xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 2c6fc41c810f5088457889d00eba558e8bc74d9e)
1 /*	$NetBSD: if_bge.c,v 1.266 2014/03/29 19:28:24 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.266 2014/03/29 19:28:24 christos Exp $");
83 
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/callout.h>
87 #include <sys/sockio.h>
88 #include <sys/mbuf.h>
89 #include <sys/malloc.h>
90 #include <sys/kernel.h>
91 #include <sys/device.h>
92 #include <sys/socket.h>
93 #include <sys/sysctl.h>
94 
95 #include <net/if.h>
96 #include <net/if_dl.h>
97 #include <net/if_media.h>
98 #include <net/if_ether.h>
99 
100 #include <sys/rnd.h>
101 
102 #ifdef INET
103 #include <netinet/in.h>
104 #include <netinet/in_systm.h>
105 #include <netinet/in_var.h>
106 #include <netinet/ip.h>
107 #endif
108 
109 /* Headers for TCP Segmentation Offload (TSO) */
110 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
111 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
112 #include <netinet/ip.h>			/* for struct ip */
113 #include <netinet/tcp.h>		/* for struct tcphdr */
114 
115 
116 #include <net/bpf.h>
117 
118 #include <dev/pci/pcireg.h>
119 #include <dev/pci/pcivar.h>
120 #include <dev/pci/pcidevs.h>
121 
122 #include <dev/mii/mii.h>
123 #include <dev/mii/miivar.h>
124 #include <dev/mii/miidevs.h>
125 #include <dev/mii/brgphyreg.h>
126 
127 #include <dev/pci/if_bgereg.h>
128 #include <dev/pci/if_bgevar.h>
129 
130 #include <prop/proplib.h>
131 
132 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
133 
134 
135 /*
136  * Tunable thresholds for rx-side bge interrupt mitigation.
137  */
138 
139 /*
140  * The pairs of values below were obtained from empirical measurement
141  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
142  * interrupt for every N packets received, where N is, approximately,
143  * the second value (rx_max_bds) in each pair.  The values are chosen
144  * such that moving from one pair to the succeeding pair was observed
145  * to roughly halve interrupt rate under sustained input packet load.
146  * The values were empirically chosen to avoid overflowing internal
147  * limits on the  bcm5700: increasing rx_ticks much beyond 600
148  * results in internal wrapping and higher interrupt rates.
149  * The limit of 46 frames was chosen to match NFS workloads.
150  *
151  * These values also work well on bcm5701, bcm5704C, and (less
152  * tested) bcm5703.  On other chipsets, (including the Altima chip
153  * family), the larger values may overflow internal chip limits,
154  * leading to increasing interrupt rates rather than lower interrupt
155  * rates.
156  *
157  * Applications using heavy interrupt mitigation (interrupting every
158  * 32 or 46 frames) in both directions may need to increase the TCP
159  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
160  * full link bandwidth, due to ACKs and window updates lingering
161  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
162  */
163 static const struct bge_load_rx_thresh {
164 	int rx_ticks;
165 	int rx_max_bds; }
166 bge_rx_threshes[] = {
167 	{ 16,   1 },	/* rx_max_bds = 1 disables interrupt mitigation */
168 	{ 32,   2 },
169 	{ 50,   4 },
170 	{ 100,  8 },
171 	{ 192, 16 },
172 	{ 416, 32 },
173 	{ 598, 46 }
174 };
175 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
176 
177 /* XXX patchable; should be sysctl'able */
178 static int bge_auto_thresh = 1;
179 static int bge_rx_thresh_lvl;
180 
181 static int bge_rxthresh_nodenum;
182 
183 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
184 
185 static uint32_t bge_chipid(const struct pci_attach_args *);
186 static int bge_probe(device_t, cfdata_t, void *);
187 static void bge_attach(device_t, device_t, void *);
188 static int bge_detach(device_t, int);
189 static void bge_release_resources(struct bge_softc *);
190 
191 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
192 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
193 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
196 
197 static void bge_txeof(struct bge_softc *);
198 static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
199 static void bge_rxeof(struct bge_softc *);
200 
201 static void bge_asf_driver_up (struct bge_softc *);
202 static void bge_tick(void *);
203 static void bge_stats_update(struct bge_softc *);
204 static void bge_stats_update_regs(struct bge_softc *);
205 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
206 
207 static int bge_intr(void *);
208 static void bge_start(struct ifnet *);
209 static int bge_ifflags_cb(struct ethercom *);
210 static int bge_ioctl(struct ifnet *, u_long, void *);
211 static int bge_init(struct ifnet *);
212 static void bge_stop(struct ifnet *, int);
213 static void bge_watchdog(struct ifnet *);
214 static int bge_ifmedia_upd(struct ifnet *);
215 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
216 
217 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
218 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
219 
220 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
221 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
222 static void bge_setmulti(struct bge_softc *);
223 
224 static void bge_handle_events(struct bge_softc *);
225 static int bge_alloc_jumbo_mem(struct bge_softc *);
226 #if 0 /* XXX */
227 static void bge_free_jumbo_mem(struct bge_softc *);
228 #endif
229 static void *bge_jalloc(struct bge_softc *);
230 static void bge_jfree(struct mbuf *, void *, size_t, void *);
231 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
232 			       bus_dmamap_t);
233 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
234 static int bge_init_rx_ring_std(struct bge_softc *);
235 static void bge_free_rx_ring_std(struct bge_softc *);
236 static int bge_init_rx_ring_jumbo(struct bge_softc *);
237 static void bge_free_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_tx_ring(struct bge_softc *);
239 static int bge_init_tx_ring(struct bge_softc *);
240 
241 static int bge_chipinit(struct bge_softc *);
242 static int bge_blockinit(struct bge_softc *);
243 static int bge_phy_addr(struct bge_softc *);
244 static uint32_t bge_readmem_ind(struct bge_softc *, int);
245 static void bge_writemem_ind(struct bge_softc *, int, int);
246 static void bge_writembx(struct bge_softc *, int, int);
247 static void bge_writembx_flush(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251 
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(struct ifnet *);
255 
256 #define BGE_RESET_SHUTDOWN	0
257 #define	BGE_RESET_START		1
258 #define	BGE_RESET_SUSPEND	2
259 static void bge_sig_post_reset(struct bge_softc *, int);
260 static void bge_sig_legacy(struct bge_softc *, int);
261 static void bge_sig_pre_reset(struct bge_softc *, int);
262 static void bge_wait_for_event_ack(struct bge_softc *);
263 static void bge_stop_fw(struct bge_softc *);
264 static int bge_reset(struct bge_softc *);
265 static void bge_link_upd(struct bge_softc *);
266 static void bge_sysctl_init(struct bge_softc *);
267 static int bge_sysctl_verify(SYSCTLFN_PROTO);
268 
269 static void bge_ape_lock_init(struct bge_softc *);
270 static void bge_ape_read_fw_ver(struct bge_softc *);
271 static int bge_ape_lock(struct bge_softc *, int);
272 static void bge_ape_unlock(struct bge_softc *, int);
273 static void bge_ape_send_event(struct bge_softc *, uint32_t);
274 static void bge_ape_driver_state_change(struct bge_softc *, int);
275 
276 #ifdef BGE_DEBUG
277 #define DPRINTF(x)	if (bgedebug) printf x
278 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
279 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
280 int	bgedebug = 0;
281 int	bge_tso_debug = 0;
282 void		bge_debug_info(struct bge_softc *);
283 #else
284 #define DPRINTF(x)
285 #define DPRINTFN(n,x)
286 #define BGE_TSO_PRINTF(x)
287 #endif
288 
289 #ifdef BGE_EVENT_COUNTERS
290 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
291 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
292 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
293 #else
294 #define	BGE_EVCNT_INCR(ev)	/* nothing */
295 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
296 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
297 #endif
298 
299 static const struct bge_product {
300 	pci_vendor_id_t		bp_vendor;
301 	pci_product_id_t	bp_product;
302 	const char		*bp_name;
303 } bge_products[] = {
304 	/*
305 	 * The BCM5700 documentation seems to indicate that the hardware
306 	 * still has the Alteon vendor ID burned into it, though it
307 	 * should always be overridden by the value in the EEPROM.  We'll
308 	 * check for it anyway.
