xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 326b2259b73e878289ebd80cd9d20bc5aee35e99)
1 /*	$NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.44 2003/07/17 11:44:27 hannken Exp $");
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 
97 #include <net/if.h>
98 #include <net/if_dl.h>
99 #include <net/if_media.h>
100 #include <net/if_ether.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 #if NBPFILTER > 0
110 #include <net/bpf.h>
111 #endif
112 
113 #include <dev/pci/pcireg.h>
114 #include <dev/pci/pcivar.h>
115 #include <dev/pci/pcidevs.h>
116 
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/miidevs.h>
120 #include <dev/mii/brgphyreg.h>
121 
122 #include <dev/pci/if_bgereg.h>
123 
124 #include <uvm/uvm_extern.h>
125 
126 int bge_probe(struct device *, struct cfdata *, void *);
127 void bge_attach(struct device *, struct device *, void *);
128 void bge_release_resources(struct bge_softc *);
129 void bge_txeof(struct bge_softc *);
130 void bge_rxeof(struct bge_softc *);
131 
132 void bge_tick(void *);
133 void bge_stats_update(struct bge_softc *);
134 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
135 
136 int bge_intr(void *);
137 void bge_start(struct ifnet *);
138 int bge_ioctl(struct ifnet *, u_long, caddr_t);
139 int bge_init(struct ifnet *);
140 void bge_stop(struct bge_softc *);
141 void bge_watchdog(struct ifnet *);
142 void bge_shutdown(void *);
143 int bge_ifmedia_upd(struct ifnet *);
144 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145 
146 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
147 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
148 
149 void bge_setmulti(struct bge_softc *);
150 
151 void bge_handle_events(struct bge_softc *);
152 int bge_alloc_jumbo_mem(struct bge_softc *);
153 void bge_free_jumbo_mem(struct bge_softc *);
154 void *bge_jalloc(struct bge_softc *);
155 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
156 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
157 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
158 int bge_init_rx_ring_std(struct bge_softc *);
159 void bge_free_rx_ring_std(struct bge_softc *);
160 int bge_init_rx_ring_jumbo(struct bge_softc *);
161 void bge_free_rx_ring_jumbo(struct bge_softc *);
162 void bge_free_tx_ring(struct bge_softc *);
163 int bge_init_tx_ring(struct bge_softc *);
164 
165 int bge_chipinit(struct bge_softc *);
166 int bge_blockinit(struct bge_softc *);
167 int bge_setpowerstate(struct bge_softc *, int);
168 
169 #ifdef notdef
170 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
171 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
172 void bge_vpd_read(struct bge_softc *);
173 #endif
174 
175 u_int32_t bge_readmem_ind(struct bge_softc *, int);
176 void bge_writemem_ind(struct bge_softc *, int, int);
177 #ifdef notdef
178 u_int32_t bge_readreg_ind(struct bge_softc *, int);
179 #endif
180 void bge_writereg_ind(struct bge_softc *, int, int);
181 
182 int bge_miibus_readreg(struct device *, int, int);
183 void bge_miibus_writereg(struct device *, int, int, int);
184 void bge_miibus_statchg(struct device *);
185 
186 void bge_reset(struct bge_softc *);
187 
188 void bge_dump_status(struct bge_softc *);
189 void bge_dump_rxbd(struct bge_rx_bd *);
190 
191 #define BGE_DEBUG
192 #ifdef BGE_DEBUG
193 #define DPRINTF(x)	if (bgedebug) printf x
194 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
195 int	bgedebug = 0;
196 #else
197 #define DPRINTF(x)
198 #define DPRINTFN(n,x)
199 #endif
200 
201 /* Various chip quirks. */
202 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
203 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
204 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
205 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
206 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
207 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
208 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
209 #define	BGE_QUIRK_5705_CORE		0x00000080
210 
211 /* following bugs are common to bcm5700 rev B, all flavours */
212 #define BGE_QUIRK_5700_COMMON \
213 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
214 
215 CFATTACH_DECL(bge, sizeof(struct bge_softc),
216     bge_probe, bge_attach, NULL, NULL);
217 
218 u_int32_t
219 bge_readmem_ind(sc, off)
220 	struct bge_softc *sc;
221 	int off;
222 {
223 	struct pci_attach_args	*pa = &(sc->bge_pa);
224 	pcireg_t val;
225 
226 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
227 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
228 	return val;
229 }
230 
231 void
232 bge_writemem_ind(sc, off, val)
233 	struct bge_softc *sc;
234 	int off, val;
235 {
236 	struct pci_attach_args	*pa = &(sc->bge_pa);
237 
238 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
239 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
240 }
241 
242 #ifdef notdef
243 u_int32_t
244 bge_readreg_ind(sc, off)
245 	struct bge_softc *sc;
246 	int off;
247 {
248 	struct pci_attach_args	*pa = &(sc->bge_pa);
249 
250 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
251 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
252 }
253 #endif
254 
255 void
256 bge_writereg_ind(sc, off, val)
257 	struct bge_softc *sc;
258 	int off, val;
259 {
260 	struct pci_attach_args	*pa = &(sc->bge_pa);
261 
262 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
263 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
264 }
265 
266 #ifdef notdef
267 u_int8_t
268 bge_vpd_readbyte(sc, addr)
269 	struct bge_softc *sc;
270 	int addr;
271 {
272 	int i;
273 	u_int32_t val;
274 	struct pci_attach_args	*pa = &(sc->bge_pa);
275 
276 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
277 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
278 		DELAY(10);
279 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
280 		    BGE_VPD_FLAG)
281 			break;
282 	}
283 
284 	if (i == BGE_TIMEOUT) {
285 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
286 		return(0);
287 	}
288 
289 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
290 
291 	return((val >> ((addr % 4) * 8)) & 0xFF);
292 }
293 
294 void
295 bge_vpd_read_res(sc, res, addr)
296 	struct bge_softc *sc;
297 	struct vpd_res *res;
298 	int addr;
299 {
300 	int i;
301 	u_int8_t *ptr;
302 
303 	ptr = (u_int8_t *)res;
304 	for (i = 0; i < sizeof(struct vpd_res); i++)
305 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
306 }
307 
308 void
309 bge_vpd_read(sc)
310 	struct bge_softc *sc;
311 {
312 	int pos = 0, i;
313 	struct vpd_res res;
314 
315 	if (sc->bge_vpd_prodname != NULL)
316 		free(sc->bge_vpd_prodname, M_DEVBUF);
317 	if (sc->bge_vpd_readonly != NULL)
318 		free(sc->bge_vpd_readonly, M_DEVBUF);
319 	sc->bge_vpd_prodname = NULL;
320 	sc->bge_vpd_readonly = NULL;
321 
322 	bge_vpd_read_res(sc, &res, pos);
323 
324 	if (res.vr_id != VPD_RES_ID) {
325 		printf("%s: bad VPD resource id: expected %x got %x\n",
326 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
327 		return;
328 	}
329 
330 	pos += sizeof(res);
331 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
332 	if (sc->bge_vpd_prodname == NULL)
333 		panic("bge_vpd_read");
334 	for (i = 0; i < res.vr_len; i++)
335 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
336 	sc->bge_vpd_prodname[i] = '\0';
337 	pos += i;
338 
339 	bge_vpd_read_res(sc, &res, pos);
340 
341 	if (res.vr_id != VPD_RES_READ) {
342 		printf("%s: bad VPD resource id: expected %x got %x\n",
343 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
344 		return;
345 	}
346 
347 	pos += sizeof(res);
348 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
349 	if (sc->bge_vpd_readonly == NULL)
350 		panic("bge_vpd_read");
351 	for (i = 0; i < res.vr_len + 1; i++)
352 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
353 }
354 #endif
355 
356 /*
357  * Read a byte of data stored in the EEPROM at address 'addr.' The
358  * BCM570x supports both the traditional bitbang interface and an
359  * auto access interface for reading the EEPROM. We use the auto
360  * access method.
361  */
362 u_int8_t
363 bge_eeprom_getbyte(sc, addr, dest)
364 	struct bge_softc *sc;
365 	int addr;
366 	u_int8_t *dest;
367 {
368 	int i;
369 	u_int32_t byte = 0;
370 
371 	/*
372 	 * Enable use of auto EEPROM access so we can avoid
373 	 * having to use the bitbang method.
374 	 */
375 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
376 
377 	/* Reset the EEPROM, load the clock period. */
378 	CSR_WRITE_4(sc, BGE_EE_ADDR,
379 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
380 	DELAY(20);
381 
382 	/* Issue the read EEPROM command. */
383 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
384 
385 	/* Wait for completion */
386 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
387 		DELAY(10);
388 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
389 			break;
390 	}
391 
392 	if (i == BGE_TIMEOUT) {
393 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
394 		return(0);
395 	}
396 
397 	/* Get result. */
398 	byte = CSR_READ_4(sc, BGE_EE_DATA);
399 
400 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
401 
402 	return(0);
403 }
404 
405 /*
406  * Read a sequence of bytes from the EEPROM.
407  */
408 int
409 bge_read_eeprom(sc, dest, off, cnt)
410 	struct bge_softc *sc;
411 	caddr_t dest;
412 	int off;
413 	int cnt;
414 {
415 	int err = 0, i;
416 	u_int8_t byte = 0;
417 
418 	for (i = 0; i < cnt; i++) {
419 		err = bge_eeprom_getbyte(sc, off + i, &byte);
420 		if (err)
421 			break;
422 		*(dest + i) = byte;
423 	}
424 
425 	return(err ? 1 : 0);
426 }
427 
428 int
429 bge_miibus_readreg(dev, phy, reg)
430 	struct device *dev;
431 	int phy, reg;
432 {
433 	struct bge_softc *sc = (struct bge_softc *)dev;
434 	struct ifnet *ifp;
435 	u_int32_t val;
436 	u_int32_t saved_autopoll;
437 	int i;
438 
439 	ifp = &sc->ethercom.ec_if;
440 
441 	/*
442 	 * Several chips with builtin PHYs will incorrectly answer to
443 	 * other PHY instances than the builtin PHY at id 1.
444 	 */
445 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
446 		return(0);
447 
448 	/* Reading with autopolling on may trigger PCI errors */
449 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
450 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
451 		CSR_WRITE_4(sc, BGE_MI_MODE,
452 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
453 		DELAY(40);
454 	}
455 
456 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
457 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
458 
459 	for (i = 0; i < BGE_TIMEOUT; i++) {
460 		val = CSR_READ_4(sc, BGE_MI_COMM);
461 		if (!(val & BGE_MICOMM_BUSY))
462 			break;
463 		delay(10);
464 	}
465 
466 	if (i == BGE_TIMEOUT) {
467 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
468 		val = 0;
469 		goto done;
470 	}
471 
472 	val = CSR_READ_4(sc, BGE_MI_COMM);
473 
474 done:
475 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
476 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
477 		DELAY(40);
478 	}
479 
480 	if (val & BGE_MICOMM_READFAIL)
481 		return(0);
482 
483 	return(val & 0xFFFF);
484 }
485 
486 void
487 bge_miibus_writereg(dev, phy, reg, val)
488 	struct device *dev;
489 	int phy, reg, val;
490 {
491 	struct bge_softc *sc = (struct bge_softc *)dev;
492 	u_int32_t saved_autopoll;
493 	int i;
494 
495 	/* Touching the PHY while autopolling is on may trigger PCI errors */
496 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
497 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
498 		delay(40);
499 		CSR_WRITE_4(sc, BGE_MI_MODE,
500 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
501 		delay(10); /* 40 usec is supposed to be adequate */
502 	}
503 
504 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
505 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
506 
507 	for (i = 0; i < BGE_TIMEOUT; i++) {
508 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
509 			break;
510 		delay(10);
511 	}
512 
513 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
514 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
515 		delay(40);
516 	}
517 
518 	if (i == BGE_TIMEOUT) {
519 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
520 	}
521 }
522 
523 void
524 bge_miibus_statchg(dev)
525 	struct device *dev;
526 {
527 	struct bge_softc *sc = (struct bge_softc *)dev;
528 	struct mii_data *mii = &sc->bge_mii;
529 
530 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
531 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
532 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
533 	} else {
534 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
535 	}
536 
537 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
538 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
539 	} else {
540 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
541 	}
542 }
543 
544 /*
545  * Handle events that have triggered interrupts.
