needed)
5402 		 */
5403 		if (m_head->m_flags & M_FIRSTFRAG &&
5404 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5405 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5406 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5407 				ifp->if_flags |= IFF_OACTIVE;
5408 				break;
5409 			}
5410 		}
5411 #endif
5412 
5413 		/*
5414 		 * Pack the data into the transmit ring. If we
5415 		 * don't have room, set the OACTIVE flag and wait
5416 		 * for the NIC to drain the ring.
5417 		 */
5418 		if (bge_encap(sc, m_head, &prodidx)) {
5419 			ifp->if_flags |= IFF_OACTIVE;
5420 			break;
5421 		}
5422 
5423 		/* now we are committed to transmit the packet */
5424 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5425 		pkts++;
5426 
5427 		/*
5428 		 * If there's a BPF listener, bounce a copy of this frame
5429 		 * to him.
5430 		 */
5431 		bpf_mtap(ifp, m_head);
5432 	}
5433 	if (pkts == 0)
5434 		return;
5435 
5436 	/* Transmit */
5437 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5438 	/* 5700 b2 errata */
5439 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5440 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5441 
5442 	sc->bge_tx_prodidx = prodidx;
5443 
5444 	/*
5445 	 * Set a timeout in case the chip goes out to lunch.
5446 	 */
5447 	ifp->if_timer = 5;
5448 }
5449 
5450 static int
5451 bge_init(struct ifnet *ifp)
5452 {
5453 	struct bge_softc *sc = ifp->if_softc;
5454 	const uint16_t *m;
5455 	uint32_t mode, reg;
5456 	int s, error = 0;
5457 
5458 	s = splnet();
5459 
5460 	ifp = &sc->ethercom.ec_if;
5461 
5462 	/* Cancel pending I/O and flush buffers. */
5463 	bge_stop(ifp, 0);
5464 
5465 	bge_stop_fw(sc);
5466 	bge_sig_pre_reset(sc, BGE_RESET_START);
5467 	bge_reset(sc);
5468 	bge_sig_legacy(sc, BGE_RESET_START);
5469 
5470 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5471 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5472 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5473 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
5474 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5475 
5476 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5477 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5478 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5479 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5480 
5481 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5482 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5483 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5484 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5485 
5486 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5487 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5488 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5489 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5490 	}
5491 
5492 	bge_sig_post_reset(sc, BGE_RESET_START);
5493 
5494 	bge_chipinit(sc);
5495 
5496 	/*
5497 	 * Init the various state machines, ring
5498 	 * control blocks and firmware.
5499 	 */
5500 	error = bge_blockinit(sc);
5501 	if (error != 0) {
5502 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5503 		    error);
5504 		splx(s);
5505 		return error;
5506 	}
5507 
5508 	ifp = &sc->ethercom.ec_if;
5509 
5510 	/* 5718 step 25, 57XX step 54 */
5511 	/* Specify MTU. */
5512 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5513 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5514 
5515 	/* 5718 step 23 */
5516 	/* Load our MAC address. */
5517 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5518 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5519 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5520 
5521 	/* Enable or disable promiscuous mode as needed. */
5522 	if (ifp->if_flags & IFF_PROMISC)
5523 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5524 	else
5525 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5526 
5527 	/* Program multicast filter. */
5528 	bge_setmulti(sc);
5529 
5530 	/* Init RX ring. */
5531 	bge_init_rx_ring_std(sc);
5532 
5533 	/*
5534 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5535 	 * memory to insure that the chip has in fact read the first
5536 	 * entry of the ring.
