xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 62f324d0121177eaf2e0384f92fd9ca2a751c795)
1 /*	$NetBSD: if_bge.c,v 1.236 2013/04/11 11:24:07 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.236 2013/04/11 11:24:07 msaitoh Exp $");
83 
84 #include "vlan.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/callout.h>
89 #include <sys/sockio.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/device.h>
94 #include <sys/socket.h>
95 #include <sys/sysctl.h>
96 
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 
102 #include <sys/rnd.h>
103 
104 #ifdef INET
105 #include <netinet/in.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in_var.h>
108 #include <netinet/ip.h>
109 #endif
110 
111 /* Headers for TCP  Segmentation Offload (TSO) */
112 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
113 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
114 #include <netinet/ip.h>			/* for struct ip */
115 #include <netinet/tcp.h>		/* for struct tcphdr */
116 
117 
118 #include <net/bpf.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 #include <dev/pci/pcidevs.h>
123 
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/miidevs.h>
127 #include <dev/mii/brgphyreg.h>
128 
129 #include <dev/pci/if_bgereg.h>
130 #include <dev/pci/if_bgevar.h>
131 
132 #include <prop/proplib.h>
133 
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135 
136 
137 /*
138  * Tunable thresholds for rx-side bge interrupt mitigation.
139  */
140 
141 /*
142  * The pairs of values below were obtained from empirical measurement
143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144  * interrupt for every N packets received, where N is, approximately,
145  * the second value (rx_max_bds) in each pair.  The values are chosen
146  * such that moving from one pair to the succeeding pair was observed
147  * to roughly halve interrupt rate under sustained input packet load.
148  * The values were empirically chosen to avoid overflowing internal
149  * limits on the  bcm5700: increasing rx_ticks much beyond 600
150  * results in internal wrapping and higher interrupt rates.
151  * The limit of 46 frames was chosen to match NFS workloads.
152  *
153  * These values also work well on bcm5701, bcm5704C, and (less
154  * tested) bcm5703.  On other chipsets, (including the Altima chip
155  * family), the larger values may overflow internal chip limits,
156  * leading to increasing interrupt rates rather than lower interrupt
157  * rates.
158  *
159  * Applications using heavy interrupt mitigation (interrupting every
160  * 32 or 46 frames) in both directions may need to increase the TCP
161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162  * full link bandwidth, due to ACKs and window updates lingering
163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164  */
165 static const struct bge_load_rx_thresh {
166 	int rx_ticks;
167 	int rx_max_bds; }
168 bge_rx_threshes[] = {
169 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
170 	{ 32,   2 },
171 	{ 50,   4 },
172 	{ 100,  8 },
173 	{ 192, 16 },
174 	{ 416, 32 },
175 	{ 598, 46 }
176 };
177 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
178 
179 /* XXX patchable; should be sysctl'able */
180 static int bge_auto_thresh = 1;
181 static int bge_rx_thresh_lvl;
182 
183 static int bge_rxthresh_nodenum;
184 
185 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
186 
187 static uint32_t bge_chipid(const struct pci_attach_args *pa);
188 static int bge_probe(device_t, cfdata_t, void *);
189 static void bge_attach(device_t, device_t, void *);
190 static int bge_detach(device_t, int);
191 static void bge_release_resources(struct bge_softc *);
192 
193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
198 
199 static void bge_txeof(struct bge_softc *);
200 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
201 static void bge_rxeof(struct bge_softc *);
202 
203 static void bge_asf_driver_up (struct bge_softc *);
204 static void bge_tick(void *);
205 static void bge_stats_update(struct bge_softc *);
206 static void bge_stats_update_regs(struct bge_softc *);
207 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
208 
209 static int bge_intr(void *);
210 static void bge_start(struct ifnet *);
211 static int bge_ifflags_cb(struct ethercom *);
212 static int bge_ioctl(struct ifnet *, u_long, void *);
213 static int bge_init(struct ifnet *);
214 static void bge_stop(struct ifnet *, int);
215 static void bge_watchdog(struct ifnet *);
216 static int bge_ifmedia_upd(struct ifnet *);
217 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
218 
219 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
220 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
221 
222 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
223 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
224 static void bge_setmulti(struct bge_softc *);
225 
226 static void bge_handle_events(struct bge_softc *);
227 static int bge_alloc_jumbo_mem(struct bge_softc *);
228 #if 0 /* XXX */
229 static void bge_free_jumbo_mem(struct bge_softc *);
230 #endif
231 static void *bge_jalloc(struct bge_softc *);
232 static void bge_jfree(struct mbuf *, void *, size_t, void *);
233 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
234 			       bus_dmamap_t);
235 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
236 static int bge_init_rx_ring_std(struct bge_softc *);
237 static void bge_free_rx_ring_std(struct bge_softc *);
238 static int bge_init_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_rx_ring_jumbo(struct bge_softc *);
240 static void bge_free_tx_ring(struct bge_softc *);
241 static int bge_init_tx_ring(struct bge_softc *);
242 
243 static int bge_chipinit(struct bge_softc *);
244 static int bge_blockinit(struct bge_softc *);
245 static int bge_phy_addr(struct bge_softc *);
246 static uint32_t bge_readmem_ind(struct bge_softc *, int);
247 static void bge_writemem_ind(struct bge_softc *, int, int);
248 static void bge_writembx(struct bge_softc *, int, int);
249 static void bge_writembx_flush(struct bge_softc *, int, int);
250 static void bge_writemem_direct(struct bge_softc *, int, int);
251 static void bge_writereg_ind(struct bge_softc *, int, int);
252 static void bge_set_max_readrq(struct bge_softc *);
253 
254 static int bge_miibus_readreg(device_t, int, int);
255 static void bge_miibus_writereg(device_t, int, int, int);
256 static void bge_miibus_statchg(struct ifnet *);
257 
258 #define BGE_RESET_SHUTDOWN	0
259 #define	BGE_RESET_START		1
260 #define	BGE_RESET_SUSPEND	2
261 static void bge_sig_post_reset(struct bge_softc *, int);
262 static void bge_sig_legacy(struct bge_softc *, int);
263 static void bge_sig_pre_reset(struct bge_softc *, int);
264 static void bge_wait_for_event_ack(struct bge_softc *);
265 static void bge_stop_fw(struct bge_softc *);
266 static int bge_reset(struct bge_softc *);
267 static void bge_link_upd(struct bge_softc *);
268 static void bge_sysctl_init(struct bge_softc *);
269 static int bge_sysctl_verify(SYSCTLFN_PROTO);
270 
271 static void bge_ape_lock_init(struct bge_softc *);
272 static void bge_ape_read_fw_ver(struct bge_softc *);
273 static int bge_ape_lock(struct bge_softc *, int);
274 static void bge_ape_unlock(struct bge_softc *, int);
275 static void bge_ape_send_event(struct bge_softc *, uint32_t);
276 static void bge_ape_driver_state_change(struct bge_softc *, int);
277 
278 #ifdef BGE_DEBUG
279 #define DPRINTF(x)	if (bgedebug) printf x
280 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
281 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
282 int	bgedebug = 0;
283 int	bge_tso_debug = 0;
284 void		bge_debug_info(struct bge_softc *);
285 #else
286 #define DPRINTF(x)
287 #define DPRINTFN(n,x)
288 #define BGE_TSO_PRINTF(x)
289 #endif
290 
291 #ifdef BGE_EVENT_COUNTERS
292 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
293 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
294 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
295 #else
296 #define	BGE_EVCNT_INCR(ev)	/* nothing */
297 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
298 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
299 #endif
300 
301 static const struct bge_product {
302 	pci_vendor_id_t		bp_vendor;
303 	pci_product_id_t	bp_product;
304 	const char		*bp_name;
305 } bge_products[] = {
306 	/*
307 	 * The BCM5700 documentation seems to indicate that the hardware
308 	 * still has the Alteon vendor ID burned into it, though it
309 	 * should always be overridden by the value in the EEPROM.  We'll
310 	 * check for it anyway.
311 	 */
312 	{ PCI_VENDOR_ALTEON,
313 	  PCI_PRODUCT_ALTEON_BCM5700,
314 	  "Broadcom BCM5700 Gigabit Ethernet",
315 	  },
316 	{ PCI_VENDOR_ALTEON,
317 	  PCI_PRODUCT_ALTEON_BCM5701,
318 	  "Broadcom BCM5701 Gigabit Ethernet",
319 	  },
320 	{ PCI_VENDOR_ALTIMA,
321 	  PCI_PRODUCT_ALTIMA_AC1000,
322 	  "Altima AC1000 Gigabit Ethernet",
323 	  },
324 	{ PCI_VENDOR_ALTIMA,
325 	  PCI_PRODUCT_ALTIMA_AC1001,
326 	  "Altima AC1001 Gigabit Ethernet",
327 	   },
328 	{ PCI_VENDOR_ALTIMA,
329 	  PCI_PRODUCT_ALTIMA_AC1003,
330 	  "Altima AC1003 Gigabit Ethernet",
331 	   },
332 	{ PCI_VENDOR_ALTIMA,
333 	  PCI_PRODUCT_ALTIMA_AC9100,
334 	  "Altima AC9100 Gigabit Ethernet",
335 	  },
336 	{ PCI_VENDOR_APPLE,
337 	  PCI_PRODUCT_APPLE_BCM5701,
338 	  "APPLE BCM5701 Gigabit Ethernet",
339 	  },
340 	{ PCI_VENDOR_BROADCOM,
341 	  PCI_PRODUCT_BROADCOM_BCM5700,
342 	  "Broadcom BCM5700 Gigabit Ethernet",
343 	  },
344 	{ PCI_VENDOR_BROADCOM,
345 	  PCI_PRODUCT_BROADCOM_BCM5701,
346 	  "Broadcom BCM5701 Gigabit Ethernet",
347 	  },
348 	{ PCI_VENDOR_BROADCOM,
349 	  PCI_PRODUCT_BROADCOM_BCM5702,
350 	  "Broadcom BCM5702 Gigabit Ethernet",
351 	  },
352 	{ PCI_VENDOR_BROADCOM,
353 	  PCI_PRODUCT_BROADCOM_BCM5702X,
354 	  "Broadcom BCM5702X Gigabit Ethernet" },
355 	{ PCI_VENDOR_BROADCOM,
356 	  PCI_PRODUCT_BROADCOM_BCM5703,
357 	  "Broadcom BCM5703 Gigabit Ethernet",
358 	  },
359 	{ PCI_VENDOR_BROADCOM,
360 	  PCI_PRODUCT_BROADCOM_BCM5703X,
361 	  "Broadcom BCM5703X Gigabit Ethernet",
362 	  },
363 	{ PCI_VENDOR_BROADCOM,
364 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
365 	  "Broadcom BCM5703 Gigabit Ethernet",
366 	  },
367 	{ PCI_VENDOR_BROADCOM,
368 	  PCI_PRODUCT_BROADCOM_BCM5704C,
369 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
370 	  },
371 	{ PCI_VENDOR_BROADCOM,
372 	  PCI_PRODUCT_BROADCOM_BCM5704S,
373 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
374 	  },
375 	{ PCI_VENDOR_BROADCOM,
376 	  PCI_PRODUCT_BROADCOM_BCM5705,
377 	  "Broadcom BCM5705 Gigabit Ethernet",
378 	  },
379 	{ PCI_VENDOR_BROADCOM,
380 	  PCI_PRODUCT_BROADCOM_BCM5705F,
381 	  "Broadcom BCM5705F Gigabit Ethernet",
382 	  },
383 	{ PCI_VENDOR_BROADCOM,
384 	  PCI_PRODUCT_BROADCOM_BCM5705K,
385 	  "Broadcom BCM5705K Gigabit Ethernet",
386 	  },
387 	{ PCI_VENDOR_BROADCOM,
388 	  PCI_PRODUCT_BROADCOM_BCM5705M,
389 	  "Broadcom BCM5705M Gigabit Ethernet",
390 	  },
391 	{ PCI_VENDOR_BROADCOM,
392 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
393 	  "Broadcom BCM5705M Gigabit Ethernet",
394 	  },
395 	{ PCI_VENDOR_BROADCOM,
396 	  PCI_PRODUCT_BROADCOM_BCM5714,
397 	  "Broadcom BCM5714 Gigabit Ethernet",
398 	  },
399 	{ PCI_VENDOR_BROADCOM,
400 	  PCI_PRODUCT_BROADCOM_BCM5714S,
401 	  "Broadcom BCM5714S Gigabit Ethernet",
402 	  },
403 	{ PCI_VENDOR_BROADCOM,
404 	  PCI_PRODUCT_BROADCOM_BCM5715,
405 	  "Broadcom BCM5715 Gigabit Ethernet",
406 	  },
407 	{ PCI_VENDOR_BROADCOM,
408 	  PCI_PRODUCT_BROADCOM_BCM5715S,
409 	  "Broadcom BCM5715S Gigabit Ethernet",
410 	  },
411 	{ PCI_VENDOR_BROADCOM,
412 	  PCI_PRODUCT_BROADCOM_BCM5717,
413 	  "Broadcom BCM5717 Gigabit Ethernet",
414 	  },
415 	{ PCI_VENDOR_BROADCOM,
416 	  PCI_PRODUCT_BROADCOM_BCM5718,
417 	  "Broadcom BCM5718 Gigabit Ethernet",
418 	  },
419 	{ PCI_VENDOR_BROADCOM,
420 	  PCI_PRODUCT_BROADCOM_BCM5719,
421 	  "Broadcom BCM5719 Gigabit Ethernet",
422 	  },
423 	{ PCI_VENDOR_BROADCOM,
424 	  PCI_PRODUCT_BROADCOM_BCM5720,
425 	  "Broadcom BCM5720 Gigabit Ethernet",
426 	  },
427 	{ PCI_VENDOR_BROADCOM,
428 	  PCI_PRODUCT_BROADCOM_BCM5721,
429 	  "Broadcom BCM5721 Gigabit Ethernet",
430 	  },
431 	{ PCI_VENDOR_BROADCOM,
432 	  PCI_PRODUCT_BROADCOM_BCM5722,
433 	  "Broadcom BCM5722 Gigabit Ethernet",
434 	  },
435 	{ PCI_VENDOR_BROADCOM,
436 	  PCI_PRODUCT_BROADCOM_BCM5723,
437 	  "Broadcom BCM5723 Gigabit Ethernet",
438 	  },
439 	{ PCI_VENDOR_BROADCOM,
440 	  PCI_PRODUCT_BROADCOM_BCM5724,
441 	  "Broadcom BCM5724 Gigabit Ethernet",
442 	  },
443 	{ PCI_VENDOR_BROADCOM,
444 	  PCI_PRODUCT_BROADCOM_BCM5750,
445 	  "Broadcom BCM5750 Gigabit Ethernet",
446 	  },
447 	{ PCI_VENDOR_BROADCOM,
448 	  PCI_PRODUCT_BROADCOM_BCM5750M,
449 	  "Broadcom BCM5750M Gigabit Ethernet",
450 	  },
451 	{ PCI_VENDOR_BROADCOM,
452 	  PCI_PRODUCT_BROADCOM_BCM5751,
453 	  "Broadcom BCM5751 Gigabit Ethernet",
454 	  },
455 	{ PCI_VENDOR_BROADCOM,
456 	  PCI_PRODUCT_BROADCOM_BCM5751F,
457 	  "Broadcom BCM5751F Gigabit Ethernet",
458 	  },
459 	{ PCI_VENDOR_BROADCOM,
460 	  PCI_PRODUCT_BROADCOM_BCM5751M,
461 	  "Broadcom BCM5751M Gigabit Ethernet",
462 	  },
463 	{ PCI_VENDOR_BROADCOM,
464 	  PCI_PRODUCT_BROADCOM_BCM5752,
465 	  "Broadcom BCM5752 Gigabit Ethernet",
466 	  },
467 	{ PCI_VENDOR_BROADCOM,
468 	  PCI_PRODUCT_BROADCOM_BCM5752M,
469 	  "Broadcom BCM5752M Gigabit Ethernet",
470 	  },
471 	{ PCI_VENDOR_BROADCOM,
472 	  PCI_PRODUCT_BROADCOM_BCM5753,
473 	  "Broadcom BCM5753 Gigabit Ethernet",
474 	  },
475 	{ PCI_VENDOR_BROADCOM,
476 	  PCI_PRODUCT_BROADCOM_BCM5753F,
477 	  "Broadcom BCM5753F Gigabit Ethernet",
478 	  },
479 	{ PCI_VENDOR_BROADCOM,
480 	  PCI_PRODUCT_BROADCOM_BCM5753M,
481 	  "Broadcom BCM5753M Gigabit Ethernet",
482 	  },
483 	{ PCI_VENDOR_BROADCOM,
484 	  PCI_PRODUCT_BROADCOM_BCM5754,
485 	  "Broadcom BCM5754 Gigabit Ethernet",
486 	},
487 	{ PCI_VENDOR_BROADCOM,
488 	  PCI_PRODUCT_BROADCOM_BCM5754M,
489 	  "Broadcom BCM5754M Gigabit Ethernet",
490 	},
491 	{ PCI_VENDOR_BROADCOM,
492 	  PCI_PRODUCT_BROADCOM_BCM5755,
493 	  "Broadcom BCM5755 Gigabit Ethernet",
494 	},
495 	{ PCI_VENDOR_BROADCOM,
496 	  PCI_PRODUCT_BROADCOM_BCM5755M,
497 	  "Broadcom BCM5755M Gigabit Ethernet",
498 	},
499 	{ PCI_VENDOR_BROADCOM,
500 	  PCI_PRODUCT_BROADCOM_BCM5756,
501 	  "Broadcom BCM5756 Gigabit Ethernet",
502 	},
503 	{ PCI_VENDOR_BROADCOM,
504 	  PCI_PRODUCT_BROADCOM_BCM5761,
505 	  "Broadcom BCM5761 Gigabit Ethernet",
506 	},
507 	{ PCI_VENDOR_BROADCOM,
508 	  PCI_PRODUCT_BROADCOM_BCM5761E,
509 	  "Broadcom BCM5761E Gigabit Ethernet",
510 	},
511 	{ PCI_VENDOR_BROADCOM,
512 	  PCI_PRODUCT_BROADCOM_BCM5761S,
513 	  "Broadcom BCM5761S Gigabit Ethernet",
514 	},
515 	{ PCI_VENDOR_BROADCOM,
516 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
517 	  "Broadcom BCM5761SE Gigabit Ethernet",
518 	},
519 	{ PCI_VENDOR_BROADCOM,
520 	  PCI_PRODUCT_BROADCOM_BCM5764,
521 	  "Broadcom BCM5764 Gigabit Ethernet",
522 	  },
523 	{ PCI_VENDOR_BROADCOM,
524 	  PCI_PRODUCT_BROADCOM_BCM5780,
525 	  "Broadcom BCM5780 Gigabit Ethernet",
526 	  },
527 	{ PCI_VENDOR_BROADCOM,
528 	  PCI_PRODUCT_BROADCOM_BCM5780S,
529 	  "Broadcom BCM5780S Gigabit Ethernet",
530 	  },
531 	{ PCI_VENDOR_BROADCOM,
532 	  PCI_PRODUCT_BROADCOM_BCM5781,
533 	  "Broadcom BCM5781 Gigabit Ethernet",
534 	  },
535 	{ PCI_VENDOR_BROADCOM,
536 	  PCI_PRODUCT_BROADCOM_BCM5782,
537 	  "Broadcom BCM5782 Gigabit Ethernet",
538 	},
539 	{ PCI_VENDOR_BROADCOM,
540 	  PCI_PRODUCT_BROADCOM_BCM5784M,
541 	  "BCM5784M NetLink 1000baseT Ethernet",
542 	},
543 	{ PCI_VENDOR_BROADCOM,
544 	  PCI_PRODUCT_BROADCOM_BCM5785F,
545 	  "BCM5785F NetLink 10/100 Ethernet",
546 	},
547 	{ PCI_VENDOR_BROADCOM,
548 	  PCI_PRODUCT_BROADCOM_BCM5785G,
549 	  "BCM5785G NetLink 1000baseT Ethernet",
550 	},
551 	{ PCI_VENDOR_BROADCOM,
552 	  PCI_PRODUCT_BROADCOM_BCM5786,
553 	  "Broadcom BCM5786 Gigabit Ethernet",
554 	},
555 	{ PCI_VENDOR_BROADCOM,
556 	  PCI_PRODUCT_BROADCOM_BCM5787,
557 	  "Broadcom BCM5787 Gigabit Ethernet",
558 	},
559 	{ PCI_VENDOR_BROADCOM,
560 	  PCI_PRODUCT_BROADCOM_BCM5787F,
561 	  "Broadcom BCM5787F 10/100 Ethernet",
562 	},
563 	{ PCI_VENDOR_BROADCOM,
564 	  PCI_PRODUCT_BROADCOM_BCM5787M,
565 	  "Broadcom BCM5787M Gigabit Ethernet",
566 	},
567 	{ PCI_VENDOR_BROADCOM,
568 	  PCI_PRODUCT_BROADCOM_BCM5788,
569 	  "Broadcom BCM5788 Gigabit Ethernet",
570 	  },
571 	{ PCI_VENDOR_BROADCOM,
572 	  PCI_PRODUCT_BROADCOM_BCM5789,
573 	  "Broadcom BCM5789 Gigabit Ethernet",
574 	  },
575 	{ PCI_VENDOR_BROADCOM,
576 	  PCI_PRODUCT_BROADCOM_BCM5901,
577 	  "Broadcom BCM5901 Fast Ethernet",
578 	  },
579 	{ PCI_VENDOR_BROADCOM,
580 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
581 	  "Broadcom BCM5901A2 Fast Ethernet",
582 	  },
583 	{ PCI_VENDOR_BROADCOM,
584 	  PCI_PRODUCT_BROADCOM_BCM5903M,
585 	  "Broadcom BCM5903M Fast Ethernet",
586 	  },
587 	{ PCI_VENDOR_BROADCOM,
588 	  PCI_PRODUCT_BROADCOM_BCM5906,
589 	  "Broadcom BCM5906 Fast Ethernet",
590 	  },
591 	{ PCI_VENDOR_BROADCOM,
592 	  PCI_PRODUCT_BROADCOM_BCM5906M,
593 	  "Broadcom BCM5906M Fast Ethernet",
594 	  },
595 	{ PCI_VENDOR_BROADCOM,
596 	  PCI_PRODUCT_BROADCOM_BCM57760,
597 	  "Broadcom BCM57760 Fast Ethernet",
598 	  },
599 	{ PCI_VENDOR_BROADCOM,
600 	  PCI_PRODUCT_BROADCOM_BCM57761,
601 	  "Broadcom BCM57761 Fast Ethernet",
602 	  },
603 	{ PCI_VENDOR_BROADCOM,
604 	  PCI_PRODUCT_BROADCOM_BCM57762,
605 	  "Broadcom BCM57762 Gigabit Ethernet",
606 	  },
607 	{ PCI_VENDOR_BROADCOM,
608 	  PCI_PRODUCT_BROADCOM_BCM57765,
609 	  "Broadcom BCM57765 Fast Ethernet",
610 	  },
611 	{ PCI_VENDOR_BROADCOM,
612 	  PCI_PRODUCT_BROADCOM_BCM57766,
613 	  "Broadcom BCM57766 Fast Ethernet",
614 	  },
615 	{ PCI_VENDOR_BROADCOM,
616 	  PCI_PRODUCT_BROADCOM_BCM57780,
617 	  "Broadcom BCM57780 Fast Ethernet",
618 	  },
619 	{ PCI_VENDOR_BROADCOM,
620 	  PCI_PRODUCT_BROADCOM_BCM57781,
621 	  "Broadcom BCM57781 Fast Ethernet",
622 	  },
623 	{ PCI_VENDOR_BROADCOM,
624 	  PCI_PRODUCT_BROADCOM_BCM57782,
625 	  "Broadcom BCM57782 Fast Ethernet",
626 	  },
627 	{ PCI_VENDOR_BROADCOM,
628 	  PCI_PRODUCT_BROADCOM_BCM57785,
629 	  "Broadcom BCM57785 Fast Ethernet",
630 	  },
631 	{ PCI_VENDOR_BROADCOM,
632 	  PCI_PRODUCT_BROADCOM_BCM57786,
633 	  "Broadcom BCM57786 Fast Ethernet",
634 	  },
635 	{ PCI_VENDOR_BROADCOM,
636 	  PCI_PRODUCT_BROADCOM_BCM57788,
637 	  "Broadcom BCM57788 Fast Ethernet",
638 	  },
639 	{ PCI_VENDOR_BROADCOM,
640 	  PCI_PRODUCT_BROADCOM_BCM57790,
641 	  "Broadcom BCM57790 Fast Ethernet",
642 	  },
643 	{ PCI_VENDOR_BROADCOM,
644 	  PCI_PRODUCT_BROADCOM_BCM57791,
645 	  "Broadcom BCM57791 Fast Ethernet",
646 	  },
647 	{ PCI_VENDOR_BROADCOM,
648 	  PCI_PRODUCT_BROADCOM_BCM57795,
649 	  "Broadcom BCM57795 Fast Ethernet",
650 	  },
651 	{ PCI_VENDOR_SCHNEIDERKOCH,
652 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
653 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
654 	  },
655 	{ PCI_VENDOR_3COM,
656 	  PCI_PRODUCT_3COM_3C996,
657 	  "3Com 3c996 Gigabit Ethernet",
658 	  },
659 	{ PCI_VENDOR_FUJITSU4,
660 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
661 	  "Fujitsu PW008GE4 Gigabit Ethernet",
662 	  },
663 	{ PCI_VENDOR_FUJITSU4,
664 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
665 	  "Fujitsu PW008GE5 Gigabit Ethernet",
666 	  },
667 	{ PCI_VENDOR_FUJITSU4,
668 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
669 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
670 	  },
671 	{ 0,
672 	  0,
673 	  NULL },
674 };
675 
676 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
677 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
678 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGE_5705_PLUS)
679 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
680 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGE_575X_PLUS)
681 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGE_5755_PLUS)
682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGE_5717_PLUS)
683 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGE_57765_PLUS)
684 
685 static const struct bge_revision {
686 	uint32_t		br_chipid;
687 	const char		*br_name;
688 } bge_revisions[] = {
689 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
690 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
691 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
692 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
693 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
694 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
695 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
696 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
697 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
698 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
699 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
700 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
701 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
702 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
703 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
704 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
705 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
706 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
707 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
708 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
709 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
710 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
711 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
712 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
713 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
714 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
715 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
716 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
717 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
718 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
719 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
720 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
721 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
722 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
723 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
724 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
725 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
726 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
727 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
728 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
729 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
730 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
731 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
732 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
733 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
734 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
735 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
736 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
737 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
738 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
739 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
740 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
741 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
742 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
743 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
744 	/* 5754 and 5787 share the same ASIC ID */
745 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
746 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
747 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
748 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
749 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
750 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
751 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
752 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
753 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
754 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
755 
756 	{ 0, NULL }
757 };
758 
759 /*
760  * Some defaults for major revisions, so that newer steppings
761  * that we don't know about have a shot at working.
