xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: if_bge.c,v 1.154 2008/11/10 22:50:18 cegger Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.154 2008/11/10 22:50:18 cegger Exp $");
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 #include "rnd.h"
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/sockio.h>
92 #include <sys/mbuf.h>
93 #include <sys/malloc.h>
94 #include <sys/kernel.h>
95 #include <sys/device.h>
96 #include <sys/socket.h>
97 #include <sys/sysctl.h>
98 
99 #include <net/if.h>
100 #include <net/if_dl.h>
101 #include <net/if_media.h>
102 #include <net/if_ether.h>
103 
104 #if NRND > 0
105 #include <sys/rnd.h>
106 #endif
107 
108 #ifdef INET
109 #include <netinet/in.h>
110 #include <netinet/in_systm.h>
111 #include <netinet/in_var.h>
112 #include <netinet/ip.h>
113 #endif
114 
115 /* Headers for TCP  Segmentation Offload (TSO) */
116 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
117 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
118 #include <netinet/ip.h>			/* for struct ip */
119 #include <netinet/tcp.h>		/* for struct tcphdr */
120 
121 
122 #if NBPFILTER > 0
123 #include <net/bpf.h>
124 #endif
125 
126 #include <dev/pci/pcireg.h>
127 #include <dev/pci/pcivar.h>
128 #include <dev/pci/pcidevs.h>
129 
130 #include <dev/mii/mii.h>
131 #include <dev/mii/miivar.h>
132 #include <dev/mii/miidevs.h>
133 #include <dev/mii/brgphyreg.h>
134 
135 #include <dev/pci/if_bgereg.h>
136 
137 #include <uvm/uvm_extern.h>
138 
139 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
140 
141 
142 /*
143  * Tunable thresholds for rx-side bge interrupt mitigation.
144  */
145 
146 /*
147  * The pairs of values below were obtained from empirical measurement
148  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
149  * interrupt for every N packets received, where N is, approximately,
150  * the second value (rx_max_bds) in each pair.  The values are chosen
151  * such that moving from one pair to the succeeding pair was observed
152  * to roughly halve interrupt rate under sustained input packet load.
153  * The values were empirically chosen to avoid overflowing internal
154  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
155  * results in internal wrapping and higher interrupt rates.
156  * The limit of 46 frames was chosen to match NFS workloads.
157  *
158  * These values also work well on bcm5701, bcm5704C, and (less
159  * tested) bcm5703.  On other chipsets, (including the Altima chip
160  * family), the larger values may overflow internal chip limits,
161  * leading to increasing interrupt rates rather than lower interrupt
162  * rates.
163  *
164  * Applications using heavy interrupt mitigation (interrupting every
165  * 32 or 46 frames) in both directions may need to increase the TCP
166  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
167  * full link bandwidth, due to ACKs and window updates lingering
168  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
169  */
170 static const struct bge_load_rx_thresh {
171 	int rx_ticks;
172 	int rx_max_bds; }
173 bge_rx_threshes[] = {
174 	{ 32,   2 },
175 	{ 50,   4 },
176 	{ 100,  8 },
177 	{ 192, 16 },
178 	{ 416, 32 },
179 	{ 598, 46 }
180 };
181 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
182 
183 /* XXX patchable; should be sysctl'able */
184 static int	bge_auto_thresh = 1;
185 static int	bge_rx_thresh_lvl;
186 
187 static int	bge_rxthresh_nodenum;
188 
189 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, u_int8_t[]);
190 
191 static int	bge_probe(device_t, cfdata_t, void *);
192 static void	bge_attach(device_t, device_t, void *);
193 static void	bge_release_resources(struct bge_softc *);
194 static void	bge_txeof(struct bge_softc *);
195 static void	bge_rxeof(struct bge_softc *);
196 
197 static int 	bge_get_eaddr_mem(struct bge_softc *, u_int8_t[]);
198 static int 	bge_get_eaddr_nvram(struct bge_softc *, u_int8_t[]);
199 static int 	bge_get_eaddr_eeprom(struct bge_softc *, u_int8_t[]);
200 static int 	bge_get_eaddr(struct bge_softc *, u_int8_t[]);
201 
202 static void	bge_tick(void *);
203 static void	bge_stats_update(struct bge_softc *);
204 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
205 
206 static int	bge_intr(void *);
207 static void	bge_start(struct ifnet *);
208 static int	bge_ioctl(struct ifnet *, u_long, void *);
209 static int	bge_init(struct ifnet *);
210 static void	bge_stop(struct ifnet *, int);
211 static void	bge_watchdog(struct ifnet *);
212 static int	bge_ifmedia_upd(struct ifnet *);
213 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
214 
215 static void	bge_setmulti(struct bge_softc *);
216 
217 static void	bge_handle_events(struct bge_softc *);
218 static int	bge_alloc_jumbo_mem(struct bge_softc *);
219 #if 0 /* XXX */
220 static void	bge_free_jumbo_mem(struct bge_softc *);
221 #endif
222 static void	*bge_jalloc(struct bge_softc *);
223 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
224 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
225 			       bus_dmamap_t);
226 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
227 static int	bge_init_rx_ring_std(struct bge_softc *);
228 static void	bge_free_rx_ring_std(struct bge_softc *);
229 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
230 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
231 static void	bge_free_tx_ring(struct bge_softc *);
232 static int	bge_init_tx_ring(struct bge_softc *);
233 
234 static int	bge_chipinit(struct bge_softc *);
235 static int	bge_blockinit(struct bge_softc *);
236 static int	bge_setpowerstate(struct bge_softc *, int);
237 
238 static void	bge_reset(struct bge_softc *);
239 
240 #define BGE_DEBUG
241 #ifdef BGE_DEBUG
242 #define DPRINTF(x)	if (bgedebug) printf x
243 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
244 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
245 int	bgedebug = 0;
246 int	bge_tso_debug = 0;
247 #else
248 #define DPRINTF(x)
249 #define DPRINTFN(n,x)
250 #define BGE_TSO_PRINTF(x)
251 #endif
252 
253 #ifdef BGE_EVENT_COUNTERS
254 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
255 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
256 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
257 #else
258 #define	BGE_EVCNT_INCR(ev)	/* nothing */
259 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
260 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
261 #endif
262 
263 /* Various chip quirks. */
264 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
265 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
266 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
267 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
268 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
269 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
270 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
271 #define	BGE_QUIRK_5705_CORE		0x00000080
272 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
273 
274 /*
275  * XXX: how to handle variants based on 5750 and derivatives:
276  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
277  * in general behave like a 5705, except with additional quirks.
278  * This driver's current handling of the 5721 is wrong;
279  * how we map ASIC revision to "quirks" needs more thought.
280  * (defined here until the thought is done).
281  */
282 #define BGE_IS_5714_FAMILY(sc) \
283 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
284 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
285 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
286 
287 #define BGE_IS_5750_OR_BEYOND(sc)  \
288 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
289 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
290 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
291 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
292 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 || \
293 	 BGE_IS_5714_FAMILY(sc) )
294 
295 #define BGE_IS_5705_OR_BEYOND(sc)  \
296 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
297 	  BGE_IS_5750_OR_BEYOND(sc) )
298 
299 
300 /* following bugs are common to bcm5700 rev B, all flavours */
301 #define BGE_QUIRK_5700_COMMON \
302 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
303 
304 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
305     bge_probe, bge_attach, NULL, NULL);
306 
307 static u_int32_t
308 bge_readmem_ind(struct bge_softc *sc, int off)
309 {
310 	pcireg_t val;
311 
312 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
313 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
314 	return val;
315 }
316 
317 static void
318 bge_writemem_ind(struct bge_softc *sc, int off, int val)
319 {
320 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
321 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
322 }
323 
324 #ifdef notdef
325 static u_int32_t
326 bge_readreg_ind(struct bge_softc *sc, int off)
327 {
328 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
329 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
330 }
331 #endif
332 
333 static void
334 bge_writereg_ind(struct bge_softc *sc, int off, int val)
335 {
336 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
337 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
338 }
339 
340 static void
341 bge_writemem_direct(struct bge_softc *sc, int off, int val)
342 {
343 	CSR_WRITE_4(sc, off, val);
344 }
345 
346 static void
347 bge_writembx(struct bge_softc *sc, int off, int val)
348 {
349 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
350 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
351 
352 	CSR_WRITE_4(sc, off, val);
353 }
354 
355 #ifdef notdef
356 static u_int8_t
357 bge_vpd_readbyte(struct bge_softc *sc, int addr)
358 {
359 	int i;
360 	u_int32_t val;
361 
362 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
363 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
364 		DELAY(10);
365 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
366 		    BGE_VPD_FLAG)
367 			break;
368 	}
369 
370 	if (i == BGE_TIMEOUT) {
371 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
372 		return(0);
373 	}
374 
375 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
376 
377 	return((val >> ((addr % 4) * 8)) & 0xFF);
378 }
379 
380 static void
381 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
382 {
383 	int i;
384 	u_int8_t *ptr;
385 
386 	ptr = (u_int8_t *)res;
387 	for (i = 0; i < sizeof(struct vpd_res); i++)
388 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
389 }
390 
391 static void
392 bge_vpd_read(struct bge_softc *sc)
393 {
394 	int pos = 0, i;
395 	struct vpd_res res;
396 
397 	if (sc->bge_vpd_prodname != NULL)
398 		free(sc->bge_vpd_prodname, M_DEVBUF);
399 	if (sc->bge_vpd_readonly != NULL)
400 		free(sc->bge_vpd_readonly, M_DEVBUF);
401 	sc->bge_vpd_prodname = NULL;
402 	sc->bge_vpd_readonly = NULL;
403 
404 	bge_vpd_read_res(sc, &res, pos);
405 
406 	if (res.vr_id != VPD_RES_ID) {
407 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
408 		    VPD_RES_ID, res.vr_id);
409 		return;
410 	}
411 
412 	pos += sizeof(res);
413 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
414 	if (sc->bge_vpd_prodname == NULL)
415 		panic("bge_vpd_read");
416 	for (i = 0; i < res.vr_len; i++)
417 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
418 	sc->bge_vpd_prodname[i] = '\0';
419 	pos += i;
420 
421 	bge_vpd_read_res(sc, &res, pos);
422 
423 	if (res.vr_id != VPD_RES_READ) {
424 		aprint_error_dev(sc->bge_dev,
425 		    "bad VPD resource id: expected %x got %x\n",
426 		    VPD_RES_READ, res.vr_id);
427 		return;
428 	}
429 
430 	pos += sizeof(res);
431 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
432 	if (sc->bge_vpd_readonly == NULL)
433 		panic("bge_vpd_read");
434 	for (i = 0; i < res.vr_len + 1; i++)
435 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
436 }
437 #endif
438 
439 static u_int8_t
440 bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
441 {
442 	u_int32_t access, byte = 0;
443 	int i;
444 
445 	/* Lock. */
446 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
447 	for (i = 0; i < 8000; i++) {
448 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
449 			break;
450 		DELAY(20);
451 	}
452 	if (i == 8000)
453 		return (1);
454 
455 	/* Enable access. */
456 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
457 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
458 
459 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
460 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
461 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
462 		DELAY(10);
463 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
464 			DELAY(10);
465 			break;
466 		}
467 	}
468 
469 	if (i == BGE_TIMEOUT * 10) {
470 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
471 		return (1);
472 	}
473 
474 	/* Get result. */
475 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
476 
477 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
478 
479 	/* Disable access. */
480 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
481 
482 	/* Unlock. */
483 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
484 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
485 
486 	return (0);
487 }
488 
489 /*
490  * Read a sequence of bytes from NVRAM.
491  */
492 static int
493 bge_read_nvram(struct bge_softc *sc, u_int8_t *dest, int off, int cnt)
494 {
495 	int err = 0, i;
496 	u_int8_t byte = 0;
497 
498 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
499 		return (1);
500 
501 	for (i = 0; i < cnt; i++) {
502 		err = bge_nvram_getbyte(sc, off + i, &byte);
503 		if (err)
504 			break;
505 		*(dest + i) = byte;
506 	}
507 
508 	return (err ? 1 : 0);
509 }
510 
511 
512 /*
513  * Read a byte of data stored in the EEPROM at address 'addr.' The
514  * BCM570x supports both the traditional bitbang interface and an
515  * auto access interface for reading the EEPROM. We use the auto
516  * access method.
517  */
518 static u_int8_t
519 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
520 {
521 	int i;
522 	u_int32_t byte = 0;
523 
524 	/*
525 	 * Enable use of auto EEPROM access so we can avoid
526 	 * having to use the bitbang method.
527 	 */
528 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
529 
530 	/* Reset the EEPROM, load the clock period. */
531 	CSR_WRITE_4(sc, BGE_EE_ADDR,
532 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
533 	DELAY(20);
534 
535 	/* Issue the read EEPROM command. */
536 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
537 
538 	/* Wait for completion */
539 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
540 		DELAY(10);
541 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
542 			break;
543 	}
544 
545 	if (i == BGE_TIMEOUT) {
546 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
547 		return(0);
548 	}
549 
550 	/* Get result. */
551 	byte = CSR_READ_4(sc, BGE_EE_DATA);
552 
553 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
554 
555 	return(0);
556 }
557 
558 /*
559  * Read a sequence of bytes from the EEPROM.
560  */
561 static int
562 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
563 {
564 	int err = 0, i;
565 	u_int8_t byte = 0;
566 	char *dest = destv;
567 
568 	for (i = 0; i < cnt; i++) {
569 		err = bge_eeprom_getbyte(sc, off + i, &byte);
570 		if (err)
571 			break;
572 		*(dest + i) = byte;
573 	}
574 
575 	return(err ? 1 : 0);
576 }
577 
578 static int
579 bge_miibus_readreg(device_t dev, int phy, int reg)
580 {
581 	struct bge_softc *sc = device_private(dev);
582 	u_int32_t val;
583 	u_int32_t saved_autopoll;
584 	int i;
585 
586 	/*
587 	 * Several chips with builtin PHYs will incorrectly answer to
588 	 * other PHY instances than the builtin PHY at id 1.
589 	 */
590 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
591 		return(0);
592 
593 	/* Reading with autopolling on may trigger PCI errors */
594 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
595 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
596 		CSR_WRITE_4(sc, BGE_MI_MODE,
597 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
598 		DELAY(40);
599 	}
600 
601 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
602 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
603 
604 	for (i = 0; i < BGE_TIMEOUT; i++) {
605 		val = CSR_READ_4(sc, BGE_MI_COMM);
606 		if (!(val & BGE_MICOMM_BUSY))
607 			break;
608 		delay(10);
609 	}
610 
611 	if (i == BGE_TIMEOUT) {
612 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
613 		val = 0;
614 		goto done;
615 	}
616 
617 	val = CSR_READ_4(sc, BGE_MI_COMM);
618 
619 done:
620 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
621 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
622 		DELAY(40);
623 	}
624 
625 	if (val & BGE_MICOMM_READFAIL)
626 		return(0);
627 
628 	return(val & 0xFFFF);
629 }
630 
631 static void
632 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
633 {
634 	struct bge_softc *sc = device_private(dev);
635 	u_int32_t saved_autopoll;
636 	int i;
637 
638 	if (phy!=1) {
639 		return;
640 	}
641 
642 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
643 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
644 		return;
645 	}
646 
647 	/* Touching the PHY while autopolling is on may trigger PCI errors */
648 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
649 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
650 		delay(40);
651 		CSR_WRITE_4(sc, BGE_MI_MODE,
652 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
653 		delay(10); /* 40 usec is supposed to be adequate */
654 	}
655 
656 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
657 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
658 
659 	for (i = 0; i < BGE_TIMEOUT; i++) {
660 		delay(10);
661 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
662 			delay(5);
663 			CSR_READ_4(sc, BGE_MI_COMM);
664 			break;
665 		}
666 	}
667 
668 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
669 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
670 		delay(40);
671 	}
672 
673 	if (i == BGE_TIMEOUT)
674 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
675 }
676 
677 static void
678 bge_miibus_statchg(device_t dev)
679 {
680 	struct bge_softc *sc = device_private(dev);
681 	struct mii_data *mii = &sc->bge_mii;
682 
683 	/*
684 	 * Get flow control negotiation result.
