xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 7788a0781fe6ff2cce37368b4578a7ade0850cb1)
1 /*	$NetBSD: if_bge.c,v 1.258 2013/07/08 05:36:23 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.258 2013/07/08 05:36:23 msaitoh Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99 
100 #include <sys/rnd.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h>			/* for struct ip */
113 #include <netinet/tcp.h>		/* for struct tcphdr */
114 
115 
116 #include <net/bpf.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129 
130 #include <prop/proplib.h>
131 
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133 
134 
135 /*
136  * Tunable thresholds for rx-side bge interrupt mitigation.
137  */
138 
139 /*
140  * The pairs of values below were obtained from empirical measurement
141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142  * interrupt for every N packets received, where N is, approximately,
143  * the second value (rx_max_bds) in each pair.  The values are chosen
144  * such that moving from one pair to the succeeding pair was observed
145  * to roughly halve interrupt rate under sustained input packet load.
146  * The values were empirically chosen to avoid overflowing internal
147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
148  * results in internal wrapping and higher interrupt rates.
149  * The limit of 46 frames was chosen to match NFS workloads.
150  *
151  * These values also work well on bcm5701, bcm5704C, and (less
152  * tested) bcm5703.  On other chipsets, (including the Altima chip
153  * family), the larger values may overflow internal chip limits,
154  * leading to increasing interrupt rates rather than lower interrupt
155  * rates.
156  *
157  * Applications using heavy interrupt mitigation (interrupting every
158  * 32 or 46 frames) in both directions may need to increase the TCP
159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160  * full link bandwidth, due to ACKs and window updates lingering
161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162  */
163 static const struct bge_load_rx_thresh {
164 	int rx_ticks;
165 	int rx_max_bds; }
166 bge_rx_threshes[] = {
167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
168 	{ 32,   2 },
169 	{ 50,   4 },
170 	{ 100,  8 },
171 	{ 192, 16 },
172 	{ 416, 32 },
173 	{ 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176 
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180 
181 static int bge_rxthresh_nodenum;
182 
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184 
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190 
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200 
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219 
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223 
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 			       bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240 
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251 
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255 
256 #define BGE_RESET_SHUTDOWN	0
257 #define	BGE_RESET_START		1
258 #define	BGE_RESET_SUSPEND	2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268 
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275 
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x)	if (bgedebug) printf x
278 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
280 int	bgedebug = 0;
281 int	bge_tso_debug = 0;
282 void		bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288 
289 #ifdef BGE_EVENT_COUNTERS
290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
293 #else
294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
297 #endif
298 
299 static const struct bge_product {
300 	pci_vendor_id_t		bp_vendor;
301 	pci_product_id_t	bp_product;
302 	const char		*bp_name;
303 } bge_products[] = {
304 	/*
305 	 * The BCM5700 documentation seems to indicate that the hardware
306 	 * still has the Alteon vendor ID burned into it, though it
307 	 * should always be overridden by the value in the EEPROM.  We'll
308 	 * check for it anyway.
309 	 */
310 	{ PCI_VENDOR_ALTEON,
311 	  PCI_PRODUCT_ALTEON_BCM5700,
312 	  "Broadcom BCM5700 Gigabit Ethernet",
313 	  },
314 	{ PCI_VENDOR_ALTEON,
315 	  PCI_PRODUCT_ALTEON_BCM5701,
316 	  "Broadcom BCM5701 Gigabit Ethernet",
317 	  },
318 	{ PCI_VENDOR_ALTIMA,
319 	  PCI_PRODUCT_ALTIMA_AC1000,
320 	  "Altima AC1000 Gigabit Ethernet",
321 	  },
322 	{ PCI_VENDOR_ALTIMA,
323 	  PCI_PRODUCT_ALTIMA_AC1001,
324 	  "Altima AC1001 Gigabit Ethernet",
325 	   },
326 	{ PCI_VENDOR_ALTIMA,
327 	  PCI_PRODUCT_ALTIMA_AC1003,
328 	  "Altima AC1003 Gigabit Ethernet",
329 	   },
330 	{ PCI_VENDOR_ALTIMA,
331 	  PCI_PRODUCT_ALTIMA_AC9100,
332 	  "Altima AC9100 Gigabit Ethernet",
333 	  },
334 	{ PCI_VENDOR_APPLE,
335 	  PCI_PRODUCT_APPLE_BCM5701,
336 	  "APPLE BCM5701 Gigabit Ethernet",
337 	  },
338 	{ PCI_VENDOR_BROADCOM,
339 	  PCI_PRODUCT_BROADCOM_BCM5700,
340 	  "Broadcom BCM5700 Gigabit Ethernet",
341 	  },
342 	{ PCI_VENDOR_BROADCOM,
343 	  PCI_PRODUCT_BROADCOM_BCM5701,
344 	  "Broadcom BCM5701 Gigabit Ethernet",
345 	  },
346 	{ PCI_VENDOR_BROADCOM,
347 	  PCI_PRODUCT_BROADCOM_BCM5702,
348 	  "Broadcom BCM5702 Gigabit Ethernet",
349 	  },
350 	{ PCI_VENDOR_BROADCOM,
351 	  PCI_PRODUCT_BROADCOM_BCM5702X,
352 	  "Broadcom BCM5702X Gigabit Ethernet" },
353 	{ PCI_VENDOR_BROADCOM,
354 	  PCI_PRODUCT_BROADCOM_BCM5703,
355 	  "Broadcom BCM5703 Gigabit Ethernet",
356 	  },
357 	{ PCI_VENDOR_BROADCOM,
358 	  PCI_PRODUCT_BROADCOM_BCM5703X,
359 	  "Broadcom BCM5703X Gigabit Ethernet",
360 	  },
361 	{ PCI_VENDOR_BROADCOM,
362 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 	  "Broadcom BCM5703 Gigabit Ethernet",
364 	  },
365 	{ PCI_VENDOR_BROADCOM,
366 	  PCI_PRODUCT_BROADCOM_BCM5704C,
367 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
368 	  },
369 	{ PCI_VENDOR_BROADCOM,
370 	  PCI_PRODUCT_BROADCOM_BCM5704S,
371 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
372 	  },
373 	{ PCI_VENDOR_BROADCOM,
374 	  PCI_PRODUCT_BROADCOM_BCM5705,
375 	  "Broadcom BCM5705 Gigabit Ethernet",
376 	  },
377 	{ PCI_VENDOR_BROADCOM,
378 	  PCI_PRODUCT_BROADCOM_BCM5705F,
379 	  "Broadcom BCM5705F Gigabit Ethernet",
380 	  },
381 	{ PCI_VENDOR_BROADCOM,
382 	  PCI_PRODUCT_BROADCOM_BCM5705K,
383 	  "Broadcom BCM5705K Gigabit Ethernet",
384 	  },
385 	{ PCI_VENDOR_BROADCOM,
386 	  PCI_PRODUCT_BROADCOM_BCM5705M,
387 	  "Broadcom BCM5705M Gigabit Ethernet",
388 	  },
389 	{ PCI_VENDOR_BROADCOM,
390 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 	  "Broadcom BCM5705M Gigabit Ethernet",
392 	  },
393 	{ PCI_VENDOR_BROADCOM,
394 	  PCI_PRODUCT_BROADCOM_BCM5714,
395 	  "Broadcom BCM5714 Gigabit Ethernet",
396 	  },
397 	{ PCI_VENDOR_BROADCOM,
398 	  PCI_PRODUCT_BROADCOM_BCM5714S,
399 	  "Broadcom BCM5714S Gigabit Ethernet",
400 	  },
401 	{ PCI_VENDOR_BROADCOM,
402 	  PCI_PRODUCT_BROADCOM_BCM5715,
403 	  "Broadcom BCM5715 Gigabit Ethernet",
404 	  },
405 	{ PCI_VENDOR_BROADCOM,
406 	  PCI_PRODUCT_BROADCOM_BCM5715S,
407 	  "Broadcom BCM5715S Gigabit Ethernet",
408 	  },
409 	{ PCI_VENDOR_BROADCOM,
410 	  PCI_PRODUCT_BROADCOM_BCM5717,
411 	  "Broadcom BCM5717 Gigabit Ethernet",
412 	  },
413 	{ PCI_VENDOR_BROADCOM,
414 	  PCI_PRODUCT_BROADCOM_BCM5718,
415 	  "Broadcom BCM5718 Gigabit Ethernet",
416 	  },
417 	{ PCI_VENDOR_BROADCOM,
418 	  PCI_PRODUCT_BROADCOM_BCM5719,
419 	  "Broadcom BCM5719 Gigabit Ethernet",
420 	  },
421 	{ PCI_VENDOR_BROADCOM,
422 	  PCI_PRODUCT_BROADCOM_BCM5720,
423 	  "Broadcom BCM5720 Gigabit Ethernet",
424 	  },
425 	{ PCI_VENDOR_BROADCOM,
426 	  PCI_PRODUCT_BROADCOM_BCM5721,
427 	  "Broadcom BCM5721 Gigabit Ethernet",
428 	  },
429 	{ PCI_VENDOR_BROADCOM,
430 	  PCI_PRODUCT_BROADCOM_BCM5722,
431 	  "Broadcom BCM5722 Gigabit Ethernet",
432 	  },
433 	{ PCI_VENDOR_BROADCOM,
434 	  PCI_PRODUCT_BROADCOM_BCM5723,
435 	  "Broadcom BCM5723 Gigabit Ethernet",
436 	  },
437 	{ PCI_VENDOR_BROADCOM,
438 	  PCI_PRODUCT_BROADCOM_BCM5724,
439 	  "Broadcom BCM5724 Gigabit Ethernet",
440 	  },
441 	{ PCI_VENDOR_BROADCOM,
442 	  PCI_PRODUCT_BROADCOM_BCM5750,
443 	  "Broadcom BCM5750 Gigabit Ethernet",
444 	  },
445 	{ PCI_VENDOR_BROADCOM,
446 	  PCI_PRODUCT_BROADCOM_BCM5750M,
447 	  "Broadcom BCM5750M Gigabit Ethernet",
448 	  },
449 	{ PCI_VENDOR_BROADCOM,
450 	  PCI_PRODUCT_BROADCOM_BCM5751,
451 	  "Broadcom BCM5751 Gigabit Ethernet",
452 	  },
453 	{ PCI_VENDOR_BROADCOM,
454 	  PCI_PRODUCT_BROADCOM_BCM5751F,
455 	  "Broadcom BCM5751F Gigabit Ethernet",
456 	  },
457 	{ PCI_VENDOR_BROADCOM,
458 	  PCI_PRODUCT_BROADCOM_BCM5751M,
459 	  "Broadcom BCM5751M Gigabit Ethernet",
460 	  },
461 	{ PCI_VENDOR_BROADCOM,
462 	  PCI_PRODUCT_BROADCOM_BCM5752,
463 	  "Broadcom BCM5752 Gigabit Ethernet",
464 	  },
465 	{ PCI_VENDOR_BROADCOM,
466 	  PCI_PRODUCT_BROADCOM_BCM5752M,
467 	  "Broadcom BCM5752M Gigabit Ethernet",
468 	  },
469 	{ PCI_VENDOR_BROADCOM,
470 	  PCI_PRODUCT_BROADCOM_BCM5753,
471 	  "Broadcom BCM5753 Gigabit Ethernet",
472 	  },
473 	{ PCI_VENDOR_BROADCOM,
474 	  PCI_PRODUCT_BROADCOM_BCM5753F,
475 	  "Broadcom BCM5753F Gigabit Ethernet",
476 	  },
477 	{ PCI_VENDOR_BROADCOM,
478 	  PCI_PRODUCT_BROADCOM_BCM5753M,
479 	  "Broadcom BCM5753M Gigabit Ethernet",
480 	  },
481 	{ PCI_VENDOR_BROADCOM,
482 	  PCI_PRODUCT_BROADCOM_BCM5754,
483 	  "Broadcom BCM5754 Gigabit Ethernet",
484 	},
485 	{ PCI_VENDOR_BROADCOM,
486 	  PCI_PRODUCT_BROADCOM_BCM5754M,
487 	  "Broadcom BCM5754M Gigabit Ethernet",
488 	},
489 	{ PCI_VENDOR_BROADCOM,
490 	  PCI_PRODUCT_BROADCOM_BCM5755,
491 	  "Broadcom BCM5755 Gigabit Ethernet",
492 	},
493 	{ PCI_VENDOR_BROADCOM,
494 	  PCI_PRODUCT_BROADCOM_BCM5755M,
495 	  "Broadcom BCM5755M Gigabit Ethernet",
496 	},
497 	{ PCI_VENDOR_BROADCOM,
498 	  PCI_PRODUCT_BROADCOM_BCM5756,
499 	  "Broadcom BCM5756 Gigabit Ethernet",
500 	},
501 	{ PCI_VENDOR_BROADCOM,
502 	  PCI_PRODUCT_BROADCOM_BCM5761,
503 	  "Broadcom BCM5761 Gigabit Ethernet",
504 	},
505 	{ PCI_VENDOR_BROADCOM,
506 	  PCI_PRODUCT_BROADCOM_BCM5761E,
507 	  "Broadcom BCM5761E Gigabit Ethernet",
508 	},
509 	{ PCI_VENDOR_BROADCOM,
510 	  PCI_PRODUCT_BROADCOM_BCM5761S,
511 	  "Broadcom BCM5761S Gigabit Ethernet",
512 	},
513 	{ PCI_VENDOR_BROADCOM,
514 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
515 	  "Broadcom BCM5761SE Gigabit Ethernet",
516 	},
517 	{ PCI_VENDOR_BROADCOM,
518 	  PCI_PRODUCT_BROADCOM_BCM5764,
519 	  "Broadcom BCM5764 Gigabit Ethernet",
520 	  },
521 	{ PCI_VENDOR_BROADCOM,
522 	  PCI_PRODUCT_BROADCOM_BCM5780,
523 	  "Broadcom BCM5780 Gigabit Ethernet",
524 	  },
525 	{ PCI_VENDOR_BROADCOM,
526 	  PCI_PRODUCT_BROADCOM_BCM5780S,
527 	  "Broadcom BCM5780S Gigabit Ethernet",
528 	  },
529 	{ PCI_VENDOR_BROADCOM,
530 	  PCI_PRODUCT_BROADCOM_BCM5781,
531 	  "Broadcom BCM5781 Gigabit Ethernet",
532 	  },
533 	{ PCI_VENDOR_BROADCOM,
534 	  PCI_PRODUCT_BROADCOM_BCM5782,
535 	  "Broadcom BCM5782 Gigabit Ethernet",
536 	},
537 	{ PCI_VENDOR_BROADCOM,
538 	  PCI_PRODUCT_BROADCOM_BCM5784M,
539 	  "BCM5784M NetLink 1000baseT Ethernet",
540 	},
541 	{ PCI_VENDOR_BROADCOM,
542 	  PCI_PRODUCT_BROADCOM_BCM5785F,
543 	  "BCM5785F NetLink 10/100 Ethernet",
544 	},
545 	{ PCI_VENDOR_BROADCOM,
546 	  PCI_PRODUCT_BROADCOM_BCM5785G,
547 	  "BCM5785G NetLink 1000baseT Ethernet",
548 	},
549 	{ PCI_VENDOR_BROADCOM,
550 	  PCI_PRODUCT_BROADCOM_BCM5786,
551 	  "Broadcom BCM5786 Gigabit Ethernet",
552 	},
553 	{ PCI_VENDOR_BROADCOM,
554 	  PCI_PRODUCT_BROADCOM_BCM5787,
555 	  "Broadcom BCM5787 Gigabit Ethernet",
556 	},
557 	{ PCI_VENDOR_BROADCOM,
558 	  PCI_PRODUCT_BROADCOM_BCM5787F,
559 	  "Broadcom BCM5787F 10/100 Ethernet",
560 	},
561 	{ PCI_VENDOR_BROADCOM,
562 	  PCI_PRODUCT_BROADCOM_BCM5787M,
563 	  "Broadcom BCM5787M Gigabit Ethernet",
564 	},
565 	{ PCI_VENDOR_BROADCOM,
566 	  PCI_PRODUCT_BROADCOM_BCM5788,
567 	  "Broadcom BCM5788 Gigabit Ethernet",
568 	  },
569 	{ PCI_VENDOR_BROADCOM,
570 	  PCI_PRODUCT_BROADCOM_BCM5789,
571 	  "Broadcom BCM5789 Gigabit Ethernet",
572 	  },
573 	{ PCI_VENDOR_BROADCOM,
574 	  PCI_PRODUCT_BROADCOM_BCM5901,
575 	  "Broadcom BCM5901 Fast Ethernet",
576 	  },
577 	{ PCI_VENDOR_BROADCOM,
578 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
579 	  "Broadcom BCM5901A2 Fast Ethernet",
580 	  },
581 	{ PCI_VENDOR_BROADCOM,
582 	  PCI_PRODUCT_BROADCOM_BCM5903M,
583 	  "Broadcom BCM5903M Fast Ethernet",
584 	  },
585 	{ PCI_VENDOR_BROADCOM,
586 	  PCI_PRODUCT_BROADCOM_BCM5906,
587 	  "Broadcom BCM5906 Fast Ethernet",
588 	  },
589 	{ PCI_VENDOR_BROADCOM,
590 	  PCI_PRODUCT_BROADCOM_BCM5906M,
591 	  "Broadcom BCM5906M Fast Ethernet",
592 	  },
593 	{ PCI_VENDOR_BROADCOM,
594 	  PCI_PRODUCT_BROADCOM_BCM57760,
595 	  "Broadcom BCM57760 Fast Ethernet",
596 	  },
597 	{ PCI_VENDOR_BROADCOM,
598 	  PCI_PRODUCT_BROADCOM_BCM57761,
599 	  "Broadcom BCM57761 Fast Ethernet",
600 	  },
601 	{ PCI_VENDOR_BROADCOM,
602 	  PCI_PRODUCT_BROADCOM_BCM57762,
603 	  "Broadcom BCM57762 Gigabit Ethernet",
604 	  },
605 	{ PCI_VENDOR_BROADCOM,
606 	  PCI_PRODUCT_BROADCOM_BCM57765,
607 	  "Broadcom BCM57765 Fast Ethernet",
608 	  },
609 	{ PCI_VENDOR_BROADCOM,
610 	  PCI_PRODUCT_BROADCOM_BCM57766,
611 	  "Broadcom BCM57766 Fast Ethernet",
612 	  },
613 	{ PCI_VENDOR_BROADCOM,
614 	  PCI_PRODUCT_BROADCOM_BCM57780,
615 	  "Broadcom BCM57780 Fast Ethernet",
616 	  },
617 	{ PCI_VENDOR_BROADCOM,
618 	  PCI_PRODUCT_BROADCOM_BCM57781,
619 	  "Broadcom BCM57781 Fast Ethernet",
620 	  },
621 	{ PCI_VENDOR_BROADCOM,
622 	  PCI_PRODUCT_BROADCOM_BCM57782,
623 	  "Broadcom BCM57782 Fast Ethernet",
624 	  },
625 	{ PCI_VENDOR_BROADCOM,
626 	  PCI_PRODUCT_BROADCOM_BCM57785,
627 	  "Broadcom BCM57785 Fast Ethernet",
628 	  },
629 	{ PCI_VENDOR_BROADCOM,
630 	  PCI_PRODUCT_BROADCOM_BCM57786,
631 	  "Broadcom BCM57786 Fast Ethernet",
632 	  },
633 	{ PCI_VENDOR_BROADCOM,
634 	  PCI_PRODUCT_BROADCOM_BCM57788,
635 	  "Broadcom BCM57788 Fast Ethernet",
636 	  },
637 	{ PCI_VENDOR_BROADCOM,
638 	  PCI_PRODUCT_BROADCOM_BCM57790,
639 	  "Broadcom BCM57790 Fast Ethernet",
640 	  },
641 	{ PCI_VENDOR_BROADCOM,
642 	  PCI_PRODUCT_BROADCOM_BCM57791,
643 	  "Broadcom BCM57791 Fast Ethernet",
644 	  },
645 	{ PCI_VENDOR_BROADCOM,
646 	  PCI_PRODUCT_BROADCOM_BCM57795,
647 	  "Broadcom BCM57795 Fast Ethernet",
648 	  },
649 	{ PCI_VENDOR_SCHNEIDERKOCH,
650 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 	  },
653 	{ PCI_VENDOR_3COM,
654 	  PCI_PRODUCT_3COM_3C996,
655 	  "3Com 3c996 Gigabit Ethernet",
656 	  },
657 	{ PCI_VENDOR_FUJITSU4,
658 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
659 	  "Fujitsu PW008GE4 Gigabit Ethernet",
660 	  },
661 	{ PCI_VENDOR_FUJITSU4,
662 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
663 	  "Fujitsu PW008GE5 Gigabit Ethernet",
664 	  },
665 	{ PCI_VENDOR_FUJITSU4,
666 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 	  },
669 	{ 0,
670 	  0,
671 	  NULL },
672 };
673 
674 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
680 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGE_57765_FAMILY)
681 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
683 
684 static const struct bge_revision {
685 	uint32_t		br_chipid;
686 	const char		*br_name;
687 } bge_revisions[] = {
688 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 	/* 5754 and 5787 share the same ASIC ID */
744 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754 
755 	{ 0, NULL }
756 };
757 
758 /*
759  * Some defaults for major revisions, so that newer steppings
760  * that we don't know about have a shot at working.