762  */
763 static const struct bge_revision bge_majorrevs[] = {
764 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
765 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
766 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
767 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
768 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
769 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
770 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
771 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
772 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
773 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
774 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
775 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
776 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
777 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
778 	/* 5754 and 5787 share the same ASIC ID */
779 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
780 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
781 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
782 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
783 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
784 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
785 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
786 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
787 
788 	{ 0, NULL }
789 };
790 
791 static int bge_allow_asf = 1;
792 
793 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
794     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
795 
796 static uint32_t
797 bge_readmem_ind(struct bge_softc *sc, int off)
798 {
799 	pcireg_t val;
800 
801 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
802 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
803 		return 0;
804 
805 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
806 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
807 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
808 	return val;
809 }
810 
811 static void
812 bge_writemem_ind(struct bge_softc *sc, int off, int val)
813 {
814 
815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
817 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
818 }
819 
820 /*
821  * PCI Express only
822  */
823 static void
824 bge_set_max_readrq(struct bge_softc *sc)
825 {
826 	pcireg_t val;
827 
828 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
829 	    + PCI_PCIE_DCSR);
830 	val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
831 	switch (sc->bge_expmrq) {
832 	case 2048:
833 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
834 		break;
835 	case 4096:
836 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
837 		break;
838 	default:
839 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
840 		break;
841 	}
842 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
843 	    + PCI_PCIE_DCSR, val);
844 }
845 
846 #ifdef notdef
847 static uint32_t
848 bge_readreg_ind(struct bge_softc *sc, int off)
849 {
850 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
851 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
852 }
853 #endif
854 
855 static void
856 bge_writereg_ind(struct bge_softc *sc, int off, int val)
857 {
858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
859 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
860 }
861 
862 static void
863 bge_writemem_direct(struct bge_softc *sc, int off, int val)
864 {
865 	CSR_WRITE_4(sc, off, val);
866 }
867 
868 static void
869 bge_writembx(struct bge_softc *sc, int off, int val)
870 {
871 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
872 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
873 
874 	CSR_WRITE_4(sc, off, val);
875 }
876 
877 static void
878 bge_writembx_flush(struct bge_softc *sc, int off, int val)
879 {
880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
881 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
882 
883 	CSR_WRITE_4_FLUSH(sc, off, val);
884 }
885 
886 /*
887  * Clear all stale locks and select the lock for this driver instance.
888  */
889 void
890 bge_ape_lock_init(struct bge_softc *sc)
891 {
892 	struct pci_attach_args *pa = &(sc->bge_pa);
893 	uint32_t bit, regbase;
894 	int i;
895 
896 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
897 		regbase = BGE_APE_LOCK_GRANT;
898 	else
899 		regbase = BGE_APE_PER_LOCK_GRANT;
900 
901 	/* Clear any stale locks. */
902 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
903 		switch (i) {
904 		case BGE_APE_LOCK_PHY0:
905 		case BGE_APE_LOCK_PHY1:
906 		case BGE_APE_LOCK_PHY2:
907 		case BGE_APE_LOCK_PHY3:
908 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
909 			break;
910 		default:
911 			if (pa->pa_function == 0)
912 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
913 			else
914 				bit = (1 << pa->pa_function);
915 		}
916 		APE_WRITE_4(sc, regbase + 4 * i, bit);
917 	}
918 
919 	/* Select the PHY lock based on the device's function number. */
920 	switch (pa->pa_function) {
921 	case 0:
922 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
923 		break;
924 	case 1:
925 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
926 		break;
927 	case 2:
928 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
929 		break;
930 	case 3:
931 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
932 		break;
933 	default:
934 		printf("%s: PHY lock not supported on function\n",
935 		    device_xname(sc->bge_dev));
936 		break;
937 	}
938 }
939 
940 /*
941  * Check for APE firmware, set flags, and print version info.
942  */
943 void
944 bge_ape_read_fw_ver(struct bge_softc *sc)
945 {
946 	const char *fwtype;
947 	uint32_t apedata, features;
948 
949 	/* Check for a valid APE signature in shared memory. */
950 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
951 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
952 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
953 		return;
954 	}
955 
956 	/* Check if APE firmware is running. */
957 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
958 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
959 		printf("%s: APE signature found but FW status not ready! "
960 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
961 		return;
962 	}
963 
964 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
965 
966 	/* Fetch the APE firwmare type and version. */
967 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
968 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
969 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
970 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
971 		fwtype = "NCSI";
972 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
973 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
974 		fwtype = "DASH";
975 	} else
976 		fwtype = "UNKN";
977 
978 	/* Print the APE firmware version. */
979 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
980 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
981 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
982 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
983 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
984 }
985 
986 int
987 bge_ape_lock(struct bge_softc *sc, int locknum)
988 {
989 	struct pci_attach_args *pa = &(sc->bge_pa);
990 	uint32_t bit, gnt, req, status;
991 	int i, off;
992 
993 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
994 		return (0);
995 
996 	/* Lock request/grant registers have different bases. */
997 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
998 		req = BGE_APE_LOCK_REQ;
999 		gnt = BGE_APE_LOCK_GRANT;
1000 	} else {
1001 		req = BGE_APE_PER_LOCK_REQ;
1002 		gnt = BGE_APE_PER_LOCK_GRANT;
1003 	}
1004 
1005 	off = 4 * locknum;
1006 
1007 	switch (locknum) {
1008 	case BGE_APE_LOCK_GPIO:
1009 		/* Lock required when using GPIO. */
1010 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1011 			return (0);
1012 		if (pa->pa_function == 0)
1013 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1014 		else
1015 			bit = (1 << pa->pa_function);
1016 		break;
1017 	case BGE_APE_LOCK_GRC:
1018 		/* Lock required to reset the device. */
1019 		if (pa->pa_function == 0)
1020 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1021 		else
1022 			bit = (1 << pa->pa_function);
1023 		break;
1024 	case BGE_APE_LOCK_MEM:
1025 		/* Lock required when accessing certain APE memory. */
1026 		if (pa->pa_function == 0)
1027 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1028 		else
1029 			bit = (1 << pa->pa_function);
1030 		break;
1031 	case BGE_APE_LOCK_PHY0:
1032 	case BGE_APE_LOCK_PHY1:
1033 	case BGE_APE_LOCK_PHY2:
1034 	case BGE_APE_LOCK_PHY3:
1035 		/* Lock required when accessing PHYs. */
1036 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1037 		break;
1038 	default:
1039 		return (EINVAL);
1040 	}
1041 
1042 	/* Request a lock. */
1043 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1044 
1045 	/* Wait up to 1 second to acquire lock. */
1046 	for (i = 0; i < 20000; i++) {
1047 		status = APE_READ_4(sc, gnt + off);
1048 		if (status == bit)
1049 			break;
1050 		DELAY(50);
1051 	}
1052 
1053 	/* Handle any errors. */
1054 	if (status != bit) {
1055 		printf("%s: APE lock %d request failed! "
1056 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1057 		    device_xname(sc->bge_dev),
1058 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1059 		    status & 0xFFFF);
1060 		/* Revoke the lock request. */
1061 		APE_WRITE_4(sc, gnt + off, bit);
1062 		return (EBUSY);
1063 	}
1064 
1065 	return (0);
1066 }
1067 
1068 void
1069 bge_ape_unlock(struct bge_softc *sc, int locknum)
1070 {
1071 	struct pci_attach_args *pa = &(sc->bge_pa);
1072 	uint32_t bit, gnt;
1073 	int off;
1074 
1075 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1076 		return;
1077 
1078 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1079 		gnt = BGE_APE_LOCK_GRANT;
1080 	else
1081 		gnt = BGE_APE_PER_LOCK_GRANT;
1082 
1083 	off = 4 * locknum;
1084 
1085 	switch (locknum) {
1086 	case BGE_APE_LOCK_GPIO:
1087 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1088 			return;
1089 		if (pa->pa_function == 0)
1090 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1091 		else
1092 			bit = (1 << pa->pa_function);
1093 		break;
1094 	case BGE_APE_LOCK_GRC:
1095 		if (pa->pa_function == 0)
1096 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1097 		else
1098 			bit = (1 << pa->pa_function);
1099 		break;
1100 	case BGE_APE_LOCK_MEM:
1101 		if (pa->pa_function == 0)
1102 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1103 		else
1104 			bit = (1 << pa->pa_function);
1105 		break;
1106 	case BGE_APE_LOCK_PHY0:
1107 	case BGE_APE_LOCK_PHY1:
1108 	case BGE_APE_LOCK_PHY2:
1109 	case BGE_APE_LOCK_PHY3:
1110 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1111 		break;
1112 	default:
1113 		return;
1114 	}
1115 
1116 	/* Write and flush for consecutive bge_ape_lock() */
1117 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1118 }
1119 
1120 /*
1121  * Send an event to the APE firmware.
1122  */
1123 void
1124 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1125 {
1126 	uint32_t apedata;
1127 	int i;
1128 
1129 	/* NCSI does not support APE events. */
1130 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1131 		return;
1132 
1133 	/* Wait up to 1ms for APE to service previous event. */
1134 	for (i = 10; i > 0; i--) {
1135 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1136 			break;
1137 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1138 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1139 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1140 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1141 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1142 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1143 			break;
1144 		}
1145 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1146 		DELAY(100);
1147 	}
1148 	if (i == 0) {
1149 		printf("%s: APE event 0x%08x send timed out\n",
1150 		    device_xname(sc->bge_dev), event);
1151 	}
1152 }
1153 
1154 void
1155 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1156 {
1157 	uint32_t apedata, event;
1158 
1159 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1160 		return;
1161 
1162 	switch (kind) {
1163 	case BGE_RESET_START:
1164 		/* If this is the first load, clear the load counter. */
1165 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1166 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1167 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1168 		else {
1169 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1170 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1171 		}
1172 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1173 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1174 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1175 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1176 
1177 		/* Add some version info if bge(4) supports it. */
1178 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1179 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1180 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1181 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1182 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1183 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1184 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1185 		    BGE_APE_HOST_DRVR_STATE_START);
1186 		event = BGE_APE_EVENT_STATUS_STATE_START;
1187 		break;
1188 	case BGE_RESET_SHUTDOWN:
1189 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1190 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1191 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1192 		break;
1193 	case BGE_RESET_SUSPEND:
1194 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1195 		break;
1196 	default:
1197 		return;
1198 	}
1199 
1200 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1201 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1202 }
1203 
1204 static uint8_t
1205 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1206 {
1207 	uint32_t access, byte = 0;
1208 	int i;
1209 
1210 	/* Lock. */
1211 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1212 	for (i = 0; i < 8000; i++) {
1213 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1214 			break;
1215 		DELAY(20);
1216 	}
1217 	if (i == 8000)
1218 		return 1;
1219 
1220 	/* Enable access. */
1221 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1222 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1223 
1224 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1225 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1226 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1227 		DELAY(10);
1228 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1229 			DELAY(10);
1230 			break;
1231 		}
1232 	}
1233 
1234 	if (i == BGE_TIMEOUT * 10) {
1235 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1236 		return 1;
1237 	}
1238 
1239 	/* Get result. */
1240 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1241 
1242 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1243 
1244 	/* Disable access. */
1245 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1246 
1247 	/* Unlock. */
1248 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1249 
1250 	return 0;
1251 }
1252 
1253 /*
1254  * Read a sequence of bytes from NVRAM.
1255  */
1256 static int
1257 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1258 {
1259 	int error = 0, i;
1260 	uint8_t byte = 0;
1261 
1262 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1263 		return 1;
1264 
1265 	for (i = 0; i < cnt; i++) {
1266 		error = bge_nvram_getbyte(sc, off + i, &byte);
1267 		if (error)
1268 			break;
1269 		*(dest + i) = byte;
1270 	}
1271 
1272 	return (error ? 1 : 0);
1273 }
1274 
1275 /*
1276  * Read a byte of data stored in the EEPROM at address 'addr.' The
1277  * BCM570x supports both the traditional bitbang interface and an
1278  * auto access interface for reading the EEPROM. We use the auto
1279  * access method.
1280  */
1281 static uint8_t
1282 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1283 {
1284 	int i;
1285 	uint32_t byte = 0;
1286 
1287 	/*
1288 	 * Enable use of auto EEPROM access so we can avoid
1289 	 * having to use the bitbang method.
1290 	 */
1291 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1292 
1293 	/* Reset the EEPROM, load the clock period. */
1294 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1295 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1296 	DELAY(20);
1297 
1298 	/* Issue the read EEPROM command. */
1299 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1300 
1301 	/* Wait for completion */
1302 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1303 		DELAY(10);
1304 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1305 			break;
1306 	}
1307 
1308 	if (i == BGE_TIMEOUT * 10) {
1309 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1310 		return 1;
1311 	}
1312 
1313 	/* Get result. */
1314 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1315 
1316 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1317 
1318 	return 0;
1319 }
1320 
1321 /*
1322  * Read a sequence of bytes from the EEPROM.
1323  */
1324 static int
1325 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1326 {
1327 	int error = 0, i;
1328 	uint8_t byte = 0;
1329 	char *dest = destv;
1330 
1331 	for (i = 0; i < cnt; i++) {
1332 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1333 		if (error)
1334 			break;
1335 		*(dest + i) = byte;
1336 	}
1337 
1338 	return (error ? 1 : 0);
1339 }
1340 
1341 static int
1342 bge_miibus_readreg(device_t dev, int phy, int reg)
1343 {
1344 	struct bge_softc *sc = device_private(dev);
1345 	uint32_t val;
1346 	uint32_t autopoll;
1347 	int i;
1348 
1349 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1350 		return 0;
1351 
1352 	/* Reading with autopolling on may trigger PCI errors */
1353 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1354 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1355 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1356 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1357 		DELAY(80);
1358 	}
1359 
1360 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1361 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1362 
1363 	for (i = 0; i < BGE_TIMEOUT; i++) {
1364 		delay(10);
1365 		val = CSR_READ_4(sc, BGE_MI_COMM);
1366 		if (!(val & BGE_MICOMM_BUSY)) {
1367 			DELAY(5);
1368 			val = CSR_READ_4(sc, BGE_MI_COMM);
1369 			break;
1370 		}
1371 	}
1372 
1373 	if (i == BGE_TIMEOUT) {
1374 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1375 		val = 0;
1376 		goto done;
1377 	}
1378 
1379 done:
1380 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1381 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1382 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1383 		DELAY(80);
1384 	}
1385 
1386 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1387 
1388 	if (val & BGE_MICOMM_READFAIL)
1389 		return 0;
1390 
1391 	return (val & 0xFFFF);
1392 }
1393 
1394 static void
1395 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1396 {
1397 	struct bge_softc *sc = device_private(dev);
1398 	uint32_t autopoll;
1399 	int i;
1400 
1401 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1402 		return;
1403 
1404 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1405 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1406 		return;
1407 
1408 	/* Reading with autopolling on may trigger PCI errors */
1409 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1410 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1411 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1412 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1413 		DELAY(80);
1414 	}
1415 
1416 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1417 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1418 
1419 	for (i = 0; i < BGE_TIMEOUT; i++) {
1420 		delay(10);
1421 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1422 			delay(5);
1423 			CSR_READ_4(sc, BGE_MI_COMM);
1424 			break;
1425 		}
1426 	}
1427 
1428 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1429 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1430 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1431 		delay(80);
1432 	}
1433 
1434 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1435 
1436 	if (i == BGE_TIMEOUT)
1437 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1438 }
1439 
1440 static void
1441 bge_miibus_statchg(struct ifnet *ifp)
1442 {
1443 	struct bge_softc *sc = ifp->if_softc;
1444 	struct mii_data *mii = &sc->bge_mii;
1445 	uint32_t mac_mode, rx_mode, tx_mode;
1446 
1447 	/*
1448 	 * Get flow control negotiation result.