546  */
547 void
548 bge_handle_events(sc)
549 	struct bge_softc		*sc;
550 {
551 
552 	return;
553 }
554 
555 /*
556  * Memory management for jumbo frames.
557  */
558 
559 int
560 bge_alloc_jumbo_mem(sc)
561 	struct bge_softc		*sc;
562 {
563 	caddr_t			ptr, kva;
564 	bus_dma_segment_t	seg;
565 	int		i, rseg, state, error;
566 	struct bge_jpool_entry   *entry;
567 
568 	state = error = 0;
569 
570 	/* Grab a big chunk o' storage. */
571 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
572 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
573 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
574 		return ENOBUFS;
575 	}
576 
577 	state = 1;
578 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
579 	    BUS_DMA_NOWAIT)) {
580 		printf("%s: can't map DMA buffers (%d bytes)\n",
581 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
582 		error = ENOBUFS;
583 		goto out;
584 	}
585 
586 	state = 2;
587 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
588 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
589 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
590 		error = ENOBUFS;
591 		goto out;
592 	}
593 
594 	state = 3;
595 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
596 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
597 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
598 		error = ENOBUFS;
599 		goto out;
600 	}
601 
602 	state = 4;
603 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
604 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
605 
606 	SLIST_INIT(&sc->bge_jfree_listhead);
607 	SLIST_INIT(&sc->bge_jinuse_listhead);
608 
609 	/*
610 	 * Now divide it up into 9K pieces and save the addresses
611 	 * in an array.
612 	 */
613 	ptr = sc->bge_cdata.bge_jumbo_buf;
614 	for (i = 0; i < BGE_JSLOTS; i++) {
615 		sc->bge_cdata.bge_jslots[i] = ptr;
616 		ptr += BGE_JLEN;
617 		entry = malloc(sizeof(struct bge_jpool_entry),
618 		    M_DEVBUF, M_NOWAIT);
619 		if (entry == NULL) {
620 			printf("%s: no memory for jumbo buffer queue!\n",
621 			    sc->bge_dev.dv_xname);
622 			error = ENOBUFS;
623 			goto out;
624 		}
625 		entry->slot = i;
626 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
627 				 entry, jpool_entries);
628 	}
629 out:
630 	if (error != 0) {
631 		switch (state) {
632 		case 4:
633 			bus_dmamap_unload(sc->bge_dmatag,
634 			    sc->bge_cdata.bge_rx_jumbo_map);
635 		case 3:
636 			bus_dmamap_destroy(sc->bge_dmatag,
637 			    sc->bge_cdata.bge_rx_jumbo_map);
638 		case 2:
639 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
640 		case 1:
641 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
642 			break;
643 		default:
644 			break;
645 		}
646 	}
647 
648 	return error;
649 }
650 
651 /*
652  * Allocate a jumbo buffer.
653  */
654 void *
655 bge_jalloc(sc)
656 	struct bge_softc		*sc;
657 {
658 	struct bge_jpool_entry   *entry;
659 
660 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
661 
662 	if (entry == NULL) {
663 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
664 		return(NULL);
665 	}
666 
667 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
668 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
669 	return(sc->bge_cdata.bge_jslots[entry->slot]);
670 }
671 
672 /*
673  * Release a jumbo buffer.
674  */
675 void
676 bge_jfree(m, buf, size, arg)
677 	struct mbuf	*m;
678 	caddr_t		buf;
679 	size_t		size;
680 	void		*arg;
681 {
682 	struct bge_jpool_entry *entry;
683 	struct bge_softc *sc;
684 	int i, s;
685 
686 	/* Extract the softc struct pointer. */
687 	sc = (struct bge_softc *)arg;
688 
689 	if (sc == NULL)
690 		panic("bge_jfree: can't find softc pointer!");
691 
692 	/* calculate the slot this buffer belongs to */
693 
694 	i = ((caddr_t)buf
695 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
696 
697 	if ((i < 0) || (i >= BGE_JSLOTS))
698 		panic("bge_jfree: asked to free buffer that we don't manage!");
699 
700 	s = splvm();
701 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
702 	if (entry == NULL)
703 		panic("bge_jfree: buffer not in use!");
704 	entry->slot = i;
705 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
706 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
707 
708 	if (__predict_true(m != NULL))
709   		pool_cache_put(&mbpool_cache, m);
710 	splx(s);
711 }
712 
713 
714 /*
715  * Intialize a standard receive ring descriptor.
716  */
717 int
718 bge_newbuf_std(sc, i, m, dmamap)
719 	struct bge_softc	*sc;
720 	int			i;
721 	struct mbuf		*m;
722 	bus_dmamap_t dmamap;
723 {
724 	struct mbuf		*m_new = NULL;
725 	struct bge_rx_bd	*r;
726 	int			error;
727 
728 	if (dmamap == NULL) {
729 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
730 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
731 		if (error != 0)
732 			return error;
733 	}
734 
735 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
736 
737 	if (m == NULL) {
738 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
739 		if (m_new == NULL) {
740 			return(ENOBUFS);
741 		}
742 
743 		MCLGET(m_new, M_DONTWAIT);
744 		if (!(m_new->m_flags & M_EXT)) {
745 			m_freem(m_new);
746 			return(ENOBUFS);
747 		}
748 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
749 		if (!sc->bge_rx_alignment_bug)
750 		    m_adj(m_new, ETHER_ALIGN);
751 
752 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
753 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
754 			return(ENOBUFS);
755 	} else {
756 		m_new = m;
757 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
758 		m_new->m_data = m_new->m_ext.ext_buf;
759 		if (!sc->bge_rx_alignment_bug)
760 		    m_adj(m_new, ETHER_ALIGN);
761 	}
762 
763 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
764 	r = &sc->bge_rdata->bge_rx_std_ring[i];
765 	bge_set_hostaddr(&r->bge_addr,
766 	    dmamap->dm_segs[0].ds_addr);
767 	r->bge_flags = BGE_RXBDFLAG_END;
768 	r->bge_len = m_new->m_len;
769 	r->bge_idx = i;
770 
771 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
772 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
773 		i * sizeof (struct bge_rx_bd),
774 	    sizeof (struct bge_rx_bd),
775 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
776 
777 	return(0);
778 }
779 
780 /*
781  * Initialize a jumbo receive ring descriptor. This allocates
782  * a jumbo buffer from the pool managed internally by the driver.
783  */
784 int
785 bge_newbuf_jumbo(sc, i, m)
786 	struct bge_softc *sc;
787 	int i;
788 	struct mbuf *m;
789 {
790 	struct mbuf *m_new = NULL;
791 	struct bge_rx_bd *r;
792 
793 	if (m == NULL) {
794 		caddr_t			*buf = NULL;
795 
796 		/* Allocate the mbuf. */
797 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
798 		if (m_new == NULL) {
799 			return(ENOBUFS);
800 		}
801 
802 		/* Allocate the jumbo buffer */
803 		buf = bge_jalloc(sc);
804 		if (buf == NULL) {
805 			m_freem(m_new);
806 			printf("%s: jumbo allocation failed "
807 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
808 			return(ENOBUFS);
809 		}
810 
811 		/* Attach the buffer to the mbuf. */
812 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
813 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
814 		    bge_jfree, sc);
815 	} else {
816 		m_new = m;
817 		m_new->m_data = m_new->m_ext.ext_buf;
818 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
819 	}
820 
821 	if (!sc->bge_rx_alignment_bug)
822 	    m_adj(m_new, ETHER_ALIGN);
823 	/* Set up the descriptor. */
824 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
825 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
826 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
827 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
828 	r->bge_len = m_new->m_len;
829 	r->bge_idx = i;
830 
831 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
832 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
833 		i * sizeof (struct bge_rx_bd),
834 	    sizeof (struct bge_rx_bd),
835 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
836 
837 	return(0);
838 }
839 
840 /*
841  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
842  * that's 1MB or memory, which is a lot. For now, we fill only the first
843  * 256 ring entries and hope that our CPU is fast enough to keep up with
844  * the NIC.
845  */
846 int
847 bge_init_rx_ring_std(sc)
848 	struct bge_softc *sc;
849 {
850 	int i;
851 
852 	if (sc->bge_flags & BGE_RXRING_VALID)
853 		return 0;
854 
855 	for (i = 0; i < BGE_SSLOTS; i++) {
856 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
857 			return(ENOBUFS);
858 	}
859 
860 	sc->bge_std = i - 1;
861 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
862 
863 	sc->bge_flags |= BGE_RXRING_VALID;
864 
865 	return(0);
866 }
867 
868 void
869 bge_free_rx_ring_std(sc)
870 	struct bge_softc *sc;
871 {
872 	int i;
873 
874 	if (!(sc->bge_flags & BGE_RXRING_VALID))
875 		return;
876 
877 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
878 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
879 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
880 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
881 			bus_dmamap_destroy(sc->bge_dmatag,
882 			    sc->bge_cdata.bge_rx_std_map[i]);
883 		}
884 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
885 		    sizeof(struct bge_rx_bd));
886 	}
887 
888 	sc->bge_flags &= ~BGE_RXRING_VALID;
889 }
890 
891 int
892 bge_init_rx_ring_jumbo(sc)
893 	struct bge_softc *sc;
894 {
895 	int i;
896 	volatile struct bge_rcb *rcb;
897 
898 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
899 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
900 			return(ENOBUFS);
901 	};
902 
903 	sc->bge_jumbo = i - 1;
904 
905 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
906 	rcb->bge_maxlen_flags = 0;
907 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
908 
909 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
910 
911 	return(0);
912 }
913 
914 void
915 bge_free_rx_ring_jumbo(sc)
916 	struct bge_softc *sc;
917 {
918 	int i;
919 
920 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
921 		return;
922 
923 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
924 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
925 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
926 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
927 		}
928 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
929 		    sizeof(struct bge_rx_bd));
930 	}
931 
932 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
933 }
934 
935 void
936 bge_free_tx_ring(sc)
937 	struct bge_softc *sc;
938 {
939 	int i, freed;
940 	struct txdmamap_pool_entry *dma;
941 
942 	if (!(sc->bge_flags & BGE_TXRING_VALID))
943 		return;
944 
945 	freed = 0;
946 
947 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
948 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
949 			freed++;
950 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
951 			sc->bge_cdata.bge_tx_chain[i] = NULL;
952 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
953 					    link);
954 			sc->txdma[i] = 0;
955 		}
956 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
957 		    sizeof(struct bge_tx_bd));
958 	}
959 
960 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
961 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
962 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
963 		free(dma, M_DEVBUF);
964 	}
965 
966 	sc->bge_flags &= ~BGE_TXRING_VALID;
967 }
968 
969 int
970 bge_init_tx_ring(sc)
971 	struct bge_softc *sc;
972 {
973 	int i;
974 	bus_dmamap_t dmamap;
975 	struct txdmamap_pool_entry *dma;
976 
977 	if (sc->bge_flags & BGE_TXRING_VALID)
978 		return 0;
979 
980 	sc->bge_txcnt = 0;
981 	sc->bge_tx_saved_considx = 0;
982 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
983 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
984 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
985 
986 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
987 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
988 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
989 
990 	SLIST_INIT(&sc->txdma_list);
991 	for (i = 0; i < BGE_RSLOTS; i++) {
992 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
993 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
994 		    &dmamap))
995 			return(ENOBUFS);
996 		if (dmamap == NULL)
997 			panic("dmamap NULL in bge_init_tx_ring");
998 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
999 		if (dma == NULL) {
1000 			printf("%s: can't alloc txdmamap_pool_entry\n",
1001 			    sc->bge_dev.dv_xname);
1002 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1003 			return (ENOMEM);
1004 		}
1005 		dma->dmamap = dmamap;
1006 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1007 	}
1008 
1009 	sc->bge_flags |= BGE_TXRING_VALID;
1010 
1011 	return(0);
1012 }
1013 
1014 void
1015 bge_setmulti(sc)
1016 	struct bge_softc *sc;
1017 {
1018 	struct ethercom		*ac = &sc->ethercom;
1019 	struct ifnet		*ifp = &ac->ec_if;
1020 	struct ether_multi	*enm;
1021 	struct ether_multistep  step;
1022 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1023 	u_int32_t		h;
1024 	int			i;
1025 
1026 	if (ifp->if_flags & IFF_PROMISC)
1027 		goto allmulti;
1028 
1029 	/* Now program new ones. */
1030 	ETHER_FIRST_MULTI(step, ac, enm);
1031 	while (enm != NULL) {
1032 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1033 			/*
1034 			 * We must listen to a range of multicast addresses.