309 	 */
310 	{ PCI_VENDOR_ALTEON,
311 	  PCI_PRODUCT_ALTEON_BCM5700,
312 	  "Broadcom BCM5700 Gigabit Ethernet",
313 	  },
314 	{ PCI_VENDOR_ALTEON,
315 	  PCI_PRODUCT_ALTEON_BCM5701,
316 	  "Broadcom BCM5701 Gigabit Ethernet",
317 	  },
318 	{ PCI_VENDOR_ALTIMA,
319 	  PCI_PRODUCT_ALTIMA_AC1000,
320 	  "Altima AC1000 Gigabit Ethernet",
321 	  },
322 	{ PCI_VENDOR_ALTIMA,
323 	  PCI_PRODUCT_ALTIMA_AC1001,
324 	  "Altima AC1001 Gigabit Ethernet",
325 	   },
326 	{ PCI_VENDOR_ALTIMA,
327 	  PCI_PRODUCT_ALTIMA_AC1003,
328 	  "Altima AC1003 Gigabit Ethernet",
329 	   },
330 	{ PCI_VENDOR_ALTIMA,
331 	  PCI_PRODUCT_ALTIMA_AC9100,
332 	  "Altima AC9100 Gigabit Ethernet",
333 	  },
334 	{ PCI_VENDOR_APPLE,
335 	  PCI_PRODUCT_APPLE_BCM5701,
336 	  "APPLE BCM5701 Gigabit Ethernet",
337 	  },
338 	{ PCI_VENDOR_BROADCOM,
339 	  PCI_PRODUCT_BROADCOM_BCM5700,
340 	  "Broadcom BCM5700 Gigabit Ethernet",
341 	  },
342 	{ PCI_VENDOR_BROADCOM,
343 	  PCI_PRODUCT_BROADCOM_BCM5701,
344 	  "Broadcom BCM5701 Gigabit Ethernet",
345 	  },
346 	{ PCI_VENDOR_BROADCOM,
347 	  PCI_PRODUCT_BROADCOM_BCM5702,
348 	  "Broadcom BCM5702 Gigabit Ethernet",
349 	  },
350 	{ PCI_VENDOR_BROADCOM,
351 	  PCI_PRODUCT_BROADCOM_BCM5702X,
352 	  "Broadcom BCM5702X Gigabit Ethernet" },
353 	{ PCI_VENDOR_BROADCOM,
354 	  PCI_PRODUCT_BROADCOM_BCM5703,
355 	  "Broadcom BCM5703 Gigabit Ethernet",
356 	  },
357 	{ PCI_VENDOR_BROADCOM,
358 	  PCI_PRODUCT_BROADCOM_BCM5703X,
359 	  "Broadcom BCM5703X Gigabit Ethernet",
360 	  },
361 	{ PCI_VENDOR_BROADCOM,
362 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
363 	  "Broadcom BCM5703 Gigabit Ethernet",
364 	  },
365 	{ PCI_VENDOR_BROADCOM,
366 	  PCI_PRODUCT_BROADCOM_BCM5704C,
367 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
368 	  },
369 	{ PCI_VENDOR_BROADCOM,
370 	  PCI_PRODUCT_BROADCOM_BCM5704S,
371 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
372 	  },
373 	{ PCI_VENDOR_BROADCOM,
374 	  PCI_PRODUCT_BROADCOM_BCM5705,
375 	  "Broadcom BCM5705 Gigabit Ethernet",
376 	  },
377 	{ PCI_VENDOR_BROADCOM,
378 	  PCI_PRODUCT_BROADCOM_BCM5705F,
379 	  "Broadcom BCM5705F Gigabit Ethernet",
380 	  },
381 	{ PCI_VENDOR_BROADCOM,
382 	  PCI_PRODUCT_BROADCOM_BCM5705K,
383 	  "Broadcom BCM5705K Gigabit Ethernet",
384 	  },
385 	{ PCI_VENDOR_BROADCOM,
386 	  PCI_PRODUCT_BROADCOM_BCM5705M,
387 	  "Broadcom BCM5705M Gigabit Ethernet",
388 	  },
389 	{ PCI_VENDOR_BROADCOM,
390 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
391 	  "Broadcom BCM5705M Gigabit Ethernet",
392 	  },
393 	{ PCI_VENDOR_BROADCOM,
394 	  PCI_PRODUCT_BROADCOM_BCM5714,
395 	  "Broadcom BCM5714 Gigabit Ethernet",
396 	  },
397 	{ PCI_VENDOR_BROADCOM,
398 	  PCI_PRODUCT_BROADCOM_BCM5714S,
399 	  "Broadcom BCM5714S Gigabit Ethernet",
400 	  },
401 	{ PCI_VENDOR_BROADCOM,
402 	  PCI_PRODUCT_BROADCOM_BCM5715,
403 	  "Broadcom BCM5715 Gigabit Ethernet",
404 	  },
405 	{ PCI_VENDOR_BROADCOM,
406 	  PCI_PRODUCT_BROADCOM_BCM5715S,
407 	  "Broadcom BCM5715S Gigabit Ethernet",
408 	  },
409 	{ PCI_VENDOR_BROADCOM,
410 	  PCI_PRODUCT_BROADCOM_BCM5717,
411 	  "Broadcom BCM5717 Gigabit Ethernet",
412 	  },
413 	{ PCI_VENDOR_BROADCOM,
414 	  PCI_PRODUCT_BROADCOM_BCM5718,
415 	  "Broadcom BCM5718 Gigabit Ethernet",
416 	  },
417 	{ PCI_VENDOR_BROADCOM,
418 	  PCI_PRODUCT_BROADCOM_BCM5719,
419 	  "Broadcom BCM5719 Gigabit Ethernet",
420 	  },
421 	{ PCI_VENDOR_BROADCOM,
422 	  PCI_PRODUCT_BROADCOM_BCM5720,
423 	  "Broadcom BCM5720 Gigabit Ethernet",
424 	  },
425 	{ PCI_VENDOR_BROADCOM,
426 	  PCI_PRODUCT_BROADCOM_BCM5721,
427 	  "Broadcom BCM5721 Gigabit Ethernet",
428 	  },
429 	{ PCI_VENDOR_BROADCOM,
430 	  PCI_PRODUCT_BROADCOM_BCM5722,
431 	  "Broadcom BCM5722 Gigabit Ethernet",
432 	  },
433 	{ PCI_VENDOR_BROADCOM,
434 	  PCI_PRODUCT_BROADCOM_BCM5723,
435 	  "Broadcom BCM5723 Gigabit Ethernet",
436 	  },
437 	{ PCI_VENDOR_BROADCOM,
438 	  PCI_PRODUCT_BROADCOM_BCM5724,
439 	  "Broadcom BCM5724 Gigabit Ethernet",
440 	  },
441 	{ PCI_VENDOR_BROADCOM,
442 	  PCI_PRODUCT_BROADCOM_BCM5750,
443 	  "Broadcom BCM5750 Gigabit Ethernet",
444 	  },
445 	{ PCI_VENDOR_BROADCOM,
446 	  PCI_PRODUCT_BROADCOM_BCM5750M,
447 	  "Broadcom BCM5750M Gigabit Ethernet",
448 	  },
449 	{ PCI_VENDOR_BROADCOM,
450 	  PCI_PRODUCT_BROADCOM_BCM5751,
451 	  "Broadcom BCM5751 Gigabit Ethernet",
452 	  },
453 	{ PCI_VENDOR_BROADCOM,
454 	  PCI_PRODUCT_BROADCOM_BCM5751F,
455 	  "Broadcom BCM5751F Gigabit Ethernet",
456 	  },
457 	{ PCI_VENDOR_BROADCOM,
458 	  PCI_PRODUCT_BROADCOM_BCM5751M,
459 	  "Broadcom BCM5751M Gigabit Ethernet",
460 	  },
461 	{ PCI_VENDOR_BROADCOM,
462 	  PCI_PRODUCT_BROADCOM_BCM5752,
463 	  "Broadcom BCM5752 Gigabit Ethernet",
464 	  },
465 	{ PCI_VENDOR_BROADCOM,
466 	  PCI_PRODUCT_BROADCOM_BCM5752M,
467 	  "Broadcom BCM5752M Gigabit Ethernet",
468 	  },
469 	{ PCI_VENDOR_BROADCOM,
470 	  PCI_PRODUCT_BROADCOM_BCM5753,
471 	  "Broadcom BCM5753 Gigabit Ethernet",
472 	  },
473 	{ PCI_VENDOR_BROADCOM,
474 	  PCI_PRODUCT_BROADCOM_BCM5753F,
475 	  "Broadcom BCM5753F Gigabit Ethernet",
476 	  },
477 	{ PCI_VENDOR_BROADCOM,
478 	  PCI_PRODUCT_BROADCOM_BCM5753M,
479 	  "Broadcom BCM5753M Gigabit Ethernet",
480 	  },
481 	{ PCI_VENDOR_BROADCOM,
482 	  PCI_PRODUCT_BROADCOM_BCM5754,
483 	  "Broadcom BCM5754 Gigabit Ethernet",
484 	},
485 	{ PCI_VENDOR_BROADCOM,
486 	  PCI_PRODUCT_BROADCOM_BCM5754M,
487 	  "Broadcom BCM5754M Gigabit Ethernet",
488 	},
489 	{ PCI_VENDOR_BROADCOM,
490 	  PCI_PRODUCT_BROADCOM_BCM5755,
491 	  "Broadcom BCM5755 Gigabit Ethernet",
492 	},
493 	{ PCI_VENDOR_BROADCOM,
494 	  PCI_PRODUCT_BROADCOM_BCM5755M,
495 	  "Broadcom BCM5755M Gigabit Ethernet",
496 	},
497 	{ PCI_VENDOR_BROADCOM,
498 	  PCI_PRODUCT_BROADCOM_BCM5756,
499 	  "Broadcom BCM5756 Gigabit Ethernet",
500 	},
501 	{ PCI_VENDOR_BROADCOM,
502 	  PCI_PRODUCT_BROADCOM_BCM5761,
503 	  "Broadcom BCM5761 Gigabit Ethernet",
504 	},
505 	{ PCI_VENDOR_BROADCOM,
506 	  PCI_PRODUCT_BROADCOM_BCM5761E,
507 	  "Broadcom BCM5761E Gigabit Ethernet",
508 	},
509 	{ PCI_VENDOR_BROADCOM,
510 	  PCI_PRODUCT_BROADCOM_BCM5761S,
511 	  "Broadcom BCM5761S Gigabit Ethernet",
512 	},
513 	{ PCI_VENDOR_BROADCOM,
514 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
515 	  "Broadcom BCM5761SE Gigabit Ethernet",
516 	},
517 	{ PCI_VENDOR_BROADCOM,
518 	  PCI_PRODUCT_BROADCOM_BCM5764,
519 	  "Broadcom BCM5764 Gigabit Ethernet",
520 	  },
521 	{ PCI_VENDOR_BROADCOM,
522 	  PCI_PRODUCT_BROADCOM_BCM5780,
523 	  "Broadcom BCM5780 Gigabit Ethernet",
524 	  },
525 	{ PCI_VENDOR_BROADCOM,
526 	  PCI_PRODUCT_BROADCOM_BCM5780S,
527 	  "Broadcom BCM5780S Gigabit Ethernet",
528 	  },
529 	{ PCI_VENDOR_BROADCOM,
530 	  PCI_PRODUCT_BROADCOM_BCM5781,
531 	  "Broadcom BCM5781 Gigabit Ethernet",
532 	  },
533 	{ PCI_VENDOR_BROADCOM,
534 	  PCI_PRODUCT_BROADCOM_BCM5782,
535 	  "Broadcom BCM5782 Gigabit Ethernet",
536 	},
537 	{ PCI_VENDOR_BROADCOM,
538 	  PCI_PRODUCT_BROADCOM_BCM5784M,
539 	  "BCM5784M NetLink 1000baseT Ethernet",
540 	},
541 	{ PCI_VENDOR_BROADCOM,
542 	  PCI_PRODUCT_BROADCOM_BCM5785F,
543 	  "BCM5785F NetLink 10/100 Ethernet",
544 	},
545 	{ PCI_VENDOR_BROADCOM,
546 	  PCI_PRODUCT_BROADCOM_BCM5785G,
547 	  "BCM5785G NetLink 1000baseT Ethernet",
548 	},
549 	{ PCI_VENDOR_BROADCOM,
550 	  PCI_PRODUCT_BROADCOM_BCM5786,
551 	  "Broadcom BCM5786 Gigabit Ethernet",
552 	},
553 	{ PCI_VENDOR_BROADCOM,
554 	  PCI_PRODUCT_BROADCOM_BCM5787,
555 	  "Broadcom BCM5787 Gigabit Ethernet",
556 	},
557 	{ PCI_VENDOR_BROADCOM,
558 	  PCI_PRODUCT_BROADCOM_BCM5787F,
559 	  "Broadcom BCM5787F 10/100 Ethernet",
560 	},
561 	{ PCI_VENDOR_BROADCOM,
562 	  PCI_PRODUCT_BROADCOM_BCM5787M,
563 	  "Broadcom BCM5787M Gigabit Ethernet",
564 	},
565 	{ PCI_VENDOR_BROADCOM,
566 	  PCI_PRODUCT_BROADCOM_BCM5788,
567 	  "Broadcom BCM5788 Gigabit Ethernet",
568 	  },
569 	{ PCI_VENDOR_BROADCOM,
570 	  PCI_PRODUCT_BROADCOM_BCM5789,
571 	  "Broadcom BCM5789 Gigabit Ethernet",
572 	  },
573 	{ PCI_VENDOR_BROADCOM,
574 	  PCI_PRODUCT_BROADCOM_BCM5901,
575 	  "Broadcom BCM5901 Fast Ethernet",
576 	  },
577 	{ PCI_VENDOR_BROADCOM,
578 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
579 	  "Broadcom BCM5901A2 Fast Ethernet",
580 	  },
581 	{ PCI_VENDOR_BROADCOM,
582 	  PCI_PRODUCT_BROADCOM_BCM5903M,
583 	  "Broadcom BCM5903M Fast Ethernet",
584 	  },
585 	{ PCI_VENDOR_BROADCOM,
586 	  PCI_PRODUCT_BROADCOM_BCM5906,
587 	  "Broadcom BCM5906 Fast Ethernet",
588 	  },
589 	{ PCI_VENDOR_BROADCOM,
590 	  PCI_PRODUCT_BROADCOM_BCM5906M,
591 	  "Broadcom BCM5906M Fast Ethernet",
592 	  },
593 	{ PCI_VENDOR_BROADCOM,
594 	  PCI_PRODUCT_BROADCOM_BCM57760,
595 	  "Broadcom BCM57760 Fast Ethernet",
596 	  },
597 	{ PCI_VENDOR_BROADCOM,
598 	  PCI_PRODUCT_BROADCOM_BCM57761,
599 	  "Broadcom BCM57761 Fast Ethernet",
600 	  },
601 	{ PCI_VENDOR_BROADCOM,
602 	  PCI_PRODUCT_BROADCOM_BCM57762,
603 	  "Broadcom BCM57762 Gigabit Ethernet",
604 	  },
605 	{ PCI_VENDOR_BROADCOM,
606 	  PCI_PRODUCT_BROADCOM_BCM57765,
607 	  "Broadcom BCM57765 Fast Ethernet",
608 	  },
609 	{ PCI_VENDOR_BROADCOM,
610 	  PCI_PRODUCT_BROADCOM_BCM57766,
611 	  "Broadcom BCM57766 Fast Ethernet",
612 	  },
613 	{ PCI_VENDOR_BROADCOM,
614 	  PCI_PRODUCT_BROADCOM_BCM57780,
615 	  "Broadcom BCM57780 Fast Ethernet",
616 	  },
617 	{ PCI_VENDOR_BROADCOM,
618 	  PCI_PRODUCT_BROADCOM_BCM57781,
619 	  "Broadcom BCM57781 Fast Ethernet",
620 	  },
621 	{ PCI_VENDOR_BROADCOM,
622 	  PCI_PRODUCT_BROADCOM_BCM57782,
623 	  "Broadcom BCM57782 Fast Ethernet",
624 	  },
625 	{ PCI_VENDOR_BROADCOM,
626 	  PCI_PRODUCT_BROADCOM_BCM57785,
627 	  "Broadcom BCM57785 Fast Ethernet",
628 	  },
629 	{ PCI_VENDOR_BROADCOM,
630 	  PCI_PRODUCT_BROADCOM_BCM57786,
631 	  "Broadcom BCM57786 Fast Ethernet",
632 	  },
633 	{ PCI_VENDOR_BROADCOM,
634 	  PCI_PRODUCT_BROADCOM_BCM57788,
635 	  "Broadcom BCM57788 Fast Ethernet",
636 	  },
637 	{ PCI_VENDOR_BROADCOM,
638 	  PCI_PRODUCT_BROADCOM_BCM57790,
639 	  "Broadcom BCM57790 Fast Ethernet",
640 	  },
641 	{ PCI_VENDOR_BROADCOM,
642 	  PCI_PRODUCT_BROADCOM_BCM57791,
643 	  "Broadcom BCM57791 Fast Ethernet",
644 	  },
645 	{ PCI_VENDOR_BROADCOM,
646 	  PCI_PRODUCT_BROADCOM_BCM57795,
647 	  "Broadcom BCM57795 Fast Ethernet",
648 	  },
649 	{ PCI_VENDOR_SCHNEIDERKOCH,
650 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
651 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
652 	  },
653 	{ PCI_VENDOR_3COM,
654 	  PCI_PRODUCT_3COM_3C996,
655 	  "3Com 3c996 Gigabit Ethernet",
656 	  },
657 	{ PCI_VENDOR_FUJITSU4,
658 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
659 	  "Fujitsu PW008GE4 Gigabit Ethernet",
660 	  },
661 	{ PCI_VENDOR_FUJITSU4,