1449 	 */
1450 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1451 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1452 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1453 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1454 	}
1455 
1456 	/* Set the port mode (MII/GMII) to match the link speed. */
1457 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1458 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1459 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1460 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1461 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1462 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1463 		mac_mode |= BGE_PORTMODE_GMII;
1464 	else
1465 		mac_mode |= BGE_PORTMODE_MII;
1466 
1467 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1468 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1469 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1470 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1471 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1472 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1473 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1474 	} else
1475 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1476 
1477 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1478 	DELAY(40);
1479 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1480 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1481 }
1482 
1483 /*
1484  * Update rx threshold levels to values in a particular slot
1485  * of the interrupt-mitigation table bge_rx_threshes.
1486  */
1487 static void
1488 bge_set_thresh(struct ifnet *ifp, int lvl)
1489 {
1490 	struct bge_softc *sc = ifp->if_softc;
1491 	int s;
1492 
1493 	/* For now, just save the new Rx-intr thresholds and record
1494 	 * that a threshold update is pending.  Updating the hardware
1495 	 * registers here (even at splhigh()) is observed to
1496 	 * occasionaly cause glitches where Rx-interrupts are not
1497 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1498 	 */
1499 	s = splnet();
1500 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1501 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1502 	sc->bge_pending_rxintr_change = 1;
1503 	splx(s);
1504 }
1505 
1506 
1507 /*
1508  * Update Rx thresholds of all bge devices
1509  */
1510 static void
1511 bge_update_all_threshes(int lvl)
1512 {
1513 	struct ifnet *ifp;
1514 	const char * const namebuf = "bge";
1515 	int namelen;
1516 
1517 	if (lvl < 0)
1518 		lvl = 0;
1519 	else if (lvl >= NBGE_RX_THRESH)
1520 		lvl = NBGE_RX_THRESH - 1;
1521 
1522 	namelen = strlen(namebuf);
1523 	/*
1524 	 * Now search all the interfaces for this name/number
1525 	 */
1526 	IFNET_FOREACH(ifp) {
1527 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1528 		      continue;
1529 		/* We got a match: update if doing auto-threshold-tuning */
1530 		if (bge_auto_thresh)
1531 			bge_set_thresh(ifp, lvl);
1532 	}
1533 }
1534 
1535 /*
1536  * Handle events that have triggered interrupts.
1537  */
1538 static void
1539 bge_handle_events(struct bge_softc *sc)
1540 {
1541 
1542 	return;
1543 }
1544 
1545 /*
1546  * Memory management for jumbo frames.
1547  */
1548 
1549 static int
1550 bge_alloc_jumbo_mem(struct bge_softc *sc)
1551 {
1552 	char *ptr, *kva;
1553 	bus_dma_segment_t	seg;
1554 	int		i, rseg, state, error;
1555 	struct bge_jpool_entry   *entry;
1556 
1557 	state = error = 0;
1558 
1559 	/* Grab a big chunk o' storage. */
1560 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1561 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1562 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1563 		return ENOBUFS;
1564 	}
1565 
1566 	state = 1;
1567 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1568 	    BUS_DMA_NOWAIT)) {
1569 		aprint_error_dev(sc->bge_dev,
1570 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1571 		error = ENOBUFS;
1572 		goto out;
1573 	}
1574 
1575 	state = 2;
1576 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1577 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1578 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1579 		error = ENOBUFS;
1580 		goto out;
1581 	}
1582 
1583 	state = 3;
1584 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1585 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1586 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1587 		error = ENOBUFS;
1588 		goto out;
1589 	}
1590 
1591 	state = 4;
1592 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1593 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1594 
1595 	SLIST_INIT(&sc->bge_jfree_listhead);
1596 	SLIST_INIT(&sc->bge_jinuse_listhead);
1597 
1598 	/*
1599 	 * Now divide it up into 9K pieces and save the addresses
1600 	 * in an array.
1601 	 */
1602 	ptr = sc->bge_cdata.bge_jumbo_buf;
1603 	for (i = 0; i < BGE_JSLOTS; i++) {
1604 		sc->bge_cdata.bge_jslots[i] = ptr;
1605 		ptr += BGE_JLEN;
1606 		entry = malloc(sizeof(struct bge_jpool_entry),
1607 		    M_DEVBUF, M_NOWAIT);
1608 		if (entry == NULL) {
1609 			aprint_error_dev(sc->bge_dev,
1610 			    "no memory for jumbo buffer queue!\n");
1611 			error = ENOBUFS;
1612 			goto out;
1613 		}
1614 		entry->slot = i;
1615 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1616 				 entry, jpool_entries);
1617 	}
1618 out:
1619 	if (error != 0) {
1620 		switch (state) {
1621 		case 4:
1622 			bus_dmamap_unload(sc->bge_dmatag,
1623 			    sc->bge_cdata.bge_rx_jumbo_map);
1624 		case 3:
1625 			bus_dmamap_destroy(sc->bge_dmatag,
1626 			    sc->bge_cdata.bge_rx_jumbo_map);
1627 		case 2:
1628 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1629 		case 1:
1630 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1631 			break;
1632 		default:
1633 			break;
1634 		}
1635 	}
1636 
1637 	return error;
1638 }
1639 
1640 /*
1641  * Allocate a jumbo buffer.
1642  */
1643 static void *
1644 bge_jalloc(struct bge_softc *sc)
1645 {
1646 	struct bge_jpool_entry   *entry;
1647 
1648 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1649 
1650 	if (entry == NULL) {
1651 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1652 		return NULL;
1653 	}
1654 
1655 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1656 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1657 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1658 }
1659 
1660 /*
1661  * Release a jumbo buffer.
1662  */
1663 static void
1664 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1665 {
1666 	struct bge_jpool_entry *entry;
1667 	struct bge_softc *sc;
1668 	int i, s;
1669 
1670 	/* Extract the softc struct pointer. */
1671 	sc = (struct bge_softc *)arg;
1672 
1673 	if (sc == NULL)
1674 		panic("bge_jfree: can't find softc pointer!");
1675 
1676 	/* calculate the slot this buffer belongs to */
1677 
1678 	i = ((char *)buf
1679 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1680 
1681 	if ((i < 0) || (i >= BGE_JSLOTS))
1682 		panic("bge_jfree: asked to free buffer that we don't manage!");
1683 
1684 	s = splvm();
1685 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1686 	if (entry == NULL)
1687 		panic("bge_jfree: buffer not in use!");
1688 	entry->slot = i;
1689 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1690 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1691 
1692 	if (__predict_true(m != NULL))
1693   		pool_cache_put(mb_cache, m);
1694 	splx(s);
1695 }
1696 
1697 
1698 /*
1699  * Initialize a standard receive ring descriptor.
1700  */
1701 static int
1702 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1703     bus_dmamap_t dmamap)
1704 {
1705 	struct mbuf		*m_new = NULL;
1706 	struct bge_rx_bd	*r;
1707 	int			error;
1708 
1709 	if (dmamap == NULL) {
1710 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1711 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1712 		if (error != 0)
1713 			return error;
1714 	}
1715 
1716 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1717 
1718 	if (m == NULL) {
1719 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1720 		if (m_new == NULL)
1721 			return ENOBUFS;
1722 
1723 		MCLGET(m_new, M_DONTWAIT);
1724 		if (!(m_new->m_flags & M_EXT)) {
1725 			m_freem(m_new);
1726 			return ENOBUFS;
1727 		}
1728 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1729 
1730 	} else {
1731 		m_new = m;
1732 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1733 		m_new->m_data = m_new->m_ext.ext_buf;
1734 	}
1735 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1736 	    m_adj(m_new, ETHER_ALIGN);
1737 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1738 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1739 		return ENOBUFS;
1740 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1741 	    BUS_DMASYNC_PREREAD);
1742 
1743 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1744 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1745 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1746 	r->bge_flags = BGE_RXBDFLAG_END;
1747 	r->bge_len = m_new->m_len;
1748 	r->bge_idx = i;
1749 
1750 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1751 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1752 		i * sizeof (struct bge_rx_bd),
1753 	    sizeof (struct bge_rx_bd),
1754 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1755 
1756 	return 0;
1757 }
1758 
1759 /*
1760  * Initialize a jumbo receive ring descriptor. This allocates
1761  * a jumbo buffer from the pool managed internally by the driver.
1762  */
1763 static int
1764 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1765 {
1766 	struct mbuf *m_new = NULL;
1767 	struct bge_rx_bd *r;
1768 	void *buf = NULL;
1769 
1770 	if (m == NULL) {
1771 
1772 		/* Allocate the mbuf. */
1773 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1774 		if (m_new == NULL)
1775 			return ENOBUFS;
1776 
1777 		/* Allocate the jumbo buffer */
1778 		buf = bge_jalloc(sc);
1779 		if (buf == NULL) {
1780 			m_freem(m_new);
1781 			aprint_error_dev(sc->bge_dev,
1782 			    "jumbo allocation failed -- packet dropped!\n");
1783 			return ENOBUFS;
1784 		}
1785 
1786 		/* Attach the buffer to the mbuf. */
1787 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1788 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1789 		    bge_jfree, sc);
1790 		m_new->m_flags |= M_EXT_RW;
1791 	} else {
1792 		m_new = m;
1793 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1794 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1795 	}
1796 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1797 	    m_adj(m_new, ETHER_ALIGN);
1798 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1799 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1800 	    BUS_DMASYNC_PREREAD);
1801 	/* Set up the descriptor. */
1802 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1803 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1804 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1805 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1806 	r->bge_len = m_new->m_len;
1807 	r->bge_idx = i;
1808 
1809 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1810 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1811 		i * sizeof (struct bge_rx_bd),
1812 	    sizeof (struct bge_rx_bd),
1813 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1814 
1815 	return 0;
1816 }
1817 
1818 /*
1819  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1820  * that's 1MB or memory, which is a lot. For now, we fill only the first
1821  * 256 ring entries and hope that our CPU is fast enough to keep up with
1822  * the NIC.
1823  */
1824 static int
1825 bge_init_rx_ring_std(struct bge_softc *sc)
1826 {
1827 	int i;
1828 
1829 	if (sc->bge_flags & BGE_RXRING_VALID)
1830 		return 0;
1831 
1832 	for (i = 0; i < BGE_SSLOTS; i++) {
1833 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1834 			return ENOBUFS;
1835 	}
1836 
1837 	sc->bge_std = i - 1;
1838 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1839 
1840 	sc->bge_flags |= BGE_RXRING_VALID;
1841 
1842 	return 0;
1843 }
1844 
1845 static void
1846 bge_free_rx_ring_std(struct bge_softc *sc)
1847 {
1848 	int i;
1849 
1850 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1851 		return;
1852 
1853 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1854 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1855 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1856 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1857 			bus_dmamap_destroy(sc->bge_dmatag,
1858 			    sc->bge_cdata.bge_rx_std_map[i]);
1859 		}
1860 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1861 		    sizeof(struct bge_rx_bd));
1862 	}
1863 
1864 	sc->bge_flags &= ~BGE_RXRING_VALID;
1865 }
1866 
1867 static int
1868 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1869 {
1870 	int i;
1871 	volatile struct bge_rcb *rcb;
1872 
1873 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1874 		return 0;
1875 
1876 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1877 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1878 			return ENOBUFS;
1879 	}
1880 
1881 	sc->bge_jumbo = i - 1;
1882 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1883 
1884 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1885 	rcb->bge_maxlen_flags = 0;
1886 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1887 
1888 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1889 
1890 	return 0;
1891 }
1892 
1893 static void
1894 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1895 {
1896 	int i;
1897 
1898 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1899 		return;
1900 
1901 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1902 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1903 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1904 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1905 		}
1906 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1907 		    sizeof(struct bge_rx_bd));
1908 	}
1909 
1910 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1911 }
1912 
1913 static void
1914 bge_free_tx_ring(struct bge_softc *sc)
1915 {
1916 	int i;
1917 	struct txdmamap_pool_entry *dma;
1918 
1919 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1920 		return;
1921 
1922 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1923 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1924 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1925 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1926 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1927 					    link);
1928 			sc->txdma[i] = 0;
1929 		}
1930 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1931 		    sizeof(struct bge_tx_bd));
1932 	}
1933 
1934 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1935 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1936 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1937 		free(dma, M_DEVBUF);
1938 	}
1939 
1940 	sc->bge_flags &= ~BGE_TXRING_VALID;
1941 }
1942 
1943 static int
1944 bge_init_tx_ring(struct bge_softc *sc)
1945 {
1946 	int i;
1947 	bus_dmamap_t dmamap;
1948 	struct txdmamap_pool_entry *dma;
1949 
1950 	if (sc->bge_flags & BGE_TXRING_VALID)
1951 		return 0;
1952 
1953 	sc->bge_txcnt = 0;
1954 	sc->bge_tx_saved_considx = 0;
1955 
1956 	/* Initialize transmit producer index for host-memory send ring. */
1957 	sc->bge_tx_prodidx = 0;
1958 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1959 	/* 5700 b2 errata */
1960 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1961 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1962 
1963 	/* NIC-memory send ring not used; initialize to zero. */
1964 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1965 	/* 5700 b2 errata */
1966 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1967 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1968 
1969 	SLIST_INIT(&sc->txdma_list);
1970 	for (i = 0; i < BGE_RSLOTS; i++) {
1971 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1972 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1973 		    &dmamap))
1974 			return ENOBUFS;
1975 		if (dmamap == NULL)
1976 			panic("dmamap NULL in bge_init_tx_ring");
1977 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1978 		if (dma == NULL) {
1979 			aprint_error_dev(sc->bge_dev,
1980 			    "can't alloc txdmamap_pool_entry\n");
1981 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1982 			return ENOMEM;
1983 		}
1984 		dma->dmamap = dmamap;
1985 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1986 	}
1987 
1988 	sc->bge_flags |= BGE_TXRING_VALID;
1989 
1990 	return 0;
1991 }
1992 
1993 static void
1994 bge_setmulti(struct bge_softc *sc)
1995 {
1996 	struct ethercom		*ac = &sc->ethercom;
1997 	struct ifnet		*ifp = &ac->ec_if;
1998 	struct ether_multi	*enm;
1999 	struct ether_multistep  step;
2000 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2001 	uint32_t		h;
2002 	int			i;
2003 
2004 	if (ifp->if_flags & IFF_PROMISC)
2005 		goto allmulti;
2006 
2007 	/* Now program new ones. */
2008 	ETHER_FIRST_MULTI(step, ac, enm);
2009 	while (enm != NULL) {
2010 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2011 			/*
2012 			 * We must listen to a range of multicast addresses.
2013 			 * For now, just accept all multicasts, rather than
2014 			 * trying to set only those filter bits needed to match
2015 			 * the range.  (At this time, the only use of address
2016 			 * ranges is for IP multicast routing, for which the
2017 			 * range is big enough to require all bits set.)
2018 			 */
2019 			goto allmulti;
2020 		}
2021 
2022 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2023 
2024 		/* Just want the 7 least-significant bits. */
2025 		h &= 0x7f;
2026 
2027 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2028 		ETHER_NEXT_MULTI(step, enm);
2029 	}
2030 
2031 	ifp->if_flags &= ~IFF_ALLMULTI;
2032 	goto setit;
2033 
2034  allmulti:
2035 	ifp->if_flags |= IFF_ALLMULTI;
2036 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2037 
2038  setit:
2039 	for (i = 0; i < 4; i++)
2040 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2041 }
2042 
2043 static void
2044 bge_sig_pre_reset(struct bge_softc *sc, int type)
2045 {
2046 
2047 	/*
2048 	 * Some chips don't like this so only do this if ASF is enabled
2049 	 */
2050 	if (sc->bge_asf_mode)
2051 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2052 
2053 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2054 		switch (type) {
2055 		case BGE_RESET_START:
2056 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2057 			    BGE_FW_DRV_STATE_START);
2058 			break;
2059 		case BGE_RESET_SHUTDOWN:
2060 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2061 			    BGE_FW_DRV_STATE_UNLOAD);
2062 			break;
2063 		case BGE_RESET_SUSPEND:
2064 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2065 			    BGE_FW_DRV_STATE_SUSPEND);
2066 			break;
2067 		}
2068 	}
2069 
2070 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2071 		bge_ape_driver_state_change(sc, type);
2072 }
2073 
2074 static void
2075 bge_sig_post_reset(struct bge_softc *sc, int type)
2076 {
2077 
2078 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2079 		switch (type) {
2080 		case BGE_RESET_START:
2081 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2082 			    BGE_FW_DRV_STATE_START_DONE);
2083 			/* START DONE */
2084 			break;
2085 		case BGE_RESET_SHUTDOWN:
2086 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2087 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2088 			break;
2089 		}
2090 	}
2091 
2092 	if (type == BGE_RESET_SHUTDOWN)
2093 		bge_ape_driver_state_change(sc, type);
2094 }
2095 
2096 static void
2097 bge_sig_legacy(struct bge_softc *sc, int type)
2098 {
2099 
2100 	if (sc->bge_asf_mode) {
2101 		switch (type) {
2102 		case BGE_RESET_START:
2103 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2104 			    BGE_FW_DRV_STATE_START);
2105 			break;
2106 		case BGE_RESET_SHUTDOWN:
2107 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2108 			    BGE_FW_DRV_STATE_UNLOAD);
2109 			break;
2110 		}
2111 	}
2112 }
2113 
2114 static void
2115 bge_wait_for_event_ack(struct bge_softc *sc)
2116 {
2117 	int i;
2118 
2119 	/* wait up to 2500usec */
2120 	for (i = 0; i < 250; i++) {
2121 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2122 			BGE_RX_CPU_DRV_EVENT))
2123 			break;
2124 		DELAY(10);
2125 	}
2126 }
2127 
2128 static void
2129 bge_stop_fw(struct bge_softc *sc)
2130 {
2131 
2132 	if (sc->bge_asf_mode) {
2133 		bge_wait_for_event_ack(sc);
2134 
2135 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2136 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2137 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2138 
2139 		bge_wait_for_event_ack(sc);
2140 	}
2141 }
2142 
2143 static int
2144 bge_poll_fw(struct bge_softc *sc)
2145 {
2146 	uint32_t val;
2147 	int i;
2148 
2149 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2150 		for (i = 0; i < BGE_TIMEOUT; i++) {
2151 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2152 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2153 				break;
2154 			DELAY(100);
2155 		}
2156 		if (i >= BGE_TIMEOUT) {
2157 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2158 			return -1;
2159 		}
2160 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
2161 		/*
2162 		 * Poll the value location we just wrote until
2163 		 * we see the 1's complement of the magic number.
2164 		 * This indicates that the firmware initialization
2165 		 * is complete.
2166 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2167 		 */
2168 		for (i = 0; i < BGE_TIMEOUT; i++) {
2169 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2170 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2171 				break;
2172 			DELAY(10);
2173 		}
2174 
2175 		if (i >= BGE_TIMEOUT) {
2176 			aprint_error_dev(sc->bge_dev,
2177 			    "firmware handshake timed out, val = %x\n", val);
2178 			return -1;
2179 		}
2180 	}
2181 
2182 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2183 		/* tg3 says we have to wait extra time */
2184 		delay(10 * 1000);
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 int
2191 bge_phy_addr(struct bge_softc *sc)
2192 {
2193 	struct pci_attach_args *pa = &(sc->bge_pa);
2194 	int phy_addr = 1;
2195 
2196 	/*
2197 	 * PHY address mapping for various devices.
2198 	 *
2199 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2200 	 * ---------+-------+-------+-------+-------+
2201 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2202 	 * BCM5704  |   1   |   X   |   1   |   X   |
2203 	 * BCM5717  |   1   |   8   |   2   |   9   |
2204 	 * BCM5719  |   1   |   8   |   2   |   9   |
2205 	 * BCM5720  |   1   |   8   |   2   |   9   |
2206 	 *
2207 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2208 	 * ---------+-------+-------+-------+-------+
2209 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2210 	 * BCM5704  |   X   |   X   |   X   |   X   |
2211 	 * BCM5717  |   X   |   X   |   X   |   X   |
2212 	 * BCM5719  |   3   |   10  |   4   |   11  |
2213 	 * BCM5720  |   X   |   X   |   X   |   X   |
2214 	 *
2215 	 * Other addresses may respond but they are not
2216 	 * IEEE compliant PHYs and should be ignored.
2217 	 */
2218 	switch (BGE_ASICREV(sc->bge_chipid)) {
2219 	case BGE_ASICREV_BCM5717:
2220 	case BGE_ASICREV_BCM5719:
2221 	case BGE_ASICREV_BCM5720:
2222 		phy_addr = pa->pa_function;
2223 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2224 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2225 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2226 		} else {
2227 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2228 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2229 		}
2230 	}
2231 
2232 	return phy_addr;
2233 }
2234 
2235 /*
2236  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2237  * self-test results.
2238  */
2239 static int
2240 bge_chipinit(struct bge_softc *sc)
2241 {
2242 	uint32_t dma_rw_ctl, mode_ctl, reg;
2243 	int i;
2244 
2245 	/* Set endianness before we access any non-PCI registers. */
2246 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2247 	    BGE_INIT);
2248 
2249 	/*
2250 	 * Clear the MAC statistics block in the NIC's
2251 	 * internal memory.