685 	 */
686 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
687 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
688 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
689 		mii->mii_media_active &= ~IFM_ETH_FMASK;
690 	}
691 
692 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
693 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
694 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
695 	} else {
696 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
697 	}
698 
699 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
700 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
701 	} else {
702 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
703 	}
704 
705 	/*
706 	 * 802.3x flow control
707 	 */
708 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
709 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
710 	} else {
711 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
712 	}
713 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
714 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
715 	} else {
716 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
717 	}
718 }
719 
720 /*
721  * Update rx threshold levels to values in a particular slot
722  * of the interrupt-mitigation table bge_rx_threshes.
723  */
724 static void
725 bge_set_thresh(struct ifnet *ifp, int lvl)
726 {
727 	struct bge_softc *sc = ifp->if_softc;
728 	int s;
729 
730 	/* For now, just save the new Rx-intr thresholds and record
731 	 * that a threshold update is pending.  Updating the hardware
732 	 * registers here (even at splhigh()) is observed to
733 	 * occasionaly cause glitches where Rx-interrupts are not
734 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
735 	 */
736 	s = splnet();
737 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
738 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
739 	sc->bge_pending_rxintr_change = 1;
740 	splx(s);
741 
742 	 return;
743 }
744 
745 
746 /*
747  * Update Rx thresholds of all bge devices
748  */
749 static void
750 bge_update_all_threshes(int lvl)
751 {
752 	struct ifnet *ifp;
753 	const char * const namebuf = "bge";
754 	int namelen;
755 
756 	if (lvl < 0)
757 		lvl = 0;
758 	else if( lvl >= NBGE_RX_THRESH)
759 		lvl = NBGE_RX_THRESH - 1;
760 
761 	namelen = strlen(namebuf);
762 	/*
763 	 * Now search all the interfaces for this name/number
764 	 */
765 	IFNET_FOREACH(ifp) {
766 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
767 		      continue;
768 		/* We got a match: update if doing auto-threshold-tuning */
769 		if (bge_auto_thresh)
770 			bge_set_thresh(ifp, lvl);
771 	}
772 }
773 
774 /*
775  * Handle events that have triggered interrupts.
776  */
777 static void
778 bge_handle_events(struct bge_softc *sc)
779 {
780 
781 	return;
782 }
783 
784 /*
785  * Memory management for jumbo frames.
786  */
787 
788 static int
789 bge_alloc_jumbo_mem(struct bge_softc *sc)
790 {
791 	char *ptr, *kva;
792 	bus_dma_segment_t	seg;
793 	int		i, rseg, state, error;
794 	struct bge_jpool_entry   *entry;
795 
796 	state = error = 0;
797 
798 	/* Grab a big chunk o' storage. */
799 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
800 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
801 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
802 		return ENOBUFS;
803 	}
804 
805 	state = 1;
806 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
807 	    BUS_DMA_NOWAIT)) {
808 		aprint_error_dev(sc->bge_dev,
809 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
810 		error = ENOBUFS;
811 		goto out;
812 	}
813 
814 	state = 2;
815 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
816 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
817 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
818 		error = ENOBUFS;
819 		goto out;
820 	}
821 
822 	state = 3;
823 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
824 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
825 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
826 		error = ENOBUFS;
827 		goto out;
828 	}
829 
830 	state = 4;
831 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
832 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
833 
834 	SLIST_INIT(&sc->bge_jfree_listhead);
835 	SLIST_INIT(&sc->bge_jinuse_listhead);
836 
837 	/*
838 	 * Now divide it up into 9K pieces and save the addresses
839 	 * in an array.
840 	 */
841 	ptr = sc->bge_cdata.bge_jumbo_buf;
842 	for (i = 0; i < BGE_JSLOTS; i++) {
843 		sc->bge_cdata.bge_jslots[i] = ptr;
844 		ptr += BGE_JLEN;
845 		entry = malloc(sizeof(struct bge_jpool_entry),
846 		    M_DEVBUF, M_NOWAIT);
847 		if (entry == NULL) {
848 			aprint_error_dev(sc->bge_dev,
849 			    "no memory for jumbo buffer queue!\n");
850 			error = ENOBUFS;
851 			goto out;
852 		}
853 		entry->slot = i;
854 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
855 				 entry, jpool_entries);
856 	}
857 out:
858 	if (error != 0) {
859 		switch (state) {
860 		case 4:
861 			bus_dmamap_unload(sc->bge_dmatag,
862 			    sc->bge_cdata.bge_rx_jumbo_map);
863 		case 3:
864 			bus_dmamap_destroy(sc->bge_dmatag,
865 			    sc->bge_cdata.bge_rx_jumbo_map);
866 		case 2:
867 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
868 		case 1:
869 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
870 			break;
871 		default:
872 			break;
873 		}
874 	}
875 
876 	return error;
877 }
878 
879 /*
880  * Allocate a jumbo buffer.
881  */
882 static void *
883 bge_jalloc(struct bge_softc *sc)
884 {
885 	struct bge_jpool_entry   *entry;
886 
887 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
888 
889 	if (entry == NULL) {
890 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
891 		return(NULL);
892 	}
893 
894 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
895 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
896 	return(sc->bge_cdata.bge_jslots[entry->slot]);
897 }
898 
899 /*
900  * Release a jumbo buffer.
901  */
902 static void
903 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
904 {
905 	struct bge_jpool_entry *entry;
906 	struct bge_softc *sc;
907 	int i, s;
908 
909 	/* Extract the softc struct pointer. */
910 	sc = (struct bge_softc *)arg;
911 
912 	if (sc == NULL)
913 		panic("bge_jfree: can't find softc pointer!");
914 
915 	/* calculate the slot this buffer belongs to */
916 
917 	i = ((char *)buf
918 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
919 
920 	if ((i < 0) || (i >= BGE_JSLOTS))
921 		panic("bge_jfree: asked to free buffer that we don't manage!");
922 
923 	s = splvm();
924 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
925 	if (entry == NULL)
926 		panic("bge_jfree: buffer not in use!");
927 	entry->slot = i;
928 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
929 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
930 
931 	if (__predict_true(m != NULL))
932   		pool_cache_put(mb_cache, m);
933 	splx(s);
934 }
935 
936 
937 /*
938  * Intialize a standard receive ring descriptor.
939  */
940 static int
941 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
942 {
943 	struct mbuf		*m_new = NULL;
944 	struct bge_rx_bd	*r;
945 	int			error;
946 
947 	if (dmamap == NULL) {
948 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
949 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
950 		if (error != 0)
951 			return error;
952 	}
953 
954 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
955 
956 	if (m == NULL) {
957 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
958 		if (m_new == NULL) {
959 			return(ENOBUFS);
960 		}
961 
962 		MCLGET(m_new, M_DONTWAIT);
963 		if (!(m_new->m_flags & M_EXT)) {
964 			m_freem(m_new);
965 			return(ENOBUFS);
966 		}
967 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
968 
969 	} else {
970 		m_new = m;
971 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
972 		m_new->m_data = m_new->m_ext.ext_buf;
973 	}
974 	if (!sc->bge_rx_alignment_bug)
975 	    m_adj(m_new, ETHER_ALIGN);
976 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
977 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
978 		return(ENOBUFS);
979 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
980 	    BUS_DMASYNC_PREREAD);
981 
982 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
983 	r = &sc->bge_rdata->bge_rx_std_ring[i];
984 	bge_set_hostaddr(&r->bge_addr,
985 	    dmamap->dm_segs[0].ds_addr);
986 	r->bge_flags = BGE_RXBDFLAG_END;
987 	r->bge_len = m_new->m_len;
988 	r->bge_idx = i;
989 
990 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
991 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
992 		i * sizeof (struct bge_rx_bd),
993 	    sizeof (struct bge_rx_bd),
994 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
995 
996 	return(0);
997 }
998 
999 /*
1000  * Initialize a jumbo receive ring descriptor. This allocates
1001  * a jumbo buffer from the pool managed internally by the driver.
1002  */
1003 static int
1004 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1005 {
1006 	struct mbuf *m_new = NULL;
1007 	struct bge_rx_bd *r;
1008 	void *buf = NULL;
1009 
1010 	if (m == NULL) {
1011 
1012 		/* Allocate the mbuf. */
1013 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1014 		if (m_new == NULL) {
1015 			return(ENOBUFS);
1016 		}
1017 
1018 		/* Allocate the jumbo buffer */
1019 		buf = bge_jalloc(sc);
1020 		if (buf == NULL) {
1021 			m_freem(m_new);
1022 			aprint_error_dev(sc->bge_dev,
1023 			    "jumbo allocation failed -- packet dropped!\n");
1024 			return(ENOBUFS);
1025 		}
1026 
1027 		/* Attach the buffer to the mbuf. */
1028 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1029 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1030 		    bge_jfree, sc);
1031 		m_new->m_flags |= M_EXT_RW;
1032 	} else {
1033 		m_new = m;
1034 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1035 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1036 	}
1037 	if (!sc->bge_rx_alignment_bug)
1038 	    m_adj(m_new, ETHER_ALIGN);
1039 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1040 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1041 	    BUS_DMASYNC_PREREAD);
1042 	/* Set up the descriptor. */
1043 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1044 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1045 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1046 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1047 	r->bge_len = m_new->m_len;
1048 	r->bge_idx = i;
1049 
1050 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1051 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1052 		i * sizeof (struct bge_rx_bd),
1053 	    sizeof (struct bge_rx_bd),
1054 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1055 
1056 	return(0);
1057 }
1058 
1059 /*
1060  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1061  * that's 1MB or memory, which is a lot. For now, we fill only the first
1062  * 256 ring entries and hope that our CPU is fast enough to keep up with
1063  * the NIC.
1064  */
1065 static int
1066 bge_init_rx_ring_std(struct bge_softc *sc)
1067 {
1068 	int i;
1069 
1070 	if (sc->bge_flags & BGE_RXRING_VALID)
1071 		return 0;
1072 
1073 	for (i = 0; i < BGE_SSLOTS; i++) {
1074 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1075 			return(ENOBUFS);
1076 	}
1077 
1078 	sc->bge_std = i - 1;
1079 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1080 
1081 	sc->bge_flags |= BGE_RXRING_VALID;
1082 
1083 	return(0);
1084 }
1085 
1086 static void
1087 bge_free_rx_ring_std(struct bge_softc *sc)
1088 {
1089 	int i;
1090 
1091 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1092 		return;
1093 
1094 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1095 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1096 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1097 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1098 			bus_dmamap_destroy(sc->bge_dmatag,
1099 			    sc->bge_cdata.bge_rx_std_map[i]);
1100 		}
1101 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1102 		    sizeof(struct bge_rx_bd));
1103 	}
1104 
1105 	sc->bge_flags &= ~BGE_RXRING_VALID;
1106 }
1107 
1108 static int
1109 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1110 {
1111 	int i;
1112 	volatile struct bge_rcb *rcb;
1113 
1114 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1115 		return 0;
1116 
1117 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1118 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1119 			return(ENOBUFS);
1120 	};
1121 
1122 	sc->bge_jumbo = i - 1;
1123 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1124 
1125 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1126 	rcb->bge_maxlen_flags = 0;
1127 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1128 
1129 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1130 
1131 	return(0);
1132 }
1133 
1134 static void
1135 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1136 {
1137 	int i;
1138 
1139 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1140 		return;
1141 
1142 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1143 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1144 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1145 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1146 		}
1147 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1148 		    sizeof(struct bge_rx_bd));
1149 	}
1150 
1151 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1152 }
1153 
1154 static void
1155 bge_free_tx_ring(struct bge_softc *sc)
1156 {
1157 	int i, freed;
1158 	struct txdmamap_pool_entry *dma;
1159 
1160 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1161 		return;
1162 
1163 	freed = 0;
1164 
1165 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1166 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1167 			freed++;
1168 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1169 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1170 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1171 					    link);
1172 			sc->txdma[i] = 0;
1173 		}
1174 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1175 		    sizeof(struct bge_tx_bd));
1176 	}
1177 
1178 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1179 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1180 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1181 		free(dma, M_DEVBUF);
1182 	}
1183 
1184 	sc->bge_flags &= ~BGE_TXRING_VALID;
1185 }
1186 
1187 static int
1188 bge_init_tx_ring(struct bge_softc *sc)
1189 {
1190 	int i;
1191 	bus_dmamap_t dmamap;
1192 	struct txdmamap_pool_entry *dma;
1193 
1194 	if (sc->bge_flags & BGE_TXRING_VALID)
1195 		return 0;
1196 
1197 	sc->bge_txcnt = 0;
1198 	sc->bge_tx_saved_considx = 0;
1199 
1200 	/* Initialize transmit producer index for host-memory send ring. */
1201 	sc->bge_tx_prodidx = 0;
1202 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1203 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1204 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1205 
1206 	/* NIC-memory send ring  not used; initialize to zero. */
1207 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1208 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1209 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1210 
1211 	SLIST_INIT(&sc->txdma_list);
1212 	for (i = 0; i < BGE_RSLOTS; i++) {
1213 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1214 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1215 		    &dmamap))
1216 			return(ENOBUFS);
1217 		if (dmamap == NULL)
1218 			panic("dmamap NULL in bge_init_tx_ring");
1219 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1220 		if (dma == NULL) {
1221 			aprint_error_dev(sc->bge_dev,
1222 			    "can't alloc txdmamap_pool_entry\n");
1223 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1224 			return (ENOMEM);
1225 		}
1226 		dma->dmamap = dmamap;
1227 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1228 	}
1229 
1230 	sc->bge_flags |= BGE_TXRING_VALID;
1231 
1232 	return(0);
1233 }
1234 
1235 static void
1236 bge_setmulti(struct bge_softc *sc)
1237 {
1238 	struct ethercom		*ac = &sc->ethercom;
1239 	struct ifnet		*ifp = &ac->ec_if;
1240 	struct ether_multi	*enm;
1241 	struct ether_multistep  step;
1242 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1243 	u_int32_t		h;
1244 	int			i;
1245 
1246 	if (ifp->if_flags & IFF_PROMISC)
1247 		goto allmulti;
1248 
1249 	/* Now program new ones. */
1250 	ETHER_FIRST_MULTI(step, ac, enm);
1251 	while (enm != NULL) {
1252 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1253 			/*
1254 			 * We must listen to a range of multicast addresses.
1255 			 * For now, just accept all multicasts, rather than
1256 			 * trying to set only those filter bits needed to match
1257 			 * the range.  (At this time, the only use of address
1258 			 * ranges is for IP multicast routing, for which the
1259 			 * range is big enough to require all bits set.)
1260 			 */
1261 			goto allmulti;
1262 		}
1263 
1264 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1265 
1266 		/* Just want the 7 least-significant bits. */
1267 		h &= 0x7f;
1268 
1269 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1270 		ETHER_NEXT_MULTI(step, enm);
1271 	}
1272 
1273 	ifp->if_flags &= ~IFF_ALLMULTI;
1274 	goto setit;
1275 
1276  allmulti:
1277 	ifp->if_flags |= IFF_ALLMULTI;
1278 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1279 
1280  setit:
1281 	for (i = 0; i < 4; i++)
1282 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1283 }
1284 
1285 const int bge_swapbits[] = {
1286 	0,
1287 	BGE_MODECTL_BYTESWAP_DATA,
1288 	BGE_MODECTL_WORDSWAP_DATA,
1289 	BGE_MODECTL_BYTESWAP_NONFRAME,
1290 	BGE_MODECTL_WORDSWAP_NONFRAME,
1291 
1292 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1293 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1294 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1295 
1296 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1297 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1298 
1299 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1300 
1301 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1302 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1303 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1304 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1305 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1306 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1307 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1308 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1309 
1310 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1311 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1312 };
1313 
1314 int bge_swapindex = 0;
1315 
1316 /*
1317  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1318  * self-test results.
1319  */
1320 static int
1321 bge_chipinit(struct bge_softc *sc)
1322 {
1323 	u_int32_t		cachesize;
1324 	int			i;
1325 	u_int32_t		dma_rw_ctl;
1326 
1327 
1328 	/* Set endianness before we access any non-PCI registers. */
1329 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1330 	    BGE_INIT);
1331 
1332 	/* Set power state to D0. */
1333 	bge_setpowerstate(sc, 0);
1334 
1335 	/*
1336 	 * Check the 'ROM failed' bit on the RX CPU to see if
1337 	 * self-tests passed.