5537 	 */
5538 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5539 		uint32_t		v, i;
5540 		for (i = 0; i < 10; i++) {
5541 			DELAY(20);
5542 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5543 			if (v == (MCLBYTES - ETHER_ALIGN))
5544 				break;
5545 		}
5546 		if (i == 10)
5547 			aprint_error_dev(sc->bge_dev,
5548 			    "5705 A0 chip failed to load RX ring\n");
5549 	}
5550 
5551 	/* Init jumbo RX ring. */
5552 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5553 		bge_init_rx_ring_jumbo(sc);
5554 
5555 	/* Init our RX return ring index */
5556 	sc->bge_rx_saved_considx = 0;
5557 
5558 	/* Init TX ring. */
5559 	bge_init_tx_ring(sc);
5560 
5561 	/* 5718 step 63, 57XX step 94 */
5562 	/* Enable TX MAC state machine lockup fix. */
5563 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5564 	if (BGE_IS_5755_PLUS(sc) ||
5565 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5566 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5567 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5568 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5569 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5570 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5571 	}
5572 
5573 	/* Turn on transmitter */
5574 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5575 	/* 5718 step 64 */
5576 	DELAY(100);
5577 
5578 	/* 5718 step 65, 57XX step 95 */
5579 	/* Turn on receiver */
5580 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5581 	if (BGE_IS_5755_PLUS(sc))
5582 		mode |= BGE_RXMODE_IPV6_ENABLE;
5583 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5584 	/* 5718 step 66 */
5585 	DELAY(10);
5586 
5587 	/* 5718 step 12, 57XX step 37 */
5588 	/*
5589 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5590 	 * is 1, but tg3 set 1 only on 57765 series.
5591 	 */
5592 	if (BGE_IS_57765_PLUS(sc))
5593 		reg = 1;
5594 	else
5595 		reg = 2;
5596 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5597 
5598 	/* Tell firmware we're alive. */
5599 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5600 
5601 	/* Enable host interrupts. */
5602 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5603 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5604 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5605 
5606 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5607 		goto out;
5608 
5609 	ifp->if_flags |= IFF_RUNNING;
5610 	ifp->if_flags &= ~IFF_OACTIVE;
5611 
5612 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5613 
5614 out:
5615 	sc->bge_if_flags = ifp->if_flags;
5616 	splx(s);
5617 
5618 	return error;
5619 }
5620 
5621 /*
5622  * Set media options.
5623  */
5624 static int
5625 bge_ifmedia_upd(struct ifnet *ifp)
5626 {
5627 	struct bge_softc *sc = ifp->if_softc;
5628 	struct mii_data *mii = &sc->bge_mii;
5629 	struct ifmedia *ifm = &sc->bge_ifmedia;
5630 	int rc;
5631 
5632 	/* If this is a 1000baseX NIC, enable the TBI port. */
5633 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5634 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5635 			return EINVAL;
5636 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5637 		case IFM_AUTO:
5638 			/*
5639 			 * The BCM5704 ASIC appears to have a special
5640 			 * mechanism for programming the autoneg
5641 			 * advertisement registers in TBI mode.
5642 			 */
5643 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5644 				uint32_t sgdig;
5645 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5646 				if (sgdig & BGE_SGDIGSTS_DONE) {
5647 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5648 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5649 					sgdig |= BGE_SGDIGCFG_AUTO |
5650 					    BGE_SGDIGCFG_PAUSE_CAP |
5651 					    BGE_SGDIGCFG_ASYM_PAUSE;
5652 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5653 					    sgdig | BGE_SGDIGCFG_SEND);
5654 					DELAY(5);
5655 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5656 					    sgdig);
5657 				}
5658 			}
5659 			break;
5660 		case IFM_1000_SX:
5661 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5662 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5663 				    BGE_MACMODE_HALF_DUPLEX);
5664 			} else {
5665 				BGE_SETBIT(sc, BGE_MAC_MODE,
5666 				    BGE_MACMODE_HALF_DUPLEX);
5667 			}
5668 			DELAY(40);
5669 			break;
5670 		default:
5671 			return EINVAL;
5672 		}
5673 		/* XXX 802.3x flow control for 1000BASE-SX */
5674 		return 0;
5675 	}
5676 
5677 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5678 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5679 		uint32_t reg;
5680 
5681 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5682 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5683 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5684 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5685 		}
5686 	}
5687 
5688 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5689 	if ((rc = mii_mediachg(mii)) == ENXIO)
5690 		return 0;
5691 
5692 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5693 		uint32_t reg;
5694 
5695 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5696 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5697 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5698 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5699 			delay(40);
5700 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5701 		}
5702 	}
5703 
5704 	/*
5705 	 * Force an interrupt so that we will call bge_link_upd
5706 	 * if needed and clear any pending link state attention.
5707 	 * Without this we are not getting any further interrupts
5708 	 * for link state changes and thus will not UP the link and
5709 	 * not be able to send in bge_start. The only way to get
5710 	 * things working was to receive a packet and get a RX intr.
