xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*	$NetBSD: if_bge.c,v 1.346 2020/07/02 09:07:10 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.346 2020/07/02 09:07:10 msaitoh Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 #include <sys/rndsource.h>
95 
96 #include <net/if.h>
97 #include <net/if_dl.h>
98 #include <net/if_media.h>
99 #include <net/if_ether.h>
100 #include <net/bpf.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h>			/* for struct ip */
113 #include <netinet/tcp.h>		/* for struct tcphdr */
114 
115 #include <dev/pci/pcireg.h>
116 #include <dev/pci/pcivar.h>
117 #include <dev/pci/pcidevs.h>
118 
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/miidevs.h>
122 #include <dev/mii/brgphyreg.h>
123 
124 #include <dev/pci/if_bgereg.h>
125 #include <dev/pci/if_bgevar.h>
126 
127 #include <prop/proplib.h>
128 
129 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
130 
131 
132 /*
133  * Tunable thresholds for rx-side bge interrupt mitigation.
134  */
135 
136 /*
137  * The pairs of values below were obtained from empirical measurement
138  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
139  * interrupt for every N packets received, where N is, approximately,
140  * the second value (rx_max_bds) in each pair.  The values are chosen
141  * such that moving from one pair to the succeeding pair was observed
142  * to roughly halve interrupt rate under sustained input packet load.
143  * The values were empirically chosen to avoid overflowing internal
144  * limits on the  bcm5700: increasing rx_ticks much beyond 600
145  * results in internal wrapping and higher interrupt rates.
146  * The limit of 46 frames was chosen to match NFS workloads.
147  *
148  * These values also work well on bcm5701, bcm5704C, and (less
149  * tested) bcm5703.  On other chipsets, (including the Altima chip
150  * family), the larger values may overflow internal chip limits,
151  * leading to increasing interrupt rates rather than lower interrupt
152  * rates.
153  *
154  * Applications using heavy interrupt mitigation (interrupting every
155  * 32 or 46 frames) in both directions may need to increase the TCP
156  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
157  * full link bandwidth, due to ACKs and window updates lingering
158  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
159  */
160 static const struct bge_load_rx_thresh {
161 	int rx_ticks;
162 	int rx_max_bds; }
163 bge_rx_threshes[] = {
164 	{ 16,	1 },	/* rx_max_bds = 1 disables interrupt mitigation */
165 	{ 32,	2 },
166 	{ 50,	4 },
167 	{ 100,	8 },
168 	{ 192, 16 },
169 	{ 416, 32 },
170 	{ 598, 46 }
171 };
172 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
173 
174 /* XXX patchable; should be sysctl'able */
175 static int bge_auto_thresh = 1;
176 static int bge_rx_thresh_lvl;
177 
178 static int bge_rxthresh_nodenum;
179 
180 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
181 
182 static uint32_t bge_chipid(const struct pci_attach_args *);
183 static int bge_can_use_msi(struct bge_softc *);
184 static int bge_probe(device_t, cfdata_t, void *);
185 static void bge_attach(device_t, device_t, void *);
186 static int bge_detach(device_t, int);
187 static void bge_release_resources(struct bge_softc *);
188 
189 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
190 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
191 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
194 
195 static void bge_txeof(struct bge_softc *);
196 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
197 static void bge_rxeof(struct bge_softc *);
198 
199 static void bge_asf_driver_up (struct bge_softc *);
200 static void bge_tick(void *);
201 static void bge_stats_update(struct bge_softc *);
202 static void bge_stats_update_regs(struct bge_softc *);
203 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
204 
205 static int bge_intr(void *);
206 static void bge_start(struct ifnet *);
207 static int bge_ifflags_cb(struct ethercom *);
208 static int bge_ioctl(struct ifnet *, u_long, void *);
209 static int bge_init(struct ifnet *);
210 static void bge_stop(struct ifnet *, int);
211 static void bge_watchdog(struct ifnet *);
212 static int bge_ifmedia_upd(struct ifnet *);
213 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214 
215 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
216 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
217 
218 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
220 static void bge_setmulti(struct bge_softc *);
221 
222 static void bge_handle_events(struct bge_softc *);
223 static int bge_alloc_jumbo_mem(struct bge_softc *);
224 #if 0 /* XXX */
225 static void bge_free_jumbo_mem(struct bge_softc *);
226 #endif
227 static void *bge_jalloc(struct bge_softc *);
228 static void bge_jfree(struct mbuf *, void *, size_t, void *);
229 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
230 			       bus_dmamap_t);
231 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
232 static int bge_init_rx_ring_std(struct bge_softc *);
233 static void bge_free_rx_ring_std(struct bge_softc *m, bool);
234 static int bge_init_rx_ring_jumbo(struct bge_softc *);
235 static void bge_free_rx_ring_jumbo(struct bge_softc *);
236 static void bge_free_tx_ring(struct bge_softc *m, bool);
237 static int bge_init_tx_ring(struct bge_softc *);
238 
239 static int bge_chipinit(struct bge_softc *);
240 static int bge_blockinit(struct bge_softc *);
241 static int bge_phy_addr(struct bge_softc *);
242 static uint32_t bge_readmem_ind(struct bge_softc *, int);
243 static void bge_writemem_ind(struct bge_softc *, int, int);
244 static void bge_writembx(struct bge_softc *, int, int);
245 static void bge_writembx_flush(struct bge_softc *, int, int);
246 static void bge_writemem_direct(struct bge_softc *, int, int);
247 static void bge_writereg_ind(struct bge_softc *, int, int);
248 static void bge_set_max_readrq(struct bge_softc *);
249 
250 static int bge_miibus_readreg(device_t, int, int, uint16_t *);
251 static int bge_miibus_writereg(device_t, int, int, uint16_t);
252 static void bge_miibus_statchg(struct ifnet *);
253 
254 #define BGE_RESET_SHUTDOWN	0
255 #define	BGE_RESET_START		1
256 #define	BGE_RESET_SUSPEND	2
257 static void bge_sig_post_reset(struct bge_softc *, int);
258 static void bge_sig_legacy(struct bge_softc *, int);
259 static void bge_sig_pre_reset(struct bge_softc *, int);
260 static void bge_wait_for_event_ack(struct bge_softc *);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void bge_sysctl_init(struct bge_softc *);
265 static int bge_sysctl_verify(SYSCTLFN_PROTO);
266 
267 static void bge_ape_lock_init(struct bge_softc *);
268 static void bge_ape_read_fw_ver(struct bge_softc *);
269 static int bge_ape_lock(struct bge_softc *, int);
270 static void bge_ape_unlock(struct bge_softc *, int);
271 static void bge_ape_send_event(struct bge_softc *, uint32_t);
272 static void bge_ape_driver_state_change(struct bge_softc *, int);
273 
274 #ifdef BGE_DEBUG
275 #define DPRINTF(x)	if (bgedebug) printf x
276 #define DPRINTFN(n, x)	if (bgedebug >= (n)) printf x
277 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
278 int	bgedebug = 0;
279 int	bge_tso_debug = 0;
280 void		bge_debug_info(struct bge_softc *);
281 #else
282 #define DPRINTF(x)
283 #define DPRINTFN(n, x)
284 #define BGE_TSO_PRINTF(x)
285 #endif
286 
287 #ifdef BGE_EVENT_COUNTERS
288 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
289 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
290 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
291 #else
292 #define	BGE_EVCNT_INCR(ev)	/* nothing */
293 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
294 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
295 #endif
296 
297 #define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
298 /*
299  * The BCM5700 documentation seems to indicate that the hardware still has the
300  * Alteon vendor ID burned into it, though it should always be overridden by
301  * the value in the EEPROM.  We'll check for it anyway.
302  */
303 static const struct bge_product {
304 	pci_vendor_id_t		bp_vendor;
305 	pci_product_id_t	bp_product;
306 	const char		*bp_name;
307 } bge_products[] = {
308 	{ VIDDID(ALTEON,   BCM5700),	"Broadcom BCM5700 Gigabit" },
309 	{ VIDDID(ALTEON,   BCM5701),	"Broadcom BCM5701 Gigabit" },
310 	{ VIDDID(ALTIMA,   AC1000),	"Altima AC1000 Gigabit" },
311 	{ VIDDID(ALTIMA,   AC1001),	"Altima AC1001 Gigabit" },
312 	{ VIDDID(ALTIMA,   AC1003),	"Altima AC1003 Gigabit" },
313 	{ VIDDID(ALTIMA,   AC9100),	"Altima AC9100 Gigabit" },
314 	{ VIDDID(APPLE,	   BCM5701),	"APPLE BCM5701 Gigabit" },
315 	{ VIDDID(BROADCOM, BCM5700),	"Broadcom BCM5700 Gigabit" },
316 	{ VIDDID(BROADCOM, BCM5701),	"Broadcom BCM5701 Gigabit" },
317 	{ VIDDID(BROADCOM, BCM5702),	"Broadcom BCM5702 Gigabit" },
318 	{ VIDDID(BROADCOM, BCM5702FE),	"Broadcom BCM5702FE Fast" },
319 	{ VIDDID(BROADCOM, BCM5702X),	"Broadcom BCM5702X Gigabit" },
320 	{ VIDDID(BROADCOM, BCM5703),	"Broadcom BCM5703 Gigabit" },
321 	{ VIDDID(BROADCOM, BCM5703X),	"Broadcom BCM5703X Gigabit" },
322 	{ VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
323 	{ VIDDID(BROADCOM, BCM5704C),	"Broadcom BCM5704C Dual Gigabit" },
324 	{ VIDDID(BROADCOM, BCM5704S),	"Broadcom BCM5704S Dual Gigabit" },
325 	{ VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
326 	{ VIDDID(BROADCOM, BCM5705),	"Broadcom BCM5705 Gigabit" },
327 	{ VIDDID(BROADCOM, BCM5705F),	"Broadcom BCM5705F Gigabit" },
328 	{ VIDDID(BROADCOM, BCM5705K),	"Broadcom BCM5705K Gigabit" },
329 	{ VIDDID(BROADCOM, BCM5705M),	"Broadcom BCM5705M Gigabit" },
330 	{ VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
331 	{ VIDDID(BROADCOM, BCM5714),	"Broadcom BCM5714 Gigabit" },
332 	{ VIDDID(BROADCOM, BCM5714S),	"Broadcom BCM5714S Gigabit" },
333 	{ VIDDID(BROADCOM, BCM5715),	"Broadcom BCM5715 Gigabit" },
334 	{ VIDDID(BROADCOM, BCM5715S),	"Broadcom BCM5715S Gigabit" },
335 	{ VIDDID(BROADCOM, BCM5717),	"Broadcom BCM5717 Gigabit" },
336 	{ VIDDID(BROADCOM, BCM5717C),	"Broadcom BCM5717 Gigabit" },
337 	{ VIDDID(BROADCOM, BCM5718),	"Broadcom BCM5718 Gigabit" },
338 	{ VIDDID(BROADCOM, BCM5719),	"Broadcom BCM5719 Gigabit" },
339 	{ VIDDID(BROADCOM, BCM5720),	"Broadcom BCM5720 Gigabit" },
340 	{ VIDDID(BROADCOM, BCM5721),	"Broadcom BCM5721 Gigabit" },
341 	{ VIDDID(BROADCOM, BCM5722),	"Broadcom BCM5722 Gigabit" },
342 	{ VIDDID(BROADCOM, BCM5723),	"Broadcom BCM5723 Gigabit" },
343 	{ VIDDID(BROADCOM, BCM5725),	"Broadcom BCM5725 Gigabit" },
344 	{ VIDDID(BROADCOM, BCM5727),	"Broadcom BCM5727 Gigabit" },
345 	{ VIDDID(BROADCOM, BCM5750),	"Broadcom BCM5750 Gigabit" },
346 	{ VIDDID(BROADCOM, BCM5751),	"Broadcom BCM5751 Gigabit" },
347 	{ VIDDID(BROADCOM, BCM5751F),	"Broadcom BCM5751F Gigabit" },
348 	{ VIDDID(BROADCOM, BCM5751M),	"Broadcom BCM5751M Gigabit" },
349 	{ VIDDID(BROADCOM, BCM5752),	"Broadcom BCM5752 Gigabit" },
350 	{ VIDDID(BROADCOM, BCM5752M),	"Broadcom BCM5752M Gigabit" },
351 	{ VIDDID(BROADCOM, BCM5753),	"Broadcom BCM5753 Gigabit" },
352 	{ VIDDID(BROADCOM, BCM5753F),	"Broadcom BCM5753F Gigabit" },
353 	{ VIDDID(BROADCOM, BCM5753M),	"Broadcom BCM5753M Gigabit" },
354 	{ VIDDID(BROADCOM, BCM5754),	"Broadcom BCM5754 Gigabit" },
355 	{ VIDDID(BROADCOM, BCM5754M),	"Broadcom BCM5754M Gigabit" },
356 	{ VIDDID(BROADCOM, BCM5755),	"Broadcom BCM5755 Gigabit" },
357 	{ VIDDID(BROADCOM, BCM5755M),	"Broadcom BCM5755M Gigabit" },
358 	{ VIDDID(BROADCOM, BCM5756),	"Broadcom BCM5756 Gigabit" },
359 	{ VIDDID(BROADCOM, BCM5761),	"Broadcom BCM5761 Gigabit" },
360 	{ VIDDID(BROADCOM, BCM5761E),	"Broadcom BCM5761E Gigabit" },
361 	{ VIDDID(BROADCOM, BCM5761S),	"Broadcom BCM5761S Gigabit" },
362 	{ VIDDID(BROADCOM, BCM5761SE),	"Broadcom BCM5761SE Gigabit" },
363 	{ VIDDID(BROADCOM, BCM5762),	"Broadcom BCM5762 Gigabit" },
364 	{ VIDDID(BROADCOM, BCM5764),	"Broadcom BCM5764 Gigabit" },
365 	{ VIDDID(BROADCOM, BCM5780),	"Broadcom BCM5780 Gigabit" },
366 	{ VIDDID(BROADCOM, BCM5780S),	"Broadcom BCM5780S Gigabit" },
367 	{ VIDDID(BROADCOM, BCM5781),	"Broadcom BCM5781 Gigabit" },
368 	{ VIDDID(BROADCOM, BCM5782),	"Broadcom BCM5782 Gigabit" },
369 	{ VIDDID(BROADCOM, BCM5784M),	"BCM5784M NetLink 1000baseT" },
370 	{ VIDDID(BROADCOM, BCM5785F),	"BCM5785F NetLink 10/100" },
371 	{ VIDDID(BROADCOM, BCM5785G),	"BCM5785G NetLink 1000baseT" },
372 	{ VIDDID(BROADCOM, BCM5786),	"Broadcom BCM5786 Gigabit" },
373 	{ VIDDID(BROADCOM, BCM5787),	"Broadcom BCM5787 Gigabit" },
374 	{ VIDDID(BROADCOM, BCM5787F),	"Broadcom BCM5787F 10/100" },
375 	{ VIDDID(BROADCOM, BCM5787M),	"Broadcom BCM5787M Gigabit" },
376 	{ VIDDID(BROADCOM, BCM5788),	"Broadcom BCM5788 Gigabit" },
377 	{ VIDDID(BROADCOM, BCM5789),	"Broadcom BCM5789 Gigabit" },
378 	{ VIDDID(BROADCOM, BCM5901),	"Broadcom BCM5901 Fast" },
379 	{ VIDDID(BROADCOM, BCM5901A2),	"Broadcom BCM5901A2 Fast" },
380 	{ VIDDID(BROADCOM, BCM5903M),	"Broadcom BCM5903M Fast" },
381 	{ VIDDID(BROADCOM, BCM5906),	"Broadcom BCM5906 Fast" },
382 	{ VIDDID(BROADCOM, BCM5906M),	"Broadcom BCM5906M Fast" },
383 	{ VIDDID(BROADCOM, BCM57760),	"Broadcom BCM57760 Gigabit" },
384 	{ VIDDID(BROADCOM, BCM57761),	"Broadcom BCM57761 Gigabit" },
385 	{ VIDDID(BROADCOM, BCM57762),	"Broadcom BCM57762 Gigabit" },
386 	{ VIDDID(BROADCOM, BCM57764),	"Broadcom BCM57764 Gigabit" },
387 	{ VIDDID(BROADCOM, BCM57765),	"Broadcom BCM57765 Gigabit" },
388 	{ VIDDID(BROADCOM, BCM57766),	"Broadcom BCM57766 Gigabit" },
389 	{ VIDDID(BROADCOM, BCM57767),	"Broadcom BCM57767 Gigabit" },
390 	{ VIDDID(BROADCOM, BCM57780),	"Broadcom BCM57780 Gigabit" },
391 	{ VIDDID(BROADCOM, BCM57781),	"Broadcom BCM57781 Gigabit" },
392 	{ VIDDID(BROADCOM, BCM57782),	"Broadcom BCM57782 Gigabit" },
393 	{ VIDDID(BROADCOM, BCM57785),	"Broadcom BCM57785 Gigabit" },
394 	{ VIDDID(BROADCOM, BCM57786),	"Broadcom BCM57786 Gigabit" },
395 	{ VIDDID(BROADCOM, BCM57787),	"Broadcom BCM57787 Gigabit" },
396 	{ VIDDID(BROADCOM, BCM57788),	"Broadcom BCM57788 Gigabit" },
397 	{ VIDDID(BROADCOM, BCM57790),	"Broadcom BCM57790 Gigabit" },
398 	{ VIDDID(BROADCOM, BCM57791),	"Broadcom BCM57791 Gigabit" },
399 	{ VIDDID(BROADCOM, BCM57795),	"Broadcom BCM57795 Gigabit" },
400 	{ VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
401 	{ VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
402 	{ VIDDID(3COM, 3C996),		"3Com 3c996 Gigabit" },
403 	{ VIDDID(FUJITSU4, PW008GE4),	"Fujitsu PW008GE4 Gigabit" },
404 	{ VIDDID(FUJITSU4, PW008GE5),	"Fujitsu PW008GE5 Gigabit" },
405 	{ VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
406 	{ 0, 0, NULL },
407 };
408 
409 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
410 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
411 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
412 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
413 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
414 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
415 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
416 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
417 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
418 
419 static const struct bge_revision {
420 	uint32_t		br_chipid;
421 	const char		*br_name;
422 } bge_revisions[] = {
423 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
424 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
425 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
426 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
427 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
428 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
429 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
430 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
431 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
432 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
433 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
434 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
435 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
436 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
437 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
438 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
439 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
440 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
441 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
442 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
443 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
444 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
445 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
446 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
447 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
448 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
449 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
450 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
451 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
452 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
453 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
454 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
455 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
456 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
457 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
458 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
459 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
460 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
461 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
462 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
463 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
464 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
465 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
466 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
467 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
468 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
469 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
470 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
471 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
472 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
473 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
474 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
475 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
476 	{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
477 	{ BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
478 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
479 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
480 	{ BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
481 	/* 5754 and 5787 share the same ASIC ID */
482 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
483 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
484 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
485 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
486 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
487 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
488 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
489 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
490 	{ BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
491 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
492 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
493 
494 	{ 0, NULL }
495 };
496 
497 /*
498  * Some defaults for major revisions, so that newer steppings
499  * that we don't know about have a shot at working.
500  */
501 static const struct bge_revision bge_majorrevs[] = {
502 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
503 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
504 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
505 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
506 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
507 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
508 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
509 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
510 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
511 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
512 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
513 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
514 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
515 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
516 	/* 5754 and 5787 share the same ASIC ID */
517 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
518 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
519 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
520 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
521 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
522 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
523 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
524 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
525 	{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
526 
527 	{ 0, NULL }
528 };
529 
530 static int bge_allow_asf = 1;
531 
532 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
533     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
534 
535 static uint32_t
536 bge_readmem_ind(struct bge_softc *sc, int off)
537 {
538 	pcireg_t val;
539 
540 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
541 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
542 		return 0;
543 
544 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
545 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
546 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
547 	return val;
548 }
549 
550 static void
551 bge_writemem_ind(struct bge_softc *sc, int off, int val)
552 {
553 
554 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
555 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
556 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
557 }
558 
559 /*
560  * PCI Express only
561  */
562 static void
563 bge_set_max_readrq(struct bge_softc *sc)
564 {
565 	pcireg_t val;
566 
567 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
568 	    + PCIE_DCSR);
569 	val &= ~PCIE_DCSR_MAX_READ_REQ;
570 	switch (sc->bge_expmrq) {
571 	case 2048:
572 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
573 		break;
574 	case 4096:
575 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
576 		break;
577 	default:
578 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
579 		break;
580 	}
581 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
582 	    + PCIE_DCSR, val);
583 }
584 
585 #ifdef notdef
586 static uint32_t
587 bge_readreg_ind(struct bge_softc *sc, int off)
588 {
589 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
590 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
591 }
592 #endif
593 
594 static void
595 bge_writereg_ind(struct bge_softc *sc, int off, int val)
596 {
597 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
598 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
599 }
600 
601 static void
602 bge_writemem_direct(struct bge_softc *sc, int off, int val)
603 {
604 	CSR_WRITE_4(sc, off, val);
605 }
606 
607 static void
608 bge_writembx(struct bge_softc *sc, int off, int val)
609 {
610 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
611 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
612 
613 	CSR_WRITE_4(sc, off, val);
614 }
615 
616 static void
617 bge_writembx_flush(struct bge_softc *sc, int off, int val)
618 {
619 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
620 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
621 
622 	CSR_WRITE_4_FLUSH(sc, off, val);
623 }
624 
625 /*
626  * Clear all stale locks and select the lock for this driver instance.
627  */
628 void
629 bge_ape_lock_init(struct bge_softc *sc)
630 {
631 	struct pci_attach_args *pa = &(sc->bge_pa);
632 	uint32_t bit, regbase;
633 	int i;
634 
635 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
636 		regbase = BGE_APE_LOCK_GRANT;
637 	else
638 		regbase = BGE_APE_PER_LOCK_GRANT;
639 
640 	/* Clear any stale locks. */
641 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642 		switch (i) {
643 		case BGE_APE_LOCK_PHY0:
644 		case BGE_APE_LOCK_PHY1:
645 		case BGE_APE_LOCK_PHY2:
646 		case BGE_APE_LOCK_PHY3:
647 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
648 			break;
649 		default:
650 			if (pa->pa_function == 0)
651 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
652 			else
653 				bit = (1 << pa->pa_function);
654 		}
655 		APE_WRITE_4(sc, regbase + 4 * i, bit);
656 	}
657 
658 	/* Select the PHY lock based on the device's function number. */
659 	switch (pa->pa_function) {
660 	case 0:
661 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662 		break;
663 	case 1:
664 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665 		break;
666 	case 2:
667 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668 		break;
669 	case 3:
670 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671 		break;
672 	default:
673 		printf("%s: PHY lock not supported on function\n",
674 		    device_xname(sc->bge_dev));
675 		break;
676 	}
677 }
678 
679 /*
680  * Check for APE firmware, set flags, and print version info.