761  */
762 static const struct bge_revision bge_majorrevs[] = {
763 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 	/* 5754 and 5787 share the same ASIC ID */
778 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
786 
787 	{ 0, NULL }
788 };
789 
790 static int bge_allow_asf = 1;
791 
792 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
793     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
794 
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 	pcireg_t val;
799 
800 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 		return 0;
803 
804 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 	return val;
808 }
809 
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813 
814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818 
819 /*
820  * PCI Express only
821  */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 	pcireg_t val;
826 
827 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 	    + PCIE_DCSR);
829 	val &= ~PCIE_DCSR_MAX_READ_REQ;
830 	switch (sc->bge_expmrq) {
831 	case 2048:
832 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 		break;
834 	case 4096:
835 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 		break;
837 	default:
838 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 		break;
840 	}
841 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 	    + PCIE_DCSR, val);
843 }
844 
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853 
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860 
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 	CSR_WRITE_4(sc, off, val);
865 }
866 
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872 
873 	CSR_WRITE_4(sc, off, val);
874 }
875 
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881 
882 	CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884 
885 /*
886  * Clear all stale locks and select the lock for this driver instance.
887  */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 	struct pci_attach_args *pa = &(sc->bge_pa);
892 	uint32_t bit, regbase;
893 	int i;
894 
895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 		regbase = BGE_APE_LOCK_GRANT;
897 	else
898 		regbase = BGE_APE_PER_LOCK_GRANT;
899 
900 	/* Clear any stale locks. */
901 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 		switch (i) {
903 		case BGE_APE_LOCK_PHY0:
904 		case BGE_APE_LOCK_PHY1:
905 		case BGE_APE_LOCK_PHY2:
906 		case BGE_APE_LOCK_PHY3:
907 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 			break;
909 		default:
910 			if (pa->pa_function == 0)
911 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 			else
913 				bit = (1 << pa->pa_function);
914 		}
915 		APE_WRITE_4(sc, regbase + 4 * i, bit);
916 	}
917 
918 	/* Select the PHY lock based on the device's function number. */
919 	switch (pa->pa_function) {
920 	case 0:
921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 		break;
923 	case 1:
924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 		break;
926 	case 2:
927 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 		break;
929 	case 3:
930 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 		break;
932 	default:
933 		printf("%s: PHY lock not supported on function\n",
934 		    device_xname(sc->bge_dev));
935 		break;
936 	}
937 }
938 
939 /*
940  * Check for APE firmware, set flags, and print version info.
941  */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 	const char *fwtype;
946 	uint32_t apedata, features;
947 
948 	/* Check for a valid APE signature in shared memory. */
949 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 		return;
953 	}
954 
955 	/* Check if APE firmware is running. */
956 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 		printf("%s: APE signature found but FW status not ready! "
959 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 		return;
961 	}
962 
963 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964 
965 	/* Fetch the APE firwmare type and version. */
966 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 		fwtype = "NCSI";
971 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 		fwtype = "DASH";
974 	} else
975 		fwtype = "UNKN";
976 
977 	/* Print the APE firmware version. */
978 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984 
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 	struct pci_attach_args *pa = &(sc->bge_pa);
989 	uint32_t bit, gnt, req, status;
990 	int i, off;
991 
992 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 		return (0);
994 
995 	/* Lock request/grant registers have different bases. */
996 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 		req = BGE_APE_LOCK_REQ;
998 		gnt = BGE_APE_LOCK_GRANT;
999 	} else {
1000 		req = BGE_APE_PER_LOCK_REQ;
1001 		gnt = BGE_APE_PER_LOCK_GRANT;
1002 	}
1003 
1004 	off = 4 * locknum;
1005 
1006 	switch (locknum) {
1007 	case BGE_APE_LOCK_GPIO:
1008 		/* Lock required when using GPIO. */
1009 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 			return (0);
1011 		if (pa->pa_function == 0)
1012 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 		else
1014 			bit = (1 << pa->pa_function);
1015 		break;
1016 	case BGE_APE_LOCK_GRC:
1017 		/* Lock required to reset the device. */
1018 		if (pa->pa_function == 0)
1019 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 		else
1021 			bit = (1 << pa->pa_function);
1022 		break;
1023 	case BGE_APE_LOCK_MEM:
1024 		/* Lock required when accessing certain APE memory. */
1025 		if (pa->pa_function == 0)
1026 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 		else
1028 			bit = (1 << pa->pa_function);
1029 		break;
1030 	case BGE_APE_LOCK_PHY0:
1031 	case BGE_APE_LOCK_PHY1:
1032 	case BGE_APE_LOCK_PHY2:
1033 	case BGE_APE_LOCK_PHY3:
1034 		/* Lock required when accessing PHYs. */
1035 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 		break;
1037 	default:
1038 		return (EINVAL);
1039 	}
1040 
1041 	/* Request a lock. */
1042 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1043 
1044 	/* Wait up to 1 second to acquire lock. */
1045 	for (i = 0; i < 20000; i++) {
1046 		status = APE_READ_4(sc, gnt + off);
1047 		if (status == bit)
1048 			break;
1049 		DELAY(50);
1050 	}
1051 
1052 	/* Handle any errors. */
1053 	if (status != bit) {
1054 		printf("%s: APE lock %d request failed! "
1055 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 		    device_xname(sc->bge_dev),
1057 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1058 		    status & 0xFFFF);
1059 		/* Revoke the lock request. */
1060 		APE_WRITE_4(sc, gnt + off, bit);
1061 		return (EBUSY);
1062 	}
1063 
1064 	return (0);
1065 }
1066 
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 	struct pci_attach_args *pa = &(sc->bge_pa);
1071 	uint32_t bit, gnt;
1072 	int off;
1073 
1074 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 		return;
1076 
1077 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 		gnt = BGE_APE_LOCK_GRANT;
1079 	else
1080 		gnt = BGE_APE_PER_LOCK_GRANT;
1081 
1082 	off = 4 * locknum;
1083 
1084 	switch (locknum) {
1085 	case BGE_APE_LOCK_GPIO:
1086 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 			return;
1088 		if (pa->pa_function == 0)
1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 		else
1091 			bit = (1 << pa->pa_function);
1092 		break;
1093 	case BGE_APE_LOCK_GRC:
1094 		if (pa->pa_function == 0)
1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 		else
1097 			bit = (1 << pa->pa_function);
1098 		break;
1099 	case BGE_APE_LOCK_MEM:
1100 		if (pa->pa_function == 0)
1101 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 		else
1103 			bit = (1 << pa->pa_function);
1104 		break;
1105 	case BGE_APE_LOCK_PHY0:
1106 	case BGE_APE_LOCK_PHY1:
1107 	case BGE_APE_LOCK_PHY2:
1108 	case BGE_APE_LOCK_PHY3:
1109 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 		break;
1111 	default:
1112 		return;
1113 	}
1114 
1115 	/* Write and flush for consecutive bge_ape_lock() */
1116 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118 
1119 /*
1120  * Send an event to the APE firmware.
1121  */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 	uint32_t apedata;
1126 	int i;
1127 
1128 	/* NCSI does not support APE events. */
1129 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 		return;
1131 
1132 	/* Wait up to 1ms for APE to service previous event. */
1133 	for (i = 10; i > 0; i--) {
1134 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 			break;
1136 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 			break;
1143 		}
1144 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 		DELAY(100);
1146 	}
1147 	if (i == 0) {
1148 		printf("%s: APE event 0x%08x send timed out\n",
1149 		    device_xname(sc->bge_dev), event);
1150 	}
1151 }
1152 
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 	uint32_t apedata, event;
1157 
1158 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 		return;
1160 
1161 	switch (kind) {
1162 	case BGE_RESET_START:
1163 		/* If this is the first load, clear the load counter. */
1164 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 		else {
1168 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 		}
1171 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1173 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1175 
1176 		/* Add some version info if bge(4) supports it. */
1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 		    BGE_APE_HOST_DRVR_STATE_START);
1185 		event = BGE_APE_EVENT_STATUS_STATE_START;
1186 		break;
1187 	case BGE_RESET_SHUTDOWN:
1188 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 		break;
1192 	case BGE_RESET_SUSPEND:
1193 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 		break;
1195 	default:
1196 		return;
1197 	}
1198 
1199 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202 
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 	uint32_t access, byte = 0;
1207 	int i;
1208 
1209 	/* Lock. */
1210 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 	for (i = 0; i < 8000; i++) {
1212 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 			break;
1214 		DELAY(20);
1215 	}
1216 	if (i == 8000)
1217 		return 1;
1218 
1219 	/* Enable access. */
1220 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222 
1223 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 		DELAY(10);
1227 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 			DELAY(10);
1229 			break;
1230 		}
1231 	}
1232 
1233 	if (i == BGE_TIMEOUT * 10) {
1234 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 		return 1;
1236 	}
1237 
1238 	/* Get result. */
1239 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240 
1241 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242 
1243 	/* Disable access. */
1244 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245 
1246 	/* Unlock. */
1247 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Read a sequence of bytes from NVRAM.
1254  */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 	int error = 0, i;
1259 	uint8_t byte = 0;
1260 
1261 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 		return 1;
1263 
1264 	for (i = 0; i < cnt; i++) {
1265 		error = bge_nvram_getbyte(sc, off + i, &byte);
1266 		if (error)
1267 			break;
1268 		*(dest + i) = byte;
1269 	}
1270 
1271 	return (error ? 1 : 0);
1272 }
1273 
1274 /*
1275  * Read a byte of data stored in the EEPROM at address 'addr.' The
1276  * BCM570x supports both the traditional bitbang interface and an
1277  * auto access interface for reading the EEPROM. We use the auto
1278  * access method.
1279  */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 	int i;
1284 	uint32_t byte = 0;
1285 
1286 	/*
1287 	 * Enable use of auto EEPROM access so we can avoid
1288 	 * having to use the bitbang method.
1289 	 */
1290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291 
1292 	/* Reset the EEPROM, load the clock period. */
1293 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 	DELAY(20);
1296 
1297 	/* Issue the read EEPROM command. */
1298 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299 
1300 	/* Wait for completion */
1301 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 		DELAY(10);
1303 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 			break;
1305 	}
1306 
1307 	if (i == BGE_TIMEOUT * 10) {
1308 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 		return 1;
1310 	}
1311 
1312 	/* Get result. */
1313 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1314 
1315 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Read a sequence of bytes from the EEPROM.
1322  */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 	int error = 0, i;
1327 	uint8_t byte = 0;
1328 	char *dest = destv;
1329 
1330 	for (i = 0; i < cnt; i++) {
1331 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 		if (error)
1333 			break;
1334 		*(dest + i) = byte;
1335 	}
1336 
1337 	return (error ? 1 : 0);
1338 }
1339 
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 	struct bge_softc *sc = device_private(dev);
1344 	uint32_t val;
1345 	uint32_t autopoll;
1346 	int i;
1347 
1348 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 		return 0;
1350 
1351 	/* Reading with autopolling on may trigger PCI errors */
1352 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 		DELAY(80);
1357 	}
1358 
1359 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1361 
1362 	for (i = 0; i < BGE_TIMEOUT; i++) {
1363 		delay(10);
1364 		val = CSR_READ_4(sc, BGE_MI_COMM);
1365 		if (!(val & BGE_MICOMM_BUSY)) {
1366 			DELAY(5);
1367 			val = CSR_READ_4(sc, BGE_MI_COMM);
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (i == BGE_TIMEOUT) {
1373 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 		val = 0;
1375 		goto done;
1376 	}
1377 
1378 done:
1379 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 		DELAY(80);
1383 	}
1384 
1385 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386 
1387 	if (val & BGE_MICOMM_READFAIL)
1388 		return 0;
1389 
1390 	return (val & 0xFFFF);
1391 }
1392 
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 	struct bge_softc *sc = device_private(dev);
1397 	uint32_t autopoll;
1398 	int i;
1399 
1400 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 		return;
1402 
1403 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 		return;
1406 
1407 	/* Reading with autopolling on may trigger PCI errors */
1408 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 		DELAY(80);
1413 	}
1414 
1415 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417 
1418 	for (i = 0; i < BGE_TIMEOUT; i++) {
1419 		delay(10);
1420 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 			delay(5);
1422 			CSR_READ_4(sc, BGE_MI_COMM);
1423 			break;
1424 		}
1425 	}
1426 
1427 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 		delay(80);
1431 	}
1432 
1433 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434 
1435 	if (i == BGE_TIMEOUT)
1436 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438 
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 	struct bge_softc *sc = ifp->if_softc;
1443 	struct mii_data *mii = &sc->bge_mii;
1444 	uint32_t mac_mode, rx_mode, tx_mode;
1445 
1446 	/*
1447 	 * Get flow control negotiation result.
1448 	 */
1449 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1451 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 
1453 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1454 	    mii->mii_media_status & IFM_ACTIVE &&
1455 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1456 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1457 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1458 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1459 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1460 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1461 
1462 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1463 		return;
1464 
1465 	/* Set the port mode (MII/GMII) to match the link speed. */
1466 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1467 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1468 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1469 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1470 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1471 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1472 		mac_mode |= BGE_PORTMODE_GMII;
1473 	else
1474 		mac_mode |= BGE_PORTMODE_MII;
1475 
1476 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1477 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1478 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1479 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1480 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1481 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1482 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1483 	} else
1484 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1485 
1486 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1487 	DELAY(40);
1488 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1489 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1490 }
1491 
1492 /*
1493  * Update rx threshold levels to values in a particular slot
1494  * of the interrupt-mitigation table bge_rx_threshes.
1495  */
1496 static void
1497 bge_set_thresh(struct ifnet *ifp, int lvl)
1498 {
1499 	struct bge_softc *sc = ifp->if_softc;
1500 	int s;
1501 
1502 	/* For now, just save the new Rx-intr thresholds and record
1503 	 * that a threshold update is pending.  Updating the hardware
1504 	 * registers here (even at splhigh()) is observed to
1505 	 * occasionaly cause glitches where Rx-interrupts are not
1506 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1507 	 */
1508 	s = splnet();
1509 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1510 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1511 	sc->bge_pending_rxintr_change = 1;
1512 	splx(s);
1513 }
1514 
1515 
1516 /*
1517  * Update Rx thresholds of all bge devices
1518  */
1519 static void
1520 bge_update_all_threshes(int lvl)
1521 {
1522 	struct ifnet *ifp;
1523 	const char * const namebuf = "bge";
1524 	int namelen;
1525 
1526 	if (lvl < 0)
1527 		lvl = 0;
1528 	else if (lvl >= NBGE_RX_THRESH)
1529 		lvl = NBGE_RX_THRESH - 1;
1530 
1531 	namelen = strlen(namebuf);
1532 	/*
1533 	 * Now search all the interfaces for this name/number
1534 	 */
1535 	IFNET_FOREACH(ifp) {
1536 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1537 		      continue;
1538 		/* We got a match: update if doing auto-threshold-tuning */
1539 		if (bge_auto_thresh)
1540 			bge_set_thresh(ifp, lvl);
1541 	}
1542 }
1543 
1544 /*
1545  * Handle events that have triggered interrupts.
1546  */
1547 static void
1548 bge_handle_events(struct bge_softc *sc)
1549 {
1550 
1551 	return;
1552 }
1553 
1554 /*
1555  * Memory management for jumbo frames.
1556  */
1557 
1558 static int
1559 bge_alloc_jumbo_mem(struct bge_softc *sc)
1560 {
1561 	char *ptr, *kva;
1562 	bus_dma_segment_t	seg;
1563 	int		i, rseg, state, error;
1564 	struct bge_jpool_entry   *entry;
1565 
1566 	state = error = 0;
1567 
1568 	/* Grab a big chunk o' storage. */
1569 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1570 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1571 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1572 		return ENOBUFS;
1573 	}
1574 
1575 	state = 1;
1576 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1577 	    BUS_DMA_NOWAIT)) {
1578 		aprint_error_dev(sc->bge_dev,
1579 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1580 		error = ENOBUFS;
1581 		goto out;
1582 	}
1583 
1584 	state = 2;
1585 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1586 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1587 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1588 		error = ENOBUFS;
1589 		goto out;
1590 	}
1591 
1592 	state = 3;
1593 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1594 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1595 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1596 		error = ENOBUFS;
1597 		goto out;
1598 	}
1599 
1600 	state = 4;
1601 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1602 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1603 
1604 	SLIST_INIT(&sc->bge_jfree_listhead);
1605 	SLIST_INIT(&sc->bge_jinuse_listhead);
1606 
1607 	/*
1608 	 * Now divide it up into 9K pieces and save the addresses
1609 	 * in an array.
1610 	 */
1611 	ptr = sc->bge_cdata.bge_jumbo_buf;
1612 	for (i = 0; i < BGE_JSLOTS; i++) {
1613 		sc->bge_cdata.bge_jslots[i] = ptr;
1614 		ptr += BGE_JLEN;
1615 		entry = malloc(sizeof(struct bge_jpool_entry),
1616 		    M_DEVBUF, M_NOWAIT);
1617 		if (entry == NULL) {
1618 			aprint_error_dev(sc->bge_dev,
1619 			    "no memory for jumbo buffer queue!\n");
1620 			error = ENOBUFS;
1621 			goto out;
1622 		}
1623 		entry->slot = i;
1624 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1625 				 entry, jpool_entries);
1626 	}
1627 out:
1628 	if (error != 0) {
1629 		switch (state) {
1630 		case 4:
1631 			bus_dmamap_unload(sc->bge_dmatag,
1632 			    sc->bge_cdata.bge_rx_jumbo_map);
1633 		case 3:
1634 			bus_dmamap_destroy(sc->bge_dmatag,
1635 			    sc->bge_cdata.bge_rx_jumbo_map);
1636 		case 2:
1637 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1638 		case 1:
1639 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1640 			break;
1641 		default:
1642 			break;
1643 		}
1644 	}
1645 
1646 	return error;
1647 }
1648 
1649 /*
1650  * Allocate a jumbo buffer.
1651  */
1652 static void *
1653 bge_jalloc(struct bge_softc *sc)
1654 {
1655 	struct bge_jpool_entry   *entry;
1656 
1657 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1658 
1659 	if (entry == NULL) {
1660 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1661 		return NULL;
1662 	}
1663 
1664 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1665 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1666 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1667 }
1668 
1669 /*
1670  * Release a jumbo buffer.
1671  */
1672 static void
1673 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1674 {
1675 	struct bge_jpool_entry *entry;
1676 	struct bge_softc *sc;
1677 	int i, s;
1678 
1679 	/* Extract the softc struct pointer. */
1680 	sc = (struct bge_softc *)arg;
1681 
1682 	if (sc == NULL)
1683 		panic("bge_jfree: can't find softc pointer!");
1684 
1685 	/* calculate the slot this buffer belongs to */
1686 
1687 	i = ((char *)buf
1688 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1689 
1690 	if ((i < 0) || (i >= BGE_JSLOTS))
1691 		panic("bge_jfree: asked to free buffer that we don't manage!");
1692 
1693 	s = splvm();
1694 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1695 	if (entry == NULL)
1696 		panic("bge_jfree: buffer not in use!");
1697 	entry->slot = i;
1698 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1699 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1700 
1701 	if (__predict_true(m != NULL))
1702   		pool_cache_put(mb_cache, m);
1703 	splx(s);
1704 }
1705 
1706 
1707 /*
1708  * Initialize a standard receive ring descriptor.