1338 	 */
1339 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1340 		aprint_error_dev(sc->bge_dev,
1341 		    "RX CPU self-diagnostics failed!\n");
1342 		return(ENODEV);
1343 	}
1344 
1345 	/* Clear the MAC control register */
1346 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1347 
1348 	/*
1349 	 * Clear the MAC statistics block in the NIC's
1350 	 * internal memory.
1351 	 */
1352 	for (i = BGE_STATS_BLOCK;
1353 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1354 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1355 
1356 	for (i = BGE_STATUS_BLOCK;
1357 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1358 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1359 
1360 	/* Set up the PCI DMA control register. */
1361 	if (sc->bge_pcie) {
1362 	  u_int32_t device_ctl;
1363 
1364 		/* From FreeBSD */
1365 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1366 		    device_xname(sc->bge_dev)));
1367 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1368 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1369 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1370 
1371 		/* jonathan: alternative from Linux driver */
1372 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
1373 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
1374 
1375 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
1376 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1377 					   BGE_PCI_CONF_DEV_CTRL);
1378 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1379 
1380 		if ((device_ctl & 0x00e0) && 0) {
1381 			/*
1382 			 * XXX jonathan@NetBSD.org:
1383 			 * This clause is exactly what the Broadcom-supplied
1384 			 * Linux does; but given overall register programming
1385 			 * by if_bge(4), this larger DMA-write watermark
1386 			 * value causes bcm5721 chips to totally wedge.
1387 			 */
1388 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1389 		} else {
1390 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1391 		}
1392 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1393 	    BGE_PCISTATE_PCI_BUSMODE) {
1394 		/* Conventional PCI bus */
1395 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1396 		    device_xname(sc->bge_dev)));
1397 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1398 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1399 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1400 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1401 			dma_rw_ctl |= 0x0F;
1402 		}
1403 	} else {
1404 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1405 		    device_xname(sc->bge_dev)));
1406 		/* PCI-X bus */
1407 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1408 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1409 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1410 		    (0x0F);
1411 		/*
1412 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1413 		 * for hardware bugs, which means we should also clear
1414 		 * the low-order MINDMA bits.  In addition, the 5704
1415 		 * uses a different encoding of read/write watermarks.
1416 		 */
1417 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1418 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1419 			  /* should be 0x1f0000 */
1420 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1421 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1422 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1423 		}
1424 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1425 			dma_rw_ctl &=  0xfffffff0;
1426 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1427 		}
1428 		else if (BGE_IS_5714_FAMILY(sc)) {
1429 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1430 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1431 			/* XXX magic values, Broadcom-supplied Linux driver */
1432 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1433 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
1434 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1435 			else
1436 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1437 		}
1438 	}
1439 
1440 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1441 
1442 	/*
1443 	 * Set up general mode register.
1444 	 */
1445 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1446 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1447 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1448 
1449 	/* Get cache line size. */
1450 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1451 
1452 	/*
1453 	 * Avoid violating PCI spec on certain chip revs.
1454 	 */
1455 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1456 	    PCIM_CMD_MWIEN) {
1457 		switch(cachesize) {
1458 		case 1:
1459 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1460 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1461 			break;
1462 		case 2:
1463 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1464 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1465 			break;
1466 		case 4:
1467 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1468 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1469 			break;
1470 		case 8:
1471 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1472 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1473 			break;
1474 		case 16:
1475 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1476 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1477 			break;
1478 		case 32:
1479 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1480 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1481 			break;
1482 		case 64:
1483 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1484 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1485 			break;
1486 		default:
1487 		/* Disable PCI memory write and invalidate. */
1488 #if 0
1489 			if (bootverbose)
1490 				aprint_error_dev(sc->bge_dev,
1491 				    "cache line size %d not supported "
1492 				    "disabling PCI MWI\n",
1493 #endif
1494 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1495 			    PCIM_CMD_MWIEN);
1496 			break;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Disable memory write invalidate.  Apparently it is not supported
1502 	 * properly by these devices.
1503 	 */
1504 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1505 
1506 
1507 #ifdef __brokenalpha__
1508 	/*
1509 	 * Must insure that we do not cross an 8K (bytes) boundary
1510 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1511 	 * restriction on some ALPHA platforms with early revision
1512 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1513 	 */
1514 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1515 #endif
1516 
1517 	/* Set the timer prescaler (always 66MHz) */
1518 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1519 
1520 	return(0);
1521 }
1522 
1523 static int
1524 bge_blockinit(struct bge_softc *sc)
1525 {
1526 	volatile struct bge_rcb		*rcb;
1527 	bus_size_t		rcb_addr;
1528 	int			i;
1529 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1530 	bge_hostaddr		taddr;
1531 
1532 	/*
1533 	 * Initialize the memory window pointer register so that
1534 	 * we can access the first 32K of internal NIC RAM. This will
1535 	 * allow us to set up the TX send ring RCBs and the RX return
1536 	 * ring RCBs, plus other things which live in NIC memory.
1537 	 */
1538 
1539 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1540 
1541 	/* Configure mbuf memory pool */
1542 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1543 		if (sc->bge_extram) {
1544 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1545 			    BGE_EXT_SSRAM);
1546 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1547 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1548 			else
1549 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1550 		} else {
1551 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1552 			    BGE_BUFFPOOL_1);
1553 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1554 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1555 			else
1556 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1557 		}
1558 
1559 		/* Configure DMA resource pool */
1560 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1561 		    BGE_DMA_DESCRIPTORS);
1562 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1563 	}
1564 
1565 	/* Configure mbuf pool watermarks */
1566 #ifdef ORIG_WPAUL_VALUES
1567 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1568 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1569 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1570 #else
1571 
1572 	/* new broadcom docs strongly recommend these: */
1573 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1574 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1575 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1576 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1577 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1578 		} else {
1579 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1580 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1581 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1582 		}
1583 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1584 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1585 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1586 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1587 	} else {
1588 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1589 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1590 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1591 	}
1592 #endif
1593 
1594 	/* Configure DMA resource watermarks */
1595 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1596 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1597 
1598 	/* Enable buffer manager */
1599 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1600 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1601 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1602 
1603 		/* Poll for buffer manager start indication */
1604 		for (i = 0; i < BGE_TIMEOUT; i++) {
1605 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1606 				break;
1607 			DELAY(10);
1608 		}
1609 
1610 		if (i == BGE_TIMEOUT) {
1611 			aprint_error_dev(sc->bge_dev,
1612 			    "buffer manager failed to start\n");
1613 			return(ENXIO);
1614 		}
1615 	}
1616 
1617 	/* Enable flow-through queues */
1618 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1619 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1620 
1621 	/* Wait until queue initialization is complete */
1622 	for (i = 0; i < BGE_TIMEOUT; i++) {
1623 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1624 			break;
1625 		DELAY(10);
1626 	}
1627 
1628 	if (i == BGE_TIMEOUT) {
1629 		aprint_error_dev(sc->bge_dev,
1630 		    "flow-through queue init failed\n");
1631 		return(ENXIO);
1632 	}
1633 
1634 	/* Initialize the standard RX ring control block */
1635 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1636 	bge_set_hostaddr(&rcb->bge_hostaddr,
1637 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1638 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1639 		rcb->bge_maxlen_flags =
1640 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1641 	} else {
1642 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1643 	}
1644 	if (sc->bge_extram)
1645 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1646 	else
1647 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1648 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1649 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1650 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1651 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1652 
1653 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1654 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1655 	} else {
1656 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1657 	}
1658 
1659 	/*
1660 	 * Initialize the jumbo RX ring control block
1661 	 * We set the 'ring disabled' bit in the flags
1662 	 * field until we're actually ready to start
1663 	 * using this ring (i.e. once we set the MTU
1664 	 * high enough to require it).
1665 	 */
1666 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1667 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1668 		bge_set_hostaddr(&rcb->bge_hostaddr,
1669 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1670 		rcb->bge_maxlen_flags =
1671 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1672 			BGE_RCB_FLAG_RING_DISABLED);
1673 		if (sc->bge_extram)
1674 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1675 		else
1676 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1677 
1678 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1679 		    rcb->bge_hostaddr.bge_addr_hi);
1680 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1681 		    rcb->bge_hostaddr.bge_addr_lo);
1682 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1683 		    rcb->bge_maxlen_flags);
1684 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1685 
1686 		/* Set up dummy disabled mini ring RCB */
1687 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1688 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1689 		    BGE_RCB_FLAG_RING_DISABLED);
1690 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1691 		    rcb->bge_maxlen_flags);
1692 
1693 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1694 		    offsetof(struct bge_ring_data, bge_info),
1695 		    sizeof (struct bge_gib),
1696 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1697 	}
1698 
1699 	/*
1700 	 * Set the BD ring replenish thresholds. The recommended
1701 	 * values are 1/8th the number of descriptors allocated to
1702 	 * each ring.
1703 	 */
1704 	i = BGE_STD_RX_RING_CNT / 8;
1705 
1706 	/*
1707  	 * Use a value of 8 for the following chips to workaround HW errata.
1708 	 * Some of these chips have been added based on empirical
1709 	 * evidence (they don't work unless this is done).
1710 	 */
1711 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1712 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1713 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1714 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
1715 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
1716 		i = 8;
1717 
1718 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1719 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1720 
1721 	/*
1722 	 * Disable all unused send rings by setting the 'ring disabled'
1723 	 * bit in the flags field of all the TX send ring control blocks.
1724 	 * These are located in NIC memory.
1725 	 */
1726 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1727 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1728 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1729 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1730 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1731 		rcb_addr += sizeof(struct bge_rcb);
1732 	}
1733 
1734 	/* Configure TX RCB 0 (we use only the first ring) */
1735 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1736 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1737 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1738 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1739 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1740 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1741 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1742 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1743 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1744 	}
1745 
1746 	/* Disable all unused RX return rings */
1747 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1748 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1749 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1750 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1751 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1752 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1753                                      BGE_RCB_FLAG_RING_DISABLED));
1754 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1755 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1756 		    (i * (sizeof(u_int64_t))), 0);
1757 		rcb_addr += sizeof(struct bge_rcb);
1758 	}
1759 
1760 	/* Initialize RX ring indexes */
1761 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1762 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1763 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1764 
1765 	/*
1766 	 * Set up RX return ring 0
1767 	 * Note that the NIC address for RX return rings is 0x00000000.
1768 	 * The return rings live entirely within the host, so the
1769 	 * nicaddr field in the RCB isn't used.
1770 	 */
1771 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1772 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1773 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1774 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1775 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1776 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1777 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1778 
1779 	/* Set random backoff seed for TX */
1780 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1781 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1782 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1783 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1784 	    BGE_TX_BACKOFF_SEED_MASK);
1785 
1786 	/* Set inter-packet gap */
1787 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1788 
1789 	/*
1790 	 * Specify which ring to use for packets that don't match
1791 	 * any RX rules.
1792 	 */
1793 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1794 
1795 	/*
1796 	 * Configure number of RX lists. One interrupt distribution
1797 	 * list, sixteen active lists, one bad frames class.
1798 	 */
1799 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1800 
1801 	/* Inialize RX list placement stats mask. */
1802 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1803 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1804 
1805 	/* Disable host coalescing until we get it set up */
1806 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1807 
1808 	/* Poll to make sure it's shut down. */
1809 	for (i = 0; i < BGE_TIMEOUT; i++) {
1810 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1811 			break;
1812 		DELAY(10);
1813 	}
1814 
1815 	if (i == BGE_TIMEOUT) {
1816 		aprint_error_dev(sc->bge_dev,
1817 		    "host coalescing engine failed to idle\n");
1818 		return(ENXIO);
1819 	}
1820 
1821 	/* Set up host coalescing defaults */
1822 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1823 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1824 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1825 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1826 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1827 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1828 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1829 	}
1830 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1831 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1832 
1833 	/* Set up address of statistics block */
1834 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1835 		bge_set_hostaddr(&taddr,
1836 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1837 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1838 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1839 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1840 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1841 	}
1842 
1843 	/* Set up address of status block */
1844 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1845 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1846 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1847 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1848 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1849 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1850 
1851 	/* Turn on host coalescing state machine */
1852 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1853 
1854 	/* Turn on RX BD completion state machine and enable attentions */
1855 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1856 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1857 
1858 	/* Turn on RX list placement state machine */
1859 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1860 
1861 	/* Turn on RX list selector state machine. */
1862 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1863 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1864 	}
1865 
1866 	/* Turn on DMA, clear stats */
1867 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1868 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1869 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1870 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1871 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1872 
1873 	/* Set misc. local control, enable interrupts on attentions */
1874 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1875 
1876 #ifdef notdef
1877 	/* Assert GPIO pins for PHY reset */
1878 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1879 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1880 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1881 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1882 #endif
1883 
1884 #if defined(not_quite_yet)
1885 	/* Linux driver enables enable gpio pin #1 on 5700s */
1886 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1887 		sc->bge_local_ctrl_reg |=
1888 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1889 	}
1890 #endif
1891 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1892 
1893 	/* Turn on DMA completion state machine */
1894 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1895 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1896 	}
1897 
1898 	/* Turn on write DMA state machine */
1899 	{
1900 		uint32_t bge_wdma_mode =
1901 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1902 
1903 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1904 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1905 		  /* Enable host coalescing bug fix; see Linux tg3.c */
1906 		  bge_wdma_mode |= (1 << 29);
1907 
1908 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1909         }
1910 
1911 	/* Turn on read DMA state machine */
1912 	{
1913 		uint32_t dma_read_modebits;
1914 
1915 		dma_read_modebits =
1916 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1917 
1918 		if (sc->bge_pcie && 0) {
1919 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1920 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1921 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1922 		}
1923 
1924 		/* XXX broadcom-supplied linux driver; undocumented */
1925 		if (BGE_IS_5750_OR_BEYOND(sc)) {
1926  			/*
1927 			 * XXX: magic values.
1928 			 * From Broadcom-supplied Linux driver;  apparently
1929 			 * required to workaround a DMA bug affecting TSO
1930 			 * on bcm575x/bcm5721?