681  */
682 void
683 bge_ape_read_fw_ver(struct bge_softc *sc)
684 {
685 	const char *fwtype;
686 	uint32_t apedata, features;
687 
688 	/* Check for a valid APE signature in shared memory. */
689 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
690 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
691 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
692 		return;
693 	}
694 
695 	/* Check if APE firmware is running. */
696 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
697 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
698 		printf("%s: APE signature found but FW status not ready! "
699 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
700 		return;
701 	}
702 
703 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
704 
705 	/* Fetch the APE firwmare type and version. */
706 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
707 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
708 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
709 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
710 		fwtype = "NCSI";
711 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
712 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
713 		fwtype = "DASH";
714 	} else
715 		fwtype = "UNKN";
716 
717 	/* Print the APE firmware version. */
718 	aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
719 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
723 }
724 
725 int
726 bge_ape_lock(struct bge_softc *sc, int locknum)
727 {
728 	struct pci_attach_args *pa = &(sc->bge_pa);
729 	uint32_t bit, gnt, req, status;
730 	int i, off;
731 
732 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
733 		return (0);
734 
735 	/* Lock request/grant registers have different bases. */
736 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
737 		req = BGE_APE_LOCK_REQ;
738 		gnt = BGE_APE_LOCK_GRANT;
739 	} else {
740 		req = BGE_APE_PER_LOCK_REQ;
741 		gnt = BGE_APE_PER_LOCK_GRANT;
742 	}
743 
744 	off = 4 * locknum;
745 
746 	switch (locknum) {
747 	case BGE_APE_LOCK_GPIO:
748 		/* Lock required when using GPIO. */
749 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
750 			return (0);
751 		if (pa->pa_function == 0)
752 			bit = BGE_APE_LOCK_REQ_DRIVER0;
753 		else
754 			bit = (1 << pa->pa_function);
755 		break;
756 	case BGE_APE_LOCK_GRC:
757 		/* Lock required to reset the device. */
758 		if (pa->pa_function == 0)
759 			bit = BGE_APE_LOCK_REQ_DRIVER0;
760 		else
761 			bit = (1 << pa->pa_function);
762 		break;
763 	case BGE_APE_LOCK_MEM:
764 		/* Lock required when accessing certain APE memory. */
765 		if (pa->pa_function == 0)
766 			bit = BGE_APE_LOCK_REQ_DRIVER0;
767 		else
768 			bit = (1 << pa->pa_function);
769 		break;
770 	case BGE_APE_LOCK_PHY0:
771 	case BGE_APE_LOCK_PHY1:
772 	case BGE_APE_LOCK_PHY2:
773 	case BGE_APE_LOCK_PHY3:
774 		/* Lock required when accessing PHYs. */
775 		bit = BGE_APE_LOCK_REQ_DRIVER0;
776 		break;
777 	default:
778 		return (EINVAL);
779 	}
780 
781 	/* Request a lock. */
782 	APE_WRITE_4_FLUSH(sc, req + off, bit);
783 
784 	/* Wait up to 1 second to acquire lock. */
785 	for (i = 0; i < 20000; i++) {
786 		status = APE_READ_4(sc, gnt + off);
787 		if (status == bit)
788 			break;
789 		DELAY(50);
790 	}
791 
792 	/* Handle any errors. */
793 	if (status != bit) {
794 		printf("%s: APE lock %d request failed! "
795 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
796 		    device_xname(sc->bge_dev),
797 		    locknum, req + off, bit & 0xFFFF, gnt + off,
798 		    status & 0xFFFF);
799 		/* Revoke the lock request. */
800 		APE_WRITE_4(sc, gnt + off, bit);
801 		return (EBUSY);
802 	}
803 
804 	return (0);
805 }
806 
807 void
808 bge_ape_unlock(struct bge_softc *sc, int locknum)
809 {
810 	struct pci_attach_args *pa = &(sc->bge_pa);
811 	uint32_t bit, gnt;
812 	int off;
813 
814 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
815 		return;
816 
817 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
818 		gnt = BGE_APE_LOCK_GRANT;
819 	else
820 		gnt = BGE_APE_PER_LOCK_GRANT;
821 
822 	off = 4 * locknum;
823 
824 	switch (locknum) {
825 	case BGE_APE_LOCK_GPIO:
826 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
827 			return;
828 		if (pa->pa_function == 0)
829 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
830 		else
831 			bit = (1 << pa->pa_function);
832 		break;
833 	case BGE_APE_LOCK_GRC:
834 		if (pa->pa_function == 0)
835 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
836 		else
837 			bit = (1 << pa->pa_function);
838 		break;
839 	case BGE_APE_LOCK_MEM:
840 		if (pa->pa_function == 0)
841 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
842 		else
843 			bit = (1 << pa->pa_function);
844 		break;
845 	case BGE_APE_LOCK_PHY0:
846 	case BGE_APE_LOCK_PHY1:
847 	case BGE_APE_LOCK_PHY2:
848 	case BGE_APE_LOCK_PHY3:
849 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
850 		break;
851 	default:
852 		return;
853 	}
854 
855 	/* Write and flush for consecutive bge_ape_lock() */
856 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
857 }
858 
859 /*
860  * Send an event to the APE firmware.
861  */
862 void
863 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
864 {
865 	uint32_t apedata;
866 	int i;
867 
868 	/* NCSI does not support APE events. */
869 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
870 		return;
871 
872 	/* Wait up to 1ms for APE to service previous event. */
873 	for (i = 10; i > 0; i--) {
874 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
875 			break;
876 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
877 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
878 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
879 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
880 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
882 			break;
883 		}
884 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
885 		DELAY(100);
886 	}
887 	if (i == 0) {
888 		printf("%s: APE event 0x%08x send timed out\n",
889 		    device_xname(sc->bge_dev), event);
890 	}
891 }
892 
893 void
894 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
895 {
896 	uint32_t apedata, event;
897 
898 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
899 		return;
900 
901 	switch (kind) {
902 	case BGE_RESET_START:
903 		/* If this is the first load, clear the load counter. */
904 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
905 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
906 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
907 		else {
908 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
909 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
910 		}
911 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
912 		    BGE_APE_HOST_SEG_SIG_MAGIC);
913 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
914 		    BGE_APE_HOST_SEG_LEN_MAGIC);
915 
916 		/* Add some version info if bge(4) supports it. */
917 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
918 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
919 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
920 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
921 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
922 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
923 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924 		    BGE_APE_HOST_DRVR_STATE_START);
925 		event = BGE_APE_EVENT_STATUS_STATE_START;
926 		break;
927 	case BGE_RESET_SHUTDOWN:
928 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
929 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
930 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
931 		break;
932 	case BGE_RESET_SUSPEND:
933 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
934 		break;
935 	default:
936 		return;
937 	}
938 
939 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
940 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
941 }
942 
943 static uint8_t
944 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
945 {
946 	uint32_t access, byte = 0;
947 	int i;
948 
949 	/* Lock. */
950 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
951 	for (i = 0; i < 8000; i++) {
952 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
953 			break;
954 		DELAY(20);
955 	}
956 	if (i == 8000)
957 		return 1;
958 
959 	/* Enable access. */
960 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
961 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
962 
963 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
964 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
965 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
966 		DELAY(10);
967 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
968 			DELAY(10);
969 			break;
970 		}
971 	}
972 
973 	if (i == BGE_TIMEOUT * 10) {
974 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
975 		return 1;
976 	}
977 
978 	/* Get result. */
979 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
980 
981 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
982 
983 	/* Disable access. */
984 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
985 
986 	/* Unlock. */
987 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
988 
989 	return 0;
990 }
991 
992 /*
993  * Read a sequence of bytes from NVRAM.
994  */
995 static int
996 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
997 {
998 	int error = 0, i;
999 	uint8_t byte = 0;
1000 
1001 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1002 		return 1;
1003 
1004 	for (i = 0; i < cnt; i++) {
1005 		error = bge_nvram_getbyte(sc, off + i, &byte);
1006 		if (error)
1007 			break;
1008 		*(dest + i) = byte;
1009 	}
1010 
1011 	return (error ? 1 : 0);
1012 }
1013 
1014 /*
1015  * Read a byte of data stored in the EEPROM at address 'addr.' The
1016  * BCM570x supports both the traditional bitbang interface and an
1017  * auto access interface for reading the EEPROM. We use the auto
1018  * access method.
1019  */
1020 static uint8_t
1021 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1022 {
1023 	int i;
1024 	uint32_t byte = 0;
1025 
1026 	/*
1027 	 * Enable use of auto EEPROM access so we can avoid
1028 	 * having to use the bitbang method.
1029 	 */
1030 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1031 
1032 	/* Reset the EEPROM, load the clock period. */
1033 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
1034 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1035 	DELAY(20);
1036 
1037 	/* Issue the read EEPROM command. */
1038 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1039 
1040 	/* Wait for completion */
1041 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1042 		DELAY(10);
1043 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1044 			break;
1045 	}
1046 
1047 	if (i == BGE_TIMEOUT * 10) {
1048 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1049 		return 1;
1050 	}
1051 
1052 	/* Get result. */
1053 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1054 
1055 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1056 
1057 	return 0;
1058 }
1059 
1060 /*
1061  * Read a sequence of bytes from the EEPROM.
1062  */
1063 static int
1064 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1065 {
1066 	int error = 0, i;
1067 	uint8_t byte = 0;
1068 	char *dest = destv;
1069 
1070 	for (i = 0; i < cnt; i++) {
1071 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1072 		if (error)
1073 			break;
1074 		*(dest + i) = byte;
1075 	}
1076 
1077 	return (error ? 1 : 0);
1078 }
1079 
1080 static int
1081 bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1082 {
1083 	struct bge_softc *sc = device_private(dev);
1084 	uint32_t data;
1085 	uint32_t autopoll;
1086 	int rv = 0;
1087 	int i;
1088 
1089 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1090 		return -1;
1091 
1092 	/* Reading with autopolling on may trigger PCI errors */
1093 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1094 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1095 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1096 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1097 		DELAY(80);
1098 	}
1099 
1100 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1101 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1102 
1103 	for (i = 0; i < BGE_TIMEOUT; i++) {
1104 		delay(10);
1105 		data = CSR_READ_4(sc, BGE_MI_COMM);
1106 		if (!(data & BGE_MICOMM_BUSY)) {
1107 			DELAY(5);
1108 			data = CSR_READ_4(sc, BGE_MI_COMM);
1109 			break;
1110 		}
1111 	}
1112 
1113 	if (i == BGE_TIMEOUT) {
1114 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1115 		rv = ETIMEDOUT;
1116 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1117 		/* XXX This error occurs on some devices while attaching. */
1118 		aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
1119 		rv = EIO;
1120 	} else
1121 		*val = data & BGE_MICOMM_DATA;
1122 
1123 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1124 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1125 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1126 		DELAY(80);
1127 	}
1128 
1129 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1130 
1131 	return rv;
1132 }
1133 
1134 static int
1135 bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1136 {
1137 	struct bge_softc *sc = device_private(dev);
1138 	uint32_t data, autopoll;
1139 	int rv = 0;
1140 	int i;
1141 
1142 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1143 	    (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
1144 		return 0;
1145 
1146 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1147 		return -1;
1148 
1149 	/* Reading with autopolling on may trigger PCI errors */
1150 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1151 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1152 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1153 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1154 		DELAY(80);
1155 	}
1156 
1157 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1158 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1159 
1160 	for (i = 0; i < BGE_TIMEOUT; i++) {
1161 		delay(10);
1162 		data = CSR_READ_4(sc, BGE_MI_COMM);
1163 		if (!(data & BGE_MICOMM_BUSY)) {
1164 			delay(5);
1165 			data = CSR_READ_4(sc, BGE_MI_COMM);
1166 			break;
1167 		}
1168 	}
1169 
1170 	if (i == BGE_TIMEOUT) {
1171 		aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
1172 		rv = ETIMEDOUT;
1173 	} else if ((data & BGE_MICOMM_READFAIL) != 0) {
1174 		aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
1175 		rv = EIO;
1176 	}
1177 
1178 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1179 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1180 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1181 		delay(80);
1182 	}
1183 
1184 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1185 
1186 	if (i == BGE_TIMEOUT) {
1187 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1188 		return ETIMEDOUT;
1189 	}
1190 
1191 	return rv;
1192 }
1193 
1194 static void
1195 bge_miibus_statchg(struct ifnet *ifp)
1196 {
1197 	struct bge_softc *sc = ifp->if_softc;
1198 	struct mii_data *mii = &sc->bge_mii;
1199 	uint32_t mac_mode, rx_mode, tx_mode;
1200 
1201 	/*
1202 	 * Get flow control negotiation result.
1203 	 */
1204 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1206 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207 
1208 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1209 	    mii->mii_media_status & IFM_ACTIVE &&
1210 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1211 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1212 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1213 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1214 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1215 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1216 
1217 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1218 		return;
1219 
1220 	/* Set the port mode (MII/GMII) to match the link speed. */
1221 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1222 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1223 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1224 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1225 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1226 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1227 		mac_mode |= BGE_PORTMODE_GMII;
1228 	else
1229 		mac_mode |= BGE_PORTMODE_MII;
1230 
1231 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1232 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1233 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1234 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1235 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1236 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1237 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1238 	} else
1239 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1240 
1241 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1242 	DELAY(40);
1243 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1244 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1245 }
1246 
1247 /*
1248  * Update rx threshold levels to values in a particular slot
1249  * of the interrupt-mitigation table bge_rx_threshes.
1250  */
1251 static void
1252 bge_set_thresh(struct ifnet *ifp, int lvl)
1253 {
1254 	struct bge_softc *sc = ifp->if_softc;
1255 	int s;
1256 
1257 	/* For now, just save the new Rx-intr thresholds and record
1258 	 * that a threshold update is pending.  Updating the hardware
1259 	 * registers here (even at splhigh()) is observed to
1260 	 * occasionaly cause glitches where Rx-interrupts are not
1261 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1262 	 */
1263 	s = splnet();
1264 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1265 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1266 	sc->bge_pending_rxintr_change = 1;
1267 	splx(s);
1268 }
1269 
1270 
1271 /*
1272  * Update Rx thresholds of all bge devices
1273  */
1274 static void
1275 bge_update_all_threshes(int lvl)
1276 {
1277 	struct ifnet *ifp;
1278 	const char * const namebuf = "bge";
1279 	int namelen;
1280 	int s;
1281 
1282 	if (lvl < 0)
1283 		lvl = 0;
1284 	else if (lvl >= NBGE_RX_THRESH)
1285 		lvl = NBGE_RX_THRESH - 1;
1286 
1287 	namelen = strlen(namebuf);
1288 	/*
1289 	 * Now search all the interfaces for this name/number
1290 	 */
1291 	s = pserialize_read_enter();
1292 	IFNET_READER_FOREACH(ifp) {
1293 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1294 		      continue;
1295 		/* We got a match: update if doing auto-threshold-tuning */
1296 		if (bge_auto_thresh)
1297 			bge_set_thresh(ifp, lvl);
1298 	}
1299 	pserialize_read_exit(s);
1300 }
1301 
1302 /*
1303  * Handle events that have triggered interrupts.
1304  */
1305 static void
1306 bge_handle_events(struct bge_softc *sc)
1307 {
1308 
1309 	return;
1310 }
1311 
1312 /*
1313  * Memory management for jumbo frames.
1314  */
1315 
1316 static int
1317 bge_alloc_jumbo_mem(struct bge_softc *sc)
1318 {
1319 	char *ptr, *kva;
1320 	bus_dma_segment_t	seg;
1321 	int		i, rseg, state, error;
1322 	struct bge_jpool_entry	 *entry;
1323 
1324 	state = error = 0;
1325 
1326 	/* Grab a big chunk o' storage. */
1327 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1328 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1329 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1330 		return ENOBUFS;
1331 	}
1332 
1333 	state = 1;
1334 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1335 	    BUS_DMA_NOWAIT)) {
1336 		aprint_error_dev(sc->bge_dev,
1337 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1338 		error = ENOBUFS;
1339 		goto out;
1340 	}
1341 
1342 	state = 2;
1343 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1344 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1345 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1346 		error = ENOBUFS;
1347 		goto out;
1348 	}
1349 
1350 	state = 3;
1351 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1352 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1353 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1354 		error = ENOBUFS;
1355 		goto out;
1356 	}
1357 
1358 	state = 4;
1359 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1360 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1361 
1362 	SLIST_INIT(&sc->bge_jfree_listhead);
1363 	SLIST_INIT(&sc->bge_jinuse_listhead);
1364 
1365 	/*
1366 	 * Now divide it up into 9K pieces and save the addresses
1367 	 * in an array.
1368 	 */
1369 	ptr = sc->bge_cdata.bge_jumbo_buf;
1370 	for (i = 0; i < BGE_JSLOTS; i++) {
1371 		sc->bge_cdata.bge_jslots[i] = ptr;
1372 		ptr += BGE_JLEN;
1373 		entry = malloc(sizeof(struct bge_jpool_entry),
1374 		    M_DEVBUF, M_WAITOK);
1375 		entry->slot = i;
1376 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1377 				 entry, jpool_entries);
1378 	}
1379 out:
1380 	if (error != 0) {
1381 		switch (state) {
1382 		case 4:
1383 			bus_dmamap_unload(sc->bge_dmatag,
1384 			    sc->bge_cdata.bge_rx_jumbo_map);
1385 			/* FALLTHROUGH */
1386 		case 3:
1387 			bus_dmamap_destroy(sc->bge_dmatag,
1388 			    sc->bge_cdata.bge_rx_jumbo_map);
1389 			/* FALLTHROUGH */
1390 		case 2:
1391 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1392 			/* FALLTHROUGH */
1393 		case 1:
1394 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1395 			break;
1396 		default:
1397 			break;
1398 		}
1399 	}
1400 
1401 	return error;
1402 }
1403 
1404 /*
1405  * Allocate a jumbo buffer.
1406  */
1407 static void *
1408 bge_jalloc(struct bge_softc *sc)
1409 {
1410 	struct bge_jpool_entry	 *entry;
1411 
1412 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1413 
1414 	if (entry == NULL) {
1415 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1416 		return NULL;
1417 	}
1418 
1419 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1420 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1421 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1422 }
1423 
1424 /*
1425  * Release a jumbo buffer.
1426  */
1427 static void
1428 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1429 {
1430 	struct bge_jpool_entry *entry;
1431 	struct bge_softc *sc;
1432 	int i, s;
1433 
1434 	/* Extract the softc struct pointer. */
1435 	sc = (struct bge_softc *)arg;
1436 
1437 	if (sc == NULL)
1438 		panic("bge_jfree: can't find softc pointer!");
1439 
1440 	/* calculate the slot this buffer belongs to */
1441 
1442 	i = ((char *)buf
1443 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1444 
1445 	if ((i < 0) || (i >= BGE_JSLOTS))
1446 		panic("bge_jfree: asked to free buffer that we don't manage!");
1447 
1448 	s = splvm();
1449 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1450 	if (entry == NULL)
1451 		panic("bge_jfree: buffer not in use!");
1452 	entry->slot = i;
1453 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1454 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1455 
1456 	if (__predict_true(m != NULL))
1457 		pool_cache_put(mb_cache, m);
1458 	splx(s);
1459 }
1460 
1461 
1462 /*
1463  * Initialize a standard receive ring descriptor.
1464  */
1465 static int
1466 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1467     bus_dmamap_t dmamap)
1468 {
1469 	struct mbuf		*m_new = NULL;
1470 	struct bge_rx_bd	*r;
1471 	int			error;
1472 
1473 	if (dmamap == NULL)
1474 		dmamap = sc->bge_cdata.bge_rx_std_map[i];
1475 
1476 	if (dmamap == NULL) {
1477 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1478 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1479 		if (error != 0)
1480 			return error;
1481 	}
1482 
1483 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1484 
1485 	if (m == NULL) {
1486 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1487 		if (m_new == NULL)
1488 			return ENOBUFS;
1489 
1490 		MCLGET(m_new, M_DONTWAIT);
1491 		if (!(m_new->m_flags & M_EXT)) {
1492 			m_freem(m_new);
1493 			return ENOBUFS;
1494 		}
1495 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1496 
1497 	} else {
1498 		m_new = m;
1499 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1500 		m_new->m_data = m_new->m_ext.ext_buf;
1501 	}
1502 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1503 	    m_adj(m_new, ETHER_ALIGN);
1504 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1505 	    BUS_DMA_READ | BUS_DMA_NOWAIT)) {
1506 		m_freem(m_new);
1507 		return ENOBUFS;
1508 	}
1509 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1510 	    BUS_DMASYNC_PREREAD);
1511 
1512 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1513 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1514 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1515 	r->bge_flags = BGE_RXBDFLAG_END;
1516 	r->bge_len = m_new->m_len;
1517 	r->bge_idx = i;
1518 
1519 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1520 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1521 		i * sizeof (struct bge_rx_bd),
1522 	    sizeof (struct bge_rx_bd),
1523 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1524 
1525 	return 0;
1526 }
1527 
1528 /*
1529  * Initialize a jumbo receive ring descriptor. This allocates
1530  * a jumbo buffer from the pool managed internally by the driver.
1531  */
1532 static int
1533 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1534 {
1535 	struct mbuf *m_new = NULL;
1536 	struct bge_rx_bd *r;
1537 	void *buf = NULL;
1538 
1539 	if (m == NULL) {
1540 
1541 		/* Allocate the mbuf. */
1542 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1543 		if (m_new == NULL)
1544 			return ENOBUFS;
1545 
1546 		/* Allocate the jumbo buffer */
1547 		buf = bge_jalloc(sc);
1548 		if (buf == NULL) {
1549 			m_freem(m_new);
1550 			aprint_error_dev(sc->bge_dev,
1551 			    "jumbo allocation failed -- packet dropped!\n");
1552 			return ENOBUFS;
1553 		}
1554 
1555 		/* Attach the buffer to the mbuf. */
1556 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1557 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1558 		    bge_jfree, sc);
1559 		m_new->m_flags |= M_EXT_RW;
1560 	} else {
1561 		m_new = m;
1562 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1563 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1564 	}
1565 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1566 	    m_adj(m_new, ETHER_ALIGN);
1567 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1568 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
1569 	    BGE_JLEN, BUS_DMASYNC_PREREAD);
1570 	/* Set up the descriptor. */
1571 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1572 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1573 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1574 	r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
1575 	r->bge_len = m_new->m_len;
1576 	r->bge_idx = i;
1577 
1578 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1579 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1580 		i * sizeof (struct bge_rx_bd),
1581 	    sizeof (struct bge_rx_bd),
1582 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
1583 
1584 	return 0;
1585 }
1586 
1587 /*
1588  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1589  * that's 1MB or memory, which is a lot. For now, we fill only the first
1590  * 256 ring entries and hope that our CPU is fast enough to keep up with
1591  * the NIC.