1035 			 * For now, just accept all multicasts, rather than
1036 			 * trying to set only those filter bits needed to match
1037 			 * the range.  (At this time, the only use of address
1038 			 * ranges is for IP multicast routing, for which the
1039 			 * range is big enough to require all bits set.)
1040 			 */
1041 			goto allmulti;
1042 		}
1043 
1044 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1045 
1046 		/* Just want the 7 least-significant bits. */
1047 		h &= 0x7f;
1048 
1049 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1050 		ETHER_NEXT_MULTI(step, enm);
1051 	}
1052 
1053 	ifp->if_flags &= ~IFF_ALLMULTI;
1054 	goto setit;
1055 
1056  allmulti:
1057 	ifp->if_flags |= IFF_ALLMULTI;
1058 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1059 
1060  setit:
1061 	for (i = 0; i < 4; i++)
1062 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1063 }
1064 
1065 const int bge_swapbits[] = {
1066 	0,
1067 	BGE_MODECTL_BYTESWAP_DATA,
1068 	BGE_MODECTL_WORDSWAP_DATA,
1069 	BGE_MODECTL_BYTESWAP_NONFRAME,
1070 	BGE_MODECTL_WORDSWAP_NONFRAME,
1071 
1072 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1073 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1074 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1075 
1076 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1077 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1078 
1079 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1080 
1081 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1082 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1083 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1084 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1085 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1086 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1087 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1088 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1089 
1090 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1091 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1092 };
1093 
1094 int bge_swapindex = 0;
1095 
1096 /*
1097  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1098  * self-test results.
1099  */
1100 int
1101 bge_chipinit(sc)
1102 	struct bge_softc *sc;
1103 {
1104 	u_int32_t		cachesize;
1105 	int			i;
1106 	u_int32_t		dma_rw_ctl;
1107 	struct pci_attach_args	*pa = &(sc->bge_pa);
1108 
1109 
1110 	/* Set endianness before we access any non-PCI registers. */
1111 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1112 	    BGE_INIT);
1113 
1114 	/* Set power state to D0. */
1115 	bge_setpowerstate(sc, 0);
1116 
1117 	/*
1118 	 * Check the 'ROM failed' bit on the RX CPU to see if
1119 	 * self-tests passed.
1120 	 */
1121 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1122 		printf("%s: RX CPU self-diagnostics failed!\n",
1123 		    sc->bge_dev.dv_xname);
1124 		return(ENODEV);
1125 	}
1126 
1127 	/* Clear the MAC control register */
1128 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1129 
1130 	/*
1131 	 * Clear the MAC statistics block in the NIC's
1132 	 * internal memory.
1133 	 */
1134 	for (i = BGE_STATS_BLOCK;
1135 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1136 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1137 
1138 	for (i = BGE_STATUS_BLOCK;
1139 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1140 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1141 
1142 	/* Set up the PCI DMA control register. */
1143 	if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1144 	    BGE_PCISTATE_PCI_BUSMODE) {
1145 		/* Conventional PCI bus */
1146 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1147 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1148 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1149 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1150 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1151 			dma_rw_ctl |= 0x0F;
1152 		}
1153 	} else {
1154 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1155 		/* PCI-X bus */
1156 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1157 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1158 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1159 		    (0x0F);
1160 		/*
1161 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1162 		 * for hardware bugs, which means we should also clear
1163 		 * the low-order MINDMA bits.  In addition, the 5704
1164 		 * uses a different encoding of read/write watermarks.
1165 		 */
1166 		if (sc->bge_asicrev == BGE_ASICREV_BCM5704_A0 ||
1167 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A1 ||
1168 		    sc->bge_asicrev == BGE_ASICREV_BCM5704_A2) {
1169 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1170 			  /* should be 0x1f0000 */
1171 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1172 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1173 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1174 		}
1175 		else if ((sc->bge_asicrev >> 28) ==
1176 			 (BGE_ASICREV_BCM5703_A0 >> 28)) {
1177 			dma_rw_ctl &=  0xfffffff0;
1178 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1179 		}
1180 	}
1181 
1182 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1183 
1184 	/*
1185 	 * Set up general mode register.
1186 	 */
1187 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1188 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1189 		    BGE_MODECTL_NO_RX_CRC|BGE_MODECTL_TX_NO_PHDR_CSUM|
1190 		    BGE_MODECTL_RX_NO_PHDR_CSUM);
1191 
1192 	/* Get cache line size. */
1193 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1194 
1195 	/*
1196 	 * Avoid violating PCI spec on certain chip revs.
1197 	 */
1198 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1199 	    PCIM_CMD_MWIEN) {
1200 		switch(cachesize) {
1201 		case 1:
1202 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1203 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1204 			break;
1205 		case 2:
1206 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1207 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1208 			break;
1209 		case 4:
1210 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1211 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1212 			break;
1213 		case 8:
1214 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1215 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1216 			break;
1217 		case 16:
1218 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1219 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1220 			break;
1221 		case 32:
1222 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1223 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1224 			break;
1225 		case 64:
1226 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1227 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1228 			break;
1229 		default:
1230 		/* Disable PCI memory write and invalidate. */
1231 #if 0
1232 			if (bootverbose)
1233 				printf("%s: cache line size %d not "
1234 				    "supported; disabling PCI MWI\n",
1235 				    sc->bge_dev.dv_xname, cachesize);
1236 #endif
1237 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1238 			    PCIM_CMD_MWIEN);
1239 			break;
1240 		}
1241 	}
1242 
1243 	/*
1244 	 * Disable memory write invalidate.  Apparently it is not supported
1245 	 * properly by these devices.
1246 	 */
1247 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1248 
1249 
1250 #ifdef __brokenalpha__
1251 	/*
1252 	 * Must insure that we do not cross an 8K (bytes) boundary
1253 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1254 	 * restriction on some ALPHA platforms with early revision
1255 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1256 	 */
1257 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1258 #endif
1259 
1260 	/* Set the timer prescaler (always 66MHz) */
1261 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1262 
1263 	return(0);
1264 }
1265 
1266 int
1267 bge_blockinit(sc)
1268 	struct bge_softc *sc;
1269 {
1270 	volatile struct bge_rcb		*rcb;
1271 	bus_size_t		rcb_addr;
1272 	int			i;
1273 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1274 	bge_hostaddr		taddr;
1275 
1276 	/*
1277 	 * Initialize the memory window pointer register so that
1278 	 * we can access the first 32K of internal NIC RAM. This will
1279 	 * allow us to set up the TX send ring RCBs and the RX return
1280 	 * ring RCBs, plus other things which live in NIC memory.
1281 	 */
1282 
1283 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1284 	    BGE_PCI_MEMWIN_BASEADDR, 0);
1285 
1286 	/* Configure mbuf memory pool */
1287 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1288 		if (sc->bge_extram) {
1289 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1290 			    BGE_EXT_SSRAM);
1291 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1292 		} else {
1293 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1294 			    BGE_BUFFPOOL_1);
1295 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1296 		}
1297 
1298 		/* Configure DMA resource pool */
1299 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1300 		    BGE_DMA_DESCRIPTORS);
1301 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1302 	}
1303 
1304 	/* Configure mbuf pool watermarks */
1305 #ifdef ORIG_WPAUL_VALUES
1306 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1307 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1308 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1309 #else
1310 	/* new broadcom docs strongly recommend these: */
1311 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1312 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1313 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1314 	} else {
1315 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1316 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1317 	}
1318 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1319 #endif
1320 
1321 	/* Configure DMA resource watermarks */
1322 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1323 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1324 
1325 	/* Enable buffer manager */
1326 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1327 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1328 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1329 
1330 		/* Poll for buffer manager start indication */
1331 		for (i = 0; i < BGE_TIMEOUT; i++) {
1332 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1333 				break;
1334 			DELAY(10);
1335 		}
1336 
1337 		if (i == BGE_TIMEOUT) {
1338 			printf("%s: buffer manager failed to start\n",
1339 			    sc->bge_dev.dv_xname);
1340 			return(ENXIO);
1341 		}
1342 	}
1343 
1344 	/* Enable flow-through queues */
1345 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1346 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1347 
1348 	/* Wait until queue initialization is complete */
1349 	for (i = 0; i < BGE_TIMEOUT; i++) {
1350 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1351 			break;
1352 		DELAY(10);
1353 	}
1354 
1355 	if (i == BGE_TIMEOUT) {
1356 		printf("%s: flow-through queue init failed\n",
1357 		    sc->bge_dev.dv_xname);
1358 		return(ENXIO);
1359 	}
1360 
1361 	/* Initialize the standard RX ring control block */
1362 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1363 	bge_set_hostaddr(&rcb->bge_hostaddr,
1364 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1365 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1366 		rcb->bge_maxlen_flags =
1367 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1368 	} else {
1369 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1370 	}
1371 	if (sc->bge_extram)
1372 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1373 	else
1374 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1375 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1376 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1377 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1378 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1379 
1380 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1381 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1382 	} else {
1383 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1384 	}
1385 
1386 	/*
1387 	 * Initialize the jumbo RX ring control block
1388 	 * We set the 'ring disabled' bit in the flags
1389 	 * field until we're actually ready to start
1390 	 * using this ring (i.e. once we set the MTU
1391 	 * high enough to require it).
1392 	 */
1393 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1394 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1395 		bge_set_hostaddr(&rcb->bge_hostaddr,
1396 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1397 		rcb->bge_maxlen_flags =
1398 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1399 			BGE_RCB_FLAG_RING_DISABLED);
1400 		if (sc->bge_extram)
1401 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1402 		else
1403 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1404 
1405 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1406 		    rcb->bge_hostaddr.bge_addr_hi);
1407 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1408 		    rcb->bge_hostaddr.bge_addr_lo);
1409 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1410 		    rcb->bge_maxlen_flags);
1411 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1412 
1413 		/* Set up dummy disabled mini ring RCB */
1414 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1415 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1416 		    BGE_RCB_FLAG_RING_DISABLED);
1417 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1418 		    rcb->bge_maxlen_flags);
1419 
1420 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1421 		    offsetof(struct bge_ring_data, bge_info),
1422 		    sizeof (struct bge_gib),
1423 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1424 	}
1425 
1426 	/*
1427 	 * Set the BD ring replentish thresholds. The recommended
1428 	 * values are 1/8th the number of descriptors allocated to
1429 	 * each ring.