5711 	 */
5712 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5713 	    sc->bge_flags & BGEF_IS_5788)
5714 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5715 	else
5716 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5717 
5718 	return rc;
5719 }
5720 
5721 /*
5722  * Report current media status.
5723  */
5724 static void
5725 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5726 {
5727 	struct bge_softc *sc = ifp->if_softc;
5728 	struct mii_data *mii = &sc->bge_mii;
5729 
5730 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5731 		ifmr->ifm_status = IFM_AVALID;
5732 		ifmr->ifm_active = IFM_ETHER;
5733 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5734 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5735 			ifmr->ifm_status |= IFM_ACTIVE;
5736 		ifmr->ifm_active |= IFM_1000_SX;
5737 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5738 			ifmr->ifm_active |= IFM_HDX;
5739 		else
5740 			ifmr->ifm_active |= IFM_FDX;
5741 		return;
5742 	}
5743 
5744 	mii_pollstat(mii);
5745 	ifmr->ifm_status = mii->mii_media_status;
5746 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5747 	    sc->bge_flowflags;
5748 }
5749 
5750 static int
5751 bge_ifflags_cb(struct ethercom *ec)
5752 {
5753 	struct ifnet *ifp = &ec->ec_if;
5754 	struct bge_softc *sc = ifp->if_softc;
5755 	int change = ifp->if_flags ^ sc->bge_if_flags;
5756 
5757 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5758 		return ENETRESET;
5759 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5760 		return 0;
5761 
5762 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5763 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5764 	else
5765 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5766 
5767 	bge_setmulti(sc);
5768 
5769 	sc->bge_if_flags = ifp->if_flags;
5770 	return 0;
5771 }
5772 
5773 static int
5774 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5775 {
5776 	struct bge_softc *sc = ifp->if_softc;
5777 	struct ifreq *ifr = (struct ifreq *) data;
5778 	int s, error = 0;
5779 	struct mii_data *mii;
5780 
5781 	s = splnet();
5782 
5783 	switch (command) {
5784 	case SIOCSIFMEDIA:
5785 		/* XXX Flow control is not supported for 1000BASE-SX */
5786 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5787 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5788 			sc->bge_flowflags = 0;
5789 		}
5790 
5791 		/* Flow control requires full-duplex mode. */
5792 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5793 		    (ifr->ifr_media & IFM_FDX) == 0) {
5794 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5795 		}
5796 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5797 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5798 				/* We can do both TXPAUSE and RXPAUSE. */
5799 				ifr->ifr_media |=
5800 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5801 			}
5802 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5803 		}
5804 		/* FALLTHROUGH */
5805 	case SIOCGIFMEDIA:
5806 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5807 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5808 			    command);
5809 		} else {
5810 			mii = &sc->bge_mii;
5811 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5812 			    command);
5813 		}
5814 		break;
5815 	default:
5816 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5817 			break;
5818 
5819 		error = 0;
5820 
5821 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5822 			;
5823 		else if (ifp->if_flags & IFF_RUNNING)
5824 			bge_setmulti(sc);
5825 		break;
5826 	}
5827 
5828 	splx(s);
5829 
5830 	return error;
5831 }
5832 
5833 static void
5834 bge_watchdog(struct ifnet *ifp)
5835 {
5836 	struct bge_softc *sc;
5837 
5838 	sc = ifp->if_softc;
5839 
5840 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5841 
5842 	ifp->if_flags &= ~IFF_RUNNING;
5843 	bge_init(ifp);
5844 
5845 	ifp->if_oerrors++;
5846 }
5847 
5848 static void
5849 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5850 {
5851 	int i;
5852 
5853 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5854 
5855 	for (i = 0; i < 1000; i++) {
5856 		delay(100);
5857 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5858 			return;
5859 	}
5860 
5861 	/*
5862 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5863 	 * on some environment (and once after boot?)
5864 	 */
5865 	if (reg != BGE_SRS_MODE)
5866 		aprint_error_dev(sc->bge_dev,
5867 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5868 		    (u_long)reg, bit);
5869 }
5870 
5871 /*
5872  * Stop the adapter and free any mbufs allocated to the
5873  * RX and TX lists.