662 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
663 	  "Fujitsu PW008GE5 Gigabit Ethernet",
664 	  },
665 	{ PCI_VENDOR_FUJITSU4,
666 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
667 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
668 	  },
669 	{ 0,
670 	  0,
671 	  NULL },
672 };
673 
674 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
675 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGEF_5700_FAMILY)
676 #define BGE_IS_5705_PLUS(sc)		((sc)->bge_flags & BGEF_5705_PLUS)
677 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGEF_5714_FAMILY)
678 #define BGE_IS_575X_PLUS(sc)		((sc)->bge_flags & BGEF_575X_PLUS)
679 #define BGE_IS_5755_PLUS(sc)		((sc)->bge_flags & BGEF_5755_PLUS)
680 #define BGE_IS_57765_FAMILY(sc)		((sc)->bge_flags & BGEF_57765_FAMILY)
681 #define BGE_IS_57765_PLUS(sc)		((sc)->bge_flags & BGEF_57765_PLUS)
682 #define BGE_IS_5717_PLUS(sc)		((sc)->bge_flags & BGEF_5717_PLUS)
683 
684 static const struct bge_revision {
685 	uint32_t		br_chipid;
686 	const char		*br_name;
687 } bge_revisions[] = {
688 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
689 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
690 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
691 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
692 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
693 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
694 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
695 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
696 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
697 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
698 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
699 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
700 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
701 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
702 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
703 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
704 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
705 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
706 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
707 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
708 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
709 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
710 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
711 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
712 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
713 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
714 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
715 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
716 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
717 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
718 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
719 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
720 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
721 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
722 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
723 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
724 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
725 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
726 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
727 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
728 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
729 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
730 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
731 	{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
732 	{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
733 	{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
734 	{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
735 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
736 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
737 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
738 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
739 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
740 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
741 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
742 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
743 	/* 5754 and 5787 share the same ASIC ID */
744 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
745 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
746 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
747 	{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
748 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
749 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
750 	{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
751 	{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
752 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
753 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
754 
755 	{ 0, NULL }
756 };
757 
758 /*
759  * Some defaults for major revisions, so that newer steppings
760  * that we don't know about have a shot at working.
761  */
762 static const struct bge_revision bge_majorrevs[] = {
763 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
764 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
765 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
766 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
767 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
768 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
769 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
770 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
771 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
772 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
773 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
774 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
775 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
776 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
777 	/* 5754 and 5787 share the same ASIC ID */
778 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
779 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
780 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
781 	{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
782 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
783 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
784 	{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
785 	{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
786 
787 	{ 0, NULL }
788 };
789 
790 static int bge_allow_asf = 1;
791 
792 CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
793     bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
794 
795 static uint32_t
796 bge_readmem_ind(struct bge_softc *sc, int off)
797 {
798 	pcireg_t val;
799 
800 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
801 	    off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
802 		return 0;
803 
804 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
805 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
806 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
807 	return val;
808 }
809 
810 static void
811 bge_writemem_ind(struct bge_softc *sc, int off, int val)
812 {
813 
814 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
815 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
816 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
817 }
818 
819 /*
820  * PCI Express only
821  */
822 static void
823 bge_set_max_readrq(struct bge_softc *sc)
824 {
825 	pcireg_t val;
826 
827 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
828 	    + PCIE_DCSR);
829 	val &= ~PCIE_DCSR_MAX_READ_REQ;
830 	switch (sc->bge_expmrq) {
831 	case 2048:
832 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
833 		break;
834 	case 4096:
835 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
836 		break;
837 	default:
838 		panic("incorrect expmrq value(%d)", sc->bge_expmrq);
839 		break;
840 	}
841 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
842 	    + PCIE_DCSR, val);
843 }
844 
845 #ifdef notdef
846 static uint32_t
847 bge_readreg_ind(struct bge_softc *sc, int off)
848 {
849 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
850 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
851 }
852 #endif
853 
854 static void
855 bge_writereg_ind(struct bge_softc *sc, int off, int val)
856 {
857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
859 }
860 
861 static void
862 bge_writemem_direct(struct bge_softc *sc, int off, int val)
863 {
864 	CSR_WRITE_4(sc, off, val);
865 }
866 
867 static void
868 bge_writembx(struct bge_softc *sc, int off, int val)
869 {
870 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
871 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
872 
873 	CSR_WRITE_4(sc, off, val);
874 }
875 
876 static void
877 bge_writembx_flush(struct bge_softc *sc, int off, int val)
878 {
879 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
880 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
881 
882 	CSR_WRITE_4_FLUSH(sc, off, val);
883 }
884 
885 /*
886  * Clear all stale locks and select the lock for this driver instance.
887  */
888 void
889 bge_ape_lock_init(struct bge_softc *sc)
890 {
891 	struct pci_attach_args *pa = &(sc->bge_pa);
892 	uint32_t bit, regbase;
893 	int i;
894 
895 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
896 		regbase = BGE_APE_LOCK_GRANT;
897 	else
898 		regbase = BGE_APE_PER_LOCK_GRANT;
899 
900 	/* Clear any stale locks. */
901 	for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
902 		switch (i) {
903 		case BGE_APE_LOCK_PHY0:
904 		case BGE_APE_LOCK_PHY1:
905 		case BGE_APE_LOCK_PHY2:
906 		case BGE_APE_LOCK_PHY3:
907 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
908 			break;
909 		default:
910 			if (pa->pa_function == 0)
911 				bit = BGE_APE_LOCK_GRANT_DRIVER0;
912 			else
913 				bit = (1 << pa->pa_function);
914 		}
915 		APE_WRITE_4(sc, regbase + 4 * i, bit);
916 	}
917 
918 	/* Select the PHY lock based on the device's function number. */
919 	switch (pa->pa_function) {
920 	case 0:
921 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
922 		break;
923 	case 1:
924 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
925 		break;
926 	case 2:
927 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
928 		break;
929 	case 3:
930 		sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
931 		break;
932 	default:
933 		printf("%s: PHY lock not supported on function\n",
934 		    device_xname(sc->bge_dev));
935 		break;
936 	}
937 }
938 
939 /*
940  * Check for APE firmware, set flags, and print version info.