1430 	 */
1431 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1432 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1433 
1434 	/*
1435 	 * Disable all unused send rings by setting the 'ring disabled'
1436 	 * bit in the flags field of all the TX send ring control blocks.
1437 	 * These are located in NIC memory.
1438 	 */
1439 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1440 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1441 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1442 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1443 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1444 		rcb_addr += sizeof(struct bge_rcb);
1445 	}
1446 
1447 	/* Configure TX RCB 0 (we use only the first ring) */
1448 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1449 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1450 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1451 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1452 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1453 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1454 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1455 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1456 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1457 	}
1458 
1459 	/* Disable all unused RX return rings */
1460 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1461 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1462 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1463 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1464 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1465 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1466                                      BGE_RCB_FLAG_RING_DISABLED));
1467 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1468 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1469 		    (i * (sizeof(u_int64_t))), 0);
1470 		rcb_addr += sizeof(struct bge_rcb);
1471 	}
1472 
1473 	/* Initialize RX ring indexes */
1474 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1475 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1476 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1477 
1478 	/*
1479 	 * Set up RX return ring 0
1480 	 * Note that the NIC address for RX return rings is 0x00000000.
1481 	 * The return rings live entirely within the host, so the
1482 	 * nicaddr field in the RCB isn't used.
1483 	 */
1484 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1485 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1486 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1487 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1488 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1489 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1490 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1491 
1492 	/* Set random backoff seed for TX */
1493 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1494 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1495 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1496 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1497 	    BGE_TX_BACKOFF_SEED_MASK);
1498 
1499 	/* Set inter-packet gap */
1500 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1501 
1502 	/*
1503 	 * Specify which ring to use for packets that don't match
1504 	 * any RX rules.
1505 	 */
1506 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1507 
1508 	/*
1509 	 * Configure number of RX lists. One interrupt distribution
1510 	 * list, sixteen active lists, one bad frames class.
1511 	 */
1512 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1513 
1514 	/* Inialize RX list placement stats mask. */
1515 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1516 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1517 
1518 	/* Disable host coalescing until we get it set up */
1519 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1520 
1521 	/* Poll to make sure it's shut down. */
1522 	for (i = 0; i < BGE_TIMEOUT; i++) {
1523 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1524 			break;
1525 		DELAY(10);
1526 	}
1527 
1528 	if (i == BGE_TIMEOUT) {
1529 		printf("%s: host coalescing engine failed to idle\n",
1530 		    sc->bge_dev.dv_xname);
1531 		return(ENXIO);
1532 	}
1533 
1534 	/* Set up host coalescing defaults */
1535 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1536 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1537 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1538 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1539 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1540 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1541 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1542 	}
1543 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1544 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1545 
1546 	/* Set up address of statistics block */
1547 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 		bge_set_hostaddr(&taddr,
1549 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1550 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1551 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1552 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1553 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1554 	}
1555 
1556 	/* Set up address of status block */
1557 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1558 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1559 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1560 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1561 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1562 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1563 
1564 	/* Turn on host coalescing state machine */
1565 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1566 
1567 	/* Turn on RX BD completion state machine and enable attentions */
1568 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1569 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1570 
1571 	/* Turn on RX list placement state machine */
1572 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1573 
1574 	/* Turn on RX list selector state machine. */
1575 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1576 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1577 	}
1578 
1579 	/* Turn on DMA, clear stats */
1580 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1581 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1582 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1583 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1584 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1585 
1586 	/* Set misc. local control, enable interrupts on attentions */
1587 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1588 
1589 #ifdef notdef
1590 	/* Assert GPIO pins for PHY reset */
1591 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1592 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1593 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1594 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1595 #endif
1596 
1597 #if defined(not_quite_yet)
1598 	/* Linux driver enables enable gpio pin #1 on 5700s */
1599 	if (sc->bge_asicrev == BGE_ASICREV_BCM5700) {
1600 		sc->bge_local_ctrl_reg |=
1601 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1602 	}
1603 #endif
1604 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1605 
1606 	/* Turn on DMA completion state machine */
1607 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1608 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1609 	}
1610 
1611 	/* Turn on write DMA state machine */
1612 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1613 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1614 
1615 	/* Turn on read DMA state machine */
1616 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1617 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1618 
1619 	/* Turn on RX data completion state machine */
1620 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1621 
1622 	/* Turn on RX BD initiator state machine */
1623 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1624 
1625 	/* Turn on RX data and RX BD initiator state machine */
1626 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1627 
1628 	/* Turn on Mbuf cluster free state machine */
1629 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1630 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1631 	}
1632 
1633 	/* Turn on send BD completion state machine */
1634 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1635 
1636 	/* Turn on send data completion state machine */
1637 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1638 
1639 	/* Turn on send data initiator state machine */
1640 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1641 
1642 	/* Turn on send BD initiator state machine */
1643 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1644 
1645 	/* Turn on send BD selector state machine */
1646 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1647 
1648 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1649 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1650 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1651 
1652 	/* init LED register */
1653 	CSR_WRITE_4(sc, BGE_MAC_LED_CTL, 0x00000000);
1654 
1655 	/* ack/clear link change events */
1656 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1657 	    BGE_MACSTAT_CFG_CHANGED);
1658 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1659 
1660 	/* Enable PHY auto polling (for MII/GMII only) */
1661 	if (sc->bge_tbi) {
1662 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1663  	} else {
1664 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1665 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1666 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1667 			    BGE_EVTENB_MI_INTERRUPT);
1668 	}
1669 
1670 	/* Enable link state change attentions. */
1671 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1672 
1673 	return(0);
1674 }
1675 
1676 static const struct bge_revision {
1677 	uint32_t		br_asicrev;
1678 	uint32_t		br_quirks;
1679 	const char		*br_name;
1680 } bge_revisions[] = {
1681 	{ BGE_ASICREV_BCM5700_A0,
1682 	  BGE_QUIRK_LINK_STATE_BROKEN,
1683 	  "BCM5700 A0" },
1684 
1685 	{ BGE_ASICREV_BCM5700_A1,
1686 	  BGE_QUIRK_LINK_STATE_BROKEN,
1687 	  "BCM5700 A1" },
1688 
1689 	{ BGE_ASICREV_BCM5700_B0,
1690 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1691 	  "BCM5700 B0" },
1692 
1693 	{ BGE_ASICREV_BCM5700_B1,
1694 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1695 	  "BCM5700 B1" },
1696 
1697 	{ BGE_ASICREV_BCM5700_B2,
1698 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1699 	  "BCM5700 B2" },
1700 
1701 	/* This is treated like a BCM5700 Bx */
1702 	{ BGE_ASICREV_BCM5700_ALTIMA,
1703 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1704 	  "BCM5700 Altima" },
1705 
1706 	{ BGE_ASICREV_BCM5700_C0,
1707 	  0,
1708 	  "BCM5700 C0" },
1709 
1710 	{ BGE_ASICREV_BCM5701_A0,
1711 	  0, /*XXX really, just not known */
1712 	  "BCM5701 A0" },
1713 
1714 	{ BGE_ASICREV_BCM5701_B0,
1715 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1716 	  "BCM5701 B0" },
1717 
1718 	{ BGE_ASICREV_BCM5701_B2,
1719 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1720 	  "BCM5701 B2" },
1721 
1722 	{ BGE_ASICREV_BCM5701_B5,
1723 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1724 	  "BCM5701 B5" },
1725 
1726 	{ BGE_ASICREV_BCM5703_A0,
1727 	  0,
1728 	  "BCM5703 A0" },
1729 
1730 	{ BGE_ASICREV_BCM5703_A1,
1731 	  0,
1732 	  "BCM5703 A1" },
1733 
1734 	{ BGE_ASICREV_BCM5703_A2,
1735 	  BGE_QUIRK_ONLY_PHY_1,
1736 	  "BCM5703 A2" },
1737 
1738 	{ BGE_ASICREV_BCM5704_A0,
1739   	  BGE_QUIRK_ONLY_PHY_1,
1740 	  "BCM5704 A0" },
1741 
1742 	{ BGE_ASICREV_BCM5704_A1,
1743   	  BGE_QUIRK_ONLY_PHY_1,
1744 	  "BCM5704 A1" },
1745 
1746 	{ BGE_ASICREV_BCM5704_A2,
1747   	  BGE_QUIRK_ONLY_PHY_1,
1748 	  "BCM5704 A2" },
1749 
1750 	{ BGE_ASICREV_BCM5705_A1,
1751 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1752 	  "BCM5705 A1" },
1753 
1754 	{ 0, 0, NULL }
1755 };
1756 
1757 static const struct bge_revision *
1758 bge_lookup_rev(uint32_t asicrev)
1759 {
1760 	const struct bge_revision *br;
1761 
1762 	for (br = bge_revisions; br->br_name != NULL; br++) {
1763 		if (br->br_asicrev == asicrev)
1764 			return (br);
1765 	}
1766 
1767 	return (NULL);
1768 }
1769 
1770 static const struct bge_product {
1771 	pci_vendor_id_t		bp_vendor;
1772 	pci_product_id_t	bp_product;
1773 	const char		*bp_name;
1774 } bge_products[] = {
1775 	/*
1776 	 * The BCM5700 documentation seems to indicate that the hardware
1777 	 * still has the Alteon vendor ID burned into it, though it
1778 	 * should always be overridden by the value in the EEPROM.  We'll
1779 	 * check for it anyway.