5874  */
5875 static void
5876 bge_stop(struct ifnet *ifp, int disable)
5877 {
5878 	struct bge_softc *sc = ifp->if_softc;
5879 
5880 	if (disable) {
5881 		sc->bge_detaching = 1;
5882 		callout_halt(&sc->bge_timeout, NULL);
5883 	} else
5884 		callout_stop(&sc->bge_timeout);
5885 
5886 	/* Disable host interrupts. */
5887 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5888 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5889 
5890 	/*
5891 	 * Tell firmware we're shutting down.
5892 	 */
5893 	bge_stop_fw(sc);
5894 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5895 
5896 	/*
5897 	 * Disable all of the receiver blocks.
5898 	 */
5899 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5900 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5901 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5902 	if (BGE_IS_5700_FAMILY(sc))
5903 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5904 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5905 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5906 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5907 
5908 	/*
5909 	 * Disable all of the transmit blocks.
5910 	 */
5911 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5912 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5913 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5914 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5915 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5916 	if (BGE_IS_5700_FAMILY(sc))
5917 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5918 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5919 
5920 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5921 	delay(40);
5922 
5923 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5924 
5925 	/*
5926 	 * Shut down all of the memory managers and related
5927 	 * state machines.
5928 	 */
5929 	/* 5718 step 5a,5b */
5930 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5931 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5932 	if (BGE_IS_5700_FAMILY(sc))
5933 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5934 
5935 	/* 5718 step 5c,5d */
5936 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5937 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5938 
5939 	if (BGE_IS_5700_FAMILY(sc)) {
5940 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5941 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5942 	}
5943 
5944 	bge_reset(sc);
5945 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5946 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5947 
5948 	/*
5949 	 * Keep the ASF firmware running if up.
5950 	 */
5951 	if (sc->bge_asf_mode & ASF_STACKUP)
5952 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5953 	else
5954 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5955 
5956 	/* Free the RX lists. */
5957 	bge_free_rx_ring_std(sc);
5958 
5959 	/* Free jumbo RX list. */
5960 	if (BGE_IS_JUMBO_CAPABLE(sc))
5961 		bge_free_rx_ring_jumbo(sc);
5962 
5963 	/* Free TX buffers. */
5964 	bge_free_tx_ring(sc);
5965 
5966 	/*
5967 	 * Isolate/power down the PHY.
5968 	 */
5969 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
5970 		mii_down(&sc->bge_mii);
5971 
5972 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5973 
5974 	/* Clear MAC's link state (PHY may still have link UP). */
5975 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5976 
5977 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5978 }
5979 
5980 static void
5981 bge_link_upd(struct bge_softc *sc)
5982 {
5983 	struct ifnet *ifp = &sc->ethercom.ec_if;
5984 	struct mii_data *mii = &sc->bge_mii;
5985 	uint32_t status;
5986 	int link;
5987 
5988 	/* Clear 'pending link event' flag */
5989 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5990 
5991 	/*
5992 	 * Process link state changes.
5993 	 * Grrr. The link status word in the status block does
5994 	 * not work correctly on the BCM5700 rev AX and BX chips,
5995 	 * according to all available information. Hence, we have
5996 	 * to enable MII interrupts in order to properly obtain
5997 	 * async link changes. Unfortunately, this also means that
5998 	 * we have to read the MAC status register to detect link
5999 	 * changes, thereby adding an additional register access to
6000 	 * the interrupt handler.
6001 	 */
6002 
6003 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6004 		status = CSR_READ_4(sc, BGE_MAC_STS);
6005 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6006 			mii_pollstat(mii);
6007 
6008 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6009 			    mii->mii_media_status & IFM_ACTIVE &&
6010 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6011 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6012 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6013 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6014 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6015 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6016 
6017 			/* Clear the interrupt */
6018 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6019 			    BGE_EVTENB_MI_INTERRUPT);
6020 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6021 			    BRGPHY_MII_ISR);
6022 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6023 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6024 		}
6025 		return;
6026 	}
6027 
6028 	if (sc->bge_flags & BGEF_FIBER_TBI) {
6029 		status = CSR_READ_4(sc, BGE_MAC_STS);
6030 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6031 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6032 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6033 				if (BGE_ASICREV(sc->bge_chipid)
6034 				    == BGE_ASICREV_BCM5704) {
6035 					BGE_CLRBIT(sc, BGE_MAC_MODE,
6036 					    BGE_MACMODE_TBI_SEND_CFGS);
6037 					DELAY(40);
6038 				}
6039 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6040 				if_link_state_change(ifp, LINK_STATE_UP);
6041 			}
6042 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6043 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6044 			if_link_state_change(ifp, LINK_STATE_DOWN);
6045 		}
6046 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6047 		/*
6048 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6049 		 * bit in status word always set. Workaround this bug by
6050 		 * reading PHY link status directly.