1931 			 */
1932 			dma_read_modebits |= (1 << 27);
1933 		}
1934 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1935 	}
1936 
1937 	/* Turn on RX data completion state machine */
1938 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1939 
1940 	/* Turn on RX BD initiator state machine */
1941 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1942 
1943 	/* Turn on RX data and RX BD initiator state machine */
1944 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1945 
1946 	/* Turn on Mbuf cluster free state machine */
1947 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1948 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1949 	}
1950 
1951 	/* Turn on send BD completion state machine */
1952 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1953 
1954 	/* Turn on send data completion state machine */
1955 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1956 
1957 	/* Turn on send data initiator state machine */
1958 	if (BGE_IS_5750_OR_BEYOND(sc)) {
1959 		/* XXX: magic value from Linux driver */
1960 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1961 	} else {
1962 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1963 	}
1964 
1965 	/* Turn on send BD initiator state machine */
1966 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1967 
1968 	/* Turn on send BD selector state machine */
1969 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1970 
1971 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1972 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1973 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1974 
1975 	/* ack/clear link change events */
1976 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1977 	    BGE_MACSTAT_CFG_CHANGED);
1978 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1979 
1980 	/* Enable PHY auto polling (for MII/GMII only) */
1981 	if (sc->bge_tbi) {
1982 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1983  	} else {
1984 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1985 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1986 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1987 			    BGE_EVTENB_MI_INTERRUPT);
1988 	}
1989 
1990 	/* Enable link state change attentions. */
1991 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1992 
1993 	return(0);
1994 }
1995 
1996 static const struct bge_revision {
1997 	uint32_t		br_chipid;
1998 	uint32_t		br_quirks;
1999 	const char		*br_name;
2000 } bge_revisions[] = {
2001 	{ BGE_CHIPID_BCM5700_A0,
2002 	  BGE_QUIRK_LINK_STATE_BROKEN,
2003 	  "BCM5700 A0" },
2004 
2005 	{ BGE_CHIPID_BCM5700_A1,
2006 	  BGE_QUIRK_LINK_STATE_BROKEN,
2007 	  "BCM5700 A1" },
2008 
2009 	{ BGE_CHIPID_BCM5700_B0,
2010 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
2011 	  "BCM5700 B0" },
2012 
2013 	{ BGE_CHIPID_BCM5700_B1,
2014 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2015 	  "BCM5700 B1" },
2016 
2017 	{ BGE_CHIPID_BCM5700_B2,
2018 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2019 	  "BCM5700 B2" },
2020 
2021 	{ BGE_CHIPID_BCM5700_B3,
2022 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2023 	  "BCM5700 B3" },
2024 
2025 	/* This is treated like a BCM5700 Bx */
2026 	{ BGE_CHIPID_BCM5700_ALTIMA,
2027 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
2028 	  "BCM5700 Altima" },
2029 
2030 	{ BGE_CHIPID_BCM5700_C0,
2031 	  0,
2032 	  "BCM5700 C0" },
2033 
2034 	{ BGE_CHIPID_BCM5701_A0,
2035 	  0, /*XXX really, just not known */
2036 	  "BCM5701 A0" },
2037 
2038 	{ BGE_CHIPID_BCM5701_B0,
2039 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2040 	  "BCM5701 B0" },
2041 
2042 	{ BGE_CHIPID_BCM5701_B2,
2043 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2044 	  "BCM5701 B2" },
2045 
2046 	{ BGE_CHIPID_BCM5701_B5,
2047 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2048 	  "BCM5701 B5" },
2049 
2050 	{ BGE_CHIPID_BCM5703_A0,
2051 	  0,
2052 	  "BCM5703 A0" },
2053 
2054 	{ BGE_CHIPID_BCM5703_A1,
2055 	  0,
2056 	  "BCM5703 A1" },
2057 
2058 	{ BGE_CHIPID_BCM5703_A2,
2059 	  BGE_QUIRK_ONLY_PHY_1,
2060 	  "BCM5703 A2" },
2061 
2062 	{ BGE_CHIPID_BCM5703_A3,
2063 	  BGE_QUIRK_ONLY_PHY_1,
2064 	  "BCM5703 A3" },
2065 
2066 	{ BGE_CHIPID_BCM5703_B0,
2067 	  BGE_QUIRK_ONLY_PHY_1,
2068 	  "BCM5703 B0" },
2069 
2070 	{ BGE_CHIPID_BCM5704_A0,
2071   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2072 	  "BCM5704 A0" },
2073 
2074 	{ BGE_CHIPID_BCM5704_A1,
2075   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2076 	  "BCM5704 A1" },
2077 
2078 	{ BGE_CHIPID_BCM5704_A2,
2079   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2080 	  "BCM5704 A2" },
2081 
2082 	{ BGE_CHIPID_BCM5704_A3,
2083   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
2084 	  "BCM5704 A3" },
2085 
2086 	{ BGE_CHIPID_BCM5705_A0,
2087 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2088 	  "BCM5705 A0" },
2089 
2090 	{ BGE_CHIPID_BCM5705_A1,
2091 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2092 	  "BCM5705 A1" },
2093 
2094 	{ BGE_CHIPID_BCM5705_A2,
2095 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2096 	  "BCM5705 A2" },
2097 
2098 	{ BGE_CHIPID_BCM5705_A3,
2099 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2100 	  "BCM5705 A3" },
2101 
2102 	{ BGE_CHIPID_BCM5750_A0,
2103 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2104 	  "BCM5750 A0" },
2105 
2106 	{ BGE_CHIPID_BCM5750_A1,
2107 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2108 	  "BCM5750 A1" },
2109 
2110 	{ BGE_CHIPID_BCM5751_A1,
2111 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2112 	  "BCM5751 A1" },
2113 
2114 	{ BGE_CHIPID_BCM5752_A0,
2115 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2116 	  "BCM5752 A0" },
2117 
2118 	{ BGE_CHIPID_BCM5752_A1,
2119 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2120 	  "BCM5752 A1" },
2121 
2122 	{ BGE_CHIPID_BCM5752_A2,
2123 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2124 	  "BCM5752 A2" },
2125 
2126 	{ BGE_CHIPID_BCM5755_A0,
2127 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2128 	  "BCM5755 A0" },
2129 
2130 	{ BGE_CHIPID_BCM5755_A1,
2131 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2132 	  "BCM5755 A1" },
2133 
2134 	{ BGE_CHIPID_BCM5755_A2,
2135 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2136 	  "BCM5755 A2" },
2137 
2138 	{ BGE_CHIPID_BCM5755_C0,
2139 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2140 	  "BCM5755 C0" },
2141 
2142 	{ BGE_CHIPID_BCM5787_A0,
2143 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2144 	  "BCM5754/5787 A0" },
2145 
2146 	{ BGE_CHIPID_BCM5787_A1,
2147 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2148 	  "BCM5754/5787 A1" },
2149 
2150 	{ BGE_CHIPID_BCM5787_A2,
2151 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2152 	  "BCM5754/5787 A2" },
2153 
2154 	{ 0, 0, NULL }
2155 };
2156 
2157 /*
2158  * Some defaults for major revisions, so that newer steppings
2159  * that we don't know about have a shot at working.
2160  */
2161 static const struct bge_revision bge_majorrevs[] = {
2162 	{ BGE_ASICREV_BCM5700,
2163 	  BGE_QUIRK_LINK_STATE_BROKEN,
2164 	  "unknown BCM5700" },
2165 
2166 	{ BGE_ASICREV_BCM5701,
2167 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2168 	  "unknown BCM5701" },
2169 
2170 	{ BGE_ASICREV_BCM5703,
2171 	  0,
2172 	  "unknown BCM5703" },
2173 
2174 	{ BGE_ASICREV_BCM5704,
2175 	  BGE_QUIRK_ONLY_PHY_1,
2176 	  "unknown BCM5704" },
2177 
2178 	{ BGE_ASICREV_BCM5705,
2179 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2180 	  "unknown BCM5705" },
2181 
2182 	{ BGE_ASICREV_BCM5750,
2183 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2184 	  "unknown BCM575x family" },
2185 
2186 	{ BGE_ASICREV_BCM5714_A0,
2187 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2188 	  "unknown BCM5714" },
2189 
2190 	{ BGE_ASICREV_BCM5714,
2191 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2192 	  "unknown BCM5714" },
2193 
2194 	{ BGE_ASICREV_BCM5752,
2195 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2196 	  "unknown BCM5752 family" },
2197 
2198 	{ BGE_ASICREV_BCM5755,
2199 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2200 	  "unknown BCM5755" },
2201 
2202 	{ BGE_ASICREV_BCM5780,
2203 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2204 	  "unknown BCM5780" },
2205 
2206 	{ BGE_ASICREV_BCM5787,
2207 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2208 	  "unknown BCM5787" },
2209 
2210 	{ BGE_ASICREV_BCM5906,
2211 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2212 	  "unknown BCM5906" },
2213 
2214 	{ 0,
2215 	  0,
2216 	  NULL }
2217 };
2218 
2219 
2220 static const struct bge_revision *
2221 bge_lookup_rev(uint32_t chipid)
2222 {
2223 	const struct bge_revision *br;
2224 
2225 	for (br = bge_revisions; br->br_name != NULL; br++) {
2226 		if (br->br_chipid == chipid)
2227 			return (br);
2228 	}
2229 
2230 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2231 		if (br->br_chipid == BGE_ASICREV(chipid))
2232 			return (br);
2233 	}
2234 
2235 	return (NULL);
2236 }
2237 
2238 static const struct bge_product {
2239 	pci_vendor_id_t		bp_vendor;
2240 	pci_product_id_t	bp_product;
2241 	const char		*bp_name;
2242 } bge_products[] = {
2243 	/*
2244 	 * The BCM5700 documentation seems to indicate that the hardware
2245 	 * still has the Alteon vendor ID burned into it, though it
2246 	 * should always be overridden by the value in the EEPROM.  We'll
2247 	 * check for it anyway.
2248 	 */
2249 	{ PCI_VENDOR_ALTEON,
2250 	  PCI_PRODUCT_ALTEON_BCM5700,
2251 	  "Broadcom BCM5700 Gigabit Ethernet",
2252 	  },
2253 	{ PCI_VENDOR_ALTEON,
2254 	  PCI_PRODUCT_ALTEON_BCM5701,
2255 	  "Broadcom BCM5701 Gigabit Ethernet",
2256 	  },
2257 
2258 	{ PCI_VENDOR_ALTIMA,
2259 	  PCI_PRODUCT_ALTIMA_AC1000,
2260 	  "Altima AC1000 Gigabit Ethernet",
2261 	  },
2262 	{ PCI_VENDOR_ALTIMA,
2263 	  PCI_PRODUCT_ALTIMA_AC1001,
2264 	  "Altima AC1001 Gigabit Ethernet",
2265 	   },
2266 	{ PCI_VENDOR_ALTIMA,
2267 	  PCI_PRODUCT_ALTIMA_AC9100,
2268 	  "Altima AC9100 Gigabit Ethernet",
2269 	  },
2270 
2271 	{ PCI_VENDOR_BROADCOM,
2272 	  PCI_PRODUCT_BROADCOM_BCM5700,
2273 	  "Broadcom BCM5700 Gigabit Ethernet",
2274 	  },
2275 	{ PCI_VENDOR_BROADCOM,
2276 	  PCI_PRODUCT_BROADCOM_BCM5701,
2277 	  "Broadcom BCM5701 Gigabit Ethernet",
2278 	  },
2279 	{ PCI_VENDOR_BROADCOM,
2280 	  PCI_PRODUCT_BROADCOM_BCM5702,
2281 	  "Broadcom BCM5702 Gigabit Ethernet",
2282 	  },
2283 	{ PCI_VENDOR_BROADCOM,
2284 	  PCI_PRODUCT_BROADCOM_BCM5702X,
2285 	  "Broadcom BCM5702X Gigabit Ethernet" },
2286 
2287 	{ PCI_VENDOR_BROADCOM,
2288 	  PCI_PRODUCT_BROADCOM_BCM5703,
2289 	  "Broadcom BCM5703 Gigabit Ethernet",
2290 	  },
2291 	{ PCI_VENDOR_BROADCOM,
2292 	  PCI_PRODUCT_BROADCOM_BCM5703X,
2293 	  "Broadcom BCM5703X Gigabit Ethernet",
2294 	  },
2295 	{ PCI_VENDOR_BROADCOM,
2296 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2297 	  "Broadcom BCM5703 Gigabit Ethernet",
2298 	  },
2299 
2300    	{ PCI_VENDOR_BROADCOM,
2301 	  PCI_PRODUCT_BROADCOM_BCM5704C,
2302 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
2303 	  },
2304    	{ PCI_VENDOR_BROADCOM,
2305 	  PCI_PRODUCT_BROADCOM_BCM5704S,
2306 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
2307 	  },
2308 
2309    	{ PCI_VENDOR_BROADCOM,
2310 	  PCI_PRODUCT_BROADCOM_BCM5705,
2311 	  "Broadcom BCM5705 Gigabit Ethernet",
2312 	  },
2313    	{ PCI_VENDOR_BROADCOM,
2314 	  PCI_PRODUCT_BROADCOM_BCM5705K,
2315 	  "Broadcom BCM5705K Gigabit Ethernet",
2316 	  },
2317    	{ PCI_VENDOR_BROADCOM,
2318 	  PCI_PRODUCT_BROADCOM_BCM5705M,
2319 	  "Broadcom BCM5705M Gigabit Ethernet",
2320 	  },
2321    	{ PCI_VENDOR_BROADCOM,
2322 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2323 	  "Broadcom BCM5705M Gigabit Ethernet",
2324 	  },
2325 
2326 	{ PCI_VENDOR_BROADCOM,
2327 	  PCI_PRODUCT_BROADCOM_BCM5714,
2328 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
2329 	  },
2330 	{ PCI_VENDOR_BROADCOM,
2331 	  PCI_PRODUCT_BROADCOM_BCM5715,
2332 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
2333 	  },
2334 	{ PCI_VENDOR_BROADCOM,
2335 	  PCI_PRODUCT_BROADCOM_BCM5789,
2336 	  "Broadcom BCM5789 Gigabit Ethernet",
2337 	  },
2338 
2339 	{ PCI_VENDOR_BROADCOM,
2340 	  PCI_PRODUCT_BROADCOM_BCM5721,
2341 	  "Broadcom BCM5721 Gigabit Ethernet",
2342 	  },
2343 
2344 	{ PCI_VENDOR_BROADCOM,
2345 	  PCI_PRODUCT_BROADCOM_BCM5722,
2346 	  "Broadcom BCM5722 Gigabit Ethernet",
2347 	  },
2348 
2349 	{ PCI_VENDOR_BROADCOM,
2350 	  PCI_PRODUCT_BROADCOM_BCM5750,
2351 	  "Broadcom BCM5750 Gigabit Ethernet",
2352 	  },
2353 
2354 	{ PCI_VENDOR_BROADCOM,
2355 	  PCI_PRODUCT_BROADCOM_BCM5750M,
2356 	  "Broadcom BCM5750M Gigabit Ethernet",
2357 	  },
2358 
2359 	{ PCI_VENDOR_BROADCOM,
2360 	  PCI_PRODUCT_BROADCOM_BCM5751,
2361 	  "Broadcom BCM5751 Gigabit Ethernet",
2362 	  },
2363 
2364 	{ PCI_VENDOR_BROADCOM,
2365 	  PCI_PRODUCT_BROADCOM_BCM5751M,
2366 	  "Broadcom BCM5751M Gigabit Ethernet",
2367 	  },
2368 
2369 	{ PCI_VENDOR_BROADCOM,
2370 	  PCI_PRODUCT_BROADCOM_BCM5752,
2371 	  "Broadcom BCM5752 Gigabit Ethernet",
2372 	  },
2373 
2374 	{ PCI_VENDOR_BROADCOM,
2375 	  PCI_PRODUCT_BROADCOM_BCM5752M,
2376 	  "Broadcom BCM5752M Gigabit Ethernet",
2377 	  },
2378 
2379 	{ PCI_VENDOR_BROADCOM,
2380 	  PCI_PRODUCT_BROADCOM_BCM5753,
2381 	  "Broadcom BCM5753 Gigabit Ethernet",
2382 	  },
2383 
2384 	{ PCI_VENDOR_BROADCOM,
2385 	  PCI_PRODUCT_BROADCOM_BCM5753M,
2386 	  "Broadcom BCM5753M Gigabit Ethernet",
2387 	  },
2388 
2389 	{ PCI_VENDOR_BROADCOM,
2390 	  PCI_PRODUCT_BROADCOM_BCM5754,
2391 	  "Broadcom BCM5754 Gigabit Ethernet",
2392 	},
2393 
2394 	{ PCI_VENDOR_BROADCOM,
2395 	  PCI_PRODUCT_BROADCOM_BCM5754M,
2396 	  "Broadcom BCM5754M Gigabit Ethernet",
2397 	},
2398 
2399 	{ PCI_VENDOR_BROADCOM,
2400 	  PCI_PRODUCT_BROADCOM_BCM5755,
2401 	  "Broadcom BCM5755 Gigabit Ethernet",
2402 	},
2403 
2404 	{ PCI_VENDOR_BROADCOM,
2405 	  PCI_PRODUCT_BROADCOM_BCM5755M,
2406 	  "Broadcom BCM5755M Gigabit Ethernet",
2407 	},
2408 
2409    	{ PCI_VENDOR_BROADCOM,
2410 	  PCI_PRODUCT_BROADCOM_BCM5780,
2411 	  "Broadcom BCM5780 Gigabit Ethernet",
2412 	  },
2413 
2414    	{ PCI_VENDOR_BROADCOM,
2415 	  PCI_PRODUCT_BROADCOM_BCM5780S,
2416 	  "Broadcom BCM5780S Gigabit Ethernet",
2417 	  },
2418 
2419    	{ PCI_VENDOR_BROADCOM,
2420 	  PCI_PRODUCT_BROADCOM_BCM5782,
2421 	  "Broadcom BCM5782 Gigabit Ethernet",
2422 	},
2423 
2424 	{ PCI_VENDOR_BROADCOM,
2425 	  PCI_PRODUCT_BROADCOM_BCM5786,
2426 	  "Broadcom BCM5786 Gigabit Ethernet",
2427 	},
2428 
2429 	{ PCI_VENDOR_BROADCOM,
2430 	  PCI_PRODUCT_BROADCOM_BCM5787,
2431 	  "Broadcom BCM5787 Gigabit Ethernet",
2432 	},
2433 
2434 	{ PCI_VENDOR_BROADCOM,
2435 	  PCI_PRODUCT_BROADCOM_BCM5787M,
2436 	  "Broadcom BCM5787M Gigabit Ethernet",
2437 	},
2438 
2439    	{ PCI_VENDOR_BROADCOM,
2440 	  PCI_PRODUCT_BROADCOM_BCM5788,
2441 	  "Broadcom BCM5788 Gigabit Ethernet",
2442 	  },
2443    	{ PCI_VENDOR_BROADCOM,
2444 	  PCI_PRODUCT_BROADCOM_BCM5789,
2445 	  "Broadcom BCM5789 Gigabit Ethernet",
2446 	  },
2447 
2448    	{ PCI_VENDOR_BROADCOM,
2449 	  PCI_PRODUCT_BROADCOM_BCM5901,
2450 	  "Broadcom BCM5901 Fast Ethernet",
2451 	  },
2452    	{ PCI_VENDOR_BROADCOM,
2453 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
2454 	  "Broadcom BCM5901A2 Fast Ethernet",
2455 	  },
2456 
2457 	{ PCI_VENDOR_SCHNEIDERKOCH,
2458 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2459 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
2460 	  },
2461 
2462 	{ PCI_VENDOR_3COM,
2463 	  PCI_PRODUCT_3COM_3C996,
2464 	  "3Com 3c996 Gigabit Ethernet",
2465 	  },
2466 
2467 	{ PCI_VENDOR_BROADCOM,
2468 	  PCI_PRODUCT_BROADCOM_BCM5906,
2469 	  "Broadcom BCM5906 Fast Ethernet",
2470 	  },
2471 
2472 	{ PCI_VENDOR_BROADCOM,
2473 	  PCI_PRODUCT_BROADCOM_BCM5906M,
2474 	  "Broadcom BCM5906M Fast Ethernet",
2475 	  },
2476 
2477 	{ 0,
2478 	  0,
2479 	  NULL },
2480 };
2481 
2482 static const struct bge_product *
2483 bge_lookup(const struct pci_attach_args *pa)
2484 {
2485 	const struct bge_product *bp;
2486 
2487 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2488 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2489 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2490 			return (bp);
2491 	}
2492 
2493 	return (NULL);
2494 }
2495 
2496 static int
2497 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2498 {
2499 #ifdef NOTYET
2500 	u_int32_t pm_ctl = 0;
2501 
2502 	/* XXX FIXME: make sure indirect accesses enabled? */
2503 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2504 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2505 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2506 
2507 	/* clear the PME_assert bit and power state bits, enable PME */
2508 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2509 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2510 	pm_ctl |= (1 << 8);
2511 
2512 	if (powerlevel == 0) {
2513 		pm_ctl |= PCIM_PSTAT_D0;
2514 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2515 		    pm_ctl, 2);
2516 		DELAY(10000);
2517 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2518 		DELAY(10000);
2519 
2520 #ifdef NOTYET
2521 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2522 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2523 #endif
2524 		DELAY(40); DELAY(40); DELAY(40);
2525 		DELAY(10000);	/* above not quite adequate on 5700 */
2526 		return 0;
2527 	}
2528 
2529 
2530 	/*
2531 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2532 	 * GMII gpio pins. Example code assumes all hardware vendors
2533 	 * followed Broadom's sample pcb layout. Until we verify that
2534 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2535 	 */
2536 	aprint_error_dev(sc->bge_dev,
2537 	    "power state %d unimplemented; check GPIO pins\n",
2538 	    powerlevel);
2539 #endif
2540 	return EOPNOTSUPP;
2541 }
2542 
2543 
2544 /*
2545  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2546  * against our list and return its name if we find a match. Note
2547  * that since the Broadcom controller contains VPD support, we
2548  * can get the device name string from the controller itself instead
2549  * of the compiled-in string. This is a little slow, but it guarantees
2550  * we'll always announce the right product name.