1780 	 */
1781 	{ PCI_VENDOR_ALTEON,
1782 	  PCI_PRODUCT_ALTEON_BCM5700,
1783 	  "Broadcom BCM5700 Gigabit Ethernet" },
1784 	{ PCI_VENDOR_ALTEON,
1785 	  PCI_PRODUCT_ALTEON_BCM5701,
1786 	  "Broadcom BCM5701 Gigabit Ethernet" },
1787 
1788 	{ PCI_VENDOR_ALTIMA,
1789 	  PCI_PRODUCT_ALTIMA_AC1000,
1790 	  "Altima AC1000 Gigabit Ethernet" },
1791 	{ PCI_VENDOR_ALTIMA,
1792 	  PCI_PRODUCT_ALTIMA_AC1001,
1793 	  "Altima AC1001 Gigabit Ethernet" },
1794 	{ PCI_VENDOR_ALTIMA,
1795 	  PCI_PRODUCT_ALTIMA_AC9100,
1796 	  "Altima AC9100 Gigabit Ethernet" },
1797 
1798 	{ PCI_VENDOR_BROADCOM,
1799 	  PCI_PRODUCT_BROADCOM_BCM5700,
1800 	  "Broadcom BCM5700 Gigabit Ethernet" },
1801 	{ PCI_VENDOR_BROADCOM,
1802 	  PCI_PRODUCT_BROADCOM_BCM5701,
1803 	  "Broadcom BCM5701 Gigabit Ethernet" },
1804 	{ PCI_VENDOR_BROADCOM,
1805 	  PCI_PRODUCT_BROADCOM_BCM5702,
1806 	  "Broadcom BCM5702 Gigabit Ethernet" },
1807 	{ PCI_VENDOR_BROADCOM,
1808 	  PCI_PRODUCT_BROADCOM_BCM5702X,
1809 	  "Broadcom BCM5702X Gigabit Ethernet" },
1810 	{ PCI_VENDOR_BROADCOM,
1811 	  PCI_PRODUCT_BROADCOM_BCM5703,
1812 	  "Broadcom BCM5703 Gigabit Ethernet" },
1813 	{ PCI_VENDOR_BROADCOM,
1814 	  PCI_PRODUCT_BROADCOM_BCM5703X,
1815 	  "Broadcom BCM5703X Gigabit Ethernet" },
1816    	{ PCI_VENDOR_BROADCOM,
1817 	  PCI_PRODUCT_BROADCOM_BCM5704C,
1818 	  "Broadcom BCM5704C Dual Gigabit Ethernet" },
1819    	{ PCI_VENDOR_BROADCOM,
1820 	  PCI_PRODUCT_BROADCOM_BCM5704S,
1821 	  "Broadcom BCM5704S Dual Gigabit Ethernet" },
1822    	{ PCI_VENDOR_BROADCOM,
1823 	  PCI_PRODUCT_BROADCOM_BCM5705M,
1824 	  "Broadcom BCM5705M Gigabit Ethernet" },
1825 
1826 	{ PCI_VENDOR_SCHNEIDERKOCH,
1827 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
1828 	  "SysKonnect SK-9Dx1 Gigabit Ethernet" },
1829 
1830 	{ PCI_VENDOR_3COM,
1831 	  PCI_PRODUCT_3COM_3C996,
1832 	  "3Com 3c996 Gigabit Ethernet" },
1833 
1834 	{ 0,
1835 	  0,
1836 	  NULL },
1837 };
1838 
1839 static const struct bge_product *
1840 bge_lookup(const struct pci_attach_args *pa)
1841 {
1842 	const struct bge_product *bp;
1843 
1844 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
1845 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
1846 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
1847 			return (bp);
1848 	}
1849 
1850 	return (NULL);
1851 }
1852 
1853 int
1854 bge_setpowerstate(sc, powerlevel)
1855 	struct bge_softc *sc;
1856 	int powerlevel;
1857 {
1858 #ifdef NOTYET
1859 	u_int32_t pm_ctl = 0;
1860 
1861 	/* XXX FIXME: make sure indirect accesses enabled? */
1862 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
1863 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
1864 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
1865 
1866 	/* clear the PME_assert bit and power state bits, enable PME */
1867 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
1868 	pm_ctl &= ~PCIM_PSTAT_DMASK;
1869 	pm_ctl |= (1 << 8);
1870 
1871 	if (powerlevel == 0) {
1872 		pm_ctl |= PCIM_PSTAT_D0;
1873 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
1874 		    pm_ctl, 2);
1875 		DELAY(10000);
1876 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1877 		DELAY(10000);
1878 
1879 #ifdef NOTYET
1880 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
1881 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
1882 #endif
1883 		DELAY(40); DELAY(40); DELAY(40);
1884 		DELAY(10000);	/* above not quite adequate on 5700 */
1885 		return 0;
1886 	}
1887 
1888 
1889 	/*
1890 	 * Entering ACPI power states D1-D3 is achieved by wiggling
1891 	 * GMII gpio pins. Example code assumes all hardware vendors
1892 	 * followed Broadom's sample pcb layout. Until we verify that
1893 	 * for all supported OEM cards, states D1-D3 are  unsupported.
1894 	 */
1895 	printf("%s: power state %d unimplemented; check GPIO pins\n",
1896 	       sc->bge_dev.dv_xname, powerlevel);
1897 #endif
1898 	return EOPNOTSUPP;
1899 }
1900 
1901 
1902 /*
1903  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1904  * against our list and return its name if we find a match. Note
1905  * that since the Broadcom controller contains VPD support, we
1906  * can get the device name string from the controller itself instead
1907  * of the compiled-in string. This is a little slow, but it guarantees
1908  * we'll always announce the right product name.
1909  */
1910 int
1911 bge_probe(parent, match, aux)
1912 	struct device *parent;
1913 	struct cfdata *match;
1914 	void *aux;
1915 {
1916 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
1917 
1918 	if (bge_lookup(pa) != NULL)
1919 		return (1);
1920 
1921 	return (0);
1922 }
1923 
1924 void
1925 bge_attach(parent, self, aux)
1926 	struct device *parent, *self;
1927 	void *aux;
1928 {
1929 	struct bge_softc	*sc = (struct bge_softc *)self;
1930 	struct pci_attach_args	*pa = aux;
1931 	const struct bge_product *bp;
1932 	const struct bge_revision *br;
1933 	pci_chipset_tag_t	pc = pa->pa_pc;
1934 	pci_intr_handle_t	ih;
1935 	const char		*intrstr = NULL;
1936 	bus_dma_segment_t	seg;
1937 	int			rseg;
1938 	u_int32_t		hwcfg = 0;
1939 	u_int32_t		mac_addr = 0;
1940 	u_int32_t		command;
1941 	struct ifnet		*ifp;
1942 	caddr_t			kva;
1943 	u_char			eaddr[ETHER_ADDR_LEN];
1944 	pcireg_t		memtype;
1945 	bus_addr_t		memaddr;
1946 	bus_size_t		memsize;
1947 	u_int32_t		pm_ctl;
1948 
1949 	bp = bge_lookup(pa);
1950 	KASSERT(bp != NULL);
1951 
1952 	sc->bge_pa = *pa;
1953 
1954 	aprint_naive(": Ethernet controller\n");
1955 	aprint_normal(": %s\n", bp->bp_name);
1956 
1957 	/*
1958 	 * Map control/status registers.
1959 	 */
1960 	DPRINTFN(5, ("Map control/status regs\n"));
1961 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1962 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
1963 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1964 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1965 
1966 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1967 		aprint_error("%s: failed to enable memory mapping!\n",
1968 		    sc->bge_dev.dv_xname);
1969 		return;
1970 	}
1971 
1972 	DPRINTFN(5, ("pci_mem_find\n"));
1973 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
1974  	switch (memtype) {
1975 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1976 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1977 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
1978 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
1979 		    &memaddr, &memsize) == 0)
1980 			break;
1981 	default:
1982 		aprint_error("%s: can't find mem space\n",
1983 		    sc->bge_dev.dv_xname);
1984 		return;
1985 	}
1986 
1987 	DPRINTFN(5, ("pci_intr_map\n"));
1988 	if (pci_intr_map(pa, &ih)) {
1989 		aprint_error("%s: couldn't map interrupt\n",
1990 		    sc->bge_dev.dv_xname);
1991 		return;
1992 	}
1993 
1994 	DPRINTFN(5, ("pci_intr_string\n"));
1995 	intrstr = pci_intr_string(pc, ih);
1996 
1997 	DPRINTFN(5, ("pci_intr_establish\n"));
1998 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
1999 
2000 	if (sc->bge_intrhand == NULL) {
2001 		aprint_error("%s: couldn't establish interrupt",
2002 		    sc->bge_dev.dv_xname);
2003 		if (intrstr != NULL)
2004 			aprint_normal(" at %s", intrstr);
2005 		aprint_normal("\n");
2006 		return;
2007 	}
2008 	aprint_normal("%s: interrupting at %s\n",
2009 	    sc->bge_dev.dv_xname, intrstr);
2010 
2011 	/*
2012 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2013 	 * can clobber the chip's PCI config-space power control registers,
2014 	 * leaving the card in D3 powersave state.
2015 	 * We do not have memory-mapped registers in this state,
2016 	 * so force device into D0 state before starting initialization.
2017 	 */
2018 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2019 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2020 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2021 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2022 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2023 
2024 	/* Try to reset the chip. */
2025 	DPRINTFN(5, ("bge_reset\n"));
2026 	bge_reset(sc);
2027 
2028 	if (bge_chipinit(sc)) {
2029 		aprint_error("%s: chip initialization failed\n",
2030 		    sc->bge_dev.dv_xname);
2031 		bge_release_resources(sc);
2032 		return;
2033 	}
2034 
2035 	/*
2036 	 * Get station address from the EEPROM.
2037 	 */
2038 	mac_addr = bge_readmem_ind(sc, 0x0c14);
2039 	if ((mac_addr >> 16) == 0x484b) {
2040 		eaddr[0] = (u_char)(mac_addr >> 8);
2041 		eaddr[1] = (u_char)(mac_addr >> 0);
2042 		mac_addr = bge_readmem_ind(sc, 0x0c18);
2043 		eaddr[2] = (u_char)(mac_addr >> 24);
2044 		eaddr[3] = (u_char)(mac_addr >> 16);
2045 		eaddr[4] = (u_char)(mac_addr >> 8);
2046 		eaddr[5] = (u_char)(mac_addr >> 0);
2047 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2048 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2049 		aprint_error("%s: failed to read station address\n",
2050 		    sc->bge_dev.dv_xname);
2051 		bge_release_resources(sc);
2052 		return;
2053 	}
2054 
2055 	/*
2056 	 * Save ASIC rev.  Look up any quirks associated with this
2057 	 * ASIC.
2058 	 */
2059 	sc->bge_asicrev =
2060 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2061 	    BGE_PCIMISCCTL_ASICREV;
2062 	br = bge_lookup_rev(sc->bge_asicrev);
2063 
2064 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
2065 	if (br == NULL) {
2066 		aprint_normal("unknown ASIC 0x%08x", sc->bge_asicrev);
2067 		sc->bge_quirks = 0;
2068 	} else {
2069 		aprint_normal("ASIC %s", br->br_name);
2070 		sc->bge_quirks = br->br_quirks;
2071 	}
2072 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2073 
2074 	/* Allocate the general information block and ring buffers. */
2075 	if (pci_dma64_available(pa))
2076 		sc->bge_dmatag = pa->pa_dmat64;
2077 	else
2078 		sc->bge_dmatag = pa->pa_dmat;
2079 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2080 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2081 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2082 		aprint_error("%s: can't alloc rx buffers\n",
2083 		    sc->bge_dev.dv_xname);
2084 		return;
2085 	}
2086 	DPRINTFN(5, ("bus_dmamem_map\n"));
2087 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2088 			   sizeof(struct bge_ring_data), &kva,
2089 			   BUS_DMA_NOWAIT)) {
2090 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2091 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2092 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2093 		return;
2094 	}
2095 	DPRINTFN(5, ("bus_dmamem_create\n"));
2096 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2097 	    sizeof(struct bge_ring_data), 0,
2098 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2099 		aprint_error("%s: can't create DMA map\n",
2100 		    sc->bge_dev.dv_xname);
2101 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2102 				 sizeof(struct bge_ring_data));
2103 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2104 		return;
2105 	}
2106 	DPRINTFN(5, ("bus_dmamem_load\n"));
2107 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2108 			    sizeof(struct bge_ring_data), NULL,
2109 			    BUS_DMA_NOWAIT)) {
2110 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2111 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2112 				 sizeof(struct bge_ring_data));
2113 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2114 		return;
2115 	}
2116 
2117 	DPRINTFN(5, ("bzero\n"));
2118 	sc->bge_rdata = (struct bge_ring_data *)kva;
2119 
2120 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2121 
2122 	/* Try to allocate memory for jumbo buffers. */
2123 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2124 		if (bge_alloc_jumbo_mem(sc)) {
2125 			aprint_error("%s: jumbo buffer allocation failed\n",
2126 			    sc->bge_dev.dv_xname);
2127 		} else
2128 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2129 	}
2130 
2131 	/* Set default tuneable values. */
2132 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2133 	sc->bge_rx_coal_ticks = 150;
2134 	sc->bge_rx_max_coal_bds = 64;
2135 #ifdef ORIG_WPAUL_VALUES
2136 	sc->bge_tx_coal_ticks = 150;
2137 	sc->bge_tx_max_coal_bds = 128;
2138 #else
2139 	sc->bge_tx_coal_ticks = 300;
2140 	sc->bge_tx_max_coal_bds = 400;
2141 #endif
2142 
2143 	/* Set up ifnet structure */
2144 	ifp = &sc->ethercom.ec_if;
2145 	ifp->if_softc = sc;
2146 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2147 	ifp->if_ioctl = bge_ioctl;
2148 	ifp->if_start = bge_start;
2149 	ifp->if_init = bge_init;
2150 	ifp->if_watchdog = bge_watchdog;
2151 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2152 	IFQ_SET_READY(&ifp->if_snd);
2153 	DPRINTFN(5, ("bcopy\n"));
2154 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2155 
2156 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2157 		sc->ethercom.ec_if.if_capabilities |=
2158 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2159 	sc->ethercom.ec_capabilities |=
2160 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2161 
2162 	/*
2163 	 * Do MII setup.