941  */
942 void
943 bge_ape_read_fw_ver(struct bge_softc *sc)
944 {
945 	const char *fwtype;
946 	uint32_t apedata, features;
947 
948 	/* Check for a valid APE signature in shared memory. */
949 	apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
950 	if (apedata != BGE_APE_SEG_SIG_MAGIC) {
951 		sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
952 		return;
953 	}
954 
955 	/* Check if APE firmware is running. */
956 	apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
957 	if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
958 		printf("%s: APE signature found but FW status not ready! "
959 		    "0x%08x\n", device_xname(sc->bge_dev), apedata);
960 		return;
961 	}
962 
963 	sc->bge_mfw_flags |= BGE_MFW_ON_APE;
964 
965 	/* Fetch the APE firwmare type and version. */
966 	apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
967 	features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
968 	if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
969 		sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
970 		fwtype = "NCSI";
971 	} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
972 		sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
973 		fwtype = "DASH";
974 	} else
975 		fwtype = "UNKN";
976 
977 	/* Print the APE firmware version. */
978 	printf(", APE firmware %s %d.%d.%d.%d", fwtype,
979 	    (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
980 	    (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
981 	    (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
982 	    (apedata & BGE_APE_FW_VERSION_BLDMSK));
983 }
984 
985 int
986 bge_ape_lock(struct bge_softc *sc, int locknum)
987 {
988 	struct pci_attach_args *pa = &(sc->bge_pa);
989 	uint32_t bit, gnt, req, status;
990 	int i, off;
991 
992 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
993 		return (0);
994 
995 	/* Lock request/grant registers have different bases. */
996 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
997 		req = BGE_APE_LOCK_REQ;
998 		gnt = BGE_APE_LOCK_GRANT;
999 	} else {
1000 		req = BGE_APE_PER_LOCK_REQ;
1001 		gnt = BGE_APE_PER_LOCK_GRANT;
1002 	}
1003 
1004 	off = 4 * locknum;
1005 
1006 	switch (locknum) {
1007 	case BGE_APE_LOCK_GPIO:
1008 		/* Lock required when using GPIO. */
1009 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1010 			return (0);
1011 		if (pa->pa_function == 0)
1012 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1013 		else
1014 			bit = (1 << pa->pa_function);
1015 		break;
1016 	case BGE_APE_LOCK_GRC:
1017 		/* Lock required to reset the device. */
1018 		if (pa->pa_function == 0)
1019 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1020 		else
1021 			bit = (1 << pa->pa_function);
1022 		break;
1023 	case BGE_APE_LOCK_MEM:
1024 		/* Lock required when accessing certain APE memory. */
1025 		if (pa->pa_function == 0)
1026 			bit = BGE_APE_LOCK_REQ_DRIVER0;
1027 		else
1028 			bit = (1 << pa->pa_function);
1029 		break;
1030 	case BGE_APE_LOCK_PHY0:
1031 	case BGE_APE_LOCK_PHY1:
1032 	case BGE_APE_LOCK_PHY2:
1033 	case BGE_APE_LOCK_PHY3:
1034 		/* Lock required when accessing PHYs. */
1035 		bit = BGE_APE_LOCK_REQ_DRIVER0;
1036 		break;
1037 	default:
1038 		return (EINVAL);
1039 	}
1040 
1041 	/* Request a lock. */
1042 	APE_WRITE_4_FLUSH(sc, req + off, bit);
1043 
1044 	/* Wait up to 1 second to acquire lock. */
1045 	for (i = 0; i < 20000; i++) {
1046 		status = APE_READ_4(sc, gnt + off);
1047 		if (status == bit)
1048 			break;
1049 		DELAY(50);
1050 	}
1051 
1052 	/* Handle any errors. */
1053 	if (status != bit) {
1054 		printf("%s: APE lock %d request failed! "
1055 		    "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
1056 		    device_xname(sc->bge_dev),
1057 		    locknum, req + off, bit & 0xFFFF, gnt + off,
1058 		    status & 0xFFFF);
1059 		/* Revoke the lock request. */
1060 		APE_WRITE_4(sc, gnt + off, bit);
1061 		return (EBUSY);
1062 	}
1063 
1064 	return (0);
1065 }
1066 
1067 void
1068 bge_ape_unlock(struct bge_softc *sc, int locknum)
1069 {
1070 	struct pci_attach_args *pa = &(sc->bge_pa);
1071 	uint32_t bit, gnt;
1072 	int off;
1073 
1074 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1075 		return;
1076 
1077 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1078 		gnt = BGE_APE_LOCK_GRANT;
1079 	else
1080 		gnt = BGE_APE_PER_LOCK_GRANT;
1081 
1082 	off = 4 * locknum;
1083 
1084 	switch (locknum) {
1085 	case BGE_APE_LOCK_GPIO:
1086 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
1087 			return;
1088 		if (pa->pa_function == 0)
1089 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1090 		else
1091 			bit = (1 << pa->pa_function);
1092 		break;
1093 	case BGE_APE_LOCK_GRC:
1094 		if (pa->pa_function == 0)
1095 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1096 		else
1097 			bit = (1 << pa->pa_function);
1098 		break;
1099 	case BGE_APE_LOCK_MEM:
1100 		if (pa->pa_function == 0)
1101 			bit = BGE_APE_LOCK_GRANT_DRIVER0;
1102 		else
1103 			bit = (1 << pa->pa_function);
1104 		break;
1105 	case BGE_APE_LOCK_PHY0:
1106 	case BGE_APE_LOCK_PHY1:
1107 	case BGE_APE_LOCK_PHY2:
1108 	case BGE_APE_LOCK_PHY3:
1109 		bit = BGE_APE_LOCK_GRANT_DRIVER0;
1110 		break;
1111 	default:
1112 		return;
1113 	}
1114 
1115 	/* Write and flush for consecutive bge_ape_lock() */
1116 	APE_WRITE_4_FLUSH(sc, gnt + off, bit);
1117 }
1118 
1119 /*
1120  * Send an event to the APE firmware.
1121  */
1122 void
1123 bge_ape_send_event(struct bge_softc *sc, uint32_t event)
1124 {
1125 	uint32_t apedata;
1126 	int i;
1127 
1128 	/* NCSI does not support APE events. */
1129 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1130 		return;
1131 
1132 	/* Wait up to 1ms for APE to service previous event. */
1133 	for (i = 10; i > 0; i--) {
1134 		if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
1135 			break;
1136 		apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
1137 		if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
1138 			APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
1139 			    BGE_APE_EVENT_STATUS_EVENT_PENDING);
1140 			bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1141 			APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
1142 			break;
1143 		}
1144 		bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
1145 		DELAY(100);
1146 	}
1147 	if (i == 0) {
1148 		printf("%s: APE event 0x%08x send timed out\n",
1149 		    device_xname(sc->bge_dev), event);
1150 	}
1151 }
1152 
1153 void
1154 bge_ape_driver_state_change(struct bge_softc *sc, int kind)
1155 {
1156 	uint32_t apedata, event;
1157 
1158 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
1159 		return;
1160 
1161 	switch (kind) {
1162 	case BGE_RESET_START:
1163 		/* If this is the first load, clear the load counter. */
1164 		apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
1165 		if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
1166 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
1167 		else {
1168 			apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
1169 			APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
1170 		}
1171 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
1172 		    BGE_APE_HOST_SEG_SIG_MAGIC);
1173 		APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
1174 		    BGE_APE_HOST_SEG_LEN_MAGIC);
1175 
1176 		/* Add some version info if bge(4) supports it. */
1177 		APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
1178 		    BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
1179 		APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
1180 		    BGE_APE_HOST_BEHAV_NO_PHYLOCK);
1181 		APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
1182 		    BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
1183 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1184 		    BGE_APE_HOST_DRVR_STATE_START);
1185 		event = BGE_APE_EVENT_STATUS_STATE_START;
1186 		break;
1187 	case BGE_RESET_SHUTDOWN:
1188 		APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
1189 		    BGE_APE_HOST_DRVR_STATE_UNLOAD);
1190 		event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
1191 		break;
1192 	case BGE_RESET_SUSPEND:
1193 		event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
1194 		break;
1195 	default:
1196 		return;
1197 	}
1198 
1199 	bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
1200 	    BGE_APE_EVENT_STATUS_STATE_CHNGE);
1201 }
1202 
1203 static uint8_t
1204 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1205 {
1206 	uint32_t access, byte = 0;
1207 	int i;
1208 
1209 	/* Lock. */
1210 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
1211 	for (i = 0; i < 8000; i++) {
1212 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
1213 			break;
1214 		DELAY(20);
1215 	}
1216 	if (i == 8000)
1217 		return 1;
1218 
1219 	/* Enable access. */
1220 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
1221 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
1222 
1223 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
1224 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
1225 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1226 		DELAY(10);
1227 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
1228 			DELAY(10);
1229 			break;
1230 		}
1231 	}
1232 
1233 	if (i == BGE_TIMEOUT * 10) {
1234 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
1235 		return 1;
1236 	}
1237 
1238 	/* Get result. */
1239 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
1240 
1241 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
1242 
1243 	/* Disable access. */
1244 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
1245 
1246 	/* Unlock. */
1247 	CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1248 
1249 	return 0;
1250 }
1251 
1252 /*
1253  * Read a sequence of bytes from NVRAM.
1254  */
1255 static int
1256 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
1257 {
1258 	int error = 0, i;
1259 	uint8_t byte = 0;
1260 
1261 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
1262 		return 1;
1263 
1264 	for (i = 0; i < cnt; i++) {
1265 		error = bge_nvram_getbyte(sc, off + i, &byte);
1266 		if (error)
1267 			break;
1268 		*(dest + i) = byte;
1269 	}
1270 
1271 	return (error ? 1 : 0);
1272 }
1273 
1274 /*
1275  * Read a byte of data stored in the EEPROM at address 'addr.' The
1276  * BCM570x supports both the traditional bitbang interface and an
1277  * auto access interface for reading the EEPROM. We use the auto
1278  * access method.
1279  */
1280 static uint8_t
1281 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1282 {
1283 	int i;
1284 	uint32_t byte = 0;
1285 
1286 	/*
1287 	 * Enable use of auto EEPROM access so we can avoid
1288 	 * having to use the bitbang method.
1289 	 */
1290 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1291 
1292 	/* Reset the EEPROM, load the clock period. */
1293 	CSR_WRITE_4(sc, BGE_EE_ADDR,
1294 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1295 	DELAY(20);
1296 
1297 	/* Issue the read EEPROM command. */
1298 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1299 
1300 	/* Wait for completion */
1301 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
1302 		DELAY(10);
1303 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1304 			break;
1305 	}
1306 
1307 	if (i == BGE_TIMEOUT * 10) {
1308 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
1309 		return 1;
1310 	}
1311 
1312 	/* Get result. */
1313 	byte = CSR_READ_4(sc, BGE_EE_DATA);
1314 
1315 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * Read a sequence of bytes from the EEPROM.
1322  */
1323 static int
1324 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
1325 {
1326 	int error = 0, i;
1327 	uint8_t byte = 0;
1328 	char *dest = destv;
1329 
1330 	for (i = 0; i < cnt; i++) {
1331 		error = bge_eeprom_getbyte(sc, off + i, &byte);
1332 		if (error)
1333 			break;
1334 		*(dest + i) = byte;
1335 	}
1336 
1337 	return (error ? 1 : 0);
1338 }
1339 
1340 static int
1341 bge_miibus_readreg(device_t dev, int phy, int reg)
1342 {
1343 	struct bge_softc *sc = device_private(dev);
1344 	uint32_t val;
1345 	uint32_t autopoll;
1346 	int i;
1347 
1348 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1349 		return 0;
1350 
1351 	/* Reading with autopolling on may trigger PCI errors */
1352 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1353 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1354 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1355 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1356 		DELAY(80);
1357 	}
1358 
1359 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1360 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
1361 
1362 	for (i = 0; i < BGE_TIMEOUT; i++) {
1363 		delay(10);
1364 		val = CSR_READ_4(sc, BGE_MI_COMM);
1365 		if (!(val & BGE_MICOMM_BUSY)) {
1366 			DELAY(5);
1367 			val = CSR_READ_4(sc, BGE_MI_COMM);
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (i == BGE_TIMEOUT) {
1373 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1374 		val = 0;
1375 		goto done;
1376 	}
1377 
1378 done:
1379 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1380 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1381 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1382 		DELAY(80);
1383 	}
1384 
1385 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1386 
1387 	if (val & BGE_MICOMM_READFAIL)
1388 		return 0;
1389 
1390 	return (val & 0xFFFF);
1391 }
1392 
1393 static void
1394 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1395 {
1396 	struct bge_softc *sc = device_private(dev);
1397 	uint32_t autopoll;
1398 	int i;
1399 
1400 	if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1401 		return;
1402 
1403 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1404 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1405 		return;
1406 
1407 	/* Reading with autopolling on may trigger PCI errors */
1408 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1409 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1410 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1411 		BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1412 		DELAY(80);
1413 	}
1414 
1415 	CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1416 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1417 
1418 	for (i = 0; i < BGE_TIMEOUT; i++) {
1419 		delay(10);
1420 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1421 			delay(5);
1422 			CSR_READ_4(sc, BGE_MI_COMM);
1423 			break;
1424 		}
1425 	}
1426 
1427 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1428 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1429 		BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1430 		delay(80);
1431 	}
1432 
1433 	bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1434 
1435 	if (i == BGE_TIMEOUT)
1436 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1437 }
1438 
1439 static void
1440 bge_miibus_statchg(struct ifnet *ifp)
1441 {
1442 	struct bge_softc *sc = ifp->if_softc;
1443 	struct mii_data *mii = &sc->bge_mii;
1444 	uint32_t mac_mode, rx_mode, tx_mode;
1445 
1446 	/*
1447 	 * Get flow control negotiation result.