2551  */
2552 static int
2553 bge_probe(device_t parent, cfdata_t match, void *aux)
2554 {
2555 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2556 
2557 	if (bge_lookup(pa) != NULL)
2558 		return (1);
2559 
2560 	return (0);
2561 }
2562 
2563 static void
2564 bge_attach(device_t parent, device_t self, void *aux)
2565 {
2566 	struct bge_softc	*sc = device_private(self);
2567 	struct pci_attach_args	*pa = aux;
2568 	const struct bge_product *bp;
2569 	const struct bge_revision *br;
2570 	pci_chipset_tag_t	pc;
2571 	pci_intr_handle_t	ih;
2572 	const char		*intrstr = NULL;
2573 	bus_dma_segment_t	seg;
2574 	int			rseg;
2575 	u_int32_t		hwcfg = 0;
2576 	u_int32_t		command;
2577 	struct ifnet		*ifp;
2578 	void *			kva;
2579 	u_char			eaddr[ETHER_ADDR_LEN];
2580 	pcireg_t		memtype;
2581 	bus_addr_t		memaddr;
2582 	bus_size_t		memsize;
2583 	u_int32_t		pm_ctl;
2584 
2585 	bp = bge_lookup(pa);
2586 	KASSERT(bp != NULL);
2587 
2588 	sc->sc_pc = pa->pa_pc;
2589 	sc->sc_pcitag = pa->pa_tag;
2590 	sc->bge_dev = self;
2591 
2592 	aprint_naive(": Ethernet controller\n");
2593 	aprint_normal(": %s\n", bp->bp_name);
2594 
2595 	/*
2596 	 * Map control/status registers.
2597 	 */
2598 	DPRINTFN(5, ("Map control/status regs\n"));
2599 	pc = sc->sc_pc;
2600 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2601 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2602 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2603 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2604 
2605 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2606 		aprint_error_dev(sc->bge_dev,
2607 		    "failed to enable memory mapping!\n");
2608 		return;
2609 	}
2610 
2611 	DPRINTFN(5, ("pci_mem_find\n"));
2612 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2613  	switch (memtype) {
2614 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2615 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2616 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2617 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2618 		    &memaddr, &memsize) == 0)
2619 			break;
2620 	default:
2621 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2622 		return;
2623 	}
2624 
2625 	DPRINTFN(5, ("pci_intr_map\n"));
2626 	if (pci_intr_map(pa, &ih)) {
2627 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2628 		return;
2629 	}
2630 
2631 	DPRINTFN(5, ("pci_intr_string\n"));
2632 	intrstr = pci_intr_string(pc, ih);
2633 
2634 	DPRINTFN(5, ("pci_intr_establish\n"));
2635 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2636 
2637 	if (sc->bge_intrhand == NULL) {
2638 		aprint_error_dev(sc->bge_dev,
2639 		    "couldn't establish interrupt%s%s\n",
2640 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2641 		return;
2642 	}
2643 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2644 
2645 	/*
2646 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2647 	 * can clobber the chip's PCI config-space power control registers,
2648 	 * leaving the card in D3 powersave state.
2649 	 * We do not have memory-mapped registers in this state,
2650 	 * so force device into D0 state before starting initialization.
2651 	 */
2652 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2653 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2654 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2655 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2656 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2657 
2658 	/*
2659 	 * Save ASIC rev.  Look up any quirks associated with this
2660 	 * ASIC.
2661 	 */
2662 	sc->bge_chipid =
2663 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2664 	    BGE_PCIMISCCTL_ASICREV;
2665 
2666 	/*
2667 	 * Detect PCI-Express devices
2668 	 * XXX: guessed from Linux/FreeBSD; no documentation
2669 	 */
2670 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2671 	        NULL, NULL) != 0)
2672 		sc->bge_pcie = 1;
2673 	else
2674 		sc->bge_pcie = 0;
2675 
2676 	/* Try to reset the chip. */
2677 	DPRINTFN(5, ("bge_reset\n"));
2678 	bge_reset(sc);
2679 
2680 	if (bge_chipinit(sc)) {
2681 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2682 		bge_release_resources(sc);
2683 		return;
2684 	}
2685 
2686 	/*
2687 	 * Get station address from the EEPROM.
2688 	 */
2689 	if (bge_get_eaddr(sc, eaddr)) {
2690 		aprint_error_dev(sc->bge_dev,
2691 		"failed to reade station address\n");
2692 		bge_release_resources(sc);
2693 		return;
2694 	}
2695 
2696 	br = bge_lookup_rev(sc->bge_chipid);
2697 
2698 	if (br == NULL) {
2699 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2700 		    sc->bge_chipid >> 16);
2701 		sc->bge_quirks = 0;
2702 	} else {
2703 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2704 		    br->br_name, sc->bge_chipid >> 16);
2705 		sc->bge_quirks |= br->br_quirks;
2706 	}
2707 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2708 
2709 	/* Allocate the general information block and ring buffers. */
2710 	if (pci_dma64_available(pa))
2711 		sc->bge_dmatag = pa->pa_dmat64;
2712 	else
2713 		sc->bge_dmatag = pa->pa_dmat;
2714 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2715 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2716 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2717 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2718 		return;
2719 	}
2720 	DPRINTFN(5, ("bus_dmamem_map\n"));
2721 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2722 			   sizeof(struct bge_ring_data), &kva,
2723 			   BUS_DMA_NOWAIT)) {
2724 		aprint_error_dev(sc->bge_dev,
2725 		    "can't map DMA buffers (%zu bytes)\n",
2726 		    sizeof(struct bge_ring_data));
2727 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2728 		return;
2729 	}
2730 	DPRINTFN(5, ("bus_dmamem_create\n"));
2731 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2732 	    sizeof(struct bge_ring_data), 0,
2733 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2734 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2735 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2736 				 sizeof(struct bge_ring_data));
2737 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2738 		return;
2739 	}
2740 	DPRINTFN(5, ("bus_dmamem_load\n"));
2741 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2742 			    sizeof(struct bge_ring_data), NULL,
2743 			    BUS_DMA_NOWAIT)) {
2744 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2745 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2746 				 sizeof(struct bge_ring_data));
2747 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2748 		return;
2749 	}
2750 
2751 	DPRINTFN(5, ("bzero\n"));
2752 	sc->bge_rdata = (struct bge_ring_data *)kva;
2753 
2754 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2755 
2756 	/* Try to allocate memory for jumbo buffers. */
2757 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2758 		if (bge_alloc_jumbo_mem(sc)) {
2759 			aprint_error_dev(sc->bge_dev,
2760 			    "jumbo buffer allocation failed\n");
2761 		} else
2762 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2763 	}
2764 
2765 	/* Set default tuneable values. */
2766 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2767 	sc->bge_rx_coal_ticks = 150;
2768 	sc->bge_rx_max_coal_bds = 64;
2769 #ifdef ORIG_WPAUL_VALUES
2770 	sc->bge_tx_coal_ticks = 150;
2771 	sc->bge_tx_max_coal_bds = 128;
2772 #else
2773 	sc->bge_tx_coal_ticks = 300;
2774 	sc->bge_tx_max_coal_bds = 400;
2775 #endif
2776 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2777 		sc->bge_tx_coal_ticks = (12 * 5);
2778 		sc->bge_tx_max_coal_bds = (12 * 5);
2779 			aprint_verbose_dev(sc->bge_dev,
2780 			    "setting short Tx thresholds\n");
2781 	}
2782 
2783 	/* Set up ifnet structure */
2784 	ifp = &sc->ethercom.ec_if;
2785 	ifp->if_softc = sc;
2786 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2787 	ifp->if_ioctl = bge_ioctl;
2788 	ifp->if_stop = bge_stop;
2789 	ifp->if_start = bge_start;
2790 	ifp->if_init = bge_init;
2791 	ifp->if_watchdog = bge_watchdog;
2792 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2793 	IFQ_SET_READY(&ifp->if_snd);
2794 	DPRINTFN(5, ("strcpy if_xname\n"));
2795 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2796 
2797 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2798 		sc->ethercom.ec_if.if_capabilities |=
2799 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2800 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2801 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2802 	sc->ethercom.ec_capabilities |=
2803 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2804 
2805 	if (sc->bge_pcie)
2806 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2807 
2808 	/*
2809 	 * Do MII setup.
2810 	 */
2811 	DPRINTFN(5, ("mii setup\n"));
2812 	sc->bge_mii.mii_ifp = ifp;
2813 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2814 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2815 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2816 
2817 	/*
2818 	 * Figure out what sort of media we have by checking the
2819 	 * hardware config word in the first 32k of NIC internal memory,
2820 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2821 	 * cards, this value appears to be unset. If that's the
2822 	 * case, we have to rely on identifying the NIC by its PCI
2823 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2824 	 */
2825 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2826 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2827 	} else {
2828 		bge_read_eeprom(sc, (void *)&hwcfg,
2829 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2830 		hwcfg = be32toh(hwcfg);
2831 	}
2832 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2833 		sc->bge_tbi = 1;
2834 
2835 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2836 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2837 	    SK_SUBSYSID_9D41)
2838 		sc->bge_tbi = 1;
2839 
2840 	if (sc->bge_tbi) {
2841 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2842 		    bge_ifmedia_sts);
2843 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2844 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2845 			    0, NULL);
2846 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2847 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2848 	} else {
2849 		/*
2850 		 * Do transceiver setup.
2851 		 */
2852 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2853 			     bge_ifmedia_sts);
2854 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2855 			   MII_PHY_ANY, MII_OFFSET_ANY,
2856 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
2857 
2858 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2859 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2860 			ifmedia_add(&sc->bge_mii.mii_media,
2861 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2862 			ifmedia_set(&sc->bge_mii.mii_media,
2863 				    IFM_ETHER|IFM_MANUAL);
2864 		} else
2865 			ifmedia_set(&sc->bge_mii.mii_media,
2866 				    IFM_ETHER|IFM_AUTO);
2867 	}
2868 
2869 	/*
2870 	 * When using the BCM5701 in PCI-X mode, data corruption has
2871 	 * been observed in the first few bytes of some received packets.
2872 	 * Aligning the packet buffer in memory eliminates the corruption.
2873 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2874 	 * which do not support unaligned accesses, we will realign the
2875 	 * payloads by copying the received packets.
2876 	 */
2877 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2878 		/* If in PCI-X mode, work around the alignment bug. */
2879 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2880                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2881                          BGE_PCISTATE_PCI_BUSSPEED)
2882 		sc->bge_rx_alignment_bug = 1;
2883         }
2884 
2885 	/*
2886 	 * Call MI attach routine.
2887 	 */
2888 	DPRINTFN(5, ("if_attach\n"));
2889 	if_attach(ifp);
2890 	DPRINTFN(5, ("ether_ifattach\n"));
2891 	ether_ifattach(ifp, eaddr);
2892 #if NRND > 0
2893 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
2894 		RND_TYPE_NET, 0);
2895 #endif
2896 #ifdef BGE_EVENT_COUNTERS
2897 	/*
2898 	 * Attach event counters.
2899 	 */
2900 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2901 	    NULL, device_xname(sc->bge_dev), "intr");
2902 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2903 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
2904 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2905 	    NULL, device_xname(sc->bge_dev), "tx_xon");
2906 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2907 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
2908 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2909 	    NULL, device_xname(sc->bge_dev), "rx_xon");
2910 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2911 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
2912 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2913 	    NULL, device_xname(sc->bge_dev), "xoffentered");
2914 #endif /* BGE_EVENT_COUNTERS */
2915 	DPRINTFN(5, ("callout_init\n"));
2916 	callout_init(&sc->bge_timeout, 0);
2917 
2918 	if (!pmf_device_register(self, NULL, NULL))
2919 		aprint_error_dev(self, "couldn't establish power handler\n");
2920 	else
2921 		pmf_class_network_register(self, ifp);
2922 }
2923 
2924 static void
2925 bge_release_resources(struct bge_softc *sc)
2926 {
2927 	if (sc->bge_vpd_prodname != NULL)
2928 		free(sc->bge_vpd_prodname, M_DEVBUF);
2929 
2930 	if (sc->bge_vpd_readonly != NULL)
2931 		free(sc->bge_vpd_readonly, M_DEVBUF);
2932 }
2933 
2934 static void
2935 bge_reset(struct bge_softc *sc)
2936 {
2937 	u_int32_t cachesize, command, pcistate, new_pcistate;
2938 	int i, val;
2939 	void (*write_op)(struct bge_softc *, int, int);
2940 
2941 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc) &&
2942 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
2943 	    	if (sc->bge_pcie) {
2944 			write_op = bge_writemem_direct;
2945 		} else {
2946 			write_op = bge_writemem_ind;
2947 		}
2948 	} else {
2949 		write_op = bge_writereg_ind;
2950 	}
2951 
2952 
2953 	/* Save some important PCI state. */
2954 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2955 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2956 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2957 
2958 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2959 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2960 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2961 
2962 	/*
2963 	 * Disable the firmware fastboot feature on 5752 ASIC
2964 	 * to avoid firmware timeout.