1592  */
1593 static int
1594 bge_init_rx_ring_std(struct bge_softc *sc)
1595 {
1596 	int i;
1597 
1598 	if (sc->bge_flags & BGEF_RXRING_VALID)
1599 		return 0;
1600 
1601 	for (i = 0; i < BGE_SSLOTS; i++) {
1602 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1603 			return ENOBUFS;
1604 	}
1605 
1606 	sc->bge_std = i - 1;
1607 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1608 
1609 	sc->bge_flags |= BGEF_RXRING_VALID;
1610 
1611 	return 0;
1612 }
1613 
1614 static void
1615 bge_free_rx_ring_std(struct bge_softc *sc, bool disable)
1616 {
1617 	int i;
1618 
1619 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1620 		return;
1621 
1622 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1623 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1624 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1625 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1626 			if (disable) {
1627 				bus_dmamap_destroy(sc->bge_dmatag,
1628 				    sc->bge_cdata.bge_rx_std_map[i]);
1629 				sc->bge_cdata.bge_rx_std_map[i] = NULL;
1630 			}
1631 		}
1632 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1633 		    sizeof(struct bge_rx_bd));
1634 	}
1635 
1636 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1637 }
1638 
1639 static int
1640 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1641 {
1642 	int i;
1643 	volatile struct bge_rcb *rcb;
1644 
1645 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1646 		return 0;
1647 
1648 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1649 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1650 			return ENOBUFS;
1651 	}
1652 
1653 	sc->bge_jumbo = i - 1;
1654 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1655 
1656 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1657 	rcb->bge_maxlen_flags = 0;
1658 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1659 
1660 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1661 
1662 	return 0;
1663 }
1664 
1665 static void
1666 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1667 {
1668 	int i;
1669 
1670 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1671 		return;
1672 
1673 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1674 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1675 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1676 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1677 		}
1678 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1679 		    sizeof(struct bge_rx_bd));
1680 	}
1681 
1682 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1683 }
1684 
1685 static void
1686 bge_free_tx_ring(struct bge_softc *sc, bool disable)
1687 {
1688 	int i;
1689 	struct txdmamap_pool_entry *dma;
1690 
1691 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1692 		return;
1693 
1694 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1695 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1696 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1697 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1698 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1699 					    link);
1700 			sc->txdma[i] = 0;
1701 		}
1702 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1703 		    sizeof(struct bge_tx_bd));
1704 	}
1705 
1706 	if (disable) {
1707 		while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1708 			SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1709 			bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1710 			if (sc->bge_dma64) {
1711 				bus_dmamap_destroy(sc->bge_dmatag32,
1712 				    dma->dmamap32);
1713 			}
1714 			free(dma, M_DEVBUF);
1715 		}
1716 		SLIST_INIT(&sc->txdma_list);
1717 	}
1718 
1719 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1720 }
1721 
1722 static int
1723 bge_init_tx_ring(struct bge_softc *sc)
1724 {
1725 	struct ifnet *ifp = &sc->ethercom.ec_if;
1726 	int i;
1727 	bus_dmamap_t dmamap, dmamap32;
1728 	bus_size_t maxsegsz;
1729 	struct txdmamap_pool_entry *dma;
1730 
1731 	if (sc->bge_flags & BGEF_TXRING_VALID)
1732 		return 0;
1733 
1734 	sc->bge_txcnt = 0;
1735 	sc->bge_tx_saved_considx = 0;
1736 
1737 	/* Initialize transmit producer index for host-memory send ring. */
1738 	sc->bge_tx_prodidx = 0;
1739 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1740 	/* 5700 b2 errata */
1741 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1742 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1743 
1744 	/* NIC-memory send ring not used; initialize to zero. */
1745 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1746 	/* 5700 b2 errata */
1747 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1748 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1749 
1750 	/* Limit DMA segment size for some chips */
1751 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1752 	    (ifp->if_mtu <= ETHERMTU))
1753 		maxsegsz = 2048;
1754 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1755 		maxsegsz = 4096;
1756 	else
1757 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1758 
1759 	if (SLIST_FIRST(&sc->txdma_list) != NULL)
1760 		goto alloc_done;
1761 
1762 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1763 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1764 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1765 		    &dmamap))
1766 			return ENOBUFS;
1767 		if (dmamap == NULL)
1768 			panic("dmamap NULL in bge_init_tx_ring");
1769 		if (sc->bge_dma64) {
1770 			if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
1771 			    BGE_NTXSEG, maxsegsz, 0,
1772 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1773 			    &dmamap32)) {
1774 				bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1775 				return ENOBUFS;
1776 			}
1777 			if (dmamap32 == NULL)
1778 				panic("dmamap32 NULL in bge_init_tx_ring");
1779 		} else
1780 			dmamap32 = dmamap;
1781 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1782 		if (dma == NULL) {
1783 			aprint_error_dev(sc->bge_dev,
1784 			    "can't alloc txdmamap_pool_entry\n");
1785 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1786 			if (sc->bge_dma64)
1787 				bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
1788 			return ENOMEM;
1789 		}
1790 		dma->dmamap = dmamap;
1791 		dma->dmamap32 = dmamap32;
1792 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1793 	}
1794 alloc_done:
1795 	sc->bge_flags |= BGEF_TXRING_VALID;
1796 
1797 	return 0;
1798 }
1799 
1800 static void
1801 bge_setmulti(struct bge_softc *sc)
1802 {
1803 	struct ethercom		*ec = &sc->ethercom;
1804 	struct ifnet		*ifp = &ec->ec_if;
1805 	struct ether_multi	*enm;
1806 	struct ether_multistep	step;
1807 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1808 	uint32_t		h;
1809 	int			i;
1810 
1811 	if (ifp->if_flags & IFF_PROMISC)
1812 		goto allmulti;
1813 
1814 	/* Now program new ones. */
1815 	ETHER_LOCK(ec);
1816 	ETHER_FIRST_MULTI(step, ec, enm);
1817 	while (enm != NULL) {
1818 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1819 			/*
1820 			 * We must listen to a range of multicast addresses.
1821 			 * For now, just accept all multicasts, rather than
1822 			 * trying to set only those filter bits needed to match
1823 			 * the range.  (At this time, the only use of address
1824 			 * ranges is for IP multicast routing, for which the
1825 			 * range is big enough to require all bits set.)
1826 			 */
1827 			ETHER_UNLOCK(ec);
1828 			goto allmulti;
1829 		}
1830 
1831 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1832 
1833 		/* Just want the 7 least-significant bits. */
1834 		h &= 0x7f;
1835 
1836 		hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
1837 		ETHER_NEXT_MULTI(step, enm);
1838 	}
1839 	ETHER_UNLOCK(ec);
1840 
1841 	ifp->if_flags &= ~IFF_ALLMULTI;
1842 	goto setit;
1843 
1844  allmulti:
1845 	ifp->if_flags |= IFF_ALLMULTI;
1846 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1847 
1848  setit:
1849 	for (i = 0; i < 4; i++)
1850 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1851 }
1852 
1853 static void
1854 bge_sig_pre_reset(struct bge_softc *sc, int type)
1855 {
1856 
1857 	/*
1858 	 * Some chips don't like this so only do this if ASF is enabled
1859 	 */
1860 	if (sc->bge_asf_mode)
1861 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1862 
1863 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1864 		switch (type) {
1865 		case BGE_RESET_START:
1866 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1867 			    BGE_FW_DRV_STATE_START);
1868 			break;
1869 		case BGE_RESET_SHUTDOWN:
1870 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1871 			    BGE_FW_DRV_STATE_UNLOAD);
1872 			break;
1873 		case BGE_RESET_SUSPEND:
1874 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1875 			    BGE_FW_DRV_STATE_SUSPEND);
1876 			break;
1877 		}
1878 	}
1879 
1880 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1881 		bge_ape_driver_state_change(sc, type);
1882 }
1883 
1884 static void
1885 bge_sig_post_reset(struct bge_softc *sc, int type)
1886 {
1887 
1888 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1889 		switch (type) {
1890 		case BGE_RESET_START:
1891 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1892 			    BGE_FW_DRV_STATE_START_DONE);
1893 			/* START DONE */
1894 			break;
1895 		case BGE_RESET_SHUTDOWN:
1896 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1897 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
1898 			break;
1899 		}
1900 	}
1901 
1902 	if (type == BGE_RESET_SHUTDOWN)
1903 		bge_ape_driver_state_change(sc, type);
1904 }
1905 
1906 static void
1907 bge_sig_legacy(struct bge_softc *sc, int type)
1908 {
1909 
1910 	if (sc->bge_asf_mode) {
1911 		switch (type) {
1912 		case BGE_RESET_START:
1913 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1914 			    BGE_FW_DRV_STATE_START);
1915 			break;
1916 		case BGE_RESET_SHUTDOWN:
1917 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1918 			    BGE_FW_DRV_STATE_UNLOAD);
1919 			break;
1920 		}
1921 	}
1922 }
1923 
1924 static void
1925 bge_wait_for_event_ack(struct bge_softc *sc)
1926 {
1927 	int i;
1928 
1929 	/* wait up to 2500usec */
1930 	for (i = 0; i < 250; i++) {
1931 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1932 			BGE_RX_CPU_DRV_EVENT))
1933 			break;
1934 		DELAY(10);
1935 	}
1936 }
1937 
1938 static void
1939 bge_stop_fw(struct bge_softc *sc)
1940 {
1941 
1942 	if (sc->bge_asf_mode) {
1943 		bge_wait_for_event_ack(sc);
1944 
1945 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1946 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
1947 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1948 
1949 		bge_wait_for_event_ack(sc);
1950 	}
1951 }
1952 
1953 static int
1954 bge_poll_fw(struct bge_softc *sc)
1955 {
1956 	uint32_t val;
1957 	int i;
1958 
1959 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1960 		for (i = 0; i < BGE_TIMEOUT; i++) {
1961 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1962 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1963 				break;
1964 			DELAY(100);
1965 		}
1966 		if (i >= BGE_TIMEOUT) {
1967 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1968 			return -1;
1969 		}
1970 	} else {
1971 		/*
1972 		 * Poll the value location we just wrote until
1973 		 * we see the 1's complement of the magic number.
1974 		 * This indicates that the firmware initialization
1975 		 * is complete.
1976 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1977 		 */
1978 		for (i = 0; i < BGE_TIMEOUT; i++) {
1979 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
1980 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
1981 				break;
1982 			DELAY(10);
1983 		}
1984 
1985 		if ((i >= BGE_TIMEOUT)
1986 		    && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
1987 			aprint_error_dev(sc->bge_dev,
1988 			    "firmware handshake timed out, val = %x\n", val);
1989 			return -1;
1990 		}
1991 	}
1992 
1993 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
1994 		/* tg3 says we have to wait extra time */
1995 		delay(10 * 1000);
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 int
2002 bge_phy_addr(struct bge_softc *sc)
2003 {
2004 	struct pci_attach_args *pa = &(sc->bge_pa);
2005 	int phy_addr = 1;
2006 
2007 	/*
2008 	 * PHY address mapping for various devices.
2009 	 *
2010 	 *	    | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2011 	 * ---------+-------+-------+-------+-------+
2012 	 * BCM57XX  |	1   |	X   |	X   |	X   |
2013 	 * BCM5704  |	1   |	X   |	1   |	X   |
2014 	 * BCM5717  |	1   |	8   |	2   |	9   |
2015 	 * BCM5719  |	1   |	8   |	2   |	9   |
2016 	 * BCM5720  |	1   |	8   |	2   |	9   |
2017 	 *
2018 	 *	    | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2019 	 * ---------+-------+-------+-------+-------+
2020 	 * BCM57XX  |	X   |	X   |	X   |	X   |
2021 	 * BCM5704  |	X   |	X   |	X   |	X   |
2022 	 * BCM5717  |	X   |	X   |	X   |	X   |
2023 	 * BCM5719  |	3   |	10  |	4   |	11  |
2024 	 * BCM5720  |	X   |	X   |	X   |	X   |
2025 	 *
2026 	 * Other addresses may respond but they are not
2027 	 * IEEE compliant PHYs and should be ignored.
2028 	 */
2029 	switch (BGE_ASICREV(sc->bge_chipid)) {
2030 	case BGE_ASICREV_BCM5717:
2031 	case BGE_ASICREV_BCM5719:
2032 	case BGE_ASICREV_BCM5720:
2033 		phy_addr = pa->pa_function;
2034 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2035 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2036 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2037 		} else {
2038 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2039 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2040 		}
2041 	}
2042 
2043 	return phy_addr;
2044 }
2045 
2046 /*
2047  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2048  * self-test results.
2049  */
2050 static int
2051 bge_chipinit(struct bge_softc *sc)
2052 {
2053 	uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
2054 	int i;
2055 
2056 	/* Set endianness before we access any non-PCI registers. */
2057 	misc_ctl = BGE_INIT;
2058 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
2059 		misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
2060 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2061 	    misc_ctl);
2062 
2063 	/*
2064 	 * Clear the MAC statistics block in the NIC's
2065 	 * internal memory.
2066 	 */
2067 	for (i = BGE_STATS_BLOCK;
2068 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2069 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2070 
2071 	for (i = BGE_STATUS_BLOCK;
2072 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2073 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2074 
2075 	/* 5717 workaround from tg3 */
2076 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2077 		/* Save */
2078 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2079 
2080 		/* Temporary modify MODE_CTL to control TLP */
2081 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2082 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2083 
2084 		/* Control TLP */
2085 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2086 		    BGE_TLP_PHYCTL1);
2087 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2088 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2089 
2090 		/* Restore */
2091 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2092 	}
2093 
2094 	if (BGE_IS_57765_FAMILY(sc)) {
2095 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2096 			/* Save */
2097 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2098 
2099 			/* Temporary modify MODE_CTL to control TLP */
2100 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2101 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2102 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2103 
2104 			/* Control TLP */
2105 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2106 			    BGE_TLP_PHYCTL5);
2107 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2108 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2109 
2110 			/* Restore */
2111 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2112 		}
2113 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2114 			/*
2115 			 * For the 57766 and non Ax versions of 57765, bootcode
2116 			 * needs to setup the PCIE Fast Training Sequence (FTS)
2117 			 * value to prevent transmit hangs.
2118 			 */
2119 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2120 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2121 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2122 
2123 			/* Save */
2124 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2125 
2126 			/* Temporary modify MODE_CTL to control TLP */
2127 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2128 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2129 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2130 
2131 			/* Control TLP */
2132 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2133 			    BGE_TLP_FTSMAX);
2134 			reg &= ~BGE_TLP_FTSMAX_MSK;
2135 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2136 			    reg | BGE_TLP_FTSMAX_VAL);
2137 
2138 			/* Restore */
2139 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2140 		}
2141 
2142 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2143 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2144 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2145 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2146 	}
2147 
2148 	/* Set up the PCI DMA control register. */
2149 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2150 	if (sc->bge_flags & BGEF_PCIE) {
2151 		/* Read watermark not used, 128 bytes for write. */
2152 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2153 		    device_xname(sc->bge_dev)));
2154 		if (sc->bge_mps >= 256)
2155 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2156 		else
2157 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2158 	} else if (sc->bge_flags & BGEF_PCIX) {
2159 		DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2160 		    device_xname(sc->bge_dev)));
2161 		/* PCI-X bus */
2162 		if (BGE_IS_5714_FAMILY(sc)) {
2163 			/* 256 bytes for read and write. */
2164 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2165 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2166 
2167 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2168 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2169 			else
2170 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2171 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
2172 			/*
2173 			 * In the BCM5703, the DMA read watermark should
2174 			 * be set to less than or equal to the maximum
2175 			 * memory read byte count of the PCI-X command
2176 			 * register.
2177 			 */
2178 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
2179 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2180 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2181 			/* 1536 bytes for read, 384 bytes for write. */
2182 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2183 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2184 		} else {
2185 			/* 384 bytes for read and write. */
2186 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2187 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2188 			    (0x0F);
2189 		}
2190 
2191 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2192 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2193 			uint32_t tmp;
2194 
2195 			/* Set ONEDMA_ATONCE for hardware workaround. */
2196 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2197 			if (tmp == 6 || tmp == 7)
2198 				dma_rw_ctl |=
2199 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2200 
2201 			/* Set PCI-X DMA write workaround. */
2202 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2203 		}
2204 	} else {
2205 		/* Conventional PCI bus: 256 bytes for read and write. */
2206 		DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2207 		    device_xname(sc->bge_dev)));
2208 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2209 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2210 
2211 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2212 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2213 			dma_rw_ctl |= 0x0F;
2214 	}
2215 
2216 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2217 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2218 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2219 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2220 
2221 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2222 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2223 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2224 
2225 	if (BGE_IS_57765_PLUS(sc)) {
2226 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2227 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2228 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2229 
2230 		/*
2231 		 * Enable HW workaround for controllers that misinterpret
2232 		 * a status tag update and leave interrupts permanently
2233 		 * disabled.
2234 		 */
2235 		if (!BGE_IS_57765_FAMILY(sc) &&
2236 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2237 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
2238 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2239 	}
2240 
2241 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2242 	    dma_rw_ctl);
2243 
2244 	/*
2245 	 * Set up general mode register.
2246 	 */
2247 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2248 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2249 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2250 		/* Retain Host-2-BMC settings written by APE firmware. */
2251 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2252 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2253 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2254 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2255 	}
2256 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2257 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2258 
2259 	/*
2260 	 * BCM5701 B5 have a bug causing data corruption when using
2261 	 * 64-bit DMA reads, which can be terminated early and then
2262 	 * completed later as 32-bit accesses, in combination with
2263 	 * certain bridges.
2264 	 */
2265 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2266 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2267 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2268 
2269 	/*
2270 	 * Tell the firmware the driver is running
2271 	 */
2272 	if (sc->bge_asf_mode & ASF_STACKUP)
2273 		mode_ctl |= BGE_MODECTL_STACKUP;
2274 
2275 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2276 
2277 	/*
2278 	 * Disable memory write invalidate.  Apparently it is not supported
2279 	 * properly by these devices.
2280 	 */
2281 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2282 		   PCI_COMMAND_INVALIDATE_ENABLE);
2283 
2284 #ifdef __brokenalpha__
2285 	/*
2286 	 * Must insure that we do not cross an 8K (bytes) boundary
2287 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2288 	 * restriction on some ALPHA platforms with early revision
2289 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2290 	 */
2291 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2292 #endif
2293 
2294 	/* Set the timer prescaler (always 66MHz) */
2295 	CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2296 
2297 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2298 		DELAY(40);	/* XXX */
2299 
2300 		/* Put PHY into ready state */
2301 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2302 		DELAY(40);
2303 	}
2304 
2305 	return 0;
2306 }
2307 
2308 static int
2309 bge_blockinit(struct bge_softc *sc)
2310 {
2311 	volatile struct bge_rcb	 *rcb;
2312 	bus_size_t rcb_addr;
2313 	struct ifnet *ifp = &sc->ethercom.ec_if;
2314 	bge_hostaddr taddr;
2315 	uint32_t	dmactl, rdmareg, mimode, val;
2316 	int		i, limit;
2317 
2318 	/*
2319 	 * Initialize the memory window pointer register so that
2320 	 * we can access the first 32K of internal NIC RAM. This will
2321 	 * allow us to set up the TX send ring RCBs and the RX return
2322 	 * ring RCBs, plus other things which live in NIC memory.
2323 	 */
2324 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2325 
2326 	if (!BGE_IS_5705_PLUS(sc)) {
2327 		/* 57XX step 33 */
2328 		/* Configure mbuf memory pool */
2329 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
2330 
2331 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2332 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2333 		else
2334 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2335 
2336 		/* 57XX step 34 */
2337 		/* Configure DMA resource pool */
2338 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2339 		    BGE_DMA_DESCRIPTORS);
2340 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2341 	}
2342 
2343 	/* 5718 step 11, 57XX step 35 */
2344 	/*
2345 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2346 	 * recommend these.
2347 	 */
2348 	if (BGE_IS_5717_PLUS(sc)) {
2349 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2350 		if (ifp->if_mtu > ETHERMTU) {
2351 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
2352 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
2353 		} else {
2354 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2355 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2356 		}
2357 	} else if (BGE_IS_5705_PLUS(sc)) {
2358 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2359 
2360 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2361 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2362 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2363 		} else {
2364 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2365 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2366 		}
2367 	} else {
2368 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2369 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2370 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2371 	}
2372 
2373 	/* 57XX step 36 */
2374 	/* Configure DMA resource watermarks */
2375 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2376 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2377 
2378 	/* 5718 step 13, 57XX step 38 */
2379 	/* Enable buffer manager */
2380 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2381 	/*
2382 	 * Change the arbitration algorithm of TXMBUF read request to
2383 	 * round-robin instead of priority based for BCM5719.  When
2384 	 * TXFIFO is almost empty, RDMA will hold its request until
2385 	 * TXFIFO is not almost empty.
2386 	 */
2387 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2388 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2389 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2390 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2391 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2392 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2393 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2394 
2395 	/* 57XX step 39 */
2396 	/* Poll for buffer manager start indication */
2397 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2398 		DELAY(10);
2399 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2400 			break;
2401 	}
2402 
2403 	if (i == BGE_TIMEOUT * 2) {
2404 		aprint_error_dev(sc->bge_dev,
2405 		    "buffer manager failed to start\n");
2406 		return ENXIO;
2407 	}
2408 
2409 	/* 57XX step 40 */
2410 	/* Enable flow-through queues */
2411 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2412 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2413 
2414 	/* Wait until queue initialization is complete */
2415 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2416 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2417 			break;
2418 		DELAY(10);
2419 	}
2420 
2421 	if (i == BGE_TIMEOUT * 2) {
2422 		aprint_error_dev(sc->bge_dev,
2423 		    "flow-through queue init failed\n");
2424 		return ENXIO;
2425 	}
2426 
2427 	/*
2428 	 * Summary of rings supported by the controller:
2429 	 *
2430 	 * Standard Receive Producer Ring
2431 	 * - This ring is used to feed receive buffers for "standard"
2432 	 *   sized frames (typically 1536 bytes) to the controller.
2433 	 *
2434 	 * Jumbo Receive Producer Ring
2435 	 * - This ring is used to feed receive buffers for jumbo sized
2436 	 *   frames (i.e. anything bigger than the "standard" frames)
2437 	 *   to the controller.
2438 	 *
2439 	 * Mini Receive Producer Ring
2440 	 * - This ring is used to feed receive buffers for "mini"
2441 	 *   sized frames to the controller.
2442 	 * - This feature required external memory for the controller
2443 	 *   but was never used in a production system.  Should always
2444 	 *   be disabled.
2445 	 *
2446 	 * Receive Return Ring
2447 	 * - After the controller has placed an incoming frame into a
2448 	 *   receive buffer that buffer is moved into a receive return
2449 	 *   ring.  The driver is then responsible to passing the
2450 	 *   buffer up to the stack.  Many versions of the controller
2451 	 *   support multiple RR rings.
2452 	 *
2453 	 * Send Ring
2454 	 * - This ring is used for outgoing frames.  Many versions of
2455 	 *   the controller support multiple send rings.
2456 	 */
2457 
2458 	/* 5718 step 15, 57XX step 41 */
2459 	/* Initialize the standard RX ring control block */
2460 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2461 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2462 	/* 5718 step 16 */
2463 	if (BGE_IS_57765_PLUS(sc)) {
2464 		/*
2465 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2466 		 * Bits 15-2 : Maximum RX frame size
2467 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2468 		 * Bit 0     : Reserved
2469 		 */
2470 		rcb->bge_maxlen_flags =
2471 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2472 	} else if (BGE_IS_5705_PLUS(sc)) {
2473 		/*
2474 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2475 		 * Bits 15-2 : Reserved (should be 0)
2476 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2477 		 * Bit 0     : Reserved
2478 		 */
2479 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2480 	} else {
2481 		/*
2482 		 * Ring size is always XXX entries
2483 		 * Bits 31-16: Maximum RX frame size
2484 		 * Bits 15-2 : Reserved (should be 0)
2485 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2486 		 * Bit 0     : Reserved
2487 		 */
2488 		rcb->bge_maxlen_flags =
2489 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2490 	}
2491 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2492 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2493 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2494 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2495 	else
2496 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2497 	/* Write the standard receive producer ring control block. */
2498 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2499 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2500 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2501 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2502 
2503 	/* Reset the standard receive producer ring producer index. */
2504 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2505 
2506 	/* 57XX step 42 */
2507 	/*
2508 	 * Initialize the jumbo RX ring control block
2509 	 * We set the 'ring disabled' bit in the flags
2510 	 * field until we're actually ready to start
2511 	 * using this ring (i.e. once we set the MTU
2512 	 * high enough to require it).