6051 		 */
6052 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6053 		    BGE_STS_LINK : 0;
6054 
6055 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6056 			mii_pollstat(mii);
6057 
6058 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6059 			    mii->mii_media_status & IFM_ACTIVE &&
6060 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6061 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6062 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6063 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6064 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6065 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6066 		}
6067 	} else {
6068 		/*
6069 		 * For controllers that call mii_tick, we have to poll
6070 		 * link status.
6071 		 */
6072 		mii_pollstat(mii);
6073 	}
6074 
6075 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6076 		uint32_t reg, scale;
6077 
6078 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6079 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6080 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6081 			scale = 65;
6082 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6083 			scale = 6;
6084 		else
6085 			scale = 12;
6086 
6087 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6088 		    ~BGE_MISCCFG_TIMER_PRESCALER;
6089 		reg |= scale << 1;
6090 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6091 	}
6092 	/* Clear the attention */
6093 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
6094 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
6095 	    BGE_MACSTAT_LINK_CHANGED);
6096 }
6097 
6098 static int
6099 bge_sysctl_verify(SYSCTLFN_ARGS)
6100 {
6101 	int error, t;
6102 	struct sysctlnode node;
6103 
6104 	node = *rnode;
6105 	t = *(int*)rnode->sysctl_data;
6106 	node.sysctl_data = &t;
6107 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
6108 	if (error || newp == NULL)
6109 		return error;
6110 
6111 #if 0
6112 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6113 	    node.sysctl_num, rnode->sysctl_num));
6114 #endif
6115 
6116 	if (node.sysctl_num == bge_rxthresh_nodenum) {
6117 		if (t < 0 || t >= NBGE_RX_THRESH)
6118 			return EINVAL;
6119 		bge_update_all_threshes(t);
6120 	} else
6121 		return EINVAL;
6122 
6123 	*(int*)rnode->sysctl_data = t;
6124 
6125 	return 0;
6126 }
6127 
6128 /*
6129  * Set up sysctl(3) MIB, hw.bge.*.
6130  */
6131 static void
6132 bge_sysctl_init(struct bge_softc *sc)
6133 {
6134 	int rc, bge_root_num;
6135 	const struct sysctlnode *node;
6136 
6137 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6138 	    0, CTLTYPE_NODE, "bge",
6139 	    SYSCTL_DESCR("BGE interface controls"),
6140 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6141 		goto out;
6142 	}
6143 
6144 	bge_root_num = node->sysctl_num;
6145 
6146 	/* BGE Rx interrupt mitigation level */
6147 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6148 	    CTLFLAG_READWRITE,
6149 	    CTLTYPE_INT, "rx_lvl",
6150 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6151 	    bge_sysctl_verify, 0,
6152 	    &bge_rx_thresh_lvl,
6153 	    0, CTL_HW, bge_root_num, CTL_CREATE,
6154 	    CTL_EOL)) != 0) {
6155 		goto out;
6156 	}
6157 
6158 	bge_rxthresh_nodenum = node->sysctl_num;
6159 
6160 	return;
6161 
6162 out:
6163 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6164 }
6165 
6166 #ifdef BGE_DEBUG
6167 void
6168 bge_debug_info(struct bge_softc *sc)
6169 {
6170 
6171 	printf("Hardware Flags:\n");
6172 	if (BGE_IS_57765_PLUS(sc))
6173 		printf(" - 57765 Plus\n");
6174 	if (BGE_IS_5717_PLUS(sc))
6175 		printf(" - 5717 Plus\n");
6176 	if (BGE_IS_5755_PLUS(sc))
6177 		printf(" - 5755 Plus\n");
6178 	if (BGE_IS_575X_PLUS(sc))
6179 		printf(" - 575X Plus\n");
6180 	if (BGE_IS_5705_PLUS(sc))
6181 		printf(" - 5705 Plus\n");
6182 	if (BGE_IS_5714_FAMILY(sc))
6183 		printf(" - 5714 Family\n");
6184 	if (BGE_IS_5700_FAMILY(sc))
6185 		printf(" - 5700 Family\n");
6186 	if (sc->bge_flags & BGEF_IS_5788)
6187 		printf(" - 5788\n");
6188 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6189 		printf(" - Supports Jumbo Frames\n");