2965 	 */
2966 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2967 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2968 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2969 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2970 
2971 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2972 	/*
2973 	 * XXX: from FreeBSD/Linux; no documentation
2974 	 */
2975 	if (sc->bge_pcie) {
2976 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2977 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2978 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2979 			/* No idea what that actually means */
2980 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2981 			val |= (1<<29);
2982 		}
2983 	}
2984 
2985 	/* Issue global reset */
2986 	write_op(sc, BGE_MISC_CFG, val);
2987 
2988 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2989 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
2990 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2991 		    i | BGE_VCPU_STATUS_DRV_RESET);
2992 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2993 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2994 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2995 	}
2996 
2997 
2998 
2999 	DELAY(1000);
3000 
3001 	/*
3002 	 * XXX: from FreeBSD/Linux; no documentation
3003 	 */
3004 	if (sc->bge_pcie) {
3005 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3006 			pcireg_t reg;
3007 
3008 			DELAY(500000);
3009 			/* XXX: Magic Numbers */
3010 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
3011 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
3012 			    reg | (1 << 15));
3013 		}
3014 		/*
3015 		 * XXX: Magic Numbers.
3016 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
3017 		 * Should be replaced with references to PCI config-space
3018 		 * capability block for PCI-Express.
3019 		 */
3020 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3021 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
3022 
3023 	}
3024 
3025 	/* Reset some of the PCI state that got zapped by reset */
3026 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3027 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
3028 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
3029 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3030 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3031 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3032 
3033 	/* Enable memory arbiter. */
3034 	{
3035 		uint32_t marbmode = 0;
3036 		if (BGE_IS_5714_FAMILY(sc)) {
3037 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3038 		}
3039  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3040 	}
3041 
3042 
3043 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3044 		for (i = 0; i < BGE_TIMEOUT; i++) {
3045 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
3046 			if (val & BGE_VCPU_STATUS_INIT_DONE)
3047 				break;
3048 			DELAY(100);
3049 		}
3050 		if (i == BGE_TIMEOUT) {
3051 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
3052 			return;
3053 		}
3054 	} else {
3055 		/*
3056 		 * Write the magic number to the firmware mailbox at 0xb50
3057 		 * so that the driver can synchronize with the firmware.
3058 		 */
3059 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3060 
3061 		/*
3062 		 * Poll the value location we just wrote until
3063 		 * we see the 1's complement of the magic number.
3064 		 * This indicates that the firmware initialization
3065 		 * is complete.
3066 		 */
3067 		for (i = 0; i < BGE_TIMEOUT; i++) {
3068 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
3069 			if (val == ~BGE_MAGIC_NUMBER)
3070 				break;
3071 			DELAY(1000);
3072 		}
3073 
3074 		if (i >= BGE_TIMEOUT) {
3075 			aprint_error_dev(sc->bge_dev,
3076 			    "firmware handshake timed out, val = %x\n", val);
3077 			/*
3078 			 * XXX: occasionally fired on bcm5721, but without
3079 			 * apparent harm.  For now, keep going if we timeout
3080 			 * against PCI-E devices.
3081 			 */
3082 			 if (!sc->bge_pcie)
3083 				  return;
3084 		}
3085 	}
3086 
3087 	/*
3088 	 * XXX Wait for the value of the PCISTATE register to
3089 	 * return to its original pre-reset state. This is a
3090 	 * fairly good indicator of reset completion. If we don't
3091 	 * wait for the reset to fully complete, trying to read
3092 	 * from the device's non-PCI registers may yield garbage
3093 	 * results.
3094 	 */
3095 	for (i = 0; i < 10000; i++) {
3096 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3097 		    BGE_PCI_PCISTATE);
3098 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3099 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3100 			break;
3101 		DELAY(10);
3102 	}
3103 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3104 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3105 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3106 	}
3107 
3108 	/* XXX: from FreeBSD/Linux; no documentation */
3109 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
3110 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
3111 
3112 	/* Enable memory arbiter. */
3113 	/* XXX why do this twice? */
3114 	{
3115 		uint32_t marbmode = 0;
3116 		if (BGE_IS_5714_FAMILY(sc)) {
3117 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3118 		}
3119  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3120 	}
3121 
3122 	/* Fix up byte swapping */
3123 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3124 
3125 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3126 
3127 	DELAY(10000);
3128 }
3129 
3130 /*
3131  * Frame reception handling. This is called if there's a frame
3132  * on the receive return list.
3133  *
3134  * Note: we have to be able to handle two possibilities here:
3135  * 1) the frame is from the jumbo recieve ring
3136  * 2) the frame is from the standard receive ring
3137  */
3138 
3139 static void
3140 bge_rxeof(struct bge_softc *sc)
3141 {
3142 	struct ifnet *ifp;
3143 	int stdcnt = 0, jumbocnt = 0;
3144 	bus_dmamap_t dmamap;
3145 	bus_addr_t offset, toff;
3146 	bus_size_t tlen;
3147 	int tosync;
3148 
3149 	ifp = &sc->ethercom.ec_if;
3150 
3151 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3152 	    offsetof(struct bge_ring_data, bge_status_block),
3153 	    sizeof (struct bge_status_block),
3154 	    BUS_DMASYNC_POSTREAD);
3155 
3156 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3157 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
3158 	    sc->bge_rx_saved_considx;
3159 
3160 #if NRND > 0
3161 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3162 		rnd_add_uint32(&sc->rnd_source, tosync);
3163 #endif
3164 
3165 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
3166 
3167 	if (tosync < 0) {
3168 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
3169 		    sizeof (struct bge_rx_bd);
3170 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3171 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3172 		tosync = -tosync;
3173 	}
3174 
3175 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3176 	    offset, tosync * sizeof (struct bge_rx_bd),
3177 	    BUS_DMASYNC_POSTREAD);
3178 
3179 	while(sc->bge_rx_saved_considx !=
3180 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
3181 		struct bge_rx_bd	*cur_rx;
3182 		u_int32_t		rxidx;
3183 		struct mbuf		*m = NULL;
3184 
3185 		cur_rx = &sc->bge_rdata->
3186 			bge_rx_return_ring[sc->bge_rx_saved_considx];
3187 
3188 		rxidx = cur_rx->bge_idx;
3189 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
3190 
3191 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3192 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3193 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3194 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3195 			jumbocnt++;
3196 			bus_dmamap_sync(sc->bge_dmatag,
3197 			    sc->bge_cdata.bge_rx_jumbo_map,
3198 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3199 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3200 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3201 				ifp->if_ierrors++;
3202 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3203 				continue;
3204 			}
3205 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3206 					     NULL)== ENOBUFS) {
3207 				ifp->if_ierrors++;
3208 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3209 				continue;
3210 			}
3211 		} else {
3212 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3213 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3214 
3215 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3216 			stdcnt++;
3217 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3218 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3219 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3220 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3221 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3222 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3223 				ifp->if_ierrors++;
3224 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3225 				continue;
3226 			}
3227 			if (bge_newbuf_std(sc, sc->bge_std,
3228 			    NULL, dmamap) == ENOBUFS) {
3229 				ifp->if_ierrors++;
3230 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3231 				continue;
3232 			}
3233 		}
3234 
3235 		ifp->if_ipackets++;
3236 #ifndef __NO_STRICT_ALIGNMENT
3237                 /*
3238                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3239                  * the Rx buffer has the layer-2 header unaligned.
3240                  * If our CPU requires alignment, re-align by copying.
3241                  */
3242 		if (sc->bge_rx_alignment_bug) {
3243 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3244                                 cur_rx->bge_len);
3245 			m->m_data += ETHER_ALIGN;
3246 		}
3247 #endif
3248 
3249 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3250 		m->m_pkthdr.rcvif = ifp;
3251 
3252 #if NBPFILTER > 0
3253 		/*
3254 		 * Handle BPF listeners. Let the BPF user see the packet.
3255 		 */
3256 		if (ifp->if_bpf)
3257 			bpf_mtap(ifp->if_bpf, m);
3258 #endif
3259 
3260 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3261 
3262 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3263 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3264 		/*
3265 		 * Rx transport checksum-offload may also
3266 		 * have bugs with packets which, when transmitted,
3267 		 * were `runts' requiring padding.
3268 		 */
3269 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3270 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3271 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3272 			m->m_pkthdr.csum_data =
3273 			    cur_rx->bge_tcp_udp_csum;
3274 			m->m_pkthdr.csum_flags |=
3275 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3276 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3277 		}
3278 
3279 		/*
3280 		 * If we received a packet with a vlan tag, pass it
3281 		 * to vlan_input() instead of ether_input().
3282 		 */
3283 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3284 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3285 		}
3286 
3287 		(*ifp->if_input)(ifp, m);
3288 	}
3289 
3290 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3291 	if (stdcnt)
3292 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3293 	if (jumbocnt)
3294 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3295 }
3296 
3297 static void
3298 bge_txeof(struct bge_softc *sc)
3299 {
3300 	struct bge_tx_bd *cur_tx = NULL;
3301 	struct ifnet *ifp;
3302 	struct txdmamap_pool_entry *dma;
3303 	bus_addr_t offset, toff;
3304 	bus_size_t tlen;
3305 	int tosync;
3306 	struct mbuf *m;
3307 
3308 	ifp = &sc->ethercom.ec_if;
3309 
3310 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3311 	    offsetof(struct bge_ring_data, bge_status_block),
3312 	    sizeof (struct bge_status_block),
3313 	    BUS_DMASYNC_POSTREAD);
3314 
3315 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3316 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3317 	    sc->bge_tx_saved_considx;
3318 
3319 #if NRND > 0
3320 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3321 		rnd_add_uint32(&sc->rnd_source, tosync);
3322 #endif
3323 
3324 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3325 
3326 	if (tosync < 0) {
3327 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3328 		    sizeof (struct bge_tx_bd);
3329 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3330 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3331 		tosync = -tosync;
3332 	}
3333 
3334 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3335 	    offset, tosync * sizeof (struct bge_tx_bd),
3336 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3337 
3338 	/*
3339 	 * Go through our tx ring and free mbufs for those
3340 	 * frames that have been sent.
3341 	 */
3342 	while (sc->bge_tx_saved_considx !=
3343 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3344 		u_int32_t		idx = 0;
3345 
3346 		idx = sc->bge_tx_saved_considx;
3347 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3348 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3349 			ifp->if_opackets++;
3350 		m = sc->bge_cdata.bge_tx_chain[idx];
3351 		if (m != NULL) {
3352 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3353 			dma = sc->txdma[idx];
3354 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3355 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3356 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3357 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3358 			sc->txdma[idx] = NULL;
3359 
3360 			m_freem(m);
3361 		}
3362 		sc->bge_txcnt--;
3363 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3364 		ifp->if_timer = 0;
3365 	}
3366 
3367 	if (cur_tx != NULL)
3368 		ifp->if_flags &= ~IFF_OACTIVE;
3369 }
3370 
3371 static int
3372 bge_intr(void *xsc)
3373 {
3374 	struct bge_softc *sc;
3375 	struct ifnet *ifp;
3376 
3377 	sc = xsc;
3378 	ifp = &sc->ethercom.ec_if;
3379 
3380 	/*
3381 	 * Ascertain whether the interrupt is from this bge device.
3382 	 * Do the cheap test first.
3383 	 */
3384 	if ((sc->bge_rdata->bge_status_block.bge_status &
3385 	    BGE_STATFLAG_UPDATED) == 0) {
3386 		/*
3387 		 * Sometimes, the interrupt comes in before the
3388 		 * DMA update of the status block (performed prior
3389 		 * to the  interrupt itself) has completed.
3390 		 * In that case, do the (extremely expensive!)
3391 		 * PCI-config-space register read.
3392 		 */
3393 		uint32_t pcistate =
3394 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3395 
3396 		if (pcistate & BGE_PCISTATE_INTR_STATE)
3397 			return (0);
3398 
3399 	}
3400 	/*
3401 	 *  If we reach here, then the interrupt is for us.
3402 	 */
3403 
3404 	/* Ack interrupt and stop others from occuring. */
3405 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3406 
3407 	BGE_EVCNT_INCR(sc->bge_ev_intr);
3408 
3409 	/*
3410 	 * Process link state changes.
3411 	 * Grrr. The link status word in the status block does
3412 	 * not work correctly on the BCM5700 rev AX and BX chips,
3413 	 * according to all available information. Hence, we have
3414 	 * to enable MII interrupts in order to properly obtain
3415 	 * async link changes. Unfortunately, this also means that
3416 	 * we have to read the MAC status register to detect link
3417 	 * changes, thereby adding an additional register access to
3418 	 * the interrupt handler.
3419 	 */
3420 
3421 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3422 		u_int32_t		status;
3423 
3424 		status = CSR_READ_4(sc, BGE_MAC_STS);
3425 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
3426 			sc->bge_link = 0;
3427 			callout_stop(&sc->bge_timeout);
3428 			bge_tick(sc);
3429 			/* Clear the interrupt */
3430 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3431 			    BGE_EVTENB_MI_INTERRUPT);
3432 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3433 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3434 			    BRGPHY_INTRS);
3435 		}
3436 	} else {
3437 		u_int32_t		status;
3438 
3439 		status = CSR_READ_4(sc, BGE_MAC_STS);
3440 		if (status & BGE_MACSTAT_LINK_CHANGED) {
3441 			sc->bge_link = 0;
3442 			callout_stop(&sc->bge_timeout);
3443 			bge_tick(sc);
3444 			/* Clear the interrupt */
3445 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3446 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3447 			    BGE_MACSTAT_LINK_CHANGED);
3448 		}
3449 	}
3450 
3451 	if (ifp->if_flags & IFF_RUNNING) {
3452 		/* Check RX return ring producer/consumer */
3453 		bge_rxeof(sc);
3454 
3455 		/* Check TX ring producer/consumer */
3456 		bge_txeof(sc);
3457 	}
3458 
3459 	if (sc->bge_pending_rxintr_change) {
3460 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3461 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3462 		uint32_t junk;
3463 
3464 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3465 		DELAY(10);
3466 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3467 
3468 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3469 		DELAY(10);
3470 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3471 
3472 		sc->bge_pending_rxintr_change = 0;
3473 	}
3474 	bge_handle_events(sc);
3475 
3476 	/* Re-enable interrupts. */
3477 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3478 
3479 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3480 		bge_start(ifp);
3481 
3482 	return (1);
3483 }
3484 
3485 static void
3486 bge_tick(void *xsc)
3487 {
3488 	struct bge_softc *sc = xsc;
3489 	struct mii_data *mii = &sc->bge_mii;
3490 	int s;
3491 
3492 	s = splnet();
3493 
3494 	bge_stats_update(sc);
3495 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3496 
3497 	if (sc->bge_tbi) {
3498 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3499 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3500 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3501 		}
3502 	} else
3503 		mii_tick(mii);
3504 
3505 	splx(s);
3506 }
3507 
3508 static void
3509 bge_stats_update(struct bge_softc *sc)
3510 {
3511 	struct ifnet *ifp = &sc->ethercom.ec_if;
3512 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3513 	bus_size_t rstats = BGE_RX_STATS;
3514 
3515 #define READ_RSTAT(sc, stats, stat) \
3516 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3517 
3518 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3519 		ifp->if_collisions +=
3520 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3521 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3522 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3523 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3524 
3525 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3526 			      READ_RSTAT(sc, rstats, outXoffSent));
3527 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3528 			      READ_RSTAT(sc, rstats, outXonSent));
3529 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3530 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3531 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3532 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3533 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3534 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
3535 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3536 			      READ_RSTAT(sc, rstats, xoffStateEntered));
3537 		return;
3538 	}
3539 
3540 #undef READ_RSTAT
3541 #define READ_STAT(sc, stats, stat) \
3542 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3543 
3544 	ifp->if_collisions +=
3545 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3546 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3547 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3548 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3549 	  ifp->if_collisions;
3550 
3551 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3552 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3553 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3554 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3555 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3556 		      READ_STAT(sc, stats,
3557 		      		xoffPauseFramesReceived.bge_addr_lo));
3558 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3559 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3560 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3561 		      READ_STAT(sc, stats,
3562 		      		macControlFramesReceived.bge_addr_lo));
3563 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3564 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3565 
3566 #undef READ_STAT
3567 
3568 #ifdef notdef
3569 	ifp->if_collisions +=
3570 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3571 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3572 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3573 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3574 	   ifp->if_collisions;
3575 #endif
3576 }
3577 
3578 /*
3579  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3580  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3581  * but when such padded frames employ the  bge IP/TCP checksum offload,
3582  * the hardware checksum assist gives incorrect results (possibly
3583  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3584  * If we pad such runts with zeros, the onboard checksum comes out correct.