2252 	 */
2253 	for (i = BGE_STATS_BLOCK;
2254 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2255 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2256 
2257 	for (i = BGE_STATUS_BLOCK;
2258 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2259 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2260 
2261 	/* 5717 workaround from tg3 */
2262 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2263 		/* Save */
2264 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2265 
2266 		/* Temporary modify MODE_CTL to control TLP */
2267 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2268 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2269 
2270 		/* Control TLP */
2271 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2272 		    BGE_TLP_PHYCTL1);
2273 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2274 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2275 
2276 		/* Restore */
2277 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2278 	}
2279 
2280 	/* XXX Should we use 57765_FAMILY? */
2281 	if (BGE_IS_57765_PLUS(sc)) {
2282 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2283 			/* Save */
2284 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2285 
2286 			/* Temporary modify MODE_CTL to control TLP */
2287 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2288 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2289 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2290 
2291 			/* Control TLP */
2292 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2293 			    BGE_TLP_PHYCTL5);
2294 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2295 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2296 
2297 			/* Restore */
2298 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2299 		}
2300 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2301 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2302 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2303 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2304 
2305 			/* Save */
2306 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2307 
2308 			/* Temporary modify MODE_CTL to control TLP */
2309 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2310 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2311 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2312 
2313 			/* Control TLP */
2314 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2315 			    BGE_TLP_FTSMAX);
2316 			reg &= ~BGE_TLP_FTSMAX_MSK;
2317 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2318 			    reg | BGE_TLP_FTSMAX_VAL);
2319 
2320 			/* Restore */
2321 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2322 		}
2323 
2324 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2325 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2326 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2327 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2328 	}
2329 
2330 	/* Set up the PCI DMA control register. */
2331 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2332 	if (sc->bge_flags & BGE_PCIE) {
2333 		/* Read watermark not used, 128 bytes for write. */
2334 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2335 		    device_xname(sc->bge_dev)));
2336 		dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2337 	} else if (sc->bge_flags & BGE_PCIX) {
2338 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2339 		    device_xname(sc->bge_dev)));
2340 		/* PCI-X bus */
2341 		if (BGE_IS_5714_FAMILY(sc)) {
2342 			/* 256 bytes for read and write. */
2343 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2344 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2345 
2346 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2347 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2348 			else
2349 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2350 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2351 			/* 1536 bytes for read, 384 bytes for write. */
2352 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2353 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2354 		} else {
2355 			/* 384 bytes for read and write. */
2356 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2357 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2358 			    (0x0F);
2359 		}
2360 
2361 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2362 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2363 			uint32_t tmp;
2364 
2365 			/* Set ONEDMA_ATONCE for hardware workaround. */
2366 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2367 			if (tmp == 6 || tmp == 7)
2368 				dma_rw_ctl |=
2369 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2370 
2371 			/* Set PCI-X DMA write workaround. */
2372 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2373 		}
2374 	} else {
2375 		/* Conventional PCI bus: 256 bytes for read and write. */
2376 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2377 		    device_xname(sc->bge_dev)));
2378 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2379 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2380 
2381 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2382 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2383 			dma_rw_ctl |= 0x0F;
2384 	}
2385 
2386 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2387 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2388 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2389 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2390 
2391 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2392 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2393 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2394 
2395 	if (BGE_IS_5717_PLUS(sc)) {
2396 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2397 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2398 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2399 
2400 		/*
2401 		 * Enable HW workaround for controllers that misinterpret
2402 		 * a status tag update and leave interrupts permanently
2403 		 * disabled.
2404 		 */
2405 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2406 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765)
2407 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2408 	}
2409 
2410 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2411 	    dma_rw_ctl);
2412 
2413 	/*
2414 	 * Set up general mode register.
2415 	 */
2416 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2417 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2418 		/* Retain Host-2-BMC settings written by APE firmware. */
2419 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2420 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2421 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2422 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2423 	}
2424 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2425 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2426 
2427 	/*
2428 	 * BCM5701 B5 have a bug causing data corruption when using
2429 	 * 64-bit DMA reads, which can be terminated early and then
2430 	 * completed later as 32-bit accesses, in combination with
2431 	 * certain bridges.
2432 	 */
2433 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2434 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2435 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2436 
2437 	/*
2438 	 * Tell the firmware the driver is running
2439 	 */
2440 	if (sc->bge_asf_mode & ASF_STACKUP)
2441 		mode_ctl |= BGE_MODECTL_STACKUP;
2442 
2443 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2444 
2445 	/*
2446 	 * Disable memory write invalidate.  Apparently it is not supported
2447 	 * properly by these devices.
2448 	 */
2449 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2450 		   PCI_COMMAND_INVALIDATE_ENABLE);
2451 
2452 #ifdef __brokenalpha__
2453 	/*
2454 	 * Must insure that we do not cross an 8K (bytes) boundary
2455 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2456 	 * restriction on some ALPHA platforms with early revision
2457 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2458 	 */
2459 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2460 #endif
2461 
2462 	/* Set the timer prescaler (always 66MHz) */
2463 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2464 
2465 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2466 		DELAY(40);	/* XXX */
2467 
2468 		/* Put PHY into ready state */
2469 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2470 		DELAY(40);
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int
2477 bge_blockinit(struct bge_softc *sc)
2478 {
2479 	volatile struct bge_rcb	 *rcb;
2480 	bus_size_t rcb_addr;
2481 	struct ifnet *ifp = &sc->ethercom.ec_if;
2482 	bge_hostaddr taddr;
2483 	uint32_t	dmactl, val;
2484 	int		i, limit;
2485 
2486 	/*
2487 	 * Initialize the memory window pointer register so that
2488 	 * we can access the first 32K of internal NIC RAM. This will
2489 	 * allow us to set up the TX send ring RCBs and the RX return
2490 	 * ring RCBs, plus other things which live in NIC memory.
2491 	 */
2492 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2493 
2494 	if (!BGE_IS_5705_PLUS(sc)) {
2495 		/* 57XX step 33 */
2496 		/* Configure mbuf memory pool */
2497 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2498 		    BGE_BUFFPOOL_1);
2499 
2500 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2501 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2502 		else
2503 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2504 
2505 		/* 57XX step 34 */
2506 		/* Configure DMA resource pool */
2507 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2508 		    BGE_DMA_DESCRIPTORS);
2509 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2510 	}
2511 
2512 	/* 5718 step 11, 57XX step 35 */
2513 	/*
2514 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2515 	 * recommend these.
2516 	 */
2517 	if (BGE_IS_5717_PLUS(sc)) {
2518 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2519 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2520 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2521 	} else if (BGE_IS_5705_PLUS(sc)) {
2522 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2523 
2524 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2525 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2526 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2527 		} else {
2528 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2529 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2530 		}
2531 	} else {
2532 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2533 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2534 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2535 	}
2536 
2537 	/* 57XX step 36 */
2538 	/* Configure DMA resource watermarks */
2539 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2540 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2541 
2542 	/* 5718 step 13, 57XX step 38 */
2543 	/* Enable buffer manager */
2544 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2545 	/*
2546 	 * Change the arbitration algorithm of TXMBUF read request to
2547 	 * round-robin instead of priority based for BCM5719.  When
2548 	 * TXFIFO is almost empty, RDMA will hold its request until
2549 	 * TXFIFO is not almost empty.
2550 	 */
2551 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2552 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2553 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2554 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2555 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2556 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2557 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2558 
2559 	/* 57XX step 39 */
2560 	/* Poll for buffer manager start indication */
2561 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2562 		DELAY(10);
2563 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2564 			break;
2565 	}
2566 
2567 	if (i == BGE_TIMEOUT * 2) {
2568 		aprint_error_dev(sc->bge_dev,
2569 		    "buffer manager failed to start\n");
2570 		return ENXIO;
2571 	}
2572 
2573 	/* 57XX step 40 */
2574 	/* Enable flow-through queues */
2575 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2576 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2577 
2578 	/* Wait until queue initialization is complete */
2579 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2580 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2581 			break;
2582 		DELAY(10);
2583 	}
2584 
2585 	if (i == BGE_TIMEOUT * 2) {
2586 		aprint_error_dev(sc->bge_dev,
2587 		    "flow-through queue init failed\n");
2588 		return ENXIO;
2589 	}
2590 
2591 	/*
2592 	 * Summary of rings supported by the controller:
2593 	 *
2594 	 * Standard Receive Producer Ring
2595 	 * - This ring is used to feed receive buffers for "standard"
2596 	 *   sized frames (typically 1536 bytes) to the controller.
2597 	 *
2598 	 * Jumbo Receive Producer Ring
2599 	 * - This ring is used to feed receive buffers for jumbo sized
2600 	 *   frames (i.e. anything bigger than the "standard" frames)
2601 	 *   to the controller.
2602 	 *
2603 	 * Mini Receive Producer Ring
2604 	 * - This ring is used to feed receive buffers for "mini"
2605 	 *   sized frames to the controller.
2606 	 * - This feature required external memory for the controller
2607 	 *   but was never used in a production system.  Should always
2608 	 *   be disabled.
2609 	 *
2610 	 * Receive Return Ring
2611 	 * - After the controller has placed an incoming frame into a
2612 	 *   receive buffer that buffer is moved into a receive return
2613 	 *   ring.  The driver is then responsible to passing the
2614 	 *   buffer up to the stack.  Many versions of the controller
2615 	 *   support multiple RR rings.
2616 	 *
2617 	 * Send Ring
2618 	 * - This ring is used for outgoing frames.  Many versions of
2619 	 *   the controller support multiple send rings.
2620 	 */
2621 
2622 	/* 5718 step 15, 57XX step 41 */
2623 	/* Initialize the standard RX ring control block */
2624 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2625 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2626 	/* 5718 step 16 */
2627 	if (BGE_IS_5717_PLUS(sc)) {
2628 		/*
2629 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2630 		 * Bits 15-2 : Maximum RX frame size
2631 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2632 		 * Bit 0     : Reserved
2633 		 */
2634 		rcb->bge_maxlen_flags =
2635 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2636 	} else if (BGE_IS_5705_PLUS(sc)) {
2637 		/*
2638 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2639 		 * Bits 15-2 : Reserved (should be 0)
2640 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2641 		 * Bit 0     : Reserved
2642 		 */
2643 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2644 	} else {
2645 		/*
2646 		 * Ring size is always XXX entries
2647 		 * Bits 31-16: Maximum RX frame size
2648 		 * Bits 15-2 : Reserved (should be 0)
2649 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2650 		 * Bit 0     : Reserved
2651 		 */
2652 		rcb->bge_maxlen_flags =
2653 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2654 	}
2655 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2657 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2658 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2659 	else
2660 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2661 	/* Write the standard receive producer ring control block. */
2662 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2663 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2664 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2665 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2666 
2667 	/* Reset the standard receive producer ring producer index. */
2668 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2669 
2670 	/* 57XX step 42 */
2671 	/*
2672 	 * Initialize the jumbo RX ring control block
2673 	 * We set the 'ring disabled' bit in the flags
2674 	 * field until we're actually ready to start
2675 	 * using this ring (i.e. once we set the MTU
2676 	 * high enough to require it).
2677 	 */
2678 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2679 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2680 		BGE_HOSTADDR(rcb->bge_hostaddr,
2681 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2682 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2683 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2684 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2685 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2686 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2687 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2688 		else
2689 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2690 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2691 		    rcb->bge_hostaddr.bge_addr_hi);
2692 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2693 		    rcb->bge_hostaddr.bge_addr_lo);
2694 		/* Program the jumbo receive producer ring RCB parameters. */
2695 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2696 		    rcb->bge_maxlen_flags);
2697 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2698 		/* Reset the jumbo receive producer ring producer index. */
2699 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2700 	}
2701 
2702 	/* 57XX step 43 */
2703 	/* Disable the mini receive producer ring RCB. */
2704 	if (BGE_IS_5700_FAMILY(sc)) {
2705 		/* Set up dummy disabled mini ring RCB */
2706 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2707 		rcb->bge_maxlen_flags =
2708 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2709 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2710 		    rcb->bge_maxlen_flags);
2711 		/* Reset the mini receive producer ring producer index. */
2712 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2713 
2714 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2715 		    offsetof(struct bge_ring_data, bge_info),
2716 		    sizeof (struct bge_gib),
2717 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2718 	}
2719 
2720 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2721 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2722 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2723 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2724 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2725 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2726 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2727 	}
2728 	/* 5718 step 14, 57XX step 44 */
2729 	/*
2730 	 * The BD ring replenish thresholds control how often the
2731 	 * hardware fetches new BD's from the producer rings in host
2732 	 * memory.  Setting the value too low on a busy system can
2733 	 * starve the hardware and recue the throughpout.
2734 	 *
2735 	 * Set the BD ring replenish thresholds. The recommended
2736 	 * values are 1/8th the number of descriptors allocated to
2737 	 * each ring, but since we try to avoid filling the entire
2738 	 * ring we set these to the minimal value of 8.  This needs to
2739 	 * be done on several of the supported chip revisions anyway,
2740 	 * to work around HW bugs.
2741 	 */
2742 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2743 	if (BGE_IS_JUMBO_CAPABLE(sc))
2744 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2745 
2746 	/* 5718 step 18 */
2747 	if (BGE_IS_5717_PLUS(sc)) {
2748 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2749 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2750 	}
2751 
2752 	/* 57XX step 45 */
2753 	/*
2754 	 * Disable all send rings by setting the 'ring disabled' bit
2755 	 * in the flags field of all the TX send ring control blocks,
2756 	 * located in NIC memory.
2757 	 */
2758 	if (BGE_IS_5700_FAMILY(sc)) {
2759 		/* 5700 to 5704 had 16 send rings. */
2760 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2761 	} else
2762 		limit = 1;
2763 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2764 	for (i = 0; i < limit; i++) {
2765 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2766 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2767 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2768 		rcb_addr += sizeof(struct bge_rcb);
2769 	}
2770 
2771 	/* 57XX step 46 and 47 */
2772 	/* Configure send ring RCB 0 (we use only the first ring) */
2773 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2774 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2775 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2776 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2777 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2778 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2779 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2780 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2781 	else
2782 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2783 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2784 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2785 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2786 
2787 	/* 57XX step 48 */
2788 	/*
2789 	 * Disable all receive return rings by setting the
2790 	 * 'ring diabled' bit in the flags field of all the receive
2791 	 * return ring control blocks, located in NIC memory.
2792 	 */
2793 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2794 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2795 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2796 		/* Should be 17, use 16 until we get an SRAM map. */
2797 		limit = 16;
2798 	} else if (BGE_IS_5700_FAMILY(sc))
2799 		limit = BGE_RX_RINGS_MAX;
2800 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2801 	    BGE_IS_57765_PLUS(sc))
2802 		limit = 4;
2803 	else
2804 		limit = 1;
2805 	/* Disable all receive return rings */
2806 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2807 	for (i = 0; i < limit; i++) {
2808 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2809 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2810 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2811 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2812 			BGE_RCB_FLAG_RING_DISABLED));
2813 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2814 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2815 		    (i * (sizeof(uint64_t))), 0);
2816 		rcb_addr += sizeof(struct bge_rcb);
2817 	}
2818 
2819 	/* 57XX step 49 */
2820 	/*
2821 	 * Set up receive return ring 0.  Note that the NIC address
2822 	 * for RX return rings is 0x0.  The return rings live entirely
2823 	 * within the host, so the nicaddr field in the RCB isn't used.
2824 	 */
2825 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2826 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2827 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2828 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2829 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2830 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2831 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2832 
2833 	/* 5718 step 24, 57XX step 53 */
2834 	/* Set random backoff seed for TX */
2835 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2836 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2837 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2838 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2839 	    BGE_TX_BACKOFF_SEED_MASK);
2840 
2841 	/* 5718 step 26, 57XX step 55 */
2842 	/* Set inter-packet gap */
2843 	val = 0x2620;
2844 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2845 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2846 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2847 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2848 
2849 	/* 5718 step 27, 57XX step 56 */
2850 	/*
2851 	 * Specify which ring to use for packets that don't match
2852 	 * any RX rules.
2853 	 */
2854 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2855 
2856 	/* 5718 step 28, 57XX step 57 */
2857 	/*
2858 	 * Configure number of RX lists. One interrupt distribution
2859 	 * list, sixteen active lists, one bad frames class.
2860 	 */
2861 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2862 
2863 	/* 5718 step 29, 57XX step 58 */
2864 	/* Inialize RX list placement stats mask. */
2865 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2866 	/* 5718 step 30, 57XX step 59 */
2867 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2868 
2869 	/* 5718 step 33, 57XX step 62 */
2870 	/* Disable host coalescing until we get it set up */
2871 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2872 
2873 	/* 5718 step 34, 57XX step 63 */
2874 	/* Poll to make sure it's shut down. */
2875 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2876 		DELAY(10);
2877 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2878 			break;
2879 	}
2880 
2881 	if (i == BGE_TIMEOUT * 2) {
2882 		aprint_error_dev(sc->bge_dev,
2883 		    "host coalescing engine failed to idle\n");
2884 		return ENXIO;
2885 	}
2886 
2887 	/* 5718 step 35, 36, 37 */
2888 	/* Set up host coalescing defaults */
2889 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2890 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2891 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2892 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2893 	if (!(BGE_IS_5705_PLUS(sc))) {
2894 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2895 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2896 	}
2897 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2898 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2899 
2900 	/* Set up address of statistics block */
2901 	if (BGE_IS_5700_FAMILY(sc)) {
2902 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2903 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2904 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2905 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2906 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2907 	}
2908 
2909 	/* 5718 step 38 */
2910 	/* Set up address of status block */
2911 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2912 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2913 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2914 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2915 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2916 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2917 
2918 	/* Set up status block size. */
2919 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2920 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2921 		val = BGE_STATBLKSZ_FULL;
2922 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2923 	} else {
2924 		val = BGE_STATBLKSZ_32BYTE;
2925 		bzero(&sc->bge_rdata->bge_status_block, 32);
2926 	}
2927 
2928 	/* 5718 step 39, 57XX step 73 */
2929 	/* Turn on host coalescing state machine */
2930 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2931 
2932 	/* 5718 step 40, 57XX step 74 */
2933 	/* Turn on RX BD completion state machine and enable attentions */
2934 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2935 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2936 
2937 	/* 5718 step 41, 57XX step 75 */
2938 	/* Turn on RX list placement state machine */
2939 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2940 
2941 	/* 57XX step 76 */
2942 	/* Turn on RX list selector state machine. */
2943 	if (!(BGE_IS_5705_PLUS(sc)))
2944 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2945 
2946 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2947 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2948 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2949 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2950 
2951 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2952 		val |= BGE_PORTMODE_TBI;
2953 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2954 		val |= BGE_PORTMODE_GMII;
2955 	else
2956 		val |= BGE_PORTMODE_MII;
2957 
2958 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2959 	/* Allow APE to send/receive frames. */
2960 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2961 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2962 
2963 	/* Turn on DMA, clear stats */
2964 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2965 	/* 5718 step 44 */
2966 	DELAY(40);
2967 
2968 	/* 5718 step 45, 57XX step 79 */
2969 	/* Set misc. local control, enable interrupts on attentions */
2970 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2971 	if (BGE_IS_5717_PLUS(sc)) {
2972 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2973 		/* 5718 step 46 */
2974 		DELAY(100);
2975 	}
2976 
2977 	/* 57XX step 81 */
2978 	/* Turn on DMA completion state machine */
2979 	if (!(BGE_IS_5705_PLUS(sc)))
2980 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2981 
2982 	/* 5718 step 47, 57XX step 82 */
2983 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2984 
2985 	/* 5718 step 48 */
2986 	/* Enable host coalescing bug fix. */
2987 	if (BGE_IS_5755_PLUS(sc))
2988 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2989 
2990 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2991 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2992 
2993 	/* Turn on write DMA state machine */
2994 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2995 	/* 5718 step 49 */
2996 	DELAY(40);
2997 
2998 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2999 
3000 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3001 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3002 
3003 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3004 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3005 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3006 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3007 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3008 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3009 
3010 	if (sc->bge_flags & BGE_PCIE)
3011 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3012 	if (sc->bge_flags & BGE_TSO)
3013 		val |= BGE_RDMAMODE_TSO4_ENABLE;
3014 
3015 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3016 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3017 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
3018 		/*
3019 		 * Allow multiple outstanding read requests from
3020 		 * non-LSO read DMA engine.
3021 		 */
3022 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3023 	}
3024 
3025 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3026 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3027 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3028 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3029 	    BGE_IS_5717_PLUS(sc)) { /* XXX 57765? */
3030 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3031 		/*
3032 		 * Adjust tx margin to prevent TX data corruption and
3033 		 * fix internal FIFO overflow.
3034 		 */
3035 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3036 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3037 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3038 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3039 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3040 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3041 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3042 		}
3043 		/*
3044 		 * Enable fix for read DMA FIFO overruns.
3045 		 * The fix is to limit the number of RX BDs
3046 		 * the hardware would fetch at a fime.
3047 		 */
3048 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3049 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3050 	}
3051 
3052 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3053 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3054 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3055 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3056 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3057 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3058 		/*
3059 		 * Allow 4KB burst length reads for non-LSO frames.
3060 		 * Enable 512B burst length reads for buffer descriptors.