2513 	 */
2514 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2515 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2516 		BGE_HOSTADDR(rcb->bge_hostaddr,
2517 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2518 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2519 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2520 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2521 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2522 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2523 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2524 		else
2525 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2526 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2527 		    rcb->bge_hostaddr.bge_addr_hi);
2528 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2529 		    rcb->bge_hostaddr.bge_addr_lo);
2530 		/* Program the jumbo receive producer ring RCB parameters. */
2531 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2532 		    rcb->bge_maxlen_flags);
2533 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2534 		/* Reset the jumbo receive producer ring producer index. */
2535 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2536 	}
2537 
2538 	/* 57XX step 43 */
2539 	/* Disable the mini receive producer ring RCB. */
2540 	if (BGE_IS_5700_FAMILY(sc)) {
2541 		/* Set up dummy disabled mini ring RCB */
2542 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2543 		rcb->bge_maxlen_flags =
2544 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2545 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2546 		    rcb->bge_maxlen_flags);
2547 		/* Reset the mini receive producer ring producer index. */
2548 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2549 
2550 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2551 		    offsetof(struct bge_ring_data, bge_info),
2552 		    sizeof (struct bge_gib),
2553 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2554 	}
2555 
2556 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2557 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2558 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2559 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2560 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2561 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2562 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2563 	}
2564 	/* 5718 step 14, 57XX step 44 */
2565 	/*
2566 	 * The BD ring replenish thresholds control how often the
2567 	 * hardware fetches new BD's from the producer rings in host
2568 	 * memory.  Setting the value too low on a busy system can
2569 	 * starve the hardware and recue the throughpout.
2570 	 *
2571 	 * Set the BD ring replenish thresholds. The recommended
2572 	 * values are 1/8th the number of descriptors allocated to
2573 	 * each ring, but since we try to avoid filling the entire
2574 	 * ring we set these to the minimal value of 8.  This needs to
2575 	 * be done on several of the supported chip revisions anyway,
2576 	 * to work around HW bugs.
2577 	 */
2578 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2579 	if (BGE_IS_JUMBO_CAPABLE(sc))
2580 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2581 
2582 	/* 5718 step 18 */
2583 	if (BGE_IS_5717_PLUS(sc)) {
2584 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2585 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2586 	}
2587 
2588 	/* 57XX step 45 */
2589 	/*
2590 	 * Disable all send rings by setting the 'ring disabled' bit
2591 	 * in the flags field of all the TX send ring control blocks,
2592 	 * located in NIC memory.
2593 	 */
2594 	if (BGE_IS_5700_FAMILY(sc)) {
2595 		/* 5700 to 5704 had 16 send rings. */
2596 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2597 	} else if (BGE_IS_5717_PLUS(sc)) {
2598 		limit = BGE_TX_RINGS_5717_MAX;
2599 	} else if (BGE_IS_57765_FAMILY(sc) ||
2600 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2601 		limit = BGE_TX_RINGS_57765_MAX;
2602 	} else
2603 		limit = 1;
2604 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2605 	for (i = 0; i < limit; i++) {
2606 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2607 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2608 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2609 		rcb_addr += sizeof(struct bge_rcb);
2610 	}
2611 
2612 	/* 57XX step 46 and 47 */
2613 	/* Configure send ring RCB 0 (we use only the first ring) */
2614 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2615 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2616 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2617 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2618 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2619 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2620 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2621 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2622 	else
2623 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2624 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2625 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2626 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2627 
2628 	/* 57XX step 48 */
2629 	/*
2630 	 * Disable all receive return rings by setting the
2631 	 * 'ring diabled' bit in the flags field of all the receive
2632 	 * return ring control blocks, located in NIC memory.
2633 	 */
2634 	if (BGE_IS_5717_PLUS(sc)) {
2635 		/* Should be 17, use 16 until we get an SRAM map. */
2636 		limit = 16;
2637 	} else if (BGE_IS_5700_FAMILY(sc))
2638 		limit = BGE_RX_RINGS_MAX;
2639 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
2641 	    BGE_IS_57765_FAMILY(sc))
2642 		limit = 4;
2643 	else
2644 		limit = 1;
2645 	/* Disable all receive return rings */
2646 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2647 	for (i = 0; i < limit; i++) {
2648 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2649 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2650 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2651 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2652 			BGE_RCB_FLAG_RING_DISABLED));
2653 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2654 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2655 		    (i * (sizeof(uint64_t))), 0);
2656 		rcb_addr += sizeof(struct bge_rcb);
2657 	}
2658 
2659 	/* 57XX step 49 */
2660 	/*
2661 	 * Set up receive return ring 0.  Note that the NIC address
2662 	 * for RX return rings is 0x0.  The return rings live entirely
2663 	 * within the host, so the nicaddr field in the RCB isn't used.
2664 	 */
2665 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2666 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2667 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2668 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2669 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2670 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2671 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2672 
2673 	/* 5718 step 24, 57XX step 53 */
2674 	/* Set random backoff seed for TX */
2675 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2676 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2677 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2678 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2679 	    BGE_TX_BACKOFF_SEED_MASK);
2680 
2681 	/* 5718 step 26, 57XX step 55 */
2682 	/* Set inter-packet gap */
2683 	val = 0x2620;
2684 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2685 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2686 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2687 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2688 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2689 
2690 	/* 5718 step 27, 57XX step 56 */
2691 	/*
2692 	 * Specify which ring to use for packets that don't match
2693 	 * any RX rules.
2694 	 */
2695 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2696 
2697 	/* 5718 step 28, 57XX step 57 */
2698 	/*
2699 	 * Configure number of RX lists. One interrupt distribution
2700 	 * list, sixteen active lists, one bad frames class.
2701 	 */
2702 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2703 
2704 	/* 5718 step 29, 57XX step 58 */
2705 	/* Inialize RX list placement stats mask. */
2706 	if (BGE_IS_575X_PLUS(sc)) {
2707 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2708 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2709 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2710 	} else
2711 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2712 
2713 	/* 5718 step 30, 57XX step 59 */
2714 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2715 
2716 	/* 5718 step 33, 57XX step 62 */
2717 	/* Disable host coalescing until we get it set up */
2718 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2719 
2720 	/* 5718 step 34, 57XX step 63 */
2721 	/* Poll to make sure it's shut down. */
2722 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2723 		DELAY(10);
2724 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2725 			break;
2726 	}
2727 
2728 	if (i == BGE_TIMEOUT * 2) {
2729 		aprint_error_dev(sc->bge_dev,
2730 		    "host coalescing engine failed to idle\n");
2731 		return ENXIO;
2732 	}
2733 
2734 	/* 5718 step 35, 36, 37 */
2735 	/* Set up host coalescing defaults */
2736 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2737 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2738 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2739 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2740 	if (!(BGE_IS_5705_PLUS(sc))) {
2741 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2742 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2743 	}
2744 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2745 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2746 
2747 	/* Set up address of statistics block */
2748 	if (BGE_IS_5700_FAMILY(sc)) {
2749 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2750 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2751 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2752 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2753 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2754 	}
2755 
2756 	/* 5718 step 38 */
2757 	/* Set up address of status block */
2758 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2759 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2760 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2761 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2762 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2763 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2764 
2765 	/* Set up status block size. */
2766 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2767 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2768 		val = BGE_STATBLKSZ_FULL;
2769 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2770 	} else {
2771 		val = BGE_STATBLKSZ_32BYTE;
2772 		bzero(&sc->bge_rdata->bge_status_block, 32);
2773 	}
2774 
2775 	/* 5718 step 39, 57XX step 73 */
2776 	/* Turn on host coalescing state machine */
2777 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2778 
2779 	/* 5718 step 40, 57XX step 74 */
2780 	/* Turn on RX BD completion state machine and enable attentions */
2781 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2782 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2783 
2784 	/* 5718 step 41, 57XX step 75 */
2785 	/* Turn on RX list placement state machine */
2786 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2787 
2788 	/* 57XX step 76 */
2789 	/* Turn on RX list selector state machine. */
2790 	if (!(BGE_IS_5705_PLUS(sc)))
2791 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2792 
2793 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2794 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2795 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2796 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2797 
2798 	if (sc->bge_flags & BGEF_FIBER_TBI)
2799 		val |= BGE_PORTMODE_TBI;
2800 	else if (sc->bge_flags & BGEF_FIBER_MII)
2801 		val |= BGE_PORTMODE_GMII;
2802 	else
2803 		val |= BGE_PORTMODE_MII;
2804 
2805 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2806 	/* Allow APE to send/receive frames. */
2807 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2808 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2809 
2810 	/* Turn on DMA, clear stats */
2811 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2812 	/* 5718 step 44 */
2813 	DELAY(40);
2814 
2815 	/* 5718 step 45, 57XX step 79 */
2816 	/* Set misc. local control, enable interrupts on attentions */
2817 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2818 	if (BGE_IS_5717_PLUS(sc)) {
2819 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
2820 		/* 5718 step 46 */
2821 		DELAY(100);
2822 	}
2823 
2824 	/* 57XX step 81 */
2825 	/* Turn on DMA completion state machine */
2826 	if (!(BGE_IS_5705_PLUS(sc)))
2827 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2828 
2829 	/* 5718 step 47, 57XX step 82 */
2830 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2831 
2832 	/* 5718 step 48 */
2833 	/* Enable host coalescing bug fix. */
2834 	if (BGE_IS_5755_PLUS(sc))
2835 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2836 
2837 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
2838 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
2839 
2840 	/* Turn on write DMA state machine */
2841 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
2842 	/* 5718 step 49 */
2843 	DELAY(40);
2844 
2845 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2846 
2847 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
2848 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2849 
2850 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2851 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2852 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2853 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2854 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2855 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2856 
2857 	if (sc->bge_flags & BGEF_PCIE)
2858 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2859 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
2860 		if (ifp->if_mtu <= ETHERMTU)
2861 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
2862 	}
2863 	if (sc->bge_flags & BGEF_TSO) {
2864 		val |= BGE_RDMAMODE_TSO4_ENABLE;
2865 		if (BGE_IS_5717_PLUS(sc))
2866 			val |= BGE_RDMAMODE_TSO6_ENABLE;
2867 	}
2868 
2869 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
2870 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2871 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2872 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
2873 		/*
2874 		 * Allow multiple outstanding read requests from
2875 		 * non-LSO read DMA engine.
2876 		 */
2877 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2878 	}
2879 
2880 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2881 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2882 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2883 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
2884 	    BGE_IS_57765_PLUS(sc)) {
2885 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
2886 			rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2887 		else
2888 			rdmareg = BGE_RDMA_RSRVCTRL;
2889 		dmactl = CSR_READ_4(sc, rdmareg);
2890 		/*
2891 		 * Adjust tx margin to prevent TX data corruption and
2892 		 * fix internal FIFO overflow.
2893 		 */
2894 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2895 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2896 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2897 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2898 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2899 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2900 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2901 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2902 		}
2903 		/*
2904 		 * Enable fix for read DMA FIFO overruns.
2905 		 * The fix is to limit the number of RX BDs
2906 		 * the hardware would fetch at a fime.
2907 		 */
2908 		CSR_WRITE_4(sc, rdmareg, dmactl |
2909 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2910 	}
2911 
2912 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
2913 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2914 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2915 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2916 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2917 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2918 		/*
2919 		 * Allow 4KB burst length reads for non-LSO frames.
2920 		 * Enable 512B burst length reads for buffer descriptors.
2921 		 */
2922 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2923 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2924 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2925 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2926 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
2927 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2928 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2929 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2930 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2931 	}
2932 	/* Turn on read DMA state machine */
2933 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
2934 	/* 5718 step 52 */
2935 	delay(40);
2936 
2937 	if (sc->bge_flags & BGEF_RDMA_BUG) {
2938 		for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2939 			val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2940 			if ((val & 0xFFFF) > BGE_FRAMELEN)
2941 				break;
2942 			if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2943 				break;
2944 		}
2945 		if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2946 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2947 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2948 				val |= BGE_RDMA_TX_LENGTH_WA_5719;
2949 			else
2950 				val |= BGE_RDMA_TX_LENGTH_WA_5720;
2951 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2952 		}
2953 	}
2954 
2955 	/* 5718 step 56, 57XX step 84 */
2956 	/* Turn on RX data completion state machine */
2957 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2958 
2959 	/* Turn on RX data and RX BD initiator state machine */
2960 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2961 
2962 	/* 57XX step 85 */
2963 	/* Turn on Mbuf cluster free state machine */
2964 	if (!BGE_IS_5705_PLUS(sc))
2965 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2966 
2967 	/* 5718 step 57, 57XX step 86 */
2968 	/* Turn on send data completion state machine */
2969 	val = BGE_SDCMODE_ENABLE;
2970 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2971 		val |= BGE_SDCMODE_CDELAY;
2972 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2973 
2974 	/* 5718 step 58 */
2975 	/* Turn on send BD completion state machine */
2976 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2977 
2978 	/* 57XX step 88 */
2979 	/* Turn on RX BD initiator state machine */
2980 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2981 
2982 	/* 5718 step 60, 57XX step 90 */
2983 	/* Turn on send data initiator state machine */
2984 	if (sc->bge_flags & BGEF_TSO) {
2985 		/* XXX: magic value from Linux driver */
2986 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2987 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
2988 	} else
2989 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2990 
2991 	/* 5718 step 61, 57XX step 91 */
2992 	/* Turn on send BD initiator state machine */
2993 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2994 
2995 	/* 5718 step 62, 57XX step 92 */
2996 	/* Turn on send BD selector state machine */
2997 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2998 
2999 	/* 5718 step 31, 57XX step 60 */
3000 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3001 	/* 5718 step 32, 57XX step 61 */
3002 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3003 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3004 
3005 	/* ack/clear link change events */
3006 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3007 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3008 	    BGE_MACSTAT_LINK_CHANGED);
3009 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3010 
3011 	/*
3012 	 * Enable attention when the link has changed state for
3013 	 * devices that use auto polling.
3014 	 */
3015 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3016 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3017 	} else {
3018 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3019 			mimode = BGE_MIMODE_500KHZ_CONST;
3020 		else
3021 			mimode = BGE_MIMODE_BASE;
3022 		/* 5718 step 68. 5718 step 69 (optionally). */
3023 		if (BGE_IS_5700_FAMILY(sc) ||
3024 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
3025 			mimode |= BGE_MIMODE_AUTOPOLL;
3026 			BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3027 		}
3028 		mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3029 		CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3030 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3031 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3032 			    BGE_EVTENB_MI_INTERRUPT);
3033 	}
3034 
3035 	/*
3036 	 * Clear any pending link state attention.
3037 	 * Otherwise some link state change events may be lost until attention
3038 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3039 	 * It's not necessary on newer BCM chips - perhaps enabling link
3040 	 * state change attentions implies clearing pending attention.
3041 	 */
3042 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3043 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3044 	    BGE_MACSTAT_LINK_CHANGED);
3045 
3046 	/* Enable link state change attentions. */
3047 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3048 
3049 	return 0;
3050 }
3051 
3052 static const struct bge_revision *
3053 bge_lookup_rev(uint32_t chipid)
3054 {
3055 	const struct bge_revision *br;
3056 
3057 	for (br = bge_revisions; br->br_name != NULL; br++) {
3058 		if (br->br_chipid == chipid)
3059 			return br;
3060 	}
3061 
3062 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3063 		if (br->br_chipid == BGE_ASICREV(chipid))
3064 			return br;
3065 	}
3066 
3067 	return NULL;
3068 }
3069 
3070 static const struct bge_product *
3071 bge_lookup(const struct pci_attach_args *pa)
3072 {
3073 	const struct bge_product *bp;
3074 
3075 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3076 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3077 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3078 			return bp;
3079 	}
3080 
3081 	return NULL;
3082 }
3083 
3084 static uint32_t
3085 bge_chipid(const struct pci_attach_args *pa)
3086 {
3087 	uint32_t id;
3088 
3089 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3090 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3091 
3092 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3093 		switch (PCI_PRODUCT(pa->pa_id)) {
3094 		case PCI_PRODUCT_BROADCOM_BCM5717:
3095 		case PCI_PRODUCT_BROADCOM_BCM5718:
3096 		case PCI_PRODUCT_BROADCOM_BCM5719:
3097 		case PCI_PRODUCT_BROADCOM_BCM5720:
3098 		case PCI_PRODUCT_BROADCOM_BCM5725:
3099 		case PCI_PRODUCT_BROADCOM_BCM5727:
3100 		case PCI_PRODUCT_BROADCOM_BCM5762:
3101 		case PCI_PRODUCT_BROADCOM_BCM57764:
3102 		case PCI_PRODUCT_BROADCOM_BCM57767:
3103 		case PCI_PRODUCT_BROADCOM_BCM57787:
3104 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3105 			    BGE_PCI_GEN2_PRODID_ASICREV);
3106 			break;
3107 		case PCI_PRODUCT_BROADCOM_BCM57761:
3108 		case PCI_PRODUCT_BROADCOM_BCM57762:
3109 		case PCI_PRODUCT_BROADCOM_BCM57765:
3110 		case PCI_PRODUCT_BROADCOM_BCM57766:
3111 		case PCI_PRODUCT_BROADCOM_BCM57781:
3112 		case PCI_PRODUCT_BROADCOM_BCM57782:
3113 		case PCI_PRODUCT_BROADCOM_BCM57785:
3114 		case PCI_PRODUCT_BROADCOM_BCM57786:
3115 		case PCI_PRODUCT_BROADCOM_BCM57791:
3116 		case PCI_PRODUCT_BROADCOM_BCM57795:
3117 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3118 			    BGE_PCI_GEN15_PRODID_ASICREV);
3119 			break;
3120 		default:
3121 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3122 			    BGE_PCI_PRODID_ASICREV);
3123 			break;
3124 		}
3125 	}
3126 
3127 	return id;
3128 }
3129 
3130 /*
3131  * Return true if MSI can be used with this device.
3132  */
3133 static int
3134 bge_can_use_msi(struct bge_softc *sc)
3135 {
3136 	int can_use_msi = 0;
3137 
3138 	switch (BGE_ASICREV(sc->bge_chipid)) {
3139 	case BGE_ASICREV_BCM5714_A0:
3140 	case BGE_ASICREV_BCM5714:
3141 		/*
3142 		 * Apparently, MSI doesn't work when these chips are
3143 		 * configured in single-port mode.
3144 		 */
3145 		break;
3146 	case BGE_ASICREV_BCM5750:
3147 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
3148 		    BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
3149 			can_use_msi = 1;
3150 		break;
3151 	default:
3152 		if (BGE_IS_575X_PLUS(sc))
3153 			can_use_msi = 1;
3154 	}
3155 	return (can_use_msi);
3156 }
3157 
3158 /*
3159  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3160  * against our list and return its name if we find a match. Note
3161  * that since the Broadcom controller contains VPD support, we
3162  * can get the device name string from the controller itself instead
3163  * of the compiled-in string. This is a little slow, but it guarantees
3164  * we'll always announce the right product name.
3165  */
3166 static int
3167 bge_probe(device_t parent, cfdata_t match, void *aux)
3168 {
3169 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3170 
3171 	if (bge_lookup(pa) != NULL)
3172 		return 1;
3173 
3174 	return 0;
3175 }
3176 
3177 static void
3178 bge_attach(device_t parent, device_t self, void *aux)
3179 {
3180 	struct bge_softc	*sc = device_private(self);
3181 	struct pci_attach_args	*pa = aux;
3182 	prop_dictionary_t dict;
3183 	const struct bge_product *bp;
3184 	const struct bge_revision *br;
3185 	pci_chipset_tag_t	pc;
3186 	const char		*intrstr = NULL;
3187 	uint32_t		hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
3188 	uint32_t		command;
3189 	struct ifnet		*ifp;
3190 	struct mii_data * const mii = &sc->bge_mii;
3191 	uint32_t		misccfg, mimode, macmode;
3192 	void *			kva;
3193 	u_char			eaddr[ETHER_ADDR_LEN];
3194 	pcireg_t		memtype, subid, reg;
3195 	bus_addr_t		memaddr;
3196 	uint32_t		pm_ctl;
3197 	bool			no_seeprom;
3198 	int			capmask, trys;
3199 	int			mii_flags;
3200 	int			map_flags;
3201 	char intrbuf[PCI_INTRSTR_LEN];
3202 
3203 	bp = bge_lookup(pa);
3204 	KASSERT(bp != NULL);
3205 
3206 	sc->sc_pc = pa->pa_pc;
3207 	sc->sc_pcitag = pa->pa_tag;
3208 	sc->bge_dev = self;
3209 
3210 	sc->bge_pa = *pa;
3211 	pc = sc->sc_pc;
3212 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3213 
3214 	aprint_naive(": Ethernet controller\n");
3215 	aprint_normal(": %s Ethernet\n", bp->bp_name);
3216 
3217 	/*
3218 	 * Map control/status registers.
3219 	 */
3220 	DPRINTFN(5, ("Map control/status regs\n"));
3221 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3222 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3223 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3224 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3225 
3226 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3227 		aprint_error_dev(sc->bge_dev,
3228 		    "failed to enable memory mapping!\n");
3229 		return;
3230 	}
3231 
3232 	DPRINTFN(5, ("pci_mem_find\n"));
3233 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3234 	switch (memtype) {
3235 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3236 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3237 #if 0
3238 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3239 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3240 		    &memaddr, &sc->bge_bsize) == 0)
3241 			break;
3242 #else
3243 		/*
3244 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3245 		 * system get NMI on boot (PR#48451). This problem might not be
3246 		 * the driver's bug but our PCI common part's bug. Until we
3247 		 * find a real reason, we ignore the prefetchable bit.
3248 		 */
3249 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
3250 		    memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
3251 			map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3252 			if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
3253 			    map_flags, &sc->bge_bhandle) == 0) {
3254 				sc->bge_btag = pa->pa_memt;
3255 				break;
3256 			}
3257 		}
3258 #endif
3259 		/* FALLTHROUGH */
3260 	default:
3261 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3262 		return;
3263 	}
3264 
3265 	/* Save various chip information. */
3266 	sc->bge_chipid = bge_chipid(pa);
3267 	sc->bge_phy_addr = bge_phy_addr(sc);
3268 
3269 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3270 	    &sc->bge_pciecap, NULL) != 0) {
3271 		/* PCIe */
3272 		sc->bge_flags |= BGEF_PCIE;
3273 		/* Extract supported maximum payload size. */
3274 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3275 		    sc->bge_pciecap + PCIE_DCAP);
3276 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3277 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3278 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3279 			sc->bge_expmrq = 2048;
3280 		else
3281 			sc->bge_expmrq = 4096;
3282 		bge_set_max_readrq(sc);
3283 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
3284 		/* PCIe without PCIe cap */
3285 		sc->bge_flags |= BGEF_PCIE;
3286 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3287 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3288 		/* PCI-X */
3289 		sc->bge_flags |= BGEF_PCIX;
3290 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3291 			&sc->bge_pcixcap, NULL) == 0)
3292 			aprint_error_dev(sc->bge_dev,
3293 			    "unable to find PCIX capability\n");
3294 	}
3295 
3296 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3297 		/*
3298 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3299 		 * can clobber the chip's PCI config-space power control
3300 		 * registers, leaving the card in D3 powersave state. We do
3301 		 * not have memory-mapped registers in this state, so force
3302 		 * device into D0 state before starting initialization.
