1 /* $NetBSD: if_bge.c,v 1.264 2013/11/07 18:45:32 msaitoh Exp $ */ 2 3 /* 4 * Copyright (c) 2001 Wind River Systems 5 * Copyright (c) 1997, 1998, 1999, 2001 6 * Bill Paul <wpaul@windriver.com>. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by Bill Paul. 19 * 4. Neither the name of the author nor the names of any co-contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 33 * THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $ 36 */ 37 38 /* 39 * Broadcom BCM570x family gigabit ethernet driver for NetBSD. 40 * 41 * NetBSD version by: 42 * 43 * Frank van der Linden <fvdl@wasabisystems.com> 44 * Jason Thorpe <thorpej@wasabisystems.com> 45 * Jonathan Stone <jonathan@dsg.stanford.edu> 46 * 47 * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com> 48 * Senior Engineer, Wind River Systems 49 */ 50 51 /* 52 * The Broadcom BCM5700 is based on technology originally developed by 53 * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet 54 * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has 55 * two on-board MIPS R4000 CPUs and can have as much as 16MB of external 56 * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo 57 * frames, highly configurable RX filtering, and 16 RX and TX queues 58 * (which, along with RX filter rules, can be used for QOS applications). 59 * Other features, such as TCP segmentation, may be available as part 60 * of value-added firmware updates. Unlike the Tigon I and Tigon II, 61 * firmware images can be stored in hardware and need not be compiled 62 * into the driver. 63 * 64 * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will 65 * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. 66 * 67 * The BCM5701 is a single-chip solution incorporating both the BCM5700 68 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 69 * does not support external SSRAM. 70 * 71 * Broadcom also produces a variation of the BCM5700 under the "Altima" 72 * brand name, which is functionally similar but lacks PCI-X support. 73 * 74 * Without external SSRAM, you can only have at most 4 TX rings, 75 * and the use of the mini RX ring is disabled. This seems to imply 76 * that these features are simply not available on the BCM5701. As a 77 * result, this driver does not implement any support for the mini RX 78 * ring. 79 */ 80 81 #include <sys/cdefs.h> 82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.264 2013/11/07 18:45:32 msaitoh Exp $"); 83 84 #include <sys/param.h> 85 #include <sys/systm.h> 86 #include <sys/callout.h> 87 #include <sys/sockio.h> 88 #include <sys/mbuf.h> 89 #include <sys/malloc.h> 90 #include <sys/kernel.h> 91 #include <sys/device.h> 92 #include <sys/socket.h> 93 #include <sys/sysctl.h> 94 95 #include <net/if.h> 96 #include <net/if_dl.h> 97 #include <net/if_media.h> 98 #include <net/if_ether.h> 99 100 #include <sys/rnd.h> 101 102 #ifdef INET 103 #include <netinet/in.h> 104 #include <netinet/in_systm.h> 105 #include <netinet/in_var.h> 106 #include <netinet/ip.h> 107 #endif 108 109 /* Headers for TCP Segmentation Offload (TSO) */ 110 #include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */ 111 #include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */ 112 #include <netinet/ip.h> /* for struct ip */ 113 #include <netinet/tcp.h> /* for struct tcphdr */ 114 115 116 #include <net/bpf.h> 117 118 #include <dev/pci/pcireg.h> 119 #include <dev/pci/pcivar.h> 120 #include <dev/pci/pcidevs.h> 121 122 #include <dev/mii/mii.h> 123 #include <dev/mii/miivar.h> 124 #include <dev/mii/miidevs.h> 125 #include <dev/mii/brgphyreg.h> 126 127 #include <dev/pci/if_bgereg.h> 128 #include <dev/pci/if_bgevar.h> 129 130 #include <prop/proplib.h> 131 132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ 133 134 135 /* 136 * Tunable thresholds for rx-side bge interrupt mitigation. 137 */ 138 139 /* 140 * The pairs of values below were obtained from empirical measurement 141 * on bcm5700 rev B2; they ar designed to give roughly 1 receive 142 * interrupt for every N packets received, where N is, approximately, 143 * the second value (rx_max_bds) in each pair. The values are chosen 144 * such that moving from one pair to the succeeding pair was observed 145 * to roughly halve interrupt rate under sustained input packet load. 146 * The values were empirically chosen to avoid overflowing internal 147 * limits on the bcm5700: increasing rx_ticks much beyond 600 148 * results in internal wrapping and higher interrupt rates. 149 * The limit of 46 frames was chosen to match NFS workloads. 150 * 151 * These values also work well on bcm5701, bcm5704C, and (less 152 * tested) bcm5703. On other chipsets, (including the Altima chip 153 * family), the larger values may overflow internal chip limits, 154 * leading to increasing interrupt rates rather than lower interrupt 155 * rates. 156 * 157 * Applications using heavy interrupt mitigation (interrupting every 158 * 32 or 46 frames) in both directions may need to increase the TCP 159 * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain 160 * full link bandwidth, due to ACKs and window updates lingering 161 * in the RX queue during the 30-to-40-frame interrupt-mitigation window. 162 */ 163 static const struct bge_load_rx_thresh { 164 int rx_ticks; 165 int rx_max_bds; } 166 bge_rx_threshes[] = { 167 { 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */ 168 { 32, 2 }, 169 { 50, 4 }, 170 { 100, 8 }, 171 { 192, 16 }, 172 { 416, 32 }, 173 { 598, 46 } 174 }; 175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0])) 176 177 /* XXX patchable; should be sysctl'able */ 178 static int bge_auto_thresh = 1; 179 static int bge_rx_thresh_lvl; 180 181 static int bge_rxthresh_nodenum; 182 183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]); 184 185 static uint32_t bge_chipid(const struct pci_attach_args *); 186 static int bge_probe(device_t, cfdata_t, void *); 187 static void bge_attach(device_t, device_t, void *); 188 static int bge_detach(device_t, int); 189 static void bge_release_resources(struct bge_softc *); 190 191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]); 192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]); 193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]); 194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]); 195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]); 196 197 static void bge_txeof(struct bge_softc *); 198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); 199 static void bge_rxeof(struct bge_softc *); 200 201 static void bge_asf_driver_up (struct bge_softc *); 202 static void bge_tick(void *); 203 static void bge_stats_update(struct bge_softc *); 204 static void bge_stats_update_regs(struct bge_softc *); 205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *); 206 207 static int bge_intr(void *); 208 static void bge_start(struct ifnet *); 209 static int bge_ifflags_cb(struct ethercom *); 210 static int bge_ioctl(struct ifnet *, u_long, void *); 211 static int bge_init(struct ifnet *); 212 static void bge_stop(struct ifnet *, int); 213 static void bge_watchdog(struct ifnet *); 214 static int bge_ifmedia_upd(struct ifnet *); 215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); 216 217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *); 218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int); 219 220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *); 221 static int bge_read_eeprom(struct bge_softc *, void *, int, int); 222 static void bge_setmulti(struct bge_softc *); 223 224 static void bge_handle_events(struct bge_softc *); 225 static int bge_alloc_jumbo_mem(struct bge_softc *); 226 #if 0 /* XXX */ 227 static void bge_free_jumbo_mem(struct bge_softc *); 228 #endif 229 static void *bge_jalloc(struct bge_softc *); 230 static void bge_jfree(struct mbuf *, void *, size_t, void *); 231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, 232 bus_dmamap_t); 233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); 234 static int bge_init_rx_ring_std(struct bge_softc *); 235 static void bge_free_rx_ring_std(struct bge_softc *); 236 static int bge_init_rx_ring_jumbo(struct bge_softc *); 237 static void bge_free_rx_ring_jumbo(struct bge_softc *); 238 static void bge_free_tx_ring(struct bge_softc *); 239 static int bge_init_tx_ring(struct bge_softc *); 240 241 static int bge_chipinit(struct bge_softc *); 242 static int bge_blockinit(struct bge_softc *); 243 static int bge_phy_addr(struct bge_softc *); 244 static uint32_t bge_readmem_ind(struct bge_softc *, int); 245 static void bge_writemem_ind(struct bge_softc *, int, int); 246 static void bge_writembx(struct bge_softc *, int, int); 247 static void bge_writembx_flush(struct bge_softc *, int, int); 248 static void bge_writemem_direct(struct bge_softc *, int, int); 249 static void bge_writereg_ind(struct bge_softc *, int, int); 250 static void bge_set_max_readrq(struct bge_softc *); 251 252 static int bge_miibus_readreg(device_t, int, int); 253 static void bge_miibus_writereg(device_t, int, int, int); 254 static void bge_miibus_statchg(struct ifnet *); 255 256 #define BGE_RESET_SHUTDOWN 0 257 #define BGE_RESET_START 1 258 #define BGE_RESET_SUSPEND 2 259 static void bge_sig_post_reset(struct bge_softc *, int); 260 static void bge_sig_legacy(struct bge_softc *, int); 261 static void bge_sig_pre_reset(struct bge_softc *, int); 262 static void bge_wait_for_event_ack(struct bge_softc *); 263 static void bge_stop_fw(struct bge_softc *); 264 static int bge_reset(struct bge_softc *); 265 static void bge_link_upd(struct bge_softc *); 266 static void bge_sysctl_init(struct bge_softc *); 267 static int bge_sysctl_verify(SYSCTLFN_PROTO); 268 269 static void bge_ape_lock_init(struct bge_softc *); 270 static void bge_ape_read_fw_ver(struct bge_softc *); 271 static int bge_ape_lock(struct bge_softc *, int); 272 static void bge_ape_unlock(struct bge_softc *, int); 273 static void bge_ape_send_event(struct bge_softc *, uint32_t); 274 static void bge_ape_driver_state_change(struct bge_softc *, int); 275 276 #ifdef BGE_DEBUG 277 #define DPRINTF(x) if (bgedebug) printf x 278 #define DPRINTFN(n,x) if (bgedebug >= (n)) printf x 279 #define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0) 280 int bgedebug = 0; 281 int bge_tso_debug = 0; 282 void bge_debug_info(struct bge_softc *); 283 #else 284 #define DPRINTF(x) 285 #define DPRINTFN(n,x) 286 #define BGE_TSO_PRINTF(x) 287 #endif 288 289 #ifdef BGE_EVENT_COUNTERS 290 #define BGE_EVCNT_INCR(ev) (ev).ev_count++ 291 #define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val) 292 #define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val) 293 #else 294 #define BGE_EVCNT_INCR(ev) /* nothing */ 295 #define BGE_EVCNT_ADD(ev, val) /* nothing */ 296 #define BGE_EVCNT_UPD(ev, val) /* nothing */ 297 #endif 298 299 static const struct bge_product { 300 pci_vendor_id_t bp_vendor; 301 pci_product_id_t bp_product; 302 const char *bp_name; 303 } bge_products[] = { 304 /* 305 * The BCM5700 documentation seems to indicate that the hardware 306 * still has the Alteon vendor ID burned into it, though it 307 * should always be overridden by the value in the EEPROM. We'll 308 * check for it anyway. 309 */ 310 { PCI_VENDOR_ALTEON, 311 PCI_PRODUCT_ALTEON_BCM5700, 312 "Broadcom BCM5700 Gigabit Ethernet", 313 }, 314 { PCI_VENDOR_ALTEON, 315 PCI_PRODUCT_ALTEON_BCM5701, 316 "Broadcom BCM5701 Gigabit Ethernet", 317 }, 318 { PCI_VENDOR_ALTIMA, 319 PCI_PRODUCT_ALTIMA_AC1000, 320 "Altima AC1000 Gigabit Ethernet", 321 }, 322 { PCI_VENDOR_ALTIMA, 323 PCI_PRODUCT_ALTIMA_AC1001, 324 "Altima AC1001 Gigabit Ethernet", 325 }, 326 { PCI_VENDOR_ALTIMA, 327 PCI_PRODUCT_ALTIMA_AC1003, 328 "Altima AC1003 Gigabit Ethernet", 329 }, 330 { PCI_VENDOR_ALTIMA, 331 PCI_PRODUCT_ALTIMA_AC9100, 332 "Altima AC9100 Gigabit Ethernet", 333 }, 334 { PCI_VENDOR_APPLE, 335 PCI_PRODUCT_APPLE_BCM5701, 336 "APPLE BCM5701 Gigabit Ethernet", 337 }, 338 { PCI_VENDOR_BROADCOM, 339 PCI_PRODUCT_BROADCOM_BCM5700, 340 "Broadcom BCM5700 Gigabit Ethernet", 341 }, 342 { PCI_VENDOR_BROADCOM, 343 PCI_PRODUCT_BROADCOM_BCM5701, 344 "Broadcom BCM5701 Gigabit Ethernet", 345 }, 346 { PCI_VENDOR_BROADCOM, 347 PCI_PRODUCT_BROADCOM_BCM5702, 348 "Broadcom BCM5702 Gigabit Ethernet", 349 }, 350 { PCI_VENDOR_BROADCOM, 351 PCI_PRODUCT_BROADCOM_BCM5702X, 352 "Broadcom BCM5702X Gigabit Ethernet" }, 353 { PCI_VENDOR_BROADCOM, 354 PCI_PRODUCT_BROADCOM_BCM5703, 355 "Broadcom BCM5703 Gigabit Ethernet", 356 }, 357 { PCI_VENDOR_BROADCOM, 358 PCI_PRODUCT_BROADCOM_BCM5703X, 359 "Broadcom BCM5703X Gigabit Ethernet", 360 }, 361 { PCI_VENDOR_BROADCOM, 362 PCI_PRODUCT_BROADCOM_BCM5703_ALT, 363 "Broadcom BCM5703 Gigabit Ethernet", 364 }, 365 { PCI_VENDOR_BROADCOM, 366 PCI_PRODUCT_BROADCOM_BCM5704C, 367 "Broadcom BCM5704C Dual Gigabit Ethernet", 368 }, 369 { PCI_VENDOR_BROADCOM, 370 PCI_PRODUCT_BROADCOM_BCM5704S, 371 "Broadcom BCM5704S Dual Gigabit Ethernet", 372 }, 373 { PCI_VENDOR_BROADCOM, 374 PCI_PRODUCT_BROADCOM_BCM5705, 375 "Broadcom BCM5705 Gigabit Ethernet", 376 }, 377 { PCI_VENDOR_BROADCOM, 378 PCI_PRODUCT_BROADCOM_BCM5705F, 379 "Broadcom BCM5705F Gigabit Ethernet", 380 }, 381 { PCI_VENDOR_BROADCOM, 382 PCI_PRODUCT_BROADCOM_BCM5705K, 383 "Broadcom BCM5705K Gigabit Ethernet", 384 }, 385 { PCI_VENDOR_BROADCOM, 386 PCI_PRODUCT_BROADCOM_BCM5705M, 387 "Broadcom BCM5705M Gigabit Ethernet", 388 }, 389 { PCI_VENDOR_BROADCOM, 390 PCI_PRODUCT_BROADCOM_BCM5705M_ALT, 391 "Broadcom BCM5705M Gigabit Ethernet", 392 }, 393 { PCI_VENDOR_BROADCOM, 394 PCI_PRODUCT_BROADCOM_BCM5714, 395 "Broadcom BCM5714 Gigabit Ethernet", 396 }, 397 { PCI_VENDOR_BROADCOM, 398 PCI_PRODUCT_BROADCOM_BCM5714S, 399 "Broadcom BCM5714S Gigabit Ethernet", 400 }, 401 { PCI_VENDOR_BROADCOM, 402 PCI_PRODUCT_BROADCOM_BCM5715, 403 "Broadcom BCM5715 Gigabit Ethernet", 404 }, 405 { PCI_VENDOR_BROADCOM, 406 PCI_PRODUCT_BROADCOM_BCM5715S, 407 "Broadcom BCM5715S Gigabit Ethernet", 408 }, 409 { PCI_VENDOR_BROADCOM, 410 PCI_PRODUCT_BROADCOM_BCM5717, 411 "Broadcom BCM5717 Gigabit Ethernet", 412 }, 413 { PCI_VENDOR_BROADCOM, 414 PCI_PRODUCT_BROADCOM_BCM5718, 415 "Broadcom BCM5718 Gigabit Ethernet", 416 }, 417 { PCI_VENDOR_BROADCOM, 418 PCI_PRODUCT_BROADCOM_BCM5719, 419 "Broadcom BCM5719 Gigabit Ethernet", 420 }, 421 { PCI_VENDOR_BROADCOM, 422 PCI_PRODUCT_BROADCOM_BCM5720, 423 "Broadcom BCM5720 Gigabit Ethernet", 424 }, 425 { PCI_VENDOR_BROADCOM, 426 PCI_PRODUCT_BROADCOM_BCM5721, 427 "Broadcom BCM5721 Gigabit Ethernet", 428 }, 429 { PCI_VENDOR_BROADCOM, 430 PCI_PRODUCT_BROADCOM_BCM5722, 431 "Broadcom BCM5722 Gigabit Ethernet", 432 }, 433 { PCI_VENDOR_BROADCOM, 434 PCI_PRODUCT_BROADCOM_BCM5723, 435 "Broadcom BCM5723 Gigabit Ethernet", 436 }, 437 { PCI_VENDOR_BROADCOM, 438 PCI_PRODUCT_BROADCOM_BCM5724, 439 "Broadcom BCM5724 Gigabit Ethernet", 440 }, 441 { PCI_VENDOR_BROADCOM, 442 PCI_PRODUCT_BROADCOM_BCM5750, 443 "Broadcom BCM5750 Gigabit Ethernet", 444 }, 445 { PCI_VENDOR_BROADCOM, 446 PCI_PRODUCT_BROADCOM_BCM5750M, 447 "Broadcom BCM5750M Gigabit Ethernet", 448 }, 449 { PCI_VENDOR_BROADCOM, 450 PCI_PRODUCT_BROADCOM_BCM5751, 451 "Broadcom BCM5751 Gigabit Ethernet", 452 }, 453 { PCI_VENDOR_BROADCOM, 454 PCI_PRODUCT_BROADCOM_BCM5751F, 455 "Broadcom BCM5751F Gigabit Ethernet", 456 }, 457 { PCI_VENDOR_BROADCOM, 458 PCI_PRODUCT_BROADCOM_BCM5751M, 459 "Broadcom BCM5751M Gigabit Ethernet", 460 }, 461 { PCI_VENDOR_BROADCOM, 462 PCI_PRODUCT_BROADCOM_BCM5752, 463 "Broadcom BCM5752 Gigabit Ethernet", 464 }, 465 { PCI_VENDOR_BROADCOM, 466 PCI_PRODUCT_BROADCOM_BCM5752M, 467 "Broadcom BCM5752M Gigabit Ethernet", 468 }, 469 { PCI_VENDOR_BROADCOM, 470 PCI_PRODUCT_BROADCOM_BCM5753, 471 "Broadcom BCM5753 Gigabit Ethernet", 472 }, 473 { PCI_VENDOR_BROADCOM, 474 PCI_PRODUCT_BROADCOM_BCM5753F, 475 "Broadcom BCM5753F Gigabit Ethernet", 476 }, 477 { PCI_VENDOR_BROADCOM, 478 PCI_PRODUCT_BROADCOM_BCM5753M, 479 "Broadcom BCM5753M Gigabit Ethernet", 480 }, 481 { PCI_VENDOR_BROADCOM, 482 PCI_PRODUCT_BROADCOM_BCM5754, 483 "Broadcom BCM5754 Gigabit Ethernet", 484 }, 485 { PCI_VENDOR_BROADCOM, 486 PCI_PRODUCT_BROADCOM_BCM5754M, 487 "Broadcom BCM5754M Gigabit Ethernet", 488 }, 489 { PCI_VENDOR_BROADCOM, 490 PCI_PRODUCT_BROADCOM_BCM5755, 491 "Broadcom BCM5755 Gigabit Ethernet", 492 }, 493 { PCI_VENDOR_BROADCOM, 494 PCI_PRODUCT_BROADCOM_BCM5755M, 495 "Broadcom BCM5755M Gigabit Ethernet", 496 }, 497 { PCI_VENDOR_BROADCOM, 498 PCI_PRODUCT_BROADCOM_BCM5756, 499 "Broadcom BCM5756 Gigabit Ethernet", 500 }, 501 { PCI_VENDOR_BROADCOM, 502 PCI_PRODUCT_BROADCOM_BCM5761, 503 "Broadcom BCM5761 Gigabit Ethernet", 504 }, 505 { PCI_VENDOR_BROADCOM, 506 PCI_PRODUCT_BROADCOM_BCM5761E, 507 "Broadcom BCM5761E Gigabit Ethernet", 508 }, 509 { PCI_VENDOR_BROADCOM, 510 PCI_PRODUCT_BROADCOM_BCM5761S, 511 "Broadcom BCM5761S Gigabit Ethernet", 512 }, 513 { PCI_VENDOR_BROADCOM, 514 PCI_PRODUCT_BROADCOM_BCM5761SE, 515 "Broadcom BCM5761SE Gigabit Ethernet", 516 }, 517 { PCI_VENDOR_BROADCOM, 518 PCI_PRODUCT_BROADCOM_BCM5764, 519 "Broadcom BCM5764 Gigabit Ethernet", 520 }, 521 { PCI_VENDOR_BROADCOM, 522 PCI_PRODUCT_BROADCOM_BCM5780, 523 "Broadcom BCM5780 Gigabit Ethernet", 524 }, 525 { PCI_VENDOR_BROADCOM, 526 PCI_PRODUCT_BROADCOM_BCM5780S, 527 "Broadcom BCM5780S Gigabit Ethernet", 528 }, 529 { PCI_VENDOR_BROADCOM, 530 PCI_PRODUCT_BROADCOM_BCM5781, 531 "Broadcom BCM5781 Gigabit Ethernet", 532 }, 533 { PCI_VENDOR_BROADCOM, 534 PCI_PRODUCT_BROADCOM_BCM5782, 535 "Broadcom BCM5782 Gigabit Ethernet", 536 }, 537 { PCI_VENDOR_BROADCOM, 538 PCI_PRODUCT_BROADCOM_BCM5784M, 539 "BCM5784M NetLink 1000baseT Ethernet", 540 }, 541 { PCI_VENDOR_BROADCOM, 542 PCI_PRODUCT_BROADCOM_BCM5785F, 543 "BCM5785F NetLink 10/100 Ethernet", 544 }, 545 { PCI_VENDOR_BROADCOM, 546 PCI_PRODUCT_BROADCOM_BCM5785G, 547 "BCM5785G NetLink 1000baseT Ethernet", 548 }, 549 { PCI_VENDOR_BROADCOM, 550 PCI_PRODUCT_BROADCOM_BCM5786, 551 "Broadcom BCM5786 Gigabit Ethernet", 552 }, 553 { PCI_VENDOR_BROADCOM, 554 PCI_PRODUCT_BROADCOM_BCM5787, 555 "Broadcom BCM5787 Gigabit Ethernet", 556 }, 557 { PCI_VENDOR_BROADCOM, 558 PCI_PRODUCT_BROADCOM_BCM5787F, 559 "Broadcom BCM5787F 10/100 Ethernet", 560 }, 561 { PCI_VENDOR_BROADCOM, 562 PCI_PRODUCT_BROADCOM_BCM5787M, 563 "Broadcom BCM5787M Gigabit Ethernet", 564 }, 565 { PCI_VENDOR_BROADCOM, 566 PCI_PRODUCT_BROADCOM_BCM5788, 567 "Broadcom BCM5788 Gigabit Ethernet", 568 }, 569 { PCI_VENDOR_BROADCOM, 570 PCI_PRODUCT_BROADCOM_BCM5789, 571 "Broadcom BCM5789 Gigabit Ethernet", 572 }, 573 { PCI_VENDOR_BROADCOM, 574 PCI_PRODUCT_BROADCOM_BCM5901, 575 "Broadcom BCM5901 Fast Ethernet", 576 }, 577 { PCI_VENDOR_BROADCOM, 578 PCI_PRODUCT_BROADCOM_BCM5901A2, 579 "Broadcom BCM5901A2 Fast Ethernet", 580 }, 581 { PCI_VENDOR_BROADCOM, 582 PCI_PRODUCT_BROADCOM_BCM5903M, 583 "Broadcom BCM5903M Fast Ethernet", 584 }, 585 { PCI_VENDOR_BROADCOM, 586 PCI_PRODUCT_BROADCOM_BCM5906, 587 "Broadcom BCM5906 Fast Ethernet", 588 }, 589 { PCI_VENDOR_BROADCOM, 590 PCI_PRODUCT_BROADCOM_BCM5906M, 591 "Broadcom BCM5906M Fast Ethernet", 592 }, 593 { PCI_VENDOR_BROADCOM, 594 PCI_PRODUCT_BROADCOM_BCM57760, 595 "Broadcom BCM57760 Fast Ethernet", 596 }, 597 { PCI_VENDOR_BROADCOM, 598 PCI_PRODUCT_BROADCOM_BCM57761, 599 "Broadcom BCM57761 Fast Ethernet", 600 }, 601 { PCI_VENDOR_BROADCOM, 602 PCI_PRODUCT_BROADCOM_BCM57762, 603 "Broadcom BCM57762 Gigabit Ethernet", 604 }, 605 { PCI_VENDOR_BROADCOM, 606 PCI_PRODUCT_BROADCOM_BCM57765, 607 "Broadcom BCM57765 Fast Ethernet", 608 }, 609 { PCI_VENDOR_BROADCOM, 610 PCI_PRODUCT_BROADCOM_BCM57766, 611 "Broadcom BCM57766 Fast Ethernet", 612 }, 613 { PCI_VENDOR_BROADCOM, 614 PCI_PRODUCT_BROADCOM_BCM57780, 615 "Broadcom BCM57780 Fast Ethernet", 616 }, 617 { PCI_VENDOR_BROADCOM, 618 PCI_PRODUCT_BROADCOM_BCM57781, 619 "Broadcom BCM57781 Fast Ethernet", 620 }, 621 { PCI_VENDOR_BROADCOM, 622 PCI_PRODUCT_BROADCOM_BCM57782, 623 "Broadcom BCM57782 Fast Ethernet", 624 }, 625 { PCI_VENDOR_BROADCOM, 626 PCI_PRODUCT_BROADCOM_BCM57785, 627 "Broadcom BCM57785 Fast Ethernet", 628 }, 629 { PCI_VENDOR_BROADCOM, 630 PCI_PRODUCT_BROADCOM_BCM57786, 631 "Broadcom BCM57786 Fast Ethernet", 632 }, 633 { PCI_VENDOR_BROADCOM, 634 PCI_PRODUCT_BROADCOM_BCM57788, 635 "Broadcom BCM57788 Fast Ethernet", 636 }, 637 { PCI_VENDOR_BROADCOM, 638 PCI_PRODUCT_BROADCOM_BCM57790, 639 "Broadcom BCM57790 Fast Ethernet", 640 }, 641 { PCI_VENDOR_BROADCOM, 642 PCI_PRODUCT_BROADCOM_BCM57791, 643 "Broadcom BCM57791 Fast Ethernet", 644 }, 645 { PCI_VENDOR_BROADCOM, 646 PCI_PRODUCT_BROADCOM_BCM57795, 647 "Broadcom BCM57795 Fast Ethernet", 648 }, 649 { PCI_VENDOR_SCHNEIDERKOCH, 650 PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1, 651 "SysKonnect SK-9Dx1 Gigabit Ethernet", 652 }, 653 { PCI_VENDOR_3COM, 654 PCI_PRODUCT_3COM_3C996, 655 "3Com 3c996 Gigabit Ethernet", 656 }, 657 { PCI_VENDOR_FUJITSU4, 658 PCI_PRODUCT_FUJITSU4_PW008GE4, 659 "Fujitsu PW008GE4 Gigabit Ethernet", 660 }, 661 { PCI_VENDOR_FUJITSU4, 662 PCI_PRODUCT_FUJITSU4_PW008GE5, 663 "Fujitsu PW008GE5 Gigabit Ethernet", 664 }, 665 { PCI_VENDOR_FUJITSU4, 666 PCI_PRODUCT_FUJITSU4_PP250_450_LAN, 667 "Fujitsu Primepower 250/450 Gigabit Ethernet", 668 }, 669 { 0, 670 0, 671 NULL }, 672 }; 673 674 #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE) 675 #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY) 676 #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS) 677 #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY) 678 #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS) 679 #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS) 680 #define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY) 681 #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS) 682 #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS) 683 684 static const struct bge_revision { 685 uint32_t br_chipid; 686 const char *br_name; 687 } bge_revisions[] = { 688 { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, 689 { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, 690 { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, 691 { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, 692 { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, 693 { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, 694 { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, 695 { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, 696 { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, 697 { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, 698 { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, 699 { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, 700 { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" }, 701 { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" }, 702 { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" }, 703 { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" }, 704 { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" }, 705 { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, 706 { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, 707 { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, 708 { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, 709 { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, 710 { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, 711 { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, 712 { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, 713 { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, 714 { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, 715 { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, 716 { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, 717 { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, 718 { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, 719 { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, 720 { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, 721 { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, 722 { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, 723 { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, 724 { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, 725 { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, 726 { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, 727 { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, 728 { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, 729 { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, 730 { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, 731 { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, 732 { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, 733 { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, 734 { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, 735 { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, 736 { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, 737 { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, 738 { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, 739 { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, 740 { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, 741 { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, 742 { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, 743 /* 5754 and 5787 share the same ASIC ID */ 744 { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, 745 { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, 746 { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, 747 { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" }, 748 { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, 749 { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, 750 { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, 751 { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, 752 { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, 753 { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, 754 755 { 0, NULL } 756 }; 757 758 /* 759 * Some defaults for major revisions, so that newer steppings 760 * that we don't know about have a shot at working. 