3061 		 */
3062 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3063 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3064 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3065 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3066 	}
3067 
3068 	/* Turn on read DMA state machine */
3069 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3070 	/* 5718 step 52 */
3071 	delay(40);
3072 
3073 	/* 5718 step 56, 57XX step 84 */
3074 	/* Turn on RX data completion state machine */
3075 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3076 
3077 	/* Turn on RX data and RX BD initiator state machine */
3078 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3079 
3080 	/* 57XX step 85 */
3081 	/* Turn on Mbuf cluster free state machine */
3082 	if (!BGE_IS_5705_PLUS(sc))
3083 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3084 
3085 	/* 5718 step 57, 57XX step 86 */
3086 	/* Turn on send data completion state machine */
3087 	val = BGE_SDCMODE_ENABLE;
3088 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3089 		val |= BGE_SDCMODE_CDELAY;
3090 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3091 
3092 	/* 5718 step 58 */
3093 	/* Turn on send BD completion state machine */
3094 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3095 
3096 	/* 57XX step 88 */
3097 	/* Turn on RX BD initiator state machine */
3098 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3099 
3100 	/* 5718 step 60, 57XX step 90 */
3101 	/* Turn on send data initiator state machine */
3102 	if (sc->bge_flags & BGE_TSO) {
3103 		/* XXX: magic value from Linux driver */
3104 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3105 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3106 	} else
3107 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3108 
3109 	/* 5718 step 61, 57XX step 91 */
3110 	/* Turn on send BD initiator state machine */
3111 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3112 
3113 	/* 5718 step 62, 57XX step 92 */
3114 	/* Turn on send BD selector state machine */
3115 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3116 
3117 	/* 5718 step 31, 57XX step 60 */
3118 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3119 	/* 5718 step 32, 57XX step 61 */
3120 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3121 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3122 
3123 	/* ack/clear link change events */
3124 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3125 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3126 	    BGE_MACSTAT_LINK_CHANGED);
3127 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3128 
3129 	/*
3130 	 * Enable attention when the link has changed state for
3131 	 * devices that use auto polling.
3132 	 */
3133 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3134 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3135 	} else {
3136 		/* 5718 step 68 */
3137 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3138 		/* 5718 step 69 (optionally) */
3139 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3140 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3141 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3142 			    BGE_EVTENB_MI_INTERRUPT);
3143 	}
3144 
3145 	/*
3146 	 * Clear any pending link state attention.
3147 	 * Otherwise some link state change events may be lost until attention
3148 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3149 	 * It's not necessary on newer BCM chips - perhaps enabling link
3150 	 * state change attentions implies clearing pending attention.
3151 	 */
3152 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3153 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3154 	    BGE_MACSTAT_LINK_CHANGED);
3155 
3156 	/* Enable link state change attentions. */
3157 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3158 
3159 	return 0;
3160 }
3161 
3162 static const struct bge_revision *
3163 bge_lookup_rev(uint32_t chipid)
3164 {
3165 	const struct bge_revision *br;
3166 
3167 	for (br = bge_revisions; br->br_name != NULL; br++) {
3168 		if (br->br_chipid == chipid)
3169 			return br;
3170 	}
3171 
3172 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3173 		if (br->br_chipid == BGE_ASICREV(chipid))
3174 			return br;
3175 	}
3176 
3177 	return NULL;
3178 }
3179 
3180 static const struct bge_product *
3181 bge_lookup(const struct pci_attach_args *pa)
3182 {
3183 	const struct bge_product *bp;
3184 
3185 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3186 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3187 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3188 			return bp;
3189 	}
3190 
3191 	return NULL;
3192 }
3193 
3194 static uint32_t
3195 bge_chipid(const struct pci_attach_args *pa)
3196 {
3197 	uint32_t id;
3198 
3199 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3200 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3201 
3202 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3203 		switch (PCI_PRODUCT(pa->pa_id)) {
3204 		case PCI_PRODUCT_BROADCOM_BCM5717:
3205 		case PCI_PRODUCT_BROADCOM_BCM5718:
3206 		case PCI_PRODUCT_BROADCOM_BCM5719:
3207 		case PCI_PRODUCT_BROADCOM_BCM5720:
3208 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3209 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3210 			    BGE_PCI_GEN2_PRODID_ASICREV);
3211 			break;
3212 		case PCI_PRODUCT_BROADCOM_BCM57761:
3213 		case PCI_PRODUCT_BROADCOM_BCM57762:
3214 		case PCI_PRODUCT_BROADCOM_BCM57765:
3215 		case PCI_PRODUCT_BROADCOM_BCM57766:
3216 		case PCI_PRODUCT_BROADCOM_BCM57781:
3217 		case PCI_PRODUCT_BROADCOM_BCM57785:
3218 		case PCI_PRODUCT_BROADCOM_BCM57791:
3219 		case PCI_PRODUCT_BROADCOM_BCM57795:
3220 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3221 			    BGE_PCI_GEN15_PRODID_ASICREV);
3222 			break;
3223 		default:
3224 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3225 			    BGE_PCI_PRODID_ASICREV);
3226 			break;
3227 		}
3228 	}
3229 
3230 	return id;
3231 }
3232 
3233 /*
3234  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3235  * against our list and return its name if we find a match. Note
3236  * that since the Broadcom controller contains VPD support, we
3237  * can get the device name string from the controller itself instead
3238  * of the compiled-in string. This is a little slow, but it guarantees
3239  * we'll always announce the right product name.
3240  */
3241 static int
3242 bge_probe(device_t parent, cfdata_t match, void *aux)
3243 {
3244 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3245 
3246 	if (bge_lookup(pa) != NULL)
3247 		return 1;
3248 
3249 	return 0;
3250 }
3251 
3252 static void
3253 bge_attach(device_t parent, device_t self, void *aux)
3254 {
3255 	struct bge_softc	*sc = device_private(self);
3256 	struct pci_attach_args	*pa = aux;
3257 	prop_dictionary_t dict;
3258 	const struct bge_product *bp;
3259 	const struct bge_revision *br;
3260 	pci_chipset_tag_t	pc;
3261 	pci_intr_handle_t	ih;
3262 	const char		*intrstr = NULL;
3263 	uint32_t		hwcfg = 0;
3264 	uint32_t		command;
3265 	struct ifnet		*ifp;
3266 	uint32_t		misccfg;
3267 	void *			kva;
3268 	u_char			eaddr[ETHER_ADDR_LEN];
3269 	pcireg_t		memtype, subid, reg;
3270 	bus_addr_t		memaddr;
3271 	uint32_t		pm_ctl;
3272 	bool			no_seeprom;
3273 	int			capmask;
3274 
3275 	bp = bge_lookup(pa);
3276 	KASSERT(bp != NULL);
3277 
3278 	sc->sc_pc = pa->pa_pc;
3279 	sc->sc_pcitag = pa->pa_tag;
3280 	sc->bge_dev = self;
3281 
3282 	sc->bge_pa = *pa;
3283 	pc = sc->sc_pc;
3284 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3285 
3286 	aprint_naive(": Ethernet controller\n");
3287 	aprint_normal(": %s\n", bp->bp_name);
3288 
3289 	/*
3290 	 * Map control/status registers.
3291 	 */
3292 	DPRINTFN(5, ("Map control/status regs\n"));
3293 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3294 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3295 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3296 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3297 
3298 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3299 		aprint_error_dev(sc->bge_dev,
3300 		    "failed to enable memory mapping!\n");
3301 		return;
3302 	}
3303 
3304 	DPRINTFN(5, ("pci_mem_find\n"));
3305 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3306 	switch (memtype) {
3307 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3308 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3309 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3310 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3311 		    &memaddr, &sc->bge_bsize) == 0)
3312 			break;
3313 	default:
3314 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3315 		return;
3316 	}
3317 
3318 	DPRINTFN(5, ("pci_intr_map\n"));
3319 	if (pci_intr_map(pa, &ih)) {
3320 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3321 		return;
3322 	}
3323 
3324 	DPRINTFN(5, ("pci_intr_string\n"));
3325 	intrstr = pci_intr_string(pc, ih);
3326 
3327 	DPRINTFN(5, ("pci_intr_establish\n"));
3328 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3329 
3330 	if (sc->bge_intrhand == NULL) {
3331 		aprint_error_dev(sc->bge_dev,
3332 		    "couldn't establish interrupt%s%s\n",
3333 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3334 		return;
3335 	}
3336 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3337 
3338 	/* Save various chip information. */
3339 	sc->bge_chipid = bge_chipid(pa);
3340 	sc->bge_phy_addr = bge_phy_addr(sc);
3341 
3342 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3343 	        &sc->bge_pciecap, NULL) != 0)
3344 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3345 		/* PCIe */
3346 		sc->bge_flags |= BGE_PCIE;
3347 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3348 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3349 			sc->bge_expmrq = 2048;
3350 		else
3351 			sc->bge_expmrq = 4096;
3352 		bge_set_max_readrq(sc);
3353 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3354 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3355 		/* PCI-X */
3356 		sc->bge_flags |= BGE_PCIX;
3357 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3358 			&sc->bge_pcixcap, NULL) == 0)
3359 			aprint_error_dev(sc->bge_dev,
3360 			    "unable to find PCIX capability\n");
3361 	}
3362 
3363 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3364 		/*
3365 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3366 		 * can clobber the chip's PCI config-space power control
3367 		 * registers, leaving the card in D3 powersave state. We do
3368 		 * not have memory-mapped registers in this state, so force
3369 		 * device into D0 state before starting initialization.
3370 		 */
3371 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3372 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3373 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3374 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3375 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3376 	}
3377 
3378 	/* Save chipset family. */
3379 	switch (BGE_ASICREV(sc->bge_chipid)) {
3380 	case BGE_ASICREV_BCM57765:
3381 	case BGE_ASICREV_BCM57766:
3382 		sc->bge_flags |= BGE_57765_PLUS;
3383 		/* FALLTHROUGH */
3384 	case BGE_ASICREV_BCM5717:
3385 	case BGE_ASICREV_BCM5719:
3386 	case BGE_ASICREV_BCM5720:
3387 		sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS |
3388 		    BGE_5705_PLUS;
3389 		break;
3390 	case BGE_ASICREV_BCM5755:
3391 	case BGE_ASICREV_BCM5761:
3392 	case BGE_ASICREV_BCM5784:
3393 	case BGE_ASICREV_BCM5785:
3394 	case BGE_ASICREV_BCM5787:
3395 	case BGE_ASICREV_BCM57780:
3396 		sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS;
3397 		break;
3398 	case BGE_ASICREV_BCM5700:
3399 	case BGE_ASICREV_BCM5701:
3400 	case BGE_ASICREV_BCM5703:
3401 	case BGE_ASICREV_BCM5704:
3402 		sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE;
3403 		break;
3404 	case BGE_ASICREV_BCM5714_A0:
3405 	case BGE_ASICREV_BCM5780:
3406 	case BGE_ASICREV_BCM5714:
3407 		sc->bge_flags |= BGE_5714_FAMILY;
3408 		/* FALLTHROUGH */
3409 	case BGE_ASICREV_BCM5750:
3410 	case BGE_ASICREV_BCM5752:
3411 	case BGE_ASICREV_BCM5906:
3412 		sc->bge_flags |= BGE_575X_PLUS;
3413 		/* FALLTHROUGH */
3414 	case BGE_ASICREV_BCM5705:
3415 		sc->bge_flags |= BGE_5705_PLUS;
3416 		break;
3417 	}
3418 
3419 	/* Identify chips with APE processor. */
3420 	switch (BGE_ASICREV(sc->bge_chipid)) {
3421 	case BGE_ASICREV_BCM5717:
3422 	case BGE_ASICREV_BCM5719:
3423 	case BGE_ASICREV_BCM5720:
3424 	case BGE_ASICREV_BCM5761:
3425 		sc->bge_flags |= BGE_APE;
3426 		break;
3427 	}
3428 
3429 	/* Chips with APE need BAR2 access for APE registers/memory. */
3430 	if ((sc->bge_flags & BGE_APE) != 0) {
3431 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3432 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3433 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3434 			&sc->bge_apesize)) {
3435 			aprint_error_dev(sc->bge_dev,
3436 			    "couldn't map BAR2 memory\n");
3437 			return;
3438 		}
3439 
3440 		/* Enable APE register/memory access by host driver. */
3441 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3442 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3443 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3444 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3445 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3446 
3447 		bge_ape_lock_init(sc);
3448 		bge_ape_read_fw_ver(sc);
3449 	}
3450 
3451 	/* Identify the chips that use an CPMU. */
3452 	if (BGE_IS_5717_PLUS(sc) ||
3453 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3454 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3455 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3456 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3457 		sc->bge_flags |= BGE_CPMU_PRESENT;
3458 
3459 	if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0)
3460 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_500KHZ_CONST);
3461 	else
3462 		CSR_WRITE_4(sc, BGE_MI_MODE, BGE_MIMODE_BASE);
3463 
3464 	/*
3465 	 * When using the BCM5701 in PCI-X mode, data corruption has
3466 	 * been observed in the first few bytes of some received packets.
3467 	 * Aligning the packet buffer in memory eliminates the corruption.
3468 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3469 	 * which do not support unaligned accesses, we will realign the
3470 	 * payloads by copying the received packets.
3471 	 */
3472 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3473 	    sc->bge_flags & BGE_PCIX)
3474 		sc->bge_flags |= BGE_RX_ALIGNBUG;
3475 
3476 	if (BGE_IS_5700_FAMILY(sc))
3477 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
3478 
3479 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3480 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3481 
3482 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3483 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3484 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3485 		sc->bge_flags |= BGE_IS_5788;
3486 
3487 	/*
3488 	 * Some controllers seem to require a special firmware to use
3489 	 * TSO. But the firmware is not available to FreeBSD and Linux
3490 	 * claims that the TSO performed by the firmware is slower than
3491 	 * hardware based TSO. Moreover the firmware based TSO has one
3492 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3493 	 * header is greater than 80 bytes. The workaround for the TSO
3494 	 * bug exist but it seems it's too expensive than not using
3495 	 * TSO at all. Some hardwares also have the TSO bug so limit
3496 	 * the TSO to the controllers that are not affected TSO issues
3497 	 * (e.g. 5755 or higher).
3498 	 */
3499 	if (BGE_IS_5755_PLUS(sc)) {
3500 		/*
3501 		 * BCM5754 and BCM5787 shares the same ASIC id so
3502 		 * explicit device id check is required.
3503 		 */
3504 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3505 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3506 			sc->bge_flags |= BGE_TSO;
3507 	}
3508 
3509 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3510 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3511 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3512 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3513 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3514 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3515 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3516 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3517 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3518 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3519 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3520 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3521 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3522 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3523 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3524 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3525 		capmask &= ~BMSR_EXTSTAT;
3526 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3527 	}
3528 
3529 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3530 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3531 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3532 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3533 		sc->bge_flags |= BGE_PHY_NO_WIRESPEED;
3534 
3535 	/* Set various PHY bug flags. */
3536 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3537 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3538 		sc->bge_flags |= BGE_PHY_CRC_BUG;
3539 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3540 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3541 		sc->bge_flags |= BGE_PHY_ADC_BUG;
3542 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3543 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
3544 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3545 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3546 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3547 		sc->bge_flags |= BGE_PHY_NO_3LED;
3548 	if (BGE_IS_5705_PLUS(sc) &&
3549 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3550 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3551 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3552 	    !BGE_IS_5717_PLUS(sc)) {
3553 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3554 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3555 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3556 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3557 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3558 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3559 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
3560 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3561 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
3562 		} else
3563 			sc->bge_flags |= BGE_PHY_BER_BUG;
3564 	}
3565 
3566 	/*
3567 	 * SEEPROM check.
3568 	 * First check if firmware knows we do not have SEEPROM.
3569 	 */
3570 	if (prop_dictionary_get_bool(device_properties(self),
3571 	     "without-seeprom", &no_seeprom) && no_seeprom)
3572 	 	sc->bge_flags |= BGE_NO_EEPROM;
3573 
3574 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3575 		sc->bge_flags |= BGE_NO_EEPROM;
3576 
3577 	/* Now check the 'ROM failed' bit on the RX CPU */
3578 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3579 		sc->bge_flags |= BGE_NO_EEPROM;
3580 
3581 	sc->bge_asf_mode = 0;
3582 	/* No ASF if APE present. */
3583 	if ((sc->bge_flags & BGE_APE) == 0) {
3584 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3585 			BGE_SRAM_DATA_SIG_MAGIC)) {
3586 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3587 			    BGE_HWCFG_ASF) {
3588 				sc->bge_asf_mode |= ASF_ENABLE;
3589 				sc->bge_asf_mode |= ASF_STACKUP;
3590 				if (BGE_IS_575X_PLUS(sc))
3591 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3592 			}
3593 		}
3594 	}
3595 
3596 #if 0
3597 	/*
3598 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3599 	 * lock in bge_reset().
3600 	 */
3601 	CSR_WRITE_4(sc, BGE_EE_ADDR,
3602 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3603 	delay(1000);
3604 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3605 #endif
3606 
3607 	bge_stop_fw(sc);
3608 	bge_sig_pre_reset(sc, BGE_RESET_START);
3609 	if (bge_reset(sc))
3610 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3611 
3612 	bge_sig_legacy(sc, BGE_RESET_START);
3613 	bge_sig_post_reset(sc, BGE_RESET_START);
3614 
3615 	if (bge_chipinit(sc)) {
3616 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3617 		bge_release_resources(sc);
3618 		return;
3619 	}
3620 
3621 	/*
3622 	 * Get station address from the EEPROM.
3623 	 */
3624 	if (bge_get_eaddr(sc, eaddr)) {
3625 		aprint_error_dev(sc->bge_dev,
3626 		    "failed to read station address\n");
3627 		bge_release_resources(sc);
3628 		return;
3629 	}
3630 
3631 	br = bge_lookup_rev(sc->bge_chipid);
3632 
3633 	if (br == NULL) {
3634 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3635 		    sc->bge_chipid);
3636 	} else {
3637 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3638 		    br->br_name, sc->bge_chipid);
3639 	}
3640 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3641 
3642 	/* Allocate the general information block and ring buffers. */
3643 	if (pci_dma64_available(pa))
3644 		sc->bge_dmatag = pa->pa_dmat64;
3645 	else
3646 		sc->bge_dmatag = pa->pa_dmat;
3647 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3648 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3649 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3650 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3651 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3652 		return;
3653 	}
3654 	DPRINTFN(5, ("bus_dmamem_map\n"));
3655 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3656 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3657 			   BUS_DMA_NOWAIT)) {
3658 		aprint_error_dev(sc->bge_dev,
3659 		    "can't map DMA buffers (%zu bytes)\n",
3660 		    sizeof(struct bge_ring_data));
3661 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3662 		    sc->bge_ring_rseg);
3663 		return;
3664 	}
3665 	DPRINTFN(5, ("bus_dmamem_create\n"));
3666 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3667 	    sizeof(struct bge_ring_data), 0,
3668 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3669 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3670 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3671 				 sizeof(struct bge_ring_data));
3672 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3673 		    sc->bge_ring_rseg);
3674 		return;
3675 	}
3676 	DPRINTFN(5, ("bus_dmamem_load\n"));
3677 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3678 			    sizeof(struct bge_ring_data), NULL,
3679 			    BUS_DMA_NOWAIT)) {
3680 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3681 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3682 				 sizeof(struct bge_ring_data));
3683 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3684 		    sc->bge_ring_rseg);
3685 		return;
3686 	}
3687 
3688 	DPRINTFN(5, ("bzero\n"));
3689 	sc->bge_rdata = (struct bge_ring_data *)kva;
3690 
3691 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3692 
3693 	/* Try to allocate memory for jumbo buffers. */
3694 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3695 		if (bge_alloc_jumbo_mem(sc)) {
3696 			aprint_error_dev(sc->bge_dev,
3697 			    "jumbo buffer allocation failed\n");
3698 		} else
3699 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3700 	}
3701 
3702 	/* Set default tuneable values. */
3703 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3704 	sc->bge_rx_coal_ticks = 150;
3705 	sc->bge_rx_max_coal_bds = 64;
3706 	sc->bge_tx_coal_ticks = 300;
3707 	sc->bge_tx_max_coal_bds = 400;
3708 	if (BGE_IS_5705_PLUS(sc)) {
3709 		sc->bge_tx_coal_ticks = (12 * 5);
3710 		sc->bge_tx_max_coal_bds = (12 * 5);
3711 			aprint_verbose_dev(sc->bge_dev,
3712 			    "setting short Tx thresholds\n");
3713 	}
3714 
3715 	if (BGE_IS_5717_PLUS(sc))
3716 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3717 	else if (BGE_IS_5705_PLUS(sc))
3718 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3719 	else
3720 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3721 
3722 	/* Set up ifnet structure */
3723 	ifp = &sc->ethercom.ec_if;
3724 	ifp->if_softc = sc;
3725 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3726 	ifp->if_ioctl = bge_ioctl;
3727 	ifp->if_stop = bge_stop;
3728 	ifp->if_start = bge_start;
3729 	ifp->if_init = bge_init;
3730 	ifp->if_watchdog = bge_watchdog;
3731 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3732 	IFQ_SET_READY(&ifp->if_snd);
3733 	DPRINTFN(5, ("strcpy if_xname\n"));
3734 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3735 
3736 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3737 		sc->ethercom.ec_if.if_capabilities |=
3738 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3739 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3740 		sc->ethercom.ec_if.if_capabilities |=
3741 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3742 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3743 #endif
3744 	sc->ethercom.ec_capabilities |=
3745 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3746 
3747 	if (sc->bge_flags & BGE_TSO)
3748 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3749 
3750 	/*
3751 	 * Do MII setup.