3303 		 */
3304 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3305 		pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
3306 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3307 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3308 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3309 	}
3310 
3311 	/* Save chipset family. */
3312 	switch (BGE_ASICREV(sc->bge_chipid)) {
3313 	case BGE_ASICREV_BCM5717:
3314 	case BGE_ASICREV_BCM5719:
3315 	case BGE_ASICREV_BCM5720:
3316 		sc->bge_flags |= BGEF_5717_PLUS;
3317 		/* FALLTHROUGH */
3318 	case BGE_ASICREV_BCM5762:
3319 	case BGE_ASICREV_BCM57765:
3320 	case BGE_ASICREV_BCM57766:
3321 		if (!BGE_IS_5717_PLUS(sc))
3322 			sc->bge_flags |= BGEF_57765_FAMILY;
3323 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3324 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3325 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3326 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3327 			/*
3328 			 * Enable work around for DMA engine miscalculation
3329 			 * of TXMBUF available space.
3330 			 */
3331 			sc->bge_flags |= BGEF_RDMA_BUG;
3332 
3333 			if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3334 			    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
3335 				/* Jumbo frame on BCM5719 A0 does not work. */
3336 				sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3337 			}
3338 		}
3339 		break;
3340 	case BGE_ASICREV_BCM5755:
3341 	case BGE_ASICREV_BCM5761:
3342 	case BGE_ASICREV_BCM5784:
3343 	case BGE_ASICREV_BCM5785:
3344 	case BGE_ASICREV_BCM5787:
3345 	case BGE_ASICREV_BCM57780:
3346 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3347 		break;
3348 	case BGE_ASICREV_BCM5700:
3349 	case BGE_ASICREV_BCM5701:
3350 	case BGE_ASICREV_BCM5703:
3351 	case BGE_ASICREV_BCM5704:
3352 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3353 		break;
3354 	case BGE_ASICREV_BCM5714_A0:
3355 	case BGE_ASICREV_BCM5780:
3356 	case BGE_ASICREV_BCM5714:
3357 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3358 		/* FALLTHROUGH */
3359 	case BGE_ASICREV_BCM5750:
3360 	case BGE_ASICREV_BCM5752:
3361 	case BGE_ASICREV_BCM5906:
3362 		sc->bge_flags |= BGEF_575X_PLUS;
3363 		/* FALLTHROUGH */
3364 	case BGE_ASICREV_BCM5705:
3365 		sc->bge_flags |= BGEF_5705_PLUS;
3366 		break;
3367 	}
3368 
3369 	/* Identify chips with APE processor. */
3370 	switch (BGE_ASICREV(sc->bge_chipid)) {
3371 	case BGE_ASICREV_BCM5717:
3372 	case BGE_ASICREV_BCM5719:
3373 	case BGE_ASICREV_BCM5720:
3374 	case BGE_ASICREV_BCM5761:
3375 	case BGE_ASICREV_BCM5762:
3376 		sc->bge_flags |= BGEF_APE;
3377 		break;
3378 	}
3379 
3380 	/*
3381 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3382 	 * not actually a MAC controller bug but an issue with the embedded
3383 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3384 	 */
3385 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3386 		sc->bge_flags |= BGEF_40BIT_BUG;
3387 
3388 	/* Chips with APE need BAR2 access for APE registers/memory. */
3389 	if ((sc->bge_flags & BGEF_APE) != 0) {
3390 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3391 #if 0
3392 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3393 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3394 			&sc->bge_apesize)) {
3395 			aprint_error_dev(sc->bge_dev,
3396 			    "couldn't map BAR2 memory\n");
3397 			return;
3398 		}
3399 #else
3400 		/*
3401 		 * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
3402 		 * system get NMI on boot (PR#48451). This problem might not be
3403 		 * the driver's bug but our PCI common part's bug. Until we
3404 		 * find a real reason, we ignore the prefetchable bit.
3405 		 */
3406 		if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
3407 		    memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
3408 			aprint_error_dev(sc->bge_dev,
3409 			    "couldn't map BAR2 memory\n");
3410 			return;
3411 		}
3412 
3413 		map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
3414 		if (bus_space_map(pa->pa_memt, memaddr,
3415 		    sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
3416 			aprint_error_dev(sc->bge_dev,
3417 			    "couldn't map BAR2 memory\n");
3418 			return;
3419 		}
3420 		sc->bge_apetag = pa->pa_memt;
3421 #endif
3422 
3423 		/* Enable APE register/memory access by host driver. */
3424 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3425 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3426 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3427 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3428 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3429 
3430 		bge_ape_lock_init(sc);
3431 		bge_ape_read_fw_ver(sc);
3432 	}
3433 
3434 	/* Identify the chips that use an CPMU. */
3435 	if (BGE_IS_5717_PLUS(sc) ||
3436 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3437 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3438 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3439 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3440 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3441 
3442 	/*
3443 	 * When using the BCM5701 in PCI-X mode, data corruption has
3444 	 * been observed in the first few bytes of some received packets.
3445 	 * Aligning the packet buffer in memory eliminates the corruption.
3446 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3447 	 * which do not support unaligned accesses, we will realign the
3448 	 * payloads by copying the received packets.
3449 	 */
3450 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3451 	    sc->bge_flags & BGEF_PCIX)
3452 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3453 
3454 	if (BGE_IS_5700_FAMILY(sc))
3455 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3456 
3457 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3458 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3459 
3460 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3461 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3462 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3463 		sc->bge_flags |= BGEF_IS_5788;
3464 
3465 	/*
3466 	 * Some controllers seem to require a special firmware to use
3467 	 * TSO. But the firmware is not available to FreeBSD and Linux
3468 	 * claims that the TSO performed by the firmware is slower than
3469 	 * hardware based TSO. Moreover the firmware based TSO has one
3470 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3471 	 * header is greater than 80 bytes. The workaround for the TSO
3472 	 * bug exist but it seems it's too expensive than not using
3473 	 * TSO at all. Some hardwares also have the TSO bug so limit
3474 	 * the TSO to the controllers that are not affected TSO issues
3475 	 * (e.g. 5755 or higher).
3476 	 */
3477 	if (BGE_IS_5755_PLUS(sc)) {
3478 		/*
3479 		 * BCM5754 and BCM5787 shares the same ASIC id so
3480 		 * explicit device id check is required.
3481 		 */
3482 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3483 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3484 			sc->bge_flags |= BGEF_TSO;
3485 		/* TSO on BCM5719 A0 does not work. */
3486 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3487 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3488 			sc->bge_flags &= ~BGEF_TSO;
3489 	}
3490 
3491 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3492 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3493 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3494 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3495 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3496 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3497 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3498 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3499 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3500 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3501 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3502 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3503 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3504 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3505 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3506 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3507 		/* These chips are 10/100 only. */
3508 		capmask &= ~BMSR_EXTSTAT;
3509 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3510 	}
3511 
3512 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3513 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3514 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3515 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3516 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3517 
3518 	/* Set various PHY bug flags. */
3519 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3520 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3521 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3522 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3523 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3524 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3525 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3526 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3527 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3528 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3529 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3530 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3531 	if (BGE_IS_5705_PLUS(sc) &&
3532 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3533 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3534 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3535 	    !BGE_IS_57765_PLUS(sc)) {
3536 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3537 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3538 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3539 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3540 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3541 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3542 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3543 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3544 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3545 		} else
3546 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3547 	}
3548 
3549 	/*
3550 	 * SEEPROM check.
3551 	 * First check if firmware knows we do not have SEEPROM.
3552 	 */
3553 	if (prop_dictionary_get_bool(device_properties(self),
3554 	     "without-seeprom", &no_seeprom) && no_seeprom)
3555 		sc->bge_flags |= BGEF_NO_EEPROM;
3556 
3557 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3558 		sc->bge_flags |= BGEF_NO_EEPROM;
3559 
3560 	/* Now check the 'ROM failed' bit on the RX CPU */
3561 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3562 		sc->bge_flags |= BGEF_NO_EEPROM;
3563 
3564 	sc->bge_asf_mode = 0;
3565 	/* No ASF if APE present. */
3566 	if ((sc->bge_flags & BGEF_APE) == 0) {
3567 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3568 			BGE_SRAM_DATA_SIG_MAGIC)) {
3569 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3570 			    BGE_HWCFG_ASF) {
3571 				sc->bge_asf_mode |= ASF_ENABLE;
3572 				sc->bge_asf_mode |= ASF_STACKUP;
3573 				if (BGE_IS_575X_PLUS(sc))
3574 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3575 			}
3576 		}
3577 	}
3578 
3579 	int counts[PCI_INTR_TYPE_SIZE] = {
3580 		[PCI_INTR_TYPE_INTX] = 1,
3581 		[PCI_INTR_TYPE_MSI] = 1,
3582 		[PCI_INTR_TYPE_MSIX] = 1,
3583 	};
3584 	int max_type = PCI_INTR_TYPE_MSIX;
3585 
3586 	if (!bge_can_use_msi(sc)) {
3587 		/* MSI broken, allow only INTx */
3588 		max_type = PCI_INTR_TYPE_INTX;
3589 	}
3590 
3591 	if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
3592 		aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
3593 		return;
3594 	}
3595 
3596 	DPRINTFN(5, ("pci_intr_string\n"));
3597 	intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
3598 	    sizeof(intrbuf));
3599 	DPRINTFN(5, ("pci_intr_establish\n"));
3600 	sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
3601 	    IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
3602 	if (sc->bge_intrhand == NULL) {
3603 		pci_intr_release(pc, sc->bge_pihp, 1);
3604 		sc->bge_pihp = NULL;
3605 
3606 		aprint_error_dev(self, "couldn't establish interrupt");
3607 		if (intrstr != NULL)
3608 			aprint_error(" at %s", intrstr);
3609 		aprint_error("\n");
3610 		return;
3611 	}
3612 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3613 
3614 	switch (pci_intr_type(pc, sc->bge_pihp[0])) {
3615 	case PCI_INTR_TYPE_MSIX:
3616 	case PCI_INTR_TYPE_MSI:
3617 		KASSERT(bge_can_use_msi(sc));
3618 		sc->bge_flags |= BGEF_MSI;
3619 		break;
3620 	default:
3621 		/* nothing to do */
3622 		break;
3623 	}
3624 
3625 	/*
3626 	 * All controllers except BCM5700 supports tagged status but
3627 	 * we use tagged status only for MSI case on BCM5717. Otherwise
3628 	 * MSI on BCM5717 does not work.
3629 	 */
3630 	if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
3631 		sc->bge_flags |= BGEF_TAGGED_STATUS;
3632 
3633 	/*
3634 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3635 	 * lock in bge_reset().
3636 	 */
3637 	CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
3638 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3639 	delay(1000);
3640 	BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3641 
3642 	bge_stop_fw(sc);
3643 	bge_sig_pre_reset(sc, BGE_RESET_START);
3644 	if (bge_reset(sc))
3645 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3646 
3647 	/*
3648 	 * Read the hardware config word in the first 32k of NIC internal
3649 	 * memory, or fall back to the config word in the EEPROM.
3650 	 * Note: on some BCM5700 cards, this value appears to be unset.
3651 	 */
3652 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
3653 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3654 	    BGE_SRAM_DATA_SIG_MAGIC) {
3655 		uint32_t tmp;
3656 
3657 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3658 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3659 		    BGE_SRAM_DATA_VER_SHIFT;
3660 		if ((0 < tmp) && (tmp < 0x100))
3661 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3662 		if (sc->bge_flags & BGEF_PCIE)
3663 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3664 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3665 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3666 		if (BGE_IS_5717_PLUS(sc))
3667 			hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
3668 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3669 		bge_read_eeprom(sc, (void *)&hwcfg,
3670 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3671 		hwcfg = be32toh(hwcfg);
3672 	}
3673 	aprint_normal_dev(sc->bge_dev,
3674 	    "HW config %08x, %08x, %08x, %08x %08x\n",
3675 	    hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);
3676 
3677 	bge_sig_legacy(sc, BGE_RESET_START);
3678 	bge_sig_post_reset(sc, BGE_RESET_START);
3679 
3680 	if (bge_chipinit(sc)) {
3681 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3682 		bge_release_resources(sc);
3683 		return;
3684 	}
3685 
3686 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
3687 		BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
3688 		    BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
3689 		DELAY(100);
3690 	}
3691 
3692 	/* Set MI_MODE */
3693 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3694 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3695 		mimode |= BGE_MIMODE_500KHZ_CONST;
3696 	else
3697 		mimode |= BGE_MIMODE_BASE;
3698 	CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
3699 	DELAY(80);
3700 
3701 	/*
3702 	 * Get station address from the EEPROM.
3703 	 */
3704 	if (bge_get_eaddr(sc, eaddr)) {
3705 		aprint_error_dev(sc->bge_dev,
3706 		    "failed to read station address\n");
3707 		bge_release_resources(sc);
3708 		return;
3709 	}
3710 
3711 	br = bge_lookup_rev(sc->bge_chipid);
3712 
3713 	if (br == NULL) {
3714 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3715 		    sc->bge_chipid);
3716 	} else {
3717 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3718 		    br->br_name, sc->bge_chipid);
3719 	}
3720 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3721 
3722 	/* Allocate the general information block and ring buffers. */
3723 	if (pci_dma64_available(pa)) {
3724 		sc->bge_dmatag = pa->pa_dmat64;
3725 		sc->bge_dmatag32 = pa->pa_dmat;
3726 		sc->bge_dma64 = true;
3727 	} else {
3728 		sc->bge_dmatag = pa->pa_dmat;
3729 		sc->bge_dmatag32 = pa->pa_dmat;
3730 		sc->bge_dma64 = false;
3731 	}
3732 
3733 	/* 40bit DMA workaround */
3734 	if (sizeof(bus_addr_t) > 4) {
3735 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3736 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3737 
3738 			if (bus_dmatag_subregion(olddmatag, 0,
3739 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3740 				BUS_DMA_NOWAIT) != 0) {
3741 				aprint_error_dev(self,
3742 				    "WARNING: failed to restrict dma range,"
3743 				    " falling back to parent bus dma range\n");
3744 				sc->bge_dmatag = olddmatag;
3745 			}
3746 		}
3747 	}
3748 	SLIST_INIT(&sc->txdma_list);
3749 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3750 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3751 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3752 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3753 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3754 		return;
3755 	}
3756 	DPRINTFN(5, ("bus_dmamem_map\n"));
3757 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3758 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3759 			   BUS_DMA_NOWAIT)) {
3760 		aprint_error_dev(sc->bge_dev,
3761 		    "can't map DMA buffers (%zu bytes)\n",
3762 		    sizeof(struct bge_ring_data));
3763 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3764 		    sc->bge_ring_rseg);
3765 		return;
3766 	}
3767 	DPRINTFN(5, ("bus_dmamem_create\n"));
3768 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3769 	    sizeof(struct bge_ring_data), 0,
3770 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3771 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3772 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3773 				 sizeof(struct bge_ring_data));
3774 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3775 		    sc->bge_ring_rseg);
3776 		return;
3777 	}
3778 	DPRINTFN(5, ("bus_dmamem_load\n"));
3779 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3780 			    sizeof(struct bge_ring_data), NULL,
3781 			    BUS_DMA_NOWAIT)) {
3782 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3783 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3784 				 sizeof(struct bge_ring_data));
3785 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3786 		    sc->bge_ring_rseg);
3787 		return;
3788 	}
3789 
3790 	DPRINTFN(5, ("bzero\n"));
3791 	sc->bge_rdata = (struct bge_ring_data *)kva;
3792 
3793 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3794 
3795 	/* Try to allocate memory for jumbo buffers. */
3796 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3797 		if (bge_alloc_jumbo_mem(sc)) {
3798 			aprint_error_dev(sc->bge_dev,
3799 			    "jumbo buffer allocation failed\n");
3800 		} else
3801 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3802 	}
3803 
3804 	/* Set default tuneable values. */
3805 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3806 	sc->bge_rx_coal_ticks = 150;
3807 	sc->bge_rx_max_coal_bds = 64;
3808 	sc->bge_tx_coal_ticks = 300;
3809 	sc->bge_tx_max_coal_bds = 400;
3810 	if (BGE_IS_5705_PLUS(sc)) {
3811 		sc->bge_tx_coal_ticks = (12 * 5);
3812 		sc->bge_tx_max_coal_bds = (12 * 5);
3813 			aprint_verbose_dev(sc->bge_dev,
3814 			    "setting short Tx thresholds\n");
3815 	}
3816 
3817 	if (BGE_IS_5717_PLUS(sc))
3818 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3819 	else if (BGE_IS_5705_PLUS(sc))
3820 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3821 	else
3822 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3823 
3824 	/* Set up ifnet structure */
3825 	ifp = &sc->ethercom.ec_if;
3826 	ifp->if_softc = sc;
3827 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3828 	ifp->if_ioctl = bge_ioctl;
3829 	ifp->if_stop = bge_stop;
3830 	ifp->if_start = bge_start;
3831 	ifp->if_init = bge_init;
3832 	ifp->if_watchdog = bge_watchdog;
3833 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3834 	IFQ_SET_READY(&ifp->if_snd);
3835 	DPRINTFN(5, ("strcpy if_xname\n"));
3836 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3837 
3838 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3839 		sc->ethercom.ec_if.if_capabilities |=
3840 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3841 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3842 		sc->ethercom.ec_if.if_capabilities |=
3843 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3844 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3845 #endif
3846 	sc->ethercom.ec_capabilities |=
3847 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3848 	sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
3849 
3850 	if (sc->bge_flags & BGEF_TSO)
3851 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3852 
3853 	/*
3854 	 * Do MII setup.
3855 	 */
3856 	DPRINTFN(5, ("mii setup\n"));
3857 	mii->mii_ifp = ifp;
3858 	mii->mii_readreg = bge_miibus_readreg;
3859 	mii->mii_writereg = bge_miibus_writereg;
3860 	mii->mii_statchg = bge_miibus_statchg;
3861 
3862 	/*
3863 	 * Figure out what sort of media we have by checking the hardware
3864 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3865 	 * unset. If that's the case, we have to rely on identifying the NIC
3866 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3867 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3868 	 */
3869 	if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
3870 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3871 		if (BGE_IS_5705_PLUS(sc)) {
3872 			sc->bge_flags |= BGEF_FIBER_MII;
3873 			sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3874 		} else
3875 			sc->bge_flags |= BGEF_FIBER_TBI;
3876 	}
3877 
3878 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
3879 	if (BGE_IS_JUMBO_CAPABLE(sc))
3880 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3881 
3882 	/* set phyflags and chipid before mii_attach() */
3883 	dict = device_properties(self);
3884 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3885 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3886 
3887 	macmode = CSR_READ_4(sc, BGE_MAC_MODE);
3888 	macmode &= ~BGE_MACMODE_PORTMODE;
3889 	/* Initialize ifmedia structures. */
3890 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3891 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
3892 		    macmode | BGE_PORTMODE_TBI);
3893 		DELAY(40);
3894 
3895 		sc->ethercom.ec_ifmedia = &sc->bge_ifmedia;
3896 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3897 		    bge_ifmedia_sts);
3898 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3899 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX |IFM_FDX,
3900 			    0, NULL);
3901 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3902 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3903 		/* Pretend the user requested this setting */
3904 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3905 	} else {
3906 		uint16_t phyreg;
3907 		int rv;
3908 		/*
3909 		 * Do transceiver setup and tell the firmware the
3910 		 * driver is down so we can try to get access the
3911 		 * probe if ASF is running.  Retry a couple of times
3912 		 * if we get a conflict with the ASF firmware accessing
3913 		 * the PHY.
3914 		 */
3915 		if (sc->bge_flags & BGEF_FIBER_MII)
3916 			macmode |= BGE_PORTMODE_GMII;
3917 		else
3918 			macmode |= BGE_PORTMODE_MII;
3919 		CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
3920 		DELAY(40);
3921 
3922 		/*
3923 		 * Do transceiver setup and tell the firmware the
3924 		 * driver is down so we can try to get access the
3925 		 * probe if ASF is running.  Retry a couple of times
3926 		 * if we get a conflict with the ASF firmware accessing
3927 		 * the PHY.
3928 		 */
3929 		trys = 0;
3930 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3931 		sc->ethercom.ec_mii = mii;
3932 		ifmedia_init(&mii->mii_media, 0, bge_ifmedia_upd,
3933 			     bge_ifmedia_sts);
3934 		mii_flags = MIIF_DOPAUSE;
3935 		if (sc->bge_flags & BGEF_FIBER_MII)
3936 			mii_flags |= MIIF_HAVEFIBER;
3937 again:
3938 		bge_asf_driver_up(sc);
3939 		rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
3940 		    MII_BMCR, &phyreg);
3941 		if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
3942 			int i;
3943 
3944 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
3945 			    MII_BMCR, BMCR_RESET);
3946 			/* Wait up to 500ms for it to complete. */
3947 			for (i = 0; i < 500; i++) {
3948 				bge_miibus_readreg(sc->bge_dev,
3949 				    sc->bge_phy_addr, MII_BMCR, &phyreg);
3950 				if ((phyreg & BMCR_RESET) == 0)
3951 					break;
3952 				DELAY(1000);
3953 			}
3954 		}
3955 
3956 		mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
3957 		    MII_OFFSET_ANY, mii_flags);
3958 
3959 		if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
3960 			goto again;
3961 
3962 		if (LIST_EMPTY(&mii->mii_phys)) {
3963 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3964 			ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
3965 			    0, NULL);
3966 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
3967 		} else
3968 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
3969 
3970 		/*
3971 		 * Now tell the firmware we are going up after probing the PHY
3972 		 */
3973 		if (sc->bge_asf_mode & ASF_STACKUP)
3974 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3975 	}
3976 
3977 	/*
3978 	 * Call MI attach routine.
3979 	 */
3980 	DPRINTFN(5, ("if_attach\n"));
3981 	if_attach(ifp);
3982 	if_deferred_start_init(ifp, NULL);
3983 	DPRINTFN(5, ("ether_ifattach\n"));
3984 	ether_ifattach(ifp, eaddr);
3985 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3986 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3987 		RND_TYPE_NET, RND_FLAG_DEFAULT);
3988 #ifdef BGE_EVENT_COUNTERS
3989 	/*
3990 	 * Attach event counters.
3991 	 */
3992 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3993 	    NULL, device_xname(sc->bge_dev), "intr");
3994 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
3995 	    NULL, device_xname(sc->bge_dev), "intr_spurious");
3996 	evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
3997 	    NULL, device_xname(sc->bge_dev), "intr_spurious2");
3998 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3999 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
4000 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
4001 	    NULL, device_xname(sc->bge_dev), "tx_xon");
4002 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
4003 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
4004 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
4005 	    NULL, device_xname(sc->bge_dev), "rx_xon");
4006 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
4007 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
4008 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
4009 	    NULL, device_xname(sc->bge_dev), "xoffentered");
4010 #endif /* BGE_EVENT_COUNTERS */
4011 	DPRINTFN(5, ("callout_init\n"));
4012 	callout_init(&sc->bge_timeout, 0);
4013 	callout_setfunc(&sc->bge_timeout, bge_tick, sc);
4014 
4015 	if (pmf_device_register(self, NULL, NULL))
4016 		pmf_class_network_register(self, ifp);
4017 	else
4018 		aprint_error_dev(self, "couldn't establish power handler\n");
4019 
4020 	bge_sysctl_init(sc);
4021 
4022 #ifdef BGE_DEBUG
4023 	bge_debug_info(sc);
4024 #endif
4025 }
4026 
4027 /*
4028  * Stop all chip I/O so that the kernel's probe routines don't
4029  * get confused by errant DMAs when rebooting.