761 */ 762 static const struct bge_revision bge_majorrevs[] = { 763 { BGE_ASICREV_BCM5700, "unknown BCM5700" }, 764 { BGE_ASICREV_BCM5701, "unknown BCM5701" }, 765 { BGE_ASICREV_BCM5703, "unknown BCM5703" }, 766 { BGE_ASICREV_BCM5704, "unknown BCM5704" }, 767 { BGE_ASICREV_BCM5705, "unknown BCM5705" }, 768 { BGE_ASICREV_BCM5750, "unknown BCM5750" }, 769 { BGE_ASICREV_BCM5714, "unknown BCM5714" }, 770 { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, 771 { BGE_ASICREV_BCM5752, "unknown BCM5752" }, 772 { BGE_ASICREV_BCM5780, "unknown BCM5780" }, 773 { BGE_ASICREV_BCM5755, "unknown BCM5755" }, 774 { BGE_ASICREV_BCM5761, "unknown BCM5761" }, 775 { BGE_ASICREV_BCM5784, "unknown BCM5784" }, 776 { BGE_ASICREV_BCM5785, "unknown BCM5785" }, 777 /* 5754 and 5787 share the same ASIC ID */ 778 { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, 779 { BGE_ASICREV_BCM5906, "unknown BCM5906" }, 780 { BGE_ASICREV_BCM57765, "unknown BCM57765" }, 781 { BGE_ASICREV_BCM57766, "unknown BCM57766" }, 782 { BGE_ASICREV_BCM57780, "unknown BCM57780" }, 783 { BGE_ASICREV_BCM5717, "unknown BCM5717" }, 784 { BGE_ASICREV_BCM5719, "unknown BCM5719" }, 785 { BGE_ASICREV_BCM5720, "unknown BCM5720" }, 786 787 { 0, NULL } 788 }; 789 790 static int bge_allow_asf = 1; 791 792 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc), 793 bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 794 795 static uint32_t 796 bge_readmem_ind(struct bge_softc *sc, int off) 797 { 798 pcireg_t val; 799 800 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 801 off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) 802 return 0; 803 804 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 805 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA); 806 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 807 return val; 808 } 809 810 static void 811 bge_writemem_ind(struct bge_softc *sc, int off, int val) 812 { 813 814 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off); 815 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val); 816 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 817 } 818 819 /* 820 * PCI Express only 821 */ 822 static void 823 bge_set_max_readrq(struct bge_softc *sc) 824 { 825 pcireg_t val; 826 827 val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 828 + PCIE_DCSR); 829 val &= ~PCIE_DCSR_MAX_READ_REQ; 830 switch (sc->bge_expmrq) { 831 case 2048: 832 val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048; 833 break; 834 case 4096: 835 val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096; 836 break; 837 default: 838 panic("incorrect expmrq value(%d)", sc->bge_expmrq); 839 break; 840 } 841 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap 842 + PCIE_DCSR, val); 843 } 844 845 #ifdef notdef 846 static uint32_t 847 bge_readreg_ind(struct bge_softc *sc, int off) 848 { 849 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 850 return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA)); 851 } 852 #endif 853 854 static void 855 bge_writereg_ind(struct bge_softc *sc, int off, int val) 856 { 857 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off); 858 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val); 859 } 860 861 static void 862 bge_writemem_direct(struct bge_softc *sc, int off, int val) 863 { 864 CSR_WRITE_4(sc, off, val); 865 } 866 867 static void 868 bge_writembx(struct bge_softc *sc, int off, int val) 869 { 870 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 871 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 872 873 CSR_WRITE_4(sc, off, val); 874 } 875 876 static void 877 bge_writembx_flush(struct bge_softc *sc, int off, int val) 878 { 879 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 880 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; 881 882 CSR_WRITE_4_FLUSH(sc, off, val); 883 } 884 885 /* 886 * Clear all stale locks and select the lock for this driver instance. 887 */ 888 void 889 bge_ape_lock_init(struct bge_softc *sc) 890 { 891 struct pci_attach_args *pa = &(sc->bge_pa); 892 uint32_t bit, regbase; 893 int i; 894 895 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 896 regbase = BGE_APE_LOCK_GRANT; 897 else 898 regbase = BGE_APE_PER_LOCK_GRANT; 899 900 /* Clear any stale locks. */ 901 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { 902 switch (i) { 903 case BGE_APE_LOCK_PHY0: 904 case BGE_APE_LOCK_PHY1: 905 case BGE_APE_LOCK_PHY2: 906 case BGE_APE_LOCK_PHY3: 907 bit = BGE_APE_LOCK_GRANT_DRIVER0; 908 break; 909 default: 910 if (pa->pa_function == 0) 911 bit = BGE_APE_LOCK_GRANT_DRIVER0; 912 else 913 bit = (1 << pa->pa_function); 914 } 915 APE_WRITE_4(sc, regbase + 4 * i, bit); 916 } 917 918 /* Select the PHY lock based on the device's function number. */ 919 switch (pa->pa_function) { 920 case 0: 921 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; 922 break; 923 case 1: 924 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; 925 break; 926 case 2: 927 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; 928 break; 929 case 3: 930 sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; 931 break; 932 default: 933 printf("%s: PHY lock not supported on function\n", 934 device_xname(sc->bge_dev)); 935 break; 936 } 937 } 938 939 /* 940 * Check for APE firmware, set flags, and print version info. 941 */ 942 void 943 bge_ape_read_fw_ver(struct bge_softc *sc) 944 { 945 const char *fwtype; 946 uint32_t apedata, features; 947 948 /* Check for a valid APE signature in shared memory. */ 949 apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); 950 if (apedata != BGE_APE_SEG_SIG_MAGIC) { 951 sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; 952 return; 953 } 954 955 /* Check if APE firmware is running. */ 956 apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); 957 if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { 958 printf("%s: APE signature found but FW status not ready! " 959 "0x%08x\n", device_xname(sc->bge_dev), apedata); 960 return; 961 } 962 963 sc->bge_mfw_flags |= BGE_MFW_ON_APE; 964 965 /* Fetch the APE firwmare type and version. */ 966 apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); 967 features = APE_READ_4(sc, BGE_APE_FW_FEATURES); 968 if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { 969 sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; 970 fwtype = "NCSI"; 971 } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { 972 sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; 973 fwtype = "DASH"; 974 } else 975 fwtype = "UNKN"; 976 977 /* Print the APE firmware version. */ 978 printf(", APE firmware %s %d.%d.%d.%d", fwtype, 979 (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, 980 (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, 981 (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, 982 (apedata & BGE_APE_FW_VERSION_BLDMSK)); 983 } 984 985 int 986 bge_ape_lock(struct bge_softc *sc, int locknum) 987 { 988 struct pci_attach_args *pa = &(sc->bge_pa); 989 uint32_t bit, gnt, req, status; 990 int i, off; 991 992 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 993 return (0); 994 995 /* Lock request/grant registers have different bases. */ 996 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) { 997 req = BGE_APE_LOCK_REQ; 998 gnt = BGE_APE_LOCK_GRANT; 999 } else { 1000 req = BGE_APE_PER_LOCK_REQ; 1001 gnt = BGE_APE_PER_LOCK_GRANT; 1002 } 1003 1004 off = 4 * locknum; 1005 1006 switch (locknum) { 1007 case BGE_APE_LOCK_GPIO: 1008 /* Lock required when using GPIO. */ 1009 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1010 return (0); 1011 if (pa->pa_function == 0) 1012 bit = BGE_APE_LOCK_REQ_DRIVER0; 1013 else 1014 bit = (1 << pa->pa_function); 1015 break; 1016 case BGE_APE_LOCK_GRC: 1017 /* Lock required to reset the device. */ 1018 if (pa->pa_function == 0) 1019 bit = BGE_APE_LOCK_REQ_DRIVER0; 1020 else 1021 bit = (1 << pa->pa_function); 1022 break; 1023 case BGE_APE_LOCK_MEM: 1024 /* Lock required when accessing certain APE memory. */ 1025 if (pa->pa_function == 0) 1026 bit = BGE_APE_LOCK_REQ_DRIVER0; 1027 else 1028 bit = (1 << pa->pa_function); 1029 break; 1030 case BGE_APE_LOCK_PHY0: 1031 case BGE_APE_LOCK_PHY1: 1032 case BGE_APE_LOCK_PHY2: 1033 case BGE_APE_LOCK_PHY3: 1034 /* Lock required when accessing PHYs. */ 1035 bit = BGE_APE_LOCK_REQ_DRIVER0; 1036 break; 1037 default: 1038 return (EINVAL); 1039 } 1040 1041 /* Request a lock. */ 1042 APE_WRITE_4_FLUSH(sc, req + off, bit); 1043 1044 /* Wait up to 1 second to acquire lock. */ 1045 for (i = 0; i < 20000; i++) { 1046 status = APE_READ_4(sc, gnt + off); 1047 if (status == bit) 1048 break; 1049 DELAY(50); 1050 } 1051 1052 /* Handle any errors. */ 1053 if (status != bit) { 1054 printf("%s: APE lock %d request failed! " 1055 "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", 1056 device_xname(sc->bge_dev), 1057 locknum, req + off, bit & 0xFFFF, gnt + off, 1058 status & 0xFFFF); 1059 /* Revoke the lock request. */ 1060 APE_WRITE_4(sc, gnt + off, bit); 1061 return (EBUSY); 1062 } 1063 1064 return (0); 1065 } 1066 1067 void 1068 bge_ape_unlock(struct bge_softc *sc, int locknum) 1069 { 1070 struct pci_attach_args *pa = &(sc->bge_pa); 1071 uint32_t bit, gnt; 1072 int off; 1073 1074 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1075 return; 1076 1077 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1078 gnt = BGE_APE_LOCK_GRANT; 1079 else 1080 gnt = BGE_APE_PER_LOCK_GRANT; 1081 1082 off = 4 * locknum; 1083 1084 switch (locknum) { 1085 case BGE_APE_LOCK_GPIO: 1086 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 1087 return; 1088 if (pa->pa_function == 0) 1089 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1090 else 1091 bit = (1 << pa->pa_function); 1092 break; 1093 case BGE_APE_LOCK_GRC: 1094 if (pa->pa_function == 0) 1095 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1096 else 1097 bit = (1 << pa->pa_function); 1098 break; 1099 case BGE_APE_LOCK_MEM: 1100 if (pa->pa_function == 0) 1101 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1102 else 1103 bit = (1 << pa->pa_function); 1104 break; 1105 case BGE_APE_LOCK_PHY0: 1106 case BGE_APE_LOCK_PHY1: 1107 case BGE_APE_LOCK_PHY2: 1108 case BGE_APE_LOCK_PHY3: 1109 bit = BGE_APE_LOCK_GRANT_DRIVER0; 1110 break; 1111 default: 1112 return; 1113 } 1114 1115 /* Write and flush for consecutive bge_ape_lock() */ 1116 APE_WRITE_4_FLUSH(sc, gnt + off, bit); 1117 } 1118 1119 /* 1120 * Send an event to the APE firmware. 1121 */ 1122 void 1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event) 1124 { 1125 uint32_t apedata; 1126 int i; 1127 1128 /* NCSI does not support APE events. */ 1129 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1130 return; 1131 1132 /* Wait up to 1ms for APE to service previous event. */ 1133 for (i = 10; i > 0; i--) { 1134 if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) 1135 break; 1136 apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); 1137 if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { 1138 APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | 1139 BGE_APE_EVENT_STATUS_EVENT_PENDING); 1140 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 1141 APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); 1142 break; 1143 } 1144 bge_ape_unlock(sc, BGE_APE_LOCK_MEM); 1145 DELAY(100); 1146 } 1147 if (i == 0) { 1148 printf("%s: APE event 0x%08x send timed out\n", 1149 device_xname(sc->bge_dev), event); 1150 } 1151 } 1152 1153 void 1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind) 1155 { 1156 uint32_t apedata, event; 1157 1158 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) 1159 return; 1160 1161 switch (kind) { 1162 case BGE_RESET_START: 1163 /* If this is the first load, clear the load counter. */ 1164 apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); 1165 if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) 1166 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); 1167 else { 1168 apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); 1169 APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); 1170 } 1171 APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, 1172 BGE_APE_HOST_SEG_SIG_MAGIC); 1173 APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, 1174 BGE_APE_HOST_SEG_LEN_MAGIC); 1175 1176 /* Add some version info if bge(4) supports it. */ 1177 APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, 1178 BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); 1179 APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, 1180 BGE_APE_HOST_BEHAV_NO_PHYLOCK); 1181 APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, 1182 BGE_APE_HOST_HEARTBEAT_INT_DISABLE); 1183 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 1184 BGE_APE_HOST_DRVR_STATE_START); 1185 event = BGE_APE_EVENT_STATUS_STATE_START; 1186 break; 1187 case BGE_RESET_SHUTDOWN: 1188 APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, 1189 BGE_APE_HOST_DRVR_STATE_UNLOAD); 1190 event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; 1191 break; 1192 case BGE_RESET_SUSPEND: 1193 event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; 1194 break; 1195 default: 1196 return; 1197 } 1198 1199 bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | 1200 BGE_APE_EVENT_STATUS_STATE_CHNGE); 1201 } 1202 1203 static uint8_t 1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1205 { 1206 uint32_t access, byte = 0; 1207 int i; 1208 1209 /* Lock. */ 1210 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 1211 for (i = 0; i < 8000; i++) { 1212 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) 1213 break; 1214 DELAY(20); 1215 } 1216 if (i == 8000) 1217 return 1; 1218 1219 /* Enable access. */ 1220 access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); 1221 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); 1222 1223 CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); 1224 CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); 1225 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1226 DELAY(10); 1227 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { 1228 DELAY(10); 1229 break; 1230 } 1231 } 1232 1233 if (i == BGE_TIMEOUT * 10) { 1234 aprint_error_dev(sc->bge_dev, "nvram read timed out\n"); 1235 return 1; 1236 } 1237 1238 /* Get result. */ 1239 byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); 1240 1241 *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF; 1242 1243 /* Disable access. */ 1244 CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); 1245 1246 /* Unlock. */ 1247 CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); 1248 1249 return 0; 1250 } 1251 1252 /* 1253 * Read a sequence of bytes from NVRAM. 1254 */ 1255 static int 1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt) 1257 { 1258 int error = 0, i; 1259 uint8_t byte = 0; 1260 1261 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) 1262 return 1; 1263 1264 for (i = 0; i < cnt; i++) { 1265 error = bge_nvram_getbyte(sc, off + i, &byte); 1266 if (error) 1267 break; 1268 *(dest + i) = byte; 1269 } 1270 1271 return (error ? 1 : 0); 1272 } 1273 1274 /* 1275 * Read a byte of data stored in the EEPROM at address 'addr.' The 1276 * BCM570x supports both the traditional bitbang interface and an 1277 * auto access interface for reading the EEPROM. We use the auto 1278 * access method. 1279 */ 1280 static uint8_t 1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest) 1282 { 1283 int i; 1284 uint32_t byte = 0; 1285 1286 /* 1287 * Enable use of auto EEPROM access so we can avoid 1288 * having to use the bitbang method. 1289 */ 1290 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 1291 1292 /* Reset the EEPROM, load the clock period. */ 1293 CSR_WRITE_4(sc, BGE_EE_ADDR, 1294 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 1295 DELAY(20); 1296 1297 /* Issue the read EEPROM command. */ 1298 CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); 1299 1300 /* Wait for completion */ 1301 for (i = 0; i < BGE_TIMEOUT * 10; i++) { 1302 DELAY(10); 1303 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) 1304 break; 1305 } 1306 1307 if (i == BGE_TIMEOUT * 10) { 1308 aprint_error_dev(sc->bge_dev, "eeprom read timed out\n"); 1309 return 1; 1310 } 1311 1312 /* Get result. */ 1313 byte = CSR_READ_4(sc, BGE_EE_DATA); 1314 1315 *dest = (byte >> ((addr % 4) * 8)) & 0xFF; 1316 1317 return 0; 1318 } 1319 1320 /* 1321 * Read a sequence of bytes from the EEPROM. 1322 */ 1323 static int 1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt) 1325 { 1326 int error = 0, i; 1327 uint8_t byte = 0; 1328 char *dest = destv; 1329 1330 for (i = 0; i < cnt; i++) { 1331 error = bge_eeprom_getbyte(sc, off + i, &byte); 1332 if (error) 1333 break; 1334 *(dest + i) = byte; 1335 } 1336 1337 return (error ? 1 : 0); 1338 } 1339 1340 static int 1341 bge_miibus_readreg(device_t dev, int phy, int reg) 1342 { 1343 struct bge_softc *sc = device_private(dev); 1344 uint32_t val; 1345 uint32_t autopoll; 1346 int i; 1347 1348 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1349 return 0; 1350 1351 /* Reading with autopolling on may trigger PCI errors */ 1352 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1353 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1354 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1355 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1356 DELAY(80); 1357 } 1358 1359 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY | 1360 BGE_MIPHY(phy) | BGE_MIREG(reg)); 1361 1362 for (i = 0; i < BGE_TIMEOUT; i++) { 1363 delay(10); 1364 val = CSR_READ_4(sc, BGE_MI_COMM); 1365 if (!(val & BGE_MICOMM_BUSY)) { 1366 DELAY(5); 1367 val = CSR_READ_4(sc, BGE_MI_COMM); 1368 break; 1369 } 1370 } 1371 1372 if (i == BGE_TIMEOUT) { 1373 aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); 1374 val = 0; 1375 goto done; 1376 } 1377 1378 done: 1379 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1380 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1381 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1382 DELAY(80); 1383 } 1384 1385 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1386 1387 if (val & BGE_MICOMM_READFAIL) 1388 return 0; 1389 1390 return (val & 0xFFFF); 1391 } 1392 1393 static void 1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val) 1395 { 1396 struct bge_softc *sc = device_private(dev); 1397 uint32_t autopoll; 1398 int i; 1399 1400 if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) 1401 return; 1402 1403 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && 1404 (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) 1405 return; 1406 1407 /* Reading with autopolling on may trigger PCI errors */ 1408 autopoll = CSR_READ_4(sc, BGE_MI_MODE); 1409 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1410 BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); 1411 BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1412 DELAY(80); 1413 } 1414 1415 CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY | 1416 BGE_MIPHY(phy) | BGE_MIREG(reg) | val); 1417 1418 for (i = 0; i < BGE_TIMEOUT; i++) { 1419 delay(10); 1420 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) { 1421 delay(5); 1422 CSR_READ_4(sc, BGE_MI_COMM); 1423 break; 1424 } 1425 } 1426 1427 if (autopoll & BGE_MIMODE_AUTOPOLL) { 1428 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 1429 BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); 1430 delay(80); 1431 } 1432 1433 bge_ape_unlock(sc, sc->bge_phy_ape_lock); 1434 1435 if (i == BGE_TIMEOUT) 1436 aprint_error_dev(sc->bge_dev, "PHY read timed out\n"); 1437 } 1438 1439 static void 1440 bge_miibus_statchg(struct ifnet *ifp) 1441 { 1442 struct bge_softc *sc = ifp->if_softc; 1443 struct mii_data *mii = &sc->bge_mii; 1444 uint32_t mac_mode, rx_mode, tx_mode; 1445 1446 /* 1447 * Get flow control negotiation result. 1448 */ 1449 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && 1450 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) 1451 sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; 1452 1453 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 1454 mii->mii_media_status & IFM_ACTIVE && 1455 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 1456 BGE_STS_SETBIT(sc, BGE_STS_LINK); 1457 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 1458 (!(mii->mii_media_status & IFM_ACTIVE) || 1459 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 1460 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 1461 1462 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) 1463 return; 1464 1465 /* Set the port mode (MII/GMII) to match the link speed. */ 1466 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & 1467 ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); 1468 tx_mode = CSR_READ_4(sc, BGE_TX_MODE); 1469 rx_mode = CSR_READ_4(sc, BGE_RX_MODE); 1470 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || 1471 IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) 1472 mac_mode |= BGE_PORTMODE_GMII; 1473 else 1474 mac_mode |= BGE_PORTMODE_MII; 1475 1476 tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; 1477 rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; 1478 if ((mii->mii_media_active & IFM_FDX) != 0) { 1479 if (sc->bge_flowflags & IFM_ETH_TXPAUSE) 1480 tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; 1481 if (sc->bge_flowflags & IFM_ETH_RXPAUSE) 1482 rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; 1483 } else 1484 mac_mode |= BGE_MACMODE_HALF_DUPLEX; 1485 1486 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode); 1487 DELAY(40); 1488 CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); 1489 CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); 1490 } 1491 1492 /* 1493 * Update rx threshold levels to values in a particular slot 1494 * of the interrupt-mitigation table bge_rx_threshes. 1495 */ 1496 static void 1497 bge_set_thresh(struct ifnet *ifp, int lvl) 1498 { 1499 struct bge_softc *sc = ifp->if_softc; 1500 int s; 1501 1502 /* For now, just save the new Rx-intr thresholds and record 1503 * that a threshold update is pending. Updating the hardware 1504 * registers here (even at splhigh()) is observed to 1505 * occasionaly cause glitches where Rx-interrupts are not 1506 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05 1507 */ 1508 s = splnet(); 1509 sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks; 1510 sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds; 1511 sc->bge_pending_rxintr_change = 1; 1512 splx(s); 1513 } 1514 1515 1516 /* 1517 * Update Rx thresholds of all bge devices 1518 */ 1519 static void 1520 bge_update_all_threshes(int lvl) 1521 { 1522 struct ifnet *ifp; 1523 const char * const namebuf = "bge"; 1524 int namelen; 1525 1526 if (lvl < 0) 1527 lvl = 0; 1528 else if (lvl >= NBGE_RX_THRESH) 1529 lvl = NBGE_RX_THRESH - 1; 1530 1531 namelen = strlen(namebuf); 1532 /* 1533 * Now search all the interfaces for this name/number 1534 */ 1535 IFNET_FOREACH(ifp) { 1536 if (strncmp(ifp->if_xname, namebuf, namelen) != 0) 1537 continue; 1538 /* We got a match: update if doing auto-threshold-tuning */ 1539 if (bge_auto_thresh) 1540 bge_set_thresh(ifp, lvl); 1541 } 1542 } 1543 1544 /* 1545 * Handle events that have triggered interrupts. 1546 */ 1547 static void 1548 bge_handle_events(struct bge_softc *sc) 1549 { 1550 1551 return; 1552 } 1553 1554 /* 1555 * Memory management for jumbo frames. 