1709  */
1710 static int
1711 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1712     bus_dmamap_t dmamap)
1713 {
1714 	struct mbuf		*m_new = NULL;
1715 	struct bge_rx_bd	*r;
1716 	int			error;
1717 
1718 	if (dmamap == NULL) {
1719 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1720 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1721 		if (error != 0)
1722 			return error;
1723 	}
1724 
1725 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1726 
1727 	if (m == NULL) {
1728 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1729 		if (m_new == NULL)
1730 			return ENOBUFS;
1731 
1732 		MCLGET(m_new, M_DONTWAIT);
1733 		if (!(m_new->m_flags & M_EXT)) {
1734 			m_freem(m_new);
1735 			return ENOBUFS;
1736 		}
1737 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1738 
1739 	} else {
1740 		m_new = m;
1741 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1742 		m_new->m_data = m_new->m_ext.ext_buf;
1743 	}
1744 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1745 	    m_adj(m_new, ETHER_ALIGN);
1746 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1747 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1748 		return ENOBUFS;
1749 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1750 	    BUS_DMASYNC_PREREAD);
1751 
1752 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1753 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1754 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1755 	r->bge_flags = BGE_RXBDFLAG_END;
1756 	r->bge_len = m_new->m_len;
1757 	r->bge_idx = i;
1758 
1759 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1760 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1761 		i * sizeof (struct bge_rx_bd),
1762 	    sizeof (struct bge_rx_bd),
1763 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1764 
1765 	return 0;
1766 }
1767 
1768 /*
1769  * Initialize a jumbo receive ring descriptor. This allocates
1770  * a jumbo buffer from the pool managed internally by the driver.
1771  */
1772 static int
1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1774 {
1775 	struct mbuf *m_new = NULL;
1776 	struct bge_rx_bd *r;
1777 	void *buf = NULL;
1778 
1779 	if (m == NULL) {
1780 
1781 		/* Allocate the mbuf. */
1782 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1783 		if (m_new == NULL)
1784 			return ENOBUFS;
1785 
1786 		/* Allocate the jumbo buffer */
1787 		buf = bge_jalloc(sc);
1788 		if (buf == NULL) {
1789 			m_freem(m_new);
1790 			aprint_error_dev(sc->bge_dev,
1791 			    "jumbo allocation failed -- packet dropped!\n");
1792 			return ENOBUFS;
1793 		}
1794 
1795 		/* Attach the buffer to the mbuf. */
1796 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1797 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1798 		    bge_jfree, sc);
1799 		m_new->m_flags |= M_EXT_RW;
1800 	} else {
1801 		m_new = m;
1802 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1803 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1804 	}
1805 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1806 	    m_adj(m_new, ETHER_ALIGN);
1807 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1808 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1809 	    BUS_DMASYNC_PREREAD);
1810 	/* Set up the descriptor. */
1811 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1812 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1813 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1814 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1815 	r->bge_len = m_new->m_len;
1816 	r->bge_idx = i;
1817 
1818 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1819 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1820 		i * sizeof (struct bge_rx_bd),
1821 	    sizeof (struct bge_rx_bd),
1822 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1829  * that's 1MB or memory, which is a lot. For now, we fill only the first
1830  * 256 ring entries and hope that our CPU is fast enough to keep up with
1831  * the NIC.
1832  */
1833 static int
1834 bge_init_rx_ring_std(struct bge_softc *sc)
1835 {
1836 	int i;
1837 
1838 	if (sc->bge_flags & BGE_RXRING_VALID)
1839 		return 0;
1840 
1841 	for (i = 0; i < BGE_SSLOTS; i++) {
1842 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1843 			return ENOBUFS;
1844 	}
1845 
1846 	sc->bge_std = i - 1;
1847 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1848 
1849 	sc->bge_flags |= BGE_RXRING_VALID;
1850 
1851 	return 0;
1852 }
1853 
1854 static void
1855 bge_free_rx_ring_std(struct bge_softc *sc)
1856 {
1857 	int i;
1858 
1859 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1860 		return;
1861 
1862 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1863 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1864 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1865 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1866 			bus_dmamap_destroy(sc->bge_dmatag,
1867 			    sc->bge_cdata.bge_rx_std_map[i]);
1868 		}
1869 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1870 		    sizeof(struct bge_rx_bd));
1871 	}
1872 
1873 	sc->bge_flags &= ~BGE_RXRING_VALID;
1874 }
1875 
1876 static int
1877 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1878 {
1879 	int i;
1880 	volatile struct bge_rcb *rcb;
1881 
1882 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1883 		return 0;
1884 
1885 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1886 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1887 			return ENOBUFS;
1888 	}
1889 
1890 	sc->bge_jumbo = i - 1;
1891 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1892 
1893 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1894 	rcb->bge_maxlen_flags = 0;
1895 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1896 
1897 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1898 
1899 	return 0;
1900 }
1901 
1902 static void
1903 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1904 {
1905 	int i;
1906 
1907 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1908 		return;
1909 
1910 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1911 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1912 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1913 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1914 		}
1915 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1916 		    sizeof(struct bge_rx_bd));
1917 	}
1918 
1919 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1920 }
1921 
1922 static void
1923 bge_free_tx_ring(struct bge_softc *sc)
1924 {
1925 	int i;
1926 	struct txdmamap_pool_entry *dma;
1927 
1928 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1929 		return;
1930 
1931 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1932 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1933 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1934 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1935 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1936 					    link);
1937 			sc->txdma[i] = 0;
1938 		}
1939 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1940 		    sizeof(struct bge_tx_bd));
1941 	}
1942 
1943 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1944 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1945 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1946 		free(dma, M_DEVBUF);
1947 	}
1948 
1949 	sc->bge_flags &= ~BGE_TXRING_VALID;
1950 }
1951 
1952 static int
1953 bge_init_tx_ring(struct bge_softc *sc)
1954 {
1955 	struct ifnet *ifp = &sc->ethercom.ec_if;
1956 	int i;
1957 	bus_dmamap_t dmamap;
1958 	bus_size_t maxsegsz;
1959 	struct txdmamap_pool_entry *dma;
1960 
1961 	if (sc->bge_flags & BGE_TXRING_VALID)
1962 		return 0;
1963 
1964 	sc->bge_txcnt = 0;
1965 	sc->bge_tx_saved_considx = 0;
1966 
1967 	/* Initialize transmit producer index for host-memory send ring. */
1968 	sc->bge_tx_prodidx = 0;
1969 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970 	/* 5700 b2 errata */
1971 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1972 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973 
1974 	/* NIC-memory send ring not used; initialize to zero. */
1975 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976 	/* 5700 b2 errata */
1977 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1978 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979 
1980 	/* Limit DMA segment size for some chips */
1981 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1982 	    (ifp->if_mtu <= ETHERMTU))
1983 		maxsegsz = 2048;
1984 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1985 		maxsegsz = 4096;
1986 	else
1987 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1988 	SLIST_INIT(&sc->txdma_list);
1989 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1990 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1991 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1992 		    &dmamap))
1993 			return ENOBUFS;
1994 		if (dmamap == NULL)
1995 			panic("dmamap NULL in bge_init_tx_ring");
1996 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1997 		if (dma == NULL) {
1998 			aprint_error_dev(sc->bge_dev,
1999 			    "can't alloc txdmamap_pool_entry\n");
2000 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2001 			return ENOMEM;
2002 		}
2003 		dma->dmamap = dmamap;
2004 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2005 	}
2006 
2007 	sc->bge_flags |= BGE_TXRING_VALID;
2008 
2009 	return 0;
2010 }
2011 
2012 static void
2013 bge_setmulti(struct bge_softc *sc)
2014 {
2015 	struct ethercom		*ac = &sc->ethercom;
2016 	struct ifnet		*ifp = &ac->ec_if;
2017 	struct ether_multi	*enm;
2018 	struct ether_multistep  step;
2019 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2020 	uint32_t		h;
2021 	int			i;
2022 
2023 	if (ifp->if_flags & IFF_PROMISC)
2024 		goto allmulti;
2025 
2026 	/* Now program new ones. */
2027 	ETHER_FIRST_MULTI(step, ac, enm);
2028 	while (enm != NULL) {
2029 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 			/*
2031 			 * We must listen to a range of multicast addresses.
2032 			 * For now, just accept all multicasts, rather than
2033 			 * trying to set only those filter bits needed to match
2034 			 * the range.  (At this time, the only use of address
2035 			 * ranges is for IP multicast routing, for which the
2036 			 * range is big enough to require all bits set.)
2037 			 */
2038 			goto allmulti;
2039 		}
2040 
2041 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042 
2043 		/* Just want the 7 least-significant bits. */
2044 		h &= 0x7f;
2045 
2046 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2047 		ETHER_NEXT_MULTI(step, enm);
2048 	}
2049 
2050 	ifp->if_flags &= ~IFF_ALLMULTI;
2051 	goto setit;
2052 
2053  allmulti:
2054 	ifp->if_flags |= IFF_ALLMULTI;
2055 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2056 
2057  setit:
2058 	for (i = 0; i < 4; i++)
2059 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2060 }
2061 
2062 static void
2063 bge_sig_pre_reset(struct bge_softc *sc, int type)
2064 {
2065 
2066 	/*
2067 	 * Some chips don't like this so only do this if ASF is enabled
2068 	 */
2069 	if (sc->bge_asf_mode)
2070 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2071 
2072 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2073 		switch (type) {
2074 		case BGE_RESET_START:
2075 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 			    BGE_FW_DRV_STATE_START);
2077 			break;
2078 		case BGE_RESET_SHUTDOWN:
2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 			    BGE_FW_DRV_STATE_UNLOAD);
2081 			break;
2082 		case BGE_RESET_SUSPEND:
2083 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2084 			    BGE_FW_DRV_STATE_SUSPEND);
2085 			break;
2086 		}
2087 	}
2088 
2089 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2090 		bge_ape_driver_state_change(sc, type);
2091 }
2092 
2093 static void
2094 bge_sig_post_reset(struct bge_softc *sc, int type)
2095 {
2096 
2097 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2098 		switch (type) {
2099 		case BGE_RESET_START:
2100 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2101 			    BGE_FW_DRV_STATE_START_DONE);
2102 			/* START DONE */
2103 			break;
2104 		case BGE_RESET_SHUTDOWN:
2105 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (type == BGE_RESET_SHUTDOWN)
2112 		bge_ape_driver_state_change(sc, type);
2113 }
2114 
2115 static void
2116 bge_sig_legacy(struct bge_softc *sc, int type)
2117 {
2118 
2119 	if (sc->bge_asf_mode) {
2120 		switch (type) {
2121 		case BGE_RESET_START:
2122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 			    BGE_FW_DRV_STATE_START);
2124 			break;
2125 		case BGE_RESET_SHUTDOWN:
2126 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2127 			    BGE_FW_DRV_STATE_UNLOAD);
2128 			break;
2129 		}
2130 	}
2131 }
2132 
2133 static void
2134 bge_wait_for_event_ack(struct bge_softc *sc)
2135 {
2136 	int i;
2137 
2138 	/* wait up to 2500usec */
2139 	for (i = 0; i < 250; i++) {
2140 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2141 			BGE_RX_CPU_DRV_EVENT))
2142 			break;
2143 		DELAY(10);
2144 	}
2145 }
2146 
2147 static void
2148 bge_stop_fw(struct bge_softc *sc)
2149 {
2150 
2151 	if (sc->bge_asf_mode) {
2152 		bge_wait_for_event_ack(sc);
2153 
2154 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2155 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2156 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2157 
2158 		bge_wait_for_event_ack(sc);
2159 	}
2160 }
2161 
2162 static int
2163 bge_poll_fw(struct bge_softc *sc)
2164 {
2165 	uint32_t val;
2166 	int i;
2167 
2168 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2169 		for (i = 0; i < BGE_TIMEOUT; i++) {
2170 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2171 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2172 				break;
2173 			DELAY(100);
2174 		}
2175 		if (i >= BGE_TIMEOUT) {
2176 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2177 			return -1;
2178 		}
2179 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2180 		/*
2181 		 * Poll the value location we just wrote until
2182 		 * we see the 1's complement of the magic number.
2183 		 * This indicates that the firmware initialization
2184 		 * is complete.
2185 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2186 		 */
2187 		for (i = 0; i < BGE_TIMEOUT; i++) {
2188 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2189 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2190 				break;
2191 			DELAY(10);
2192 		}
2193 
2194 		if (i >= BGE_TIMEOUT) {
2195 			aprint_error_dev(sc->bge_dev,
2196 			    "firmware handshake timed out, val = %x\n", val);
2197 			return -1;
2198 		}
2199 	}
2200 
2201 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2202 		/* tg3 says we have to wait extra time */
2203 		delay(10 * 1000);
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 int
2210 bge_phy_addr(struct bge_softc *sc)
2211 {
2212 	struct pci_attach_args *pa = &(sc->bge_pa);
2213 	int phy_addr = 1;
2214 
2215 	/*
2216 	 * PHY address mapping for various devices.
2217 	 *
2218 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2219 	 * ---------+-------+-------+-------+-------+
2220 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2221 	 * BCM5704  |   1   |   X   |   1   |   X   |
2222 	 * BCM5717  |   1   |   8   |   2   |   9   |
2223 	 * BCM5719  |   1   |   8   |   2   |   9   |
2224 	 * BCM5720  |   1   |   8   |   2   |   9   |
2225 	 *
2226 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2227 	 * ---------+-------+-------+-------+-------+
2228 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2229 	 * BCM5704  |   X   |   X   |   X   |   X   |
2230 	 * BCM5717  |   X   |   X   |   X   |   X   |
2231 	 * BCM5719  |   3   |   10  |   4   |   11  |
2232 	 * BCM5720  |   X   |   X   |   X   |   X   |
2233 	 *
2234 	 * Other addresses may respond but they are not
2235 	 * IEEE compliant PHYs and should be ignored.
2236 	 */
2237 	switch (BGE_ASICREV(sc->bge_chipid)) {
2238 	case BGE_ASICREV_BCM5717:
2239 	case BGE_ASICREV_BCM5719:
2240 	case BGE_ASICREV_BCM5720:
2241 		phy_addr = pa->pa_function;
2242 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2243 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2244 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2245 		} else {
2246 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2247 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2248 		}
2249 	}
2250 
2251 	return phy_addr;
2252 }
2253 
2254 /*
2255  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2256  * self-test results.
2257  */
2258 static int
2259 bge_chipinit(struct bge_softc *sc)
2260 {
2261 	uint32_t dma_rw_ctl, mode_ctl, reg;
2262 	int i;
2263 
2264 	/* Set endianness before we access any non-PCI registers. */
2265 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 	    BGE_INIT);
2267 
2268 	/*
2269 	 * Clear the MAC statistics block in the NIC's
2270 	 * internal memory.
2271 	 */
2272 	for (i = BGE_STATS_BLOCK;
2273 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275 
2276 	for (i = BGE_STATUS_BLOCK;
2277 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279 
2280 	/* 5717 workaround from tg3 */
2281 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 		/* Save */
2283 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284 
2285 		/* Temporary modify MODE_CTL to control TLP */
2286 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288 
2289 		/* Control TLP */
2290 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 		    BGE_TLP_PHYCTL1);
2292 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294 
2295 		/* Restore */
2296 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 	}
2298 
2299 	if (BGE_IS_57765_FAMILY(sc)) {
2300 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 			/* Save */
2302 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303 
2304 			/* Temporary modify MODE_CTL to control TLP */
2305 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2308 
2309 			/* Control TLP */
2310 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 			    BGE_TLP_PHYCTL5);
2312 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314 
2315 			/* Restore */
2316 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 		}
2318 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322 
2323 			/* Save */
2324 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325 
2326 			/* Temporary modify MODE_CTL to control TLP */
2327 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2330 
2331 			/* Control TLP */
2332 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 			    BGE_TLP_FTSMAX);
2334 			reg &= ~BGE_TLP_FTSMAX_MSK;
2335 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 			    reg | BGE_TLP_FTSMAX_VAL);
2337 
2338 			/* Restore */
2339 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 		}
2341 
2342 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 	}
2347 
2348 	/* Set up the PCI DMA control register. */
2349 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 	if (sc->bge_flags & BGE_PCIE) {
2351 		/* Read watermark not used, 128 bytes for write. */
2352 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 		    device_xname(sc->bge_dev)));
2354 		if (sc->bge_mps >= 256)
2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 		else
2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 	} else if (sc->bge_flags & BGE_PCIX) {
2359 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 		    device_xname(sc->bge_dev)));
2361 		/* PCI-X bus */
2362 		if (BGE_IS_5714_FAMILY(sc)) {
2363 			/* 256 bytes for read and write. */
2364 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366 
2367 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 			else
2370 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2372 			/* 1536 bytes for read, 384 bytes for write. */
2373 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2374 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2375 		} else {
2376 			/* 384 bytes for read and write. */
2377 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2378 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2379 			    (0x0F);
2380 		}
2381 
2382 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2383 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2384 			uint32_t tmp;
2385 
2386 			/* Set ONEDMA_ATONCE for hardware workaround. */
2387 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2388 			if (tmp == 6 || tmp == 7)
2389 				dma_rw_ctl |=
2390 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2391 
2392 			/* Set PCI-X DMA write workaround. */
2393 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2394 		}
2395 	} else {
2396 		/* Conventional PCI bus: 256 bytes for read and write. */
2397 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2398 		    device_xname(sc->bge_dev)));
2399 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2400 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2401 
2402 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2403 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2404 			dma_rw_ctl |= 0x0F;
2405 	}
2406 
2407 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2408 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2409 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2410 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2411 
2412 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2413 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2414 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2415 
2416 	if (BGE_IS_57765_PLUS(sc)) {
2417 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2418 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2419 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2420 
2421 		/*
2422 		 * Enable HW workaround for controllers that misinterpret
2423 		 * a status tag update and leave interrupts permanently
2424 		 * disabled.
2425 		 */
2426 		if (!BGE_IS_57765_FAMILY(sc) &&
2427 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2428 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2429 	}
2430 
2431 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2432 	    dma_rw_ctl);
2433 
2434 	/*
2435 	 * Set up general mode register.
2436 	 */
2437 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2438 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2439 		/* Retain Host-2-BMC settings written by APE firmware. */
2440 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2441 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2442 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2443 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2444 	}
2445 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2446 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2447 
2448 	/*
2449 	 * BCM5701 B5 have a bug causing data corruption when using
2450 	 * 64-bit DMA reads, which can be terminated early and then
2451 	 * completed later as 32-bit accesses, in combination with
2452 	 * certain bridges.
2453 	 */
2454 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2455 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2456 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2457 
2458 	/*
2459 	 * Tell the firmware the driver is running
2460 	 */
2461 	if (sc->bge_asf_mode & ASF_STACKUP)
2462 		mode_ctl |= BGE_MODECTL_STACKUP;
2463 
2464 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2465 
2466 	/*
2467 	 * Disable memory write invalidate.  Apparently it is not supported
2468 	 * properly by these devices.
2469 	 */
2470 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2471 		   PCI_COMMAND_INVALIDATE_ENABLE);
2472 
2473 #ifdef __brokenalpha__
2474 	/*
2475 	 * Must insure that we do not cross an 8K (bytes) boundary
2476 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2477 	 * restriction on some ALPHA platforms with early revision
2478 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2479 	 */
2480 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2481 #endif
2482 
2483 	/* Set the timer prescaler (always 66MHz) */
2484 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2485 
2486 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2487 		DELAY(40);	/* XXX */
2488 
2489 		/* Put PHY into ready state */
2490 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2491 		DELAY(40);
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static int
2498 bge_blockinit(struct bge_softc *sc)
2499 {
2500 	volatile struct bge_rcb	 *rcb;
2501 	bus_size_t rcb_addr;
2502 	struct ifnet *ifp = &sc->ethercom.ec_if;
2503 	bge_hostaddr taddr;
2504 	uint32_t	dmactl, val;
2505 	int		i, limit;
2506 
2507 	/*
2508 	 * Initialize the memory window pointer register so that
2509 	 * we can access the first 32K of internal NIC RAM. This will
2510 	 * allow us to set up the TX send ring RCBs and the RX return
2511 	 * ring RCBs, plus other things which live in NIC memory.