1448 	 */
1449 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1450 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
1451 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1452 
1453 	if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
1454 	    mii->mii_media_status & IFM_ACTIVE &&
1455 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1456 		BGE_STS_SETBIT(sc, BGE_STS_LINK);
1457 	else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
1458 	    (!(mii->mii_media_status & IFM_ACTIVE) ||
1459 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
1460 		BGE_STS_CLRBIT(sc, BGE_STS_LINK);
1461 
1462 	if (!BGE_STS_BIT(sc, BGE_STS_LINK))
1463 		return;
1464 
1465 	/* Set the port mode (MII/GMII) to match the link speed. */
1466 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1467 	    ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1468 	tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1469 	rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1470 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1471 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1472 		mac_mode |= BGE_PORTMODE_GMII;
1473 	else
1474 		mac_mode |= BGE_PORTMODE_MII;
1475 
1476 	tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1477 	rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1478 	if ((mii->mii_media_active & IFM_FDX) != 0) {
1479 		if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1480 			tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1481 		if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1482 			rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1483 	} else
1484 		mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1485 
1486 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
1487 	DELAY(40);
1488 	CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1489 	CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1490 }
1491 
1492 /*
1493  * Update rx threshold levels to values in a particular slot
1494  * of the interrupt-mitigation table bge_rx_threshes.
1495  */
1496 static void
1497 bge_set_thresh(struct ifnet *ifp, int lvl)
1498 {
1499 	struct bge_softc *sc = ifp->if_softc;
1500 	int s;
1501 
1502 	/* For now, just save the new Rx-intr thresholds and record
1503 	 * that a threshold update is pending.  Updating the hardware
1504 	 * registers here (even at splhigh()) is observed to
1505 	 * occasionaly cause glitches where Rx-interrupts are not
1506 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1507 	 */
1508 	s = splnet();
1509 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1510 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1511 	sc->bge_pending_rxintr_change = 1;
1512 	splx(s);
1513 }
1514 
1515 
1516 /*
1517  * Update Rx thresholds of all bge devices
1518  */
1519 static void
1520 bge_update_all_threshes(int lvl)
1521 {
1522 	struct ifnet *ifp;
1523 	const char * const namebuf = "bge";
1524 	int namelen;
1525 
1526 	if (lvl < 0)
1527 		lvl = 0;
1528 	else if (lvl >= NBGE_RX_THRESH)
1529 		lvl = NBGE_RX_THRESH - 1;
1530 
1531 	namelen = strlen(namebuf);
1532 	/*
1533 	 * Now search all the interfaces for this name/number
1534 	 */
1535 	IFNET_FOREACH(ifp) {
1536 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1537 		      continue;
1538 		/* We got a match: update if doing auto-threshold-tuning */
1539 		if (bge_auto_thresh)
1540 			bge_set_thresh(ifp, lvl);
1541 	}
1542 }
1543 
1544 /*
1545  * Handle events that have triggered interrupts.
1546  */
1547 static void
1548 bge_handle_events(struct bge_softc *sc)
1549 {
1550 
1551 	return;
1552 }
1553 
1554 /*
1555  * Memory management for jumbo frames.
1556  */
1557 
1558 static int
1559 bge_alloc_jumbo_mem(struct bge_softc *sc)
1560 {
1561 	char *ptr, *kva;
1562 	bus_dma_segment_t	seg;
1563 	int		i, rseg, state, error;
1564 	struct bge_jpool_entry   *entry;
1565 
1566 	state = error = 0;
1567 
1568 	/* Grab a big chunk o' storage. */
1569 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1570 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1571 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1572 		return ENOBUFS;
1573 	}
1574 
1575 	state = 1;
1576 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1577 	    BUS_DMA_NOWAIT)) {
1578 		aprint_error_dev(sc->bge_dev,
1579 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1580 		error = ENOBUFS;
1581 		goto out;
1582 	}
1583 
1584 	state = 2;
1585 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1586 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1587 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1588 		error = ENOBUFS;
1589 		goto out;
1590 	}
1591 
1592 	state = 3;
1593 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1594 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1595 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1596 		error = ENOBUFS;
1597 		goto out;
1598 	}
1599 
1600 	state = 4;
1601 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1602 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1603 
1604 	SLIST_INIT(&sc->bge_jfree_listhead);
1605 	SLIST_INIT(&sc->bge_jinuse_listhead);
1606 
1607 	/*
1608 	 * Now divide it up into 9K pieces and save the addresses
1609 	 * in an array.
1610 	 */
1611 	ptr = sc->bge_cdata.bge_jumbo_buf;
1612 	for (i = 0; i < BGE_JSLOTS; i++) {
1613 		sc->bge_cdata.bge_jslots[i] = ptr;
1614 		ptr += BGE_JLEN;
1615 		entry = malloc(sizeof(struct bge_jpool_entry),
1616 		    M_DEVBUF, M_NOWAIT);
1617 		if (entry == NULL) {
1618 			aprint_error_dev(sc->bge_dev,
1619 			    "no memory for jumbo buffer queue!\n");
1620 			error = ENOBUFS;
1621 			goto out;
1622 		}
1623 		entry->slot = i;
1624 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1625 				 entry, jpool_entries);
1626 	}
1627 out:
1628 	if (error != 0) {
1629 		switch (state) {
1630 		case 4:
1631 			bus_dmamap_unload(sc->bge_dmatag,
1632 			    sc->bge_cdata.bge_rx_jumbo_map);
1633 		case 3:
1634 			bus_dmamap_destroy(sc->bge_dmatag,
1635 			    sc->bge_cdata.bge_rx_jumbo_map);
1636 		case 2:
1637 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1638 		case 1:
1639 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1640 			break;
1641 		default:
1642 			break;
1643 		}
1644 	}
1645 
1646 	return error;
1647 }
1648 
1649 /*
1650  * Allocate a jumbo buffer.
1651  */
1652 static void *
1653 bge_jalloc(struct bge_softc *sc)
1654 {
1655 	struct bge_jpool_entry   *entry;
1656 
1657 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1658 
1659 	if (entry == NULL) {
1660 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1661 		return NULL;
1662 	}
1663 
1664 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1665 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1666 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1667 }
1668 
1669 /*
1670  * Release a jumbo buffer.
1671  */
1672 static void
1673 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1674 {
1675 	struct bge_jpool_entry *entry;
1676 	struct bge_softc *sc;
1677 	int i, s;
1678 
1679 	/* Extract the softc struct pointer. */
1680 	sc = (struct bge_softc *)arg;
1681 
1682 	if (sc == NULL)
1683 		panic("bge_jfree: can't find softc pointer!");
1684 
1685 	/* calculate the slot this buffer belongs to */
1686 
1687 	i = ((char *)buf
1688 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1689 
1690 	if ((i < 0) || (i >= BGE_JSLOTS))
1691 		panic("bge_jfree: asked to free buffer that we don't manage!");
1692 
1693 	s = splvm();
1694 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1695 	if (entry == NULL)
1696 		panic("bge_jfree: buffer not in use!");
1697 	entry->slot = i;
1698 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1699 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1700 
1701 	if (__predict_true(m != NULL))
1702   		pool_cache_put(mb_cache, m);
1703 	splx(s);
1704 }
1705 
1706 
1707 /*
1708  * Initialize a standard receive ring descriptor.
1709  */
1710 static int
1711 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1712     bus_dmamap_t dmamap)
1713 {
1714 	struct mbuf		*m_new = NULL;
1715 	struct bge_rx_bd	*r;
1716 	int			error;
1717 
1718 	if (dmamap == NULL) {
1719 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1720 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1721 		if (error != 0)
1722 			return error;
1723 	}
1724 
1725 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1726 
1727 	if (m == NULL) {
1728 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1729 		if (m_new == NULL)
1730 			return ENOBUFS;
1731 
1732 		MCLGET(m_new, M_DONTWAIT);
1733 		if (!(m_new->m_flags & M_EXT)) {
1734 			m_freem(m_new);
1735 			return ENOBUFS;
1736 		}
1737 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1738 
1739 	} else {
1740 		m_new = m;
1741 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1742 		m_new->m_data = m_new->m_ext.ext_buf;
1743 	}
1744 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1745 	    m_adj(m_new, ETHER_ALIGN);
1746 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1747 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1748 		return ENOBUFS;
1749 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1750 	    BUS_DMASYNC_PREREAD);
1751 
1752 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1753 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1754 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1755 	r->bge_flags = BGE_RXBDFLAG_END;
1756 	r->bge_len = m_new->m_len;
1757 	r->bge_idx = i;
1758 
1759 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1760 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1761 		i * sizeof (struct bge_rx_bd),
1762 	    sizeof (struct bge_rx_bd),
1763 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1764 
1765 	return 0;
1766 }
1767 
1768 /*
1769  * Initialize a jumbo receive ring descriptor. This allocates
1770  * a jumbo buffer from the pool managed internally by the driver.
1771  */
1772 static int
1773 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1774 {
1775 	struct mbuf *m_new = NULL;
1776 	struct bge_rx_bd *r;
1777 	void *buf = NULL;
1778 
1779 	if (m == NULL) {
1780 
1781 		/* Allocate the mbuf. */
1782 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1783 		if (m_new == NULL)
1784 			return ENOBUFS;
1785 
1786 		/* Allocate the jumbo buffer */
1787 		buf = bge_jalloc(sc);
1788 		if (buf == NULL) {
1789 			m_freem(m_new);
1790 			aprint_error_dev(sc->bge_dev,
1791 			    "jumbo allocation failed -- packet dropped!\n");
1792 			return ENOBUFS;
1793 		}
1794 
1795 		/* Attach the buffer to the mbuf. */
1796 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1797 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1798 		    bge_jfree, sc);
1799 		m_new->m_flags |= M_EXT_RW;
1800 	} else {
1801 		m_new = m;
1802 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1803 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1804 	}
1805 	if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
1806 	    m_adj(m_new, ETHER_ALIGN);
1807 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1808 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1809 	    BUS_DMASYNC_PREREAD);
1810 	/* Set up the descriptor. */
1811 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1812 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1813 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1814 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1815 	r->bge_len = m_new->m_len;
1816 	r->bge_idx = i;
1817 
1818 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1819 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1820 		i * sizeof (struct bge_rx_bd),
1821 	    sizeof (struct bge_rx_bd),
1822 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1829  * that's 1MB or memory, which is a lot. For now, we fill only the first
1830  * 256 ring entries and hope that our CPU is fast enough to keep up with
1831  * the NIC.