3752 	 */
3753 	DPRINTFN(5, ("mii setup\n"));
3754 	sc->bge_mii.mii_ifp = ifp;
3755 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3756 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3757 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3758 
3759 	/*
3760 	 * Figure out what sort of media we have by checking the hardware
3761 	 * config word in the first 32k of NIC internal memory, or fall back to
3762 	 * the config word in the EEPROM. Note: on some BCM5700 cards,
3763 	 * this value appears to be unset. If that's the case, we have to rely
3764 	 * on identifying the NIC by its PCI subsystem ID, as we do below for
3765 	 * the SysKonnect SK-9D41.
3766 	 */
3767 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC) {
3768 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3769 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
3770 		bge_read_eeprom(sc, (void *)&hwcfg,
3771 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3772 		hwcfg = be32toh(hwcfg);
3773 	}
3774 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3775 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3776 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3777 		if (BGE_IS_5714_FAMILY(sc))
3778 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
3779 		else
3780 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
3781 	}
3782 
3783 	/* set phyflags and chipid before mii_attach() */
3784 	dict = device_properties(self);
3785 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
3786 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3787 
3788 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3789 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3790 		    bge_ifmedia_sts);
3791 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3792 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3793 			    0, NULL);
3794 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3795 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3796 		/* Pretend the user requested this setting */
3797 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3798 	} else {
3799 		/*
3800 		 * Do transceiver setup and tell the firmware the
3801 		 * driver is down so we can try to get access the
3802 		 * probe if ASF is running.  Retry a couple of times
3803 		 * if we get a conflict with the ASF firmware accessing
3804 		 * the PHY.
3805 		 */
3806 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3807 		bge_asf_driver_up(sc);
3808 
3809 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3810 			     bge_ifmedia_sts);
3811 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3812 			   sc->bge_phy_addr, MII_OFFSET_ANY,
3813 			   MIIF_DOPAUSE);
3814 
3815 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3816 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3817 			ifmedia_add(&sc->bge_mii.mii_media,
3818 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3819 			ifmedia_set(&sc->bge_mii.mii_media,
3820 				    IFM_ETHER|IFM_MANUAL);
3821 		} else
3822 			ifmedia_set(&sc->bge_mii.mii_media,
3823 				    IFM_ETHER|IFM_AUTO);
3824 
3825 		/*
3826 		 * Now tell the firmware we are going up after probing the PHY
3827 		 */
3828 		if (sc->bge_asf_mode & ASF_STACKUP)
3829 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3830 	}
3831 
3832 	/*
3833 	 * Call MI attach routine.
3834 	 */
3835 	DPRINTFN(5, ("if_attach\n"));
3836 	if_attach(ifp);
3837 	DPRINTFN(5, ("ether_ifattach\n"));
3838 	ether_ifattach(ifp, eaddr);
3839 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3840 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3841 		RND_TYPE_NET, 0);
3842 #ifdef BGE_EVENT_COUNTERS
3843 	/*
3844 	 * Attach event counters.
3845 	 */
3846 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3847 	    NULL, device_xname(sc->bge_dev), "intr");
3848 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3849 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3850 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3851 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3852 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3853 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3854 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3855 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3856 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3857 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3858 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3859 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3860 #endif /* BGE_EVENT_COUNTERS */
3861 	DPRINTFN(5, ("callout_init\n"));
3862 	callout_init(&sc->bge_timeout, 0);
3863 
3864 	if (pmf_device_register(self, NULL, NULL))
3865 		pmf_class_network_register(self, ifp);
3866 	else
3867 		aprint_error_dev(self, "couldn't establish power handler\n");
3868 
3869 	bge_sysctl_init(sc);
3870 
3871 #ifdef BGE_DEBUG
3872 	bge_debug_info(sc);
3873 #endif
3874 }
3875 
3876 /*
3877  * Stop all chip I/O so that the kernel's probe routines don't
3878  * get confused by errant DMAs when rebooting.
3879  */
3880 static int
3881 bge_detach(device_t self, int flags __unused)
3882 {
3883 	struct bge_softc *sc = device_private(self);
3884 	struct ifnet *ifp = &sc->ethercom.ec_if;
3885 	int s;
3886 
3887 	s = splnet();
3888 	/* Stop the interface. Callouts are stopped in it. */
3889 	bge_stop(ifp, 1);
3890 	splx(s);
3891 
3892 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3893 
3894 	/* Delete all remaining media. */
3895 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3896 
3897 	ether_ifdetach(ifp);
3898 	if_detach(ifp);
3899 
3900 	bge_release_resources(sc);
3901 
3902 	return 0;
3903 }
3904 
3905 static void
3906 bge_release_resources(struct bge_softc *sc)
3907 {
3908 
3909 	/* Disestablish the interrupt handler */
3910 	if (sc->bge_intrhand != NULL) {
3911 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
3912 		sc->bge_intrhand = NULL;
3913 	}
3914 
3915 	bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
3916 	bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3917 	bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
3918 	    sizeof(struct bge_ring_data));
3919 	bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
3920 
3921 	/* Unmap the device registers */
3922 	if (sc->bge_bsize != 0) {
3923 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
3924 		sc->bge_bsize = 0;
3925 	}
3926 
3927 	/* Unmap the APE registers */
3928 	if (sc->bge_apesize != 0) {
3929 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
3930 		    sc->bge_apesize);
3931 		sc->bge_apesize = 0;
3932 	}
3933 }
3934 
3935 static int
3936 bge_reset(struct bge_softc *sc)
3937 {
3938 	uint32_t cachesize, command;
3939 	uint32_t reset, mac_mode, mac_mode_mask;
3940 	pcireg_t devctl, reg;
3941 	int i, val;
3942 	void (*write_op)(struct bge_softc *, int, int);
3943 
3944 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
3945 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
3946 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
3947 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
3948 
3949 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
3950 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3951 	    	if (sc->bge_flags & BGE_PCIE)
3952 			write_op = bge_writemem_direct;
3953 		else
3954 			write_op = bge_writemem_ind;
3955 	} else
3956 		write_op = bge_writereg_ind;
3957 
3958 #if 0
3959 	/* 57XX step 4 */
3960 	/* Acquire the NVM lock */
3961 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0 &&
3962 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
3963 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
3964 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
3965 		for (i = 0; i < 8000; i++) {
3966 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
3967 			    BGE_NVRAMSWARB_GNT1)
3968 				break;
3969 			DELAY(20);
3970 		}
3971 		if (i == 8000) {
3972 			printf("%s: NVRAM lock timedout!\n",
3973 			    device_xname(sc->bge_dev));
3974 		}
3975 	}
3976 #endif
3977 	/* Take APE lock when performing reset. */
3978 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
3979 
3980 	/* 57XX step 3 */
3981 	/* Save some important PCI state. */
3982 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3983 	/* 5718 reset step 3 */
3984 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3985 
3986 	/* 5718 reset step 5, 57XX step 5b-5d */
3987 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3988 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3989 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3990 
3991 	/* XXX ???: Disable fastboot on controllers that support it. */
3992 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3993 	    BGE_IS_5755_PLUS(sc))
3994 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3995 
3996 	/* 5718 reset step 2, 57XX step 6 */
3997 	/*
3998 	 * Write the magic number to SRAM at offset 0xB50.
3999 	 * When firmware finishes its initialization it will
4000 	 * write ~BGE_MAGIC_NUMBER to the same location.
4001 	 */
4002 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4003 
4004 	/* 5718 reset step 6, 57XX step 7 */
4005 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4006 	/*
4007 	 * XXX: from FreeBSD/Linux; no documentation
4008 	 */
4009 	if (sc->bge_flags & BGE_PCIE) {
4010 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4011 		    !BGE_IS_57765_PLUS(sc) &&
4012 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4013 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4014 			/* PCI Express 1.0 system */
4015 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4016 			    BGE_PHY_PCIE_SCRAM_MODE);
4017 		}
4018 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4019 			/*
4020 			 * Prevent PCI Express link training
4021 			 * during global reset.
4022 			 */
4023 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4024 			reset |= (1 << 29);
4025 		}
4026 	}
4027 
4028 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4029 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4030 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4031 		    i | BGE_VCPU_STATUS_DRV_RESET);
4032 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4033 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4034 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4035 	}
4036 
4037 	/*
4038 	 * Set GPHY Power Down Override to leave GPHY
4039 	 * powered up in D0 uninitialized.
4040 	 */
4041 	if (BGE_IS_5705_PLUS(sc) &&
4042 	    (sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4043 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4044 
4045 	/* Issue global reset */
4046 	write_op(sc, BGE_MISC_CFG, reset);
4047 
4048 	/* 5718 reset step 7, 57XX step 8 */
4049 	if (sc->bge_flags & BGE_PCIE)
4050 		delay(100*1000); /* too big */
4051 	else
4052 		delay(1000);
4053 
4054 	if (sc->bge_flags & BGE_PCIE) {
4055 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4056 			DELAY(500000);
4057 			/* XXX: Magic Numbers */
4058 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4059 			    BGE_PCI_UNKNOWN0);
4060 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4061 			    BGE_PCI_UNKNOWN0,
4062 			    reg | (1 << 15));
4063 		}
4064 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4065 		    sc->bge_pciecap + PCI_PCIE_DCSR);
4066 		/* Clear enable no snoop and disable relaxed ordering. */
4067 		devctl &= ~(PCI_PCIE_DCSR_ENA_RELAX_ORD |
4068 		    PCI_PCIE_DCSR_ENA_NO_SNOOP);
4069 
4070 		/* Set PCIE max payload size to 128 for older PCIe devices */
4071 		if ((sc->bge_flags & BGE_CPMU_PRESENT) == 0)
4072 			devctl &= ~(0x00e0);
4073 		/* Clear device status register. Write 1b to clear */
4074 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
4075 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
4076 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4077 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
4078 		bge_set_max_readrq(sc);
4079 	}
4080 
4081 	/* From Linux: dummy read to flush PCI posted writes */
4082 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4083 
4084 	/*
4085 	 * Reset some of the PCI state that got zapped by reset
4086 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4087 	 * set, too.
4088 	 */
4089 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4090 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4091 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4092 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4093 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4094 	    (sc->bge_flags & BGE_PCIX) != 0)
4095 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4096 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4097 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4098 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4099 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4100 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4101 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4102 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4103 
4104 	/* Step 11: disable PCI-X Relaxed Ordering. */
4105 	if (sc->bge_flags & BGE_PCIX) {
4106 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4107 		    + PCI_PCIX_CMD);
4108 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4109 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
4110 	}
4111 
4112 	/* 5718 reset step 10, 57XX step 12 */
4113 	/* Enable memory arbiter. */
4114 	if (BGE_IS_5714_FAMILY(sc)) {
4115 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4116 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4117 	} else
4118 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4119 
4120 	/* XXX 5721, 5751 and 5752 */
4121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4122 		/* Step 19: */
4123 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4124 		/* Step 20: */
4125 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4126 	}
4127 
4128 	/* 5718 reset step 12, 57XX step 15 and 16 */
4129 	/* Fix up byte swapping */
4130 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4131 
4132 	/* 5718 reset step 13, 57XX step 17 */
4133 	/*
4134 	 * Wait for the bootcode to complete initialization.
4135 	 * See BCM5718 programmer's guide's "step 13, Device reset Procedure,
4136 	 * Section 7". For 57XX, it's optional.
4137 	 */
4138 	if (BGE_IS_5717_PLUS(sc)) {
4139 		for (i = 0; i < 1000*1000; i++) {
4140 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4141 			if (val == BGE_SRAM_FW_MB_RESET_MAGIC)
4142 				break;
4143 			DELAY(10);
4144 		}
4145 	}
4146 
4147 	/* 57XX step 21 */
4148 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4149 		pcireg_t msidata;
4150 
4151 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4152 		    BGE_PCI_MSI_DATA);
4153 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4154 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4155 		    msidata);
4156 	}
4157 
4158 	/* 57XX step 18 */
4159 	/* Wirte mac mode.
4160 	 * XXX Write 0x0c for 5703S and 5704S
4161 	 */
4162 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4163 	val = (val & ~mac_mode_mask) | mac_mode;
4164 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4165 	DELAY(40);
4166 
4167 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4168 
4169 	/* 57XX step 17 */
4170 	/* Poll until the firmware initialization is complete */
4171 	bge_poll_fw(sc);
4172 
4173 	/*
4174 	 * The 5704 in TBI mode apparently needs some special
4175 	 * adjustment to insure the SERDES drive level is set
4176 	 * to 1.2V.
4177 	 */
4178 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
4179 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4180 		uint32_t serdescfg;
4181 
4182 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4183 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4184 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4185 	}
4186 
4187 	if (sc->bge_flags & BGE_PCIE &&
4188 	    !BGE_IS_57765_PLUS(sc) &&
4189 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4190 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4191 		uint32_t v;
4192 
4193 		/* Enable PCI Express bug fix */
4194 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4195 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4196 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4197 	}
4198 
4199 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4200 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4201 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4202 
4203 	return 0;
4204 }
4205 
4206 /*
4207  * Frame reception handling. This is called if there's a frame
4208  * on the receive return list.
4209  *
4210  * Note: we have to be able to handle two possibilities here:
4211  * 1) the frame is from the jumbo receive ring
4212  * 2) the frame is from the standard receive ring
4213  */
4214 
4215 static void
4216 bge_rxeof(struct bge_softc *sc)
4217 {
4218 	struct ifnet *ifp;
4219 	uint16_t rx_prod, rx_cons;
4220 	int stdcnt = 0, jumbocnt = 0;
4221 	bus_dmamap_t dmamap;
4222 	bus_addr_t offset, toff;
4223 	bus_size_t tlen;
4224 	int tosync;
4225 
4226 	rx_cons = sc->bge_rx_saved_considx;
4227 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4228 
4229 	/* Nothing to do */
4230 	if (rx_cons == rx_prod)
4231 		return;
4232 
4233 	ifp = &sc->ethercom.ec_if;
4234 
4235 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4236 	    offsetof(struct bge_ring_data, bge_status_block),
4237 	    sizeof (struct bge_status_block),
4238 	    BUS_DMASYNC_POSTREAD);
4239 
4240 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4241 	tosync = rx_prod - rx_cons;
4242 
4243 	if (tosync != 0)
4244 		rnd_add_uint32(&sc->rnd_source, tosync);
4245 
4246 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4247 
4248 	if (tosync < 0) {
4249 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4250 		    sizeof (struct bge_rx_bd);
4251 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4252 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4253 		tosync = -tosync;
4254 	}
4255 
4256 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4257 	    offset, tosync * sizeof (struct bge_rx_bd),
4258 	    BUS_DMASYNC_POSTREAD);
4259 
4260 	while (rx_cons != rx_prod) {
4261 		struct bge_rx_bd	*cur_rx;
4262 		uint32_t		rxidx;
4263 		struct mbuf		*m = NULL;
4264 
4265 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4266 
4267 		rxidx = cur_rx->bge_idx;
4268 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4269 
4270 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4271 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4272 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4273 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4274 			jumbocnt++;
4275 			bus_dmamap_sync(sc->bge_dmatag,
4276 			    sc->bge_cdata.bge_rx_jumbo_map,
4277 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4278 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4279 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4280 				ifp->if_ierrors++;
4281 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4282 				continue;
4283 			}
4284 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4285 					     NULL)== ENOBUFS) {
4286 				ifp->if_ierrors++;
4287 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4288 				continue;
4289 			}
4290 		} else {
4291 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4292 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4293 
4294 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4295 			stdcnt++;
4296 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4297 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4298 			if (dmamap == NULL) {
4299 				ifp->if_ierrors++;
4300 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4301 				continue;
4302 			}
4303 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4304 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4305 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4306 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4307 				ifp->if_ierrors++;
4308 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4309 				continue;
4310 			}
4311 			if (bge_newbuf_std(sc, sc->bge_std,
4312 			    NULL, dmamap) == ENOBUFS) {
4313 				ifp->if_ierrors++;
4314 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4315 				continue;
4316 			}
4317 		}
4318 
4319 		ifp->if_ipackets++;
4320 #ifndef __NO_STRICT_ALIGNMENT
4321 		/*
4322 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4323 		 * the Rx buffer has the layer-2 header unaligned.
4324 		 * If our CPU requires alignment, re-align by copying.
4325 		 */
4326 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
4327 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4328 				cur_rx->bge_len);
4329 			m->m_data += ETHER_ALIGN;
4330 		}
4331 #endif
4332 
4333 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4334 		m->m_pkthdr.rcvif = ifp;
4335 
4336 		/*
4337 		 * Handle BPF listeners. Let the BPF user see the packet.
4338 		 */
4339 		bpf_mtap(ifp, m);
4340 
4341 		bge_rxcsum(sc, cur_rx, m);
4342 
4343 		/*
4344 		 * If we received a packet with a vlan tag, pass it
4345 		 * to vlan_input() instead of ether_input().
4346 		 */
4347 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4348 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4349 		}
4350 
4351 		(*ifp->if_input)(ifp, m);
4352 	}
4353 
4354 	sc->bge_rx_saved_considx = rx_cons;
4355 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4356 	if (stdcnt)
4357 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4358 	if (jumbocnt)
4359 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4360 }
4361 
4362 static void
4363 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4364 {
4365 
4366 	if (BGE_IS_5717_PLUS(sc)) {
4367 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4368 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4369 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4370 			if ((cur_rx->bge_error_flag &
4371 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4372 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4373 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4374 				m->m_pkthdr.csum_data =
4375 				    cur_rx->bge_tcp_udp_csum;
4376 				m->m_pkthdr.csum_flags |=
4377 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4378 					M_CSUM_DATA);
4379 			}
4380 		}
4381 	} else {
4382 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4383 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4384 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4385 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4386 		/*
4387 		 * Rx transport checksum-offload may also
4388 		 * have bugs with packets which, when transmitted,
4389 		 * were `runts' requiring padding.
4390 		 */
4391 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4392 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4393 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4394 			m->m_pkthdr.csum_data =
4395 			    cur_rx->bge_tcp_udp_csum;
4396 			m->m_pkthdr.csum_flags |=
4397 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4398 				M_CSUM_DATA);
4399 		}
4400 	}
4401 }
4402 
4403 static void
4404 bge_txeof(struct bge_softc *sc)
4405 {
4406 	struct bge_tx_bd *cur_tx = NULL;
4407 	struct ifnet *ifp;
4408 	struct txdmamap_pool_entry *dma;
4409 	bus_addr_t offset, toff;
4410 	bus_size_t tlen;
4411 	int tosync;
4412 	struct mbuf *m;
4413 
4414 	ifp = &sc->ethercom.ec_if;
4415 
4416 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4417 	    offsetof(struct bge_ring_data, bge_status_block),
4418 	    sizeof (struct bge_status_block),
4419 	    BUS_DMASYNC_POSTREAD);
4420 
4421 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4422 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4423 	    sc->bge_tx_saved_considx;
4424 
4425 	if (tosync != 0)
4426 		rnd_add_uint32(&sc->rnd_source, tosync);
4427 
4428 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4429 
4430 	if (tosync < 0) {
4431 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4432 		    sizeof (struct bge_tx_bd);
4433 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4434 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4435 		tosync = -tosync;
4436 	}
4437 
4438 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4439 	    offset, tosync * sizeof (struct bge_tx_bd),
4440 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4441 
4442 	/*
4443 	 * Go through our tx ring and free mbufs for those
4444 	 * frames that have been sent.
4445 	 */
4446 	while (sc->bge_tx_saved_considx !=
4447 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4448 		uint32_t		idx = 0;
4449 
4450 		idx = sc->bge_tx_saved_considx;
4451 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4452 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4453 			ifp->if_opackets++;
4454 		m = sc->bge_cdata.bge_tx_chain[idx];
4455 		if (m != NULL) {
4456 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4457 			dma = sc->txdma[idx];
4458 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4459 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4460 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4461 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4462 			sc->txdma[idx] = NULL;
4463 
4464 			m_freem(m);
4465 		}
4466 		sc->bge_txcnt--;
4467 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4468 		ifp->if_timer = 0;
4469 	}
4470 
4471 	if (cur_tx != NULL)
4472 		ifp->if_flags &= ~IFF_OACTIVE;
4473 }
4474 
4475 static int
4476 bge_intr(void *xsc)
4477 {
4478 	struct bge_softc *sc;
4479 	struct ifnet *ifp;
4480 	uint32_t statusword;
4481 
4482 	sc = xsc;
4483 	ifp = &sc->ethercom.ec_if;
4484 
4485 	/* It is possible for the interrupt to arrive before
4486 	 * the status block is updated prior to the interrupt.
4487 	 * Reading the PCI State register will confirm whether the
4488 	 * interrupt is ours and will flush the status block.