2512 	 */
2513 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2514 
2515 	if (!BGE_IS_5705_PLUS(sc)) {
2516 		/* 57XX step 33 */
2517 		/* Configure mbuf memory pool */
2518 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2519 		    BGE_BUFFPOOL_1);
2520 
2521 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2522 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2523 		else
2524 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2525 
2526 		/* 57XX step 34 */
2527 		/* Configure DMA resource pool */
2528 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2529 		    BGE_DMA_DESCRIPTORS);
2530 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2531 	}
2532 
2533 	/* 5718 step 11, 57XX step 35 */
2534 	/*
2535 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2536 	 * recommend these.
2537 	 */
2538 	if (BGE_IS_5717_PLUS(sc)) {
2539 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2540 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2541 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2542 	} else if (BGE_IS_5705_PLUS(sc)) {
2543 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2544 
2545 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2546 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2547 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2548 		} else {
2549 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2550 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2551 		}
2552 	} else {
2553 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2554 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2555 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2556 	}
2557 
2558 	/* 57XX step 36 */
2559 	/* Configure DMA resource watermarks */
2560 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2561 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2562 
2563 	/* 5718 step 13, 57XX step 38 */
2564 	/* Enable buffer manager */
2565 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2566 	/*
2567 	 * Change the arbitration algorithm of TXMBUF read request to
2568 	 * round-robin instead of priority based for BCM5719.  When
2569 	 * TXFIFO is almost empty, RDMA will hold its request until
2570 	 * TXFIFO is not almost empty.
2571 	 */
2572 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2573 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2574 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2575 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2576 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2577 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2578 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2579 
2580 	/* 57XX step 39 */
2581 	/* Poll for buffer manager start indication */
2582 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2583 		DELAY(10);
2584 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2585 			break;
2586 	}
2587 
2588 	if (i == BGE_TIMEOUT * 2) {
2589 		aprint_error_dev(sc->bge_dev,
2590 		    "buffer manager failed to start\n");
2591 		return ENXIO;
2592 	}
2593 
2594 	/* 57XX step 40 */
2595 	/* Enable flow-through queues */
2596 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2597 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2598 
2599 	/* Wait until queue initialization is complete */
2600 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2601 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2602 			break;
2603 		DELAY(10);
2604 	}
2605 
2606 	if (i == BGE_TIMEOUT * 2) {
2607 		aprint_error_dev(sc->bge_dev,
2608 		    "flow-through queue init failed\n");
2609 		return ENXIO;
2610 	}
2611 
2612 	/*
2613 	 * Summary of rings supported by the controller:
2614 	 *
2615 	 * Standard Receive Producer Ring
2616 	 * - This ring is used to feed receive buffers for "standard"
2617 	 *   sized frames (typically 1536 bytes) to the controller.
2618 	 *
2619 	 * Jumbo Receive Producer Ring
2620 	 * - This ring is used to feed receive buffers for jumbo sized
2621 	 *   frames (i.e. anything bigger than the "standard" frames)
2622 	 *   to the controller.
2623 	 *
2624 	 * Mini Receive Producer Ring
2625 	 * - This ring is used to feed receive buffers for "mini"
2626 	 *   sized frames to the controller.
2627 	 * - This feature required external memory for the controller
2628 	 *   but was never used in a production system.  Should always
2629 	 *   be disabled.
2630 	 *
2631 	 * Receive Return Ring
2632 	 * - After the controller has placed an incoming frame into a
2633 	 *   receive buffer that buffer is moved into a receive return
2634 	 *   ring.  The driver is then responsible to passing the
2635 	 *   buffer up to the stack.  Many versions of the controller
2636 	 *   support multiple RR rings.
2637 	 *
2638 	 * Send Ring
2639 	 * - This ring is used for outgoing frames.  Many versions of
2640 	 *   the controller support multiple send rings.
2641 	 */
2642 
2643 	/* 5718 step 15, 57XX step 41 */
2644 	/* Initialize the standard RX ring control block */
2645 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2646 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2647 	/* 5718 step 16 */
2648 	if (BGE_IS_57765_PLUS(sc)) {
2649 		/*
2650 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2651 		 * Bits 15-2 : Maximum RX frame size
2652 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2653 		 * Bit 0     : Reserved
2654 		 */
2655 		rcb->bge_maxlen_flags =
2656 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2657 	} else if (BGE_IS_5705_PLUS(sc)) {
2658 		/*
2659 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2660 		 * Bits 15-2 : Reserved (should be 0)
2661 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2662 		 * Bit 0     : Reserved
2663 		 */
2664 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2665 	} else {
2666 		/*
2667 		 * Ring size is always XXX entries
2668 		 * Bits 31-16: Maximum RX frame size
2669 		 * Bits 15-2 : Reserved (should be 0)
2670 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2671 		 * Bit 0     : Reserved
2672 		 */
2673 		rcb->bge_maxlen_flags =
2674 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2675 	}
2676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2677 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2679 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2680 	else
2681 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2682 	/* Write the standard receive producer ring control block. */
2683 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2684 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2685 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2686 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2687 
2688 	/* Reset the standard receive producer ring producer index. */
2689 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2690 
2691 	/* 57XX step 42 */
2692 	/*
2693 	 * Initialize the jumbo RX ring control block
2694 	 * We set the 'ring disabled' bit in the flags
2695 	 * field until we're actually ready to start
2696 	 * using this ring (i.e. once we set the MTU
2697 	 * high enough to require it).
2698 	 */
2699 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2700 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2701 		BGE_HOSTADDR(rcb->bge_hostaddr,
2702 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2703 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2704 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2705 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2706 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2707 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2708 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2709 		else
2710 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2711 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2712 		    rcb->bge_hostaddr.bge_addr_hi);
2713 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2714 		    rcb->bge_hostaddr.bge_addr_lo);
2715 		/* Program the jumbo receive producer ring RCB parameters. */
2716 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2717 		    rcb->bge_maxlen_flags);
2718 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2719 		/* Reset the jumbo receive producer ring producer index. */
2720 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2721 	}
2722 
2723 	/* 57XX step 43 */
2724 	/* Disable the mini receive producer ring RCB. */
2725 	if (BGE_IS_5700_FAMILY(sc)) {
2726 		/* Set up dummy disabled mini ring RCB */
2727 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2728 		rcb->bge_maxlen_flags =
2729 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2730 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2731 		    rcb->bge_maxlen_flags);
2732 		/* Reset the mini receive producer ring producer index. */
2733 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2734 
2735 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2736 		    offsetof(struct bge_ring_data, bge_info),
2737 		    sizeof (struct bge_gib),
2738 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2739 	}
2740 
2741 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2742 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2743 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2744 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2745 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2746 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2747 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2748 	}
2749 	/* 5718 step 14, 57XX step 44 */
2750 	/*
2751 	 * The BD ring replenish thresholds control how often the
2752 	 * hardware fetches new BD's from the producer rings in host
2753 	 * memory.  Setting the value too low on a busy system can
2754 	 * starve the hardware and recue the throughpout.
2755 	 *
2756 	 * Set the BD ring replenish thresholds. The recommended
2757 	 * values are 1/8th the number of descriptors allocated to
2758 	 * each ring, but since we try to avoid filling the entire
2759 	 * ring we set these to the minimal value of 8.  This needs to
2760 	 * be done on several of the supported chip revisions anyway,
2761 	 * to work around HW bugs.
2762 	 */
2763 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2764 	if (BGE_IS_JUMBO_CAPABLE(sc))
2765 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2766 
2767 	/* 5718 step 18 */
2768 	if (BGE_IS_5717_PLUS(sc)) {
2769 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2770 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2771 	}
2772 
2773 	/* 57XX step 45 */
2774 	/*
2775 	 * Disable all send rings by setting the 'ring disabled' bit
2776 	 * in the flags field of all the TX send ring control blocks,
2777 	 * located in NIC memory.
2778 	 */
2779 	if (BGE_IS_5700_FAMILY(sc)) {
2780 		/* 5700 to 5704 had 16 send rings. */
2781 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2782 	} else if (BGE_IS_5717_PLUS(sc)) {
2783 		limit = BGE_TX_RINGS_5717_MAX;
2784 	} else if (BGE_IS_57765_FAMILY(sc)) {
2785 		limit = BGE_TX_RINGS_57765_MAX;
2786 	} else
2787 		limit = 1;
2788 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2789 	for (i = 0; i < limit; i++) {
2790 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2791 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2792 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2793 		rcb_addr += sizeof(struct bge_rcb);
2794 	}
2795 
2796 	/* 57XX step 46 and 47 */
2797 	/* Configure send ring RCB 0 (we use only the first ring) */
2798 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2799 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2800 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2801 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2802 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2803 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2804 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2805 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2806 	else
2807 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2808 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2809 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2810 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2811 
2812 	/* 57XX step 48 */
2813 	/*
2814 	 * Disable all receive return rings by setting the
2815 	 * 'ring diabled' bit in the flags field of all the receive
2816 	 * return ring control blocks, located in NIC memory.
2817 	 */
2818 	if (BGE_IS_5717_PLUS(sc)) {
2819 		/* Should be 17, use 16 until we get an SRAM map. */
2820 		limit = 16;
2821 	} else if (BGE_IS_5700_FAMILY(sc))
2822 		limit = BGE_RX_RINGS_MAX;
2823 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2824 	    BGE_IS_57765_FAMILY(sc))
2825 		limit = 4;
2826 	else
2827 		limit = 1;
2828 	/* Disable all receive return rings */
2829 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2830 	for (i = 0; i < limit; i++) {
2831 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2832 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2833 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2834 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2835 			BGE_RCB_FLAG_RING_DISABLED));
2836 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2837 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2838 		    (i * (sizeof(uint64_t))), 0);
2839 		rcb_addr += sizeof(struct bge_rcb);
2840 	}
2841 
2842 	/* 57XX step 49 */
2843 	/*
2844 	 * Set up receive return ring 0.  Note that the NIC address
2845 	 * for RX return rings is 0x0.  The return rings live entirely
2846 	 * within the host, so the nicaddr field in the RCB isn't used.
2847 	 */
2848 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2849 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2850 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2851 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2852 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2853 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2854 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2855 
2856 	/* 5718 step 24, 57XX step 53 */
2857 	/* Set random backoff seed for TX */
2858 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2859 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2860 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2861 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2862 	    BGE_TX_BACKOFF_SEED_MASK);
2863 
2864 	/* 5718 step 26, 57XX step 55 */
2865 	/* Set inter-packet gap */
2866 	val = 0x2620;
2867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2868 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2869 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2870 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2871 
2872 	/* 5718 step 27, 57XX step 56 */
2873 	/*
2874 	 * Specify which ring to use for packets that don't match
2875 	 * any RX rules.
2876 	 */
2877 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2878 
2879 	/* 5718 step 28, 57XX step 57 */
2880 	/*
2881 	 * Configure number of RX lists. One interrupt distribution
2882 	 * list, sixteen active lists, one bad frames class.
2883 	 */
2884 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2885 
2886 	/* 5718 step 29, 57XX step 58 */
2887 	/* Inialize RX list placement stats mask. */
2888 	if (BGE_IS_575X_PLUS(sc)) {
2889 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2890 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2891 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2892 	} else
2893 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2894 
2895 	/* 5718 step 30, 57XX step 59 */
2896 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2897 
2898 	/* 5718 step 33, 57XX step 62 */
2899 	/* Disable host coalescing until we get it set up */
2900 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2901 
2902 	/* 5718 step 34, 57XX step 63 */
2903 	/* Poll to make sure it's shut down. */
2904 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2905 		DELAY(10);
2906 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2907 			break;
2908 	}
2909 
2910 	if (i == BGE_TIMEOUT * 2) {
2911 		aprint_error_dev(sc->bge_dev,
2912 		    "host coalescing engine failed to idle\n");
2913 		return ENXIO;
2914 	}
2915 
2916 	/* 5718 step 35, 36, 37 */
2917 	/* Set up host coalescing defaults */
2918 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2919 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2920 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2921 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2922 	if (!(BGE_IS_5705_PLUS(sc))) {
2923 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2924 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2925 	}
2926 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2927 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2928 
2929 	/* Set up address of statistics block */
2930 	if (BGE_IS_5700_FAMILY(sc)) {
2931 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2932 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2933 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2934 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2935 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2936 	}
2937 
2938 	/* 5718 step 38 */
2939 	/* Set up address of status block */
2940 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2941 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2942 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2943 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2944 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2945 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2946 
2947 	/* Set up status block size. */
2948 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2949 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2950 		val = BGE_STATBLKSZ_FULL;
2951 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2952 	} else {
2953 		val = BGE_STATBLKSZ_32BYTE;
2954 		bzero(&sc->bge_rdata->bge_status_block, 32);
2955 	}
2956 
2957 	/* 5718 step 39, 57XX step 73 */
2958 	/* Turn on host coalescing state machine */
2959 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2960 
2961 	/* 5718 step 40, 57XX step 74 */
2962 	/* Turn on RX BD completion state machine and enable attentions */
2963 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2964 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2965 
2966 	/* 5718 step 41, 57XX step 75 */
2967 	/* Turn on RX list placement state machine */
2968 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2969 
2970 	/* 57XX step 76 */
2971 	/* Turn on RX list selector state machine. */
2972 	if (!(BGE_IS_5705_PLUS(sc)))
2973 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2974 
2975 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2976 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2977 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2978 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2979 
2980 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2981 		val |= BGE_PORTMODE_TBI;
2982 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2983 		val |= BGE_PORTMODE_GMII;
2984 	else
2985 		val |= BGE_PORTMODE_MII;
2986 
2987 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2988 	/* Allow APE to send/receive frames. */
2989 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2990 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2991 
2992 	/* Turn on DMA, clear stats */
2993 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2994 	/* 5718 step 44 */
2995 	DELAY(40);
2996 
2997 	/* 5718 step 45, 57XX step 79 */
2998 	/* Set misc. local control, enable interrupts on attentions */
2999 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3000 	if (BGE_IS_5717_PLUS(sc)) {
3001 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3002 		/* 5718 step 46 */
3003 		DELAY(100);
3004 	}
3005 
3006 	/* 57XX step 81 */
3007 	/* Turn on DMA completion state machine */
3008 	if (!(BGE_IS_5705_PLUS(sc)))
3009 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3010 
3011 	/* 5718 step 47, 57XX step 82 */
3012 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3013 
3014 	/* 5718 step 48 */
3015 	/* Enable host coalescing bug fix. */
3016 	if (BGE_IS_5755_PLUS(sc))
3017 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3018 
3019 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3020 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
3021 
3022 	/* Turn on write DMA state machine */
3023 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3024 	/* 5718 step 49 */
3025 	DELAY(40);
3026 
3027 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3028 
3029 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3030 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3031 
3032 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3033 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3034 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3035 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3036 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3037 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3038 
3039 	if (sc->bge_flags & BGE_PCIE)
3040 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3041 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3042 		if (ifp->if_mtu <= ETHERMTU)
3043 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
3044 	}
3045 	if (sc->bge_flags & BGE_TSO)
3046 		val |= BGE_RDMAMODE_TSO4_ENABLE;
3047 
3048 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3049 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3050 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
3051 		/*
3052 		 * Allow multiple outstanding read requests from
3053 		 * non-LSO read DMA engine.
3054 		 */
3055 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3056 	}
3057 
3058 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3059 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3060 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3061 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3062 	    BGE_IS_57765_PLUS(sc)) {
3063 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3064 		/*
3065 		 * Adjust tx margin to prevent TX data corruption and
3066 		 * fix internal FIFO overflow.
3067 		 */
3068 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3069 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3070 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3071 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3072 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3073 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3074 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3075 		}
3076 		/*
3077 		 * Enable fix for read DMA FIFO overruns.
3078 		 * The fix is to limit the number of RX BDs
3079 		 * the hardware would fetch at a fime.
3080 		 */
3081 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3082 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3083 	}
3084 
3085 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3086 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3087 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3088 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3089 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3090 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3091 		/*
3092 		 * Allow 4KB burst length reads for non-LSO frames.
3093 		 * Enable 512B burst length reads for buffer descriptors.
3094 		 */
3095 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3098 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 	}
3100 
3101 	/* Turn on read DMA state machine */
3102 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3103 	/* 5718 step 52 */
3104 	delay(40);
3105 
3106 	/* 5718 step 56, 57XX step 84 */
3107 	/* Turn on RX data completion state machine */
3108 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3109 
3110 	/* Turn on RX data and RX BD initiator state machine */
3111 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3112 
3113 	/* 57XX step 85 */
3114 	/* Turn on Mbuf cluster free state machine */
3115 	if (!BGE_IS_5705_PLUS(sc))
3116 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3117 
3118 	/* 5718 step 57, 57XX step 86 */
3119 	/* Turn on send data completion state machine */
3120 	val = BGE_SDCMODE_ENABLE;
3121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3122 		val |= BGE_SDCMODE_CDELAY;
3123 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3124 
3125 	/* 5718 step 58 */
3126 	/* Turn on send BD completion state machine */
3127 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3128 
3129 	/* 57XX step 88 */
3130 	/* Turn on RX BD initiator state machine */
3131 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3132 
3133 	/* 5718 step 60, 57XX step 90 */
3134 	/* Turn on send data initiator state machine */
3135 	if (sc->bge_flags & BGE_TSO) {
3136 		/* XXX: magic value from Linux driver */
3137 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3138 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3139 	} else
3140 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3141 
3142 	/* 5718 step 61, 57XX step 91 */
3143 	/* Turn on send BD initiator state machine */
3144 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3145 
3146 	/* 5718 step 62, 57XX step 92 */
3147 	/* Turn on send BD selector state machine */
3148 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3149 
3150 	/* 5718 step 31, 57XX step 60 */
3151 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3152 	/* 5718 step 32, 57XX step 61 */
3153 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3154 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3155 
3156 	/* ack/clear link change events */
3157 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3158 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3159 	    BGE_MACSTAT_LINK_CHANGED);
3160 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3161 
3162 	/*
3163 	 * Enable attention when the link has changed state for
3164 	 * devices that use auto polling.
3165 	 */
3166 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3167 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3168 	} else {
3169 		/* 5718 step 68 */
3170 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3171 		/* 5718 step 69 (optionally) */
3172 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3173 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3174 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3175 			    BGE_EVTENB_MI_INTERRUPT);
3176 	}
3177 
3178 	/*
3179 	 * Clear any pending link state attention.
3180 	 * Otherwise some link state change events may be lost until attention
3181 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3182 	 * It's not necessary on newer BCM chips - perhaps enabling link
3183 	 * state change attentions implies clearing pending attention.
3184 	 */
3185 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3186 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3187 	    BGE_MACSTAT_LINK_CHANGED);
3188 
3189 	/* Enable link state change attentions. */
3190 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3191 
3192 	return 0;
3193 }
3194 
3195 static const struct bge_revision *
3196 bge_lookup_rev(uint32_t chipid)
3197 {
3198 	const struct bge_revision *br;
3199 
3200 	for (br = bge_revisions; br->br_name != NULL; br++) {
3201 		if (br->br_chipid == chipid)
3202 			return br;
3203 	}
3204 
3205 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3206 		if (br->br_chipid == BGE_ASICREV(chipid))
3207 			return br;
3208 	}
3209 
3210 	return NULL;
3211 }
3212 
3213 static const struct bge_product *
3214 bge_lookup(const struct pci_attach_args *pa)
3215 {
3216 	const struct bge_product *bp;
3217 
3218 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3219 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3220 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3221 			return bp;
3222 	}
3223 
3224 	return NULL;
3225 }
3226 
3227 static uint32_t
3228 bge_chipid(const struct pci_attach_args *pa)
3229 {
3230 	uint32_t id;
3231 
3232 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3233 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3234 
3235 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3236 		switch (PCI_PRODUCT(pa->pa_id)) {
3237 		case PCI_PRODUCT_BROADCOM_BCM5717:
3238 		case PCI_PRODUCT_BROADCOM_BCM5718:
3239 		case PCI_PRODUCT_BROADCOM_BCM5719:
3240 		case PCI_PRODUCT_BROADCOM_BCM5720:
3241 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3242 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3243 			    BGE_PCI_GEN2_PRODID_ASICREV);
3244 			break;
3245 		case PCI_PRODUCT_BROADCOM_BCM57761:
3246 		case PCI_PRODUCT_BROADCOM_BCM57762:
3247 		case PCI_PRODUCT_BROADCOM_BCM57765:
3248 		case PCI_PRODUCT_BROADCOM_BCM57766:
3249 		case PCI_PRODUCT_BROADCOM_BCM57781:
3250 		case PCI_PRODUCT_BROADCOM_BCM57785:
3251 		case PCI_PRODUCT_BROADCOM_BCM57791:
3252 		case PCI_PRODUCT_BROADCOM_BCM57795:
3253 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3254 			    BGE_PCI_GEN15_PRODID_ASICREV);
3255 			break;
3256 		default:
3257 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3258 			    BGE_PCI_PRODID_ASICREV);
3259 			break;
3260 		}
3261 	}
3262 
3263 	return id;
3264 }
3265 
3266 /*
3267  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3268  * against our list and return its name if we find a match. Note
3269  * that since the Broadcom controller contains VPD support, we
3270  * can get the device name string from the controller itself instead
3271  * of the compiled-in string. This is a little slow, but it guarantees
3272  * we'll always announce the right product name.