1556 */ 1557 1558 static int 1559 bge_alloc_jumbo_mem(struct bge_softc *sc) 1560 { 1561 char *ptr, *kva; 1562 bus_dma_segment_t seg; 1563 int i, rseg, state, error; 1564 struct bge_jpool_entry *entry; 1565 1566 state = error = 0; 1567 1568 /* Grab a big chunk o' storage. */ 1569 if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0, 1570 &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 1571 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 1572 return ENOBUFS; 1573 } 1574 1575 state = 1; 1576 if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva, 1577 BUS_DMA_NOWAIT)) { 1578 aprint_error_dev(sc->bge_dev, 1579 "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM); 1580 error = ENOBUFS; 1581 goto out; 1582 } 1583 1584 state = 2; 1585 if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0, 1586 BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) { 1587 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 1588 error = ENOBUFS; 1589 goto out; 1590 } 1591 1592 state = 3; 1593 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1594 kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) { 1595 aprint_error_dev(sc->bge_dev, "can't load DMA map\n"); 1596 error = ENOBUFS; 1597 goto out; 1598 } 1599 1600 state = 4; 1601 sc->bge_cdata.bge_jumbo_buf = (void *)kva; 1602 DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf)); 1603 1604 SLIST_INIT(&sc->bge_jfree_listhead); 1605 SLIST_INIT(&sc->bge_jinuse_listhead); 1606 1607 /* 1608 * Now divide it up into 9K pieces and save the addresses 1609 * in an array. 1610 */ 1611 ptr = sc->bge_cdata.bge_jumbo_buf; 1612 for (i = 0; i < BGE_JSLOTS; i++) { 1613 sc->bge_cdata.bge_jslots[i] = ptr; 1614 ptr += BGE_JLEN; 1615 entry = malloc(sizeof(struct bge_jpool_entry), 1616 M_DEVBUF, M_NOWAIT); 1617 if (entry == NULL) { 1618 aprint_error_dev(sc->bge_dev, 1619 "no memory for jumbo buffer queue!\n"); 1620 error = ENOBUFS; 1621 goto out; 1622 } 1623 entry->slot = i; 1624 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 1625 entry, jpool_entries); 1626 } 1627 out: 1628 if (error != 0) { 1629 switch (state) { 1630 case 4: 1631 bus_dmamap_unload(sc->bge_dmatag, 1632 sc->bge_cdata.bge_rx_jumbo_map); 1633 case 3: 1634 bus_dmamap_destroy(sc->bge_dmatag, 1635 sc->bge_cdata.bge_rx_jumbo_map); 1636 case 2: 1637 bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM); 1638 case 1: 1639 bus_dmamem_free(sc->bge_dmatag, &seg, rseg); 1640 break; 1641 default: 1642 break; 1643 } 1644 } 1645 1646 return error; 1647 } 1648 1649 /* 1650 * Allocate a jumbo buffer. 1651 */ 1652 static void * 1653 bge_jalloc(struct bge_softc *sc) 1654 { 1655 struct bge_jpool_entry *entry; 1656 1657 entry = SLIST_FIRST(&sc->bge_jfree_listhead); 1658 1659 if (entry == NULL) { 1660 aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n"); 1661 return NULL; 1662 } 1663 1664 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); 1665 SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); 1666 return (sc->bge_cdata.bge_jslots[entry->slot]); 1667 } 1668 1669 /* 1670 * Release a jumbo buffer. 1671 */ 1672 static void 1673 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg) 1674 { 1675 struct bge_jpool_entry *entry; 1676 struct bge_softc *sc; 1677 int i, s; 1678 1679 /* Extract the softc struct pointer. */ 1680 sc = (struct bge_softc *)arg; 1681 1682 if (sc == NULL) 1683 panic("bge_jfree: can't find softc pointer!"); 1684 1685 /* calculate the slot this buffer belongs to */ 1686 1687 i = ((char *)buf 1688 - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; 1689 1690 if ((i < 0) || (i >= BGE_JSLOTS)) 1691 panic("bge_jfree: asked to free buffer that we don't manage!"); 1692 1693 s = splvm(); 1694 entry = SLIST_FIRST(&sc->bge_jinuse_listhead); 1695 if (entry == NULL) 1696 panic("bge_jfree: buffer not in use!"); 1697 entry->slot = i; 1698 SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); 1699 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); 1700 1701 if (__predict_true(m != NULL)) 1702 pool_cache_put(mb_cache, m); 1703 splx(s); 1704 } 1705 1706 1707 /* 1708 * Initialize a standard receive ring descriptor. 1709 */ 1710 static int 1711 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, 1712 bus_dmamap_t dmamap) 1713 { 1714 struct mbuf *m_new = NULL; 1715 struct bge_rx_bd *r; 1716 int error; 1717 1718 if (dmamap == NULL) { 1719 error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1, 1720 MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap); 1721 if (error != 0) 1722 return error; 1723 } 1724 1725 sc->bge_cdata.bge_rx_std_map[i] = dmamap; 1726 1727 if (m == NULL) { 1728 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1729 if (m_new == NULL) 1730 return ENOBUFS; 1731 1732 MCLGET(m_new, M_DONTWAIT); 1733 if (!(m_new->m_flags & M_EXT)) { 1734 m_freem(m_new); 1735 return ENOBUFS; 1736 } 1737 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1738 1739 } else { 1740 m_new = m; 1741 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1742 m_new->m_data = m_new->m_ext.ext_buf; 1743 } 1744 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1745 m_adj(m_new, ETHER_ALIGN); 1746 if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new, 1747 BUS_DMA_READ|BUS_DMA_NOWAIT)) 1748 return ENOBUFS; 1749 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, 1750 BUS_DMASYNC_PREREAD); 1751 1752 sc->bge_cdata.bge_rx_std_chain[i] = m_new; 1753 r = &sc->bge_rdata->bge_rx_std_ring[i]; 1754 BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr); 1755 r->bge_flags = BGE_RXBDFLAG_END; 1756 r->bge_len = m_new->m_len; 1757 r->bge_idx = i; 1758 1759 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1760 offsetof(struct bge_ring_data, bge_rx_std_ring) + 1761 i * sizeof (struct bge_rx_bd), 1762 sizeof (struct bge_rx_bd), 1763 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1764 1765 return 0; 1766 } 1767 1768 /* 1769 * Initialize a jumbo receive ring descriptor. This allocates 1770 * a jumbo buffer from the pool managed internally by the driver. 1771 */ 1772 static int 1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) 1774 { 1775 struct mbuf *m_new = NULL; 1776 struct bge_rx_bd *r; 1777 void *buf = NULL; 1778 1779 if (m == NULL) { 1780 1781 /* Allocate the mbuf. */ 1782 MGETHDR(m_new, M_DONTWAIT, MT_DATA); 1783 if (m_new == NULL) 1784 return ENOBUFS; 1785 1786 /* Allocate the jumbo buffer */ 1787 buf = bge_jalloc(sc); 1788 if (buf == NULL) { 1789 m_freem(m_new); 1790 aprint_error_dev(sc->bge_dev, 1791 "jumbo allocation failed -- packet dropped!\n"); 1792 return ENOBUFS; 1793 } 1794 1795 /* Attach the buffer to the mbuf. */ 1796 m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; 1797 MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF, 1798 bge_jfree, sc); 1799 m_new->m_flags |= M_EXT_RW; 1800 } else { 1801 m_new = m; 1802 buf = m_new->m_data = m_new->m_ext.ext_buf; 1803 m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; 1804 } 1805 if (!(sc->bge_flags & BGEF_RX_ALIGNBUG)) 1806 m_adj(m_new, ETHER_ALIGN); 1807 bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, 1808 mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN, 1809 BUS_DMASYNC_PREREAD); 1810 /* Set up the descriptor. */ 1811 r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; 1812 sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; 1813 BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new)); 1814 r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; 1815 r->bge_len = m_new->m_len; 1816 r->bge_idx = i; 1817 1818 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 1819 offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + 1820 i * sizeof (struct bge_rx_bd), 1821 sizeof (struct bge_rx_bd), 1822 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1823 1824 return 0; 1825 } 1826 1827 /* 1828 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, 1829 * that's 1MB or memory, which is a lot. For now, we fill only the first 1830 * 256 ring entries and hope that our CPU is fast enough to keep up with 1831 * the NIC. 1832 */ 1833 static int 1834 bge_init_rx_ring_std(struct bge_softc *sc) 1835 { 1836 int i; 1837 1838 if (sc->bge_flags & BGEF_RXRING_VALID) 1839 return 0; 1840 1841 for (i = 0; i < BGE_SSLOTS; i++) { 1842 if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS) 1843 return ENOBUFS; 1844 } 1845 1846 sc->bge_std = i - 1; 1847 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 1848 1849 sc->bge_flags |= BGEF_RXRING_VALID; 1850 1851 return 0; 1852 } 1853 1854 static void 1855 bge_free_rx_ring_std(struct bge_softc *sc) 1856 { 1857 int i; 1858 1859 if (!(sc->bge_flags & BGEF_RXRING_VALID)) 1860 return; 1861 1862 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { 1863 if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { 1864 m_freem(sc->bge_cdata.bge_rx_std_chain[i]); 1865 sc->bge_cdata.bge_rx_std_chain[i] = NULL; 1866 bus_dmamap_destroy(sc->bge_dmatag, 1867 sc->bge_cdata.bge_rx_std_map[i]); 1868 } 1869 memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0, 1870 sizeof(struct bge_rx_bd)); 1871 } 1872 1873 sc->bge_flags &= ~BGEF_RXRING_VALID; 1874 } 1875 1876 static int 1877 bge_init_rx_ring_jumbo(struct bge_softc *sc) 1878 { 1879 int i; 1880 volatile struct bge_rcb *rcb; 1881 1882 if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID) 1883 return 0; 1884 1885 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1886 if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) 1887 return ENOBUFS; 1888 } 1889 1890 sc->bge_jumbo = i - 1; 1891 sc->bge_flags |= BGEF_JUMBO_RXRING_VALID; 1892 1893 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 1894 rcb->bge_maxlen_flags = 0; 1895 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 1896 1897 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 1898 1899 return 0; 1900 } 1901 1902 static void 1903 bge_free_rx_ring_jumbo(struct bge_softc *sc) 1904 { 1905 int i; 1906 1907 if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID)) 1908 return; 1909 1910 for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { 1911 if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { 1912 m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); 1913 sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; 1914 } 1915 memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0, 1916 sizeof(struct bge_rx_bd)); 1917 } 1918 1919 sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID; 1920 } 1921 1922 static void 1923 bge_free_tx_ring(struct bge_softc *sc) 1924 { 1925 int i; 1926 struct txdmamap_pool_entry *dma; 1927 1928 if (!(sc->bge_flags & BGEF_TXRING_VALID)) 1929 return; 1930 1931 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1932 if (sc->bge_cdata.bge_tx_chain[i] != NULL) { 1933 m_freem(sc->bge_cdata.bge_tx_chain[i]); 1934 sc->bge_cdata.bge_tx_chain[i] = NULL; 1935 SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], 1936 link); 1937 sc->txdma[i] = 0; 1938 } 1939 memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0, 1940 sizeof(struct bge_tx_bd)); 1941 } 1942 1943 while ((dma = SLIST_FIRST(&sc->txdma_list))) { 1944 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 1945 bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap); 1946 free(dma, M_DEVBUF); 1947 } 1948 1949 sc->bge_flags &= ~BGEF_TXRING_VALID; 1950 } 1951 1952 static int 1953 bge_init_tx_ring(struct bge_softc *sc) 1954 { 1955 struct ifnet *ifp = &sc->ethercom.ec_if; 1956 int i; 1957 bus_dmamap_t dmamap; 1958 bus_size_t maxsegsz; 1959 struct txdmamap_pool_entry *dma; 1960 1961 if (sc->bge_flags & BGEF_TXRING_VALID) 1962 return 0; 1963 1964 sc->bge_txcnt = 0; 1965 sc->bge_tx_saved_considx = 0; 1966 1967 /* Initialize transmit producer index for host-memory send ring. */ 1968 sc->bge_tx_prodidx = 0; 1969 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1970 /* 5700 b2 errata */ 1971 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1972 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); 1973 1974 /* NIC-memory send ring not used; initialize to zero. */ 1975 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1976 /* 5700 b2 errata */ 1977 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 1978 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); 1979 1980 /* Limit DMA segment size for some chips */ 1981 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) && 1982 (ifp->if_mtu <= ETHERMTU)) 1983 maxsegsz = 2048; 1984 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 1985 maxsegsz = 4096; 1986 else 1987 maxsegsz = ETHER_MAX_LEN_JUMBO; 1988 SLIST_INIT(&sc->txdma_list); 1989 for (i = 0; i < BGE_TX_RING_CNT; i++) { 1990 if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX, 1991 BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT, 1992 &dmamap)) 1993 return ENOBUFS; 1994 if (dmamap == NULL) 1995 panic("dmamap NULL in bge_init_tx_ring"); 1996 dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); 1997 if (dma == NULL) { 1998 aprint_error_dev(sc->bge_dev, 1999 "can't alloc txdmamap_pool_entry\n"); 2000 bus_dmamap_destroy(sc->bge_dmatag, dmamap); 2001 return ENOMEM; 2002 } 2003 dma->dmamap = dmamap; 2004 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 2005 } 2006 2007 sc->bge_flags |= BGEF_TXRING_VALID; 2008 2009 return 0; 2010 } 2011 2012 static void 2013 bge_setmulti(struct bge_softc *sc) 2014 { 2015 struct ethercom *ac = &sc->ethercom; 2016 struct ifnet *ifp = &ac->ec_if; 2017 struct ether_multi *enm; 2018 struct ether_multistep step; 2019 uint32_t hashes[4] = { 0, 0, 0, 0 }; 2020 uint32_t h; 2021 int i; 2022 2023 if (ifp->if_flags & IFF_PROMISC) 2024 goto allmulti; 2025 2026 /* Now program new ones. */ 2027 ETHER_FIRST_MULTI(step, ac, enm); 2028 while (enm != NULL) { 2029 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2030 /* 2031 * We must listen to a range of multicast addresses. 2032 * For now, just accept all multicasts, rather than 2033 * trying to set only those filter bits needed to match 2034 * the range. (At this time, the only use of address 2035 * ranges is for IP multicast routing, for which the 2036 * range is big enough to require all bits set.) 2037 */ 2038 goto allmulti; 2039 } 2040 2041 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); 2042 2043 /* Just want the 7 least-significant bits. */ 2044 h &= 0x7f; 2045 2046 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); 2047 ETHER_NEXT_MULTI(step, enm); 2048 } 2049 2050 ifp->if_flags &= ~IFF_ALLMULTI; 2051 goto setit; 2052 2053 allmulti: 2054 ifp->if_flags |= IFF_ALLMULTI; 2055 hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff; 2056 2057 setit: 2058 for (i = 0; i < 4; i++) 2059 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); 2060 } 2061 2062 static void 2063 bge_sig_pre_reset(struct bge_softc *sc, int type) 2064 { 2065 2066 /* 2067 * Some chips don't like this so only do this if ASF is enabled 2068 */ 2069 if (sc->bge_asf_mode) 2070 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 2071 2072 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 2073 switch (type) { 2074 case BGE_RESET_START: 2075 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2076 BGE_FW_DRV_STATE_START); 2077 break; 2078 case BGE_RESET_SHUTDOWN: 2079 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2080 BGE_FW_DRV_STATE_UNLOAD); 2081 break; 2082 case BGE_RESET_SUSPEND: 2083 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2084 BGE_FW_DRV_STATE_SUSPEND); 2085 break; 2086 } 2087 } 2088 2089 if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) 2090 bge_ape_driver_state_change(sc, type); 2091 } 2092 2093 static void 2094 bge_sig_post_reset(struct bge_softc *sc, int type) 2095 { 2096 2097 if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) { 2098 switch (type) { 2099 case BGE_RESET_START: 2100 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2101 BGE_FW_DRV_STATE_START_DONE); 2102 /* START DONE */ 2103 break; 2104 case BGE_RESET_SHUTDOWN: 2105 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2106 BGE_FW_DRV_STATE_UNLOAD_DONE); 2107 break; 2108 } 2109 } 2110 2111 if (type == BGE_RESET_SHUTDOWN) 2112 bge_ape_driver_state_change(sc, type); 2113 } 2114 2115 static void 2116 bge_sig_legacy(struct bge_softc *sc, int type) 2117 { 2118 2119 if (sc->bge_asf_mode) { 2120 switch (type) { 2121 case BGE_RESET_START: 2122 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2123 BGE_FW_DRV_STATE_START); 2124 break; 2125 case BGE_RESET_SHUTDOWN: 2126 bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB, 2127 BGE_FW_DRV_STATE_UNLOAD); 2128 break; 2129 } 2130 } 2131 } 2132 2133 static void 2134 bge_wait_for_event_ack(struct bge_softc *sc) 2135 { 2136 int i; 2137 2138 /* wait up to 2500usec */ 2139 for (i = 0; i < 250; i++) { 2140 if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) & 2141 BGE_RX_CPU_DRV_EVENT)) 2142 break; 2143 DELAY(10); 2144 } 2145 } 2146 2147 static void 2148 bge_stop_fw(struct bge_softc *sc) 2149 { 2150 2151 if (sc->bge_asf_mode) { 2152 bge_wait_for_event_ack(sc); 2153 2154 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE); 2155 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 2156 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT); 2157 2158 bge_wait_for_event_ack(sc); 2159 } 2160 } 2161 2162 static int 2163 bge_poll_fw(struct bge_softc *sc) 2164 { 2165 uint32_t val; 2166 int i; 2167 2168 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2169 for (i = 0; i < BGE_TIMEOUT; i++) { 2170 val = CSR_READ_4(sc, BGE_VCPU_STATUS); 2171 if (val & BGE_VCPU_STATUS_INIT_DONE) 2172 break; 2173 DELAY(100); 2174 } 2175 if (i >= BGE_TIMEOUT) { 2176 aprint_error_dev(sc->bge_dev, "reset timed out\n"); 2177 return -1; 2178 } 2179 } else if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) { 2180 /* 2181 * Poll the value location we just wrote until 2182 * we see the 1's complement of the magic number. 2183 * This indicates that the firmware initialization 2184 * is complete. 2185 * XXX 1000ms for Flash and 10000ms for SEEPROM. 2186 */ 2187 for (i = 0; i < BGE_TIMEOUT; i++) { 2188 val = bge_readmem_ind(sc, BGE_SRAM_FW_MB); 2189 if (val == ~BGE_SRAM_FW_MB_MAGIC) 2190 break; 2191 DELAY(10); 2192 } 2193 2194 if (i >= BGE_TIMEOUT) { 2195 aprint_error_dev(sc->bge_dev, 2196 "firmware handshake timed out, val = %x\n", val); 2197 return -1; 2198 } 2199 } 2200 2201 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2202 /* tg3 says we have to wait extra time */ 2203 delay(10 * 1000); 2204 } 2205 2206 return 0; 2207 } 2208 2209 int 2210 bge_phy_addr(struct bge_softc *sc) 2211 { 2212 struct pci_attach_args *pa = &(sc->bge_pa); 2213 int phy_addr = 1; 2214 2215 /* 2216 * PHY address mapping for various devices. 2217 * 2218 * | F0 Cu | F0 Sr | F1 Cu | F1 Sr | 2219 * ---------+-------+-------+-------+-------+ 2220 * BCM57XX | 1 | X | X | X | 2221 * BCM5704 | 1 | X | 1 | X | 2222 * BCM5717 | 1 | 8 | 2 | 9 | 2223 * BCM5719 | 1 | 8 | 2 | 9 | 2224 * BCM5720 | 1 | 8 | 2 | 9 | 2225 * 2226 * | F2 Cu | F2 Sr | F3 Cu | F3 Sr | 2227 * ---------+-------+-------+-------+-------+ 2228 * BCM57XX | X | X | X | X | 2229 * BCM5704 | X | X | X | X | 2230 * BCM5717 | X | X | X | X | 2231 * BCM5719 | 3 | 10 | 4 | 11 | 2232 * BCM5720 | X | X | X | X | 2233 * 2234 * Other addresses may respond but they are not 2235 * IEEE compliant PHYs and should be ignored. 2236 */ 2237 switch (BGE_ASICREV(sc->bge_chipid)) { 2238 case BGE_ASICREV_BCM5717: 2239 case BGE_ASICREV_BCM5719: 2240 case BGE_ASICREV_BCM5720: 2241 phy_addr = pa->pa_function; 2242 if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { 2243 phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) & 2244 BGE_SGDIGSTS_IS_SERDES) ? 8 : 1; 2245 } else { 2246 phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & 2247 BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1; 2248 } 2249 } 2250 2251 return phy_addr; 2252 } 2253 2254 /* 2255 * Do endian, PCI and DMA initialization. Also check the on-board ROM 2256 * self-test results. 2257 */ 2258 static int 2259 bge_chipinit(struct bge_softc *sc) 2260 { 2261 uint32_t dma_rw_ctl, mode_ctl, reg; 2262 int i; 2263 2264 /* Set endianness before we access any non-PCI registers. */ 2265 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 2266 BGE_INIT); 2267 2268 /* 2269 * Clear the MAC statistics block in the NIC's 2270 * internal memory. 2271 */ 2272 for (i = BGE_STATS_BLOCK; 2273 i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) 2274 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2275 2276 for (i = BGE_STATUS_BLOCK; 2277 i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) 2278 BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0); 2279 2280 /* 5717 workaround from tg3 */ 2281 if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) { 2282 /* Save */ 2283 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2284 2285 /* Temporary modify MODE_CTL to control TLP */ 2286 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2287 CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1); 2288 2289 /* Control TLP */ 2290 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2291 BGE_TLP_PHYCTL1); 2292 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1, 2293 reg | BGE_TLP_PHYCTL1_EN_L1PLLPD); 2294 2295 /* Restore */ 2296 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2297 } 2298 2299 if (BGE_IS_57765_FAMILY(sc)) { 2300 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) { 2301 /* Save */ 2302 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2303 2304 /* Temporary modify MODE_CTL to control TLP */ 2305 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2306 CSR_WRITE_4(sc, BGE_MODE_CTL, 2307 reg | BGE_MODECTL_PCIE_TLPADDR1); 2308 2309 /* Control TLP */ 2310 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2311 BGE_TLP_PHYCTL5); 2312 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5, 2313 reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ); 2314 2315 /* Restore */ 2316 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2317 } 2318 if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) { 2319 reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL); 2320 CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, 2321 reg | BGE_CPMU_PADRNG_CTL_RDIV2); 2322 2323 /* Save */ 2324 mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL); 2325 2326 /* Temporary modify MODE_CTL to control TLP */ 2327 reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK; 2328 CSR_WRITE_4(sc, BGE_MODE_CTL, 2329 reg | BGE_MODECTL_PCIE_TLPADDR0); 2330 2331 /* Control TLP */ 2332 reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG + 2333 BGE_TLP_FTSMAX); 2334 reg &= ~BGE_TLP_FTSMAX_MSK; 2335 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX, 2336 reg | BGE_TLP_FTSMAX_VAL); 2337 2338 /* Restore */ 2339 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2340 } 2341 2342 reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK); 2343 reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK; 2344 reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25; 2345 CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg); 2346 } 2347 2348 /* Set up the PCI DMA control register. */ 2349 dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD; 2350 if (sc->bge_flags & BGEF_PCIE) { 2351 /* Read watermark not used, 128 bytes for write. */ 2352 DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n", 2353 device_xname(sc->bge_dev))); 2354 if (sc->bge_mps >= 256) 2355 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2356 else 2357 dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2358 } else if (sc->bge_flags & BGEF_PCIX) { 2359 DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", 2360 device_xname(sc->bge_dev))); 2361 /* PCI-X bus */ 2362 if (BGE_IS_5714_FAMILY(sc)) { 2363 /* 256 bytes for read and write. */ 2364 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | 2365 BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); 2366 2367 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) 2368 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2369 else 2370 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; 2371 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2372 /* 1536 bytes for read, 384 bytes for write. */ 2373 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2374 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); 2375 } else { 2376 /* 384 bytes for read and write. */ 2377 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | 2378 BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | 2379 (0x0F); 2380 } 2381 2382 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2383 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 2384 uint32_t tmp; 2385 2386 /* Set ONEDMA_ATONCE for hardware workaround. */ 2387 tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; 2388 if (tmp == 6 || tmp == 7) 2389 dma_rw_ctl |= 2390 BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; 2391 2392 /* Set PCI-X DMA write workaround. */ 2393 dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; 2394 } 2395 } else { 2396 /* Conventional PCI bus: 256 bytes for read and write. */ 2397 DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", 2398 device_xname(sc->bge_dev))); 2399 dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | 2400 BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); 2401 2402 if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && 2403 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) 2404 dma_rw_ctl |= 0x0F; 2405 } 2406 2407 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 2408 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) 2409 dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | 2410 BGE_PCIDMARWCTL_ASRT_ALL_BE; 2411 2412 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || 2413 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2414 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; 2415 2416 if (BGE_IS_57765_PLUS(sc)) { 2417 dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; 2418 if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) 2419 dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; 2420 2421 /* 2422 * Enable HW workaround for controllers that misinterpret 2423 * a status tag update and leave interrupts permanently 2424 * disabled. 