2164 	 */
2165 	DPRINTFN(5, ("mii setup\n"));
2166 	sc->bge_mii.mii_ifp = ifp;
2167 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2168 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2169 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2170 
2171 	/*
2172 	 * Figure out what sort of media we have by checking the
2173 	 * hardware config word in the first 32k of NIC internal memory,
2174 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2175 	 * cards, this value appears to be unset. If that's the
2176 	 * case, we have to rely on identifying the NIC by its PCI
2177 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2178 	 */
2179 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2180 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2181 	} else {
2182 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
2183 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2184 		hwcfg = be32toh(hwcfg);
2185 	}
2186 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2187 		sc->bge_tbi = 1;
2188 
2189 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2190 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2191 	    SK_SUBSYSID_9D41)
2192 		sc->bge_tbi = 1;
2193 
2194 	if (sc->bge_tbi) {
2195 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2196 		    bge_ifmedia_sts);
2197 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2198 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2199 			    0, NULL);
2200 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2201 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2202 	} else {
2203 		/*
2204 		 * Do transceiver setup.
2205 		 */
2206 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2207 			     bge_ifmedia_sts);
2208 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2209 			   MII_PHY_ANY, MII_OFFSET_ANY, 0);
2210 
2211 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2212 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2213 			ifmedia_add(&sc->bge_mii.mii_media,
2214 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2215 			ifmedia_set(&sc->bge_mii.mii_media,
2216 				    IFM_ETHER|IFM_MANUAL);
2217 		} else
2218 			ifmedia_set(&sc->bge_mii.mii_media,
2219 				    IFM_ETHER|IFM_AUTO);
2220 	}
2221 
2222 	/*
2223 	 * When using the BCM5701 in PCI-X mode, data corruption has
2224 	 * been observed in the first few bytes of some received packets.
2225 	 * Aligning the packet buffer in memory eliminates the corruption.
2226 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2227 	 * which do not support unaligned accesses, we will realign the
2228 	 * payloads by copying the received packets.
2229 	 */
2230 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2231 		/* If in PCI-X mode, work around the alignment bug. */
2232 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2233                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2234                          BGE_PCISTATE_PCI_BUSSPEED)
2235 		sc->bge_rx_alignment_bug = 1;
2236         }
2237 
2238 	/*
2239 	 * Call MI attach routine.
2240 	 */
2241 	DPRINTFN(5, ("if_attach\n"));
2242 	if_attach(ifp);
2243 	DPRINTFN(5, ("ether_ifattach\n"));
2244 	ether_ifattach(ifp, eaddr);
2245 	DPRINTFN(5, ("callout_init\n"));
2246 	callout_init(&sc->bge_timeout);
2247 }
2248 
2249 void
2250 bge_release_resources(sc)
2251 	struct bge_softc *sc;
2252 {
2253 	if (sc->bge_vpd_prodname != NULL)
2254 		free(sc->bge_vpd_prodname, M_DEVBUF);
2255 
2256 	if (sc->bge_vpd_readonly != NULL)
2257 		free(sc->bge_vpd_readonly, M_DEVBUF);
2258 }
2259 
2260 void
2261 bge_reset(sc)
2262 	struct bge_softc *sc;
2263 {
2264 	struct pci_attach_args *pa = &sc->bge_pa;
2265 	u_int32_t cachesize, command, pcistate;
2266 	int i, val = 0;
2267 
2268 	/* Save some important PCI state. */
2269 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2270 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2271 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2272 
2273 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2274 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2275 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2276 
2277 	/* Issue global reset */
2278 	bge_writereg_ind(sc, BGE_MISC_CFG,
2279 	    BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1));
2280 
2281 	DELAY(1000);
2282 
2283 	/* Reset some of the PCI state that got zapped by reset */
2284 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2285 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2286 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2287 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2288 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2289 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2290 
2291 	/* Enable memory arbiter. */
2292 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2293 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2294 	}
2295 
2296 	/*
2297 	 * Prevent PXE restart: write a magic number to the
2298 	 * general communications memory at 0xB50.
2299 	 */
2300 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2301 
2302 	/*
2303 	 * Poll the value location we just wrote until
2304 	 * we see the 1's complement of the magic number.
2305 	 * This indicates that the firmware initialization
2306 	 * is complete.
2307 	 */
2308 	for (i = 0; i < 750; i++) {
2309 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2310 		if (val == ~BGE_MAGIC_NUMBER)
2311 			break;
2312 		DELAY(1000);
2313 	}
2314 
2315 	if (i == 750) {
2316 		printf("%s: firmware handshake timed out, val = %x\n",
2317 		    sc->bge_dev.dv_xname, val);
2318 		return;
2319 	}
2320 
2321 	/*
2322 	 * XXX Wait for the value of the PCISTATE register to
2323 	 * return to its original pre-reset state. This is a
2324 	 * fairly good indicator of reset completion. If we don't
2325 	 * wait for the reset to fully complete, trying to read
2326 	 * from the device's non-PCI registers may yield garbage
2327 	 * results.
2328 	 */
2329 	for (i = 0; i < BGE_TIMEOUT; i++) {
2330 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) ==
2331 		    pcistate)
2332 			break;
2333 		DELAY(10);
2334 	}
2335 
2336 	/* Enable memory arbiter. */
2337 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2338 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2339 	}
2340 
2341 	/* Fix up byte swapping */
2342 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2343 
2344 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2345 
2346 	DELAY(10000);
2347 }
2348 
2349 /*
2350  * Frame reception handling. This is called if there's a frame
2351  * on the receive return list.
2352  *
2353  * Note: we have to be able to handle two possibilities here:
2354  * 1) the frame is from the jumbo recieve ring
2355  * 2) the frame is from the standard receive ring
2356  */
2357 
2358 void
2359 bge_rxeof(sc)
2360 	struct bge_softc *sc;
2361 {
2362 	struct ifnet *ifp;
2363 	int stdcnt = 0, jumbocnt = 0;
2364 	int have_tag = 0;
2365 	u_int16_t vlan_tag = 0;
2366 	bus_dmamap_t dmamap;
2367 	bus_addr_t offset, toff;
2368 	bus_size_t tlen;
2369 	int tosync;
2370 
2371 	ifp = &sc->ethercom.ec_if;
2372 
2373 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2374 	    offsetof(struct bge_ring_data, bge_status_block),
2375 	    sizeof (struct bge_status_block),
2376 	    BUS_DMASYNC_POSTREAD);
2377 
2378 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2379 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2380 	    sc->bge_rx_saved_considx;
2381 
2382 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2383 
2384 	if (tosync < 0) {
2385 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2386 		    sizeof (struct bge_rx_bd);
2387 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2388 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2389 		tosync = -tosync;
2390 	}
2391 
2392 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2393 	    offset, tosync * sizeof (struct bge_rx_bd),
2394 	    BUS_DMASYNC_POSTREAD);
2395 
2396 	while(sc->bge_rx_saved_considx !=
2397 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2398 		struct bge_rx_bd	*cur_rx;
2399 		u_int32_t		rxidx;
2400 		struct mbuf		*m = NULL;
2401 
2402 		cur_rx = &sc->bge_rdata->
2403 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2404 
2405 		rxidx = cur_rx->bge_idx;
2406 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2407 
2408 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2409 			have_tag = 1;
2410 			vlan_tag = cur_rx->bge_vlan_tag;
2411 		}
2412 
2413 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2414 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2415 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2416 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2417 			jumbocnt++;
2418 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2419 				ifp->if_ierrors++;
2420 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2421 				continue;
2422 			}
2423 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2424 					     NULL)== ENOBUFS) {
2425 				ifp->if_ierrors++;
2426 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2427 				continue;
2428 			}
2429 		} else {
2430 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2431 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2432 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2433 			stdcnt++;
2434 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2435 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2436 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2437 				ifp->if_ierrors++;
2438 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2439 				continue;
2440 			}
2441 			if (bge_newbuf_std(sc, sc->bge_std,
2442 			    NULL, dmamap) == ENOBUFS) {
2443 				ifp->if_ierrors++;
2444 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2445 				continue;
2446 			}
2447 		}
2448 
2449 		ifp->if_ipackets++;
2450 #ifndef __NO_STRICT_ALIGNMENT
2451                 /*
2452                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2453                  * the Rx buffer has the layer-2 header unaligned.
2454                  * If our CPU requires alignment, re-align by copying.
2455                  */
2456 		if (sc->bge_rx_alignment_bug) {
2457 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2458                                 cur_rx->bge_len);
2459 			m->m_data += ETHER_ALIGN;
2460 		}
2461 #endif
2462 
2463 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len;
2464 		m->m_pkthdr.rcvif = ifp;
2465 
2466 #if NBPFILTER > 0
2467 		/*
2468 		 * Handle BPF listeners. Let the BPF user see the packet.
2469 		 */
2470 		if (ifp->if_bpf)
2471 			bpf_mtap(ifp->if_bpf, m);
2472 #endif
2473 
2474 		if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0) {
2475 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
2476 			if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2477 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2478 #if 0	/* XXX appears to be broken */
2479 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
2480 				m->m_pkthdr.csum_data =
2481 				    cur_rx->bge_tcp_udp_csum;
2482 				m->m_pkthdr.csum_flags |=
2483 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_DATA);
2484 			}
2485 #endif
2486 		}
2487 
2488 		/*
2489 		 * If we received a packet with a vlan tag, pass it
2490 		 * to vlan_input() instead of ether_input().
2491 		 */
2492 		if (have_tag) {
2493 			struct m_tag *mtag;
2494 
2495 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2496 			    M_NOWAIT);
2497 			if (mtag != NULL) {
2498 				*(u_int *)(mtag + 1) = vlan_tag;
2499 				m_tag_prepend(m, mtag);
2500 				have_tag = vlan_tag = 0;
2501 			} else {
2502 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2503 				m_freem(m);
2504 				have_tag = vlan_tag = 0;
2505 				continue;
2506 			}
2507 		}
2508 		(*ifp->if_input)(ifp, m);
2509 	}
2510 
2511 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2512 	if (stdcnt)
2513 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2514 	if (jumbocnt)
2515 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2516 }
2517 
2518 void
2519 bge_txeof(sc)
2520 	struct bge_softc *sc;
2521 {
2522 	struct bge_tx_bd *cur_tx = NULL;
2523 	struct ifnet *ifp;
2524 	struct txdmamap_pool_entry *dma;
2525 	bus_addr_t offset, toff;
2526 	bus_size_t tlen;
2527 	int tosync;
2528 	struct mbuf *m;
2529 
2530 	ifp = &sc->ethercom.ec_if;
2531 
2532 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2533 	    offsetof(struct bge_ring_data, bge_status_block),
2534 	    sizeof (struct bge_status_block),
2535 	    BUS_DMASYNC_POSTREAD);
2536 
2537 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
2538 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2539 	    sc->bge_tx_saved_considx;
2540 
2541 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2542 
2543 	if (tosync < 0) {
2544 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2545 		    sizeof (struct bge_tx_bd);
2546 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2547 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2548 		tosync = -tosync;
2549 	}
2550 
2551 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2552 	    offset, tosync * sizeof (struct bge_tx_bd),
2553 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2554 
2555 	/*
2556 	 * Go through our tx ring and free mbufs for those
2557 	 * frames that have been sent.