3273  */
3274 static int
3275 bge_probe(device_t parent, cfdata_t match, void *aux)
3276 {
3277 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3278 
3279 	if (bge_lookup(pa) != NULL)
3280 		return 1;
3281 
3282 	return 0;
3283 }
3284 
3285 static void
3286 bge_attach(device_t parent, device_t self, void *aux)
3287 {
3288 	struct bge_softc	*sc = device_private(self);
3289 	struct pci_attach_args	*pa = aux;
3290 	prop_dictionary_t dict;
3291 	const struct bge_product *bp;
3292 	const struct bge_revision *br;
3293 	pci_chipset_tag_t	pc;
3294 	pci_intr_handle_t	ih;
3295 	const char		*intrstr = NULL;
3296 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4;
3297 	uint32_t		command;
3298 	struct ifnet		*ifp;
3299 	uint32_t		misccfg, mimode;
3300 	void *			kva;
3301 	u_char			eaddr[ETHER_ADDR_LEN];
3302 	pcireg_t		memtype, subid, reg;
3303 	bus_addr_t		memaddr;
3304 	uint32_t		pm_ctl;
3305 	bool			no_seeprom;
3306 	int			capmask;
3307 
3308 	bp = bge_lookup(pa);
3309 	KASSERT(bp != NULL);
3310 
3311 	sc->sc_pc = pa->pa_pc;
3312 	sc->sc_pcitag = pa->pa_tag;
3313 	sc->bge_dev = self;
3314 
3315 	sc->bge_pa = *pa;
3316 	pc = sc->sc_pc;
3317 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3318 
3319 	aprint_naive(": Ethernet controller\n");
3320 	aprint_normal(": %s\n", bp->bp_name);
3321 
3322 	/*
3323 	 * Map control/status registers.
3324 	 */
3325 	DPRINTFN(5, ("Map control/status regs\n"));
3326 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3327 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3328 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3329 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3330 
3331 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3332 		aprint_error_dev(sc->bge_dev,
3333 		    "failed to enable memory mapping!\n");
3334 		return;
3335 	}
3336 
3337 	DPRINTFN(5, ("pci_mem_find\n"));
3338 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3339 	switch (memtype) {
3340 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3341 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3342 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3343 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3344 		    &memaddr, &sc->bge_bsize) == 0)
3345 			break;
3346 	default:
3347 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3348 		return;
3349 	}
3350 
3351 	DPRINTFN(5, ("pci_intr_map\n"));
3352 	if (pci_intr_map(pa, &ih)) {
3353 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3354 		return;
3355 	}
3356 
3357 	DPRINTFN(5, ("pci_intr_string\n"));
3358 	intrstr = pci_intr_string(pc, ih);
3359 
3360 	DPRINTFN(5, ("pci_intr_establish\n"));
3361 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3362 
3363 	if (sc->bge_intrhand == NULL) {
3364 		aprint_error_dev(sc->bge_dev,
3365 		    "couldn't establish interrupt%s%s\n",
3366 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3367 		return;
3368 	}
3369 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3370 
3371 	/* Save various chip information. */
3372 	sc->bge_chipid = bge_chipid(pa);
3373 	sc->bge_phy_addr = bge_phy_addr(sc);
3374 
3375 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3376 	        &sc->bge_pciecap, NULL) != 0)
3377 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3378 		/* PCIe */
3379 		sc->bge_flags |= BGE_PCIE;
3380 		/* Extract supported maximum payload size. */
3381 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3382 		    sc->bge_pciecap + PCIE_DCAP);
3383 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3384 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3385 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3386 			sc->bge_expmrq = 2048;
3387 		else
3388 			sc->bge_expmrq = 4096;
3389 		bge_set_max_readrq(sc);
3390 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3391 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3392 		/* PCI-X */
3393 		sc->bge_flags |= BGE_PCIX;
3394 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3395 			&sc->bge_pcixcap, NULL) == 0)
3396 			aprint_error_dev(sc->bge_dev,
3397 			    "unable to find PCIX capability\n");
3398 	}
3399 
3400 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3401 		/*
3402 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3403 		 * can clobber the chip's PCI config-space power control
3404 		 * registers, leaving the card in D3 powersave state. We do
3405 		 * not have memory-mapped registers in this state, so force
3406 		 * device into D0 state before starting initialization.
3407 		 */
3408 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3409 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3410 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3411 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3412 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3413 	}
3414 
3415 	/* Save chipset family. */
3416 	switch (BGE_ASICREV(sc->bge_chipid)) {
3417 	case BGE_ASICREV_BCM5717:
3418 	case BGE_ASICREV_BCM5719:
3419 	case BGE_ASICREV_BCM5720:
3420 		sc->bge_flags |= BGE_5717_PLUS;
3421 		/* FALLTHROUGH */
3422 	case BGE_ASICREV_BCM57765:
3423 	case BGE_ASICREV_BCM57766:
3424 		if (!BGE_IS_5717_PLUS(sc))
3425 			sc->bge_flags |= BGE_57765_FAMILY;
3426 		sc->bge_flags |= BGE_57765_PLUS | BGE_5755_PLUS |
3427 		    BGE_575X_PLUS | BGE_5705_PLUS | BGE_JUMBO_CAPABLE;
3428 		/* Jumbo frame on BCM5719 A0 does not work. */
3429 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3430 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3431 			sc->bge_flags &= ~BGE_JUMBO_CAPABLE;
3432 		break;
3433 	case BGE_ASICREV_BCM5755:
3434 	case BGE_ASICREV_BCM5761:
3435 	case BGE_ASICREV_BCM5784:
3436 	case BGE_ASICREV_BCM5785:
3437 	case BGE_ASICREV_BCM5787:
3438 	case BGE_ASICREV_BCM57780:
3439 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3440 		break;
3441 	case BGE_ASICREV_BCM5700:
3442 	case BGE_ASICREV_BCM5701:
3443 	case BGE_ASICREV_BCM5703:
3444 	case BGE_ASICREV_BCM5704:
3445 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3446 		break;
3447 	case BGE_ASICREV_BCM5714_A0:
3448 	case BGE_ASICREV_BCM5780:
3449 	case BGE_ASICREV_BCM5714:
3450 		sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE;
3451 		/* FALLTHROUGH */
3452 	case BGE_ASICREV_BCM5750:
3453 	case BGE_ASICREV_BCM5752:
3454 	case BGE_ASICREV_BCM5906:
3455 		sc->bge_flags |= BGE_575X_PLUS;
3456 		/* FALLTHROUGH */
3457 	case BGE_ASICREV_BCM5705:
3458 		sc->bge_flags |= BGE_5705_PLUS;
3459 		break;
3460 	}
3461 
3462 	/* Identify chips with APE processor. */
3463 	switch (BGE_ASICREV(sc->bge_chipid)) {
3464 	case BGE_ASICREV_BCM5717:
3465 	case BGE_ASICREV_BCM5719:
3466 	case BGE_ASICREV_BCM5720:
3467 	case BGE_ASICREV_BCM5761:
3468 		sc->bge_flags |= BGE_APE;
3469 		break;
3470 	}
3471 
3472 	/* Chips with APE need BAR2 access for APE registers/memory. */
3473 	if ((sc->bge_flags & BGE_APE) != 0) {
3474 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3475 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3476 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3477 			&sc->bge_apesize)) {
3478 			aprint_error_dev(sc->bge_dev,
3479 			    "couldn't map BAR2 memory\n");
3480 			return;
3481 		}
3482 
3483 		/* Enable APE register/memory access by host driver. */
3484 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3485 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3486 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3487 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3488 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3489 
3490 		bge_ape_lock_init(sc);
3491 		bge_ape_read_fw_ver(sc);
3492 	}
3493 
3494 	/* Identify the chips that use an CPMU. */
3495 	if (BGE_IS_5717_PLUS(sc) ||
3496 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3497 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3498 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3499 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3500 		sc->bge_flags |= BGE_CPMU_PRESENT;
3501 
3502 	/* Set MI_MODE */
3503 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3504 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3505 		mimode |= BGE_MIMODE_500KHZ_CONST;
3506 	else
3507 		mimode |= BGE_MIMODE_BASE;
3508 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3509 
3510 	/*
3511 	 * When using the BCM5701 in PCI-X mode, data corruption has
3512 	 * been observed in the first few bytes of some received packets.
3513 	 * Aligning the packet buffer in memory eliminates the corruption.
3514 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3515 	 * which do not support unaligned accesses, we will realign the
3516 	 * payloads by copying the received packets.
3517 	 */
3518 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3519 	    sc->bge_flags & BGE_PCIX)
3520 		sc->bge_flags |= BGE_RX_ALIGNBUG;
3521 
3522 	if (BGE_IS_5700_FAMILY(sc))
3523 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
3524 
3525 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3526 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3527 
3528 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3529 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3530 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3531 		sc->bge_flags |= BGE_IS_5788;
3532 
3533 	/*
3534 	 * Some controllers seem to require a special firmware to use
3535 	 * TSO. But the firmware is not available to FreeBSD and Linux
3536 	 * claims that the TSO performed by the firmware is slower than
3537 	 * hardware based TSO. Moreover the firmware based TSO has one
3538 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3539 	 * header is greater than 80 bytes. The workaround for the TSO
3540 	 * bug exist but it seems it's too expensive than not using
3541 	 * TSO at all. Some hardwares also have the TSO bug so limit
3542 	 * the TSO to the controllers that are not affected TSO issues
3543 	 * (e.g. 5755 or higher).
3544 	 */
3545 	if (BGE_IS_5755_PLUS(sc)) {
3546 		/*
3547 		 * BCM5754 and BCM5787 shares the same ASIC id so
3548 		 * explicit device id check is required.
3549 		 */
3550 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3551 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3552 			sc->bge_flags |= BGE_TSO;
3553 	}
3554 
3555 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3556 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3557 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3558 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3559 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3560 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3561 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3562 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3563 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3564 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3565 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3566 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3567 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3568 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3569 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3570 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3571 		capmask &= ~BMSR_EXTSTAT;
3572 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3573 	}
3574 
3575 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3576 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3577 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3578 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3579 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3580 
3581 	/* Set various PHY bug flags. */
3582 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3583 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3584 		sc->bge_flags |= BGE_PHY_CRC_BUG;
3585 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3586 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3587 		sc->bge_flags |= BGE_PHY_ADC_BUG;
3588 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3589 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3590 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3591 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3592 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3593 		sc->bge_flags |= BGE_PHY_NO_3LED;
3594 	if (BGE_IS_5705_PLUS(sc) &&
3595 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3596 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3597 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3598 	    !BGE_IS_57765_PLUS(sc)) {
3599 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3600 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3601 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3602 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3603 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3604 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3605 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
3606 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3607 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3608 		} else
3609 			sc->bge_flags |= BGE_PHY_BER_BUG;
3610 	}
3611 
3612 	/*
3613 	 * SEEPROM check.
3614 	 * First check if firmware knows we do not have SEEPROM.
3615 	 */
3616 	if (prop_dictionary_get_bool(device_properties(self),
3617 	     "without-seeprom", &no_seeprom) && no_seeprom)
3618 	 	sc->bge_flags |= BGE_NO_EEPROM;
3619 
3620 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3621 		sc->bge_flags |= BGE_NO_EEPROM;
3622 
3623 	/* Now check the 'ROM failed' bit on the RX CPU */
3624 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3625 		sc->bge_flags |= BGE_NO_EEPROM;
3626 
3627 	sc->bge_asf_mode = 0;
3628 	/* No ASF if APE present. */
3629 	if ((sc->bge_flags & BGE_APE) == 0) {
3630 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3631 			BGE_SRAM_DATA_SIG_MAGIC)) {
3632 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3633 			    BGE_HWCFG_ASF) {
3634 				sc->bge_asf_mode |= ASF_ENABLE;
3635 				sc->bge_asf_mode |= ASF_STACKUP;
3636 				if (BGE_IS_575X_PLUS(sc))
3637 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3638 			}
3639 		}
3640 	}
3641 
3642 	/*
3643 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3644 	 * lock in bge_reset().
3645 	 */
3646 	CSR_WRITE_4(sc, BGE_EE_ADDR,
3647 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3648 	delay(1000);
3649 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3650 
3651 	bge_stop_fw(sc);
3652 	bge_sig_pre_reset(sc, BGE_RESET_START);
3653 	if (bge_reset(sc))
3654 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3655 
3656 	/*
3657 	 * Read the hardware config word in the first 32k of NIC internal
3658 	 * memory, or fall back to the config word in the EEPROM.
3659 	 * Note: on some BCM5700 cards, this value appears to be unset.
3660 	 */
3661 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3662 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3663 	    BGE_SRAM_DATA_SIG_MAGIC) {
3664 		uint32_t tmp;
3665 
3666 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3667 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3668 		    BGE_SRAM_DATA_VER_SHIFT;
3669 		if ((0 < tmp) && (tmp < 0x100))
3670 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3671 		if (sc->bge_flags & BGE_PCIE)
3672 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3673 		if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3674 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3675 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3676 		bge_read_eeprom(sc, (void *)&hwcfg,
3677 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3678 		hwcfg = be32toh(hwcfg);
3679 	}
3680 	aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3681 	    hwcfg, hwcfg2, hwcfg3, hwcfg4);
3682 
3683 	bge_sig_legacy(sc, BGE_RESET_START);
3684 	bge_sig_post_reset(sc, BGE_RESET_START);
3685 
3686 	if (bge_chipinit(sc)) {
3687 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3688 		bge_release_resources(sc);
3689 		return;
3690 	}
3691 
3692 	/*
3693 	 * Get station address from the EEPROM.
3694 	 */
3695 	if (bge_get_eaddr(sc, eaddr)) {
3696 		aprint_error_dev(sc->bge_dev,
3697 		    "failed to read station address\n");
3698 		bge_release_resources(sc);
3699 		return;
3700 	}
3701 
3702 	br = bge_lookup_rev(sc->bge_chipid);
3703 
3704 	if (br == NULL) {
3705 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3706 		    sc->bge_chipid);
3707 	} else {
3708 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3709 		    br->br_name, sc->bge_chipid);
3710 	}
3711 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3712 
3713 	/* Allocate the general information block and ring buffers. */
3714 	if (pci_dma64_available(pa))
3715 		sc->bge_dmatag = pa->pa_dmat64;
3716 	else
3717 		sc->bge_dmatag = pa->pa_dmat;
3718 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3719 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3720 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3721 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3722 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3723 		return;
3724 	}
3725 	DPRINTFN(5, ("bus_dmamem_map\n"));
3726 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3727 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3728 			   BUS_DMA_NOWAIT)) {
3729 		aprint_error_dev(sc->bge_dev,
3730 		    "can't map DMA buffers (%zu bytes)\n",
3731 		    sizeof(struct bge_ring_data));
3732 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3733 		    sc->bge_ring_rseg);
3734 		return;
3735 	}
3736 	DPRINTFN(5, ("bus_dmamem_create\n"));
3737 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3738 	    sizeof(struct bge_ring_data), 0,
3739 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3740 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3741 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3742 				 sizeof(struct bge_ring_data));
3743 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3744 		    sc->bge_ring_rseg);
3745 		return;
3746 	}
3747 	DPRINTFN(5, ("bus_dmamem_load\n"));
3748 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3749 			    sizeof(struct bge_ring_data), NULL,
3750 			    BUS_DMA_NOWAIT)) {
3751 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3752 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3753 				 sizeof(struct bge_ring_data));
3754 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3755 		    sc->bge_ring_rseg);
3756 		return;
3757 	}
3758 
3759 	DPRINTFN(5, ("bzero\n"));
3760 	sc->bge_rdata = (struct bge_ring_data *)kva;
3761 
3762 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3763 
3764 	/* Try to allocate memory for jumbo buffers. */
3765 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3766 		if (bge_alloc_jumbo_mem(sc)) {
3767 			aprint_error_dev(sc->bge_dev,
3768 			    "jumbo buffer allocation failed\n");
3769 		} else
3770 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3771 	}
3772 
3773 	/* Set default tuneable values. */
3774 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3775 	sc->bge_rx_coal_ticks = 150;
3776 	sc->bge_rx_max_coal_bds = 64;
3777 	sc->bge_tx_coal_ticks = 300;
3778 	sc->bge_tx_max_coal_bds = 400;
3779 	if (BGE_IS_5705_PLUS(sc)) {
3780 		sc->bge_tx_coal_ticks = (12 * 5);
3781 		sc->bge_tx_max_coal_bds = (12 * 5);
3782 			aprint_verbose_dev(sc->bge_dev,
3783 			    "setting short Tx thresholds\n");
3784 	}
3785 
3786 	if (BGE_IS_5717_PLUS(sc))
3787 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3788 	else if (BGE_IS_5705_PLUS(sc))
3789 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3790 	else
3791 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3792 
3793 	/* Set up ifnet structure */
3794 	ifp = &sc->ethercom.ec_if;
3795 	ifp->if_softc = sc;
3796 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3797 	ifp->if_ioctl = bge_ioctl;
3798 	ifp->if_stop = bge_stop;
3799 	ifp->if_start = bge_start;
3800 	ifp->if_init = bge_init;
3801 	ifp->if_watchdog = bge_watchdog;
3802 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3803 	IFQ_SET_READY(&ifp->if_snd);
3804 	DPRINTFN(5, ("strcpy if_xname\n"));
3805 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3806 
3807 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3808 		sc->ethercom.ec_if.if_capabilities |=
3809 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3810 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3811 		sc->ethercom.ec_if.if_capabilities |=
3812 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3813 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3814 #endif
3815 	sc->ethercom.ec_capabilities |=
3816 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3817 
3818 	if (sc->bge_flags & BGE_TSO)
3819 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3820 
3821 	/*
3822 	 * Do MII setup.
3823 	 */
3824 	DPRINTFN(5, ("mii setup\n"));
3825 	sc->bge_mii.mii_ifp = ifp;
3826 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3827 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3828 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3829 
3830 	/*
3831 	 * Figure out what sort of media we have by checking the hardware
3832 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3833 	 * unset. If that's the case, we have to rely on identifying the NIC
3834 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3835 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3836 	 */
3837 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3838 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3839 		if (BGE_IS_5714_FAMILY(sc))
3840 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
3841 		else
3842 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
3843 	}
3844 
3845 	/* set phyflags and chipid before mii_attach() */
3846 	dict = device_properties(self);
3847 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3848 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3849 
3850 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3851 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3852 		    bge_ifmedia_sts);
3853 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3854 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3855 			    0, NULL);
3856 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3857 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3858 		/* Pretend the user requested this setting */
3859 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3860 	} else {
3861 		/*
3862 		 * Do transceiver setup and tell the firmware the
3863 		 * driver is down so we can try to get access the
3864 		 * probe if ASF is running.  Retry a couple of times
3865 		 * if we get a conflict with the ASF firmware accessing
3866 		 * the PHY.
3867 		 */
3868 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3869 		bge_asf_driver_up(sc);
3870 
3871 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3872 			     bge_ifmedia_sts);
3873 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3874 			   sc->bge_phy_addr, MII_OFFSET_ANY,
3875 			   MIIF_DOPAUSE);
3876 
3877 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3878 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3879 			ifmedia_add(&sc->bge_mii.mii_media,
3880 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3881 			ifmedia_set(&sc->bge_mii.mii_media,
3882 				    IFM_ETHER|IFM_MANUAL);
3883 		} else
3884 			ifmedia_set(&sc->bge_mii.mii_media,
3885 				    IFM_ETHER|IFM_AUTO);
3886 
3887 		/*
3888 		 * Now tell the firmware we are going up after probing the PHY
3889 		 */
3890 		if (sc->bge_asf_mode & ASF_STACKUP)
3891 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3892 	}
3893 
3894 	/*
3895 	 * Call MI attach routine.