2425 */ 2426 if (!BGE_IS_57765_FAMILY(sc) && 2427 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717) 2428 dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; 2429 } 2430 2431 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, 2432 dma_rw_ctl); 2433 2434 /* 2435 * Set up general mode register. 2436 */ 2437 mode_ctl = BGE_DMA_SWAP_OPTIONS; 2438 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 2439 /* Retain Host-2-BMC settings written by APE firmware. */ 2440 mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & 2441 (BGE_MODECTL_BYTESWAP_B2HRX_DATA | 2442 BGE_MODECTL_WORDSWAP_B2HRX_DATA | 2443 BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); 2444 } 2445 mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | 2446 BGE_MODECTL_TX_NO_PHDR_CSUM; 2447 2448 /* 2449 * BCM5701 B5 have a bug causing data corruption when using 2450 * 64-bit DMA reads, which can be terminated early and then 2451 * completed later as 32-bit accesses, in combination with 2452 * certain bridges. 2453 */ 2454 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 2455 sc->bge_chipid == BGE_CHIPID_BCM5701_B5) 2456 mode_ctl |= BGE_MODECTL_FORCE_PCI32; 2457 2458 /* 2459 * Tell the firmware the driver is running 2460 */ 2461 if (sc->bge_asf_mode & ASF_STACKUP) 2462 mode_ctl |= BGE_MODECTL_STACKUP; 2463 2464 CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); 2465 2466 /* 2467 * Disable memory write invalidate. Apparently it is not supported 2468 * properly by these devices. 2469 */ 2470 PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, 2471 PCI_COMMAND_INVALIDATE_ENABLE); 2472 2473 #ifdef __brokenalpha__ 2474 /* 2475 * Must insure that we do not cross an 8K (bytes) boundary 2476 * for DMA reads. Our highest limit is 1K bytes. This is a 2477 * restriction on some ALPHA platforms with early revision 2478 * 21174 PCI chipsets, such as the AlphaPC 164lx 2479 */ 2480 PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4); 2481 #endif 2482 2483 /* Set the timer prescaler (always 66MHz) */ 2484 CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); 2485 2486 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2487 DELAY(40); /* XXX */ 2488 2489 /* Put PHY into ready state */ 2490 BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); 2491 DELAY(40); 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int 2498 bge_blockinit(struct bge_softc *sc) 2499 { 2500 volatile struct bge_rcb *rcb; 2501 bus_size_t rcb_addr; 2502 struct ifnet *ifp = &sc->ethercom.ec_if; 2503 bge_hostaddr taddr; 2504 uint32_t dmactl, val; 2505 int i, limit; 2506 2507 /* 2508 * Initialize the memory window pointer register so that 2509 * we can access the first 32K of internal NIC RAM. This will 2510 * allow us to set up the TX send ring RCBs and the RX return 2511 * ring RCBs, plus other things which live in NIC memory. 2512 */ 2513 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0); 2514 2515 if (!BGE_IS_5705_PLUS(sc)) { 2516 /* 57XX step 33 */ 2517 /* Configure mbuf memory pool */ 2518 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, 2519 BGE_BUFFPOOL_1); 2520 2521 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) 2522 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); 2523 else 2524 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); 2525 2526 /* 57XX step 34 */ 2527 /* Configure DMA resource pool */ 2528 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, 2529 BGE_DMA_DESCRIPTORS); 2530 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); 2531 } 2532 2533 /* 5718 step 11, 57XX step 35 */ 2534 /* 2535 * Configure mbuf pool watermarks. New broadcom docs strongly 2536 * recommend these. 2537 */ 2538 if (BGE_IS_5717_PLUS(sc)) { 2539 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2540 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); 2541 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); 2542 } else if (BGE_IS_5705_PLUS(sc)) { 2543 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); 2544 2545 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2546 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); 2547 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); 2548 } else { 2549 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); 2550 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2551 } 2552 } else { 2553 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); 2554 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); 2555 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); 2556 } 2557 2558 /* 57XX step 36 */ 2559 /* Configure DMA resource watermarks */ 2560 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); 2561 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); 2562 2563 /* 5718 step 13, 57XX step 38 */ 2564 /* Enable buffer manager */ 2565 val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN; 2566 /* 2567 * Change the arbitration algorithm of TXMBUF read request to 2568 * round-robin instead of priority based for BCM5719. When 2569 * TXFIFO is almost empty, RDMA will hold its request until 2570 * TXFIFO is not almost empty. 2571 */ 2572 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) 2573 val |= BGE_BMANMODE_NO_TX_UNDERRUN; 2574 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2575 sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || 2576 sc->bge_chipid == BGE_CHIPID_BCM5720_A0) 2577 val |= BGE_BMANMODE_LOMBUF_ATTN; 2578 CSR_WRITE_4(sc, BGE_BMAN_MODE, val); 2579 2580 /* 57XX step 39 */ 2581 /* Poll for buffer manager start indication */ 2582 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2583 DELAY(10); 2584 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) 2585 break; 2586 } 2587 2588 if (i == BGE_TIMEOUT * 2) { 2589 aprint_error_dev(sc->bge_dev, 2590 "buffer manager failed to start\n"); 2591 return ENXIO; 2592 } 2593 2594 /* 57XX step 40 */ 2595 /* Enable flow-through queues */ 2596 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 2597 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 2598 2599 /* Wait until queue initialization is complete */ 2600 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2601 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) 2602 break; 2603 DELAY(10); 2604 } 2605 2606 if (i == BGE_TIMEOUT * 2) { 2607 aprint_error_dev(sc->bge_dev, 2608 "flow-through queue init failed\n"); 2609 return ENXIO; 2610 } 2611 2612 /* 2613 * Summary of rings supported by the controller: 2614 * 2615 * Standard Receive Producer Ring 2616 * - This ring is used to feed receive buffers for "standard" 2617 * sized frames (typically 1536 bytes) to the controller. 2618 * 2619 * Jumbo Receive Producer Ring 2620 * - This ring is used to feed receive buffers for jumbo sized 2621 * frames (i.e. anything bigger than the "standard" frames) 2622 * to the controller. 2623 * 2624 * Mini Receive Producer Ring 2625 * - This ring is used to feed receive buffers for "mini" 2626 * sized frames to the controller. 2627 * - This feature required external memory for the controller 2628 * but was never used in a production system. Should always 2629 * be disabled. 2630 * 2631 * Receive Return Ring 2632 * - After the controller has placed an incoming frame into a 2633 * receive buffer that buffer is moved into a receive return 2634 * ring. The driver is then responsible to passing the 2635 * buffer up to the stack. Many versions of the controller 2636 * support multiple RR rings. 2637 * 2638 * Send Ring 2639 * - This ring is used for outgoing frames. Many versions of 2640 * the controller support multiple send rings. 2641 */ 2642 2643 /* 5718 step 15, 57XX step 41 */ 2644 /* Initialize the standard RX ring control block */ 2645 rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; 2646 BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); 2647 /* 5718 step 16 */ 2648 if (BGE_IS_57765_PLUS(sc)) { 2649 /* 2650 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) 2651 * Bits 15-2 : Maximum RX frame size 2652 * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled 2653 * Bit 0 : Reserved 2654 */ 2655 rcb->bge_maxlen_flags = 2656 BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2); 2657 } else if (BGE_IS_5705_PLUS(sc)) { 2658 /* 2659 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) 2660 * Bits 15-2 : Reserved (should be 0) 2661 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2662 * Bit 0 : Reserved 2663 */ 2664 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); 2665 } else { 2666 /* 2667 * Ring size is always XXX entries 2668 * Bits 31-16: Maximum RX frame size 2669 * Bits 15-2 : Reserved (should be 0) 2670 * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled 2671 * Bit 0 : Reserved 2672 */ 2673 rcb->bge_maxlen_flags = 2674 BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); 2675 } 2676 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2677 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2678 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2679 rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; 2680 else 2681 rcb->bge_nicaddr = BGE_STD_RX_RINGS; 2682 /* Write the standard receive producer ring control block. */ 2683 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); 2684 CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); 2685 CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); 2686 CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); 2687 2688 /* Reset the standard receive producer ring producer index. */ 2689 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); 2690 2691 /* 57XX step 42 */ 2692 /* 2693 * Initialize the jumbo RX ring control block 2694 * We set the 'ring disabled' bit in the flags 2695 * field until we're actually ready to start 2696 * using this ring (i.e. once we set the MTU 2697 * high enough to require it). 2698 */ 2699 if (BGE_IS_JUMBO_CAPABLE(sc)) { 2700 rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; 2701 BGE_HOSTADDR(rcb->bge_hostaddr, 2702 BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); 2703 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 2704 BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); 2705 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2706 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2707 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2708 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; 2709 else 2710 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; 2711 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, 2712 rcb->bge_hostaddr.bge_addr_hi); 2713 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, 2714 rcb->bge_hostaddr.bge_addr_lo); 2715 /* Program the jumbo receive producer ring RCB parameters. */ 2716 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, 2717 rcb->bge_maxlen_flags); 2718 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); 2719 /* Reset the jumbo receive producer ring producer index. */ 2720 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); 2721 } 2722 2723 /* 57XX step 43 */ 2724 /* Disable the mini receive producer ring RCB. */ 2725 if (BGE_IS_5700_FAMILY(sc)) { 2726 /* Set up dummy disabled mini ring RCB */ 2727 rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; 2728 rcb->bge_maxlen_flags = 2729 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); 2730 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, 2731 rcb->bge_maxlen_flags); 2732 /* Reset the mini receive producer ring producer index. */ 2733 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); 2734 2735 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 2736 offsetof(struct bge_ring_data, bge_info), 2737 sizeof (struct bge_gib), 2738 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 2739 } 2740 2741 /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ 2742 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 2743 if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || 2744 sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || 2745 sc->bge_chipid == BGE_CHIPID_BCM5906_A2) 2746 CSR_WRITE_4(sc, BGE_ISO_PKT_TX, 2747 (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); 2748 } 2749 /* 5718 step 14, 57XX step 44 */ 2750 /* 2751 * The BD ring replenish thresholds control how often the 2752 * hardware fetches new BD's from the producer rings in host 2753 * memory. Setting the value too low on a busy system can 2754 * starve the hardware and recue the throughpout. 2755 * 2756 * Set the BD ring replenish thresholds. The recommended 2757 * values are 1/8th the number of descriptors allocated to 2758 * each ring, but since we try to avoid filling the entire 2759 * ring we set these to the minimal value of 8. This needs to 2760 * be done on several of the supported chip revisions anyway, 2761 * to work around HW bugs. 2762 */ 2763 CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8); 2764 if (BGE_IS_JUMBO_CAPABLE(sc)) 2765 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8); 2766 2767 /* 5718 step 18 */ 2768 if (BGE_IS_5717_PLUS(sc)) { 2769 CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4); 2770 CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4); 2771 } 2772 2773 /* 57XX step 45 */ 2774 /* 2775 * Disable all send rings by setting the 'ring disabled' bit 2776 * in the flags field of all the TX send ring control blocks, 2777 * located in NIC memory. 2778 */ 2779 if (BGE_IS_5700_FAMILY(sc)) { 2780 /* 5700 to 5704 had 16 send rings. */ 2781 limit = BGE_TX_RINGS_EXTSSRAM_MAX; 2782 } else if (BGE_IS_5717_PLUS(sc)) { 2783 limit = BGE_TX_RINGS_5717_MAX; 2784 } else if (BGE_IS_57765_FAMILY(sc)) { 2785 limit = BGE_TX_RINGS_57765_MAX; 2786 } else 2787 limit = 1; 2788 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2789 for (i = 0; i < limit; i++) { 2790 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2791 BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); 2792 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2793 rcb_addr += sizeof(struct bge_rcb); 2794 } 2795 2796 /* 57XX step 46 and 47 */ 2797 /* Configure send ring RCB 0 (we use only the first ring) */ 2798 rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; 2799 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); 2800 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2801 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2802 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || 2803 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 2804 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2805 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717); 2806 else 2807 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 2808 BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); 2809 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2810 BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); 2811 2812 /* 57XX step 48 */ 2813 /* 2814 * Disable all receive return rings by setting the 2815 * 'ring diabled' bit in the flags field of all the receive 2816 * return ring control blocks, located in NIC memory. 2817 */ 2818 if (BGE_IS_5717_PLUS(sc)) { 2819 /* Should be 17, use 16 until we get an SRAM map. */ 2820 limit = 16; 2821 } else if (BGE_IS_5700_FAMILY(sc)) 2822 limit = BGE_RX_RINGS_MAX; 2823 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 2824 BGE_IS_57765_FAMILY(sc)) 2825 limit = 4; 2826 else 2827 limit = 1; 2828 /* Disable all receive return rings */ 2829 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2830 for (i = 0; i < limit; i++) { 2831 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); 2832 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); 2833 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2834 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 2835 BGE_RCB_FLAG_RING_DISABLED)); 2836 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); 2837 bge_writembx(sc, BGE_MBX_RX_CONS0_LO + 2838 (i * (sizeof(uint64_t))), 0); 2839 rcb_addr += sizeof(struct bge_rcb); 2840 } 2841 2842 /* 57XX step 49 */ 2843 /* 2844 * Set up receive return ring 0. Note that the NIC address 2845 * for RX return rings is 0x0. The return rings live entirely 2846 * within the host, so the nicaddr field in the RCB isn't used. 2847 */ 2848 rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; 2849 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); 2850 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); 2851 RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); 2852 RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); 2853 RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, 2854 BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); 2855 2856 /* 5718 step 24, 57XX step 53 */ 2857 /* Set random backoff seed for TX */ 2858 CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, 2859 (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] + 2860 CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] + 2861 CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) & 2862 BGE_TX_BACKOFF_SEED_MASK); 2863 2864 /* 5718 step 26, 57XX step 55 */ 2865 /* Set inter-packet gap */ 2866 val = 0x2620; 2867 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 2868 val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & 2869 (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); 2870 CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); 2871 2872 /* 5718 step 27, 57XX step 56 */ 2873 /* 2874 * Specify which ring to use for packets that don't match 2875 * any RX rules. 2876 */ 2877 CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); 2878 2879 /* 5718 step 28, 57XX step 57 */ 2880 /* 2881 * Configure number of RX lists. One interrupt distribution 2882 * list, sixteen active lists, one bad frames class. 2883 */ 2884 CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); 2885 2886 /* 5718 step 29, 57XX step 58 */ 2887 /* Inialize RX list placement stats mask. */ 2888 if (BGE_IS_575X_PLUS(sc)) { 2889 val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK); 2890 val &= ~BGE_RXLPSTATCONTROL_DACK_FIX; 2891 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val); 2892 } else 2893 CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); 2894 2895 /* 5718 step 30, 57XX step 59 */ 2896 CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); 2897 2898 /* 5718 step 33, 57XX step 62 */ 2899 /* Disable host coalescing until we get it set up */ 2900 CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); 2901 2902 /* 5718 step 34, 57XX step 63 */ 2903 /* Poll to make sure it's shut down. */ 2904 for (i = 0; i < BGE_TIMEOUT * 2; i++) { 2905 DELAY(10); 2906 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) 2907 break; 2908 } 2909 2910 if (i == BGE_TIMEOUT * 2) { 2911 aprint_error_dev(sc->bge_dev, 2912 "host coalescing engine failed to idle\n"); 2913 return ENXIO; 2914 } 2915 2916 /* 5718 step 35, 36, 37 */ 2917 /* Set up host coalescing defaults */ 2918 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); 2919 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); 2920 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); 2921 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); 2922 if (!(BGE_IS_5705_PLUS(sc))) { 2923 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); 2924 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); 2925 } 2926 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); 2927 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); 2928 2929 /* Set up address of statistics block */ 2930 if (BGE_IS_5700_FAMILY(sc)) { 2931 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); 2932 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); 2933 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); 2934 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi); 2935 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo); 2936 } 2937 2938 /* 5718 step 38 */ 2939 /* Set up address of status block */ 2940 BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); 2941 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); 2942 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); 2943 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); 2944 sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; 2945 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; 2946 2947 /* Set up status block size. */ 2948 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 && 2949 sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { 2950 val = BGE_STATBLKSZ_FULL; 2951 bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ); 2952 } else { 2953 val = BGE_STATBLKSZ_32BYTE; 2954 bzero(&sc->bge_rdata->bge_status_block, 32); 2955 } 2956 2957 /* 5718 step 39, 57XX step 73 */ 2958 /* Turn on host coalescing state machine */ 2959 CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); 2960 2961 /* 5718 step 40, 57XX step 74 */ 2962 /* Turn on RX BD completion state machine and enable attentions */ 2963 CSR_WRITE_4(sc, BGE_RBDC_MODE, 2964 BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN); 2965 2966 /* 5718 step 41, 57XX step 75 */ 2967 /* Turn on RX list placement state machine */ 2968 CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 2969 2970 /* 57XX step 76 */ 2971 /* Turn on RX list selector state machine. */ 2972 if (!(BGE_IS_5705_PLUS(sc))) 2973 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 2974 2975 val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | 2976 BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | 2977 BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | 2978 BGE_MACMODE_FRMHDR_DMA_ENB; 2979 2980 if (sc->bge_flags & BGEF_FIBER_TBI) 2981 val |= BGE_PORTMODE_TBI; 2982 else if (sc->bge_flags & BGEF_FIBER_MII) 2983 val |= BGE_PORTMODE_GMII; 2984 else 2985 val |= BGE_PORTMODE_MII; 2986 2987 /* 5718 step 42 and 43, 57XX step 77 and 78 */ 2988 /* Allow APE to send/receive frames. */ 2989 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 2990 val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 2991 2992 /* Turn on DMA, clear stats */ 2993 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 2994 /* 5718 step 44 */ 2995 DELAY(40); 2996 2997 /* 5718 step 45, 57XX step 79 */ 2998 /* Set misc. local control, enable interrupts on attentions */ 2999 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); 3000 if (BGE_IS_5717_PLUS(sc)) { 3001 CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */ 3002 /* 5718 step 46 */ 3003 DELAY(100); 3004 } 3005 3006 /* 57XX step 81 */ 3007 /* Turn on DMA completion state machine */ 3008 if (!(BGE_IS_5705_PLUS(sc))) 3009 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 3010 3011 /* 5718 step 47, 57XX step 82 */ 3012 val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS; 3013 3014 /* 5718 step 48 */ 3015 /* Enable host coalescing bug fix. */ 3016 if (BGE_IS_5755_PLUS(sc)) 3017 val |= BGE_WDMAMODE_STATUS_TAG_FIX; 3018 3019 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) 3020 val |= BGE_WDMAMODE_BURST_ALL_DATA; 3021 3022 /* Turn on write DMA state machine */ 3023 CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val); 3024 /* 5718 step 49 */ 3025 DELAY(40); 3026 3027 val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; 3028 3029 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717) 3030 val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; 3031 3032 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3033 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3034 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 3035 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | 3036 BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | 3037 BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; 3038 3039 if (sc->bge_flags & BGEF_PCIE) 3040 val |= BGE_RDMAMODE_FIFO_LONG_BURST; 3041 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) { 3042 if (ifp->if_mtu <= ETHERMTU) 3043 val |= BGE_RDMAMODE_JMB_2K_MMRR; 3044 } 3045 if (sc->bge_flags & BGEF_TSO) 3046 val |= BGE_RDMAMODE_TSO4_ENABLE; 3047 3048 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 3049 val |= CSR_READ_4(sc, BGE_RDMA_MODE) & 3050 BGE_RDMAMODE_H2BNC_VLAN_DET; 3051 /* 3052 * Allow multiple outstanding read requests from 3053 * non-LSO read DMA engine. 