1832  */
1833 static int
1834 bge_init_rx_ring_std(struct bge_softc *sc)
1835 {
1836 	int i;
1837 
1838 	if (sc->bge_flags & BGEF_RXRING_VALID)
1839 		return 0;
1840 
1841 	for (i = 0; i < BGE_SSLOTS; i++) {
1842 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1843 			return ENOBUFS;
1844 	}
1845 
1846 	sc->bge_std = i - 1;
1847 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1848 
1849 	sc->bge_flags |= BGEF_RXRING_VALID;
1850 
1851 	return 0;
1852 }
1853 
1854 static void
1855 bge_free_rx_ring_std(struct bge_softc *sc)
1856 {
1857 	int i;
1858 
1859 	if (!(sc->bge_flags & BGEF_RXRING_VALID))
1860 		return;
1861 
1862 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1863 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1864 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1865 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1866 			bus_dmamap_destroy(sc->bge_dmatag,
1867 			    sc->bge_cdata.bge_rx_std_map[i]);
1868 		}
1869 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1870 		    sizeof(struct bge_rx_bd));
1871 	}
1872 
1873 	sc->bge_flags &= ~BGEF_RXRING_VALID;
1874 }
1875 
1876 static int
1877 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1878 {
1879 	int i;
1880 	volatile struct bge_rcb *rcb;
1881 
1882 	if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
1883 		return 0;
1884 
1885 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1886 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1887 			return ENOBUFS;
1888 	}
1889 
1890 	sc->bge_jumbo = i - 1;
1891 	sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
1892 
1893 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1894 	rcb->bge_maxlen_flags = 0;
1895 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1896 
1897 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1898 
1899 	return 0;
1900 }
1901 
1902 static void
1903 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1904 {
1905 	int i;
1906 
1907 	if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
1908 		return;
1909 
1910 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1911 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1912 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1913 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1914 		}
1915 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1916 		    sizeof(struct bge_rx_bd));
1917 	}
1918 
1919 	sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
1920 }
1921 
1922 static void
1923 bge_free_tx_ring(struct bge_softc *sc)
1924 {
1925 	int i;
1926 	struct txdmamap_pool_entry *dma;
1927 
1928 	if (!(sc->bge_flags & BGEF_TXRING_VALID))
1929 		return;
1930 
1931 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1932 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1933 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1934 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1935 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1936 					    link);
1937 			sc->txdma[i] = 0;
1938 		}
1939 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1940 		    sizeof(struct bge_tx_bd));
1941 	}
1942 
1943 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1944 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1945 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1946 		free(dma, M_DEVBUF);
1947 	}
1948 
1949 	sc->bge_flags &= ~BGEF_TXRING_VALID;
1950 }
1951 
1952 static int
1953 bge_init_tx_ring(struct bge_softc *sc)
1954 {
1955 	struct ifnet *ifp = &sc->ethercom.ec_if;
1956 	int i;
1957 	bus_dmamap_t dmamap;
1958 	bus_size_t maxsegsz;
1959 	struct txdmamap_pool_entry *dma;
1960 
1961 	if (sc->bge_flags & BGEF_TXRING_VALID)
1962 		return 0;
1963 
1964 	sc->bge_txcnt = 0;
1965 	sc->bge_tx_saved_considx = 0;
1966 
1967 	/* Initialize transmit producer index for host-memory send ring. */
1968 	sc->bge_tx_prodidx = 0;
1969 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1970 	/* 5700 b2 errata */
1971 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1972 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1973 
1974 	/* NIC-memory send ring not used; initialize to zero. */
1975 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1976 	/* 5700 b2 errata */
1977 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1978 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1979 
1980 	/* Limit DMA segment size for some chips */
1981 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
1982 	    (ifp->if_mtu <= ETHERMTU))
1983 		maxsegsz = 2048;
1984 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
1985 		maxsegsz = 4096;
1986 	else
1987 		maxsegsz = ETHER_MAX_LEN_JUMBO;
1988 	SLIST_INIT(&sc->txdma_list);
1989 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1990 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1991 		    BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
1992 		    &dmamap))
1993 			return ENOBUFS;
1994 		if (dmamap == NULL)
1995 			panic("dmamap NULL in bge_init_tx_ring");
1996 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1997 		if (dma == NULL) {
1998 			aprint_error_dev(sc->bge_dev,
1999 			    "can't alloc txdmamap_pool_entry\n");
2000 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
2001 			return ENOMEM;
2002 		}
2003 		dma->dmamap = dmamap;
2004 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2005 	}
2006 
2007 	sc->bge_flags |= BGEF_TXRING_VALID;
2008 
2009 	return 0;
2010 }
2011 
2012 static void
2013 bge_setmulti(struct bge_softc *sc)
2014 {
2015 	struct ethercom		*ac = &sc->ethercom;
2016 	struct ifnet		*ifp = &ac->ec_if;
2017 	struct ether_multi	*enm;
2018 	struct ether_multistep  step;
2019 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
2020 	uint32_t		h;
2021 	int			i;
2022 
2023 	if (ifp->if_flags & IFF_PROMISC)
2024 		goto allmulti;
2025 
2026 	/* Now program new ones. */
2027 	ETHER_FIRST_MULTI(step, ac, enm);
2028 	while (enm != NULL) {
2029 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2030 			/*
2031 			 * We must listen to a range of multicast addresses.
2032 			 * For now, just accept all multicasts, rather than
2033 			 * trying to set only those filter bits needed to match
2034 			 * the range.  (At this time, the only use of address
2035 			 * ranges is for IP multicast routing, for which the
2036 			 * range is big enough to require all bits set.)
2037 			 */
2038 			goto allmulti;
2039 		}
2040 
2041 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2042 
2043 		/* Just want the 7 least-significant bits. */
2044 		h &= 0x7f;
2045 
2046 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
2047 		ETHER_NEXT_MULTI(step, enm);
2048 	}
2049 
2050 	ifp->if_flags &= ~IFF_ALLMULTI;
2051 	goto setit;
2052 
2053  allmulti:
2054 	ifp->if_flags |= IFF_ALLMULTI;
2055 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
2056 
2057  setit:
2058 	for (i = 0; i < 4; i++)
2059 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
2060 }
2061 
2062 static void
2063 bge_sig_pre_reset(struct bge_softc *sc, int type)
2064 {
2065 
2066 	/*
2067 	 * Some chips don't like this so only do this if ASF is enabled
2068 	 */
2069 	if (sc->bge_asf_mode)
2070 		bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
2071 
2072 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2073 		switch (type) {
2074 		case BGE_RESET_START:
2075 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2076 			    BGE_FW_DRV_STATE_START);
2077 			break;
2078 		case BGE_RESET_SHUTDOWN:
2079 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2080 			    BGE_FW_DRV_STATE_UNLOAD);
2081 			break;
2082 		case BGE_RESET_SUSPEND:
2083 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2084 			    BGE_FW_DRV_STATE_SUSPEND);
2085 			break;
2086 		}
2087 	}
2088 
2089 	if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
2090 		bge_ape_driver_state_change(sc, type);
2091 }
2092 
2093 static void
2094 bge_sig_post_reset(struct bge_softc *sc, int type)
2095 {
2096 
2097 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
2098 		switch (type) {
2099 		case BGE_RESET_START:
2100 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2101 			    BGE_FW_DRV_STATE_START_DONE);
2102 			/* START DONE */
2103 			break;
2104 		case BGE_RESET_SHUTDOWN:
2105 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2106 			    BGE_FW_DRV_STATE_UNLOAD_DONE);
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (type == BGE_RESET_SHUTDOWN)
2112 		bge_ape_driver_state_change(sc, type);
2113 }
2114 
2115 static void
2116 bge_sig_legacy(struct bge_softc *sc, int type)
2117 {
2118 
2119 	if (sc->bge_asf_mode) {
2120 		switch (type) {
2121 		case BGE_RESET_START:
2122 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2123 			    BGE_FW_DRV_STATE_START);
2124 			break;
2125 		case BGE_RESET_SHUTDOWN:
2126 			bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
2127 			    BGE_FW_DRV_STATE_UNLOAD);
2128 			break;
2129 		}
2130 	}
2131 }
2132 
2133 static void
2134 bge_wait_for_event_ack(struct bge_softc *sc)
2135 {
2136 	int i;
2137 
2138 	/* wait up to 2500usec */
2139 	for (i = 0; i < 250; i++) {
2140 		if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
2141 			BGE_RX_CPU_DRV_EVENT))
2142 			break;
2143 		DELAY(10);
2144 	}
2145 }
2146 
2147 static void
2148 bge_stop_fw(struct bge_softc *sc)
2149 {
2150 
2151 	if (sc->bge_asf_mode) {
2152 		bge_wait_for_event_ack(sc);
2153 
2154 		bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
2155 		CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
2156 		    CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
2157 
2158 		bge_wait_for_event_ack(sc);
2159 	}
2160 }
2161 
2162 static int
2163 bge_poll_fw(struct bge_softc *sc)
2164 {
2165 	uint32_t val;
2166 	int i;
2167 
2168 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2169 		for (i = 0; i < BGE_TIMEOUT; i++) {
2170 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2171 			if (val & BGE_VCPU_STATUS_INIT_DONE)
2172 				break;
2173 			DELAY(100);
2174 		}
2175 		if (i >= BGE_TIMEOUT) {
2176 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
2177 			return -1;
2178 		}
2179 	} else if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) {
2180 		/*
2181 		 * Poll the value location we just wrote until
2182 		 * we see the 1's complement of the magic number.
2183 		 * This indicates that the firmware initialization
2184 		 * is complete.
2185 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
2186 		 */
2187 		for (i = 0; i < BGE_TIMEOUT; i++) {
2188 			val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
2189 			if (val == ~BGE_SRAM_FW_MB_MAGIC)
2190 				break;
2191 			DELAY(10);
2192 		}
2193 
2194 		if (i >= BGE_TIMEOUT) {
2195 			aprint_error_dev(sc->bge_dev,
2196 			    "firmware handshake timed out, val = %x\n", val);
2197 			return -1;
2198 		}
2199 	}
2200 
2201 	if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2202 		/* tg3 says we have to wait extra time */
2203 		delay(10 * 1000);
2204 	}
2205 
2206 	return 0;
2207 }
2208 
2209 int
2210 bge_phy_addr(struct bge_softc *sc)
2211 {
2212 	struct pci_attach_args *pa = &(sc->bge_pa);
2213 	int phy_addr = 1;
2214 
2215 	/*
2216 	 * PHY address mapping for various devices.
2217 	 *
2218 	 *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
2219 	 * ---------+-------+-------+-------+-------+
2220 	 * BCM57XX  |   1   |   X   |   X   |   X   |
2221 	 * BCM5704  |   1   |   X   |   1   |   X   |
2222 	 * BCM5717  |   1   |   8   |   2   |   9   |
2223 	 * BCM5719  |   1   |   8   |   2   |   9   |
2224 	 * BCM5720  |   1   |   8   |   2   |   9   |
2225 	 *
2226 	 *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
2227 	 * ---------+-------+-------+-------+-------+
2228 	 * BCM57XX  |   X   |   X   |   X   |   X   |
2229 	 * BCM5704  |   X   |   X   |   X   |   X   |
2230 	 * BCM5717  |   X   |   X   |   X   |   X   |
2231 	 * BCM5719  |   3   |   10  |   4   |   11  |
2232 	 * BCM5720  |   X   |   X   |   X   |   X   |
2233 	 *
2234 	 * Other addresses may respond but they are not
2235 	 * IEEE compliant PHYs and should be ignored.