3896 	 */
3897 	DPRINTFN(5, ("if_attach\n"));
3898 	if_attach(ifp);
3899 	DPRINTFN(5, ("ether_ifattach\n"));
3900 	ether_ifattach(ifp, eaddr);
3901 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3902 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3903 		RND_TYPE_NET, 0);
3904 #ifdef BGE_EVENT_COUNTERS
3905 	/*
3906 	 * Attach event counters.
3907 	 */
3908 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3909 	    NULL, device_xname(sc->bge_dev), "intr");
3910 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3911 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3912 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3913 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3914 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3915 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3916 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3917 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3918 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3919 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3920 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3921 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3922 #endif /* BGE_EVENT_COUNTERS */
3923 	DPRINTFN(5, ("callout_init\n"));
3924 	callout_init(&sc->bge_timeout, 0);
3925 
3926 	if (pmf_device_register(self, NULL, NULL))
3927 		pmf_class_network_register(self, ifp);
3928 	else
3929 		aprint_error_dev(self, "couldn't establish power handler\n");
3930 
3931 	bge_sysctl_init(sc);
3932 
3933 #ifdef BGE_DEBUG
3934 	bge_debug_info(sc);
3935 #endif
3936 }
3937 
3938 /*
3939  * Stop all chip I/O so that the kernel's probe routines don't
3940  * get confused by errant DMAs when rebooting.
3941  */
3942 static int
3943 bge_detach(device_t self, int flags __unused)
3944 {
3945 	struct bge_softc *sc = device_private(self);
3946 	struct ifnet *ifp = &sc->ethercom.ec_if;
3947 	int s;
3948 
3949 	s = splnet();
3950 	/* Stop the interface. Callouts are stopped in it. */
3951 	bge_stop(ifp, 1);
3952 	splx(s);
3953 
3954 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3955 
3956 	/* Delete all remaining media. */
3957 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3958 
3959 	ether_ifdetach(ifp);
3960 	if_detach(ifp);
3961 
3962 	bge_release_resources(sc);
3963 
3964 	return 0;
3965 }
3966 
3967 static void
3968 bge_release_resources(struct bge_softc *sc)
3969 {
3970 
3971 	/* Disestablish the interrupt handler */
3972 	if (sc->bge_intrhand != NULL) {
3973 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3974 		sc->bge_intrhand = NULL;
3975 	}
3976 
3977 	if (sc->bge_dmatag != NULL) {
3978 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3979 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3980 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3981 		    sizeof(struct bge_ring_data));
3982 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3983 	}
3984 
3985 	/* Unmap the device registers */
3986 	if (sc->bge_bsize != 0) {
3987 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3988 		sc->bge_bsize = 0;
3989 	}
3990 
3991 	/* Unmap the APE registers */
3992 	if (sc->bge_apesize != 0) {
3993 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3994 		    sc->bge_apesize);
3995 		sc->bge_apesize = 0;
3996 	}
3997 }
3998 
3999 static int
4000 bge_reset(struct bge_softc *sc)
4001 {
4002 	uint32_t cachesize, command;
4003 	uint32_t reset, mac_mode, mac_mode_mask;
4004 	pcireg_t devctl, reg;
4005 	int i, val;
4006 	void (*write_op)(struct bge_softc *, int, int);
4007 
4008 	/* Make mask for BGE_MAC_MODE register. */
4009 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4010 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4011 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4012 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4013 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4014 
4015 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4016 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4017 	    	if (sc->bge_flags & BGE_PCIE)
4018 			write_op = bge_writemem_direct;
4019 		else
4020 			write_op = bge_writemem_ind;
4021 	} else
4022 		write_op = bge_writereg_ind;
4023 
4024 	/* 57XX step 4 */
4025 	/* Acquire the NVM lock */
4026 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
4027 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4028 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4029 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4030 		for (i = 0; i < 8000; i++) {
4031 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4032 			    BGE_NVRAMSWARB_GNT1)
4033 				break;
4034 			DELAY(20);
4035 		}
4036 		if (i == 8000) {
4037 			printf("%s: NVRAM lock timedout!\n",
4038 			    device_xname(sc->bge_dev));
4039 		}
4040 	}
4041 
4042 	/* Take APE lock when performing reset. */
4043 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4044 
4045 	/* 57XX step 3 */
4046 	/* Save some important PCI state. */
4047 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4048 	/* 5718 reset step 3 */
4049 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4050 
4051 	/* 5718 reset step 5, 57XX step 5b-5d */
4052 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4053 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4054 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4055 
4056 	/* XXX ???: Disable fastboot on controllers that support it. */
4057 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4058 	    BGE_IS_5755_PLUS(sc))
4059 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4060 
4061 	/* 5718 reset step 2, 57XX step 6 */
4062 	/*
4063 	 * Write the magic number to SRAM at offset 0xB50.
4064 	 * When firmware finishes its initialization it will
4065 	 * write ~BGE_MAGIC_NUMBER to the same location.
4066 	 */
4067 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4068 
4069 	/* 5718 reset step 6, 57XX step 7 */
4070 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4071 	/*
4072 	 * XXX: from FreeBSD/Linux; no documentation
4073 	 */
4074 	if (sc->bge_flags & BGE_PCIE) {
4075 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4076 		    !BGE_IS_57765_PLUS(sc) &&
4077 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4078 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4079 			/* PCI Express 1.0 system */
4080 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4081 			    BGE_PHY_PCIE_SCRAM_MODE);
4082 		}
4083 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4084 			/*
4085 			 * Prevent PCI Express link training
4086 			 * during global reset.
4087 			 */
4088 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4089 			reset |= (1 << 29);
4090 		}
4091 	}
4092 
4093 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4094 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4095 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4096 		    i | BGE_VCPU_STATUS_DRV_RESET);
4097 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4098 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4099 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4100 	}
4101 
4102 	/*
4103 	 * Set GPHY Power Down Override to leave GPHY
4104 	 * powered up in D0 uninitialized.
4105 	 */
4106 	if (BGE_IS_5705_PLUS(sc) &&
4107 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4108 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4109 
4110 	/* Issue global reset */
4111 	write_op(sc, BGE_MISC_CFG, reset);
4112 
4113 	/* 5718 reset step 7, 57XX step 8 */
4114 	if (sc->bge_flags & BGE_PCIE)
4115 		delay(100*1000); /* too big */
4116 	else
4117 		delay(1000);
4118 
4119 	if (sc->bge_flags & BGE_PCIE) {
4120 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4121 			DELAY(500000);
4122 			/* XXX: Magic Numbers */
4123 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4124 			    BGE_PCI_UNKNOWN0);
4125 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4126 			    BGE_PCI_UNKNOWN0,
4127 			    reg | (1 << 15));
4128 		}
4129 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4130 		    sc->bge_pciecap + PCIE_DCSR);
4131 		/* Clear enable no snoop and disable relaxed ordering. */
4132 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4133 		    PCIE_DCSR_ENA_NO_SNOOP);
4134 
4135 		/* Set PCIE max payload size to 128 for older PCIe devices */
4136 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4137 			devctl &= ~(0x00e0);
4138 		/* Clear device status register. Write 1b to clear */
4139 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4140 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4141 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4142 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4143 		bge_set_max_readrq(sc);
4144 	}
4145 
4146 	/* From Linux: dummy read to flush PCI posted writes */
4147 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4148 
4149 	/*
4150 	 * Reset some of the PCI state that got zapped by reset
4151 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4152 	 * set, too.
4153 	 */
4154 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4155 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4156 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4157 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4158 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4159 	    (sc->bge_flags & BGE_PCIX) != 0)
4160 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4161 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4162 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4163 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4164 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4165 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4166 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4167 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4168 
4169 	/* Step 11: disable PCI-X Relaxed Ordering. */
4170 	if (sc->bge_flags & BGE_PCIX) {
4171 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4172 		    + PCIX_CMD);
4173 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4174 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4175 	}
4176 
4177 	/* 5718 reset step 10, 57XX step 12 */
4178 	/* Enable memory arbiter. */
4179 	if (BGE_IS_5714_FAMILY(sc)) {
4180 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4181 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4182 	} else
4183 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4184 
4185 	/* XXX 5721, 5751 and 5752 */
4186 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4187 		/* Step 19: */
4188 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4189 		/* Step 20: */
4190 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4191 	}
4192 
4193 	/* 5718 reset step 13, 57XX step 17 */
4194 	/* Poll until the firmware initialization is complete */
4195 	bge_poll_fw(sc);
4196 
4197 	/* 5718 reset step 12, 57XX step 15 and 16 */
4198 	/* Fix up byte swapping */
4199 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4200 
4201 	/* 57XX step 21 */
4202 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4203 		pcireg_t msidata;
4204 
4205 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4206 		    BGE_PCI_MSI_DATA);
4207 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4208 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4209 		    msidata);
4210 	}
4211 
4212 	/* 57XX step 18 */
4213 	/* Write mac mode. */
4214 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4215 	/* Restore mac_mode_mask's bits using mac_mode */
4216 	val = (val & ~mac_mode_mask) | mac_mode;
4217 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4218 	DELAY(40);
4219 
4220 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4221 
4222 	/*
4223 	 * The 5704 in TBI mode apparently needs some special
4224 	 * adjustment to insure the SERDES drive level is set
4225 	 * to 1.2V.
4226 	 */
4227 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4228 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4229 		uint32_t serdescfg;
4230 
4231 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4232 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4233 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4234 	}
4235 
4236 	if (sc->bge_flags & BGE_PCIE &&
4237 	    !BGE_IS_57765_PLUS(sc) &&
4238 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4239 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4240 		uint32_t v;
4241 
4242 		/* Enable PCI Express bug fix */
4243 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4244 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4245 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4246 	}
4247 
4248 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4249 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4250 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4251 
4252 	return 0;
4253 }
4254 
4255 /*
4256  * Frame reception handling. This is called if there's a frame
4257  * on the receive return list.
4258  *
4259  * Note: we have to be able to handle two possibilities here:
4260  * 1) the frame is from the jumbo receive ring
4261  * 2) the frame is from the standard receive ring
4262  */
4263 
4264 static void
4265 bge_rxeof(struct bge_softc *sc)
4266 {
4267 	struct ifnet *ifp;
4268 	uint16_t rx_prod, rx_cons;
4269 	int stdcnt = 0, jumbocnt = 0;
4270 	bus_dmamap_t dmamap;
4271 	bus_addr_t offset, toff;
4272 	bus_size_t tlen;
4273 	int tosync;
4274 
4275 	rx_cons = sc->bge_rx_saved_considx;
4276 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4277 
4278 	/* Nothing to do */
4279 	if (rx_cons == rx_prod)
4280 		return;
4281 
4282 	ifp = &sc->ethercom.ec_if;
4283 
4284 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4285 	    offsetof(struct bge_ring_data, bge_status_block),
4286 	    sizeof (struct bge_status_block),
4287 	    BUS_DMASYNC_POSTREAD);
4288 
4289 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4290 	tosync = rx_prod - rx_cons;
4291 
4292 	if (tosync != 0)
4293 		rnd_add_uint32(&sc->rnd_source, tosync);
4294 
4295 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4296 
4297 	if (tosync < 0) {
4298 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4299 		    sizeof (struct bge_rx_bd);
4300 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4301 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4302 		tosync = -tosync;
4303 	}
4304 
4305 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4306 	    offset, tosync * sizeof (struct bge_rx_bd),
4307 	    BUS_DMASYNC_POSTREAD);
4308 
4309 	while (rx_cons != rx_prod) {
4310 		struct bge_rx_bd	*cur_rx;
4311 		uint32_t		rxidx;
4312 		struct mbuf		*m = NULL;
4313 
4314 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4315 
4316 		rxidx = cur_rx->bge_idx;
4317 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4318 
4319 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4320 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4321 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4322 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4323 			jumbocnt++;
4324 			bus_dmamap_sync(sc->bge_dmatag,
4325 			    sc->bge_cdata.bge_rx_jumbo_map,
4326 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4327 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4328 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4329 				ifp->if_ierrors++;
4330 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4331 				continue;
4332 			}
4333 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4334 					     NULL)== ENOBUFS) {
4335 				ifp->if_ierrors++;
4336 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4337 				continue;
4338 			}
4339 		} else {
4340 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4341 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4342 
4343 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4344 			stdcnt++;
4345 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4346 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4347 			if (dmamap == NULL) {
4348 				ifp->if_ierrors++;
4349 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4350 				continue;
4351 			}
4352 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4353 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4354 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4355 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4356 				ifp->if_ierrors++;
4357 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4358 				continue;
4359 			}
4360 			if (bge_newbuf_std(sc, sc->bge_std,
4361 			    NULL, dmamap) == ENOBUFS) {
4362 				ifp->if_ierrors++;
4363 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4364 				continue;
4365 			}
4366 		}
4367 
4368 		ifp->if_ipackets++;
4369 #ifndef __NO_STRICT_ALIGNMENT
4370 		/*
4371 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4372 		 * the Rx buffer has the layer-2 header unaligned.
4373 		 * If our CPU requires alignment, re-align by copying.
4374 		 */
4375 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4376 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4377 				cur_rx->bge_len);
4378 			m->m_data += ETHER_ALIGN;
4379 		}
4380 #endif
4381 
4382 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4383 		m->m_pkthdr.rcvif = ifp;
4384 
4385 		/*
4386 		 * Handle BPF listeners. Let the BPF user see the packet.
4387 		 */
4388 		bpf_mtap(ifp, m);
4389 
4390 		bge_rxcsum(sc, cur_rx, m);
4391 
4392 		/*
4393 		 * If we received a packet with a vlan tag, pass it
4394 		 * to vlan_input() instead of ether_input().
4395 		 */
4396 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4397 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4398 		}
4399 
4400 		(*ifp->if_input)(ifp, m);
4401 	}
4402 
4403 	sc->bge_rx_saved_considx = rx_cons;
4404 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4405 	if (stdcnt)
4406 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4407 	if (jumbocnt)
4408 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4409 }
4410 
4411 static void
4412 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4413 {
4414 
4415 	if (BGE_IS_57765_PLUS(sc)) {
4416 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4417 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4418 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4419 			if ((cur_rx->bge_error_flag &
4420 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4421 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4422 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4423 				m->m_pkthdr.csum_data =
4424 				    cur_rx->bge_tcp_udp_csum;
4425 				m->m_pkthdr.csum_flags |=
4426 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4427 					M_CSUM_DATA);
4428 			}
4429 		}
4430 	} else {
4431 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4432 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4433 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4434 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4435 		/*
4436 		 * Rx transport checksum-offload may also
4437 		 * have bugs with packets which, when transmitted,
4438 		 * were `runts' requiring padding.
4439 		 */
4440 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4441 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4442 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4443 			m->m_pkthdr.csum_data =
4444 			    cur_rx->bge_tcp_udp_csum;
4445 			m->m_pkthdr.csum_flags |=
4446 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4447 				M_CSUM_DATA);
4448 		}
4449 	}
4450 }
4451 
4452 static void
4453 bge_txeof(struct bge_softc *sc)
4454 {
4455 	struct bge_tx_bd *cur_tx = NULL;
4456 	struct ifnet *ifp;
4457 	struct txdmamap_pool_entry *dma;
4458 	bus_addr_t offset, toff;
4459 	bus_size_t tlen;
4460 	int tosync;
4461 	struct mbuf *m;
4462 
4463 	ifp = &sc->ethercom.ec_if;
4464 
4465 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4466 	    offsetof(struct bge_ring_data, bge_status_block),
4467 	    sizeof (struct bge_status_block),
4468 	    BUS_DMASYNC_POSTREAD);
4469 
4470 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4471 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4472 	    sc->bge_tx_saved_considx;
4473 
4474 	if (tosync != 0)
4475 		rnd_add_uint32(&sc->rnd_source, tosync);
4476 
4477 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4478 
4479 	if (tosync < 0) {
4480 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4481 		    sizeof (struct bge_tx_bd);
4482 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4483 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4484 		tosync = -tosync;
4485 	}
4486 
4487 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4488 	    offset, tosync * sizeof (struct bge_tx_bd),
4489 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4490 
4491 	/*
4492 	 * Go through our tx ring and free mbufs for those
4493 	 * frames that have been sent.
4494 	 */
4495 	while (sc->bge_tx_saved_considx !=
4496 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4497 		uint32_t		idx = 0;
4498 
4499 		idx = sc->bge_tx_saved_considx;
4500 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4501 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4502 			ifp->if_opackets++;
4503 		m = sc->bge_cdata.bge_tx_chain[idx];
4504 		if (m != NULL) {
4505 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4506 			dma = sc->txdma[idx];
4507 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4508 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4509 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4510 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4511 			sc->txdma[idx] = NULL;
4512 
4513 			m_freem(m);
4514 		}
4515 		sc->bge_txcnt--;
4516 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4517 		ifp->if_timer = 0;
4518 	}
4519 
4520 	if (cur_tx != NULL)
4521 		ifp->if_flags &= ~IFF_OACTIVE;
4522 }
4523 
4524 static int
4525 bge_intr(void *xsc)
4526 {
4527 	struct bge_softc *sc;
4528 	struct ifnet *ifp;
4529 	uint32_t statusword;
4530 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4531 
4532 	sc = xsc;
4533 	ifp = &sc->ethercom.ec_if;
4534 
4535 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4536 	if (BGE_IS_5717_PLUS(sc))
4537 		intrmask = 0;
4538 
4539 	/* It is possible for the interrupt to arrive before
4540 	 * the status block is updated prior to the interrupt.
4541 	 * Reading the PCI State register will confirm whether the
4542 	 * interrupt is ours and will flush the status block.
4543 	 */
4544 
4545 	/* read status word from status block */
4546 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4547 	    offsetof(struct bge_ring_data, bge_status_block),
4548 	    sizeof (struct bge_status_block),
4549 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4550 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4551 
4552 	if ((statusword & BGE_STATFLAG_UPDATED) ||
4553 	    (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4554 		/* Ack interrupt and stop others from occuring. */
4555 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4556 
4557 		BGE_EVCNT_INCR(sc->bge_ev_intr);
4558 
4559 		/* clear status word */
4560 		sc->bge_rdata->bge_status_block.bge_status = 0;
4561 
4562 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4563 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4564 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4565 			bge_link_upd(sc);
4566 
4567 		if (ifp->if_flags & IFF_RUNNING) {
4568 			/* Check RX return ring producer/consumer */
4569 			bge_rxeof(sc);
4570 
4571 			/* Check TX ring producer/consumer */
4572 			bge_txeof(sc);
4573 		}
4574 
4575 		if (sc->bge_pending_rxintr_change) {
4576 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4577 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4578 			uint32_t junk;
4579 
4580 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4581 			DELAY(10);
4582 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4583 
4584 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4585 			DELAY(10);
4586 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4587 
4588 			sc->bge_pending_rxintr_change = 0;
4589 		}
4590 		bge_handle_events(sc);
4591 
4592 		/* Re-enable interrupts. */
4593 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4594 
4595 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4596 			bge_start(ifp);
4597 
4598 		return 1;
4599 	} else
4600 		return 0;
4601 }
4602 
4603 static void
4604 bge_asf_driver_up(struct bge_softc *sc)
4605 {
4606 	if (sc->bge_asf_mode & ASF_STACKUP) {
4607 		/* Send ASF heartbeat aprox. every 2s */
4608 		if (sc->bge_asf_count)
4609 			sc->bge_asf_count --;
4610 		else {
4611 			sc->bge_asf_count = 2;
4612 
4613 			bge_wait_for_event_ack(sc);
4614 
4615 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4616 			    BGE_FW_CMD_DRV_ALIVE);
4617 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4618 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4619 			    BGE_FW_HB_TIMEOUT_SEC);
4620 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4621 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4622 			    BGE_RX_CPU_DRV_EVENT);
4623 		}
4624 	}
4625 }
4626 
4627 static void
4628 bge_tick(void *xsc)
4629 {
4630 	struct bge_softc *sc = xsc;
4631 	struct mii_data *mii = &sc->bge_mii;
4632 	int s;
4633 
4634 	s = splnet();
4635 
4636 	if (BGE_IS_5705_PLUS(sc))
4637 		bge_stats_update_regs(sc);
4638 	else
4639 		bge_stats_update(sc);
4640 
4641 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4642 		/*
4643 		 * Since in TBI mode auto-polling can't be used we should poll
4644 		 * link status manually. Here we register pending link event
4645 		 * and trigger interrupt.