3054 */ 3055 val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; 3056 } 3057 3058 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3059 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3060 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3061 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 || 3062 BGE_IS_57765_PLUS(sc)) { 3063 dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL); 3064 /* 3065 * Adjust tx margin to prevent TX data corruption and 3066 * fix internal FIFO overflow. 3067 */ 3068 if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { 3069 dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | 3070 BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | 3071 BGE_RDMA_RSRVCTRL_TXMRGN_MASK); 3072 dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | 3073 BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | 3074 BGE_RDMA_RSRVCTRL_TXMRGN_320B; 3075 } 3076 /* 3077 * Enable fix for read DMA FIFO overruns. 3078 * The fix is to limit the number of RX BDs 3079 * the hardware would fetch at a fime. 3080 */ 3081 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl | 3082 BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); 3083 } 3084 3085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) { 3086 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 3087 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 3088 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | 3089 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 3090 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 3091 /* 3092 * Allow 4KB burst length reads for non-LSO frames. 3093 * Enable 512B burst length reads for buffer descriptors. 3094 */ 3095 CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, 3096 CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | 3097 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | 3098 BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); 3099 } 3100 3101 /* Turn on read DMA state machine */ 3102 CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val); 3103 /* 5718 step 52 */ 3104 delay(40); 3105 3106 /* 5718 step 56, 57XX step 84 */ 3107 /* Turn on RX data completion state machine */ 3108 CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 3109 3110 /* Turn on RX data and RX BD initiator state machine */ 3111 CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); 3112 3113 /* 57XX step 85 */ 3114 /* Turn on Mbuf cluster free state machine */ 3115 if (!BGE_IS_5705_PLUS(sc)) 3116 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 3117 3118 /* 5718 step 57, 57XX step 86 */ 3119 /* Turn on send data completion state machine */ 3120 val = BGE_SDCMODE_ENABLE; 3121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) 3122 val |= BGE_SDCMODE_CDELAY; 3123 CSR_WRITE_4(sc, BGE_SDC_MODE, val); 3124 3125 /* 5718 step 58 */ 3126 /* Turn on send BD completion state machine */ 3127 CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 3128 3129 /* 57XX step 88 */ 3130 /* Turn on RX BD initiator state machine */ 3131 CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 3132 3133 /* 5718 step 60, 57XX step 90 */ 3134 /* Turn on send data initiator state machine */ 3135 if (sc->bge_flags & BGEF_TSO) { 3136 /* XXX: magic value from Linux driver */ 3137 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 3138 BGE_SDIMODE_HW_LSO_PRE_DMA); 3139 } else 3140 CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 3141 3142 /* 5718 step 61, 57XX step 91 */ 3143 /* Turn on send BD initiator state machine */ 3144 CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 3145 3146 /* 5718 step 62, 57XX step 92 */ 3147 /* Turn on send BD selector state machine */ 3148 CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 3149 3150 /* 5718 step 31, 57XX step 60 */ 3151 CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); 3152 /* 5718 step 32, 57XX step 61 */ 3153 CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, 3154 BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER); 3155 3156 /* ack/clear link change events */ 3157 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3158 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3159 BGE_MACSTAT_LINK_CHANGED); 3160 CSR_WRITE_4(sc, BGE_MI_STS, 0); 3161 3162 /* 3163 * Enable attention when the link has changed state for 3164 * devices that use auto polling. 3165 */ 3166 if (sc->bge_flags & BGEF_FIBER_TBI) { 3167 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); 3168 } else { 3169 /* 5718 step 68 */ 3170 BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); 3171 /* 5718 step 69 (optionally) */ 3172 BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16)); 3173 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) 3174 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 3175 BGE_EVTENB_MI_INTERRUPT); 3176 } 3177 3178 /* 3179 * Clear any pending link state attention. 3180 * Otherwise some link state change events may be lost until attention 3181 * is cleared by bge_intr() -> bge_link_upd() sequence. 3182 * It's not necessary on newer BCM chips - perhaps enabling link 3183 * state change attentions implies clearing pending attention. 3184 */ 3185 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | 3186 BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | 3187 BGE_MACSTAT_LINK_CHANGED); 3188 3189 /* Enable link state change attentions. */ 3190 BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); 3191 3192 return 0; 3193 } 3194 3195 static const struct bge_revision * 3196 bge_lookup_rev(uint32_t chipid) 3197 { 3198 const struct bge_revision *br; 3199 3200 for (br = bge_revisions; br->br_name != NULL; br++) { 3201 if (br->br_chipid == chipid) 3202 return br; 3203 } 3204 3205 for (br = bge_majorrevs; br->br_name != NULL; br++) { 3206 if (br->br_chipid == BGE_ASICREV(chipid)) 3207 return br; 3208 } 3209 3210 return NULL; 3211 } 3212 3213 static const struct bge_product * 3214 bge_lookup(const struct pci_attach_args *pa) 3215 { 3216 const struct bge_product *bp; 3217 3218 for (bp = bge_products; bp->bp_name != NULL; bp++) { 3219 if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor && 3220 PCI_PRODUCT(pa->pa_id) == bp->bp_product) 3221 return bp; 3222 } 3223 3224 return NULL; 3225 } 3226 3227 static uint32_t 3228 bge_chipid(const struct pci_attach_args *pa) 3229 { 3230 uint32_t id; 3231 3232 id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) 3233 >> BGE_PCIMISCCTL_ASICREV_SHIFT; 3234 3235 if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) { 3236 switch (PCI_PRODUCT(pa->pa_id)) { 3237 case PCI_PRODUCT_BROADCOM_BCM5717: 3238 case PCI_PRODUCT_BROADCOM_BCM5718: 3239 case PCI_PRODUCT_BROADCOM_BCM5719: 3240 case PCI_PRODUCT_BROADCOM_BCM5720: 3241 case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */ 3242 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3243 BGE_PCI_GEN2_PRODID_ASICREV); 3244 break; 3245 case PCI_PRODUCT_BROADCOM_BCM57761: 3246 case PCI_PRODUCT_BROADCOM_BCM57762: 3247 case PCI_PRODUCT_BROADCOM_BCM57765: 3248 case PCI_PRODUCT_BROADCOM_BCM57766: 3249 case PCI_PRODUCT_BROADCOM_BCM57781: 3250 case PCI_PRODUCT_BROADCOM_BCM57785: 3251 case PCI_PRODUCT_BROADCOM_BCM57791: 3252 case PCI_PRODUCT_BROADCOM_BCM57795: 3253 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3254 BGE_PCI_GEN15_PRODID_ASICREV); 3255 break; 3256 default: 3257 id = pci_conf_read(pa->pa_pc, pa->pa_tag, 3258 BGE_PCI_PRODID_ASICREV); 3259 break; 3260 } 3261 } 3262 3263 return id; 3264 } 3265 3266 /* 3267 * Probe for a Broadcom chip. Check the PCI vendor and device IDs 3268 * against our list and return its name if we find a match. Note 3269 * that since the Broadcom controller contains VPD support, we 3270 * can get the device name string from the controller itself instead 3271 * of the compiled-in string. This is a little slow, but it guarantees 3272 * we'll always announce the right product name. 3273 */ 3274 static int 3275 bge_probe(device_t parent, cfdata_t match, void *aux) 3276 { 3277 struct pci_attach_args *pa = (struct pci_attach_args *)aux; 3278 3279 if (bge_lookup(pa) != NULL) 3280 return 1; 3281 3282 return 0; 3283 } 3284 3285 static void 3286 bge_attach(device_t parent, device_t self, void *aux) 3287 { 3288 struct bge_softc *sc = device_private(self); 3289 struct pci_attach_args *pa = aux; 3290 prop_dictionary_t dict; 3291 const struct bge_product *bp; 3292 const struct bge_revision *br; 3293 pci_chipset_tag_t pc; 3294 pci_intr_handle_t ih; 3295 const char *intrstr = NULL; 3296 uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4; 3297 uint32_t command; 3298 struct ifnet *ifp; 3299 uint32_t misccfg, mimode; 3300 void * kva; 3301 u_char eaddr[ETHER_ADDR_LEN]; 3302 pcireg_t memtype, subid, reg; 3303 bus_addr_t memaddr; 3304 uint32_t pm_ctl; 3305 bool no_seeprom; 3306 int capmask; 3307 3308 bp = bge_lookup(pa); 3309 KASSERT(bp != NULL); 3310 3311 sc->sc_pc = pa->pa_pc; 3312 sc->sc_pcitag = pa->pa_tag; 3313 sc->bge_dev = self; 3314 3315 sc->bge_pa = *pa; 3316 pc = sc->sc_pc; 3317 subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG); 3318 3319 aprint_naive(": Ethernet controller\n"); 3320 aprint_normal(": %s\n", bp->bp_name); 3321 3322 /* 3323 * Map control/status registers. 3324 */ 3325 DPRINTFN(5, ("Map control/status regs\n")); 3326 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3327 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; 3328 pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command); 3329 command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); 3330 3331 if (!(command & PCI_COMMAND_MEM_ENABLE)) { 3332 aprint_error_dev(sc->bge_dev, 3333 "failed to enable memory mapping!\n"); 3334 return; 3335 } 3336 3337 DPRINTFN(5, ("pci_mem_find\n")); 3338 memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0); 3339 switch (memtype) { 3340 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 3341 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 3342 if (pci_mapreg_map(pa, BGE_PCI_BAR0, 3343 memtype, 0, &sc->bge_btag, &sc->bge_bhandle, 3344 &memaddr, &sc->bge_bsize) == 0) 3345 break; 3346 default: 3347 aprint_error_dev(sc->bge_dev, "can't find mem space\n"); 3348 return; 3349 } 3350 3351 DPRINTFN(5, ("pci_intr_map\n")); 3352 if (pci_intr_map(pa, &ih)) { 3353 aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n"); 3354 return; 3355 } 3356 3357 DPRINTFN(5, ("pci_intr_string\n")); 3358 intrstr = pci_intr_string(pc, ih); 3359 3360 DPRINTFN(5, ("pci_intr_establish\n")); 3361 sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc); 3362 3363 if (sc->bge_intrhand == NULL) { 3364 aprint_error_dev(sc->bge_dev, 3365 "couldn't establish interrupt%s%s\n", 3366 intrstr ? " at " : "", intrstr ? intrstr : ""); 3367 return; 3368 } 3369 aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr); 3370 3371 /* Save various chip information. */ 3372 sc->bge_chipid = bge_chipid(pa); 3373 sc->bge_phy_addr = bge_phy_addr(sc); 3374 3375 if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, 3376 &sc->bge_pciecap, NULL) != 0) 3377 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) { 3378 /* PCIe */ 3379 sc->bge_flags |= BGEF_PCIE; 3380 /* Extract supported maximum payload size. */ 3381 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 3382 sc->bge_pciecap + PCIE_DCAP); 3383 sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD); 3384 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || 3385 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 3386 sc->bge_expmrq = 2048; 3387 else 3388 sc->bge_expmrq = 4096; 3389 bge_set_max_readrq(sc); 3390 } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) & 3391 BGE_PCISTATE_PCI_BUSMODE) == 0) { 3392 /* PCI-X */ 3393 sc->bge_flags |= BGEF_PCIX; 3394 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, 3395 &sc->bge_pcixcap, NULL) == 0) 3396 aprint_error_dev(sc->bge_dev, 3397 "unable to find PCIX capability\n"); 3398 } 3399 3400 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) { 3401 /* 3402 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) 3403 * can clobber the chip's PCI config-space power control 3404 * registers, leaving the card in D3 powersave state. We do 3405 * not have memory-mapped registers in this state, so force 3406 * device into D0 state before starting initialization. 3407 */ 3408 pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD); 3409 pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3); 3410 pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ 3411 pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl); 3412 DELAY(1000); /* 27 usec is allegedly sufficent */ 3413 } 3414 3415 /* Save chipset family. */ 3416 switch (BGE_ASICREV(sc->bge_chipid)) { 3417 case BGE_ASICREV_BCM5717: 3418 case BGE_ASICREV_BCM5719: 3419 case BGE_ASICREV_BCM5720: 3420 sc->bge_flags |= BGEF_5717_PLUS; 3421 /* FALLTHROUGH */ 3422 case BGE_ASICREV_BCM57765: 3423 case BGE_ASICREV_BCM57766: 3424 if (!BGE_IS_5717_PLUS(sc)) 3425 sc->bge_flags |= BGEF_57765_FAMILY; 3426 sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS | 3427 BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE; 3428 /* Jumbo frame on BCM5719 A0 does not work. */ 3429 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) && 3430 (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) 3431 sc->bge_flags &= ~BGEF_JUMBO_CAPABLE; 3432 break; 3433 case BGE_ASICREV_BCM5755: 3434 case BGE_ASICREV_BCM5761: 3435 case BGE_ASICREV_BCM5784: 3436 case BGE_ASICREV_BCM5785: 3437 case BGE_ASICREV_BCM5787: 3438 case BGE_ASICREV_BCM57780: 3439 sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS; 3440 break; 3441 case BGE_ASICREV_BCM5700: 3442 case BGE_ASICREV_BCM5701: 3443 case BGE_ASICREV_BCM5703: 3444 case BGE_ASICREV_BCM5704: 3445 sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE; 3446 break; 3447 case BGE_ASICREV_BCM5714_A0: 3448 case BGE_ASICREV_BCM5780: 3449 case BGE_ASICREV_BCM5714: 3450 sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE; 3451 /* FALLTHROUGH */ 3452 case BGE_ASICREV_BCM5750: 3453 case BGE_ASICREV_BCM5752: 3454 case BGE_ASICREV_BCM5906: 3455 sc->bge_flags |= BGEF_575X_PLUS; 3456 /* FALLTHROUGH */ 3457 case BGE_ASICREV_BCM5705: 3458 sc->bge_flags |= BGEF_5705_PLUS; 3459 break; 3460 } 3461 3462 /* Identify chips with APE processor. */ 3463 switch (BGE_ASICREV(sc->bge_chipid)) { 3464 case BGE_ASICREV_BCM5717: 3465 case BGE_ASICREV_BCM5719: 3466 case BGE_ASICREV_BCM5720: 3467 case BGE_ASICREV_BCM5761: 3468 sc->bge_flags |= BGEF_APE; 3469 break; 3470 } 3471 3472 /* 3473 * The 40bit DMA bug applies to the 5714/5715 controllers and is 3474 * not actually a MAC controller bug but an issue with the embedded 3475 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround. 3476 */ 3477 if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0)) 3478 sc->bge_flags |= BGEF_40BIT_BUG; 3479 3480 /* Chips with APE need BAR2 access for APE registers/memory. */ 3481 if ((sc->bge_flags & BGEF_APE) != 0) { 3482 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2); 3483 if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0, 3484 &sc->bge_apetag, &sc->bge_apehandle, NULL, 3485 &sc->bge_apesize)) { 3486 aprint_error_dev(sc->bge_dev, 3487 "couldn't map BAR2 memory\n"); 3488 return; 3489 } 3490 3491 /* Enable APE register/memory access by host driver. */ 3492 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); 3493 reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 3494 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 3495 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 3496 pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg); 3497 3498 bge_ape_lock_init(sc); 3499 bge_ape_read_fw_ver(sc); 3500 } 3501 3502 /* Identify the chips that use an CPMU. */ 3503 if (BGE_IS_5717_PLUS(sc) || 3504 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3505 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3506 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || 3507 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) 3508 sc->bge_flags |= BGEF_CPMU_PRESENT; 3509 3510 /* Set MI_MODE */ 3511 mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr); 3512 if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0) 3513 mimode |= BGE_MIMODE_500KHZ_CONST; 3514 else 3515 mimode |= BGE_MIMODE_BASE; 3516 CSR_WRITE_4(sc, BGE_MI_MODE, mimode); 3517 3518 /* 3519 * When using the BCM5701 in PCI-X mode, data corruption has 3520 * been observed in the first few bytes of some received packets. 3521 * Aligning the packet buffer in memory eliminates the corruption. 3522 * Unfortunately, this misaligns the packet payloads. On platforms 3523 * which do not support unaligned accesses, we will realign the 3524 * payloads by copying the received packets. 3525 */ 3526 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && 3527 sc->bge_flags & BGEF_PCIX) 3528 sc->bge_flags |= BGEF_RX_ALIGNBUG; 3529 3530 if (BGE_IS_5700_FAMILY(sc)) 3531 sc->bge_flags |= BGEF_JUMBO_CAPABLE; 3532 3533 misccfg = CSR_READ_4(sc, BGE_MISC_CFG); 3534 misccfg &= BGE_MISCCFG_BOARD_ID_MASK; 3535 3536 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3537 (misccfg == BGE_MISCCFG_BOARD_ID_5788 || 3538 misccfg == BGE_MISCCFG_BOARD_ID_5788M)) 3539 sc->bge_flags |= BGEF_IS_5788; 3540 3541 /* 3542 * Some controllers seem to require a special firmware to use 3543 * TSO. But the firmware is not available to FreeBSD and Linux 3544 * claims that the TSO performed by the firmware is slower than 3545 * hardware based TSO. Moreover the firmware based TSO has one 3546 * known bug which can't handle TSO if ethernet header + IP/TCP 3547 * header is greater than 80 bytes. The workaround for the TSO 3548 * bug exist but it seems it's too expensive than not using 3549 * TSO at all. Some hardwares also have the TSO bug so limit 3550 * the TSO to the controllers that are not affected TSO issues 3551 * (e.g. 5755 or higher). 3552 */ 3553 if (BGE_IS_5755_PLUS(sc)) { 3554 /* 3555 * BCM5754 and BCM5787 shares the same ASIC id so 3556 * explicit device id check is required. 3557 */ 3558 if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) && 3559 (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M)) 3560 sc->bge_flags |= BGEF_TSO; 3561 } 3562 3563 capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */ 3564 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && 3565 (misccfg == 0x4000 || misccfg == 0x8000)) || 3566 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3567 PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3568 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || 3569 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || 3570 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || 3571 (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && 3572 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || 3573 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || 3574 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || 3575 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 || 3576 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 || 3577 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 || 3578 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 3579 capmask &= ~BMSR_EXTSTAT; 3580 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3581 } 3582 3583 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3584 (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && 3585 (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && 3586 sc->bge_chipid != BGE_CHIPID_BCM5705_A1))) 3587 sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED; 3588 3589 /* Set various PHY bug flags. */ 3590 if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || 3591 sc->bge_chipid == BGE_CHIPID_BCM5701_B0) 3592 sc->bge_phy_flags |= BGEPHYF_CRC_BUG; 3593 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || 3594 BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) 3595 sc->bge_phy_flags |= BGEPHYF_ADC_BUG; 3596 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) 3597 sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG; 3598 if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 3599 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && 3600 PCI_VENDOR(subid) == PCI_VENDOR_DELL) 3601 sc->bge_phy_flags |= BGEPHYF_NO_3LED; 3602 if (BGE_IS_5705_PLUS(sc) && 3603 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 && 3604 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && 3605 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 && 3606 !BGE_IS_57765_PLUS(sc)) { 3607 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || 3608 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || 3609 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || 3610 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { 3611 if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && 3612 PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) 3613 sc->bge_phy_flags |= BGEPHYF_JITTER_BUG; 3614 if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) 3615 sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM; 3616 } else 3617 sc->bge_phy_flags |= BGEPHYF_BER_BUG; 3618 } 3619 3620 /* 3621 * SEEPROM check. 3622 * First check if firmware knows we do not have SEEPROM. 3623 */ 3624 if (prop_dictionary_get_bool(device_properties(self), 3625 "without-seeprom", &no_seeprom) && no_seeprom) 3626 sc->bge_flags |= BGEF_NO_EEPROM; 3627 3628 else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 3629 sc->bge_flags |= BGEF_NO_EEPROM; 3630 3631 /* Now check the 'ROM failed' bit on the RX CPU */ 3632 else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) 3633 sc->bge_flags |= BGEF_NO_EEPROM; 3634 3635 sc->bge_asf_mode = 0; 3636 /* No ASF if APE present. */ 3637 if ((sc->bge_flags & BGEF_APE) == 0) { 3638 if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3639 BGE_SRAM_DATA_SIG_MAGIC)) { 3640 if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) & 3641 BGE_HWCFG_ASF) { 3642 sc->bge_asf_mode |= ASF_ENABLE; 3643 sc->bge_asf_mode |= ASF_STACKUP; 3644 if (BGE_IS_575X_PLUS(sc)) 3645 sc->bge_asf_mode |= ASF_NEW_HANDSHAKE; 3646 } 3647 } 3648 } 3649 3650 /* 3651 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM 3652 * lock in bge_reset(). 3653 */ 3654 CSR_WRITE_4(sc, BGE_EE_ADDR, 3655 BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); 3656 delay(1000); 3657 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); 3658 3659 bge_stop_fw(sc); 3660 bge_sig_pre_reset(sc, BGE_RESET_START); 3661 if (bge_reset(sc)) 3662 aprint_error_dev(sc->bge_dev, "chip reset failed\n"); 3663 3664 /* 3665 * Read the hardware config word in the first 32k of NIC internal 3666 * memory, or fall back to the config word in the EEPROM. 3667 * Note: on some BCM5700 cards, this value appears to be unset. 3668 */ 3669 hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0; 3670 if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == 3671 BGE_SRAM_DATA_SIG_MAGIC) { 3672 uint32_t tmp; 3673 3674 hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG); 3675 tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >> 3676 BGE_SRAM_DATA_VER_SHIFT; 3677 if ((0 < tmp) && (tmp < 0x100)) 3678 hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2); 3679 if (sc->bge_flags & BGEF_PCIE) 3680 hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3); 3681 if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785)) 3682 hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4); 3683 } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) { 3684 bge_read_eeprom(sc, (void *)&hwcfg, 3685 BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); 3686 hwcfg = be32toh(hwcfg); 3687 } 3688 aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n", 3689 hwcfg, hwcfg2, hwcfg3, hwcfg4); 3690 3691 bge_sig_legacy(sc, BGE_RESET_START); 3692 bge_sig_post_reset(sc, BGE_RESET_START); 3693 3694 if (bge_chipinit(sc)) { 3695 aprint_error_dev(sc->bge_dev, "chip initialization failed\n"); 3696 bge_release_resources(sc); 3697 return; 3698 } 3699 3700 /* 3701 * Get station address from the EEPROM. 