4030  */
4031 static int
4032 bge_detach(device_t self, int flags __unused)
4033 {
4034 	struct bge_softc *sc = device_private(self);
4035 	struct ifnet *ifp = &sc->ethercom.ec_if;
4036 	int s;
4037 
4038 	s = splnet();
4039 	/* Stop the interface. Callouts are stopped in it. */
4040 	bge_stop(ifp, 1);
4041 	splx(s);
4042 
4043 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
4044 
4045 	ether_ifdetach(ifp);
4046 	if_detach(ifp);
4047 
4048 	/* Delete all remaining media. */
4049 	ifmedia_fini(&sc->bge_mii.mii_media);
4050 
4051 	bge_release_resources(sc);
4052 
4053 	return 0;
4054 }
4055 
4056 static void
4057 bge_release_resources(struct bge_softc *sc)
4058 {
4059 
4060 	/* Detach sysctl */
4061 	if (sc->bge_log != NULL)
4062 		sysctl_teardown(&sc->bge_log);
4063 
4064 #ifdef BGE_EVENT_COUNTERS
4065 	/* Detach event counters. */
4066 	evcnt_detach(&sc->bge_ev_intr);
4067 	evcnt_detach(&sc->bge_ev_intr_spurious);
4068 	evcnt_detach(&sc->bge_ev_intr_spurious2);
4069 	evcnt_detach(&sc->bge_ev_tx_xoff);
4070 	evcnt_detach(&sc->bge_ev_tx_xon);
4071 	evcnt_detach(&sc->bge_ev_rx_xoff);
4072 	evcnt_detach(&sc->bge_ev_rx_xon);
4073 	evcnt_detach(&sc->bge_ev_rx_macctl);
4074 	evcnt_detach(&sc->bge_ev_xoffentered);
4075 #endif /* BGE_EVENT_COUNTERS */
4076 
4077 	/* Disestablish the interrupt handler */
4078 	if (sc->bge_intrhand != NULL) {
4079 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4080 		pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
4081 		sc->bge_intrhand = NULL;
4082 	}
4083 
4084 	if (sc->bge_dmatag != NULL) {
4085 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4086 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4087 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4088 		    sizeof(struct bge_ring_data));
4089 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
4090 		    sc->bge_ring_rseg);
4091 	}
4092 
4093 	/* Unmap the device registers */
4094 	if (sc->bge_bsize != 0) {
4095 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4096 		sc->bge_bsize = 0;
4097 	}
4098 
4099 	/* Unmap the APE registers */
4100 	if (sc->bge_apesize != 0) {
4101 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4102 		    sc->bge_apesize);
4103 		sc->bge_apesize = 0;
4104 	}
4105 }
4106 
4107 static int
4108 bge_reset(struct bge_softc *sc)
4109 {
4110 	uint32_t cachesize, command;
4111 	uint32_t reset, mac_mode, mac_mode_mask;
4112 	pcireg_t devctl, reg;
4113 	int i, val;
4114 	void (*write_op)(struct bge_softc *, int, int);
4115 
4116 	/* Make mask for BGE_MAC_MODE register. */
4117 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4118 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4119 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4120 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4121 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4122 
4123 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4124 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4125 		if (sc->bge_flags & BGEF_PCIE)
4126 			write_op = bge_writemem_direct;
4127 		else
4128 			write_op = bge_writemem_ind;
4129 	} else
4130 		write_op = bge_writereg_ind;
4131 
4132 	/* 57XX step 4 */
4133 	/* Acquire the NVM lock */
4134 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4135 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4136 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4137 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4138 		for (i = 0; i < 8000; i++) {
4139 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4140 			    BGE_NVRAMSWARB_GNT1)
4141 				break;
4142 			DELAY(20);
4143 		}
4144 		if (i == 8000) {
4145 			printf("%s: NVRAM lock timedout!\n",
4146 			    device_xname(sc->bge_dev));
4147 		}
4148 	}
4149 
4150 	/* Take APE lock when performing reset. */
4151 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4152 
4153 	/* 57XX step 3 */
4154 	/* Save some important PCI state. */
4155 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4156 	/* 5718 reset step 3 */
4157 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4158 
4159 	/* 5718 reset step 5, 57XX step 5b-5d */
4160 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4161 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4162 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4163 
4164 	/* XXX ???: Disable fastboot on controllers that support it. */
4165 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4166 	    BGE_IS_5755_PLUS(sc))
4167 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4168 
4169 	/* 5718 reset step 2, 57XX step 6 */
4170 	/*
4171 	 * Write the magic number to SRAM at offset 0xB50.
4172 	 * When firmware finishes its initialization it will
4173 	 * write ~BGE_MAGIC_NUMBER to the same location.
4174 	 */
4175 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4176 
4177 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
4178 		val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
4179 		val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
4180 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
4181 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
4182 	}
4183 
4184 	/* 5718 reset step 6, 57XX step 7 */
4185 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4186 	/*
4187 	 * XXX: from FreeBSD/Linux; no documentation
4188 	 */
4189 	if (sc->bge_flags & BGEF_PCIE) {
4190 		if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
4191 		    !BGE_IS_57765_PLUS(sc) &&
4192 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4193 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4194 			/* PCI Express 1.0 system */
4195 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4196 			    BGE_PHY_PCIE_SCRAM_MODE);
4197 		}
4198 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4199 			/*
4200 			 * Prevent PCI Express link training
4201 			 * during global reset.
4202 			 */
4203 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4204 			reset |= (1 << 29);
4205 		}
4206 	}
4207 
4208 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4209 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4210 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4211 		    i | BGE_VCPU_STATUS_DRV_RESET);
4212 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4213 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4214 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4215 	}
4216 
4217 	/*
4218 	 * Set GPHY Power Down Override to leave GPHY
4219 	 * powered up in D0 uninitialized.
4220 	 */
4221 	if (BGE_IS_5705_PLUS(sc) &&
4222 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4223 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4224 
4225 	/* Issue global reset */
4226 	write_op(sc, BGE_MISC_CFG, reset);
4227 
4228 	/* 5718 reset step 7, 57XX step 8 */
4229 	if (sc->bge_flags & BGEF_PCIE)
4230 		delay(100*1000); /* too big */
4231 	else
4232 		delay(1000);
4233 
4234 	if (sc->bge_flags & BGEF_PCIE) {
4235 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4236 			DELAY(500000);
4237 			/* XXX: Magic Numbers */
4238 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4239 			    BGE_PCI_UNKNOWN0);
4240 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4241 			    BGE_PCI_UNKNOWN0,
4242 			    reg | (1 << 15));
4243 		}
4244 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4245 		    sc->bge_pciecap + PCIE_DCSR);
4246 		/* Clear enable no snoop and disable relaxed ordering. */
4247 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4248 		    PCIE_DCSR_ENA_NO_SNOOP);
4249 
4250 		/* Set PCIE max payload size to 128 for older PCIe devices */
4251 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4252 			devctl &= ~(0x00e0);
4253 		/* Clear device status register. Write 1b to clear */
4254 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4255 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4256 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4257 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4258 		bge_set_max_readrq(sc);
4259 	}
4260 
4261 	/* From Linux: dummy read to flush PCI posted writes */
4262 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4263 
4264 	/*
4265 	 * Reset some of the PCI state that got zapped by reset
4266 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4267 	 * set, too.
4268 	 */
4269 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4270 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4271 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4272 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4273 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4274 	    (sc->bge_flags & BGEF_PCIX) != 0)
4275 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4276 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4277 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4278 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4279 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4280 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4281 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4282 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4283 
4284 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4285 	if (sc->bge_flags & BGEF_PCIX) {
4286 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4287 		    + PCIX_CMD);
4288 		/* Set max memory read byte count to 2K */
4289 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4290 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4291 			reg |= PCIX_CMD_BCNT_2048;
4292 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4293 			/*
4294 			 * For 5704, set max outstanding split transaction
4295 			 * field to 0 (0 means it supports 1 request)
4296 			 */
4297 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4298 			    | PCIX_CMD_BYTECNT_MASK);
4299 			reg |= PCIX_CMD_BCNT_2048;
4300 		}
4301 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4302 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4303 	}
4304 
4305 	/* 5718 reset step 10, 57XX step 12 */
4306 	/* Enable memory arbiter. */
4307 	if (BGE_IS_5714_FAMILY(sc)) {
4308 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4309 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4310 	} else
4311 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4312 
4313 	/* XXX 5721, 5751 and 5752 */
4314 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4315 		/* Step 19: */
4316 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4317 		/* Step 20: */
4318 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4319 	}
4320 
4321 	/* 5718 reset step 12, 57XX step 15 and 16 */
4322 	/* Fix up byte swapping */
4323 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4324 
4325 	/* 5718 reset step 13, 57XX step 17 */
4326 	/* Poll until the firmware initialization is complete */
4327 	bge_poll_fw(sc);
4328 
4329 	/* 57XX step 21 */
4330 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4331 		pcireg_t msidata;
4332 
4333 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4334 		    BGE_PCI_MSI_DATA);
4335 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4336 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4337 		    msidata);
4338 	}
4339 
4340 	/* 57XX step 18 */
4341 	/* Write mac mode. */
4342 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4343 	/* Restore mac_mode_mask's bits using mac_mode */
4344 	val = (val & ~mac_mode_mask) | mac_mode;
4345 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4346 	DELAY(40);
4347 
4348 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4349 
4350 	/*
4351 	 * The 5704 in TBI mode apparently needs some special
4352 	 * adjustment to insure the SERDES drive level is set
4353 	 * to 1.2V.
4354 	 */
4355 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4356 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4357 		uint32_t serdescfg;
4358 
4359 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4360 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4361 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4362 	}
4363 
4364 	if (sc->bge_flags & BGEF_PCIE &&
4365 	    !BGE_IS_57765_PLUS(sc) &&
4366 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4367 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4368 		uint32_t v;
4369 
4370 		/* Enable PCI Express bug fix */
4371 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4372 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4373 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4374 	}
4375 
4376 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4377 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4378 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4379 
4380 	return 0;
4381 }
4382 
4383 /*
4384  * Frame reception handling. This is called if there's a frame
4385  * on the receive return list.
4386  *
4387  * Note: we have to be able to handle two possibilities here:
4388  * 1) the frame is from the jumbo receive ring
4389  * 2) the frame is from the standard receive ring
4390  */
4391 
4392 static void
4393 bge_rxeof(struct bge_softc *sc)
4394 {
4395 	struct ifnet *ifp;
4396 	uint16_t rx_prod, rx_cons;
4397 	int stdcnt = 0, jumbocnt = 0;
4398 	bus_dmamap_t dmamap;
4399 	bus_addr_t offset, toff;
4400 	bus_size_t tlen;
4401 	int tosync;
4402 
4403 	rx_cons = sc->bge_rx_saved_considx;
4404 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4405 
4406 	/* Nothing to do */
4407 	if (rx_cons == rx_prod)
4408 		return;
4409 
4410 	ifp = &sc->ethercom.ec_if;
4411 
4412 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4413 	    offsetof(struct bge_ring_data, bge_status_block),
4414 	    sizeof (struct bge_status_block),
4415 	    BUS_DMASYNC_POSTREAD);
4416 
4417 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4418 	tosync = rx_prod - rx_cons;
4419 
4420 	if (tosync != 0)
4421 		rnd_add_uint32(&sc->rnd_source, tosync);
4422 
4423 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4424 
4425 	if (tosync < 0) {
4426 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4427 		    sizeof (struct bge_rx_bd);
4428 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4429 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4430 		tosync = -tosync;
4431 	}
4432 
4433 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4434 	    offset, tosync * sizeof (struct bge_rx_bd),
4435 	    BUS_DMASYNC_POSTREAD);
4436 
4437 	while (rx_cons != rx_prod) {
4438 		struct bge_rx_bd	*cur_rx;
4439 		uint32_t		rxidx;
4440 		struct mbuf		*m = NULL;
4441 
4442 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4443 
4444 		rxidx = cur_rx->bge_idx;
4445 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4446 
4447 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4448 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4449 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4450 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4451 			jumbocnt++;
4452 			bus_dmamap_sync(sc->bge_dmatag,
4453 			    sc->bge_cdata.bge_rx_jumbo_map,
4454 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4455 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4456 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4457 				if_statinc(ifp, if_ierrors);
4458 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4459 				continue;
4460 			}
4461 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4462 					     NULL)== ENOBUFS) {
4463 				if_statinc(ifp, if_ierrors);
4464 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4465 				continue;
4466 			}
4467 		} else {
4468 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4469 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4470 
4471 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4472 			stdcnt++;
4473 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4474 			sc->bge_cdata.bge_rx_std_map[rxidx] = NULL;
4475 			if (dmamap == NULL) {
4476 				if_statinc(ifp, if_ierrors);
4477 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4478 				continue;
4479 			}
4480 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4481 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4482 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4483 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4484 				if_statinc(ifp, if_ierrors);
4485 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4486 				continue;
4487 			}
4488 			if (bge_newbuf_std(sc, sc->bge_std,
4489 			    NULL, dmamap) == ENOBUFS) {
4490 				if_statinc(ifp, if_ierrors);
4491 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4492 				continue;
4493 			}
4494 		}
4495 
4496 #ifndef __NO_STRICT_ALIGNMENT
4497 		/*
4498 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4499 		 * the Rx buffer has the layer-2 header unaligned.
4500 		 * If our CPU requires alignment, re-align by copying.
4501 		 */
4502 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4503 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4504 				cur_rx->bge_len);
4505 			m->m_data += ETHER_ALIGN;
4506 		}
4507 #endif
4508 
4509 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4510 		m_set_rcvif(m, ifp);
4511 
4512 		bge_rxcsum(sc, cur_rx, m);
4513 
4514 		/*
4515 		 * If we received a packet with a vlan tag, pass it
4516 		 * to vlan_input() instead of ether_input().
4517 		 */
4518 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
4519 			vlan_set_tag(m, cur_rx->bge_vlan_tag);
4520 
4521 		if_percpuq_enqueue(ifp->if_percpuq, m);
4522 	}
4523 
4524 	sc->bge_rx_saved_considx = rx_cons;
4525 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4526 	if (stdcnt)
4527 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4528 	if (jumbocnt)
4529 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4530 }
4531 
4532 static void
4533 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4534 {
4535 
4536 	if (BGE_IS_57765_PLUS(sc)) {
4537 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4538 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4539 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4540 			if ((cur_rx->bge_error_flag &
4541 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4542 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4543 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4544 				m->m_pkthdr.csum_data =
4545 				    cur_rx->bge_tcp_udp_csum;
4546 				m->m_pkthdr.csum_flags |=
4547 				    (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
4548 			}
4549 		}
4550 	} else {
4551 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4552 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4553 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4554 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4555 		/*
4556 		 * Rx transport checksum-offload may also
4557 		 * have bugs with packets which, when transmitted,
4558 		 * were `runts' requiring padding.
4559 		 */
4560 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4561 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4562 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4563 			m->m_pkthdr.csum_data =
4564 			    cur_rx->bge_tcp_udp_csum;
4565 			m->m_pkthdr.csum_flags |=
4566 			    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
4567 		}
4568 	}
4569 }
4570 
4571 static void
4572 bge_txeof(struct bge_softc *sc)
4573 {
4574 	struct bge_tx_bd *cur_tx = NULL;
4575 	struct ifnet *ifp;
4576 	struct txdmamap_pool_entry *dma;
4577 	bus_addr_t offset, toff;
4578 	bus_size_t tlen;
4579 	int tosync;
4580 	struct mbuf *m;
4581 
4582 	ifp = &sc->ethercom.ec_if;
4583 
4584 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4585 	    offsetof(struct bge_ring_data, bge_status_block),
4586 	    sizeof (struct bge_status_block),
4587 	    BUS_DMASYNC_POSTREAD);
4588 
4589 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4590 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4591 	    sc->bge_tx_saved_considx;
4592 
4593 	if (tosync != 0)
4594 		rnd_add_uint32(&sc->rnd_source, tosync);
4595 
4596 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4597 
4598 	if (tosync < 0) {
4599 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4600 		    sizeof (struct bge_tx_bd);
4601 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4602 		    toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4603 		tosync = -tosync;
4604 	}
4605 
4606 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4607 	    offset, tosync * sizeof (struct bge_tx_bd),
4608 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4609 
4610 	/*
4611 	 * Go through our tx ring and free mbufs for those
4612 	 * frames that have been sent.
4613 	 */
4614 	while (sc->bge_tx_saved_considx !=
4615 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4616 		uint32_t		idx = 0;
4617 
4618 		idx = sc->bge_tx_saved_considx;
4619 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4620 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4621 			if_statinc(ifp, if_opackets);
4622 		m = sc->bge_cdata.bge_tx_chain[idx];
4623 		if (m != NULL) {
4624 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4625 			dma = sc->txdma[idx];
4626 			if (dma->is_dma32) {
4627 				bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
4628 				    0, dma->dmamap32->dm_mapsize,
4629 				    BUS_DMASYNC_POSTWRITE);
4630 				bus_dmamap_unload(
4631 				    sc->bge_dmatag32, dma->dmamap32);
4632 			} else {
4633 				bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
4634 				    0, dma->dmamap->dm_mapsize,
4635 				    BUS_DMASYNC_POSTWRITE);
4636 				bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4637 			}
4638 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4639 			sc->txdma[idx] = NULL;
4640 
4641 			m_freem(m);
4642 		}
4643 		sc->bge_txcnt--;
4644 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4645 		ifp->if_timer = 0;
4646 	}
4647 
4648 	if (cur_tx != NULL)
4649 		ifp->if_flags &= ~IFF_OACTIVE;
4650 }
4651 
4652 static int
4653 bge_intr(void *xsc)
4654 {
4655 	struct bge_softc *sc;
4656 	struct ifnet *ifp;
4657 	uint32_t pcistate, statusword, statustag;
4658 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4659 
4660 	sc = xsc;
4661 	ifp = &sc->ethercom.ec_if;
4662 
4663 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4664 	if (BGE_IS_5717_PLUS(sc))
4665 		intrmask = 0;
4666 
4667 	/* It is possible for the interrupt to arrive before
4668 	 * the status block is updated prior to the interrupt.
4669 	 * Reading the PCI State register will confirm whether the
4670 	 * interrupt is ours and will flush the status block.
4671 	 */
4672 	pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);
4673 
4674 	/* read status word from status block */
4675 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4676 	    offsetof(struct bge_ring_data, bge_status_block),
4677 	    sizeof (struct bge_status_block),
4678 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4679 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4680 	statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;
4681 
4682 	if (sc->bge_flags & BGEF_TAGGED_STATUS) {
4683 		if (sc->bge_lasttag == statustag &&
4684 		    (~pcistate & intrmask)) {
4685 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
4686 			return (0);
4687 		}
4688 		sc->bge_lasttag = statustag;
4689 	} else {
4690 		if (!(statusword & BGE_STATFLAG_UPDATED) &&
4691 		    !(~pcistate & intrmask)) {
4692 			BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
4693 			return (0);
4694 		}
4695 		statustag = 0;
4696 	}
4697 	/* Ack interrupt and stop others from occurring. */
4698 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4699 	BGE_EVCNT_INCR(sc->bge_ev_intr);
4700 
4701 	/* clear status word */
4702 	sc->bge_rdata->bge_status_block.bge_status = 0;
4703 
4704 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4705 	    offsetof(struct bge_ring_data, bge_status_block),
4706 	    sizeof (struct bge_status_block),
4707 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4708 
4709 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4710 	    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4711 	    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4712 		bge_link_upd(sc);
4713 
4714 	if (ifp->if_flags & IFF_RUNNING) {
4715 		/* Check RX return ring producer/consumer */
4716 		bge_rxeof(sc);
4717 
4718 		/* Check TX ring producer/consumer */
4719 		bge_txeof(sc);
4720 	}
4721 
4722 	if (sc->bge_pending_rxintr_change) {
4723 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4724 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4725 
4726 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4727 		DELAY(10);
4728 		(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4729 
4730 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4731 		DELAY(10);
4732 		(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4733 
4734 		sc->bge_pending_rxintr_change = 0;
4735 	}
4736 	bge_handle_events(sc);
4737 
4738 	/* Re-enable interrupts. */
4739 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);
4740 
4741 	if (ifp->if_flags & IFF_RUNNING)
4742 		if_schedule_deferred_start(ifp);
4743 
4744 	return 1;
4745 }
4746 
4747 static void
4748 bge_asf_driver_up(struct bge_softc *sc)
4749 {
4750 	if (sc->bge_asf_mode & ASF_STACKUP) {
4751 		/* Send ASF heartbeat aprox. every 2s */
4752 		if (sc->bge_asf_count)
4753 			sc->bge_asf_count --;
4754 		else {
4755 			sc->bge_asf_count = 2;
4756 
4757 			bge_wait_for_event_ack(sc);
4758 
4759 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4760 			    BGE_FW_CMD_DRV_ALIVE3);
4761 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4762 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4763 			    BGE_FW_HB_TIMEOUT_SEC);
4764 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4765 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4766 			    BGE_RX_CPU_DRV_EVENT);
4767 		}
4768 	}
4769 }
4770 
4771 static void
4772 bge_tick(void *xsc)
4773 {
4774 	struct bge_softc *sc = xsc;
4775 	struct mii_data *mii = &sc->bge_mii;
4776 	int s;
4777 
4778 	s = splnet();
4779 
4780 	if (BGE_IS_5705_PLUS(sc))
4781 		bge_stats_update_regs(sc);
4782 	else
4783 		bge_stats_update(sc);
4784 
4785 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4786 		/*
4787 		 * Since in TBI mode auto-polling can't be used we should poll
4788 		 * link status manually. Here we register pending link event
4789 		 * and trigger interrupt.
4790 		 */
4791 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4792 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4793 	} else {
4794 		/*
4795 		 * Do not touch PHY if we have link up. This could break
4796 		 * IPMI/ASF mode or produce extra input errors.
4797 		 * (extra input errors was reported for bcm5701 & bcm5704).
4798 		 */
4799 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4800 			mii_tick(mii);
4801 	}
4802 
4803 	bge_asf_driver_up(sc);
4804 
4805 	if (!sc->bge_detaching)
4806 		callout_schedule(&sc->bge_timeout, hz);
4807 
4808 	splx(s);
4809 }
4810 
4811 static void
4812 bge_stats_update_regs(struct bge_softc *sc)
4813 {
4814 	struct ifnet *ifp = &sc->ethercom.ec_if;
4815 
4816 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4817 
4818 	if_statadd_ref(nsr, if_collisions,
4819 	    CSR_READ_4(sc, BGE_MAC_STATS +
4820 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));
4821 
4822 	/*
4823 	 * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
4824 	 * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
4825 	 * (silicon bug). There's no reliable workaround so just
4826 	 * ignore the counter
4827 	 */
4828 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
4829 	    sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4830 	    sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
4831 		if_statadd_ref(nsr, if_ierrors,
4832 		    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4833 	}
4834 	if_statadd_ref(nsr, if_ierrors,
4835 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
4836 	if_statadd_ref(nsr, if_ierrors,
4837 	    CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));
4838 
4839 	IF_STAT_PUTREF(ifp);
4840 
4841 	if (sc->bge_flags & BGEF_RDMA_BUG) {
4842 		uint32_t val, ucast, mcast, bcast;
4843 
4844 		ucast = CSR_READ_4(sc, BGE_MAC_STATS +
4845 		    offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
4846 		mcast = CSR_READ_4(sc, BGE_MAC_STATS +
4847 		    offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
4848 		bcast = CSR_READ_4(sc, BGE_MAC_STATS +
4849 		    offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));
4850 
4851 		/*
4852 		 * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4853 		 * frames, it's safe to disable workaround for DMA engine's
4854 		 * miscalculation of TXMBUF space.