3585  */
3586 static inline int
3587 bge_cksum_pad(struct mbuf *pkt)
3588 {
3589 	struct mbuf *last = NULL;
3590 	int padlen;
3591 
3592 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3593 
3594 	/* if there's only the packet-header and we can pad there, use it. */
3595 	if (pkt->m_pkthdr.len == pkt->m_len &&
3596 	    M_TRAILINGSPACE(pkt) >= padlen) {
3597 		last = pkt;
3598 	} else {
3599 		/*
3600 		 * Walk packet chain to find last mbuf. We will either
3601 		 * pad there, or append a new mbuf and pad it
3602 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3603 		 */
3604 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3605 	      	       continue; /* do nothing */
3606 		}
3607 
3608 		/* `last' now points to last in chain. */
3609 		if (M_TRAILINGSPACE(last) < padlen) {
3610 			/* Allocate new empty mbuf, pad it. Compact later. */
3611 			struct mbuf *n;
3612 			MGET(n, M_DONTWAIT, MT_DATA);
3613 			if (n == NULL)
3614 				return ENOBUFS;
3615 			n->m_len = 0;
3616 			last->m_next = n;
3617 			last = n;
3618 		}
3619 	}
3620 
3621 	KDASSERT(!M_READONLY(last));
3622 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3623 
3624 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3625 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3626 	last->m_len += padlen;
3627 	pkt->m_pkthdr.len += padlen;
3628 	return 0;
3629 }
3630 
3631 /*
3632  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3633  */
3634 static inline int
3635 bge_compact_dma_runt(struct mbuf *pkt)
3636 {
3637 	struct mbuf	*m, *prev;
3638 	int 		totlen, prevlen;
3639 
3640 	prev = NULL;
3641 	totlen = 0;
3642 	prevlen = -1;
3643 
3644 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3645 		int mlen = m->m_len;
3646 		int shortfall = 8 - mlen ;
3647 
3648 		totlen += mlen;
3649 		if (mlen == 0) {
3650 			continue;
3651 		}
3652 		if (mlen >= 8)
3653 			continue;
3654 
3655 		/* If we get here, mbuf data is too small for DMA engine.
3656 		 * Try to fix by shuffling data to prev or next in chain.
3657 		 * If that fails, do a compacting deep-copy of the whole chain.
3658 		 */
3659 
3660 		/* Internal frag. If fits in prev, copy it there. */
3661 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3662 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3663 			prev->m_len += mlen;
3664 			m->m_len = 0;
3665 			/* XXX stitch chain */
3666 			prev->m_next = m_free(m);
3667 			m = prev;
3668 			continue;
3669 		}
3670 		else if (m->m_next != NULL &&
3671 			     M_TRAILINGSPACE(m) >= shortfall &&
3672 			     m->m_next->m_len >= (8 + shortfall)) {
3673 		    /* m is writable and have enough data in next, pull up. */
3674 
3675 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3676 			    shortfall);
3677 			m->m_len += shortfall;
3678 			m->m_next->m_len -= shortfall;
3679 			m->m_next->m_data += shortfall;
3680 		}
3681 		else if (m->m_next == NULL || 1) {
3682 		  	/* Got a runt at the very end of the packet.
3683 			 * borrow data from the tail of the preceding mbuf and
3684 			 * update its length in-place. (The original data is still
3685 			 * valid, so we can do this even if prev is not writable.)
3686 			 */
3687 
3688 			/* if we'd make prev a runt, just move all of its data. */
3689 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3690 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3691 
3692 			if ((prev->m_len - shortfall) < 8)
3693 				shortfall = prev->m_len;
3694 
3695 #ifdef notyet	/* just do the safe slow thing for now */
3696 			if (!M_READONLY(m)) {
3697 				if (M_LEADINGSPACE(m) < shorfall) {
3698 					void *m_dat;
3699 					m_dat = (m->m_flags & M_PKTHDR) ?
3700 					  m->m_pktdat : m->dat;
3701 					memmove(m_dat, mtod(m, void*), m->m_len);
3702 					m->m_data = m_dat;
3703 				    }
3704 			} else
3705 #endif	/* just do the safe slow thing */
3706 			{
3707 				struct mbuf * n = NULL;
3708 				int newprevlen = prev->m_len - shortfall;
3709 
3710 				MGET(n, M_NOWAIT, MT_DATA);
3711 				if (n == NULL)
3712 				   return ENOBUFS;
3713 				KASSERT(m->m_len + shortfall < MLEN
3714 					/*,
3715 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3716 
3717 				/* first copy the data we're stealing from prev */
3718 				memcpy(n->m_data, prev->m_data + newprevlen,
3719 				    shortfall);
3720 
3721 				/* update prev->m_len accordingly */
3722 				prev->m_len -= shortfall;
3723 
3724 				/* copy data from runt m */
3725 				memcpy(n->m_data + shortfall, m->m_data,
3726 				    m->m_len);
3727 
3728 				/* n holds what we stole from prev, plus m */
3729 				n->m_len = shortfall + m->m_len;
3730 
3731 				/* stitch n into chain and free m */
3732 				n->m_next = m->m_next;
3733 				prev->m_next = n;
3734 				/* KASSERT(m->m_next == NULL); */
3735 				m->m_next = NULL;
3736 				m_free(m);
3737 				m = n;	/* for continuing loop */
3738 			}
3739 		}
3740 		prevlen = m->m_len;
3741 	}
3742 	return 0;
3743 }
3744 
3745 /*
3746  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3747  * pointers to descriptors.
3748  */
3749 static int
3750 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3751 {
3752 	struct bge_tx_bd	*f = NULL;
3753 	u_int32_t		frag, cur;
3754 	u_int16_t		csum_flags = 0;
3755 	u_int16_t		txbd_tso_flags = 0;
3756 	struct txdmamap_pool_entry *dma;
3757 	bus_dmamap_t dmamap;
3758 	int			i = 0;
3759 	struct m_tag		*mtag;
3760 	int			use_tso, maxsegsize, error;
3761 
3762 	cur = frag = *txidx;
3763 
3764 	if (m_head->m_pkthdr.csum_flags) {
3765 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3766 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3767 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3768 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3769 	}
3770 
3771 	/*
3772 	 * If we were asked to do an outboard checksum, and the NIC
3773 	 * has the bug where it sometimes adds in the Ethernet padding,
3774 	 * explicitly pad with zeros so the cksum will be correct either way.
3775 	 * (For now, do this for all chip versions, until newer
3776 	 * are confirmed to not require the workaround.)
3777 	 */
3778 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3779 #ifdef notyet
3780 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3781 #endif
3782 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3783 		goto check_dma_bug;
3784 
3785 	if (bge_cksum_pad(m_head) != 0) {
3786 	    return ENOBUFS;
3787 	}
3788 
3789 check_dma_bug:
3790 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3791 		goto doit;
3792 	/*
3793 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3794 	 * less than eight bytes.  If we encounter a teeny mbuf
3795 	 * at the end of a chain, we can pad.  Otherwise, copy.
3796 	 */
3797 	if (bge_compact_dma_runt(m_head) != 0)
3798 		return ENOBUFS;
3799 
3800 doit:
3801 	dma = SLIST_FIRST(&sc->txdma_list);
3802 	if (dma == NULL)
3803 		return ENOBUFS;
3804 	dmamap = dma->dmamap;
3805 
3806 	/*
3807 	 * Set up any necessary TSO state before we start packing...
3808 	 */
3809 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3810 	if (!use_tso) {
3811 		maxsegsize = 0;
3812 	} else {	/* TSO setup */
3813 		unsigned  mss;
3814 		struct ether_header *eh;
3815 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3816 		struct mbuf * m0 = m_head;
3817 		struct ip *ip;
3818 		struct tcphdr *th;
3819 		int iphl, hlen;
3820 
3821 		/*
3822 		 * XXX It would be nice if the mbuf pkthdr had offset
3823 		 * fields for the protocol headers.
3824 		 */
3825 
3826 		eh = mtod(m0, struct ether_header *);
3827 		switch (htons(eh->ether_type)) {
3828 		case ETHERTYPE_IP:
3829 			offset = ETHER_HDR_LEN;
3830 			break;
3831 
3832 		case ETHERTYPE_VLAN:
3833 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3834 			break;
3835 
3836 		default:
3837 			/*
3838 			 * Don't support this protocol or encapsulation.
3839 			 */
3840 			return (ENOBUFS);
3841 		}
3842 
3843 		/*
3844 		 * TCP/IP headers are in the first mbuf; we can do
3845 		 * this the easy way.
3846 		 */
3847 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3848 		hlen = iphl + offset;
3849 		if (__predict_false(m0->m_len <
3850 				    (hlen + sizeof(struct tcphdr)))) {
3851 
3852 			aprint_debug_dev(sc->bge_dev,
3853 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3854 			    "not handled yet\n",
3855 			     m0->m_len, hlen+ sizeof(struct tcphdr));
3856 #ifdef NOTYET
3857 			/*
3858 			 * XXX jonathan@NetBSD.org: untested.
3859 			 * how to force  this branch to be taken?
3860 			 */
3861 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3862 
3863 			m_copydata(m0, offset, sizeof(ip), &ip);
3864 			m_copydata(m0, hlen, sizeof(th), &th);
3865 
3866 			ip.ip_len = 0;
3867 
3868 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3869 			    sizeof(ip.ip_len), &ip.ip_len);
3870 
3871 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3872 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3873 
3874 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3875 			    sizeof(th.th_sum), &th.th_sum);
3876 
3877 			hlen += th.th_off << 2;
3878 			iptcp_opt_words	= hlen;
3879 #else
3880 			/*
3881 			 * if_wm "hard" case not yet supported, can we not
3882 			 * mandate it out of existence?
3883 			 */
3884 			(void) ip; (void)th; (void) ip_tcp_hlen;
3885 
3886 			return ENOBUFS;
3887 #endif
3888 		} else {
3889 			ip = (struct ip *) (mtod(m0, char *) + offset);
3890 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3891 			ip_tcp_hlen = iphl +  (th->th_off << 2);
3892 
3893 			/* Total IP/TCP options, in 32-bit words */
3894 			iptcp_opt_words = (ip_tcp_hlen
3895 					   - sizeof(struct tcphdr)
3896 					   - sizeof(struct ip)) >> 2;
3897 		}
3898 		if (BGE_IS_5750_OR_BEYOND(sc)) {
3899 			th->th_sum = 0;
3900 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3901 		} else {
3902 			/*
3903 			 * XXX jonathan@NetBSD.org: 5705 untested.
3904 			 * Requires TSO firmware patch for 5701/5703/5704.
3905 			 */
3906 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3907 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3908 		}
3909 
3910 		mss = m_head->m_pkthdr.segsz;
3911 		txbd_tso_flags |=
3912 		    BGE_TXBDFLAG_CPU_PRE_DMA |
3913 		    BGE_TXBDFLAG_CPU_POST_DMA;
3914 
3915 		/*
3916 		 * Our NIC TSO-assist assumes TSO has standard, optionless
3917 		 * IPv4 and TCP headers, which total 40 bytes. By default,
3918 		 * the NIC copies 40 bytes of IP/TCP header from the
3919 		 * supplied header into the IP/TCP header portion of
3920 		 * each post-TSO-segment. If the supplied packet has IP or
3921 		 * TCP options, we need to tell the NIC to copy those extra
3922 		 * bytes into each  post-TSO header, in addition to the normal
3923 		 * 40-byte IP/TCP header (and to leave space accordingly).
3924 		 * Unfortunately, the driver encoding of option length
3925 		 * varies across different ASIC families.
3926 		 */
3927 		tcp_seg_flags = 0;
3928 		if (iptcp_opt_words) {
3929 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
3930 				tcp_seg_flags =
3931 					iptcp_opt_words << 11;
3932 			} else {
3933 				txbd_tso_flags |=
3934 					iptcp_opt_words << 12;
3935 			}
3936 		}
3937 		maxsegsize = mss | tcp_seg_flags;
3938 		ip->ip_len = htons(mss + ip_tcp_hlen);
3939 
3940 	}	/* TSO setup */
3941 
3942 	/*
3943 	 * Start packing the mbufs in this chain into
3944 	 * the fragment pointers. Stop when we run out
3945 	 * of fragments or hit the end of the mbuf chain.
3946 	 */
3947 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3948 	    BUS_DMA_NOWAIT);
3949 	if (error) {
3950 		return(ENOBUFS);
3951 	}
3952 	/*
3953 	 * Sanity check: avoid coming within 16 descriptors
3954 	 * of the end of the ring.
3955 	 */
3956 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3957 		BGE_TSO_PRINTF(("%s: "
3958 		    " dmamap_load_mbuf too close to ring wrap\n",
3959 		    device_xname(sc->bge_dev)));
3960 		goto fail_unload;
3961 	}
3962 
3963 	mtag = sc->ethercom.ec_nvlans ?
3964 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3965 
3966 
3967 	/* Iterate over dmap-map fragments. */
3968 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3969 		f = &sc->bge_rdata->bge_tx_ring[frag];
3970 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3971 			break;
3972 
3973 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3974 		f->bge_len = dmamap->dm_segs[i].ds_len;
3975 
3976 		/*
3977 		 * For 5751 and follow-ons, for TSO we must turn
3978 		 * off checksum-assist flag in the tx-descr, and
3979 		 * supply the ASIC-revision-specific encoding
3980 		 * of TSO flags and segsize.
3981 		 */
3982 		if (use_tso) {
3983 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3984 				f->bge_rsvd = maxsegsize;
3985 				f->bge_flags = csum_flags | txbd_tso_flags;
3986 			} else {
3987 				f->bge_rsvd = 0;
3988 				f->bge_flags =
3989 				  (csum_flags | txbd_tso_flags) & 0x0fff;
3990 			}
3991 		} else {
3992 			f->bge_rsvd = 0;
3993 			f->bge_flags = csum_flags;
3994 		}
3995 
3996 		if (mtag != NULL) {
3997 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3998 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3999 		} else {
4000 			f->bge_vlan_tag = 0;
4001 		}
4002 		cur = frag;
4003 		BGE_INC(frag, BGE_TX_RING_CNT);
4004 	}
4005 
4006 	if (i < dmamap->dm_nsegs) {
4007 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4008 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4009 		goto fail_unload;
4010 	}
4011 
4012 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4013 	    BUS_DMASYNC_PREWRITE);
4014 
4015 	if (frag == sc->bge_tx_saved_considx) {
4016 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4017 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4018 
4019 		goto fail_unload;
4020 	}
4021 
4022 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4023 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4024 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4025 	sc->txdma[cur] = dma;
4026 	sc->bge_txcnt += dmamap->dm_nsegs;
4027 
4028 	*txidx = frag;
4029 
4030 	return(0);
4031 
4032  fail_unload:
4033 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4034 
4035 	return ENOBUFS;
4036 }
4037 
4038 /*
4039  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4040  * to the mbuf data regions directly in the transmit descriptors.