3702 */ 3703 if (bge_get_eaddr(sc, eaddr)) { 3704 aprint_error_dev(sc->bge_dev, 3705 "failed to read station address\n"); 3706 bge_release_resources(sc); 3707 return; 3708 } 3709 3710 br = bge_lookup_rev(sc->bge_chipid); 3711 3712 if (br == NULL) { 3713 aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)", 3714 sc->bge_chipid); 3715 } else { 3716 aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)", 3717 br->br_name, sc->bge_chipid); 3718 } 3719 aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr)); 3720 3721 /* Allocate the general information block and ring buffers. */ 3722 if (pci_dma64_available(pa)) 3723 sc->bge_dmatag = pa->pa_dmat64; 3724 else 3725 sc->bge_dmatag = pa->pa_dmat; 3726 3727 /* 40bit DMA workaround */ 3728 if (sizeof(bus_addr_t) > 4) { 3729 if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) { 3730 bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */ 3731 3732 if (bus_dmatag_subregion(olddmatag, 0, 3733 (bus_addr_t)(1ULL << 40), &(sc->bge_dmatag), 3734 BUS_DMA_NOWAIT) != 0) { 3735 aprint_error_dev(self, 3736 "WARNING: failed to restrict dma range," 3737 " falling back to parent bus dma range\n"); 3738 sc->bge_dmatag = olddmatag; 3739 } 3740 } 3741 } 3742 DPRINTFN(5, ("bus_dmamem_alloc\n")); 3743 if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), 3744 PAGE_SIZE, 0, &sc->bge_ring_seg, 1, 3745 &sc->bge_ring_rseg, BUS_DMA_NOWAIT)) { 3746 aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n"); 3747 return; 3748 } 3749 DPRINTFN(5, ("bus_dmamem_map\n")); 3750 if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg, 3751 sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva, 3752 BUS_DMA_NOWAIT)) { 3753 aprint_error_dev(sc->bge_dev, 3754 "can't map DMA buffers (%zu bytes)\n", 3755 sizeof(struct bge_ring_data)); 3756 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3757 sc->bge_ring_rseg); 3758 return; 3759 } 3760 DPRINTFN(5, ("bus_dmamem_create\n")); 3761 if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, 3762 sizeof(struct bge_ring_data), 0, 3763 BUS_DMA_NOWAIT, &sc->bge_ring_map)) { 3764 aprint_error_dev(sc->bge_dev, "can't create DMA map\n"); 3765 bus_dmamem_unmap(sc->bge_dmatag, kva, 3766 sizeof(struct bge_ring_data)); 3767 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3768 sc->bge_ring_rseg); 3769 return; 3770 } 3771 DPRINTFN(5, ("bus_dmamem_load\n")); 3772 if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, 3773 sizeof(struct bge_ring_data), NULL, 3774 BUS_DMA_NOWAIT)) { 3775 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 3776 bus_dmamem_unmap(sc->bge_dmatag, kva, 3777 sizeof(struct bge_ring_data)); 3778 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, 3779 sc->bge_ring_rseg); 3780 return; 3781 } 3782 3783 DPRINTFN(5, ("bzero\n")); 3784 sc->bge_rdata = (struct bge_ring_data *)kva; 3785 3786 memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data)); 3787 3788 /* Try to allocate memory for jumbo buffers. */ 3789 if (BGE_IS_JUMBO_CAPABLE(sc)) { 3790 if (bge_alloc_jumbo_mem(sc)) { 3791 aprint_error_dev(sc->bge_dev, 3792 "jumbo buffer allocation failed\n"); 3793 } else 3794 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; 3795 } 3796 3797 /* Set default tuneable values. */ 3798 sc->bge_stat_ticks = BGE_TICKS_PER_SEC; 3799 sc->bge_rx_coal_ticks = 150; 3800 sc->bge_rx_max_coal_bds = 64; 3801 sc->bge_tx_coal_ticks = 300; 3802 sc->bge_tx_max_coal_bds = 400; 3803 if (BGE_IS_5705_PLUS(sc)) { 3804 sc->bge_tx_coal_ticks = (12 * 5); 3805 sc->bge_tx_max_coal_bds = (12 * 5); 3806 aprint_verbose_dev(sc->bge_dev, 3807 "setting short Tx thresholds\n"); 3808 } 3809 3810 if (BGE_IS_5717_PLUS(sc)) 3811 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3812 else if (BGE_IS_5705_PLUS(sc)) 3813 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; 3814 else 3815 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; 3816 3817 /* Set up ifnet structure */ 3818 ifp = &sc->ethercom.ec_if; 3819 ifp->if_softc = sc; 3820 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 3821 ifp->if_ioctl = bge_ioctl; 3822 ifp->if_stop = bge_stop; 3823 ifp->if_start = bge_start; 3824 ifp->if_init = bge_init; 3825 ifp->if_watchdog = bge_watchdog; 3826 IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN)); 3827 IFQ_SET_READY(&ifp->if_snd); 3828 DPRINTFN(5, ("strcpy if_xname\n")); 3829 strcpy(ifp->if_xname, device_xname(sc->bge_dev)); 3830 3831 if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) 3832 sc->ethercom.ec_if.if_capabilities |= 3833 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx; 3834 #if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */ 3835 sc->ethercom.ec_if.if_capabilities |= 3836 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 3837 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 3838 #endif 3839 sc->ethercom.ec_capabilities |= 3840 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU; 3841 3842 if (sc->bge_flags & BGEF_TSO) 3843 sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4; 3844 3845 /* 3846 * Do MII setup. 3847 */ 3848 DPRINTFN(5, ("mii setup\n")); 3849 sc->bge_mii.mii_ifp = ifp; 3850 sc->bge_mii.mii_readreg = bge_miibus_readreg; 3851 sc->bge_mii.mii_writereg = bge_miibus_writereg; 3852 sc->bge_mii.mii_statchg = bge_miibus_statchg; 3853 3854 /* 3855 * Figure out what sort of media we have by checking the hardware 3856 * config word. Note: on some BCM5700 cards, this value appears to be 3857 * unset. If that's the case, we have to rely on identifying the NIC 3858 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41. 3859 * The SysKonnect SK-9D41 is a 1000baseSX card. 3860 */ 3861 if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 || 3862 (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { 3863 if (BGE_IS_5714_FAMILY(sc)) 3864 sc->bge_flags |= BGEF_FIBER_MII; 3865 else 3866 sc->bge_flags |= BGEF_FIBER_TBI; 3867 } 3868 3869 /* Set bge_phy_flags before prop_dictionary_set_uint32() */ 3870 if (BGE_IS_JUMBO_CAPABLE(sc)) 3871 sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE; 3872 3873 /* set phyflags and chipid before mii_attach() */ 3874 dict = device_properties(self); 3875 prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags); 3876 prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid); 3877 3878 if (sc->bge_flags & BGEF_FIBER_TBI) { 3879 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, 3880 bge_ifmedia_sts); 3881 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL); 3882 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX, 3883 0, NULL); 3884 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); 3885 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO); 3886 /* Pretend the user requested this setting */ 3887 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; 3888 } else { 3889 /* 3890 * Do transceiver setup and tell the firmware the 3891 * driver is down so we can try to get access the 3892 * probe if ASF is running. Retry a couple of times 3893 * if we get a conflict with the ASF firmware accessing 3894 * the PHY. 3895 */ 3896 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3897 bge_asf_driver_up(sc); 3898 3899 ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd, 3900 bge_ifmedia_sts); 3901 mii_attach(sc->bge_dev, &sc->bge_mii, capmask, 3902 sc->bge_phy_addr, MII_OFFSET_ANY, 3903 MIIF_DOPAUSE); 3904 3905 if (LIST_EMPTY(&sc->bge_mii.mii_phys)) { 3906 aprint_error_dev(sc->bge_dev, "no PHY found!\n"); 3907 ifmedia_add(&sc->bge_mii.mii_media, 3908 IFM_ETHER|IFM_MANUAL, 0, NULL); 3909 ifmedia_set(&sc->bge_mii.mii_media, 3910 IFM_ETHER|IFM_MANUAL); 3911 } else 3912 ifmedia_set(&sc->bge_mii.mii_media, 3913 IFM_ETHER|IFM_AUTO); 3914 3915 /* 3916 * Now tell the firmware we are going up after probing the PHY 3917 */ 3918 if (sc->bge_asf_mode & ASF_STACKUP) 3919 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 3920 } 3921 3922 /* 3923 * Call MI attach routine. 3924 */ 3925 DPRINTFN(5, ("if_attach\n")); 3926 if_attach(ifp); 3927 DPRINTFN(5, ("ether_ifattach\n")); 3928 ether_ifattach(ifp, eaddr); 3929 ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb); 3930 rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev), 3931 RND_TYPE_NET, 0); 3932 #ifdef BGE_EVENT_COUNTERS 3933 /* 3934 * Attach event counters. 3935 */ 3936 evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR, 3937 NULL, device_xname(sc->bge_dev), "intr"); 3938 evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC, 3939 NULL, device_xname(sc->bge_dev), "tx_xoff"); 3940 evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC, 3941 NULL, device_xname(sc->bge_dev), "tx_xon"); 3942 evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC, 3943 NULL, device_xname(sc->bge_dev), "rx_xoff"); 3944 evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC, 3945 NULL, device_xname(sc->bge_dev), "rx_xon"); 3946 evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC, 3947 NULL, device_xname(sc->bge_dev), "rx_macctl"); 3948 evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC, 3949 NULL, device_xname(sc->bge_dev), "xoffentered"); 3950 #endif /* BGE_EVENT_COUNTERS */ 3951 DPRINTFN(5, ("callout_init\n")); 3952 callout_init(&sc->bge_timeout, 0); 3953 3954 if (pmf_device_register(self, NULL, NULL)) 3955 pmf_class_network_register(self, ifp); 3956 else 3957 aprint_error_dev(self, "couldn't establish power handler\n"); 3958 3959 bge_sysctl_init(sc); 3960 3961 #ifdef BGE_DEBUG 3962 bge_debug_info(sc); 3963 #endif 3964 } 3965 3966 /* 3967 * Stop all chip I/O so that the kernel's probe routines don't 3968 * get confused by errant DMAs when rebooting. 3969 */ 3970 static int 3971 bge_detach(device_t self, int flags __unused) 3972 { 3973 struct bge_softc *sc = device_private(self); 3974 struct ifnet *ifp = &sc->ethercom.ec_if; 3975 int s; 3976 3977 s = splnet(); 3978 /* Stop the interface. Callouts are stopped in it. */ 3979 bge_stop(ifp, 1); 3980 splx(s); 3981 3982 mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY); 3983 3984 /* Delete all remaining media. */ 3985 ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY); 3986 3987 ether_ifdetach(ifp); 3988 if_detach(ifp); 3989 3990 bge_release_resources(sc); 3991 3992 return 0; 3993 } 3994 3995 static void 3996 bge_release_resources(struct bge_softc *sc) 3997 { 3998 3999 /* Disestablish the interrupt handler */ 4000 if (sc->bge_intrhand != NULL) { 4001 pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand); 4002 sc->bge_intrhand = NULL; 4003 } 4004 4005 if (sc->bge_dmatag != NULL) { 4006 bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); 4007 bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); 4008 bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata, 4009 sizeof(struct bge_ring_data)); 4010 bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg); 4011 } 4012 4013 /* Unmap the device registers */ 4014 if (sc->bge_bsize != 0) { 4015 bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); 4016 sc->bge_bsize = 0; 4017 } 4018 4019 /* Unmap the APE registers */ 4020 if (sc->bge_apesize != 0) { 4021 bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, 4022 sc->bge_apesize); 4023 sc->bge_apesize = 0; 4024 } 4025 } 4026 4027 static int 4028 bge_reset(struct bge_softc *sc) 4029 { 4030 uint32_t cachesize, command; 4031 uint32_t reset, mac_mode, mac_mode_mask; 4032 pcireg_t devctl, reg; 4033 int i, val; 4034 void (*write_op)(struct bge_softc *, int, int); 4035 4036 /* Make mask for BGE_MAC_MODE register. */ 4037 mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; 4038 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4039 mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; 4040 /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */ 4041 mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; 4042 4043 if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && 4044 (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) { 4045 if (sc->bge_flags & BGEF_PCIE) 4046 write_op = bge_writemem_direct; 4047 else 4048 write_op = bge_writemem_ind; 4049 } else 4050 write_op = bge_writereg_ind; 4051 4052 /* 57XX step 4 */ 4053 /* Acquire the NVM lock */ 4054 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 && 4055 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 && 4056 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) { 4057 CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); 4058 for (i = 0; i < 8000; i++) { 4059 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & 4060 BGE_NVRAMSWARB_GNT1) 4061 break; 4062 DELAY(20); 4063 } 4064 if (i == 8000) { 4065 printf("%s: NVRAM lock timedout!\n", 4066 device_xname(sc->bge_dev)); 4067 } 4068 } 4069 4070 /* Take APE lock when performing reset. */ 4071 bge_ape_lock(sc, BGE_APE_LOCK_GRC); 4072 4073 /* 57XX step 3 */ 4074 /* Save some important PCI state. */ 4075 cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ); 4076 /* 5718 reset step 3 */ 4077 command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4078 4079 /* 5718 reset step 5, 57XX step 5b-5d */ 4080 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4081 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4082 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4083 4084 /* XXX ???: Disable fastboot on controllers that support it. */ 4085 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || 4086 BGE_IS_5755_PLUS(sc)) 4087 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); 4088 4089 /* 5718 reset step 2, 57XX step 6 */ 4090 /* 4091 * Write the magic number to SRAM at offset 0xB50. 4092 * When firmware finishes its initialization it will 4093 * write ~BGE_MAGIC_NUMBER to the same location. 4094 */ 4095 bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC); 4096 4097 /* 5718 reset step 6, 57XX step 7 */ 4098 reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; 4099 /* 4100 * XXX: from FreeBSD/Linux; no documentation 4101 */ 4102 if (sc->bge_flags & BGEF_PCIE) { 4103 if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) && 4104 !BGE_IS_57765_PLUS(sc) && 4105 (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) == 4106 (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) { 4107 /* PCI Express 1.0 system */ 4108 CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG, 4109 BGE_PHY_PCIE_SCRAM_MODE); 4110 } 4111 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { 4112 /* 4113 * Prevent PCI Express link training 4114 * during global reset. 4115 */ 4116 CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29); 4117 reset |= (1 << 29); 4118 } 4119 } 4120 4121 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { 4122 i = CSR_READ_4(sc, BGE_VCPU_STATUS); 4123 CSR_WRITE_4(sc, BGE_VCPU_STATUS, 4124 i | BGE_VCPU_STATUS_DRV_RESET); 4125 i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); 4126 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, 4127 i & ~BGE_VCPU_EXT_CTRL_HALT_CPU); 4128 } 4129 4130 /* 4131 * Set GPHY Power Down Override to leave GPHY 4132 * powered up in D0 uninitialized. 4133 */ 4134 if (BGE_IS_5705_PLUS(sc) && 4135 (sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4136 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE; 4137 4138 /* Issue global reset */ 4139 write_op(sc, BGE_MISC_CFG, reset); 4140 4141 /* 5718 reset step 7, 57XX step 8 */ 4142 if (sc->bge_flags & BGEF_PCIE) 4143 delay(100*1000); /* too big */ 4144 else 4145 delay(1000); 4146 4147 if (sc->bge_flags & BGEF_PCIE) { 4148 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { 4149 DELAY(500000); 4150 /* XXX: Magic Numbers */ 4151 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4152 BGE_PCI_UNKNOWN0); 4153 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4154 BGE_PCI_UNKNOWN0, 4155 reg | (1 << 15)); 4156 } 4157 devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4158 sc->bge_pciecap + PCIE_DCSR); 4159 /* Clear enable no snoop and disable relaxed ordering. */ 4160 devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD | 4161 PCIE_DCSR_ENA_NO_SNOOP); 4162 4163 /* Set PCIE max payload size to 128 for older PCIe devices */ 4164 if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0) 4165 devctl &= ~(0x00e0); 4166 /* Clear device status register. Write 1b to clear */ 4167 devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED 4168 | PCIE_DCSR_NFED | PCIE_DCSR_CED; 4169 pci_conf_write(sc->sc_pc, sc->sc_pcitag, 4170 sc->bge_pciecap + PCIE_DCSR, devctl); 4171 bge_set_max_readrq(sc); 4172 } 4173 4174 /* From Linux: dummy read to flush PCI posted writes */ 4175 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD); 4176 4177 /* 4178 * Reset some of the PCI state that got zapped by reset 4179 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be 4180 * set, too. 4181 */ 4182 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL, 4183 BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | 4184 BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW); 4185 val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; 4186 if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && 4187 (sc->bge_flags & BGEF_PCIX) != 0) 4188 val |= BGE_PCISTATE_RETRY_SAME_DMA; 4189 if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) 4190 val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | 4191 BGE_PCISTATE_ALLOW_APE_SHMEM_WR | 4192 BGE_PCISTATE_ALLOW_APE_PSPACE_WR; 4193 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val); 4194 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize); 4195 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command); 4196 4197 /* 57xx step 11: disable PCI-X Relaxed Ordering. */ 4198 if (sc->bge_flags & BGEF_PCIX) { 4199 reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4200 + PCIX_CMD); 4201 /* Set max memory read byte count to 2K */ 4202 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) { 4203 reg &= ~PCIX_CMD_BYTECNT_MASK; 4204 reg |= PCIX_CMD_BCNT_2048; 4205 } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){ 4206 /* 4207 * For 5704, set max outstanding split transaction 4208 * field to 0 (0 means it supports 1 request) 4209 */ 4210 reg &= ~(PCIX_CMD_SPLTRANS_MASK 4211 | PCIX_CMD_BYTECNT_MASK); 4212 reg |= PCIX_CMD_BCNT_2048; 4213 } 4214 pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap 4215 + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER); 4216 } 4217 4218 /* 5718 reset step 10, 57XX step 12 */ 4219 /* Enable memory arbiter. */ 4220 if (BGE_IS_5714_FAMILY(sc)) { 4221 val = CSR_READ_4(sc, BGE_MARB_MODE); 4222 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); 4223 } else 4224 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 4225 4226 /* XXX 5721, 5751 and 5752 */ 4227 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) { 4228 /* Step 19: */ 4229 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25); 4230 /* Step 20: */ 4231 BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT); 4232 } 4233 4234 /* 5718 reset step 13, 57XX step 17 */ 4235 /* Poll until the firmware initialization is complete */ 4236 bge_poll_fw(sc); 4237 4238 /* 5718 reset step 12, 57XX step 15 and 16 */ 4239 /* Fix up byte swapping */ 4240 CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS); 4241 4242 /* 57XX step 21 */ 4243 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) { 4244 pcireg_t msidata; 4245 4246 msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag, 4247 BGE_PCI_MSI_DATA); 4248 msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16); 4249 pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA, 4250 msidata); 4251 } 4252 4253 /* 57XX step 18 */ 4254 /* Write mac mode. */ 4255 val = CSR_READ_4(sc, BGE_MAC_MODE); 4256 /* Restore mac_mode_mask's bits using mac_mode */ 4257 val = (val & ~mac_mode_mask) | mac_mode; 4258 CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val); 4259 DELAY(40); 4260 4261 bge_ape_unlock(sc, BGE_APE_LOCK_GRC); 4262 4263 /* 4264 * The 5704 in TBI mode apparently needs some special 4265 * adjustment to insure the SERDES drive level is set 4266 * to 1.2V. 4267 */ 4268 if (sc->bge_flags & BGEF_FIBER_TBI && 4269 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 4270 uint32_t serdescfg; 4271 4272 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); 4273 serdescfg = (serdescfg & ~0xFFF) | 0x880; 4274 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); 4275 } 4276 4277 if (sc->bge_flags & BGEF_PCIE && 4278 !BGE_IS_57765_PLUS(sc) && 4279 sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && 4280 BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) { 4281 uint32_t v; 4282 4283 /* Enable PCI Express bug fix */ 4284 v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG); 4285 CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG, 4286 v | BGE_TLP_DATA_FIFO_PROTECT); 4287 } 4288 4289 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) 4290 BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, 4291 CPMU_CLCK_ORIDE_MAC_ORIDE_EN); 4292 4293 return 0; 4294 } 4295 4296 /* 4297 * Frame reception handling. This is called if there's a frame 4298 * on the receive return list. 4299 * 4300 * Note: we have to be able to handle two possibilities here: 4301 * 1) the frame is from the jumbo receive ring 4302 * 2) the frame is from the standard receive ring 4303 */ 4304 4305 static void 4306 bge_rxeof(struct bge_softc *sc) 4307 { 4308 struct ifnet *ifp; 4309 uint16_t rx_prod, rx_cons; 4310 int stdcnt = 0, jumbocnt = 0; 4311 bus_dmamap_t dmamap; 4312 bus_addr_t offset, toff; 4313 bus_size_t tlen; 4314 int tosync; 4315 4316 rx_cons = sc->bge_rx_saved_considx; 4317 rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; 4318 4319 /* Nothing to do */ 4320 if (rx_cons == rx_prod) 4321 return; 4322 4323 ifp = &sc->ethercom.ec_if; 4324 4325 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4326 offsetof(struct bge_ring_data, bge_status_block), 4327 sizeof (struct bge_status_block), 4328 BUS_DMASYNC_POSTREAD); 4329 4330 offset = offsetof(struct bge_ring_data, bge_rx_return_ring); 4331 tosync = rx_prod - rx_cons; 4332 4333 if (tosync != 0) 4334 rnd_add_uint32(&sc->rnd_source, tosync); 4335 4336 toff = offset + (rx_cons * sizeof (struct bge_rx_bd)); 4337 4338 if (tosync < 0) { 4339 tlen = (sc->bge_return_ring_cnt - rx_cons) * 4340 sizeof (struct bge_rx_bd); 4341 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4342 toff, tlen, BUS_DMASYNC_POSTREAD); 4343 tosync = -tosync; 4344 } 4345 4346 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4347 offset, tosync * sizeof (struct bge_rx_bd), 4348 BUS_DMASYNC_POSTREAD); 4349 4350 while (rx_cons != rx_prod) { 4351 struct bge_rx_bd *cur_rx; 4352 uint32_t rxidx; 4353 struct mbuf *m = NULL; 4354 4355 cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; 4356 4357 rxidx = cur_rx->bge_idx; 4358 BGE_INC(rx_cons, sc->bge_return_ring_cnt); 4359 4360 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { 4361 BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); 4362 m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; 4363 sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; 4364 jumbocnt++; 4365 bus_dmamap_sync(sc->bge_dmatag, 4366 sc->bge_cdata.bge_rx_jumbo_map, 4367 mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, 4368 BGE_JLEN, BUS_DMASYNC_POSTREAD); 4369 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4370 ifp->if_ierrors++; 4371 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4372 continue; 4373 } 4374 if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 4375 NULL)== ENOBUFS) { 4376 ifp->if_ierrors++; 4377 bge_newbuf_jumbo(sc, sc->bge_jumbo, m); 4378 continue; 4379 } 4380 } else { 4381 BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); 4382 m = sc->bge_cdata.bge_rx_std_chain[rxidx]; 4383 4384 sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; 4385 stdcnt++; 4386 dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; 4387 sc->bge_cdata.bge_rx_std_map[rxidx] = 0; 4388 if (dmamap == NULL) { 4389 ifp->if_ierrors++; 4390 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4391 continue; 4392 } 4393 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, 4394 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 4395 bus_dmamap_unload(sc->bge_dmatag, dmamap); 4396 if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { 4397 ifp->if_ierrors++; 4398 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4399 continue; 4400 } 4401 if (bge_newbuf_std(sc, sc->bge_std, 4402 NULL, dmamap) == ENOBUFS) { 4403 ifp->if_ierrors++; 4404 bge_newbuf_std(sc, sc->bge_std, m, dmamap); 4405 continue; 4406 } 4407 } 4408 4409 ifp->if_ipackets++; 4410 #ifndef __NO_STRICT_ALIGNMENT 4411 /* 4412 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect, 4413 * the Rx buffer has the layer-2 header unaligned. 4414 * If our CPU requires alignment, re-align by copying. 4415 */ 4416 if (sc->bge_flags & BGEF_RX_ALIGNBUG) { 4417 memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data, 4418 cur_rx->bge_len); 4419 m->m_data += ETHER_ALIGN; 4420 } 4421 #endif 4422 4423 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; 4424 m->m_pkthdr.rcvif = ifp; 4425 4426 /* 4427 * Handle BPF listeners. Let the BPF user see the packet. 4428 */ 4429 bpf_mtap(ifp, m); 4430 4431 bge_rxcsum(sc, cur_rx, m); 4432 4433 /* 4434 * If we received a packet with a vlan tag, pass it 4435 * to vlan_input() instead of ether_input(). 