4855 		 */
4856 		if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
4857 			val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4858 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
4859 				val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4860 			else
4861 				val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4862 			CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4863 			sc->bge_flags &= ~BGEF_RDMA_BUG;
4864 		}
4865 	}
4866 }
4867 
4868 static void
4869 bge_stats_update(struct bge_softc *sc)
4870 {
4871 	struct ifnet *ifp = &sc->ethercom.ec_if;
4872 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4873 
4874 #define READ_STAT(sc, stats, stat) \
4875 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4876 
4877 	uint64_t collisions =
4878 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4879 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4880 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4881 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));
4882 
4883 	if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
4884 	sc->bge_if_collisions = collisions;
4885 
4886 
4887 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4888 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4889 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4890 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4891 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4892 		      READ_STAT(sc, stats,
4893 				xoffPauseFramesReceived.bge_addr_lo));
4894 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4895 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4896 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4897 		      READ_STAT(sc, stats,
4898 				macControlFramesReceived.bge_addr_lo));
4899 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4900 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4901 
4902 #undef READ_STAT
4903 
4904 #ifdef notdef
4905 	ifp->if_collisions +=
4906 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4907 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4908 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4909 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4910 	   ifp->if_collisions;
4911 #endif
4912 }
4913 
4914 /*
4915  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4916  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4917  * but when such padded frames employ the  bge IP/TCP checksum offload,
4918  * the hardware checksum assist gives incorrect results (possibly
4919  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4920  * If we pad such runts with zeros, the onboard checksum comes out correct.
4921  */
4922 static inline int
4923 bge_cksum_pad(struct mbuf *pkt)
4924 {
4925 	struct mbuf *last = NULL;
4926 	int padlen;
4927 
4928 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4929 
4930 	/* if there's only the packet-header and we can pad there, use it. */
4931 	if (pkt->m_pkthdr.len == pkt->m_len &&
4932 	    M_TRAILINGSPACE(pkt) >= padlen) {
4933 		last = pkt;
4934 	} else {
4935 		/*
4936 		 * Walk packet chain to find last mbuf. We will either
4937 		 * pad there, or append a new mbuf and pad it
4938 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4939 		 */
4940 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4941 		       continue; /* do nothing */
4942 		}
4943 
4944 		/* `last' now points to last in chain. */
4945 		if (M_TRAILINGSPACE(last) < padlen) {
4946 			/* Allocate new empty mbuf, pad it. Compact later. */
4947 			struct mbuf *n;
4948 			MGET(n, M_DONTWAIT, MT_DATA);
4949 			if (n == NULL)
4950 				return ENOBUFS;
4951 			n->m_len = 0;
4952 			last->m_next = n;
4953 			last = n;
4954 		}
4955 	}
4956 
4957 	KDASSERT(!M_READONLY(last));
4958 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4959 
4960 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4961 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4962 	last->m_len += padlen;
4963 	pkt->m_pkthdr.len += padlen;
4964 	return 0;
4965 }
4966 
4967 /*
4968  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4969  */
4970 static inline int
4971 bge_compact_dma_runt(struct mbuf *pkt)
4972 {
4973 	struct mbuf	*m, *prev;
4974 	int		totlen;
4975 
4976 	prev = NULL;
4977 	totlen = 0;
4978 
4979 	for (m = pkt; m != NULL; prev = m, m = m->m_next) {
4980 		int mlen = m->m_len;
4981 		int shortfall = 8 - mlen ;
4982 
4983 		totlen += mlen;
4984 		if (mlen == 0)
4985 			continue;
4986 		if (mlen >= 8)
4987 			continue;
4988 
4989 		/* If we get here, mbuf data is too small for DMA engine.
4990 		 * Try to fix by shuffling data to prev or next in chain.
4991 		 * If that fails, do a compacting deep-copy of the whole chain.
4992 		 */
4993 
4994 		/* Internal frag. If fits in prev, copy it there. */
4995 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4996 			memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4997 			prev->m_len += mlen;
4998 			m->m_len = 0;
4999 			/* XXX stitch chain */
5000 			prev->m_next = m_free(m);
5001 			m = prev;
5002 			continue;
5003 		} else if (m->m_next != NULL &&
5004 			     M_TRAILINGSPACE(m) >= shortfall &&
5005 			     m->m_next->m_len >= (8 + shortfall)) {
5006 		    /* m is writable and have enough data in next, pull up. */
5007 
5008 			memcpy(m->m_data + m->m_len, m->m_next->m_data,
5009 			    shortfall);
5010 			m->m_len += shortfall;
5011 			m->m_next->m_len -= shortfall;
5012 			m->m_next->m_data += shortfall;
5013 		} else if (m->m_next == NULL || 1) {
5014 			/* Got a runt at the very end of the packet.
5015 			 * borrow data from the tail of the preceding mbuf and
5016 			 * update its length in-place. (The original data is
5017 			 * still valid, so we can do this even if prev is not
5018 			 * writable.)
5019 			 */
5020 
5021 			/*
5022 			 * If we'd make prev a runt, just move all of its data.
5023 			 */
5024 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
5025 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
5026 
5027 			if ((prev->m_len - shortfall) < 8)
5028 				shortfall = prev->m_len;
5029 
5030 #ifdef notyet	/* just do the safe slow thing for now */
5031 			if (!M_READONLY(m)) {
5032 				if (M_LEADINGSPACE(m) < shorfall) {
5033 					void *m_dat;
5034 					m_dat = M_BUFADDR(m);
5035 					memmove(m_dat, mtod(m, void*),
5036 					    m->m_len);
5037 					m->m_data = m_dat;
5038 				}
5039 			} else
5040 #endif	/* just do the safe slow thing */
5041 			{
5042 				struct mbuf * n = NULL;
5043 				int newprevlen = prev->m_len - shortfall;
5044 
5045 				MGET(n, M_NOWAIT, MT_DATA);
5046 				if (n == NULL)
5047 				   return ENOBUFS;
5048 				KASSERT(m->m_len + shortfall < MLEN
5049 					/*,
5050 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
5051 
5052 				/* first copy the data we're stealing from prev */
5053 				memcpy(n->m_data, prev->m_data + newprevlen,
5054 				    shortfall);
5055 
5056 				/* update prev->m_len accordingly */
5057 				prev->m_len -= shortfall;
5058 
5059 				/* copy data from runt m */
5060 				memcpy(n->m_data + shortfall, m->m_data,
5061 				    m->m_len);
5062 
5063 				/* n holds what we stole from prev, plus m */
5064 				n->m_len = shortfall + m->m_len;
5065 
5066 				/* stitch n into chain and free m */
5067 				n->m_next = m->m_next;
5068 				prev->m_next = n;
5069 				/* KASSERT(m->m_next == NULL); */
5070 				m->m_next = NULL;
5071 				m_free(m);
5072 				m = n;	/* for continuing loop */
5073 			}
5074 		}
5075 	}
5076 	return 0;
5077 }
5078 
5079 /*
5080  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5081  * pointers to descriptors.
5082  */
5083 static int
5084 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
5085 {
5086 	struct ifnet *ifp = &sc->ethercom.ec_if;
5087 	struct bge_tx_bd	*f, *prev_f;
5088 	uint32_t		frag, cur;
5089 	uint16_t		csum_flags = 0;
5090 	uint16_t		txbd_tso_flags = 0;
5091 	struct txdmamap_pool_entry *dma;
5092 	bus_dmamap_t dmamap;
5093 	bus_dma_tag_t dmatag;
5094 	int			i = 0;
5095 	int			use_tso, maxsegsize, error;
5096 	bool			have_vtag;
5097 	uint16_t		vtag;
5098 	bool			remap;
5099 
5100 	if (m_head->m_pkthdr.csum_flags) {
5101 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
5102 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5103 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
5104 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5105 	}
5106 
5107 	/*
5108 	 * If we were asked to do an outboard checksum, and the NIC
5109 	 * has the bug where it sometimes adds in the Ethernet padding,
5110 	 * explicitly pad with zeros so the cksum will be correct either way.
5111 	 * (For now, do this for all chip versions, until newer
5112 	 * are confirmed to not require the workaround.)
5113 	 */
5114 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
5115 #ifdef notyet
5116 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
5117 #endif
5118 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
5119 		goto check_dma_bug;
5120 
5121 	if (bge_cksum_pad(m_head) != 0)
5122 		return ENOBUFS;
5123 
5124 check_dma_bug:
5125 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
5126 		goto doit;
5127 
5128 	/*
5129 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
5130 	 * less than eight bytes.  If we encounter a teeny mbuf
5131 	 * at the end of a chain, we can pad.  Otherwise, copy.
5132 	 */
5133 	if (bge_compact_dma_runt(m_head) != 0)
5134 		return ENOBUFS;
5135 
5136 doit:
5137 	dma = SLIST_FIRST(&sc->txdma_list);
5138 	if (dma == NULL) {
5139 		ifp->if_flags |= IFF_OACTIVE;
5140 		return ENOBUFS;
5141 	}
5142 	dmamap = dma->dmamap;
5143 	dmatag = sc->bge_dmatag;
5144 	dma->is_dma32 = false;
5145 
5146 	/*
5147 	 * Set up any necessary TSO state before we start packing...
5148 	 */
5149 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
5150 	if (!use_tso) {
5151 		maxsegsize = 0;
5152 	} else {	/* TSO setup */
5153 		unsigned  mss;
5154 		struct ether_header *eh;
5155 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
5156 		unsigned bge_hlen;
5157 		struct mbuf * m0 = m_head;
5158 		struct ip *ip;
5159 		struct tcphdr *th;
5160 		int iphl, hlen;
5161 
5162 		/*
5163 		 * XXX It would be nice if the mbuf pkthdr had offset
5164 		 * fields for the protocol headers.
5165 		 */
5166 
5167 		eh = mtod(m0, struct ether_header *);
5168 		switch (htons(eh->ether_type)) {
5169 		case ETHERTYPE_IP:
5170 			offset = ETHER_HDR_LEN;
5171 			break;
5172 
5173 		case ETHERTYPE_VLAN:
5174 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5175 			break;
5176 
5177 		default:
5178 			/*
5179 			 * Don't support this protocol or encapsulation.
5180 			 */
5181 			return ENOBUFS;
5182 		}
5183 
5184 		/*
5185 		 * TCP/IP headers are in the first mbuf; we can do
5186 		 * this the easy way.
5187 		 */
5188 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5189 		hlen = iphl + offset;
5190 		if (__predict_false(m0->m_len <
5191 				    (hlen + sizeof(struct tcphdr)))) {
5192 
5193 			aprint_error_dev(sc->bge_dev,
5194 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5195 			    "not handled yet\n",
5196 			     m0->m_len, hlen+ sizeof(struct tcphdr));
5197 #ifdef NOTYET
5198 			/*
5199 			 * XXX jonathan@NetBSD.org: untested.
5200 			 * how to force this branch to be taken?
5201 			 */
5202 			BGE_EVCNT_INCR(sc->bge_ev_txtsopain);
5203 
5204 			m_copydata(m0, offset, sizeof(ip), &ip);
5205 			m_copydata(m0, hlen, sizeof(th), &th);
5206 
5207 			ip.ip_len = 0;
5208 
5209 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5210 			    sizeof(ip.ip_len), &ip.ip_len);
5211 
5212 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5213 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5214 
5215 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5216 			    sizeof(th.th_sum), &th.th_sum);
5217 
5218 			hlen += th.th_off << 2;
5219 			iptcp_opt_words	= hlen;
5220 #else
5221 			/*
5222 			 * if_wm "hard" case not yet supported, can we not
5223 			 * mandate it out of existence?
5224 			 */
5225 			(void) ip; (void)th; (void) ip_tcp_hlen;
5226 
5227 			return ENOBUFS;
5228 #endif
5229 		} else {
5230 			ip = (struct ip *) (mtod(m0, char *) + offset);
5231 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5232 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5233 
5234 			/* Total IP/TCP options, in 32-bit words */
5235 			iptcp_opt_words = (ip_tcp_hlen
5236 					   - sizeof(struct tcphdr)
5237 					   - sizeof(struct ip)) >> 2;
5238 		}
5239 		if (BGE_IS_575X_PLUS(sc)) {
5240 			th->th_sum = 0;
5241 			csum_flags = 0;
5242 		} else {
5243 			/*
5244 			 * XXX jonathan@NetBSD.org: 5705 untested.
5245 			 * Requires TSO firmware patch for 5701/5703/5704.
5246 			 */
5247 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5248 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5249 		}
5250 
5251 		mss = m_head->m_pkthdr.segsz;
5252 		txbd_tso_flags |=
5253 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5254 		    BGE_TXBDFLAG_CPU_POST_DMA;
5255 
5256 		/*
5257 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5258 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5259 		 * the NIC copies 40 bytes of IP/TCP header from the
5260 		 * supplied header into the IP/TCP header portion of
5261 		 * each post-TSO-segment. If the supplied packet has IP or
5262 		 * TCP options, we need to tell the NIC to copy those extra
5263 		 * bytes into each  post-TSO header, in addition to the normal
5264 		 * 40-byte IP/TCP header (and to leave space accordingly).
5265 		 * Unfortunately, the driver encoding of option length
5266 		 * varies across different ASIC families.
5267 		 */
5268 		tcp_seg_flags = 0;
5269 		bge_hlen = ip_tcp_hlen >> 2;
5270 		if (BGE_IS_5717_PLUS(sc)) {
5271 			tcp_seg_flags = (bge_hlen & 0x3) << 14;
5272 			txbd_tso_flags |=
5273 			    ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
5274 		} else if (BGE_IS_5705_PLUS(sc)) {
5275 			tcp_seg_flags = bge_hlen << 11;
5276 		} else {
5277 			/* XXX iptcp_opt_words or bge_hlen ? */
5278 			txbd_tso_flags |= iptcp_opt_words << 12;
5279 		}
5280 		maxsegsize = mss | tcp_seg_flags;
5281 		ip->ip_len = htons(mss + ip_tcp_hlen);
5282 		ip->ip_sum = 0;
5283 
5284 	}	/* TSO setup */
5285 
5286 	have_vtag = vlan_has_tag(m_head);
5287 	if (have_vtag)
5288 		vtag = vlan_get_tag(m_head);
5289 
5290 	/*
5291 	 * Start packing the mbufs in this chain into
5292 	 * the fragment pointers. Stop when we run out
5293 	 * of fragments or hit the end of the mbuf chain.
5294 	 */
5295 	remap = true;
5296 load_again:
5297 	error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
5298 	if (__predict_false(error)) {
5299 		if (error == EFBIG && remap) {
5300 			struct mbuf *m;
5301 			remap = false;
5302 			m = m_defrag(m_head, M_NOWAIT);
5303 			if (m != NULL) {
5304 				KASSERT(m == m_head);
5305 				goto load_again;
5306 			}
5307 		}
5308 		return error;
5309 	}
5310 	/*
5311 	 * Sanity check: avoid coming within 16 descriptors
5312 	 * of the end of the ring.
5313 	 */
5314 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5315 		BGE_TSO_PRINTF(("%s: "
5316 		    " dmamap_load_mbuf too close to ring wrap\n",
5317 		    device_xname(sc->bge_dev)));
5318 		goto fail_unload;
5319 	}
5320 
5321 	/* Iterate over dmap-map fragments. */
5322 	f = prev_f = NULL;
5323 	cur = frag = *txidx;
5324 
5325 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5326 		f = &sc->bge_rdata->bge_tx_ring[frag];
5327 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5328 			break;
5329 
5330 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5331 		f->bge_len = dmamap->dm_segs[i].ds_len;
5332 		if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
5333 		    (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
5334 		    ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
5335 		    (prev_f != NULL &&
5336 		     prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
5337 		   ) {
5338 			/*
5339 			 * watchdog timeout issue was observed with TSO,
5340 			 * limiting DMA address space to 32bits seems to
5341 			 * address the issue.
5342 			 */
5343 			bus_dmamap_unload(dmatag, dmamap);
5344 			dmatag = sc->bge_dmatag32;
5345 			dmamap = dma->dmamap32;
5346 			dma->is_dma32 = true;
5347 			remap = true;
5348 			goto load_again;
5349 		}
5350 
5351 		/*
5352 		 * For 5751 and follow-ons, for TSO we must turn
5353 		 * off checksum-assist flag in the tx-descr, and
5354 		 * supply the ASIC-revision-specific encoding
5355 		 * of TSO flags and segsize.
5356 		 */
5357 		if (use_tso) {
5358 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5359 				f->bge_rsvd = maxsegsize;
5360 				f->bge_flags = csum_flags | txbd_tso_flags;
5361 			} else {
5362 				f->bge_rsvd = 0;
5363 				f->bge_flags =
5364 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5365 			}
5366 		} else {
5367 			f->bge_rsvd = 0;
5368 			f->bge_flags = csum_flags;
5369 		}
5370 
5371 		if (have_vtag) {
5372 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5373 			f->bge_vlan_tag = vtag;
5374 		} else {
5375 			f->bge_vlan_tag = 0;
5376 		}
5377 		prev_f = f;
5378 		cur = frag;
5379 		BGE_INC(frag, BGE_TX_RING_CNT);
5380 	}
5381 
5382 	if (i < dmamap->dm_nsegs) {
5383 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5384 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5385 		goto fail_unload;
5386 	}
5387 
5388 	bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
5389 	    BUS_DMASYNC_PREWRITE);
5390 
5391 	if (frag == sc->bge_tx_saved_considx) {
5392 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5393 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5394 
5395 		goto fail_unload;
5396 	}
5397 
5398 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5399 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5400 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5401 	sc->txdma[cur] = dma;
5402 	sc->bge_txcnt += dmamap->dm_nsegs;
5403 
5404 	*txidx = frag;
5405 
5406 	return 0;
5407 
5408 fail_unload:
5409 	bus_dmamap_unload(dmatag, dmamap);
5410 	ifp->if_flags |= IFF_OACTIVE;
5411 
5412 	return ENOBUFS;
5413 }
5414 
5415 /*
5416  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5417  * to the mbuf data regions directly in the transmit descriptors.
5418  */
5419 static void
5420 bge_start(struct ifnet *ifp)
5421 {
5422 	struct bge_softc *sc;
5423 	struct mbuf *m_head = NULL;
5424 	struct mbuf *m;
5425 	uint32_t prodidx;
5426 	int pkts = 0;
5427 	int error;
5428 
5429 	sc = ifp->if_softc;
5430 
5431 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
5432 		return;
5433 
5434 	prodidx = sc->bge_tx_prodidx;
5435 
5436 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5437 		IFQ_POLL(&ifp->if_snd, m_head);
5438 		if (m_head == NULL)
5439 			break;
5440 
5441 #if 0
5442 		/*
5443 		 * XXX
5444 		 * safety overkill.  If this is a fragmented packet chain
5445 		 * with delayed TCP/UDP checksums, then only encapsulate
5446 		 * it if we have enough descriptors to handle the entire
5447 		 * chain at once.
5448 		 * (paranoia -- may not actually be needed)
5449 		 */
5450 		if (m_head->m_flags & M_FIRSTFRAG &&
5451 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5452 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5453 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5454 				ifp->if_flags |= IFF_OACTIVE;
5455 				break;
5456 			}
5457 		}
5458 #endif
5459 
5460 		/*
5461 		 * Pack the data into the transmit ring. If we
5462 		 * don't have room, set the OACTIVE flag and wait
5463 		 * for the NIC to drain the ring.
5464 		 */
5465 		error = bge_encap(sc, m_head, &prodidx);
5466 		if (__predict_false(error)) {
5467 			if (ifp->if_flags & IFF_OACTIVE) {
5468 				/* just wait for the transmit ring to drain */
5469 				break;
5470 			}
5471 			IFQ_DEQUEUE(&ifp->if_snd, m);
5472 			KASSERT(m == m_head);
5473 			m_freem(m_head);
5474 			continue;
5475 		}
5476 
5477 		/* now we are committed to transmit the packet */
5478 		IFQ_DEQUEUE(&ifp->if_snd, m);
5479 		KASSERT(m == m_head);
5480 		pkts++;
5481 
5482 		/*
5483 		 * If there's a BPF listener, bounce a copy of this frame
5484 		 * to him.
5485 		 */
5486 		bpf_mtap(ifp, m_head, BPF_D_OUT);
5487 	}
5488 	if (pkts == 0)
5489 		return;
5490 
5491 	/* Transmit */
5492 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5493 	/* 5700 b2 errata */
5494 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5495 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5496 
5497 	sc->bge_tx_prodidx = prodidx;
5498 
5499 	/*
5500 	 * Set a timeout in case the chip goes out to lunch.
5501 	 */
5502 	ifp->if_timer = 5;
5503 }
5504 
5505 static int
5506 bge_init(struct ifnet *ifp)
5507 {
5508 	struct bge_softc *sc = ifp->if_softc;
5509 	const uint16_t *m;
5510 	uint32_t mode, reg;
5511 	int s, error = 0;
5512 
5513 	s = splnet();
5514 
5515 	ifp = &sc->ethercom.ec_if;
5516 
5517 	/* Cancel pending I/O and flush buffers. */
5518 	bge_stop(ifp, 0);
5519 
5520 	bge_stop_fw(sc);
5521 	bge_sig_pre_reset(sc, BGE_RESET_START);
5522 	bge_reset(sc);
5523 	bge_sig_legacy(sc, BGE_RESET_START);
5524 
5525 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5526 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5527 		reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
5528 		    BGE_CPMU_CTRL_LINK_IDLE_MODE);
5529 		CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5530 
5531 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
5532 		reg &= ~BGE_CPMU_LSPD_10MB_CLK;
5533 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
5534 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
5535 
5536 		reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
5537 		reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
5538 		reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
5539 		CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);
5540 
5541 		reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
5542 		reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
5543 		reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
5544 		CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
5545 	}
5546 
5547 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
5548 		pcireg_t aercap;
5549 
5550 		reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
5551 		reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
5552 		    | BGE_PCIE_PWRMNG_L1THRESH_4MS
5553 		    | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
5554 		CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);
5555 
5556 		reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
5557 		reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
5558 		    | BGE_PCIE_EIDLE_DELAY_13CLK;
5559 		CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);
5560 
5561 		/* Clear correctable error */
5562 		if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
5563 		    PCI_EXTCAP_AER, &aercap, NULL) != 0)
5564 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
5565 			    aercap + PCI_AER_COR_STATUS, 0xffffffff);
5566 
5567 		reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
5568 		reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
5569 		    | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
5570 		CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
5571 	}
5572 
5573 	bge_sig_post_reset(sc, BGE_RESET_START);
5574 
5575 	bge_chipinit(sc);
5576 
5577 	/*
5578 	 * Init the various state machines, ring
5579 	 * control blocks and firmware.