4041  */
4042 static void
4043 bge_start(struct ifnet *ifp)
4044 {
4045 	struct bge_softc *sc;
4046 	struct mbuf *m_head = NULL;
4047 	u_int32_t prodidx;
4048 	int pkts = 0;
4049 
4050 	sc = ifp->if_softc;
4051 
4052 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4053 		return;
4054 
4055 	prodidx = sc->bge_tx_prodidx;
4056 
4057 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4058 		IFQ_POLL(&ifp->if_snd, m_head);
4059 		if (m_head == NULL)
4060 			break;
4061 
4062 #if 0
4063 		/*
4064 		 * XXX
4065 		 * safety overkill.  If this is a fragmented packet chain
4066 		 * with delayed TCP/UDP checksums, then only encapsulate
4067 		 * it if we have enough descriptors to handle the entire
4068 		 * chain at once.
4069 		 * (paranoia -- may not actually be needed)
4070 		 */
4071 		if (m_head->m_flags & M_FIRSTFRAG &&
4072 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4073 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4074 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4075 				ifp->if_flags |= IFF_OACTIVE;
4076 				break;
4077 			}
4078 		}
4079 #endif
4080 
4081 		/*
4082 		 * Pack the data into the transmit ring. If we
4083 		 * don't have room, set the OACTIVE flag and wait
4084 		 * for the NIC to drain the ring.
4085 		 */
4086 		if (bge_encap(sc, m_head, &prodidx)) {
4087 			ifp->if_flags |= IFF_OACTIVE;
4088 			break;
4089 		}
4090 
4091 		/* now we are committed to transmit the packet */
4092 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4093 		pkts++;
4094 
4095 #if NBPFILTER > 0
4096 		/*
4097 		 * If there's a BPF listener, bounce a copy of this frame
4098 		 * to him.
4099 		 */
4100 		if (ifp->if_bpf)
4101 			bpf_mtap(ifp->if_bpf, m_head);
4102 #endif
4103 	}
4104 	if (pkts == 0)
4105 		return;
4106 
4107 	/* Transmit */
4108 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4109 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
4110 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4111 
4112 	sc->bge_tx_prodidx = prodidx;
4113 
4114 	/*
4115 	 * Set a timeout in case the chip goes out to lunch.
4116 	 */
4117 	ifp->if_timer = 5;
4118 }
4119 
4120 static int
4121 bge_init(struct ifnet *ifp)
4122 {
4123 	struct bge_softc *sc = ifp->if_softc;
4124 	const u_int16_t *m;
4125 	int s, error = 0;
4126 
4127 	s = splnet();
4128 
4129 	ifp = &sc->ethercom.ec_if;
4130 
4131 	/* Cancel pending I/O and flush buffers. */
4132 	bge_stop(ifp, 0);
4133 	bge_reset(sc);
4134 	bge_chipinit(sc);
4135 
4136 	/*
4137 	 * Init the various state machines, ring
4138 	 * control blocks and firmware.
4139 	 */
4140 	error = bge_blockinit(sc);
4141 	if (error != 0) {
4142 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4143 		    error);
4144 		splx(s);
4145 		return error;
4146 	}
4147 
4148 	ifp = &sc->ethercom.ec_if;
4149 
4150 	/* Specify MTU. */
4151 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4152 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4153 
4154 	/* Load our MAC address. */
4155 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4156 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4157 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4158 
4159 	/* Enable or disable promiscuous mode as needed. */
4160 	if (ifp->if_flags & IFF_PROMISC) {
4161 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4162 	} else {
4163 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4164 	}
4165 
4166 	/* Program multicast filter. */
4167 	bge_setmulti(sc);
4168 
4169 	/* Init RX ring. */
4170 	bge_init_rx_ring_std(sc);
4171 
4172 	/* Init jumbo RX ring. */
4173 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4174 		bge_init_rx_ring_jumbo(sc);
4175 
4176 	/* Init our RX return ring index */
4177 	sc->bge_rx_saved_considx = 0;
4178 
4179 	/* Init TX ring. */
4180 	bge_init_tx_ring(sc);
4181 
4182 	/* Turn on transmitter */
4183 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4184 
4185 	/* Turn on receiver */
4186 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4187 
4188 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4189 
4190 	/* Tell firmware we're alive. */
4191 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4192 
4193 	/* Enable host interrupts. */
4194 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4195 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4196 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4197 
4198 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4199 		goto out;
4200 
4201 	ifp->if_flags |= IFF_RUNNING;
4202 	ifp->if_flags &= ~IFF_OACTIVE;
4203 
4204 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4205 
4206 out:
4207 	splx(s);
4208 
4209 	return error;
4210 }
4211 
4212 /*
4213  * Set media options.
4214  */
4215 static int
4216 bge_ifmedia_upd(struct ifnet *ifp)
4217 {
4218 	struct bge_softc *sc = ifp->if_softc;
4219 	struct mii_data *mii = &sc->bge_mii;
4220 	struct ifmedia *ifm = &sc->bge_ifmedia;
4221 	int rc;
4222 
4223 	/* If this is a 1000baseX NIC, enable the TBI port. */
4224 	if (sc->bge_tbi) {
4225 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4226 			return(EINVAL);
4227 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4228 		case IFM_AUTO:
4229 			break;
4230 		case IFM_1000_SX:
4231 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4232 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4233 				    BGE_MACMODE_HALF_DUPLEX);
4234 			} else {
4235 				BGE_SETBIT(sc, BGE_MAC_MODE,
4236 				    BGE_MACMODE_HALF_DUPLEX);
4237 			}
4238 			break;
4239 		default:
4240 			return(EINVAL);
4241 		}
4242 		/* XXX 802.3x flow control for 1000BASE-SX */
4243 		return(0);
4244 	}
4245 
4246 	sc->bge_link = 0;
4247 	if ((rc = mii_mediachg(mii)) == ENXIO)
4248 		return 0;
4249 	return rc;
4250 }
4251 
4252 /*
4253  * Report current media status.
4254  */
4255 static void
4256 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4257 {
4258 	struct bge_softc *sc = ifp->if_softc;
4259 	struct mii_data *mii = &sc->bge_mii;
4260 
4261 	if (sc->bge_tbi) {
4262 		ifmr->ifm_status = IFM_AVALID;
4263 		ifmr->ifm_active = IFM_ETHER;
4264 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4265 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4266 			ifmr->ifm_status |= IFM_ACTIVE;
4267 		ifmr->ifm_active |= IFM_1000_SX;
4268 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4269 			ifmr->ifm_active |= IFM_HDX;
4270 		else
4271 			ifmr->ifm_active |= IFM_FDX;
4272 		return;
4273 	}
4274 
4275 	mii_pollstat(mii);
4276 	ifmr->ifm_status = mii->mii_media_status;
4277 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4278 	    sc->bge_flowflags;
4279 }
4280 
4281 static int
4282 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4283 {
4284 	struct bge_softc *sc = ifp->if_softc;
4285 	struct ifreq *ifr = (struct ifreq *) data;
4286 	int s, error = 0;
4287 	struct mii_data *mii;
4288 
4289 	s = splnet();
4290 
4291 	switch(command) {
4292 	case SIOCSIFFLAGS:
4293 		if ((error = ifioctl_common(ifp, command, data)) != 0)
4294 			break;
4295 		if (ifp->if_flags & IFF_UP) {
4296 			/*
4297 			 * If only the state of the PROMISC flag changed,
4298 			 * then just use the 'set promisc mode' command
4299 			 * instead of reinitializing the entire NIC. Doing
4300 			 * a full re-init means reloading the firmware and
4301 			 * waiting for it to start up, which may take a
4302 			 * second or two.
4303 			 */
4304 			if (ifp->if_flags & IFF_RUNNING &&
4305 			    ifp->if_flags & IFF_PROMISC &&
4306 			    !(sc->bge_if_flags & IFF_PROMISC)) {
4307 				BGE_SETBIT(sc, BGE_RX_MODE,
4308 				    BGE_RXMODE_RX_PROMISC);
4309 			} else if (ifp->if_flags & IFF_RUNNING &&
4310 			    !(ifp->if_flags & IFF_PROMISC) &&
4311 			    sc->bge_if_flags & IFF_PROMISC) {
4312 				BGE_CLRBIT(sc, BGE_RX_MODE,
4313 				    BGE_RXMODE_RX_PROMISC);
4314 			} else if (!(sc->bge_if_flags & IFF_UP))
4315 				bge_init(ifp);
4316 		} else {
4317 			if (ifp->if_flags & IFF_RUNNING)
4318 				bge_stop(ifp, 1);
4319 		}
4320 		sc->bge_if_flags = ifp->if_flags;
4321 		error = 0;
4322 		break;
4323 	case SIOCSIFMEDIA:
4324 		/* XXX Flow control is not supported for 1000BASE-SX */
4325 		if (sc->bge_tbi) {
4326 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4327 			sc->bge_flowflags = 0;
4328 		}
4329 
4330 		/* Flow control requires full-duplex mode. */
4331 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4332 		    (ifr->ifr_media & IFM_FDX) == 0) {
4333 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4334 		}
4335 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4336 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4337 				/* We an do both TXPAUSE and RXPAUSE. */
4338 				ifr->ifr_media |=
4339 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4340 			}
4341 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4342 		}
4343 		/* FALLTHROUGH */
4344 	case SIOCGIFMEDIA:
4345 		if (sc->bge_tbi) {
4346 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4347 			    command);
4348 		} else {
4349 			mii = &sc->bge_mii;
4350 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4351 			    command);
4352 		}
4353 		break;
4354 	default:
4355 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4356 			break;
4357 
4358 		error = 0;
4359 
4360 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4361 			;
4362 		else if (ifp->if_flags & IFF_RUNNING)
4363 			bge_setmulti(sc);
4364 		break;
4365 	}
4366 
4367 	splx(s);
4368 
4369 	return(error);
4370 }
4371 
4372 static void
4373 bge_watchdog(struct ifnet *ifp)
4374 {
4375 	struct bge_softc *sc;
4376 
4377 	sc = ifp->if_softc;
4378 
4379 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4380 
4381 	ifp->if_flags &= ~IFF_RUNNING;
4382 	bge_init(ifp);
4383 
4384 	ifp->if_oerrors++;
4385 }
4386 
4387 static void
4388 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4389 {
4390 	int i;
4391 
4392 	BGE_CLRBIT(sc, reg, bit);
4393 
4394 	for (i = 0; i < BGE_TIMEOUT; i++) {
4395 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4396 			return;
4397 		delay(100);
4398 		if (sc->bge_pcie)
4399 		  DELAY(1000);
4400 	}
4401 
4402 	aprint_error_dev(sc->bge_dev,
4403 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4404 }
4405 
4406 /*
4407  * Stop the adapter and free any mbufs allocated to the
4408  * RX and TX lists.
4409  */
4410 static void
4411 bge_stop(struct ifnet *ifp, int disable)
4412 {
4413 	struct bge_softc *sc = ifp->if_softc;
4414 
4415 	callout_stop(&sc->bge_timeout);
4416 
4417 	/*
4418 	 * Disable all of the receiver blocks
4419 	 */
4420 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4421 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4422 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4423 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4424 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4425 	}
4426 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4427 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4428 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4429 
4430 	/*
4431 	 * Disable all of the transmit blocks
4432 	 */
4433 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4434 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4435 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4436 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4437 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4438 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4439 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4440 	}
4441 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4442 
4443 	/*
4444 	 * Shut down all of the memory managers and related
4445 	 * state machines.
4446 	 */
4447 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4448 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4449 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4450 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4451 	}
4452 
4453 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4454 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4455 
4456 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4457 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4458 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4459 	}
4460 
4461 	/* Disable host interrupts. */
4462 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4463 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4464 
4465 	/*
4466 	 * Tell firmware we're shutting down.
4467 	 */
4468 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4469 
4470 	/* Free the RX lists. */
4471 	bge_free_rx_ring_std(sc);
4472 
4473 	/* Free jumbo RX list. */
4474 	bge_free_rx_ring_jumbo(sc);
4475 
4476 	/* Free TX buffers. */
4477 	bge_free_tx_ring(sc);
4478 
4479 	/*
4480 	 * Isolate/power down the PHY.
4481 	 */
4482 	if (!sc->bge_tbi)
4483 		mii_down(&sc->bge_mii);
4484 
4485 	sc->bge_link = 0;
4486 
4487 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4488 
4489 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4490 }
4491 
4492 static int
4493 sysctl_bge_verify(SYSCTLFN_ARGS)
4494 {
4495 	int error, t;
4496 	struct sysctlnode node;
4497 
4498 	node = *rnode;
4499 	t = *(int*)rnode->sysctl_data;
4500 	node.sysctl_data = &t;
4501 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4502 	if (error || newp == NULL)
4503 		return (error);
4504 
4505 #if 0
4506 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4507 	    node.sysctl_num, rnode->sysctl_num));
4508 #endif
4509 
4510 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4511 		if (t < 0 || t >= NBGE_RX_THRESH)
4512 			return (EINVAL);
4513 		bge_update_all_threshes(t);
4514 	} else
4515 		return (EINVAL);
4516 
4517 	*(int*)rnode->sysctl_data = t;
4518 
4519 	return (0);
4520 }
4521 
4522 /*
4523  * Set up sysctl(3) MIB, hw.bge.*.
4524  *
4525  * TBD condition SYSCTL_PERMANENT on being an LKM or not
4526  */
4527 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4528 {
4529 	int rc, bge_root_num;
4530 	const struct sysctlnode *node;
4531 
4532 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4533 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4534 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4535 		goto err;
4536 	}
4537 
4538 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4539 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4540 	    SYSCTL_DESCR("BGE interface controls"),
4541 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4542 		goto err;
4543 	}
4544 
4545 	bge_root_num = node->sysctl_num;
4546 
4547 	/* BGE Rx interrupt mitigation level */
4548 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4549 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4550 	    CTLTYPE_INT, "rx_lvl",
4551 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4552 	    sysctl_bge_verify, 0,
4553 	    &bge_rx_thresh_lvl,
4554 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4555 	    CTL_EOL)) != 0) {
4556 		goto err;
4557 	}
4558 
4559 	bge_rxthresh_nodenum = node->sysctl_num;
4560 
4561 	return;
4562 
4563 err:
4564 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4565 }
4566 
4567 static int
4568 bge_get_eaddr_mem(struct bge_softc *sc, u_int8_t ether_addr[])
4569 {
4570 	u_int32_t mac_addr;
4571 
4572 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4573 	if ((mac_addr >> 16) == 0x484b) {
4574 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4575 		ether_addr[1] = (uint8_t)mac_addr;
4576 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4577 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4578 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4579 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4580 		ether_addr[5] = (uint8_t)mac_addr;
4581 		return (0);
4582 	}
4583 	return (1);
4584 }
4585 
4586 static int
4587 bge_get_eaddr_nvram(struct bge_softc *sc, u_int8_t ether_addr[])
4588 {
4589 	int mac_offset = BGE_EE_MAC_OFFSET;
4590 
4591 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4592 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4593 	}
4594 
4595 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4596 	    ETHER_ADDR_LEN));
4597 }
4598 
4599 static int
4600 bge_get_eaddr_eeprom(struct bge_softc *sc, u_int8_t ether_addr[])
4601 {
4602 
4603 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4604 		return (1);
4605 	}
4606 
4607 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4608 	   ETHER_ADDR_LEN));
4609 }
4610 
4611 static int
4612 bge_get_eaddr(struct bge_softc *sc, u_int8_t eaddr[])
4613 {
4614 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4615 		/* NOTE: Order is critical */
4616 		bge_get_eaddr_mem,
4617 		bge_get_eaddr_nvram,
4618 		bge_get_eaddr_eeprom,
4619 		NULL
4620 	};
4621 	const bge_eaddr_fcn_t *func;
4622 
4623 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4624 		if ((*func)(sc, eaddr) == 0)
4625 			break;
4626 	}
4627 	return (*func == NULL ? ENXIO : 0);
4628 }
4629