4436 */ 4437 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { 4438 VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue); 4439 } 4440 4441 (*ifp->if_input)(ifp, m); 4442 } 4443 4444 sc->bge_rx_saved_considx = rx_cons; 4445 bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); 4446 if (stdcnt) 4447 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); 4448 if (jumbocnt) 4449 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); 4450 } 4451 4452 static void 4453 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) 4454 { 4455 4456 if (BGE_IS_57765_PLUS(sc)) { 4457 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { 4458 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4459 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4460 if ((cur_rx->bge_error_flag & 4461 BGE_RXERRFLAG_IP_CSUM_NOK) != 0) 4462 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4463 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { 4464 m->m_pkthdr.csum_data = 4465 cur_rx->bge_tcp_udp_csum; 4466 m->m_pkthdr.csum_flags |= 4467 (M_CSUM_TCPv4|M_CSUM_UDPv4| 4468 M_CSUM_DATA); 4469 } 4470 } 4471 } else { 4472 if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0) 4473 m->m_pkthdr.csum_flags = M_CSUM_IPv4; 4474 if ((cur_rx->bge_ip_csum ^ 0xffff) != 0) 4475 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 4476 /* 4477 * Rx transport checksum-offload may also 4478 * have bugs with packets which, when transmitted, 4479 * were `runts' requiring padding. 4480 */ 4481 if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && 4482 (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/ 4483 m->m_pkthdr.len >= ETHER_MIN_NOPAD)) { 4484 m->m_pkthdr.csum_data = 4485 cur_rx->bge_tcp_udp_csum; 4486 m->m_pkthdr.csum_flags |= 4487 (M_CSUM_TCPv4|M_CSUM_UDPv4| 4488 M_CSUM_DATA); 4489 } 4490 } 4491 } 4492 4493 static void 4494 bge_txeof(struct bge_softc *sc) 4495 { 4496 struct bge_tx_bd *cur_tx = NULL; 4497 struct ifnet *ifp; 4498 struct txdmamap_pool_entry *dma; 4499 bus_addr_t offset, toff; 4500 bus_size_t tlen; 4501 int tosync; 4502 struct mbuf *m; 4503 4504 ifp = &sc->ethercom.ec_if; 4505 4506 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4507 offsetof(struct bge_ring_data, bge_status_block), 4508 sizeof (struct bge_status_block), 4509 BUS_DMASYNC_POSTREAD); 4510 4511 offset = offsetof(struct bge_ring_data, bge_tx_ring); 4512 tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx - 4513 sc->bge_tx_saved_considx; 4514 4515 if (tosync != 0) 4516 rnd_add_uint32(&sc->rnd_source, tosync); 4517 4518 toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd)); 4519 4520 if (tosync < 0) { 4521 tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) * 4522 sizeof (struct bge_tx_bd); 4523 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4524 toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 4525 tosync = -tosync; 4526 } 4527 4528 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4529 offset, tosync * sizeof (struct bge_tx_bd), 4530 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 4531 4532 /* 4533 * Go through our tx ring and free mbufs for those 4534 * frames that have been sent. 4535 */ 4536 while (sc->bge_tx_saved_considx != 4537 sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { 4538 uint32_t idx = 0; 4539 4540 idx = sc->bge_tx_saved_considx; 4541 cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; 4542 if (cur_tx->bge_flags & BGE_TXBDFLAG_END) 4543 ifp->if_opackets++; 4544 m = sc->bge_cdata.bge_tx_chain[idx]; 4545 if (m != NULL) { 4546 sc->bge_cdata.bge_tx_chain[idx] = NULL; 4547 dma = sc->txdma[idx]; 4548 bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0, 4549 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 4550 bus_dmamap_unload(sc->bge_dmatag, dma->dmamap); 4551 SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); 4552 sc->txdma[idx] = NULL; 4553 4554 m_freem(m); 4555 } 4556 sc->bge_txcnt--; 4557 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); 4558 ifp->if_timer = 0; 4559 } 4560 4561 if (cur_tx != NULL) 4562 ifp->if_flags &= ~IFF_OACTIVE; 4563 } 4564 4565 static int 4566 bge_intr(void *xsc) 4567 { 4568 struct bge_softc *sc; 4569 struct ifnet *ifp; 4570 uint32_t statusword; 4571 uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE; 4572 4573 sc = xsc; 4574 ifp = &sc->ethercom.ec_if; 4575 4576 /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */ 4577 if (BGE_IS_5717_PLUS(sc)) 4578 intrmask = 0; 4579 4580 /* It is possible for the interrupt to arrive before 4581 * the status block is updated prior to the interrupt. 4582 * Reading the PCI State register will confirm whether the 4583 * interrupt is ours and will flush the status block. 4584 */ 4585 4586 /* read status word from status block */ 4587 bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, 4588 offsetof(struct bge_ring_data, bge_status_block), 4589 sizeof (struct bge_status_block), 4590 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4591 statusword = sc->bge_rdata->bge_status_block.bge_status; 4592 4593 if ((statusword & BGE_STATFLAG_UPDATED) || 4594 (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) { 4595 /* Ack interrupt and stop others from occuring. */ 4596 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 4597 4598 BGE_EVCNT_INCR(sc->bge_ev_intr); 4599 4600 /* clear status word */ 4601 sc->bge_rdata->bge_status_block.bge_status = 0; 4602 4603 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 4604 statusword & BGE_STATFLAG_LINKSTATE_CHANGED || 4605 BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) 4606 bge_link_upd(sc); 4607 4608 if (ifp->if_flags & IFF_RUNNING) { 4609 /* Check RX return ring producer/consumer */ 4610 bge_rxeof(sc); 4611 4612 /* Check TX ring producer/consumer */ 4613 bge_txeof(sc); 4614 } 4615 4616 if (sc->bge_pending_rxintr_change) { 4617 uint32_t rx_ticks = sc->bge_rx_coal_ticks; 4618 uint32_t rx_bds = sc->bge_rx_max_coal_bds; 4619 4620 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks); 4621 DELAY(10); 4622 (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS); 4623 4624 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds); 4625 DELAY(10); 4626 (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS); 4627 4628 sc->bge_pending_rxintr_change = 0; 4629 } 4630 bge_handle_events(sc); 4631 4632 /* Re-enable interrupts. */ 4633 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0); 4634 4635 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd)) 4636 bge_start(ifp); 4637 4638 return 1; 4639 } else 4640 return 0; 4641 } 4642 4643 static void 4644 bge_asf_driver_up(struct bge_softc *sc) 4645 { 4646 if (sc->bge_asf_mode & ASF_STACKUP) { 4647 /* Send ASF heartbeat aprox. every 2s */ 4648 if (sc->bge_asf_count) 4649 sc->bge_asf_count --; 4650 else { 4651 sc->bge_asf_count = 2; 4652 4653 bge_wait_for_event_ack(sc); 4654 4655 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, 4656 BGE_FW_CMD_DRV_ALIVE); 4657 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4); 4658 bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB, 4659 BGE_FW_HB_TIMEOUT_SEC); 4660 CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT, 4661 CSR_READ_4(sc, BGE_RX_CPU_EVENT) | 4662 BGE_RX_CPU_DRV_EVENT); 4663 } 4664 } 4665 } 4666 4667 static void 4668 bge_tick(void *xsc) 4669 { 4670 struct bge_softc *sc = xsc; 4671 struct mii_data *mii = &sc->bge_mii; 4672 int s; 4673 4674 s = splnet(); 4675 4676 if (BGE_IS_5705_PLUS(sc)) 4677 bge_stats_update_regs(sc); 4678 else 4679 bge_stats_update(sc); 4680 4681 if (sc->bge_flags & BGEF_FIBER_TBI) { 4682 /* 4683 * Since in TBI mode auto-polling can't be used we should poll 4684 * link status manually. Here we register pending link event 4685 * and trigger interrupt. 4686 */ 4687 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 4688 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 4689 } else { 4690 /* 4691 * Do not touch PHY if we have link up. This could break 4692 * IPMI/ASF mode or produce extra input errors. 4693 * (extra input errors was reported for bcm5701 & bcm5704). 4694 */ 4695 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) 4696 mii_tick(mii); 4697 } 4698 4699 bge_asf_driver_up(sc); 4700 4701 callout_reset(&sc->bge_timeout, hz, bge_tick, sc); 4702 4703 splx(s); 4704 } 4705 4706 static void 4707 bge_stats_update_regs(struct bge_softc *sc) 4708 { 4709 struct ifnet *ifp = &sc->ethercom.ec_if; 4710 4711 ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS + 4712 offsetof(struct bge_mac_stats_regs, etherStatsCollisions)); 4713 4714 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); 4715 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); 4716 ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); 4717 } 4718 4719 static void 4720 bge_stats_update(struct bge_softc *sc) 4721 { 4722 struct ifnet *ifp = &sc->ethercom.ec_if; 4723 bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; 4724 4725 #define READ_STAT(sc, stats, stat) \ 4726 CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) 4727 4728 ifp->if_collisions += 4729 (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) + 4730 READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) + 4731 READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) + 4732 READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) - 4733 ifp->if_collisions; 4734 4735 BGE_EVCNT_UPD(sc->bge_ev_tx_xoff, 4736 READ_STAT(sc, stats, outXoffSent.bge_addr_lo)); 4737 BGE_EVCNT_UPD(sc->bge_ev_tx_xon, 4738 READ_STAT(sc, stats, outXonSent.bge_addr_lo)); 4739 BGE_EVCNT_UPD(sc->bge_ev_rx_xoff, 4740 READ_STAT(sc, stats, 4741 xoffPauseFramesReceived.bge_addr_lo)); 4742 BGE_EVCNT_UPD(sc->bge_ev_rx_xon, 4743 READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo)); 4744 BGE_EVCNT_UPD(sc->bge_ev_rx_macctl, 4745 READ_STAT(sc, stats, 4746 macControlFramesReceived.bge_addr_lo)); 4747 BGE_EVCNT_UPD(sc->bge_ev_xoffentered, 4748 READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo)); 4749 4750 #undef READ_STAT 4751 4752 #ifdef notdef 4753 ifp->if_collisions += 4754 (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + 4755 sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + 4756 sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + 4757 sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - 4758 ifp->if_collisions; 4759 #endif 4760 } 4761 4762 /* 4763 * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. 4764 * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, 4765 * but when such padded frames employ the bge IP/TCP checksum offload, 4766 * the hardware checksum assist gives incorrect results (possibly 4767 * from incorporating its own padding into the UDP/TCP checksum; who knows). 4768 * If we pad such runts with zeros, the onboard checksum comes out correct. 4769 */ 4770 static inline int 4771 bge_cksum_pad(struct mbuf *pkt) 4772 { 4773 struct mbuf *last = NULL; 4774 int padlen; 4775 4776 padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len; 4777 4778 /* if there's only the packet-header and we can pad there, use it. */ 4779 if (pkt->m_pkthdr.len == pkt->m_len && 4780 M_TRAILINGSPACE(pkt) >= padlen) { 4781 last = pkt; 4782 } else { 4783 /* 4784 * Walk packet chain to find last mbuf. We will either 4785 * pad there, or append a new mbuf and pad it 4786 * (thus perhaps avoiding the bcm5700 dma-min bug). 4787 */ 4788 for (last = pkt; last->m_next != NULL; last = last->m_next) { 4789 continue; /* do nothing */ 4790 } 4791 4792 /* `last' now points to last in chain. */ 4793 if (M_TRAILINGSPACE(last) < padlen) { 4794 /* Allocate new empty mbuf, pad it. Compact later. */ 4795 struct mbuf *n; 4796 MGET(n, M_DONTWAIT, MT_DATA); 4797 if (n == NULL) 4798 return ENOBUFS; 4799 n->m_len = 0; 4800 last->m_next = n; 4801 last = n; 4802 } 4803 } 4804 4805 KDASSERT(!M_READONLY(last)); 4806 KDASSERT(M_TRAILINGSPACE(last) >= padlen); 4807 4808 /* Now zero the pad area, to avoid the bge cksum-assist bug */ 4809 memset(mtod(last, char *) + last->m_len, 0, padlen); 4810 last->m_len += padlen; 4811 pkt->m_pkthdr.len += padlen; 4812 return 0; 4813 } 4814 4815 /* 4816 * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. 4817 */ 4818 static inline int 4819 bge_compact_dma_runt(struct mbuf *pkt) 4820 { 4821 struct mbuf *m, *prev; 4822 int totlen; 4823 4824 prev = NULL; 4825 totlen = 0; 4826 4827 for (m = pkt; m != NULL; prev = m,m = m->m_next) { 4828 int mlen = m->m_len; 4829 int shortfall = 8 - mlen ; 4830 4831 totlen += mlen; 4832 if (mlen == 0) 4833 continue; 4834 if (mlen >= 8) 4835 continue; 4836 4837 /* If we get here, mbuf data is too small for DMA engine. 4838 * Try to fix by shuffling data to prev or next in chain. 4839 * If that fails, do a compacting deep-copy of the whole chain. 4840 */ 4841 4842 /* Internal frag. If fits in prev, copy it there. */ 4843 if (prev && M_TRAILINGSPACE(prev) >= m->m_len) { 4844 memcpy(prev->m_data + prev->m_len, m->m_data, mlen); 4845 prev->m_len += mlen; 4846 m->m_len = 0; 4847 /* XXX stitch chain */ 4848 prev->m_next = m_free(m); 4849 m = prev; 4850 continue; 4851 } 4852 else if (m->m_next != NULL && 4853 M_TRAILINGSPACE(m) >= shortfall && 4854 m->m_next->m_len >= (8 + shortfall)) { 4855 /* m is writable and have enough data in next, pull up. */ 4856 4857 memcpy(m->m_data + m->m_len, m->m_next->m_data, 4858 shortfall); 4859 m->m_len += shortfall; 4860 m->m_next->m_len -= shortfall; 4861 m->m_next->m_data += shortfall; 4862 } 4863 else if (m->m_next == NULL || 1) { 4864 /* Got a runt at the very end of the packet. 4865 * borrow data from the tail of the preceding mbuf and 4866 * update its length in-place. (The original data is still 4867 * valid, so we can do this even if prev is not writable.) 4868 */ 4869 4870 /* if we'd make prev a runt, just move all of its data. */ 4871 KASSERT(prev != NULL /*, ("runt but null PREV")*/); 4872 KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); 4873 4874 if ((prev->m_len - shortfall) < 8) 4875 shortfall = prev->m_len; 4876 4877 #ifdef notyet /* just do the safe slow thing for now */ 4878 if (!M_READONLY(m)) { 4879 if (M_LEADINGSPACE(m) < shorfall) { 4880 void *m_dat; 4881 m_dat = (m->m_flags & M_PKTHDR) ? 4882 m->m_pktdat : m->dat; 4883 memmove(m_dat, mtod(m, void*), m->m_len); 4884 m->m_data = m_dat; 4885 } 4886 } else 4887 #endif /* just do the safe slow thing */ 4888 { 4889 struct mbuf * n = NULL; 4890 int newprevlen = prev->m_len - shortfall; 4891 4892 MGET(n, M_NOWAIT, MT_DATA); 4893 if (n == NULL) 4894 return ENOBUFS; 4895 KASSERT(m->m_len + shortfall < MLEN 4896 /*, 4897 ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); 4898 4899 /* first copy the data we're stealing from prev */ 4900 memcpy(n->m_data, prev->m_data + newprevlen, 4901 shortfall); 4902 4903 /* update prev->m_len accordingly */ 4904 prev->m_len -= shortfall; 4905 4906 /* copy data from runt m */ 4907 memcpy(n->m_data + shortfall, m->m_data, 4908 m->m_len); 4909 4910 /* n holds what we stole from prev, plus m */ 4911 n->m_len = shortfall + m->m_len; 4912 4913 /* stitch n into chain and free m */ 4914 n->m_next = m->m_next; 4915 prev->m_next = n; 4916 /* KASSERT(m->m_next == NULL); */ 4917 m->m_next = NULL; 4918 m_free(m); 4919 m = n; /* for continuing loop */ 4920 } 4921 } 4922 } 4923 return 0; 4924 } 4925 4926 /* 4927 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data 4928 * pointers to descriptors. 4929 */ 4930 static int 4931 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx) 4932 { 4933 struct bge_tx_bd *f = NULL; 4934 uint32_t frag, cur; 4935 uint16_t csum_flags = 0; 4936 uint16_t txbd_tso_flags = 0; 4937 struct txdmamap_pool_entry *dma; 4938 bus_dmamap_t dmamap; 4939 int i = 0; 4940 struct m_tag *mtag; 4941 int use_tso, maxsegsize, error; 4942 4943 cur = frag = *txidx; 4944 4945 if (m_head->m_pkthdr.csum_flags) { 4946 if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) 4947 csum_flags |= BGE_TXBDFLAG_IP_CSUM; 4948 if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) 4949 csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; 4950 } 4951 4952 /* 4953 * If we were asked to do an outboard checksum, and the NIC 4954 * has the bug where it sometimes adds in the Ethernet padding, 4955 * explicitly pad with zeros so the cksum will be correct either way. 4956 * (For now, do this for all chip versions, until newer 4957 * are confirmed to not require the workaround.) 4958 */ 4959 if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 || 4960 #ifdef notyet 4961 (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 || 4962 #endif 4963 m_head->m_pkthdr.len >= ETHER_MIN_NOPAD) 4964 goto check_dma_bug; 4965 4966 if (bge_cksum_pad(m_head) != 0) 4967 return ENOBUFS; 4968 4969 check_dma_bug: 4970 if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) 4971 goto doit; 4972 4973 /* 4974 * bcm5700 Revision B silicon cannot handle DMA descriptors with 4975 * less than eight bytes. If we encounter a teeny mbuf 4976 * at the end of a chain, we can pad. Otherwise, copy. 4977 */ 4978 if (bge_compact_dma_runt(m_head) != 0) 4979 return ENOBUFS; 4980 4981 doit: 4982 dma = SLIST_FIRST(&sc->txdma_list); 4983 if (dma == NULL) 4984 return ENOBUFS; 4985 dmamap = dma->dmamap; 4986 4987 /* 4988 * Set up any necessary TSO state before we start packing... 4989 */ 4990 use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0; 4991 if (!use_tso) { 4992 maxsegsize = 0; 4993 } else { /* TSO setup */ 4994 unsigned mss; 4995 struct ether_header *eh; 4996 unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset; 4997 struct mbuf * m0 = m_head; 4998 struct ip *ip; 4999 struct tcphdr *th; 5000 int iphl, hlen; 5001 5002 /* 5003 * XXX It would be nice if the mbuf pkthdr had offset 5004 * fields for the protocol headers. 5005 */ 5006 5007 eh = mtod(m0, struct ether_header *); 5008 switch (htons(eh->ether_type)) { 5009 case ETHERTYPE_IP: 5010 offset = ETHER_HDR_LEN; 5011 break; 5012 5013 case ETHERTYPE_VLAN: 5014 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 5015 break; 5016 5017 default: 5018 /* 5019 * Don't support this protocol or encapsulation. 5020 */ 5021 return ENOBUFS; 5022 } 5023 5024 /* 5025 * TCP/IP headers are in the first mbuf; we can do 5026 * this the easy way. 5027 */ 5028 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 5029 hlen = iphl + offset; 5030 if (__predict_false(m0->m_len < 5031 (hlen + sizeof(struct tcphdr)))) { 5032 5033 aprint_debug_dev(sc->bge_dev, 5034 "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd," 5035 "not handled yet\n", 5036 m0->m_len, hlen+ sizeof(struct tcphdr)); 5037 #ifdef NOTYET 5038 /* 5039 * XXX jonathan@NetBSD.org: untested. 5040 * how to force this branch to be taken? 5041 */ 5042 BGE_EVCNT_INCR(&sc->sc_ev_txtsopain); 5043 5044 m_copydata(m0, offset, sizeof(ip), &ip); 5045 m_copydata(m0, hlen, sizeof(th), &th); 5046 5047 ip.ip_len = 0; 5048 5049 m_copyback(m0, hlen + offsetof(struct ip, ip_len), 5050 sizeof(ip.ip_len), &ip.ip_len); 5051 5052 th.th_sum = in_cksum_phdr(ip.ip_src.s_addr, 5053 ip.ip_dst.s_addr, htons(IPPROTO_TCP)); 5054 5055 m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum), 5056 sizeof(th.th_sum), &th.th_sum); 5057 5058 hlen += th.th_off << 2; 5059 iptcp_opt_words = hlen; 5060 #else 5061 /* 5062 * if_wm "hard" case not yet supported, can we not 5063 * mandate it out of existence? 5064 */ 5065 (void) ip; (void)th; (void) ip_tcp_hlen; 5066 5067 return ENOBUFS; 5068 #endif 5069 } else { 5070 ip = (struct ip *) (mtod(m0, char *) + offset); 5071 th = (struct tcphdr *) (mtod(m0, char *) + hlen); 5072 ip_tcp_hlen = iphl + (th->th_off << 2); 5073 5074 /* Total IP/TCP options, in 32-bit words */ 5075 iptcp_opt_words = (ip_tcp_hlen 5076 - sizeof(struct tcphdr) 5077 - sizeof(struct ip)) >> 2; 5078 } 5079 if (BGE_IS_575X_PLUS(sc)) { 5080 th->th_sum = 0; 5081 csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM); 5082 } else { 5083 /* 5084 * XXX jonathan@NetBSD.org: 5705 untested. 5085 * Requires TSO firmware patch for 5701/5703/5704. 5086 */ 5087 th->th_sum = in_cksum_phdr(ip->ip_src.s_addr, 5088 ip->ip_dst.s_addr, htons(IPPROTO_TCP)); 5089 } 5090 5091 mss = m_head->m_pkthdr.segsz; 5092 txbd_tso_flags |= 5093 BGE_TXBDFLAG_CPU_PRE_DMA | 5094 BGE_TXBDFLAG_CPU_POST_DMA; 5095 5096 /* 5097 * Our NIC TSO-assist assumes TSO has standard, optionless 5098 * IPv4 and TCP headers, which total 40 bytes. By default, 5099 * the NIC copies 40 bytes of IP/TCP header from the 5100 * supplied header into the IP/TCP header portion of 5101 * each post-TSO-segment. If the supplied packet has IP or 5102 * TCP options, we need to tell the NIC to copy those extra 5103 * bytes into each post-TSO header, in addition to the normal 5104 * 40-byte IP/TCP header (and to leave space accordingly). 5105 * Unfortunately, the driver encoding of option length 5106 * varies across different ASIC families. 5107 */ 5108 tcp_seg_flags = 0; 5109 if (iptcp_opt_words) { 5110 if (BGE_IS_5705_PLUS(sc)) { 5111 tcp_seg_flags = 5112 iptcp_opt_words << 11; 5113 } else { 5114 txbd_tso_flags |= 5115 iptcp_opt_words << 12; 5116 } 5117 } 5118 maxsegsize = mss | tcp_seg_flags; 5119 ip->ip_len = htons(mss + ip_tcp_hlen); 5120 5121 } /* TSO setup */ 5122 5123 /* 5124 * Start packing the mbufs in this chain into 5125 * the fragment pointers. Stop when we run out 5126 * of fragments or hit the end of the mbuf chain. 5127 */ 5128 error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head, 5129 BUS_DMA_NOWAIT); 5130 if (error) 5131 return ENOBUFS; 5132 /* 5133 * Sanity check: avoid coming within 16 descriptors 5134 * of the end of the ring. 5135 */ 5136 if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) { 5137 BGE_TSO_PRINTF(("%s: " 5138 " dmamap_load_mbuf too close to ring wrap\n", 5139 device_xname(sc->bge_dev))); 5140 goto fail_unload; 5141 } 5142 5143 mtag = sc->ethercom.ec_nvlans ? 5144 m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL; 5145 5146 5147 /* Iterate over dmap-map fragments. */ 5148 for (i = 0; i < dmamap->dm_nsegs; i++) { 5149 f = &sc->bge_rdata->bge_tx_ring[frag]; 5150 if (sc->bge_cdata.bge_tx_chain[frag] != NULL) 5151 break; 5152 5153 BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); 5154 f->bge_len = dmamap->dm_segs[i].ds_len; 5155 5156 /* 5157 * For 5751 and follow-ons, for TSO we must turn 5158 * off checksum-assist flag in the tx-descr, and 5159 * supply the ASIC-revision-specific encoding 5160 * of TSO flags and segsize. 5161 */ 5162 if (use_tso) { 5163 if (BGE_IS_575X_PLUS(sc) || i == 0) { 5164 f->bge_rsvd = maxsegsize; 5165 f->bge_flags = csum_flags | txbd_tso_flags; 5166 } else { 5167 f->bge_rsvd = 0; 5168 f->bge_flags = 5169 (csum_flags | txbd_tso_flags) & 0x0fff; 5170 } 5171 } else { 5172 f->bge_rsvd = 0; 5173 f->bge_flags = csum_flags; 5174 } 5175 5176 if (mtag != NULL) { 5177 f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; 5178 f->bge_vlan_tag = VLAN_TAG_VALUE(mtag); 5179 } else { 5180 f->bge_vlan_tag = 0; 5181 } 5182 cur = frag; 5183 BGE_INC(frag, BGE_TX_RING_CNT); 5184 } 5185 5186 if (i < dmamap->dm_nsegs) { 5187 BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n", 5188 device_xname(sc->bge_dev), i, dmamap->dm_nsegs)); 5189 goto fail_unload; 5190 } 5191 5192 bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, 5193 BUS_DMASYNC_PREWRITE); 5194 5195 if (frag == sc->bge_tx_saved_considx) { 5196 BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n", 5197 device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx)); 5198 5199 goto fail_unload; 5200 } 5201 5202 sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; 5203 sc->bge_cdata.bge_tx_chain[cur] = m_head; 5204 SLIST_REMOVE_HEAD(&sc->txdma_list, link); 5205 sc->txdma[cur] = dma; 5206 sc->bge_txcnt += dmamap->dm_nsegs; 5207 5208 *txidx = frag; 5209 5210 return 0; 5211 5212 fail_unload: 5213 bus_dmamap_unload(sc->bge_dmatag, dmamap); 5214 5215 return ENOBUFS; 5216 } 5217 5218 /* 5219 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 5220 * to the mbuf data regions directly in the transmit descriptors. 5221 */ 5222 static void 5223 bge_start(struct ifnet *ifp) 5224 { 5225 struct bge_softc *sc; 5226 struct mbuf *m_head = NULL; 5227 uint32_t prodidx; 5228 int pkts = 0; 5229 5230 sc = ifp->if_softc; 5231 5232 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) 5233 return; 5234 5235 prodidx = sc->bge_tx_prodidx; 5236 5237 while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { 5238 IFQ_POLL(&ifp->if_snd, m_head); 5239 if (m_head == NULL) 5240 break; 5241 5242 #if 0 5243 /* 5244 * XXX 5245 * safety overkill. If this is a fragmented packet chain 5246 * with delayed TCP/UDP checksums, then only encapsulate 5247 * it if we have enough descriptors to handle the entire 5248 * chain at once. 5249 * (paranoia -- may not actually be needed) 5250 */ 5251 if (m_head->m_flags & M_FIRSTFRAG && 5252 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { 5253 if ((BGE_TX_RING_CNT - sc->bge_txcnt) < 5254 M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) { 5255 ifp->if_flags |= IFF_OACTIVE; 5256 break; 5257 } 5258 } 5259 #endif 5260 5261 /* 5262 * Pack the data into the transmit ring. If we 5263 * don't have room, set the OACTIVE flag and wait 5264 * for the NIC to drain the ring. 5265 */ 5266 if (bge_encap(sc, m_head, &prodidx)) { 5267 ifp->if_flags |= IFF_OACTIVE; 5268 break; 5269 } 5270 5271 /* now we are committed to transmit the packet */ 5272 IFQ_DEQUEUE(&ifp->if_snd, m_head); 5273 pkts++; 5274 5275 /* 5276 * If there's a BPF listener, bounce a copy of this frame 5277 * to him. 5278 */ 5279 bpf_mtap(ifp, m_head); 5280 } 5281 if (pkts == 0) 5282 return; 5283 5284 /* Transmit */ 5285 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5286 /* 5700 b2 errata */ 5287 if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) 5288 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); 5289 5290 sc->bge_tx_prodidx = prodidx; 5291 5292 /* 5293 * Set a timeout in case the chip goes out to lunch. 