4646 		 */
4647 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4648 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4649 	} else {
4650 		/*
4651 		 * Do not touch PHY if we have link up. This could break
4652 		 * IPMI/ASF mode or produce extra input errors.
4653 		 * (extra input errors was reported for bcm5701 & bcm5704).
4654 		 */
4655 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4656 			mii_tick(mii);
4657 	}
4658 
4659 	bge_asf_driver_up(sc);
4660 
4661 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4662 
4663 	splx(s);
4664 }
4665 
4666 static void
4667 bge_stats_update_regs(struct bge_softc *sc)
4668 {
4669 	struct ifnet *ifp = &sc->ethercom.ec_if;
4670 
4671 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4672 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4673 
4674 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4675 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4676 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4677 }
4678 
4679 static void
4680 bge_stats_update(struct bge_softc *sc)
4681 {
4682 	struct ifnet *ifp = &sc->ethercom.ec_if;
4683 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4684 
4685 #define READ_STAT(sc, stats, stat) \
4686 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4687 
4688 	ifp->if_collisions +=
4689 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4690 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4691 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4692 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4693 	  ifp->if_collisions;
4694 
4695 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4696 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4697 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4698 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4699 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4700 		      READ_STAT(sc, stats,
4701 		      		xoffPauseFramesReceived.bge_addr_lo));
4702 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4703 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4704 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4705 		      READ_STAT(sc, stats,
4706 		      		macControlFramesReceived.bge_addr_lo));
4707 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4708 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4709 
4710 #undef READ_STAT
4711 
4712 #ifdef notdef
4713 	ifp->if_collisions +=
4714 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4715 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4716 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4717 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4718 	   ifp->if_collisions;
4719 #endif
4720 }
4721 
4722 /*
4723  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4724  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4725  * but when such padded frames employ the  bge IP/TCP checksum offload,
4726  * the hardware checksum assist gives incorrect results (possibly
4727  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4728  * If we pad such runts with zeros, the onboard checksum comes out correct.
4729  */
4730 static inline int
4731 bge_cksum_pad(struct mbuf *pkt)
4732 {
4733 	struct mbuf *last = NULL;
4734 	int padlen;
4735 
4736 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4737 
4738 	/* if there's only the packet-header and we can pad there, use it. */
4739 	if (pkt->m_pkthdr.len == pkt->m_len &&
4740 	    M_TRAILINGSPACE(pkt) >= padlen) {
4741 		last = pkt;
4742 	} else {
4743 		/*
4744 		 * Walk packet chain to find last mbuf. We will either
4745 		 * pad there, or append a new mbuf and pad it
4746 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4747 		 */
4748 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4749 	      	       continue; /* do nothing */
4750 		}
4751 
4752 		/* `last' now points to last in chain. */
4753 		if (M_TRAILINGSPACE(last) < padlen) {
4754 			/* Allocate new empty mbuf, pad it. Compact later. */
4755 			struct mbuf *n;
4756 			MGET(n, M_DONTWAIT, MT_DATA);
4757 			if (n == NULL)
4758 				return ENOBUFS;
4759 			n->m_len = 0;
4760 			last->m_next = n;
4761 			last = n;
4762 		}
4763 	}
4764 
4765 	KDASSERT(!M_READONLY(last));
4766 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4767 
4768 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4769 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4770 	last->m_len += padlen;
4771 	pkt->m_pkthdr.len += padlen;
4772 	return 0;
4773 }
4774 
4775 /*
4776  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4777  */
4778 static inline int
4779 bge_compact_dma_runt(struct mbuf *pkt)
4780 {
4781 	struct mbuf	*m, *prev;
4782 	int 		totlen, prevlen;
4783 
4784 	prev = NULL;
4785 	totlen = 0;
4786 	prevlen = -1;
4787 
4788 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4789 		int mlen = m->m_len;
4790 		int shortfall = 8 - mlen ;
4791 
4792 		totlen += mlen;
4793 		if (mlen == 0)
4794 			continue;
4795 		if (mlen >= 8)
4796 			continue;
4797 
4798 		/* If we get here, mbuf data is too small for DMA engine.
4799 		 * Try to fix by shuffling data to prev or next in chain.
4800 		 * If that fails, do a compacting deep-copy of the whole chain.
4801 		 */
4802 
4803 		/* Internal frag. If fits in prev, copy it there. */
4804 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4805 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4806 			prev->m_len += mlen;
4807 			m->m_len = 0;
4808 			/* XXX stitch chain */
4809 			prev->m_next = m_free(m);
4810 			m = prev;
4811 			continue;
4812 		}
4813 		else if (m->m_next != NULL &&
4814 			     M_TRAILINGSPACE(m) >= shortfall &&
4815 			     m->m_next->m_len >= (8 + shortfall)) {
4816 		    /* m is writable and have enough data in next, pull up. */
4817 
4818 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
4819 			    shortfall);
4820 			m->m_len += shortfall;
4821 			m->m_next->m_len -= shortfall;
4822 			m->m_next->m_data += shortfall;
4823 		}
4824 		else if (m->m_next == NULL || 1) {
4825 		  	/* Got a runt at the very end of the packet.
4826 			 * borrow data from the tail of the preceding mbuf and
4827 			 * update its length in-place. (The original data is still
4828 			 * valid, so we can do this even if prev is not writable.)
4829 			 */
4830 
4831 			/* if we'd make prev a runt, just move all of its data. */
4832 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4833 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4834 
4835 			if ((prev->m_len - shortfall) < 8)
4836 				shortfall = prev->m_len;
4837 
4838 #ifdef notyet	/* just do the safe slow thing for now */
4839 			if (!M_READONLY(m)) {
4840 				if (M_LEADINGSPACE(m) < shorfall) {
4841 					void *m_dat;
4842 					m_dat = (m->m_flags & M_PKTHDR) ?
4843 					  m->m_pktdat : m->dat;
4844 					memmove(m_dat, mtod(m, void*), m->m_len);
4845 					m->m_data = m_dat;
4846 				    }
4847 			} else
4848 #endif	/* just do the safe slow thing */
4849 			{
4850 				struct mbuf * n = NULL;
4851 				int newprevlen = prev->m_len - shortfall;
4852 
4853 				MGET(n, M_NOWAIT, MT_DATA);
4854 				if (n == NULL)
4855 				   return ENOBUFS;
4856 				KASSERT(m->m_len + shortfall < MLEN
4857 					/*,
4858 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4859 
4860 				/* first copy the data we're stealing from prev */
4861 				memcpy(n->m_data, prev->m_data + newprevlen,
4862 				    shortfall);
4863 
4864 				/* update prev->m_len accordingly */
4865 				prev->m_len -= shortfall;
4866 
4867 				/* copy data from runt m */
4868 				memcpy(n->m_data + shortfall, m->m_data,
4869 				    m->m_len);
4870 
4871 				/* n holds what we stole from prev, plus m */
4872 				n->m_len = shortfall + m->m_len;
4873 
4874 				/* stitch n into chain and free m */
4875 				n->m_next = m->m_next;
4876 				prev->m_next = n;
4877 				/* KASSERT(m->m_next == NULL); */
4878 				m->m_next = NULL;
4879 				m_free(m);
4880 				m = n;	/* for continuing loop */
4881 			}
4882 		}
4883 		prevlen = m->m_len;
4884 	}
4885 	return 0;
4886 }
4887 
4888 /*
4889  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4890  * pointers to descriptors.
4891  */
4892 static int
4893 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4894 {
4895 	struct bge_tx_bd	*f = NULL;
4896 	uint32_t		frag, cur;
4897 	uint16_t		csum_flags = 0;
4898 	uint16_t		txbd_tso_flags = 0;
4899 	struct txdmamap_pool_entry *dma;
4900 	bus_dmamap_t dmamap;
4901 	int			i = 0;
4902 	struct m_tag		*mtag;
4903 	int			use_tso, maxsegsize, error;
4904 
4905 	cur = frag = *txidx;
4906 
4907 	if (m_head->m_pkthdr.csum_flags) {
4908 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4909 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4910 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4911 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4912 	}
4913 
4914 	/*
4915 	 * If we were asked to do an outboard checksum, and the NIC
4916 	 * has the bug where it sometimes adds in the Ethernet padding,
4917 	 * explicitly pad with zeros so the cksum will be correct either way.
4918 	 * (For now, do this for all chip versions, until newer
4919 	 * are confirmed to not require the workaround.)
4920 	 */
4921 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4922 #ifdef notyet
4923 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4924 #endif
4925 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4926 		goto check_dma_bug;
4927 
4928 	if (bge_cksum_pad(m_head) != 0)
4929 	    return ENOBUFS;
4930 
4931 check_dma_bug:
4932 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4933 		goto doit;
4934 
4935 	/*
4936 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4937 	 * less than eight bytes.  If we encounter a teeny mbuf
4938 	 * at the end of a chain, we can pad.  Otherwise, copy.
4939 	 */
4940 	if (bge_compact_dma_runt(m_head) != 0)
4941 		return ENOBUFS;
4942 
4943 doit:
4944 	dma = SLIST_FIRST(&sc->txdma_list);
4945 	if (dma == NULL)
4946 		return ENOBUFS;
4947 	dmamap = dma->dmamap;
4948 
4949 	/*
4950 	 * Set up any necessary TSO state before we start packing...
4951 	 */
4952 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4953 	if (!use_tso) {
4954 		maxsegsize = 0;
4955 	} else {	/* TSO setup */
4956 		unsigned  mss;
4957 		struct ether_header *eh;
4958 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4959 		struct mbuf * m0 = m_head;
4960 		struct ip *ip;
4961 		struct tcphdr *th;
4962 		int iphl, hlen;
4963 
4964 		/*
4965 		 * XXX It would be nice if the mbuf pkthdr had offset
4966 		 * fields for the protocol headers.
4967 		 */
4968 
4969 		eh = mtod(m0, struct ether_header *);
4970 		switch (htons(eh->ether_type)) {
4971 		case ETHERTYPE_IP:
4972 			offset = ETHER_HDR_LEN;
4973 			break;
4974 
4975 		case ETHERTYPE_VLAN:
4976 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4977 			break;
4978 
4979 		default:
4980 			/*
4981 			 * Don't support this protocol or encapsulation.
4982 			 */
4983 			return ENOBUFS;
4984 		}
4985 
4986 		/*
4987 		 * TCP/IP headers are in the first mbuf; we can do
4988 		 * this the easy way.
4989 		 */
4990 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4991 		hlen = iphl + offset;
4992 		if (__predict_false(m0->m_len <
4993 				    (hlen + sizeof(struct tcphdr)))) {
4994 
4995 			aprint_debug_dev(sc->bge_dev,
4996 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4997 			    "not handled yet\n",
4998 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4999 #ifdef NOTYET
5000 			/*
5001 			 * XXX jonathan@NetBSD.org: untested.
5002 			 * how to force  this branch to be taken?
5003 			 */
5004 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
5005 
5006 			m_copydata(m0, offset, sizeof(ip), &ip);
5007 			m_copydata(m0, hlen, sizeof(th), &th);
5008 
5009 			ip.ip_len = 0;
5010 
5011 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5012 			    sizeof(ip.ip_len), &ip.ip_len);
5013 
5014 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5015 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5016 
5017 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5018 			    sizeof(th.th_sum), &th.th_sum);
5019 
5020 			hlen += th.th_off << 2;
5021 			iptcp_opt_words	= hlen;
5022 #else
5023 			/*
5024 			 * if_wm "hard" case not yet supported, can we not
5025 			 * mandate it out of existence?
5026 			 */
5027 			(void) ip; (void)th; (void) ip_tcp_hlen;
5028 
5029 			return ENOBUFS;
5030 #endif
5031 		} else {
5032 			ip = (struct ip *) (mtod(m0, char *) + offset);
5033 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5034 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5035 
5036 			/* Total IP/TCP options, in 32-bit words */
5037 			iptcp_opt_words = (ip_tcp_hlen
5038 					   - sizeof(struct tcphdr)
5039 					   - sizeof(struct ip)) >> 2;
5040 		}
5041 		if (BGE_IS_575X_PLUS(sc)) {
5042 			th->th_sum = 0;
5043 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5044 		} else {
5045 			/*
5046 			 * XXX jonathan@NetBSD.org: 5705 untested.
5047 			 * Requires TSO firmware patch for 5701/5703/5704.
5048 			 */
5049 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5050 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5051 		}
5052 
5053 		mss = m_head->m_pkthdr.segsz;
5054 		txbd_tso_flags |=
5055 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5056 		    BGE_TXBDFLAG_CPU_POST_DMA;
5057 
5058 		/*
5059 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5060 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5061 		 * the NIC copies 40 bytes of IP/TCP header from the
5062 		 * supplied header into the IP/TCP header portion of
5063 		 * each post-TSO-segment. If the supplied packet has IP or
5064 		 * TCP options, we need to tell the NIC to copy those extra
5065 		 * bytes into each  post-TSO header, in addition to the normal
5066 		 * 40-byte IP/TCP header (and to leave space accordingly).
5067 		 * Unfortunately, the driver encoding of option length
5068 		 * varies across different ASIC families.
5069 		 */
5070 		tcp_seg_flags = 0;
5071 		if (iptcp_opt_words) {
5072 			if (BGE_IS_5705_PLUS(sc)) {
5073 				tcp_seg_flags =
5074 					iptcp_opt_words << 11;
5075 			} else {
5076 				txbd_tso_flags |=
5077 					iptcp_opt_words << 12;
5078 			}
5079 		}
5080 		maxsegsize = mss | tcp_seg_flags;
5081 		ip->ip_len = htons(mss + ip_tcp_hlen);
5082 
5083 	}	/* TSO setup */
5084 
5085 	/*
5086 	 * Start packing the mbufs in this chain into
5087 	 * the fragment pointers. Stop when we run out
5088 	 * of fragments or hit the end of the mbuf chain.
5089 	 */
5090 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5091 	    BUS_DMA_NOWAIT);
5092 	if (error)
5093 		return ENOBUFS;
5094 	/*
5095 	 * Sanity check: avoid coming within 16 descriptors
5096 	 * of the end of the ring.
5097 	 */
5098 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5099 		BGE_TSO_PRINTF(("%s: "
5100 		    " dmamap_load_mbuf too close to ring wrap\n",
5101 		    device_xname(sc->bge_dev)));
5102 		goto fail_unload;
5103 	}
5104 
5105 	mtag = sc->ethercom.ec_nvlans ?
5106 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5107 
5108 
5109 	/* Iterate over dmap-map fragments. */
5110 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5111 		f = &sc->bge_rdata->bge_tx_ring[frag];
5112 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5113 			break;
5114 
5115 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5116 		f->bge_len = dmamap->dm_segs[i].ds_len;
5117 
5118 		/*
5119 		 * For 5751 and follow-ons, for TSO we must turn
5120 		 * off checksum-assist flag in the tx-descr, and
5121 		 * supply the ASIC-revision-specific encoding
5122 		 * of TSO flags and segsize.
5123 		 */
5124 		if (use_tso) {
5125 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5126 				f->bge_rsvd = maxsegsize;
5127 				f->bge_flags = csum_flags | txbd_tso_flags;
5128 			} else {
5129 				f->bge_rsvd = 0;
5130 				f->bge_flags =
5131 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5132 			}
5133 		} else {
5134 			f->bge_rsvd = 0;
5135 			f->bge_flags = csum_flags;
5136 		}
5137 
5138 		if (mtag != NULL) {
5139 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5140 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5141 		} else {
5142 			f->bge_vlan_tag = 0;
5143 		}
5144 		cur = frag;
5145 		BGE_INC(frag, BGE_TX_RING_CNT);
5146 	}
5147 
5148 	if (i < dmamap->dm_nsegs) {
5149 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5150 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5151 		goto fail_unload;
5152 	}
5153 
5154 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5155 	    BUS_DMASYNC_PREWRITE);
5156 
5157 	if (frag == sc->bge_tx_saved_considx) {
5158 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5159 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5160 
5161 		goto fail_unload;
5162 	}
5163 
5164 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5165 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5166 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5167 	sc->txdma[cur] = dma;
5168 	sc->bge_txcnt += dmamap->dm_nsegs;
5169 
5170 	*txidx = frag;
5171 
5172 	return 0;
5173 
5174 fail_unload:
5175 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
5176 
5177 	return ENOBUFS;
5178 }
5179 
5180 /*
5181  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5182  * to the mbuf data regions directly in the transmit descriptors.
5183  */
5184 static void
5185 bge_start(struct ifnet *ifp)
5186 {
5187 	struct bge_softc *sc;
5188 	struct mbuf *m_head = NULL;
5189 	uint32_t prodidx;
5190 	int pkts = 0;
5191 
5192 	sc = ifp->if_softc;
5193 
5194 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5195 		return;
5196 
5197 	prodidx = sc->bge_tx_prodidx;
5198 
5199 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5200 		IFQ_POLL(&ifp->if_snd, m_head);
5201 		if (m_head == NULL)
5202 			break;
5203 
5204 #if 0
5205 		/*
5206 		 * XXX
5207 		 * safety overkill.  If this is a fragmented packet chain
5208 		 * with delayed TCP/UDP checksums, then only encapsulate
5209 		 * it if we have enough descriptors to handle the entire
5210 		 * chain at once.
5211 		 * (paranoia -- may not actually be needed)
5212 		 */
5213 		if (m_head->m_flags & M_FIRSTFRAG &&
5214 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5215 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5216 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5217 				ifp->if_flags |= IFF_OACTIVE;
5218 				break;
5219 			}
5220 		}
5221 #endif
5222 
5223 		/*
5224 		 * Pack the data into the transmit ring. If we
5225 		 * don't have room, set the OACTIVE flag and wait
5226 		 * for the NIC to drain the ring.
5227 		 */
5228 		if (bge_encap(sc, m_head, &prodidx)) {
5229 			ifp->if_flags |= IFF_OACTIVE;
5230 			break;
5231 		}
5232 
5233 		/* now we are committed to transmit the packet */
5234 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5235 		pkts++;
5236 
5237 		/*
5238 		 * If there's a BPF listener, bounce a copy of this frame
5239 		 * to him.
5240 		 */
5241 		bpf_mtap(ifp, m_head);
5242 	}
5243 	if (pkts == 0)
5244 		return;
5245 
5246 	/* Transmit */
5247 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5248 	/* 5700 b2 errata */
5249 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5250 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5251 
5252 	sc->bge_tx_prodidx = prodidx;
5253 
5254 	/*
5255 	 * Set a timeout in case the chip goes out to lunch.
5256 	 */
5257 	ifp->if_timer = 5;
5258 }
5259 
5260 static int
5261 bge_init(struct ifnet *ifp)
5262 {
5263 	struct bge_softc *sc = ifp->if_softc;
5264 	const uint16_t *m;
5265 	uint32_t mode, reg;
5266 	int s, error = 0;
5267 
5268 	s = splnet();
5269 
5270 	ifp = &sc->ethercom.ec_if;
5271 
5272 	/* Cancel pending I/O and flush buffers. */
5273 	bge_stop(ifp, 0);
5274 
5275 	bge_stop_fw(sc);
5276 	bge_sig_pre_reset(sc, BGE_RESET_START);
5277 	bge_reset(sc);
5278 	bge_sig_legacy(sc, BGE_RESET_START);
5279 	bge_sig_post_reset(sc, BGE_RESET_START);
5280 
5281 	bge_chipinit(sc);
5282 
5283 	/*
5284 	 * Init the various state machines, ring
5285 	 * control blocks and firmware.
5286 	 */
5287 	error = bge_blockinit(sc);
5288 	if (error != 0) {
5289 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5290 		    error);
5291 		splx(s);
5292 		return error;
5293 	}
5294 
5295 	ifp = &sc->ethercom.ec_if;
5296 
5297 	/* 5718 step 25, 57XX step 54 */
5298 	/* Specify MTU. */
5299 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5300 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5301 
5302 	/* 5718 step 23 */
5303 	/* Load our MAC address. */
5304 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5305 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5306 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5307 
5308 	/* Enable or disable promiscuous mode as needed. */
5309 	if (ifp->if_flags & IFF_PROMISC)
5310 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5311 	else
5312 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5313 
5314 	/* Program multicast filter. */
5315 	bge_setmulti(sc);
5316 
5317 	/* Init RX ring. */
5318 	bge_init_rx_ring_std(sc);
5319 
5320 	/*
5321 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5322 	 * memory to insure that the chip has in fact read the first
5323 	 * entry of the ring.