2236 	 */
2237 	switch (BGE_ASICREV(sc->bge_chipid)) {
2238 	case BGE_ASICREV_BCM5717:
2239 	case BGE_ASICREV_BCM5719:
2240 	case BGE_ASICREV_BCM5720:
2241 		phy_addr = pa->pa_function;
2242 		if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
2243 			phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
2244 			    BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
2245 		} else {
2246 			phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
2247 			    BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
2248 		}
2249 	}
2250 
2251 	return phy_addr;
2252 }
2253 
2254 /*
2255  * Do endian, PCI and DMA initialization. Also check the on-board ROM
2256  * self-test results.
2257  */
2258 static int
2259 bge_chipinit(struct bge_softc *sc)
2260 {
2261 	uint32_t dma_rw_ctl, mode_ctl, reg;
2262 	int i;
2263 
2264 	/* Set endianness before we access any non-PCI registers. */
2265 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2266 	    BGE_INIT);
2267 
2268 	/*
2269 	 * Clear the MAC statistics block in the NIC's
2270 	 * internal memory.
2271 	 */
2272 	for (i = BGE_STATS_BLOCK;
2273 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
2274 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2275 
2276 	for (i = BGE_STATUS_BLOCK;
2277 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
2278 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
2279 
2280 	/* 5717 workaround from tg3 */
2281 	if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
2282 		/* Save */
2283 		mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2284 
2285 		/* Temporary modify MODE_CTL to control TLP */
2286 		reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2287 		CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
2288 
2289 		/* Control TLP */
2290 		reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2291 		    BGE_TLP_PHYCTL1);
2292 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
2293 		    reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
2294 
2295 		/* Restore */
2296 		CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2297 	}
2298 
2299 	if (BGE_IS_57765_FAMILY(sc)) {
2300 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
2301 			/* Save */
2302 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2303 
2304 			/* Temporary modify MODE_CTL to control TLP */
2305 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2306 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2307 			    reg | BGE_MODECTL_PCIE_TLPADDR1);
2308 
2309 			/* Control TLP */
2310 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2311 			    BGE_TLP_PHYCTL5);
2312 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
2313 			    reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
2314 
2315 			/* Restore */
2316 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2317 		}
2318 		if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
2319 			reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
2320 			CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
2321 			    reg | BGE_CPMU_PADRNG_CTL_RDIV2);
2322 
2323 			/* Save */
2324 			mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
2325 
2326 			/* Temporary modify MODE_CTL to control TLP */
2327 			reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
2328 			CSR_WRITE_4(sc, BGE_MODE_CTL,
2329 			    reg | BGE_MODECTL_PCIE_TLPADDR0);
2330 
2331 			/* Control TLP */
2332 			reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
2333 			    BGE_TLP_FTSMAX);
2334 			reg &= ~BGE_TLP_FTSMAX_MSK;
2335 			CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
2336 			    reg | BGE_TLP_FTSMAX_VAL);
2337 
2338 			/* Restore */
2339 			CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2340 		}
2341 
2342 		reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
2343 		reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
2344 		reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
2345 		CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
2346 	}
2347 
2348 	/* Set up the PCI DMA control register. */
2349 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
2350 	if (sc->bge_flags & BGEF_PCIE) {
2351 		/* Read watermark not used, 128 bytes for write. */
2352 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
2353 		    device_xname(sc->bge_dev)));
2354 		if (sc->bge_mps >= 256)
2355 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2356 		else
2357 			dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2358 	} else if (sc->bge_flags & BGEF_PCIX) {
2359 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
2360 		    device_xname(sc->bge_dev)));
2361 		/* PCI-X bus */
2362 		if (BGE_IS_5714_FAMILY(sc)) {
2363 			/* 256 bytes for read and write. */
2364 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
2365 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
2366 
2367 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
2368 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2369 			else
2370 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
2371 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2372 			/* 1536 bytes for read, 384 bytes for write. */
2373 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2374 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
2375 		} else {
2376 			/* 384 bytes for read and write. */
2377 			dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
2378 			    BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
2379 			    (0x0F);
2380 		}
2381 
2382 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2383 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
2384 			uint32_t tmp;
2385 
2386 			/* Set ONEDMA_ATONCE for hardware workaround. */
2387 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
2388 			if (tmp == 6 || tmp == 7)
2389 				dma_rw_ctl |=
2390 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
2391 
2392 			/* Set PCI-X DMA write workaround. */
2393 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
2394 		}
2395 	} else {
2396 		/* Conventional PCI bus: 256 bytes for read and write. */
2397 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
2398 		    device_xname(sc->bge_dev)));
2399 		dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
2400 		    BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
2401 
2402 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
2403 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
2404 			dma_rw_ctl |= 0x0F;
2405 	}
2406 
2407 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2408 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
2409 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
2410 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
2411 
2412 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2413 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2414 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
2415 
2416 	if (BGE_IS_57765_PLUS(sc)) {
2417 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
2418 		if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
2419 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
2420 
2421 		/*
2422 		 * Enable HW workaround for controllers that misinterpret
2423 		 * a status tag update and leave interrupts permanently
2424 		 * disabled.
2425 		 */
2426 		if (!BGE_IS_57765_FAMILY(sc) &&
2427 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
2428 			dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
2429 	}
2430 
2431 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
2432 	    dma_rw_ctl);
2433 
2434 	/*
2435 	 * Set up general mode register.
2436 	 */
2437 	mode_ctl = BGE_DMA_SWAP_OPTIONS;
2438 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
2439 		/* Retain Host-2-BMC settings written by APE firmware. */
2440 		mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
2441 		    (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
2442 		    BGE_MODECTL_WORDSWAP_B2HRX_DATA |
2443 		    BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
2444 	}
2445 	mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
2446 	    BGE_MODECTL_TX_NO_PHDR_CSUM;
2447 
2448 	/*
2449 	 * BCM5701 B5 have a bug causing data corruption when using
2450 	 * 64-bit DMA reads, which can be terminated early and then
2451 	 * completed later as 32-bit accesses, in combination with
2452 	 * certain bridges.
2453 	 */
2454 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2455 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
2456 		mode_ctl |= BGE_MODECTL_FORCE_PCI32;
2457 
2458 	/*
2459 	 * Tell the firmware the driver is running
2460 	 */
2461 	if (sc->bge_asf_mode & ASF_STACKUP)
2462 		mode_ctl |= BGE_MODECTL_STACKUP;
2463 
2464 	CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
2465 
2466 	/*
2467 	 * Disable memory write invalidate.  Apparently it is not supported
2468 	 * properly by these devices.
2469 	 */
2470 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
2471 		   PCI_COMMAND_INVALIDATE_ENABLE);
2472 
2473 #ifdef __brokenalpha__
2474 	/*
2475 	 * Must insure that we do not cross an 8K (bytes) boundary
2476 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
2477 	 * restriction on some ALPHA platforms with early revision
2478 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
2479 	 */
2480 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
2481 #endif
2482 
2483 	/* Set the timer prescaler (always 66MHz) */
2484 	CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
2485 
2486 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2487 		DELAY(40);	/* XXX */
2488 
2489 		/* Put PHY into ready state */
2490 		BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
2491 		DELAY(40);
2492 	}
2493 
2494 	return 0;
2495 }
2496 
2497 static int
2498 bge_blockinit(struct bge_softc *sc)
2499 {
2500 	volatile struct bge_rcb	 *rcb;
2501 	bus_size_t rcb_addr;
2502 	struct ifnet *ifp = &sc->ethercom.ec_if;
2503 	bge_hostaddr taddr;
2504 	uint32_t	dmactl, val;
2505 	int		i, limit;
2506 
2507 	/*
2508 	 * Initialize the memory window pointer register so that
2509 	 * we can access the first 32K of internal NIC RAM. This will
2510 	 * allow us to set up the TX send ring RCBs and the RX return
2511 	 * ring RCBs, plus other things which live in NIC memory.
2512 	 */
2513 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
2514 
2515 	if (!BGE_IS_5705_PLUS(sc)) {
2516 		/* 57XX step 33 */
2517 		/* Configure mbuf memory pool */
2518 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
2519 		    BGE_BUFFPOOL_1);
2520 
2521 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2522 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
2523 		else
2524 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
2525 
2526 		/* 57XX step 34 */
2527 		/* Configure DMA resource pool */
2528 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
2529 		    BGE_DMA_DESCRIPTORS);
2530 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
2531 	}
2532 
2533 	/* 5718 step 11, 57XX step 35 */
2534 	/*
2535 	 * Configure mbuf pool watermarks. New broadcom docs strongly
2536 	 * recommend these.
2537 	 */
2538 	if (BGE_IS_5717_PLUS(sc)) {
2539 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2540 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
2541 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
2542 	} else if (BGE_IS_5705_PLUS(sc)) {
2543 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
2544 
2545 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2546 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
2547 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
2548 		} else {
2549 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
2550 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2551 		}
2552 	} else {
2553 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
2554 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
2555 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
2556 	}
2557 
2558 	/* 57XX step 36 */
2559 	/* Configure DMA resource watermarks */
2560 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
2561 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
2562 
2563 	/* 5718 step 13, 57XX step 38 */
2564 	/* Enable buffer manager */
2565 	val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
2566 	/*
2567 	 * Change the arbitration algorithm of TXMBUF read request to
2568 	 * round-robin instead of priority based for BCM5719.  When
2569 	 * TXFIFO is almost empty, RDMA will hold its request until
2570 	 * TXFIFO is not almost empty.
2571 	 */
2572 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
2573 		val |= BGE_BMANMODE_NO_TX_UNDERRUN;
2574 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2575 		sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2576 		sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
2577 		val |= BGE_BMANMODE_LOMBUF_ATTN;
2578 	CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
2579 
2580 	/* 57XX step 39 */
2581 	/* Poll for buffer manager start indication */
2582 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2583 		DELAY(10);
2584 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2585 			break;
2586 	}
2587 
2588 	if (i == BGE_TIMEOUT * 2) {
2589 		aprint_error_dev(sc->bge_dev,
2590 		    "buffer manager failed to start\n");
2591 		return ENXIO;
2592 	}
2593 
2594 	/* 57XX step 40 */
2595 	/* Enable flow-through queues */
2596 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2597 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2598 
2599 	/* Wait until queue initialization is complete */
2600 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2601 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2602 			break;
2603 		DELAY(10);
2604 	}
2605 
2606 	if (i == BGE_TIMEOUT * 2) {
2607 		aprint_error_dev(sc->bge_dev,
2608 		    "flow-through queue init failed\n");
2609 		return ENXIO;
2610 	}
2611 
2612 	/*
2613 	 * Summary of rings supported by the controller:
2614 	 *
2615 	 * Standard Receive Producer Ring
2616 	 * - This ring is used to feed receive buffers for "standard"
2617 	 *   sized frames (typically 1536 bytes) to the controller.
2618 	 *
2619 	 * Jumbo Receive Producer Ring
2620 	 * - This ring is used to feed receive buffers for jumbo sized
2621 	 *   frames (i.e. anything bigger than the "standard" frames)
2622 	 *   to the controller.