4489 	 */
4490 
4491 	/* read status word from status block */
4492 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4493 
4494 	if ((statusword & BGE_STATFLAG_UPDATED) ||
4495 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
4496 		/* Ack interrupt and stop others from occuring. */
4497 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4498 
4499 		BGE_EVCNT_INCR(sc->bge_ev_intr);
4500 
4501 		/* clear status word */
4502 		sc->bge_rdata->bge_status_block.bge_status = 0;
4503 
4504 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4505 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4506 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4507 			bge_link_upd(sc);
4508 
4509 		if (ifp->if_flags & IFF_RUNNING) {
4510 			/* Check RX return ring producer/consumer */
4511 			bge_rxeof(sc);
4512 
4513 			/* Check TX ring producer/consumer */
4514 			bge_txeof(sc);
4515 		}
4516 
4517 		if (sc->bge_pending_rxintr_change) {
4518 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4519 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4520 			uint32_t junk;
4521 
4522 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4523 			DELAY(10);
4524 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4525 
4526 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4527 			DELAY(10);
4528 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4529 
4530 			sc->bge_pending_rxintr_change = 0;
4531 		}
4532 		bge_handle_events(sc);
4533 
4534 		/* Re-enable interrupts. */
4535 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4536 
4537 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4538 			bge_start(ifp);
4539 
4540 		return 1;
4541 	} else
4542 		return 0;
4543 }
4544 
4545 static void
4546 bge_asf_driver_up(struct bge_softc *sc)
4547 {
4548 	if (sc->bge_asf_mode & ASF_STACKUP) {
4549 		/* Send ASF heartbeat aprox. every 2s */
4550 		if (sc->bge_asf_count)
4551 			sc->bge_asf_count --;
4552 		else {
4553 			sc->bge_asf_count = 2;
4554 
4555 			bge_wait_for_event_ack(sc);
4556 
4557 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4558 			    BGE_FW_CMD_DRV_ALIVE);
4559 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4560 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4561 			    BGE_FW_HB_TIMEOUT_SEC);
4562 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4563 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4564 			    BGE_RX_CPU_DRV_EVENT);
4565 		}
4566 	}
4567 }
4568 
4569 static void
4570 bge_tick(void *xsc)
4571 {
4572 	struct bge_softc *sc = xsc;
4573 	struct mii_data *mii = &sc->bge_mii;
4574 	int s;
4575 
4576 	s = splnet();
4577 
4578 	if (BGE_IS_5705_PLUS(sc))
4579 		bge_stats_update_regs(sc);
4580 	else
4581 		bge_stats_update(sc);
4582 
4583 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4584 		/*
4585 		 * Since in TBI mode auto-polling can't be used we should poll
4586 		 * link status manually. Here we register pending link event
4587 		 * and trigger interrupt.
4588 		 */
4589 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4590 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4591 	} else {
4592 		/*
4593 		 * Do not touch PHY if we have link up. This could break
4594 		 * IPMI/ASF mode or produce extra input errors.
4595 		 * (extra input errors was reported for bcm5701 & bcm5704).
4596 		 */
4597 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4598 			mii_tick(mii);
4599 	}
4600 
4601 	bge_asf_driver_up(sc);
4602 
4603 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4604 
4605 	splx(s);
4606 }
4607 
4608 static void
4609 bge_stats_update_regs(struct bge_softc *sc)
4610 {
4611 	struct ifnet *ifp = &sc->ethercom.ec_if;
4612 
4613 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4614 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4615 
4616 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4617 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4618 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4619 }
4620 
4621 static void
4622 bge_stats_update(struct bge_softc *sc)
4623 {
4624 	struct ifnet *ifp = &sc->ethercom.ec_if;
4625 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4626 
4627 #define READ_STAT(sc, stats, stat) \
4628 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4629 
4630 	ifp->if_collisions +=
4631 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4632 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4633 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4634 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4635 	  ifp->if_collisions;
4636 
4637 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4638 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4639 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4640 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4641 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4642 		      READ_STAT(sc, stats,
4643 		      		xoffPauseFramesReceived.bge_addr_lo));
4644 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4645 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4646 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4647 		      READ_STAT(sc, stats,
4648 		      		macControlFramesReceived.bge_addr_lo));
4649 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4650 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4651 
4652 #undef READ_STAT
4653 
4654 #ifdef notdef
4655 	ifp->if_collisions +=
4656 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4657 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4658 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4659 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4660 	   ifp->if_collisions;
4661 #endif
4662 }
4663 
4664 /*
4665  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4666  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4667  * but when such padded frames employ the  bge IP/TCP checksum offload,
4668  * the hardware checksum assist gives incorrect results (possibly
4669  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4670  * If we pad such runts with zeros, the onboard checksum comes out correct.
4671  */
4672 static inline int
4673 bge_cksum_pad(struct mbuf *pkt)
4674 {
4675 	struct mbuf *last = NULL;
4676 	int padlen;
4677 
4678 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4679 
4680 	/* if there's only the packet-header and we can pad there, use it. */
4681 	if (pkt->m_pkthdr.len == pkt->m_len &&
4682 	    M_TRAILINGSPACE(pkt) >= padlen) {
4683 		last = pkt;
4684 	} else {
4685 		/*
4686 		 * Walk packet chain to find last mbuf. We will either
4687 		 * pad there, or append a new mbuf and pad it
4688 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4689 		 */
4690 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4691 	      	       continue; /* do nothing */
4692 		}
4693 
4694 		/* `last' now points to last in chain. */
4695 		if (M_TRAILINGSPACE(last) < padlen) {
4696 			/* Allocate new empty mbuf, pad it. Compact later. */
4697 			struct mbuf *n;
4698 			MGET(n, M_DONTWAIT, MT_DATA);
4699 			if (n == NULL)
4700 				return ENOBUFS;
4701 			n->m_len = 0;
4702 			last->m_next = n;
4703 			last = n;
4704 		}
4705 	}
4706 
4707 	KDASSERT(!M_READONLY(last));
4708 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4709 
4710 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4711 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4712 	last->m_len += padlen;
4713 	pkt->m_pkthdr.len += padlen;
4714 	return 0;
4715 }
4716 
4717 /*
4718  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4719  */
4720 static inline int
4721 bge_compact_dma_runt(struct mbuf *pkt)
4722 {
4723 	struct mbuf	*m, *prev;
4724 	int 		totlen, prevlen;
4725 
4726 	prev = NULL;
4727 	totlen = 0;
4728 	prevlen = -1;
4729 
4730 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4731 		int mlen = m->m_len;
4732 		int shortfall = 8 - mlen ;
4733 
4734 		totlen += mlen;
4735 		if (mlen == 0)
4736 			continue;
4737 		if (mlen >= 8)
4738 			continue;
4739 
4740 		/* If we get here, mbuf data is too small for DMA engine.
4741 		 * Try to fix by shuffling data to prev or next in chain.
4742 		 * If that fails, do a compacting deep-copy of the whole chain.
4743 		 */
4744 
4745 		/* Internal frag. If fits in prev, copy it there. */
4746 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4747 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4748 			prev->m_len += mlen;
4749 			m->m_len = 0;
4750 			/* XXX stitch chain */
4751 			prev->m_next = m_free(m);
4752 			m = prev;
4753 			continue;
4754 		}
4755 		else if (m->m_next != NULL &&
4756 			     M_TRAILINGSPACE(m) >= shortfall &&
4757 			     m->m_next->m_len >= (8 + shortfall)) {
4758 		    /* m is writable and have enough data in next, pull up. */
4759 
4760 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
4761 			    shortfall);
4762 			m->m_len += shortfall;
4763 			m->m_next->m_len -= shortfall;
4764 			m->m_next->m_data += shortfall;
4765 		}
4766 		else if (m->m_next == NULL || 1) {
4767 		  	/* Got a runt at the very end of the packet.
4768 			 * borrow data from the tail of the preceding mbuf and
4769 			 * update its length in-place. (The original data is still
4770 			 * valid, so we can do this even if prev is not writable.)
4771 			 */
4772 
4773 			/* if we'd make prev a runt, just move all of its data. */
4774 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4775 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4776 
4777 			if ((prev->m_len - shortfall) < 8)
4778 				shortfall = prev->m_len;
4779 
4780 #ifdef notyet	/* just do the safe slow thing for now */
4781 			if (!M_READONLY(m)) {
4782 				if (M_LEADINGSPACE(m) < shorfall) {
4783 					void *m_dat;
4784 					m_dat = (m->m_flags & M_PKTHDR) ?
4785 					  m->m_pktdat : m->dat;
4786 					memmove(m_dat, mtod(m, void*), m->m_len);
4787 					m->m_data = m_dat;
4788 				    }
4789 			} else
4790 #endif	/* just do the safe slow thing */
4791 			{
4792 				struct mbuf * n = NULL;
4793 				int newprevlen = prev->m_len - shortfall;
4794 
4795 				MGET(n, M_NOWAIT, MT_DATA);
4796 				if (n == NULL)
4797 				   return ENOBUFS;
4798 				KASSERT(m->m_len + shortfall < MLEN
4799 					/*,
4800 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4801 
4802 				/* first copy the data we're stealing from prev */
4803 				memcpy(n->m_data, prev->m_data + newprevlen,
4804 				    shortfall);
4805 
4806 				/* update prev->m_len accordingly */
4807 				prev->m_len -= shortfall;
4808 
4809 				/* copy data from runt m */
4810 				memcpy(n->m_data + shortfall, m->m_data,
4811 				    m->m_len);
4812 
4813 				/* n holds what we stole from prev, plus m */
4814 				n->m_len = shortfall + m->m_len;
4815 
4816 				/* stitch n into chain and free m */
4817 				n->m_next = m->m_next;
4818 				prev->m_next = n;
4819 				/* KASSERT(m->m_next == NULL); */
4820 				m->m_next = NULL;
4821 				m_free(m);
4822 				m = n;	/* for continuing loop */
4823 			}
4824 		}
4825 		prevlen = m->m_len;
4826 	}
4827 	return 0;
4828 }
4829 
4830 /*
4831  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4832  * pointers to descriptors.
4833  */
4834 static int
4835 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4836 {
4837 	struct bge_tx_bd	*f = NULL;
4838 	uint32_t		frag, cur;
4839 	uint16_t		csum_flags = 0;
4840 	uint16_t		txbd_tso_flags = 0;
4841 	struct txdmamap_pool_entry *dma;
4842 	bus_dmamap_t dmamap;
4843 	int			i = 0;
4844 	struct m_tag		*mtag;
4845 	int			use_tso, maxsegsize, error;
4846 
4847 	cur = frag = *txidx;
4848 
4849 	if (m_head->m_pkthdr.csum_flags) {
4850 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4851 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4852 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4853 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4854 	}
4855 
4856 	/*
4857 	 * If we were asked to do an outboard checksum, and the NIC
4858 	 * has the bug where it sometimes adds in the Ethernet padding,
4859 	 * explicitly pad with zeros so the cksum will be correct either way.
4860 	 * (For now, do this for all chip versions, until newer
4861 	 * are confirmed to not require the workaround.)
4862 	 */
4863 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4864 #ifdef notyet
4865 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4866 #endif
4867 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4868 		goto check_dma_bug;
4869 
4870 	if (bge_cksum_pad(m_head) != 0)
4871 	    return ENOBUFS;
4872 
4873 check_dma_bug:
4874 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4875 		goto doit;
4876 
4877 	/*
4878 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4879 	 * less than eight bytes.  If we encounter a teeny mbuf
4880 	 * at the end of a chain, we can pad.  Otherwise, copy.
4881 	 */
4882 	if (bge_compact_dma_runt(m_head) != 0)
4883 		return ENOBUFS;
4884 
4885 doit:
4886 	dma = SLIST_FIRST(&sc->txdma_list);
4887 	if (dma == NULL)
4888 		return ENOBUFS;
4889 	dmamap = dma->dmamap;
4890 
4891 	/*
4892 	 * Set up any necessary TSO state before we start packing...
4893 	 */
4894 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4895 	if (!use_tso) {
4896 		maxsegsize = 0;
4897 	} else {	/* TSO setup */
4898 		unsigned  mss;
4899 		struct ether_header *eh;
4900 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4901 		struct mbuf * m0 = m_head;
4902 		struct ip *ip;
4903 		struct tcphdr *th;
4904 		int iphl, hlen;
4905 
4906 		/*
4907 		 * XXX It would be nice if the mbuf pkthdr had offset
4908 		 * fields for the protocol headers.
4909 		 */
4910 
4911 		eh = mtod(m0, struct ether_header *);
4912 		switch (htons(eh->ether_type)) {
4913 		case ETHERTYPE_IP:
4914 			offset = ETHER_HDR_LEN;
4915 			break;
4916 
4917 		case ETHERTYPE_VLAN:
4918 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4919 			break;
4920 
4921 		default:
4922 			/*
4923 			 * Don't support this protocol or encapsulation.
4924 			 */
4925 			return ENOBUFS;
4926 		}
4927 
4928 		/*
4929 		 * TCP/IP headers are in the first mbuf; we can do
4930 		 * this the easy way.
4931 		 */
4932 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4933 		hlen = iphl + offset;
4934 		if (__predict_false(m0->m_len <
4935 				    (hlen + sizeof(struct tcphdr)))) {
4936 
4937 			aprint_debug_dev(sc->bge_dev,
4938 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4939 			    "not handled yet\n",
4940 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4941 #ifdef NOTYET
4942 			/*
4943 			 * XXX jonathan@NetBSD.org: untested.
4944 			 * how to force  this branch to be taken?
4945 			 */
4946 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4947 
4948 			m_copydata(m0, offset, sizeof(ip), &ip);
4949 			m_copydata(m0, hlen, sizeof(th), &th);
4950 
4951 			ip.ip_len = 0;
4952 
4953 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4954 			    sizeof(ip.ip_len), &ip.ip_len);
4955 
4956 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4957 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4958 
4959 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4960 			    sizeof(th.th_sum), &th.th_sum);
4961 
4962 			hlen += th.th_off << 2;
4963 			iptcp_opt_words	= hlen;
4964 #else
4965 			/*
4966 			 * if_wm "hard" case not yet supported, can we not
4967 			 * mandate it out of existence?
4968 			 */
4969 			(void) ip; (void)th; (void) ip_tcp_hlen;
4970 
4971 			return ENOBUFS;
4972 #endif
4973 		} else {
4974 			ip = (struct ip *) (mtod(m0, char *) + offset);
4975 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4976 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4977 
4978 			/* Total IP/TCP options, in 32-bit words */
4979 			iptcp_opt_words = (ip_tcp_hlen
4980 					   - sizeof(struct tcphdr)
4981 					   - sizeof(struct ip)) >> 2;
4982 		}
4983 		if (BGE_IS_575X_PLUS(sc)) {
4984 			th->th_sum = 0;
4985 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4986 		} else {
4987 			/*
4988 			 * XXX jonathan@NetBSD.org: 5705 untested.
4989 			 * Requires TSO firmware patch for 5701/5703/5704.
4990 			 */
4991 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4992 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4993 		}
4994 
4995 		mss = m_head->m_pkthdr.segsz;
4996 		txbd_tso_flags |=
4997 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4998 		    BGE_TXBDFLAG_CPU_POST_DMA;
4999 
5000 		/*
5001 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5002 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5003 		 * the NIC copies 40 bytes of IP/TCP header from the
5004 		 * supplied header into the IP/TCP header portion of
5005 		 * each post-TSO-segment. If the supplied packet has IP or
5006 		 * TCP options, we need to tell the NIC to copy those extra
5007 		 * bytes into each  post-TSO header, in addition to the normal
5008 		 * 40-byte IP/TCP header (and to leave space accordingly).
5009 		 * Unfortunately, the driver encoding of option length
5010 		 * varies across different ASIC families.
5011 		 */
5012 		tcp_seg_flags = 0;
5013 		if (iptcp_opt_words) {
5014 			if (BGE_IS_5705_PLUS(sc)) {
5015 				tcp_seg_flags =
5016 					iptcp_opt_words << 11;
5017 			} else {
5018 				txbd_tso_flags |=
5019 					iptcp_opt_words << 12;
5020 			}
5021 		}
5022 		maxsegsize = mss | tcp_seg_flags;
5023 		ip->ip_len = htons(mss + ip_tcp_hlen);
5024 
5025 	}	/* TSO setup */
5026 
5027 	/*
5028 	 * Start packing the mbufs in this chain into
5029 	 * the fragment pointers. Stop when we run out
5030 	 * of fragments or hit the end of the mbuf chain.
5031 	 */
5032 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5033 	    BUS_DMA_NOWAIT);
5034 	if (error)
5035 		return ENOBUFS;
5036 	/*
5037 	 * Sanity check: avoid coming within 16 descriptors
5038 	 * of the end of the ring.
5039 	 */
5040 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5041 		BGE_TSO_PRINTF(("%s: "
5042 		    " dmamap_load_mbuf too close to ring wrap\n",
5043 		    device_xname(sc->bge_dev)));
5044 		goto fail_unload;
5045 	}
5046 
5047 	mtag = sc->ethercom.ec_nvlans ?
5048 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5049 
5050 
5051 	/* Iterate over dmap-map fragments. */
5052 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5053 		f = &sc->bge_rdata->bge_tx_ring[frag];
5054 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5055 			break;
5056 
5057 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5058 		f->bge_len = dmamap->dm_segs[i].ds_len;
5059 
5060 		/*
5061 		 * For 5751 and follow-ons, for TSO we must turn
5062 		 * off checksum-assist flag in the tx-descr, and
5063 		 * supply the ASIC-revision-specific encoding
5064 		 * of TSO flags and segsize.
5065 		 */
5066 		if (use_tso) {
5067 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5068 				f->bge_rsvd = maxsegsize;
5069 				f->bge_flags = csum_flags | txbd_tso_flags;
5070 			} else {
5071 				f->bge_rsvd = 0;
5072 				f->bge_flags =
5073 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5074 			}
5075 		} else {
5076 			f->bge_rsvd = 0;
5077 			f->bge_flags = csum_flags;
5078 		}
5079 
5080 		if (mtag != NULL) {
5081 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5082 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5083 		} else {
5084 			f->bge_vlan_tag = 0;
5085 		}
5086 		cur = frag;
5087 		BGE_INC(frag, BGE_TX_RING_CNT);
5088 	}
5089 
5090 	if (i < dmamap->dm_nsegs) {
5091 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5092 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5093 		goto fail_unload;
5094 	}
5095 
5096 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5097 	    BUS_DMASYNC_PREWRITE);
5098 
5099 	if (frag == sc->bge_tx_saved_considx) {
5100 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5101 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5102 
5103 		goto fail_unload;
5104 	}
5105 
5106 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5107 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5108 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5109 	sc->txdma[cur] = dma;
5110 	sc->bge_txcnt += dmamap->dm_nsegs;
5111 
5112 	*txidx = frag;
5113 
5114 	return 0;
5115 
5116 fail_unload:
5117 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
5118 
5119 	return ENOBUFS;
5120 }
5121 
5122 /*
5123  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5124  * to the mbuf data regions directly in the transmit descriptors.
5125  */
5126 static void
5127 bge_start(struct ifnet *ifp)
5128 {
5129 	struct bge_softc *sc;
5130 	struct mbuf *m_head = NULL;
5131 	uint32_t prodidx;
5132 	int pkts = 0;
5133 
5134 	sc = ifp->if_softc;
5135 
5136 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5137 		return;
5138 
5139 	prodidx = sc->bge_tx_prodidx;
5140 
5141 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5142 		IFQ_POLL(&ifp->if_snd, m_head);
5143 		if (m_head == NULL)
5144 			break;
5145 
5146 #if 0
5147 		/*
5148 		 * XXX
5149 		 * safety overkill.  If this is a fragmented packet chain
5150 		 * with delayed TCP/UDP checksums, then only encapsulate
5151 		 * it if we have enough descriptors to handle the entire
5152 		 * chain at once.
5153 		 * (paranoia -- may not actually be needed)
5154 		 */
5155 		if (m_head->m_flags & M_FIRSTFRAG &&
5156 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5157 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5158 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5159 				ifp->if_flags |= IFF_OACTIVE;
5160 				break;
5161 			}
5162 		}
5163 #endif
5164 
5165 		/*
5166 		 * Pack the data into the transmit ring. If we
5167 		 * don't have room, set the OACTIVE flag and wait
5168 		 * for the NIC to drain the ring.
5169 		 */
5170 		if (bge_encap(sc, m_head, &prodidx)) {
5171 			ifp->if_flags |= IFF_OACTIVE;
5172 			break;
5173 		}
5174 
5175 		/* now we are committed to transmit the packet */
5176 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5177 		pkts++;
5178 
5179 		/*
5180 		 * If there's a BPF listener, bounce a copy of this frame
5181 		 * to him.
5182 		 */
5183 		bpf_mtap(ifp, m_head);
5184 	}
5185 	if (pkts == 0)
5186 		return;
5187 
5188 	/* Transmit */
5189 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5190 	/* 5700 b2 errata */
5191 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5192 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5193 
5194 	sc->bge_tx_prodidx = prodidx;
5195 
5196 	/*
5197 	 * Set a timeout in case the chip goes out to lunch.
5198 	 */
5199 	ifp->if_timer = 5;
5200 }
5201 
5202 static int
5203 bge_init(struct ifnet *ifp)
5204 {
5205 	struct bge_softc *sc = ifp->if_softc;
5206 	const uint16_t *m;
5207 	uint32_t mode;
5208 	int s, error = 0;
5209 
5210 	s = splnet();
5211 
5212 	ifp = &sc->ethercom.ec_if;
5213 
5214 	/* Cancel pending I/O and flush buffers. */
5215 	bge_stop(ifp, 0);
5216 
5217 	bge_stop_fw(sc);
5218 	bge_sig_pre_reset(sc, BGE_RESET_START);
5219 	bge_reset(sc);
5220 	bge_sig_legacy(sc, BGE_RESET_START);
5221 	bge_sig_post_reset(sc, BGE_RESET_START);
5222 
5223 	bge_chipinit(sc);
5224 
5225 	/*
5226 	 * Init the various state machines, ring
5227 	 * control blocks and firmware.