5580 	 */
5581 	error = bge_blockinit(sc);
5582 	if (error != 0) {
5583 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5584 		    error);
5585 		splx(s);
5586 		return error;
5587 	}
5588 
5589 	ifp = &sc->ethercom.ec_if;
5590 
5591 	/* 5718 step 25, 57XX step 54 */
5592 	/* Specify MTU. */
5593 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5594 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5595 
5596 	/* 5718 step 23 */
5597 	/* Load our MAC address. */
5598 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5599 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5600 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
5601 	    ((uint32_t)htons(m[1]) << 16) | htons(m[2]));
5602 
5603 	/* Enable or disable promiscuous mode as needed. */
5604 	if (ifp->if_flags & IFF_PROMISC)
5605 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5606 	else
5607 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5608 
5609 	/* Program multicast filter. */
5610 	bge_setmulti(sc);
5611 
5612 	/* Init RX ring. */
5613 	bge_init_rx_ring_std(sc);
5614 
5615 	/*
5616 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5617 	 * memory to insure that the chip has in fact read the first
5618 	 * entry of the ring.
5619 	 */
5620 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5621 		uint32_t		v, i;
5622 		for (i = 0; i < 10; i++) {
5623 			DELAY(20);
5624 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5625 			if (v == (MCLBYTES - ETHER_ALIGN))
5626 				break;
5627 		}
5628 		if (i == 10)
5629 			aprint_error_dev(sc->bge_dev,
5630 			    "5705 A0 chip failed to load RX ring\n");
5631 	}
5632 
5633 	/* Init jumbo RX ring. */
5634 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5635 		bge_init_rx_ring_jumbo(sc);
5636 
5637 	/* Init our RX return ring index */
5638 	sc->bge_rx_saved_considx = 0;
5639 
5640 	/* Init TX ring. */
5641 	bge_init_tx_ring(sc);
5642 
5643 	/* 5718 step 63, 57XX step 94 */
5644 	/* Enable TX MAC state machine lockup fix. */
5645 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5646 	if (BGE_IS_5755_PLUS(sc) ||
5647 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5648 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5649 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
5650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
5651 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5652 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5653 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5654 	}
5655 
5656 	/* Turn on transmitter */
5657 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5658 	/* 5718 step 64 */
5659 	DELAY(100);
5660 
5661 	/* 5718 step 65, 57XX step 95 */
5662 	/* Turn on receiver */
5663 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5664 	if (BGE_IS_5755_PLUS(sc))
5665 		mode |= BGE_RXMODE_IPV6_ENABLE;
5666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
5667 		mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5668 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5669 	/* 5718 step 66 */
5670 	DELAY(10);
5671 
5672 	/* 5718 step 12, 57XX step 37 */
5673 	/*
5674 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5675 	 * is 1, but tg3 set 1 only on 57765 series.
5676 	 */
5677 	if (BGE_IS_57765_PLUS(sc))
5678 		reg = 1;
5679 	else
5680 		reg = 2;
5681 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5682 
5683 	/* Tell firmware we're alive. */
5684 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5685 
5686 	/* Enable host interrupts. */
5687 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5688 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5689 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5690 
5691 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5692 		goto out;
5693 
5694 	ifp->if_flags |= IFF_RUNNING;
5695 	ifp->if_flags &= ~IFF_OACTIVE;
5696 
5697 	callout_schedule(&sc->bge_timeout, hz);
5698 
5699 out:
5700 	sc->bge_if_flags = ifp->if_flags;
5701 	splx(s);
5702 
5703 	return error;
5704 }
5705 
5706 /*
5707  * Set media options.
5708  */
5709 static int
5710 bge_ifmedia_upd(struct ifnet *ifp)
5711 {
5712 	struct bge_softc *sc = ifp->if_softc;
5713 	struct mii_data *mii = &sc->bge_mii;
5714 	struct ifmedia *ifm = &sc->bge_ifmedia;
5715 	int rc;
5716 
5717 	/* If this is a 1000baseX NIC, enable the TBI port. */
5718 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5719 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5720 			return EINVAL;
5721 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5722 		case IFM_AUTO:
5723 			/*
5724 			 * The BCM5704 ASIC appears to have a special
5725 			 * mechanism for programming the autoneg
5726 			 * advertisement registers in TBI mode.
5727 			 */
5728 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5729 				uint32_t sgdig;
5730 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5731 				if (sgdig & BGE_SGDIGSTS_DONE) {
5732 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5733 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5734 					sgdig |= BGE_SGDIGCFG_AUTO |
5735 					    BGE_SGDIGCFG_PAUSE_CAP |
5736 					    BGE_SGDIGCFG_ASYM_PAUSE;
5737 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5738 					    sgdig | BGE_SGDIGCFG_SEND);
5739 					DELAY(5);
5740 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5741 					    sgdig);
5742 				}
5743 			}
5744 			break;
5745 		case IFM_1000_SX:
5746 			if ((ifm->ifm_media & IFM_FDX) != 0) {
5747 				BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
5748 				    BGE_MACMODE_HALF_DUPLEX);
5749 			} else {
5750 				BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
5751 				    BGE_MACMODE_HALF_DUPLEX);
5752 			}
5753 			DELAY(40);
5754 			break;
5755 		default:
5756 			return EINVAL;
5757 		}
5758 		/* XXX 802.3x flow control for 1000BASE-SX */
5759 		return 0;
5760 	}
5761 
5762 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
5763 	    (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
5764 		uint32_t reg;
5765 
5766 		reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
5767 		if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
5768 			reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
5769 			CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
5770 		}
5771 	}
5772 
5773 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5774 	if ((rc = mii_mediachg(mii)) == ENXIO)
5775 		return 0;
5776 
5777 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
5778 		uint32_t reg;
5779 
5780 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
5781 		if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
5782 		    == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
5783 			reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
5784 			delay(40);
5785 			CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
5786 		}
5787 	}
5788 
5789 	/*
5790 	 * Force an interrupt so that we will call bge_link_upd
5791 	 * if needed and clear any pending link state attention.
5792 	 * Without this we are not getting any further interrupts
5793 	 * for link state changes and thus will not UP the link and
5794 	 * not be able to send in bge_start. The only way to get
5795 	 * things working was to receive a packet and get a RX intr.
5796 	 */
5797 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5798 	    sc->bge_flags & BGEF_IS_5788)
5799 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5800 	else
5801 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5802 
5803 	return rc;
5804 }
5805 
5806 /*
5807  * Report current media status.
5808  */
5809 static void
5810 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5811 {
5812 	struct bge_softc *sc = ifp->if_softc;
5813 	struct mii_data *mii = &sc->bge_mii;
5814 
5815 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5816 		ifmr->ifm_status = IFM_AVALID;
5817 		ifmr->ifm_active = IFM_ETHER;
5818 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5819 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5820 			ifmr->ifm_status |= IFM_ACTIVE;
5821 		ifmr->ifm_active |= IFM_1000_SX;
5822 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5823 			ifmr->ifm_active |= IFM_HDX;
5824 		else
5825 			ifmr->ifm_active |= IFM_FDX;
5826 		return;
5827 	}
5828 
5829 	mii_pollstat(mii);
5830 	ifmr->ifm_status = mii->mii_media_status;
5831 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5832 	    sc->bge_flowflags;
5833 }
5834 
5835 static int
5836 bge_ifflags_cb(struct ethercom *ec)
5837 {
5838 	struct ifnet *ifp = &ec->ec_if;
5839 	struct bge_softc *sc = ifp->if_softc;
5840 	u_short change = ifp->if_flags ^ sc->bge_if_flags;
5841 
5842 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
5843 		return ENETRESET;
5844 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5845 		return 0;
5846 
5847 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5848 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5849 	else
5850 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5851 
5852 	bge_setmulti(sc);
5853 
5854 	sc->bge_if_flags = ifp->if_flags;
5855 	return 0;
5856 }
5857 
5858 static int
5859 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5860 {
5861 	struct bge_softc *sc = ifp->if_softc;
5862 	struct ifreq *ifr = (struct ifreq *) data;
5863 	int s, error = 0;
5864 	struct mii_data *mii;
5865 
5866 	s = splnet();
5867 
5868 	switch (command) {
5869 	case SIOCSIFMEDIA:
5870 		/* XXX Flow control is not supported for 1000BASE-SX */
5871 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5872 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5873 			sc->bge_flowflags = 0;
5874 		}
5875 
5876 		/* Flow control requires full-duplex mode. */
5877 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5878 		    (ifr->ifr_media & IFM_FDX) == 0) {
5879 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5880 		}
5881 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5882 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5883 				/* We can do both TXPAUSE and RXPAUSE. */
5884 				ifr->ifr_media |=
5885 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5886 			}
5887 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5888 		}
5889 
5890 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5891 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5892 			    command);
5893 		} else {
5894 			mii = &sc->bge_mii;
5895 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5896 			    command);
5897 		}
5898 		break;
5899 	default:
5900 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5901 			break;
5902 
5903 		error = 0;
5904 
5905 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5906 			;
5907 		else if (ifp->if_flags & IFF_RUNNING)
5908 			bge_setmulti(sc);
5909 		break;
5910 	}
5911 
5912 	splx(s);
5913 
5914 	return error;
5915 }
5916 
5917 static void
5918 bge_watchdog(struct ifnet *ifp)
5919 {
5920 	struct bge_softc *sc;
5921 	uint32_t status;
5922 
5923 	sc = ifp->if_softc;
5924 
5925 	/* If pause frames are active then don't reset the hardware. */
5926 	if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5927 		status = CSR_READ_4(sc, BGE_RX_STS);
5928 		if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5929 			/*
5930 			 * If link partner has us in XOFF state then wait for
5931 			 * the condition to clear.
5932 			 */
5933 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5934 			ifp->if_timer = 5;
5935 			return;
5936 		} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5937 		    (status & BGE_RXSTAT_RCVD_XON) != 0) {
5938 			/*
5939 			 * If link partner has us in XOFF state then wait for
5940 			 * the condition to clear.
5941 			 */
5942 			CSR_WRITE_4(sc, BGE_RX_STS, status);
5943 			ifp->if_timer = 5;
5944 			return;
5945 		}
5946 		/*
5947 		 * Any other condition is unexpected and the controller
5948 		 * should be reset.
5949 		 */
5950 	}
5951 
5952 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5953 
5954 	ifp->if_flags &= ~IFF_RUNNING;
5955 	bge_init(ifp);
5956 
5957 	if_statinc(ifp, if_oerrors);
5958 }
5959 
5960 static void
5961 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5962 {
5963 	int i;
5964 
5965 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5966 
5967 	for (i = 0; i < 1000; i++) {
5968 		delay(100);
5969 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5970 			return;
5971 	}
5972 
5973 	/*
5974 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5975 	 * on some environment (and once after boot?)
5976 	 */
5977 	if (reg != BGE_SRS_MODE)
5978 		aprint_error_dev(sc->bge_dev,
5979 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5980 		    (u_long)reg, bit);
5981 }
5982 
5983 /*
5984  * Stop the adapter and free any mbufs allocated to the
5985  * RX and TX lists.
5986  */
5987 static void
5988 bge_stop(struct ifnet *ifp, int disable)
5989 {
5990 	struct bge_softc *sc = ifp->if_softc;
5991 
5992 	if (disable) {
5993 		sc->bge_detaching = 1;
5994 		callout_halt(&sc->bge_timeout, NULL);
5995 	} else
5996 		callout_stop(&sc->bge_timeout);
5997 
5998 	/* Disable host interrupts. */
5999 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
6000 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
6001 
6002 	/*
6003 	 * Tell firmware we're shutting down.
6004 	 */
6005 	bge_stop_fw(sc);
6006 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
6007 
6008 	/*
6009 	 * Disable all of the receiver blocks.
6010 	 */
6011 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
6012 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
6013 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
6014 	if (BGE_IS_5700_FAMILY(sc))
6015 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
6016 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
6017 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
6018 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
6019 
6020 	/*
6021 	 * Disable all of the transmit blocks.
6022 	 */
6023 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
6024 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6025 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6026 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6027 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6028 	if (BGE_IS_5700_FAMILY(sc))
6029 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6030 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6031 
6032 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
6033 	delay(40);
6034 
6035 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
6036 
6037 	/*
6038 	 * Shut down all of the memory managers and related
6039 	 * state machines.
6040 	 */
6041 	/* 5718 step 5a,5b */
6042 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6043 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6044 	if (BGE_IS_5700_FAMILY(sc))
6045 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6046 
6047 	/* 5718 step 5c,5d */
6048 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6049 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6050 
6051 	if (BGE_IS_5700_FAMILY(sc)) {
6052 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6053 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6054 	}
6055 
6056 	bge_reset(sc);
6057 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6058 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6059 
6060 	/*
6061 	 * Keep the ASF firmware running if up.
6062 	 */
6063 	if (sc->bge_asf_mode & ASF_STACKUP)
6064 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6065 	else
6066 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6067 
6068 	/* Free the RX lists. */
6069 	bge_free_rx_ring_std(sc, disable);
6070 
6071 	/* Free jumbo RX list. */
6072 	if (BGE_IS_JUMBO_CAPABLE(sc))
6073 		bge_free_rx_ring_jumbo(sc);
6074 
6075 	/* Free TX buffers. */
6076 	bge_free_tx_ring(sc, disable);
6077 
6078 	/*
6079 	 * Isolate/power down the PHY.
6080 	 */
6081 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
6082 		mii_down(&sc->bge_mii);
6083 
6084 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6085 
6086 	/* Clear MAC's link state (PHY may still have link UP). */
6087 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6088 
6089 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
6090 }
6091 
6092 static void
6093 bge_link_upd(struct bge_softc *sc)
6094 {
6095 	struct ifnet *ifp = &sc->ethercom.ec_if;
6096 	struct mii_data *mii = &sc->bge_mii;
6097 	uint32_t status;
6098 	uint16_t phyval;
6099 	int link;
6100 
6101 	/* Clear 'pending link event' flag */
6102 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
6103 
6104 	/*
6105 	 * Process link state changes.
6106 	 * Grrr. The link status word in the status block does
6107 	 * not work correctly on the BCM5700 rev AX and BX chips,
6108 	 * according to all available information. Hence, we have
6109 	 * to enable MII interrupts in order to properly obtain
6110 	 * async link changes. Unfortunately, this also means that
6111 	 * we have to read the MAC status register to detect link
6112 	 * changes, thereby adding an additional register access to
6113 	 * the interrupt handler.
6114 	 */
6115 
6116 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
6117 		status = CSR_READ_4(sc, BGE_MAC_STS);
6118 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
6119 			mii_pollstat(mii);
6120 
6121 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6122 			    mii->mii_media_status & IFM_ACTIVE &&
6123 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6124 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6125 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6126 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6127 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6128 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6129 
6130 			/* Clear the interrupt */
6131 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6132 			    BGE_EVTENB_MI_INTERRUPT);
6133 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6134 			    BRGPHY_MII_ISR, &phyval);
6135 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6136 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
6137 		}
6138 		return;
6139 	}
6140 
6141 	if (sc->bge_flags & BGEF_FIBER_TBI) {
6142 		status = CSR_READ_4(sc, BGE_MAC_STS);
6143 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6144 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
6145 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6146 				if (BGE_ASICREV(sc->bge_chipid)
6147 				    == BGE_ASICREV_BCM5704) {
6148 					BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
6149 					    BGE_MACMODE_TBI_SEND_CFGS);
6150 					DELAY(40);
6151 				}
6152 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6153 				if_link_state_change(ifp, LINK_STATE_UP);
6154 			}
6155 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
6156 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6157 			if_link_state_change(ifp, LINK_STATE_DOWN);
6158 		}
6159 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
6160 		/*
6161 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
6162 		 * bit in status word always set. Workaround this bug by
6163 		 * reading PHY link status directly.
6164 		 */
6165 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
6166 		    BGE_STS_LINK : 0;
6167 
6168 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
6169 			mii_pollstat(mii);
6170 
6171 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
6172 			    mii->mii_media_status & IFM_ACTIVE &&
6173 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
6174 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
6175 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
6176 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
6177 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
6178 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
6179 		}
6180 	} else {
6181 		/*
6182 		 * For controllers that call mii_tick, we have to poll
6183 		 * link status.
6184 		 */
6185 		mii_pollstat(mii);
6186 	}
6187 
6188 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
6189 		uint32_t reg, scale;
6190 
6191 		reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
6192 		    BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
6193 		if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
6194 			scale = 65;
6195 		else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
6196 			scale = 6;
6197 		else
6198 			scale = 12;
6199 
6200 		reg = CSR_READ_4(sc, BGE_MISC_CFG) &
6201 		    ~BGE_MISCCFG_TIMER_PRESCALER;
6202 		reg |= scale << 1;
6203 		CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
6204 	}
6205 	/* Clear the attention */
6206 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6207 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6208 	    BGE_MACSTAT_LINK_CHANGED);
6209 }
6210 
6211 static int
6212 bge_sysctl_verify(SYSCTLFN_ARGS)
6213 {
6214 	int error, t;
6215 	struct sysctlnode node;
6216 
6217 	node = *rnode;
6218 	t = *(int*)rnode->sysctl_data;
6219 	node.sysctl_data = &t;
6220 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
6221 	if (error || newp == NULL)
6222 		return error;
6223 
6224 #if 0
6225 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
6226 	    node.sysctl_num, rnode->sysctl_num));
6227 #endif
6228 
6229 	if (node.sysctl_num == bge_rxthresh_nodenum) {
6230 		if (t < 0 || t >= NBGE_RX_THRESH)
6231 			return EINVAL;
6232 		bge_update_all_threshes(t);
6233 	} else
6234 		return EINVAL;
6235 
6236 	*(int*)rnode->sysctl_data = t;
6237 
6238 	return 0;
6239 }
6240 
6241 /*
6242  * Set up sysctl(3) MIB, hw.bge.*.
6243  */
6244 static void
6245 bge_sysctl_init(struct bge_softc *sc)
6246 {
6247 	int rc, bge_root_num;
6248 	const struct sysctlnode *node;
6249 
6250 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6251 	    0, CTLTYPE_NODE, "bge",
6252 	    SYSCTL_DESCR("BGE interface controls"),
6253 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
6254 		goto out;
6255 	}
6256 
6257 	bge_root_num = node->sysctl_num;
6258 
6259 	/* BGE Rx interrupt mitigation level */
6260 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
6261 	    CTLFLAG_READWRITE,
6262 	    CTLTYPE_INT, "rx_lvl",
6263 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
6264 	    bge_sysctl_verify, 0,
6265 	    &bge_rx_thresh_lvl,
6266 	    0, CTL_HW, bge_root_num, CTL_CREATE,
6267 	    CTL_EOL)) != 0) {
6268 		goto out;
6269 	}
6270 
6271 	bge_rxthresh_nodenum = node->sysctl_num;
6272 
6273 	return;
6274 
6275 out:
6276 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
6277 }
6278 
6279 #ifdef BGE_DEBUG
6280 void
6281 bge_debug_info(struct bge_softc *sc)
6282 {
6283 
6284 	printf("Hardware Flags:\n");
6285 	if (BGE_IS_57765_PLUS(sc))
6286 		printf(" - 57765 Plus\n");
6287 	if (BGE_IS_5717_PLUS(sc))
6288 		printf(" - 5717 Plus\n");
6289 	if (BGE_IS_5755_PLUS(sc))
6290 		printf(" - 5755 Plus\n");
6291 	if (BGE_IS_575X_PLUS(sc))
6292 		printf(" - 575X Plus\n");
6293 	if (BGE_IS_5705_PLUS(sc))
6294 		printf(" - 5705 Plus\n");
6295 	if (BGE_IS_5714_FAMILY(sc))
6296 		printf(" - 5714 Family\n");
6297 	if (BGE_IS_5700_FAMILY(sc))
6298 		printf(" - 5700 Family\n");
6299 	if (sc->bge_flags & BGEF_IS_5788)
6300 		printf(" - 5788\n");
6301 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
6302 		printf(" - Supports Jumbo Frames\n");
6303 	if (sc->bge_flags & BGEF_NO_EEPROM)
6304 		printf(" - No EEPROM\n");
6305 	if (sc->bge_flags & BGEF_PCIX)
6306 		printf(" - PCI-X Bus\n");
6307 	if (sc->bge_flags & BGEF_PCIE)
6308 		printf(" - PCI Express Bus\n");
6309 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
6310 		printf(" - RX Alignment Bug\n");
6311 	if (sc->bge_flags & BGEF_APE)
6312 		printf(" - APE\n");
6313 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
6314 		printf(" - CPMU\n");
6315 	if (sc->bge_flags & BGEF_TSO)
6316 		printf(" - TSO\n");
6317 	if (sc->bge_flags & BGEF_TAGGED_STATUS)
6318 		printf(" - TAGGED_STATUS\n");
6319 
6320 	/* PHY related */
6321 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
6322 		printf(" - No 3 LEDs\n");
6323 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
6324 		printf(" - CRC bug\n");
6325 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
6326 		printf(" - ADC bug\n");
6327 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
6328 		printf(" - 5704 A0 bug\n");
6329 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
6330 		printf(" - jitter bug\n");
6331 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
6332 		printf(" - BER bug\n");
6333 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6334 		printf(" - adjust trim\n");
6335 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6336 		printf(" - no wirespeed\n");
6337 
6338 	/* ASF related */
6339 	if (sc->bge_asf_mode & ASF_ENABLE)
6340 		printf(" - ASF enable\n");
6341 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
6342 		printf(" - ASF new handshake\n");
6343 	if (sc->bge_asf_mode & ASF_STACKUP)
6344 		printf(" - ASF stackup\n");
6345 }
6346 #endif /* BGE_DEBUG */
6347 
6348 static int
6349 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6350 {
6351 	prop_dictionary_t dict;
6352 	prop_data_t ea;
6353 
6354 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6355 		return 1;
6356 
6357 	dict = device_properties(sc->bge_dev);
6358 	ea = prop_dictionary_get(dict, "mac-address");
6359 	if (ea != NULL) {
6360 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6361 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6362 		memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
6363 		return 0;
6364 	}
6365 
6366 	return 1;
6367 }
6368 
6369 static int
6370 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6371 {
6372 	uint32_t mac_addr;
6373 
6374 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6375 	if ((mac_addr >> 16) == 0x484b) {
6376 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6377 		ether_addr[1] = (uint8_t)mac_addr;
6378 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6379 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6380 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6381 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6382 		ether_addr[5] = (uint8_t)mac_addr;
6383 		return 0;
6384 	}
6385 	return 1;
6386 }
6387 
6388 static int
6389 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6390 {
6391 	int mac_offset = BGE_EE_MAC_OFFSET;
6392 
6393 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6394 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6395 
6396 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6397 	    ETHER_ADDR_LEN));
6398 }
6399 
6400 static int
6401 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6402 {
6403 
6404 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6405 		return 1;
6406 
6407 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6408 	   ETHER_ADDR_LEN));
6409 }
6410 
6411 static int
6412 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6413 {
6414 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6415 		/* NOTE: Order is critical */
6416 		bge_get_eaddr_fw,
6417 		bge_get_eaddr_mem,
6418 		bge_get_eaddr_nvram,
6419 		bge_get_eaddr_eeprom,
6420 		NULL
6421 	};
6422 	const bge_eaddr_fcn_t *func;
6423 
6424 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6425 		if ((*func)(sc, eaddr) == 0)
6426 			break;
6427 	}
6428 	return (*func == NULL ? ENXIO : 0);
6429 }
6430