5324 	 */
5325 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5326 		uint32_t		v, i;
5327 		for (i = 0; i < 10; i++) {
5328 			DELAY(20);
5329 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5330 			if (v == (MCLBYTES - ETHER_ALIGN))
5331 				break;
5332 		}
5333 		if (i == 10)
5334 			aprint_error_dev(sc->bge_dev,
5335 			    "5705 A0 chip failed to load RX ring\n");
5336 	}
5337 
5338 	/* Init jumbo RX ring. */
5339 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5340 		bge_init_rx_ring_jumbo(sc);
5341 
5342 	/* Init our RX return ring index */
5343 	sc->bge_rx_saved_considx = 0;
5344 
5345 	/* Init TX ring. */
5346 	bge_init_tx_ring(sc);
5347 
5348 	/* 5718 step 63, 57XX step 94 */
5349 	/* Enable TX MAC state machine lockup fix. */
5350 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5351 	if (BGE_IS_5755_PLUS(sc) ||
5352 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5353 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5354 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5355 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5356 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5357 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5358 	}
5359 
5360 	/* Turn on transmitter */
5361 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5362 	/* 5718 step 64 */
5363 	DELAY(100);
5364 
5365 	/* 5718 step 65, 57XX step 95 */
5366 	/* Turn on receiver */
5367 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5368 	if (BGE_IS_5755_PLUS(sc))
5369 		mode |= BGE_RXMODE_IPV6_ENABLE;
5370 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5371 	/* 5718 step 66 */
5372 	DELAY(10);
5373 
5374 	/* 5718 step 12, 57XX step 37 */
5375 	/*
5376 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5377 	 * is 1, but tg3 set 1 only on 57765 series.
5378 	 */
5379 	if (BGE_IS_57765_PLUS(sc))
5380 		reg = 1;
5381 	else
5382 		reg = 2;
5383 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5384 
5385 	/* Tell firmware we're alive. */
5386 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5387 
5388 	/* Enable host interrupts. */
5389 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5390 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5391 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5392 
5393 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5394 		goto out;
5395 
5396 	ifp->if_flags |= IFF_RUNNING;
5397 	ifp->if_flags &= ~IFF_OACTIVE;
5398 
5399 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5400 
5401 out:
5402 	sc->bge_if_flags = ifp->if_flags;
5403 	splx(s);
5404 
5405 	return error;
5406 }
5407 
5408 /*
5409  * Set media options.
5410  */
5411 static int
5412 bge_ifmedia_upd(struct ifnet *ifp)
5413 {
5414 	struct bge_softc *sc = ifp->if_softc;
5415 	struct mii_data *mii = &sc->bge_mii;
5416 	struct ifmedia *ifm = &sc->bge_ifmedia;
5417 	int rc;
5418 
5419 	/* If this is a 1000baseX NIC, enable the TBI port. */
5420 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5421 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5422 			return EINVAL;
5423 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5424 		case IFM_AUTO:
5425 			/*
5426 			 * The BCM5704 ASIC appears to have a special
5427 			 * mechanism for programming the autoneg
5428 			 * advertisement registers in TBI mode.
5429 			 */
5430 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5431 				uint32_t sgdig;
5432 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5433 				if (sgdig & BGE_SGDIGSTS_DONE) {
5434 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5435 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5436 					sgdig |= BGE_SGDIGCFG_AUTO |
5437 					    BGE_SGDIGCFG_PAUSE_CAP |
5438 					    BGE_SGDIGCFG_ASYM_PAUSE;
5439 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5440 					    sgdig | BGE_SGDIGCFG_SEND);
5441 					DELAY(5);
5442 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5443 					    sgdig);
5444 				}
5445 			}
5446 			break;
5447 		case IFM_1000_SX:
5448 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5449 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5450 				    BGE_MACMODE_HALF_DUPLEX);
5451 			} else {
5452 				BGE_SETBIT(sc, BGE_MAC_MODE,
5453 				    BGE_MACMODE_HALF_DUPLEX);
5454 			}
5455 			DELAY(40);
5456 			break;
5457 		default:
5458 			return EINVAL;
5459 		}
5460 		/* XXX 802.3x flow control for 1000BASE-SX */
5461 		return 0;
5462 	}
5463 
5464 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5465 	if ((rc = mii_mediachg(mii)) == ENXIO)
5466 		return 0;
5467 
5468 	/*
5469 	 * Force an interrupt so that we will call bge_link_upd
5470 	 * if needed and clear any pending link state attention.
5471 	 * Without this we are not getting any further interrupts
5472 	 * for link state changes and thus will not UP the link and
5473 	 * not be able to send in bge_start. The only way to get
5474 	 * things working was to receive a packet and get a RX intr.
5475 	 */
5476 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5477 	    sc->bge_flags & BGE_IS_5788)
5478 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5479 	else
5480 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5481 
5482 	return rc;
5483 }
5484 
5485 /*
5486  * Report current media status.
5487  */
5488 static void
5489 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5490 {
5491 	struct bge_softc *sc = ifp->if_softc;
5492 	struct mii_data *mii = &sc->bge_mii;
5493 
5494 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5495 		ifmr->ifm_status = IFM_AVALID;
5496 		ifmr->ifm_active = IFM_ETHER;
5497 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5498 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5499 			ifmr->ifm_status |= IFM_ACTIVE;
5500 		ifmr->ifm_active |= IFM_1000_SX;
5501 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5502 			ifmr->ifm_active |= IFM_HDX;
5503 		else
5504 			ifmr->ifm_active |= IFM_FDX;
5505 		return;
5506 	}
5507 
5508 	mii_pollstat(mii);
5509 	ifmr->ifm_status = mii->mii_media_status;
5510 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5511 	    sc->bge_flowflags;
5512 }
5513 
5514 static int
5515 bge_ifflags_cb(struct ethercom *ec)
5516 {
5517 	struct ifnet *ifp = &ec->ec_if;
5518 	struct bge_softc *sc = ifp->if_softc;
5519 	int change = ifp->if_flags ^ sc->bge_if_flags;
5520 
5521 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5522 		return ENETRESET;
5523 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5524 		return 0;
5525 
5526 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5527 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5528 	else
5529 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5530 
5531 	bge_setmulti(sc);
5532 
5533 	sc->bge_if_flags = ifp->if_flags;
5534 	return 0;
5535 }
5536 
5537 static int
5538 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5539 {
5540 	struct bge_softc *sc = ifp->if_softc;
5541 	struct ifreq *ifr = (struct ifreq *) data;
5542 	int s, error = 0;
5543 	struct mii_data *mii;
5544 
5545 	s = splnet();
5546 
5547 	switch (command) {
5548 	case SIOCSIFMEDIA:
5549 		/* XXX Flow control is not supported for 1000BASE-SX */
5550 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5551 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5552 			sc->bge_flowflags = 0;
5553 		}
5554 
5555 		/* Flow control requires full-duplex mode. */
5556 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5557 		    (ifr->ifr_media & IFM_FDX) == 0) {
5558 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5559 		}
5560 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5561 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5562 				/* We can do both TXPAUSE and RXPAUSE. */
5563 				ifr->ifr_media |=
5564 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5565 			}
5566 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5567 		}
5568 		/* FALLTHROUGH */
5569 	case SIOCGIFMEDIA:
5570 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5571 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5572 			    command);
5573 		} else {
5574 			mii = &sc->bge_mii;
5575 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5576 			    command);
5577 		}
5578 		break;
5579 	default:
5580 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5581 			break;
5582 
5583 		error = 0;
5584 
5585 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5586 			;
5587 		else if (ifp->if_flags & IFF_RUNNING)
5588 			bge_setmulti(sc);
5589 		break;
5590 	}
5591 
5592 	splx(s);
5593 
5594 	return error;
5595 }
5596 
5597 static void
5598 bge_watchdog(struct ifnet *ifp)
5599 {
5600 	struct bge_softc *sc;
5601 
5602 	sc = ifp->if_softc;
5603 
5604 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5605 
5606 	ifp->if_flags &= ~IFF_RUNNING;
5607 	bge_init(ifp);
5608 
5609 	ifp->if_oerrors++;
5610 }
5611 
5612 static void
5613 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5614 {
5615 	int i;
5616 
5617 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5618 
5619 	for (i = 0; i < 1000; i++) {
5620 		delay(100);
5621 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5622 			return;
5623 	}
5624 
5625 	/*
5626 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5627 	 * on some environment (and once after boot?)
5628 	 */
5629 	if (reg != BGE_SRS_MODE)
5630 		aprint_error_dev(sc->bge_dev,
5631 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5632 		    (u_long)reg, bit);
5633 }
5634 
5635 /*
5636  * Stop the adapter and free any mbufs allocated to the
5637  * RX and TX lists.
5638  */
5639 static void
5640 bge_stop(struct ifnet *ifp, int disable)
5641 {
5642 	struct bge_softc *sc = ifp->if_softc;
5643 
5644 	callout_stop(&sc->bge_timeout);
5645 
5646 	/* Disable host interrupts. */
5647 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5648 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5649 
5650 	/*
5651 	 * Tell firmware we're shutting down.
5652 	 */
5653 	bge_stop_fw(sc);
5654 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5655 
5656 	/*
5657 	 * Disable all of the receiver blocks.
5658 	 */
5659 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5660 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5661 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5662 	if (BGE_IS_5700_FAMILY(sc))
5663 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5664 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5665 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5666 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5667 
5668 	/*
5669 	 * Disable all of the transmit blocks.
5670 	 */
5671 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5672 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5673 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5674 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5675 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5676 	if (BGE_IS_5700_FAMILY(sc))
5677 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5678 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5679 
5680 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5681 	delay(40);
5682 
5683 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5684 
5685 	/*
5686 	 * Shut down all of the memory managers and related
5687 	 * state machines.
5688 	 */
5689 	/* 5718 step 5a,5b */
5690 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5691 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5692 	if (BGE_IS_5700_FAMILY(sc))
5693 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5694 
5695 	/* 5718 step 5c,5d */
5696 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5697 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5698 
5699 	if (BGE_IS_5700_FAMILY(sc)) {
5700 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5701 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5702 	}
5703 
5704 	bge_reset(sc);
5705 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5706 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5707 
5708 	/*
5709 	 * Keep the ASF firmware running if up.
5710 	 */
5711 	if (sc->bge_asf_mode & ASF_STACKUP)
5712 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5713 	else
5714 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5715 
5716 	/* Free the RX lists. */
5717 	bge_free_rx_ring_std(sc);
5718 
5719 	/* Free jumbo RX list. */
5720 	if (BGE_IS_JUMBO_CAPABLE(sc))
5721 		bge_free_rx_ring_jumbo(sc);
5722 
5723 	/* Free TX buffers. */
5724 	bge_free_tx_ring(sc);
5725 
5726 	/*
5727 	 * Isolate/power down the PHY.
5728 	 */
5729 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5730 		mii_down(&sc->bge_mii);
5731 
5732 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5733 
5734 	/* Clear MAC's link state (PHY may still have link UP). */
5735 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5736 
5737 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5738 }
5739 
5740 static void
5741 bge_link_upd(struct bge_softc *sc)
5742 {
5743 	struct ifnet *ifp = &sc->ethercom.ec_if;
5744 	struct mii_data *mii = &sc->bge_mii;
5745 	uint32_t status;
5746 	int link;
5747 
5748 	/* Clear 'pending link event' flag */
5749 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5750 
5751 	/*
5752 	 * Process link state changes.
5753 	 * Grrr. The link status word in the status block does
5754 	 * not work correctly on the BCM5700 rev AX and BX chips,
5755 	 * according to all available information. Hence, we have
5756 	 * to enable MII interrupts in order to properly obtain
5757 	 * async link changes. Unfortunately, this also means that
5758 	 * we have to read the MAC status register to detect link
5759 	 * changes, thereby adding an additional register access to
5760 	 * the interrupt handler.
5761 	 */
5762 
5763 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5764 		status = CSR_READ_4(sc, BGE_MAC_STS);
5765 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5766 			mii_pollstat(mii);
5767 
5768 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5769 			    mii->mii_media_status & IFM_ACTIVE &&
5770 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5771 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5772 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5773 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5774 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5775 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5776 
5777 			/* Clear the interrupt */
5778 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5779 			    BGE_EVTENB_MI_INTERRUPT);
5780 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5781 			    BRGPHY_MII_ISR);
5782 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5783 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
5784 		}
5785 		return;
5786 	}
5787 
5788 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5789 		status = CSR_READ_4(sc, BGE_MAC_STS);
5790 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5791 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5792 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5793 				if (BGE_ASICREV(sc->bge_chipid)
5794 				    == BGE_ASICREV_BCM5704) {
5795 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5796 					    BGE_MACMODE_TBI_SEND_CFGS);
5797 					DELAY(40);
5798 				}
5799 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5800 				if_link_state_change(ifp, LINK_STATE_UP);
5801 			}
5802 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5803 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5804 			if_link_state_change(ifp, LINK_STATE_DOWN);
5805 		}
5806 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5807 		/*
5808 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5809 		 * bit in status word always set. Workaround this bug by
5810 		 * reading PHY link status directly.
5811 		 */
5812 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5813 		    BGE_STS_LINK : 0;
5814 
5815 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5816 			mii_pollstat(mii);
5817 
5818 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5819 			    mii->mii_media_status & IFM_ACTIVE &&
5820 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5821 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5822 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5823 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5824 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5825 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5826 		}
5827 	} else {
5828 		/*
5829 		 * For controllers that call mii_tick, we have to poll
5830 		 * link status.
5831 		 */
5832 		mii_pollstat(mii);
5833 	}
5834 
5835 	/* Clear the attention */
5836 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5837 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5838 	    BGE_MACSTAT_LINK_CHANGED);
5839 }
5840 
5841 static int
5842 bge_sysctl_verify(SYSCTLFN_ARGS)
5843 {
5844 	int error, t;
5845 	struct sysctlnode node;
5846 
5847 	node = *rnode;
5848 	t = *(int*)rnode->sysctl_data;
5849 	node.sysctl_data = &t;
5850 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
5851 	if (error || newp == NULL)
5852 		return error;
5853 
5854 #if 0
5855 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5856 	    node.sysctl_num, rnode->sysctl_num));
5857 #endif
5858 
5859 	if (node.sysctl_num == bge_rxthresh_nodenum) {
5860 		if (t < 0 || t >= NBGE_RX_THRESH)
5861 			return EINVAL;
5862 		bge_update_all_threshes(t);
5863 	} else
5864 		return EINVAL;
5865 
5866 	*(int*)rnode->sysctl_data = t;
5867 
5868 	return 0;
5869 }
5870 
5871 /*
5872  * Set up sysctl(3) MIB, hw.bge.*.
5873  */
5874 static void
5875 bge_sysctl_init(struct bge_softc *sc)
5876 {
5877 	int rc, bge_root_num;
5878 	const struct sysctlnode *node;
5879 
5880 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5881 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5882 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5883 		goto out;
5884 	}
5885 
5886 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5887 	    0, CTLTYPE_NODE, "bge",
5888 	    SYSCTL_DESCR("BGE interface controls"),
5889 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5890 		goto out;
5891 	}
5892 
5893 	bge_root_num = node->sysctl_num;
5894 
5895 	/* BGE Rx interrupt mitigation level */
5896 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5897 	    CTLFLAG_READWRITE,
5898 	    CTLTYPE_INT, "rx_lvl",
5899 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5900 	    bge_sysctl_verify, 0,
5901 	    &bge_rx_thresh_lvl,
5902 	    0, CTL_HW, bge_root_num, CTL_CREATE,
5903 	    CTL_EOL)) != 0) {
5904 		goto out;
5905 	}
5906 
5907 	bge_rxthresh_nodenum = node->sysctl_num;
5908 
5909 	return;
5910 
5911 out:
5912 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5913 }
5914 
5915 #ifdef BGE_DEBUG
5916 void
5917 bge_debug_info(struct bge_softc *sc)
5918 {
5919 
5920 	printf("Hardware Flags:\n");
5921 	if (BGE_IS_57765_PLUS(sc))
5922 		printf(" - 57765 Plus\n");
5923 	if (BGE_IS_5717_PLUS(sc))
5924 		printf(" - 5717 Plus\n");
5925 	if (BGE_IS_5755_PLUS(sc))
5926 		printf(" - 5755 Plus\n");
5927 	if (BGE_IS_575X_PLUS(sc))
5928 		printf(" - 575X Plus\n");
5929 	if (BGE_IS_5705_PLUS(sc))
5930 		printf(" - 5705 Plus\n");
5931 	if (BGE_IS_5714_FAMILY(sc))
5932 		printf(" - 5714 Family\n");
5933 	if (BGE_IS_5700_FAMILY(sc))
5934 		printf(" - 5700 Family\n");
5935 	if (sc->bge_flags & BGE_IS_5788)
5936 		printf(" - 5788\n");
5937 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5938 		printf(" - Supports Jumbo Frames\n");
5939 	if (sc->bge_flags & BGE_NO_EEPROM)
5940 		printf(" - No EEPROM\n");
5941 	if (sc->bge_flags & BGE_PCIX)
5942 		printf(" - PCI-X Bus\n");
5943 	if (sc->bge_flags & BGE_PCIE)
5944 		printf(" - PCI Express Bus\n");
5945 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
5946 		printf(" - RX Alignment Bug\n");
5947 	if (sc->bge_flags & BGE_APE)
5948 		printf(" - APE\n");
5949 	if (sc->bge_flags & BGE_CPMU_PRESENT)
5950 		printf(" - CPMU\n");
5951 	if (sc->bge_flags & BGE_TSO)
5952 		printf(" - TSO\n");
5953 
5954 	if (sc->bge_flags & BGE_PHY_NO_3LED)
5955 		printf(" - No 3 LEDs\n");
5956 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
5957 		printf(" - CRC bug\n");
5958 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
5959 		printf(" - ADC bug\n");
5960 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5961 		printf(" - 5704 A0 bug\n");
5962 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5963 		printf(" - jitter bug\n");
5964 	if (sc->bge_flags & BGE_PHY_BER_BUG)
5965 		printf(" - BER bug\n");
5966 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5967 		printf(" - adjust trim\n");
5968 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5969 		printf(" - no wirespeed\n");
5970 }
5971 #endif /* BGE_DEBUG */
5972 
5973 static int
5974 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5975 {
5976 	prop_dictionary_t dict;
5977 	prop_data_t ea;
5978 
5979 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5980 		return 1;
5981 
5982 	dict = device_properties(sc->bge_dev);
5983 	ea = prop_dictionary_get(dict, "mac-address");
5984 	if (ea != NULL) {
5985 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5986 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5987 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5988 		return 0;
5989 	}
5990 
5991 	return 1;
5992 }
5993 
5994 static int
5995 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5996 {
5997 	uint32_t mac_addr;
5998 
5999 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6000 	if ((mac_addr >> 16) == 0x484b) {
6001 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6002 		ether_addr[1] = (uint8_t)mac_addr;
6003 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6004 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6005 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6006 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6007 		ether_addr[5] = (uint8_t)mac_addr;
6008 		return 0;
6009 	}
6010 	return 1;
6011 }
6012 
6013 static int
6014 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6015 {
6016 	int mac_offset = BGE_EE_MAC_OFFSET;
6017 
6018 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6019 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6020 
6021 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6022 	    ETHER_ADDR_LEN));
6023 }
6024 
6025 static int
6026 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6027 {
6028 
6029 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6030 		return 1;
6031 
6032 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6033 	   ETHER_ADDR_LEN));
6034 }
6035 
6036 static int
6037 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6038 {
6039 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6040 		/* NOTE: Order is critical */
6041 		bge_get_eaddr_fw,
6042 		bge_get_eaddr_mem,
6043 		bge_get_eaddr_nvram,
6044 		bge_get_eaddr_eeprom,
6045 		NULL
6046 	};
6047 	const bge_eaddr_fcn_t *func;
6048 
6049 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6050 		if ((*func)(sc, eaddr) == 0)
6051 			break;
6052 	}
6053 	return (*func == NULL ? ENXIO : 0);
6054 }
6055