6190 	if (sc->bge_flags & BGEF_NO_EEPROM)
6191 		printf(" - No EEPROM\n");
6192 	if (sc->bge_flags & BGEF_PCIX)
6193 		printf(" - PCI-X Bus\n");
6194 	if (sc->bge_flags & BGEF_PCIE)
6195 		printf(" - PCI Express Bus\n");
6196 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6197 		printf(" - RX Alignment Bug\n");
6198 	if (sc->bge_flags & BGEF_APE)
6199 		printf(" - APE\n");
6200 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
6201 		printf(" - CPMU\n");
6202 	if (sc->bge_flags & BGEF_TSO)
6203 		printf(" - TSO\n");
6204 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
6205 		printf(" - TAGGED_STATUS\n");
6206 
6207 	/* PHY related */
6208 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6209 		printf(" - No 3 LEDs\n");
6210 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6211 		printf(" - CRC bug\n");
6212 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6213 		printf(" - ADC bug\n");
6214 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6215 		printf(" - 5704 A0 bug\n");
6216 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6217 		printf(" - jitter bug\n");
6218 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6219 		printf(" - BER bug\n");
6220 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6221 		printf(" - adjust trim\n");
6222 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6223 		printf(" - no wirespeed\n");
6224 
6225 	/* ASF related */
6226 	if (sc->bge_asf_mode & ASF_ENABLE)
6227 		printf(" - ASF enable\n");
6228 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6229 		printf(" - ASF new handshake\n");
6230 	if (sc->bge_asf_mode & ASF_STACKUP)
6231 		printf(" - ASF stackup\n");
6232 }
6233 #endif /* BGE_DEBUG */
6234 
6235 static int
6236 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6237 {
6238 	prop_dictionary_t dict;
6239 	prop_data_t ea;
6240 
6241 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6242 		return 1;
6243 
6244 	dict = device_properties(sc->bge_dev);
6245 	ea = prop_dictionary_get(dict, "mac-address");
6246 	if (ea != NULL) {
6247 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6248 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6249 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6250 		return 0;
6251 	}
6252 
6253 	return 1;
6254 }
6255 
6256 static int
6257 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6258 {
6259 	uint32_t mac_addr;
6260 
6261 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6262 	if ((mac_addr >> 16) == 0x484b) {
6263 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6264 		ether_addr[1] = (uint8_t)mac_addr;
6265 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6266 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6267 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6268 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6269 		ether_addr[5] = (uint8_t)mac_addr;
6270 		return 0;
6271 	}
6272 	return 1;
6273 }
6274 
6275 static int
6276 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6277 {
6278 	int mac_offset = BGE_EE_MAC_OFFSET;
6279 
6280 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6281 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6282 
6283 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6284 	    ETHER_ADDR_LEN));
6285 }
6286 
6287 static int
6288 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6289 {
6290 
6291 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6292 		return 1;
6293 
6294 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6295 	   ETHER_ADDR_LEN));
6296 }
6297 
6298 static int
6299 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6300 {
6301 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6302 		/* NOTE: Order is critical */
6303 		bge_get_eaddr_fw,
6304 		bge_get_eaddr_mem,
6305 		bge_get_eaddr_nvram,
6306 		bge_get_eaddr_eeprom,
6307 		NULL
6308 	};
6309 	const bge_eaddr_fcn_t *func;
6310 
6311 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6312 		if ((*func)(sc, eaddr) == 0)
6313 			break;
6314 	}
6315 	return (*func == NULL ? ENXIO : 0);
6316 }
6317