2558 	 */
2559 	while (sc->bge_tx_saved_considx !=
2560 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2561 		u_int32_t		idx = 0;
2562 
2563 		idx = sc->bge_tx_saved_considx;
2564 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2565 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2566 			ifp->if_opackets++;
2567 		m = sc->bge_cdata.bge_tx_chain[idx];
2568 		if (m != NULL) {
2569 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2570 			dma = sc->txdma[idx];
2571 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2572 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2573 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2574 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2575 			sc->txdma[idx] = NULL;
2576 
2577 			m_freem(m);
2578 		}
2579 		sc->bge_txcnt--;
2580 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2581 		ifp->if_timer = 0;
2582 	}
2583 
2584 	if (cur_tx != NULL)
2585 		ifp->if_flags &= ~IFF_OACTIVE;
2586 }
2587 
2588 int
2589 bge_intr(xsc)
2590 	void *xsc;
2591 {
2592 	struct bge_softc *sc;
2593 	struct ifnet *ifp;
2594 
2595 	sc = xsc;
2596 	ifp = &sc->ethercom.ec_if;
2597 
2598 #ifdef notdef
2599 	/* Avoid this for now -- checking this register is expensive. */
2600 	/* Make sure this is really our interrupt. */
2601 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2602 		return (0);
2603 #endif
2604 	/* Ack interrupt and stop others from occuring. */
2605 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2606 
2607 	/*
2608 	 * Process link state changes.
2609 	 * Grrr. The link status word in the status block does
2610 	 * not work correctly on the BCM5700 rev AX and BX chips,
2611 	 * according to all avaibable information. Hence, we have
2612 	 * to enable MII interrupts in order to properly obtain
2613 	 * async link changes. Unfortunately, this also means that
2614 	 * we have to read the MAC status register to detect link
2615 	 * changes, thereby adding an additional register access to
2616 	 * the interrupt handler.
2617 	 */
2618 
2619 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2620 		u_int32_t		status;
2621 
2622 		status = CSR_READ_4(sc, BGE_MAC_STS);
2623 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2624 			sc->bge_link = 0;
2625 			callout_stop(&sc->bge_timeout);
2626 			bge_tick(sc);
2627 			/* Clear the interrupt */
2628 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2629 			    BGE_EVTENB_MI_INTERRUPT);
2630 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
2631 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
2632 			    BRGPHY_INTRS);
2633 		}
2634 	} else {
2635 		if (sc->bge_rdata->bge_status_block.bge_status &
2636 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
2637 			sc->bge_link = 0;
2638 			callout_stop(&sc->bge_timeout);
2639 			bge_tick(sc);
2640 			/* Clear the interrupt */
2641 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
2642 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
2643 			    BGE_MACSTAT_LINK_CHANGED);
2644 		}
2645 	}
2646 
2647 	if (ifp->if_flags & IFF_RUNNING) {
2648 		/* Check RX return ring producer/consumer */
2649 		bge_rxeof(sc);
2650 
2651 		/* Check TX ring producer/consumer */
2652 		bge_txeof(sc);
2653 	}
2654 
2655 	bge_handle_events(sc);
2656 
2657 	/* Re-enable interrupts. */
2658 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
2659 
2660 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
2661 		bge_start(ifp);
2662 
2663 	return (1);
2664 }
2665 
2666 void
2667 bge_tick(xsc)
2668 	void *xsc;
2669 {
2670 	struct bge_softc *sc = xsc;
2671 	struct mii_data *mii = &sc->bge_mii;
2672 	struct ifmedia *ifm = NULL;
2673 	struct ifnet *ifp = &sc->ethercom.ec_if;
2674 	int s;
2675 
2676 	s = splnet();
2677 
2678 	bge_stats_update(sc);
2679 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
2680 	if (sc->bge_link) {
2681 		splx(s);
2682 		return;
2683 	}
2684 
2685 	if (sc->bge_tbi) {
2686 		ifm = &sc->bge_ifmedia;
2687 		if (CSR_READ_4(sc, BGE_MAC_STS) &
2688 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
2689 			sc->bge_link++;
2690 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
2691 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
2692 				bge_start(ifp);
2693 		}
2694 		splx(s);
2695 		return;
2696 	}
2697 
2698 	mii_tick(mii);
2699 
2700 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
2701 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2702 		sc->bge_link++;
2703 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
2704 			bge_start(ifp);
2705 	}
2706 
2707 	splx(s);
2708 }
2709 
2710 void
2711 bge_stats_update(sc)
2712 	struct bge_softc *sc;
2713 {
2714 	struct ifnet *ifp = &sc->ethercom.ec_if;
2715 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
2716 	bus_size_t rstats = BGE_RX_STATS;
2717 
2718 #define READ_RSTAT(sc, stats, stat) \
2719 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
2720 
2721 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2722 		ifp->if_collisions +=
2723 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
2724 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
2725 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
2726 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
2727 		return;
2728 	}
2729 
2730 #undef READ_RSTAT
2731 #define READ_STAT(sc, stats, stat) \
2732 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
2733 
2734 	ifp->if_collisions +=
2735 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
2736 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
2737 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
2738 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
2739 	  ifp->if_collisions;
2740 
2741 #undef READ_STAT
2742 
2743 #ifdef notdef
2744 	ifp->if_collisions +=
2745 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
2746 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
2747 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
2748 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
2749 	   ifp->if_collisions;
2750 #endif
2751 }
2752 
2753 /*
2754  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
2755  * pointers to descriptors.
2756  */
2757 int
2758 bge_encap(sc, m_head, txidx)
2759 	struct bge_softc *sc;
2760 	struct mbuf *m_head;
2761 	u_int32_t *txidx;
2762 {
2763 	struct bge_tx_bd	*f = NULL;
2764 	u_int32_t		frag, cur, cnt = 0;
2765 	u_int16_t		csum_flags = 0;
2766 	struct txdmamap_pool_entry *dma;
2767 	bus_dmamap_t dmamap;
2768 	int			i = 0;
2769 	struct m_tag		*mtag;
2770 	struct mbuf		*prev, *m;
2771 	int			totlen, prevlen;
2772 
2773 	cur = frag = *txidx;
2774 
2775 	if (m_head->m_pkthdr.csum_flags) {
2776 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
2777 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
2778 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
2779 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
2780 	}
2781 
2782 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
2783 		goto doit;
2784 	/*
2785 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
2786 	 * less than eight bytes.  If we encounter a teeny mbuf
2787 	 * at the end of a chain, we can pad.  Otherwise, copy.
2788 	 */
2789 	prev = NULL;
2790 	totlen = 0;
2791 	for (m = m_head; m != NULL; prev = m,m = m->m_next) {
2792 		int mlen = m->m_len;
2793 
2794 		totlen += mlen;
2795 		if (mlen == 0) {
2796 			/* print a warning? */
2797 			continue;
2798 		}
2799 		if (mlen >= 8)
2800 			continue;
2801 
2802 		/* If we get here, mbuf data is too small for DMA engine. */
2803 		if (m->m_next != 0) {
2804 			  /* Internal frag. If fits in prev, copy it there. */
2805 			  if (prev && M_TRAILINGSPACE(prev) >= m->m_len &&
2806 			      !M_READONLY(prev)) {
2807 			  	bcopy(m->m_data,
2808 				      prev->m_data+prev->m_len,
2809 				      mlen);
2810 				prev->m_len += mlen;
2811 				m->m_len = 0;
2812 				MFREE(m, prev->m_next); /* XXX stitch chain */
2813 				m = prev;
2814 				continue;
2815 			  } else {
2816 				struct mbuf *n;
2817 				/* slow copy */
2818 slowcopy:
2819 			  	n = m_dup(m_head, 0, M_COPYALL, M_DONTWAIT);
2820 				m_freem(m_head);
2821 				if (n == 0)
2822 					return 0;
2823 				m_head  = n;
2824 				goto doit;
2825 			  }
2826 		} else if ((totlen -mlen +8) >= 1500) {
2827 			goto slowcopy;
2828 		}
2829 		prevlen = m->m_len;
2830 	}
2831 
2832 doit:
2833 	dma = SLIST_FIRST(&sc->txdma_list);
2834 	if (dma == NULL)
2835 		return ENOBUFS;
2836 	dmamap = dma->dmamap;
2837 
2838 	/*
2839 	 * Start packing the mbufs in this chain into
2840 	 * the fragment pointers. Stop when we run out
2841 	 * of fragments or hit the end of the mbuf chain.
2842 	 */
2843 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
2844 	    BUS_DMA_NOWAIT))
2845 		return(ENOBUFS);
2846 
2847 	mtag = sc->ethercom.ec_nvlans ?
2848 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
2849 
2850 	for (i = 0; i < dmamap->dm_nsegs; i++) {
2851 		f = &sc->bge_rdata->bge_tx_ring[frag];
2852 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
2853 			break;
2854 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
2855 		f->bge_len = dmamap->dm_segs[i].ds_len;
2856 		f->bge_flags = csum_flags;
2857 
2858 		if (mtag != NULL) {
2859 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
2860 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
2861 		} else {
2862 			f->bge_vlan_tag = 0;
2863 		}
2864 		/*
2865 		 * Sanity check: avoid coming within 16 descriptors
2866 		 * of the end of the ring.
2867 		 */
2868 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
2869 			return(ENOBUFS);
2870 		cur = frag;
2871 		BGE_INC(frag, BGE_TX_RING_CNT);
2872 		cnt++;
2873 	}
2874 
2875 	if (i < dmamap->dm_nsegs)
2876 		return ENOBUFS;
2877 
2878 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
2879 	    BUS_DMASYNC_PREWRITE);
2880 
2881 	if (frag == sc->bge_tx_saved_considx)
2882 		return(ENOBUFS);
2883 
2884 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
2885 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
2886 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
2887 	sc->txdma[cur] = dma;
2888 	sc->bge_txcnt += cnt;
2889 
2890 	*txidx = frag;
2891 
2892 	return(0);
2893 }
2894 
2895 /*
2896  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
2897  * to the mbuf data regions directly in the transmit descriptors.
2898  */
2899 void
2900 bge_start(ifp)
2901 	struct ifnet *ifp;
2902 {
2903 	struct bge_softc *sc;
2904 	struct mbuf *m_head = NULL;
2905 	u_int32_t prodidx = 0;
2906 	int pkts = 0;
2907 
2908 	sc = ifp->if_softc;
2909 
2910 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
2911 		return;
2912 
2913 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
2914 
2915 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
2916 		IFQ_POLL(&ifp->if_snd, m_head);
2917 		if (m_head == NULL)
2918 			break;
2919 
2920 #if 0
2921 		/*
2922 		 * XXX
2923 		 * safety overkill.  If this is a fragmented packet chain
2924 		 * with delayed TCP/UDP checksums, then only encapsulate
2925 		 * it if we have enough descriptors to handle the entire
2926 		 * chain at once.