5294 */ 5295 ifp->if_timer = 5; 5296 } 5297 5298 static int 5299 bge_init(struct ifnet *ifp) 5300 { 5301 struct bge_softc *sc = ifp->if_softc; 5302 const uint16_t *m; 5303 uint32_t mode, reg; 5304 int s, error = 0; 5305 5306 s = splnet(); 5307 5308 ifp = &sc->ethercom.ec_if; 5309 5310 /* Cancel pending I/O and flush buffers. */ 5311 bge_stop(ifp, 0); 5312 5313 bge_stop_fw(sc); 5314 bge_sig_pre_reset(sc, BGE_RESET_START); 5315 bge_reset(sc); 5316 bge_sig_legacy(sc, BGE_RESET_START); 5317 bge_sig_post_reset(sc, BGE_RESET_START); 5318 5319 bge_chipinit(sc); 5320 5321 /* 5322 * Init the various state machines, ring 5323 * control blocks and firmware. 5324 */ 5325 error = bge_blockinit(sc); 5326 if (error != 0) { 5327 aprint_error_dev(sc->bge_dev, "initialization error %d\n", 5328 error); 5329 splx(s); 5330 return error; 5331 } 5332 5333 ifp = &sc->ethercom.ec_if; 5334 5335 /* 5718 step 25, 57XX step 54 */ 5336 /* Specify MTU. */ 5337 CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + 5338 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN); 5339 5340 /* 5718 step 23 */ 5341 /* Load our MAC address. */ 5342 m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]); 5343 CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); 5344 CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); 5345 5346 /* Enable or disable promiscuous mode as needed. */ 5347 if (ifp->if_flags & IFF_PROMISC) 5348 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5349 else 5350 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5351 5352 /* Program multicast filter. */ 5353 bge_setmulti(sc); 5354 5355 /* Init RX ring. */ 5356 bge_init_rx_ring_std(sc); 5357 5358 /* 5359 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's 5360 * memory to insure that the chip has in fact read the first 5361 * entry of the ring. 5362 */ 5363 if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { 5364 uint32_t v, i; 5365 for (i = 0; i < 10; i++) { 5366 DELAY(20); 5367 v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); 5368 if (v == (MCLBYTES - ETHER_ALIGN)) 5369 break; 5370 } 5371 if (i == 10) 5372 aprint_error_dev(sc->bge_dev, 5373 "5705 A0 chip failed to load RX ring\n"); 5374 } 5375 5376 /* Init jumbo RX ring. */ 5377 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) 5378 bge_init_rx_ring_jumbo(sc); 5379 5380 /* Init our RX return ring index */ 5381 sc->bge_rx_saved_considx = 0; 5382 5383 /* Init TX ring. */ 5384 bge_init_tx_ring(sc); 5385 5386 /* 5718 step 63, 57XX step 94 */ 5387 /* Enable TX MAC state machine lockup fix. */ 5388 mode = CSR_READ_4(sc, BGE_TX_MODE); 5389 if (BGE_IS_5755_PLUS(sc) || 5390 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 5391 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; 5392 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { 5393 mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5394 mode |= CSR_READ_4(sc, BGE_TX_MODE) & 5395 (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); 5396 } 5397 5398 /* Turn on transmitter */ 5399 CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); 5400 /* 5718 step 64 */ 5401 DELAY(100); 5402 5403 /* 5718 step 65, 57XX step 95 */ 5404 /* Turn on receiver */ 5405 mode = CSR_READ_4(sc, BGE_RX_MODE); 5406 if (BGE_IS_5755_PLUS(sc)) 5407 mode |= BGE_RXMODE_IPV6_ENABLE; 5408 CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); 5409 /* 5718 step 66 */ 5410 DELAY(10); 5411 5412 /* 5718 step 12, 57XX step 37 */ 5413 /* 5414 * XXX Doucments of 5718 series and 577xx say the recommended value 5415 * is 1, but tg3 set 1 only on 57765 series. 5416 */ 5417 if (BGE_IS_57765_PLUS(sc)) 5418 reg = 1; 5419 else 5420 reg = 2; 5421 CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg); 5422 5423 /* Tell firmware we're alive. */ 5424 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5425 5426 /* Enable host interrupts. */ 5427 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); 5428 BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5429 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0); 5430 5431 if ((error = bge_ifmedia_upd(ifp)) != 0) 5432 goto out; 5433 5434 ifp->if_flags |= IFF_RUNNING; 5435 ifp->if_flags &= ~IFF_OACTIVE; 5436 5437 callout_reset(&sc->bge_timeout, hz, bge_tick, sc); 5438 5439 out: 5440 sc->bge_if_flags = ifp->if_flags; 5441 splx(s); 5442 5443 return error; 5444 } 5445 5446 /* 5447 * Set media options. 5448 */ 5449 static int 5450 bge_ifmedia_upd(struct ifnet *ifp) 5451 { 5452 struct bge_softc *sc = ifp->if_softc; 5453 struct mii_data *mii = &sc->bge_mii; 5454 struct ifmedia *ifm = &sc->bge_ifmedia; 5455 int rc; 5456 5457 /* If this is a 1000baseX NIC, enable the TBI port. */ 5458 if (sc->bge_flags & BGEF_FIBER_TBI) { 5459 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) 5460 return EINVAL; 5461 switch (IFM_SUBTYPE(ifm->ifm_media)) { 5462 case IFM_AUTO: 5463 /* 5464 * The BCM5704 ASIC appears to have a special 5465 * mechanism for programming the autoneg 5466 * advertisement registers in TBI mode. 5467 */ 5468 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { 5469 uint32_t sgdig; 5470 sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); 5471 if (sgdig & BGE_SGDIGSTS_DONE) { 5472 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); 5473 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); 5474 sgdig |= BGE_SGDIGCFG_AUTO | 5475 BGE_SGDIGCFG_PAUSE_CAP | 5476 BGE_SGDIGCFG_ASYM_PAUSE; 5477 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5478 sgdig | BGE_SGDIGCFG_SEND); 5479 DELAY(5); 5480 CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG, 5481 sgdig); 5482 } 5483 } 5484 break; 5485 case IFM_1000_SX: 5486 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { 5487 BGE_CLRBIT(sc, BGE_MAC_MODE, 5488 BGE_MACMODE_HALF_DUPLEX); 5489 } else { 5490 BGE_SETBIT(sc, BGE_MAC_MODE, 5491 BGE_MACMODE_HALF_DUPLEX); 5492 } 5493 DELAY(40); 5494 break; 5495 default: 5496 return EINVAL; 5497 } 5498 /* XXX 802.3x flow control for 1000BASE-SX */ 5499 return 0; 5500 } 5501 5502 BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); 5503 if ((rc = mii_mediachg(mii)) == ENXIO) 5504 return 0; 5505 5506 /* 5507 * Force an interrupt so that we will call bge_link_upd 5508 * if needed and clear any pending link state attention. 5509 * Without this we are not getting any further interrupts 5510 * for link state changes and thus will not UP the link and 5511 * not be able to send in bge_start. The only way to get 5512 * things working was to receive a packet and get a RX intr. 5513 */ 5514 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || 5515 sc->bge_flags & BGEF_IS_5788) 5516 BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); 5517 else 5518 BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); 5519 5520 return rc; 5521 } 5522 5523 /* 5524 * Report current media status. 5525 */ 5526 static void 5527 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 5528 { 5529 struct bge_softc *sc = ifp->if_softc; 5530 struct mii_data *mii = &sc->bge_mii; 5531 5532 if (sc->bge_flags & BGEF_FIBER_TBI) { 5533 ifmr->ifm_status = IFM_AVALID; 5534 ifmr->ifm_active = IFM_ETHER; 5535 if (CSR_READ_4(sc, BGE_MAC_STS) & 5536 BGE_MACSTAT_TBI_PCS_SYNCHED) 5537 ifmr->ifm_status |= IFM_ACTIVE; 5538 ifmr->ifm_active |= IFM_1000_SX; 5539 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) 5540 ifmr->ifm_active |= IFM_HDX; 5541 else 5542 ifmr->ifm_active |= IFM_FDX; 5543 return; 5544 } 5545 5546 mii_pollstat(mii); 5547 ifmr->ifm_status = mii->mii_media_status; 5548 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | 5549 sc->bge_flowflags; 5550 } 5551 5552 static int 5553 bge_ifflags_cb(struct ethercom *ec) 5554 { 5555 struct ifnet *ifp = &ec->ec_if; 5556 struct bge_softc *sc = ifp->if_softc; 5557 int change = ifp->if_flags ^ sc->bge_if_flags; 5558 5559 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 5560 return ENETRESET; 5561 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0) 5562 return 0; 5563 5564 if ((ifp->if_flags & IFF_PROMISC) == 0) 5565 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5566 else 5567 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); 5568 5569 bge_setmulti(sc); 5570 5571 sc->bge_if_flags = ifp->if_flags; 5572 return 0; 5573 } 5574 5575 static int 5576 bge_ioctl(struct ifnet *ifp, u_long command, void *data) 5577 { 5578 struct bge_softc *sc = ifp->if_softc; 5579 struct ifreq *ifr = (struct ifreq *) data; 5580 int s, error = 0; 5581 struct mii_data *mii; 5582 5583 s = splnet(); 5584 5585 switch (command) { 5586 case SIOCSIFMEDIA: 5587 /* XXX Flow control is not supported for 1000BASE-SX */ 5588 if (sc->bge_flags & BGEF_FIBER_TBI) { 5589 ifr->ifr_media &= ~IFM_ETH_FMASK; 5590 sc->bge_flowflags = 0; 5591 } 5592 5593 /* Flow control requires full-duplex mode. */ 5594 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || 5595 (ifr->ifr_media & IFM_FDX) == 0) { 5596 ifr->ifr_media &= ~IFM_ETH_FMASK; 5597 } 5598 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { 5599 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { 5600 /* We can do both TXPAUSE and RXPAUSE. */ 5601 ifr->ifr_media |= 5602 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; 5603 } 5604 sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; 5605 } 5606 /* FALLTHROUGH */ 5607 case SIOCGIFMEDIA: 5608 if (sc->bge_flags & BGEF_FIBER_TBI) { 5609 error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, 5610 command); 5611 } else { 5612 mii = &sc->bge_mii; 5613 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, 5614 command); 5615 } 5616 break; 5617 default: 5618 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) 5619 break; 5620 5621 error = 0; 5622 5623 if (command != SIOCADDMULTI && command != SIOCDELMULTI) 5624 ; 5625 else if (ifp->if_flags & IFF_RUNNING) 5626 bge_setmulti(sc); 5627 break; 5628 } 5629 5630 splx(s); 5631 5632 return error; 5633 } 5634 5635 static void 5636 bge_watchdog(struct ifnet *ifp) 5637 { 5638 struct bge_softc *sc; 5639 5640 sc = ifp->if_softc; 5641 5642 aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n"); 5643 5644 ifp->if_flags &= ~IFF_RUNNING; 5645 bge_init(ifp); 5646 5647 ifp->if_oerrors++; 5648 } 5649 5650 static void 5651 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit) 5652 { 5653 int i; 5654 5655 BGE_CLRBIT_FLUSH(sc, reg, bit); 5656 5657 for (i = 0; i < 1000; i++) { 5658 delay(100); 5659 if ((CSR_READ_4(sc, reg) & bit) == 0) 5660 return; 5661 } 5662 5663 /* 5664 * Doesn't print only when the register is BGE_SRS_MODE. It occurs 5665 * on some environment (and once after boot?) 5666 */ 5667 if (reg != BGE_SRS_MODE) 5668 aprint_error_dev(sc->bge_dev, 5669 "block failed to stop: reg 0x%lx, bit 0x%08x\n", 5670 (u_long)reg, bit); 5671 } 5672 5673 /* 5674 * Stop the adapter and free any mbufs allocated to the 5675 * RX and TX lists. 5676 */ 5677 static void 5678 bge_stop(struct ifnet *ifp, int disable) 5679 { 5680 struct bge_softc *sc = ifp->if_softc; 5681 5682 callout_stop(&sc->bge_timeout); 5683 5684 /* Disable host interrupts. */ 5685 BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); 5686 bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1); 5687 5688 /* 5689 * Tell firmware we're shutting down. 5690 */ 5691 bge_stop_fw(sc); 5692 bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); 5693 5694 /* 5695 * Disable all of the receiver blocks. 5696 */ 5697 bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); 5698 bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); 5699 bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); 5700 if (BGE_IS_5700_FAMILY(sc)) 5701 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); 5702 bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); 5703 bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); 5704 bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); 5705 5706 /* 5707 * Disable all of the transmit blocks. 5708 */ 5709 bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); 5710 bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); 5711 bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); 5712 bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); 5713 bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); 5714 if (BGE_IS_5700_FAMILY(sc)) 5715 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); 5716 bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); 5717 5718 BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB); 5719 delay(40); 5720 5721 bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); 5722 5723 /* 5724 * Shut down all of the memory managers and related 5725 * state machines. 5726 */ 5727 /* 5718 step 5a,5b */ 5728 bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); 5729 bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); 5730 if (BGE_IS_5700_FAMILY(sc)) 5731 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); 5732 5733 /* 5718 step 5c,5d */ 5734 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); 5735 CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); 5736 5737 if (BGE_IS_5700_FAMILY(sc)) { 5738 bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); 5739 bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); 5740 } 5741 5742 bge_reset(sc); 5743 bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); 5744 bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); 5745 5746 /* 5747 * Keep the ASF firmware running if up. 5748 */ 5749 if (sc->bge_asf_mode & ASF_STACKUP) 5750 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5751 else 5752 BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); 5753 5754 /* Free the RX lists. */ 5755 bge_free_rx_ring_std(sc); 5756 5757 /* Free jumbo RX list. */ 5758 if (BGE_IS_JUMBO_CAPABLE(sc)) 5759 bge_free_rx_ring_jumbo(sc); 5760 5761 /* Free TX buffers. */ 5762 bge_free_tx_ring(sc); 5763 5764 /* 5765 * Isolate/power down the PHY. 5766 */ 5767 if (!(sc->bge_flags & BGEF_FIBER_TBI)) 5768 mii_down(&sc->bge_mii); 5769 5770 sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; 5771 5772 /* Clear MAC's link state (PHY may still have link UP). */ 5773 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 5774 5775 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 5776 } 5777 5778 static void 5779 bge_link_upd(struct bge_softc *sc) 5780 { 5781 struct ifnet *ifp = &sc->ethercom.ec_if; 5782 struct mii_data *mii = &sc->bge_mii; 5783 uint32_t status; 5784 int link; 5785 5786 /* Clear 'pending link event' flag */ 5787 BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); 5788 5789 /* 5790 * Process link state changes. 5791 * Grrr. The link status word in the status block does 5792 * not work correctly on the BCM5700 rev AX and BX chips, 5793 * according to all available information. Hence, we have 5794 * to enable MII interrupts in order to properly obtain 5795 * async link changes. Unfortunately, this also means that 5796 * we have to read the MAC status register to detect link 5797 * changes, thereby adding an additional register access to 5798 * the interrupt handler. 5799 */ 5800 5801 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { 5802 status = CSR_READ_4(sc, BGE_MAC_STS); 5803 if (status & BGE_MACSTAT_MI_INTERRUPT) { 5804 mii_pollstat(mii); 5805 5806 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 5807 mii->mii_media_status & IFM_ACTIVE && 5808 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 5809 BGE_STS_SETBIT(sc, BGE_STS_LINK); 5810 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 5811 (!(mii->mii_media_status & IFM_ACTIVE) || 5812 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 5813 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 5814 5815 /* Clear the interrupt */ 5816 CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, 5817 BGE_EVTENB_MI_INTERRUPT); 5818 bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr, 5819 BRGPHY_MII_ISR); 5820 bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr, 5821 BRGPHY_MII_IMR, BRGPHY_INTRS); 5822 } 5823 return; 5824 } 5825 5826 if (sc->bge_flags & BGEF_FIBER_TBI) { 5827 status = CSR_READ_4(sc, BGE_MAC_STS); 5828 if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { 5829 if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { 5830 BGE_STS_SETBIT(sc, BGE_STS_LINK); 5831 if (BGE_ASICREV(sc->bge_chipid) 5832 == BGE_ASICREV_BCM5704) { 5833 BGE_CLRBIT(sc, BGE_MAC_MODE, 5834 BGE_MACMODE_TBI_SEND_CFGS); 5835 DELAY(40); 5836 } 5837 CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); 5838 if_link_state_change(ifp, LINK_STATE_UP); 5839 } 5840 } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { 5841 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 5842 if_link_state_change(ifp, LINK_STATE_DOWN); 5843 } 5844 } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { 5845 /* 5846 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED 5847 * bit in status word always set. Workaround this bug by 5848 * reading PHY link status directly. 5849 */ 5850 link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? 5851 BGE_STS_LINK : 0; 5852 5853 if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { 5854 mii_pollstat(mii); 5855 5856 if (!BGE_STS_BIT(sc, BGE_STS_LINK) && 5857 mii->mii_media_status & IFM_ACTIVE && 5858 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) 5859 BGE_STS_SETBIT(sc, BGE_STS_LINK); 5860 else if (BGE_STS_BIT(sc, BGE_STS_LINK) && 5861 (!(mii->mii_media_status & IFM_ACTIVE) || 5862 IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) 5863 BGE_STS_CLRBIT(sc, BGE_STS_LINK); 5864 } 5865 } else { 5866 /* 5867 * For controllers that call mii_tick, we have to poll 5868 * link status. 5869 */ 5870 mii_pollstat(mii); 5871 } 5872 5873 /* Clear the attention */ 5874 CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| 5875 BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| 5876 BGE_MACSTAT_LINK_CHANGED); 5877 } 5878 5879 static int 5880 bge_sysctl_verify(SYSCTLFN_ARGS) 5881 { 5882 int error, t; 5883 struct sysctlnode node; 5884 5885 node = *rnode; 5886 t = *(int*)rnode->sysctl_data; 5887 node.sysctl_data = &t; 5888 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 5889 if (error || newp == NULL) 5890 return error; 5891 5892 #if 0 5893 DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t, 5894 node.sysctl_num, rnode->sysctl_num)); 5895 #endif 5896 5897 if (node.sysctl_num == bge_rxthresh_nodenum) { 5898 if (t < 0 || t >= NBGE_RX_THRESH) 5899 return EINVAL; 5900 bge_update_all_threshes(t); 5901 } else 5902 return EINVAL; 5903 5904 *(int*)rnode->sysctl_data = t; 5905 5906 return 0; 5907 } 5908 5909 /* 5910 * Set up sysctl(3) MIB, hw.bge.*. 5911 */ 5912 static void 5913 bge_sysctl_init(struct bge_softc *sc) 5914 { 5915 int rc, bge_root_num; 5916 const struct sysctlnode *node; 5917 5918 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL, 5919 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 5920 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) { 5921 goto out; 5922 } 5923 5924 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 5925 0, CTLTYPE_NODE, "bge", 5926 SYSCTL_DESCR("BGE interface controls"), 5927 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 5928 goto out; 5929 } 5930 5931 bge_root_num = node->sysctl_num; 5932 5933 /* BGE Rx interrupt mitigation level */ 5934 if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node, 5935 CTLFLAG_READWRITE, 5936 CTLTYPE_INT, "rx_lvl", 5937 SYSCTL_DESCR("BGE receive interrupt mitigation level"), 5938 bge_sysctl_verify, 0, 5939 &bge_rx_thresh_lvl, 5940 0, CTL_HW, bge_root_num, CTL_CREATE, 5941 CTL_EOL)) != 0) { 5942 goto out; 5943 } 5944 5945 bge_rxthresh_nodenum = node->sysctl_num; 5946 5947 return; 5948 5949 out: 5950 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 5951 } 5952 5953 #ifdef BGE_DEBUG 5954 void 5955 bge_debug_info(struct bge_softc *sc) 5956 { 5957 5958 printf("Hardware Flags:\n"); 5959 if (BGE_IS_57765_PLUS(sc)) 5960 printf(" - 57765 Plus\n"); 5961 if (BGE_IS_5717_PLUS(sc)) 5962 printf(" - 5717 Plus\n"); 5963 if (BGE_IS_5755_PLUS(sc)) 5964 printf(" - 5755 Plus\n"); 5965 if (BGE_IS_575X_PLUS(sc)) 5966 printf(" - 575X Plus\n"); 5967 if (BGE_IS_5705_PLUS(sc)) 5968 printf(" - 5705 Plus\n"); 5969 if (BGE_IS_5714_FAMILY(sc)) 5970 printf(" - 5714 Family\n"); 5971 if (BGE_IS_5700_FAMILY(sc)) 5972 printf(" - 5700 Family\n"); 5973 if (sc->bge_flags & BGEF_IS_5788) 5974 printf(" - 5788\n"); 5975 if (sc->bge_flags & BGEF_JUMBO_CAPABLE) 5976 printf(" - Supports Jumbo Frames\n"); 5977 if (sc->bge_flags & BGEF_NO_EEPROM) 5978 printf(" - No EEPROM\n"); 5979 if (sc->bge_flags & BGEF_PCIX) 5980 printf(" - PCI-X Bus\n"); 5981 if (sc->bge_flags & BGEF_PCIE) 5982 printf(" - PCI Express Bus\n"); 5983 if (sc->bge_flags & BGEF_RX_ALIGNBUG) 5984 printf(" - RX Alignment Bug\n"); 5985 if (sc->bge_flags & BGEF_APE) 5986 printf(" - APE\n"); 5987 if (sc->bge_flags & BGEF_CPMU_PRESENT) 5988 printf(" - CPMU\n"); 5989 if (sc->bge_flags & BGEF_TSO) 5990 printf(" - TSO\n"); 5991 5992 if (sc->bge_phy_flags & BGEPHYF_NO_3LED) 5993 printf(" - No 3 LEDs\n"); 5994 if (sc->bge_phy_flags & BGEPHYF_CRC_BUG) 5995 printf(" - CRC bug\n"); 5996 if (sc->bge_phy_flags & BGEPHYF_ADC_BUG) 5997 printf(" - ADC bug\n"); 5998 if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG) 5999 printf(" - 5704 A0 bug\n"); 6000 if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG) 6001 printf(" - jitter bug\n"); 6002 if (sc->bge_phy_flags & BGEPHYF_BER_BUG) 6003 printf(" - BER bug\n"); 6004 if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM) 6005 printf(" - adjust trim\n"); 6006 if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED) 6007 printf(" - no wirespeed\n"); 6008 } 6009 #endif /* BGE_DEBUG */ 6010 6011 static int 6012 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]) 6013 { 6014 prop_dictionary_t dict; 6015 prop_data_t ea; 6016 6017 if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) 6018 return 1; 6019 6020 dict = device_properties(sc->bge_dev); 6021 ea = prop_dictionary_get(dict, "mac-address"); 6022 if (ea != NULL) { 6023 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 6024 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 6025 memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN); 6026 return 0; 6027 } 6028 6029 return 1; 6030 } 6031 6032 static int 6033 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[]) 6034 { 6035 uint32_t mac_addr; 6036 6037 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB); 6038 if ((mac_addr >> 16) == 0x484b) { 6039 ether_addr[0] = (uint8_t)(mac_addr >> 8); 6040 ether_addr[1] = (uint8_t)mac_addr; 6041 mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB); 6042 ether_addr[2] = (uint8_t)(mac_addr >> 24); 6043 ether_addr[3] = (uint8_t)(mac_addr >> 16); 6044 ether_addr[4] = (uint8_t)(mac_addr >> 8); 6045 ether_addr[5] = (uint8_t)mac_addr; 6046 return 0; 6047 } 6048 return 1; 6049 } 6050 6051 static int 6052 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[]) 6053 { 6054 int mac_offset = BGE_EE_MAC_OFFSET; 6055 6056 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6057 mac_offset = BGE_EE_MAC_OFFSET_5906; 6058 6059 return (bge_read_nvram(sc, ether_addr, mac_offset + 2, 6060 ETHER_ADDR_LEN)); 6061 } 6062 6063 static int 6064 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[]) 6065 { 6066 6067 if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) 6068 return 1; 6069 6070 return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, 6071 ETHER_ADDR_LEN)); 6072 } 6073 6074 static int 6075 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[]) 6076 { 6077 static const bge_eaddr_fcn_t bge_eaddr_funcs[] = { 6078 /* NOTE: Order is critical */ 6079 bge_get_eaddr_fw, 6080 bge_get_eaddr_mem, 6081 bge_get_eaddr_nvram, 6082 bge_get_eaddr_eeprom, 6083 NULL 6084 }; 6085 const bge_eaddr_fcn_t *func; 6086 6087 for (func = bge_eaddr_funcs; *func != NULL; ++func) { 6088 if ((*func)(sc, eaddr) == 0) 6089 break; 6090 } 6091 return (*func == NULL ? ENXIO : 0); 6092 } 6093