5228 	 */
5229 	error = bge_blockinit(sc);
5230 	if (error != 0) {
5231 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5232 		    error);
5233 		splx(s);
5234 		return error;
5235 	}
5236 
5237 	ifp = &sc->ethercom.ec_if;
5238 
5239 	/* 5718 step 25, 57XX step 54 */
5240 	/* Specify MTU. */
5241 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5242 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5243 
5244 	/* 5718 step 23 */
5245 	/* Load our MAC address. */
5246 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5247 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5248 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5249 
5250 	/* Enable or disable promiscuous mode as needed. */
5251 	if (ifp->if_flags & IFF_PROMISC)
5252 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5253 	else
5254 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5255 
5256 	/* Program multicast filter. */
5257 	bge_setmulti(sc);
5258 
5259 	/* Init RX ring. */
5260 	bge_init_rx_ring_std(sc);
5261 
5262 	/*
5263 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5264 	 * memory to insure that the chip has in fact read the first
5265 	 * entry of the ring.
5266 	 */
5267 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5268 		uint32_t		v, i;
5269 		for (i = 0; i < 10; i++) {
5270 			DELAY(20);
5271 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5272 			if (v == (MCLBYTES - ETHER_ALIGN))
5273 				break;
5274 		}
5275 		if (i == 10)
5276 			aprint_error_dev(sc->bge_dev,
5277 			    "5705 A0 chip failed to load RX ring\n");
5278 	}
5279 
5280 	/* Init jumbo RX ring. */
5281 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5282 		bge_init_rx_ring_jumbo(sc);
5283 
5284 	/* Init our RX return ring index */
5285 	sc->bge_rx_saved_considx = 0;
5286 
5287 	/* Init TX ring. */
5288 	bge_init_tx_ring(sc);
5289 
5290 	/* 5718 step 63, 57XX step 94 */
5291 	/* Enable TX MAC state machine lockup fix. */
5292 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5293 	if (BGE_IS_5755_PLUS(sc) ||
5294 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5295 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5296 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5297 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5298 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5299 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5300 	}
5301 
5302 	/* Turn on transmitter */
5303 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5304 	/* 5718 step 64 */
5305 	DELAY(100);
5306 
5307 	/* 5718 step 65, 57XX step 95 */
5308 	/* Turn on receiver */
5309 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5310 	if (BGE_IS_5755_PLUS(sc))
5311 		mode |= BGE_RXMODE_IPV6_ENABLE;
5312 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5313 	/* 5718 step 66 */
5314 	DELAY(10);
5315 
5316 	/* 5718 step 12 */
5317 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5318 
5319 	/* Tell firmware we're alive. */
5320 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5321 
5322 	/* Enable host interrupts. */
5323 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5324 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5325 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5326 
5327 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5328 		goto out;
5329 
5330 	ifp->if_flags |= IFF_RUNNING;
5331 	ifp->if_flags &= ~IFF_OACTIVE;
5332 
5333 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5334 
5335 out:
5336 	sc->bge_if_flags = ifp->if_flags;
5337 	splx(s);
5338 
5339 	return error;
5340 }
5341 
5342 /*
5343  * Set media options.
5344  */
5345 static int
5346 bge_ifmedia_upd(struct ifnet *ifp)
5347 {
5348 	struct bge_softc *sc = ifp->if_softc;
5349 	struct mii_data *mii = &sc->bge_mii;
5350 	struct ifmedia *ifm = &sc->bge_ifmedia;
5351 	int rc;
5352 
5353 	/* If this is a 1000baseX NIC, enable the TBI port. */
5354 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5355 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5356 			return EINVAL;
5357 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5358 		case IFM_AUTO:
5359 			/*
5360 			 * The BCM5704 ASIC appears to have a special
5361 			 * mechanism for programming the autoneg
5362 			 * advertisement registers in TBI mode.
5363 			 */
5364 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5365 				uint32_t sgdig;
5366 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5367 				if (sgdig & BGE_SGDIGSTS_DONE) {
5368 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5369 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5370 					sgdig |= BGE_SGDIGCFG_AUTO |
5371 					    BGE_SGDIGCFG_PAUSE_CAP |
5372 					    BGE_SGDIGCFG_ASYM_PAUSE;
5373 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5374 					    sgdig | BGE_SGDIGCFG_SEND);
5375 					DELAY(5);
5376 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5377 					    sgdig);
5378 				}
5379 			}
5380 			break;
5381 		case IFM_1000_SX:
5382 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5383 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5384 				    BGE_MACMODE_HALF_DUPLEX);
5385 			} else {
5386 				BGE_SETBIT(sc, BGE_MAC_MODE,
5387 				    BGE_MACMODE_HALF_DUPLEX);
5388 			}
5389 			DELAY(40);
5390 			break;
5391 		default:
5392 			return EINVAL;
5393 		}
5394 		/* XXX 802.3x flow control for 1000BASE-SX */
5395 		return 0;
5396 	}
5397 
5398 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5399 	if ((rc = mii_mediachg(mii)) == ENXIO)
5400 		return 0;
5401 
5402 	/*
5403 	 * Force an interrupt so that we will call bge_link_upd
5404 	 * if needed and clear any pending link state attention.
5405 	 * Without this we are not getting any further interrupts
5406 	 * for link state changes and thus will not UP the link and
5407 	 * not be able to send in bge_start. The only way to get
5408 	 * things working was to receive a packet and get a RX intr.
5409 	 */
5410 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5411 	    sc->bge_flags & BGE_IS_5788)
5412 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5413 	else
5414 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5415 
5416 	return rc;
5417 }
5418 
5419 /*
5420  * Report current media status.
5421  */
5422 static void
5423 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5424 {
5425 	struct bge_softc *sc = ifp->if_softc;
5426 	struct mii_data *mii = &sc->bge_mii;
5427 
5428 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5429 		ifmr->ifm_status = IFM_AVALID;
5430 		ifmr->ifm_active = IFM_ETHER;
5431 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5432 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5433 			ifmr->ifm_status |= IFM_ACTIVE;
5434 		ifmr->ifm_active |= IFM_1000_SX;
5435 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5436 			ifmr->ifm_active |= IFM_HDX;
5437 		else
5438 			ifmr->ifm_active |= IFM_FDX;
5439 		return;
5440 	}
5441 
5442 	mii_pollstat(mii);
5443 	ifmr->ifm_status = mii->mii_media_status;
5444 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5445 	    sc->bge_flowflags;
5446 }
5447 
5448 static int
5449 bge_ifflags_cb(struct ethercom *ec)
5450 {
5451 	struct ifnet *ifp = &ec->ec_if;
5452 	struct bge_softc *sc = ifp->if_softc;
5453 	int change = ifp->if_flags ^ sc->bge_if_flags;
5454 
5455 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5456 		return ENETRESET;
5457 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5458 		return 0;
5459 
5460 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5461 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5462 	else
5463 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5464 
5465 	bge_setmulti(sc);
5466 
5467 	sc->bge_if_flags = ifp->if_flags;
5468 	return 0;
5469 }
5470 
5471 static int
5472 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5473 {
5474 	struct bge_softc *sc = ifp->if_softc;
5475 	struct ifreq *ifr = (struct ifreq *) data;
5476 	int s, error = 0;
5477 	struct mii_data *mii;
5478 
5479 	s = splnet();
5480 
5481 	switch (command) {
5482 	case SIOCSIFMEDIA:
5483 		/* XXX Flow control is not supported for 1000BASE-SX */
5484 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5485 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5486 			sc->bge_flowflags = 0;
5487 		}
5488 
5489 		/* Flow control requires full-duplex mode. */
5490 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5491 		    (ifr->ifr_media & IFM_FDX) == 0) {
5492 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5493 		}
5494 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5495 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5496 				/* We can do both TXPAUSE and RXPAUSE. */
5497 				ifr->ifr_media |=
5498 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5499 			}
5500 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5501 		}
5502 		/* FALLTHROUGH */
5503 	case SIOCGIFMEDIA:
5504 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5505 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5506 			    command);
5507 		} else {
5508 			mii = &sc->bge_mii;
5509 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5510 			    command);
5511 		}
5512 		break;
5513 	default:
5514 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5515 			break;
5516 
5517 		error = 0;
5518 
5519 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5520 			;
5521 		else if (ifp->if_flags & IFF_RUNNING)
5522 			bge_setmulti(sc);
5523 		break;
5524 	}
5525 
5526 	splx(s);
5527 
5528 	return error;
5529 }
5530 
5531 static void
5532 bge_watchdog(struct ifnet *ifp)
5533 {
5534 	struct bge_softc *sc;
5535 
5536 	sc = ifp->if_softc;
5537 
5538 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5539 
5540 	ifp->if_flags &= ~IFF_RUNNING;
5541 	bge_init(ifp);
5542 
5543 	ifp->if_oerrors++;
5544 }
5545 
5546 static void
5547 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5548 {
5549 	int i;
5550 
5551 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5552 
5553 	for (i = 0; i < 1000; i++) {
5554 		delay(100);
5555 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5556 			return;
5557 	}
5558 
5559 	/*
5560 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5561 	 * on some environment (and once after boot?)
5562 	 */
5563 	if (reg != BGE_SRS_MODE)
5564 		aprint_error_dev(sc->bge_dev,
5565 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5566 		    (u_long)reg, bit);
5567 }
5568 
5569 /*
5570  * Stop the adapter and free any mbufs allocated to the
5571  * RX and TX lists.
5572  */
5573 static void
5574 bge_stop(struct ifnet *ifp, int disable)
5575 {
5576 	struct bge_softc *sc = ifp->if_softc;
5577 
5578 	callout_stop(&sc->bge_timeout);
5579 
5580 	/* Disable host interrupts. */
5581 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5582 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5583 
5584 	/*
5585 	 * Tell firmware we're shutting down.
5586 	 */
5587 	bge_stop_fw(sc);
5588 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5589 
5590 	/*
5591 	 * Disable all of the receiver blocks.
5592 	 */
5593 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5594 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5595 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5596 	if (BGE_IS_5700_FAMILY(sc))
5597 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5598 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5599 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5600 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5601 
5602 	/*
5603 	 * Disable all of the transmit blocks.
5604 	 */
5605 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5606 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5607 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5608 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5609 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5610 	if (BGE_IS_5700_FAMILY(sc))
5611 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5612 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5613 
5614 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5615 	delay(40);
5616 
5617 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5618 
5619 	/*
5620 	 * Shut down all of the memory managers and related
5621 	 * state machines.
5622 	 */
5623 	/* 5718 step 5a,5b */
5624 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5625 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5626 	if (BGE_IS_5700_FAMILY(sc))
5627 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5628 
5629 	/* 5718 step 5c,5d */
5630 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5631 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5632 
5633 	if (BGE_IS_5700_FAMILY(sc)) {
5634 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5635 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5636 	}
5637 
5638 	bge_reset(sc);
5639 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5640 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5641 
5642 	/*
5643 	 * Keep the ASF firmware running if up.
5644 	 */
5645 	if (sc->bge_asf_mode & ASF_STACKUP)
5646 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5647 	else
5648 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5649 
5650 	/* Free the RX lists. */
5651 	bge_free_rx_ring_std(sc);
5652 
5653 	/* Free jumbo RX list. */
5654 	if (BGE_IS_JUMBO_CAPABLE(sc))
5655 		bge_free_rx_ring_jumbo(sc);
5656 
5657 	/* Free TX buffers. */
5658 	bge_free_tx_ring(sc);
5659 
5660 	/*
5661 	 * Isolate/power down the PHY.
5662 	 */
5663 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
5664 		mii_down(&sc->bge_mii);
5665 
5666 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5667 
5668 	/* Clear MAC's link state (PHY may still have link UP). */
5669 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5670 
5671 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5672 }
5673 
5674 static void
5675 bge_link_upd(struct bge_softc *sc)
5676 {
5677 	struct ifnet *ifp = &sc->ethercom.ec_if;
5678 	struct mii_data *mii = &sc->bge_mii;
5679 	uint32_t status;
5680 	int link;
5681 
5682 	/* Clear 'pending link event' flag */
5683 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5684 
5685 	/*
5686 	 * Process link state changes.
5687 	 * Grrr. The link status word in the status block does
5688 	 * not work correctly on the BCM5700 rev AX and BX chips,
5689 	 * according to all available information. Hence, we have
5690 	 * to enable MII interrupts in order to properly obtain
5691 	 * async link changes. Unfortunately, this also means that
5692 	 * we have to read the MAC status register to detect link
5693 	 * changes, thereby adding an additional register access to
5694 	 * the interrupt handler.
5695 	 */
5696 
5697 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5698 		status = CSR_READ_4(sc, BGE_MAC_STS);
5699 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5700 			mii_pollstat(mii);
5701 
5702 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5703 			    mii->mii_media_status & IFM_ACTIVE &&
5704 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5705 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5706 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5707 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5708 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5709 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5710 
5711 			/* Clear the interrupt */
5712 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5713 			    BGE_EVTENB_MI_INTERRUPT);
5714 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5715 			    BRGPHY_MII_ISR);
5716 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5717 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
5718 		}
5719 		return;
5720 	}
5721 
5722 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
5723 		status = CSR_READ_4(sc, BGE_MAC_STS);
5724 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5725 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5726 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5727 				if (BGE_ASICREV(sc->bge_chipid)
5728 				    == BGE_ASICREV_BCM5704) {
5729 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5730 					    BGE_MACMODE_TBI_SEND_CFGS);
5731 					DELAY(40);
5732 				}
5733 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5734 				if_link_state_change(ifp, LINK_STATE_UP);
5735 			}
5736 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5737 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5738 			if_link_state_change(ifp, LINK_STATE_DOWN);
5739 		}
5740 	/*
5741 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
5742 	 * This should not happen since mii callouts are locked now, but
5743 	 * we keep this check for debug.
5744 	 */
5745 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5746 		/*
5747 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5748 		 * bit in status word always set. Workaround this bug by
5749 		 * reading PHY link status directly.
5750 		 */
5751 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5752 		    BGE_STS_LINK : 0;
5753 
5754 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5755 			mii_pollstat(mii);
5756 
5757 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5758 			    mii->mii_media_status & IFM_ACTIVE &&
5759 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5760 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5761 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5762 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5763 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5764 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5765 		}
5766 	}
5767 
5768 	/* Clear the attention */
5769 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5770 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5771 	    BGE_MACSTAT_LINK_CHANGED);
5772 }
5773 
5774 static int
5775 bge_sysctl_verify(SYSCTLFN_ARGS)
5776 {
5777 	int error, t;
5778 	struct sysctlnode node;
5779 
5780 	node = *rnode;
5781 	t = *(int*)rnode->sysctl_data;
5782 	node.sysctl_data = &t;
5783 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
5784 	if (error || newp == NULL)
5785 		return error;
5786 
5787 #if 0
5788 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5789 	    node.sysctl_num, rnode->sysctl_num));
5790 #endif
5791 
5792 	if (node.sysctl_num == bge_rxthresh_nodenum) {
5793 		if (t < 0 || t >= NBGE_RX_THRESH)
5794 			return EINVAL;
5795 		bge_update_all_threshes(t);
5796 	} else
5797 		return EINVAL;
5798 
5799 	*(int*)rnode->sysctl_data = t;
5800 
5801 	return 0;
5802 }
5803 
5804 /*
5805  * Set up sysctl(3) MIB, hw.bge.*.
5806  */
5807 static void
5808 bge_sysctl_init(struct bge_softc *sc)
5809 {
5810 	int rc, bge_root_num;
5811 	const struct sysctlnode *node;
5812 
5813 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
5814 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
5815 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
5816 		goto out;
5817 	}
5818 
5819 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5820 	    0, CTLTYPE_NODE, "bge",
5821 	    SYSCTL_DESCR("BGE interface controls"),
5822 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5823 		goto out;
5824 	}
5825 
5826 	bge_root_num = node->sysctl_num;
5827 
5828 	/* BGE Rx interrupt mitigation level */
5829 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5830 	    CTLFLAG_READWRITE,
5831 	    CTLTYPE_INT, "rx_lvl",
5832 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5833 	    bge_sysctl_verify, 0,
5834 	    &bge_rx_thresh_lvl,
5835 	    0, CTL_HW, bge_root_num, CTL_CREATE,
5836 	    CTL_EOL)) != 0) {
5837 		goto out;
5838 	}
5839 
5840 	bge_rxthresh_nodenum = node->sysctl_num;
5841 
5842 	return;
5843 
5844 out:
5845 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5846 }
5847 
5848 #ifdef BGE_DEBUG
5849 void
5850 bge_debug_info(struct bge_softc *sc)
5851 {
5852 
5853 	printf("Hardware Flags:\n");
5854 	if (BGE_IS_57765_PLUS(sc))
5855 		printf(" - 57765 Plus\n");
5856 	if (BGE_IS_5717_PLUS(sc))
5857 		printf(" - 5717 Plus\n");
5858 	if (BGE_IS_5755_PLUS(sc))
5859 		printf(" - 5755 Plus\n");
5860 	if (BGE_IS_575X_PLUS(sc))
5861 		printf(" - 575X Plus\n");
5862 	if (BGE_IS_5705_PLUS(sc))
5863 		printf(" - 5705 Plus\n");
5864 	if (BGE_IS_5714_FAMILY(sc))
5865 		printf(" - 5714 Family\n");
5866 	if (BGE_IS_5700_FAMILY(sc))
5867 		printf(" - 5700 Family\n");
5868 	if (sc->bge_flags & BGE_IS_5788)
5869 		printf(" - 5788\n");
5870 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
5871 		printf(" - Supports Jumbo Frames\n");
5872 	if (sc->bge_flags & BGE_NO_EEPROM)
5873 		printf(" - No EEPROM\n");
5874 	if (sc->bge_flags & BGE_PCIX)
5875 		printf(" - PCI-X Bus\n");
5876 	if (sc->bge_flags & BGE_PCIE)
5877 		printf(" - PCI Express Bus\n");
5878 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
5879 		printf(" - RX Alignment Bug\n");
5880 	if (sc->bge_flags & BGE_APE)
5881 		printf(" - APE\n");
5882 	if (sc->bge_flags & BGE_CPMU_PRESENT)
5883 		printf(" - CPMU\n");
5884 	if (sc->bge_flags & BGE_TSO)
5885 		printf(" - TSO\n");
5886 
5887 	if (sc->bge_flags & BGE_PHY_NO_3LED)
5888 		printf(" - No 3 LEDs\n");
5889 	if (sc->bge_flags & BGE_PHY_CRC_BUG)
5890 		printf(" - CRC bug\n");
5891 	if (sc->bge_flags & BGE_PHY_ADC_BUG)
5892 		printf(" - ADC bug\n");
5893 	if (sc->bge_flags & BGE_PHY_5704_A0_BUG)
5894 		printf(" - 5704 A0 bug\n");
5895 	if (sc->bge_flags & BGE_PHY_JITTER_BUG)
5896 		printf(" - jitter bug\n");
5897 	if (sc->bge_flags & BGE_PHY_BER_BUG)
5898 		printf(" - BER bug\n");
5899 	if (sc->bge_flags & BGE_PHY_ADJUST_TRIM)
5900 		printf(" - adjust trim\n");
5901 	if (sc->bge_flags & BGE_PHY_NO_WIRESPEED)
5902 		printf(" - no wirespeed\n");
5903 }
5904 #endif /* BGE_DEBUG */
5905 
5906 static int
5907 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
5908 {
5909 	prop_dictionary_t dict;
5910 	prop_data_t ea;
5911 
5912 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
5913 		return 1;
5914 
5915 	dict = device_properties(sc->bge_dev);
5916 	ea = prop_dictionary_get(dict, "mac-address");
5917 	if (ea != NULL) {
5918 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
5919 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
5920 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
5921 		return 0;
5922 	}
5923 
5924 	return 1;
5925 }
5926 
5927 static int
5928 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
5929 {
5930 	uint32_t mac_addr;
5931 
5932 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
5933 	if ((mac_addr >> 16) == 0x484b) {
5934 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
5935 		ether_addr[1] = (uint8_t)mac_addr;
5936 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
5937 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
5938 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
5939 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
5940 		ether_addr[5] = (uint8_t)mac_addr;
5941 		return 0;
5942 	}
5943 	return 1;
5944 }
5945 
5946 static int
5947 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
5948 {
5949 	int mac_offset = BGE_EE_MAC_OFFSET;
5950 
5951 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5952 		mac_offset = BGE_EE_MAC_OFFSET_5906;
5953 
5954 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
5955 	    ETHER_ADDR_LEN));
5956 }
5957 
5958 static int
5959 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
5960 {
5961 
5962 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5963 		return 1;
5964 
5965 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
5966 	   ETHER_ADDR_LEN));
5967 }
5968 
5969 static int
5970 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
5971 {
5972 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
5973 		/* NOTE: Order is critical */
5974 		bge_get_eaddr_fw,
5975 		bge_get_eaddr_mem,
5976 		bge_get_eaddr_nvram,
5977 		bge_get_eaddr_eeprom,
5978 		NULL
5979 	};
5980 	const bge_eaddr_fcn_t *func;
5981 
5982 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5983 		if ((*func)(sc, eaddr) == 0)
5984 			break;
5985 	}
5986 	return (*func == NULL ? ENXIO : 0);
5987 }
5988