2927 		 * (paranoia -- may not actually be needed)
2928 		 */
2929 		if (m_head->m_flags & M_FIRSTFRAG &&
2930 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
2931 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
2932 			    m_head->m_pkthdr.csum_data + 16) {
2933 				ifp->if_flags |= IFF_OACTIVE;
2934 				break;
2935 			}
2936 		}
2937 #endif
2938 
2939 		/*
2940 		 * Pack the data into the transmit ring. If we
2941 		 * don't have room, set the OACTIVE flag and wait
2942 		 * for the NIC to drain the ring.
2943 		 */
2944 		if (bge_encap(sc, m_head, &prodidx)) {
2945 			ifp->if_flags |= IFF_OACTIVE;
2946 			break;
2947 		}
2948 
2949 		/* now we are committed to transmit the packet */
2950 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2951 		pkts++;
2952 
2953 #if NBPFILTER > 0
2954 		/*
2955 		 * If there's a BPF listener, bounce a copy of this frame
2956 		 * to him.
2957 		 */
2958 		if (ifp->if_bpf)
2959 			bpf_mtap(ifp->if_bpf, m_head);
2960 #endif
2961 	}
2962 	if (pkts == 0)
2963 		return;
2964 
2965 	/* Transmit */
2966 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2967 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
2968 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
2969 
2970 	/*
2971 	 * Set a timeout in case the chip goes out to lunch.
2972 	 */
2973 	ifp->if_timer = 5;
2974 }
2975 
2976 int
2977 bge_init(ifp)
2978 	struct ifnet *ifp;
2979 {
2980 	struct bge_softc *sc = ifp->if_softc;
2981 	u_int16_t *m;
2982 	int s, error;
2983 
2984 	s = splnet();
2985 
2986 	ifp = &sc->ethercom.ec_if;
2987 
2988 	/* Cancel pending I/O and flush buffers. */
2989 	bge_stop(sc);
2990 	bge_reset(sc);
2991 	bge_chipinit(sc);
2992 
2993 	/*
2994 	 * Init the various state machines, ring
2995 	 * control blocks and firmware.
2996 	 */
2997 	error = bge_blockinit(sc);
2998 	if (error != 0) {
2999 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3000 		    error);
3001 		splx(s);
3002 		return error;
3003 	}
3004 
3005 	ifp = &sc->ethercom.ec_if;
3006 
3007 	/* Specify MTU. */
3008 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3009 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
3010 
3011 	/* Load our MAC address. */
3012 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3013 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3014 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3015 
3016 	/* Enable or disable promiscuous mode as needed. */
3017 	if (ifp->if_flags & IFF_PROMISC) {
3018 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3019 	} else {
3020 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3021 	}
3022 
3023 	/* Program multicast filter. */
3024 	bge_setmulti(sc);
3025 
3026 	/* Init RX ring. */
3027 	bge_init_rx_ring_std(sc);
3028 
3029 	/* Init jumbo RX ring. */
3030 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3031 		bge_init_rx_ring_jumbo(sc);
3032 
3033 	/* Init our RX return ring index */
3034 	sc->bge_rx_saved_considx = 0;
3035 
3036 	/* Init TX ring. */
3037 	bge_init_tx_ring(sc);
3038 
3039 	/* Turn on transmitter */
3040 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3041 
3042 	/* Turn on receiver */
3043 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3044 
3045 	/* Tell firmware we're alive. */
3046 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3047 
3048 	/* Enable host interrupts. */
3049 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3050 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3051 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3052 
3053 	bge_ifmedia_upd(ifp);
3054 
3055 	ifp->if_flags |= IFF_RUNNING;
3056 	ifp->if_flags &= ~IFF_OACTIVE;
3057 
3058 	splx(s);
3059 
3060 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3061 
3062 	return 0;
3063 }
3064 
3065 /*
3066  * Set media options.
3067  */
3068 int
3069 bge_ifmedia_upd(ifp)
3070 	struct ifnet *ifp;
3071 {
3072 	struct bge_softc *sc = ifp->if_softc;
3073 	struct mii_data *mii = &sc->bge_mii;
3074 	struct ifmedia *ifm = &sc->bge_ifmedia;
3075 
3076 	/* If this is a 1000baseX NIC, enable the TBI port. */
3077 	if (sc->bge_tbi) {
3078 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3079 			return(EINVAL);
3080 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3081 		case IFM_AUTO:
3082 			break;
3083 		case IFM_1000_SX:
3084 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3085 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3086 				    BGE_MACMODE_HALF_DUPLEX);
3087 			} else {
3088 				BGE_SETBIT(sc, BGE_MAC_MODE,
3089 				    BGE_MACMODE_HALF_DUPLEX);
3090 			}
3091 			break;
3092 		default:
3093 			return(EINVAL);
3094 		}
3095 		return(0);
3096 	}
3097 
3098 	sc->bge_link = 0;
3099 	mii_mediachg(mii);
3100 
3101 	return(0);
3102 }
3103 
3104 /*
3105  * Report current media status.
3106  */
3107 void
3108 bge_ifmedia_sts(ifp, ifmr)
3109 	struct ifnet *ifp;
3110 	struct ifmediareq *ifmr;
3111 {
3112 	struct bge_softc *sc = ifp->if_softc;
3113 	struct mii_data *mii = &sc->bge_mii;
3114 
3115 	if (sc->bge_tbi) {
3116 		ifmr->ifm_status = IFM_AVALID;
3117 		ifmr->ifm_active = IFM_ETHER;
3118 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3119 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3120 			ifmr->ifm_status |= IFM_ACTIVE;
3121 		ifmr->ifm_active |= IFM_1000_SX;
3122 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3123 			ifmr->ifm_active |= IFM_HDX;
3124 		else
3125 			ifmr->ifm_active |= IFM_FDX;
3126 		return;
3127 	}
3128 
3129 	mii_pollstat(mii);
3130 	ifmr->ifm_active = mii->mii_media_active;
3131 	ifmr->ifm_status = mii->mii_media_status;
3132 }
3133 
3134 int
3135 bge_ioctl(ifp, command, data)
3136 	struct ifnet *ifp;
3137 	u_long command;
3138 	caddr_t data;
3139 {
3140 	struct bge_softc *sc = ifp->if_softc;
3141 	struct ifreq *ifr = (struct ifreq *) data;
3142 	int s, error = 0;
3143 	struct mii_data *mii;
3144 
3145 	s = splnet();
3146 
3147 	switch(command) {
3148 	case SIOCSIFFLAGS:
3149 		if (ifp->if_flags & IFF_UP) {
3150 			/*
3151 			 * If only the state of the PROMISC flag changed,
3152 			 * then just use the 'set promisc mode' command
3153 			 * instead of reinitializing the entire NIC. Doing
3154 			 * a full re-init means reloading the firmware and
3155 			 * waiting for it to start up, which may take a
3156 			 * second or two.
3157 			 */
3158 			if (ifp->if_flags & IFF_RUNNING &&
3159 			    ifp->if_flags & IFF_PROMISC &&
3160 			    !(sc->bge_if_flags & IFF_PROMISC)) {
3161 				BGE_SETBIT(sc, BGE_RX_MODE,
3162 				    BGE_RXMODE_RX_PROMISC);
3163 			} else if (ifp->if_flags & IFF_RUNNING &&
3164 			    !(ifp->if_flags & IFF_PROMISC) &&
3165 			    sc->bge_if_flags & IFF_PROMISC) {
3166 				BGE_CLRBIT(sc, BGE_RX_MODE,
3167 				    BGE_RXMODE_RX_PROMISC);
3168 			} else
3169 				bge_init(ifp);
3170 		} else {
3171 			if (ifp->if_flags & IFF_RUNNING) {
3172 				bge_stop(sc);
3173 			}
3174 		}
3175 		sc->bge_if_flags = ifp->if_flags;
3176 		error = 0;
3177 		break;
3178 	case SIOCSIFMEDIA:
3179 	case SIOCGIFMEDIA:
3180 		if (sc->bge_tbi) {
3181 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3182 			    command);
3183 		} else {
3184 			mii = &sc->bge_mii;
3185 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3186 			    command);
3187 		}
3188 		error = 0;
3189 		break;
3190 	default:
3191 		error = ether_ioctl(ifp, command, data);
3192 		if (error == ENETRESET) {
3193 			bge_setmulti(sc);
3194 			error = 0;
3195 		}
3196 		break;
3197 	}
3198 
3199 	splx(s);
3200 
3201 	return(error);
3202 }
3203 
3204 void
3205 bge_watchdog(ifp)
3206 	struct ifnet *ifp;
3207 {
3208 	struct bge_softc *sc;
3209 
3210 	sc = ifp->if_softc;
3211 
3212 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3213 
3214 	ifp->if_flags &= ~IFF_RUNNING;
3215 	bge_init(ifp);
3216 
3217 	ifp->if_oerrors++;
3218 }
3219 
3220 static void
3221 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3222 {
3223 	int i;
3224 
3225 	BGE_CLRBIT(sc, reg, bit);
3226 
3227 	for (i = 0; i < BGE_TIMEOUT; i++) {
3228 		if ((CSR_READ_4(sc, reg) & bit) == 0)
3229 			return;
3230 		delay(100);
3231 	}
3232 
3233 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3234 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
3235 }
3236 
3237 /*
3238  * Stop the adapter and free any mbufs allocated to the
3239  * RX and TX lists.
3240  */
3241 void
3242 bge_stop(sc)
3243 	struct bge_softc *sc;
3244 {
3245 	struct ifnet *ifp = &sc->ethercom.ec_if;
3246 
3247 	callout_stop(&sc->bge_timeout);
3248 
3249 	/*
3250 	 * Disable all of the receiver blocks
3251 	 */
3252 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3253 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3254 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3255 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3256 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3257 	}
3258 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3259 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3260 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3261 
3262 	/*
3263 	 * Disable all of the transmit blocks
3264 	 */
3265 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3266 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3267 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3268 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3269 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3270 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3271 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3272 	}
3273 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3274 
3275 	/*
3276 	 * Shut down all of the memory managers and related
3277 	 * state machines.
3278 	 */
3279 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3280 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3281 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3282 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3283 	}
3284 
3285 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3286 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3287 
3288 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3289 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3290 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3291 	}
3292 
3293 	/* Disable host interrupts. */
3294 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3295 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3296 
3297 	/*
3298 	 * Tell firmware we're shutting down.
3299 	 */
3300 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3301 
3302 	/* Free the RX lists. */
3303 	bge_free_rx_ring_std(sc);
3304 
3305 	/* Free jumbo RX list. */
3306 	bge_free_rx_ring_jumbo(sc);
3307 
3308 	/* Free TX buffers. */
3309 	bge_free_tx_ring(sc);
3310 
3311 	/*
3312 	 * Isolate/power down the PHY.
3313 	 */
3314 	if (!sc->bge_tbi)
3315 		mii_down(&sc->bge_mii);
3316 
3317 	sc->bge_link = 0;
3318 
3319 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3320 
3321 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3322 }
3323 
3324 /*
3325  * Stop all chip I/O so that the kernel's probe routines don't
3326  * get confused by errant DMAs when rebooting.
3327  */
3328 void
3329 bge_shutdown(xsc)
3330 	void *xsc;
3331 {
3332 	struct bge_softc *sc = (struct bge_softc *)xsc;
3333 
3334 	bge_stop(sc);
3335 	bge_reset(sc);
3336 }
3337