2623 	 *
2624 	 * Mini Receive Producer Ring
2625 	 * - This ring is used to feed receive buffers for "mini"
2626 	 *   sized frames to the controller.
2627 	 * - This feature required external memory for the controller
2628 	 *   but was never used in a production system.  Should always
2629 	 *   be disabled.
2630 	 *
2631 	 * Receive Return Ring
2632 	 * - After the controller has placed an incoming frame into a
2633 	 *   receive buffer that buffer is moved into a receive return
2634 	 *   ring.  The driver is then responsible to passing the
2635 	 *   buffer up to the stack.  Many versions of the controller
2636 	 *   support multiple RR rings.
2637 	 *
2638 	 * Send Ring
2639 	 * - This ring is used for outgoing frames.  Many versions of
2640 	 *   the controller support multiple send rings.
2641 	 */
2642 
2643 	/* 5718 step 15, 57XX step 41 */
2644 	/* Initialize the standard RX ring control block */
2645 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2646 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2647 	/* 5718 step 16 */
2648 	if (BGE_IS_57765_PLUS(sc)) {
2649 		/*
2650 		 * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2651 		 * Bits 15-2 : Maximum RX frame size
2652 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring ENabled
2653 		 * Bit 0     : Reserved
2654 		 */
2655 		rcb->bge_maxlen_flags =
2656 		    BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2657 	} else if (BGE_IS_5705_PLUS(sc)) {
2658 		/*
2659 		 * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2660 		 * Bits 15-2 : Reserved (should be 0)
2661 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2662 		 * Bit 0     : Reserved
2663 		 */
2664 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2665 	} else {
2666 		/*
2667 		 * Ring size is always XXX entries
2668 		 * Bits 31-16: Maximum RX frame size
2669 		 * Bits 15-2 : Reserved (should be 0)
2670 		 * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
2671 		 * Bit 0     : Reserved
2672 		 */
2673 		rcb->bge_maxlen_flags =
2674 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2675 	}
2676 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2677 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2678 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2679 		rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2680 	else
2681 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2682 	/* Write the standard receive producer ring control block. */
2683 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2684 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2685 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2686 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2687 
2688 	/* Reset the standard receive producer ring producer index. */
2689 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2690 
2691 	/* 57XX step 42 */
2692 	/*
2693 	 * Initialize the jumbo RX ring control block
2694 	 * We set the 'ring disabled' bit in the flags
2695 	 * field until we're actually ready to start
2696 	 * using this ring (i.e. once we set the MTU
2697 	 * high enough to require it).
2698 	 */
2699 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2700 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2701 		BGE_HOSTADDR(rcb->bge_hostaddr,
2702 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2703 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2704 		    BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2705 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2706 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2707 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2708 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2709 		else
2710 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2711 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2712 		    rcb->bge_hostaddr.bge_addr_hi);
2713 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2714 		    rcb->bge_hostaddr.bge_addr_lo);
2715 		/* Program the jumbo receive producer ring RCB parameters. */
2716 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2717 		    rcb->bge_maxlen_flags);
2718 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2719 		/* Reset the jumbo receive producer ring producer index. */
2720 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2721 	}
2722 
2723 	/* 57XX step 43 */
2724 	/* Disable the mini receive producer ring RCB. */
2725 	if (BGE_IS_5700_FAMILY(sc)) {
2726 		/* Set up dummy disabled mini ring RCB */
2727 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2728 		rcb->bge_maxlen_flags =
2729 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2730 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2731 		    rcb->bge_maxlen_flags);
2732 		/* Reset the mini receive producer ring producer index. */
2733 		bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2734 
2735 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2736 		    offsetof(struct bge_ring_data, bge_info),
2737 		    sizeof (struct bge_gib),
2738 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2739 	}
2740 
2741 	/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2742 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
2743 		if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2744 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2745 		    sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2746 			CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2747 			    (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2748 	}
2749 	/* 5718 step 14, 57XX step 44 */
2750 	/*
2751 	 * The BD ring replenish thresholds control how often the
2752 	 * hardware fetches new BD's from the producer rings in host
2753 	 * memory.  Setting the value too low on a busy system can
2754 	 * starve the hardware and recue the throughpout.
2755 	 *
2756 	 * Set the BD ring replenish thresholds. The recommended
2757 	 * values are 1/8th the number of descriptors allocated to
2758 	 * each ring, but since we try to avoid filling the entire
2759 	 * ring we set these to the minimal value of 8.  This needs to
2760 	 * be done on several of the supported chip revisions anyway,
2761 	 * to work around HW bugs.
2762 	 */
2763 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
2764 	if (BGE_IS_JUMBO_CAPABLE(sc))
2765 		CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
2766 
2767 	/* 5718 step 18 */
2768 	if (BGE_IS_5717_PLUS(sc)) {
2769 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2770 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2771 	}
2772 
2773 	/* 57XX step 45 */
2774 	/*
2775 	 * Disable all send rings by setting the 'ring disabled' bit
2776 	 * in the flags field of all the TX send ring control blocks,
2777 	 * located in NIC memory.
2778 	 */
2779 	if (BGE_IS_5700_FAMILY(sc)) {
2780 		/* 5700 to 5704 had 16 send rings. */
2781 		limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2782 	} else if (BGE_IS_5717_PLUS(sc)) {
2783 		limit = BGE_TX_RINGS_5717_MAX;
2784 	} else if (BGE_IS_57765_FAMILY(sc)) {
2785 		limit = BGE_TX_RINGS_57765_MAX;
2786 	} else
2787 		limit = 1;
2788 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2789 	for (i = 0; i < limit; i++) {
2790 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2791 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2792 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2793 		rcb_addr += sizeof(struct bge_rcb);
2794 	}
2795 
2796 	/* 57XX step 46 and 47 */
2797 	/* Configure send ring RCB 0 (we use only the first ring) */
2798 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2799 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2800 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2801 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2802 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2803 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
2804 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2805 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
2806 	else
2807 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2808 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2809 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2810 	    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2811 
2812 	/* 57XX step 48 */
2813 	/*
2814 	 * Disable all receive return rings by setting the
2815 	 * 'ring diabled' bit in the flags field of all the receive
2816 	 * return ring control blocks, located in NIC memory.
2817 	 */
2818 	if (BGE_IS_5717_PLUS(sc)) {
2819 		/* Should be 17, use 16 until we get an SRAM map. */
2820 		limit = 16;
2821 	} else if (BGE_IS_5700_FAMILY(sc))
2822 		limit = BGE_RX_RINGS_MAX;
2823 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2824 	    BGE_IS_57765_FAMILY(sc))
2825 		limit = 4;
2826 	else
2827 		limit = 1;
2828 	/* Disable all receive return rings */
2829 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2830 	for (i = 0; i < limit; i++) {
2831 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2832 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2833 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2834 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2835 			BGE_RCB_FLAG_RING_DISABLED));
2836 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2837 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2838 		    (i * (sizeof(uint64_t))), 0);
2839 		rcb_addr += sizeof(struct bge_rcb);
2840 	}
2841 
2842 	/* 57XX step 49 */
2843 	/*
2844 	 * Set up receive return ring 0.  Note that the NIC address
2845 	 * for RX return rings is 0x0.  The return rings live entirely
2846 	 * within the host, so the nicaddr field in the RCB isn't used.
2847 	 */
2848 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2849 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2850 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2851 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2852 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2853 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2854 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2855 
2856 	/* 5718 step 24, 57XX step 53 */
2857 	/* Set random backoff seed for TX */
2858 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2859 	    (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2860 		CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2861 		CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
2862 	    BGE_TX_BACKOFF_SEED_MASK);
2863 
2864 	/* 5718 step 26, 57XX step 55 */
2865 	/* Set inter-packet gap */
2866 	val = 0x2620;
2867 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
2868 		val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2869 		    (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2870 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2871 
2872 	/* 5718 step 27, 57XX step 56 */
2873 	/*
2874 	 * Specify which ring to use for packets that don't match
2875 	 * any RX rules.
2876 	 */
2877 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2878 
2879 	/* 5718 step 28, 57XX step 57 */
2880 	/*
2881 	 * Configure number of RX lists. One interrupt distribution
2882 	 * list, sixteen active lists, one bad frames class.
2883 	 */
2884 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2885 
2886 	/* 5718 step 29, 57XX step 58 */
2887 	/* Inialize RX list placement stats mask. */
2888 	if (BGE_IS_575X_PLUS(sc)) {
2889 		val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
2890 		val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
2891 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
2892 	} else
2893 		CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2894 
2895 	/* 5718 step 30, 57XX step 59 */
2896 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2897 
2898 	/* 5718 step 33, 57XX step 62 */
2899 	/* Disable host coalescing until we get it set up */
2900 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2901 
2902 	/* 5718 step 34, 57XX step 63 */
2903 	/* Poll to make sure it's shut down. */
2904 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2905 		DELAY(10);
2906 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2907 			break;
2908 	}
2909 
2910 	if (i == BGE_TIMEOUT * 2) {
2911 		aprint_error_dev(sc->bge_dev,
2912 		    "host coalescing engine failed to idle\n");
2913 		return ENXIO;
2914 	}
2915 
2916 	/* 5718 step 35, 36, 37 */
2917 	/* Set up host coalescing defaults */
2918 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2919 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2920 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2921 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2922 	if (!(BGE_IS_5705_PLUS(sc))) {
2923 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2924 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2925 	}
2926 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2927 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2928 
2929 	/* Set up address of statistics block */
2930 	if (BGE_IS_5700_FAMILY(sc)) {
2931 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2932 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2933 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2934 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2935 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2936 	}
2937 
2938 	/* 5718 step 38 */
2939 	/* Set up address of status block */
2940 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2941 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2942 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2943 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2944 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2945 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2946 
2947 	/* Set up status block size. */
2948 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
2949 	    sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2950 		val = BGE_STATBLKSZ_FULL;
2951 		bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
2952 	} else {
2953 		val = BGE_STATBLKSZ_32BYTE;
2954 		bzero(&sc->bge_rdata->bge_status_block, 32);
2955 	}
2956 
2957 	/* 5718 step 39, 57XX step 73 */
2958 	/* Turn on host coalescing state machine */
2959 	CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2960 
2961 	/* 5718 step 40, 57XX step 74 */
2962 	/* Turn on RX BD completion state machine and enable attentions */
2963 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2964 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2965 
2966 	/* 5718 step 41, 57XX step 75 */
2967 	/* Turn on RX list placement state machine */
2968 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2969 
2970 	/* 57XX step 76 */
2971 	/* Turn on RX list selector state machine. */
2972 	if (!(BGE_IS_5705_PLUS(sc)))
2973 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2974 
2975 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2976 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2977 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2978 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2979 
2980 	if (sc->bge_flags & BGEF_FIBER_TBI)
2981 		val |= BGE_PORTMODE_TBI;
2982 	else if (sc->bge_flags & BGEF_FIBER_MII)
2983 		val |= BGE_PORTMODE_GMII;
2984 	else
2985 		val |= BGE_PORTMODE_MII;
2986 
2987 	/* 5718 step 42 and 43, 57XX step 77 and 78 */
2988 	/* Allow APE to send/receive frames. */
2989 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2990 		val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2991 
2992 	/* Turn on DMA, clear stats */
2993 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
2994 	/* 5718 step 44 */
2995 	DELAY(40);
2996 
2997 	/* 5718 step 45, 57XX step 79 */
2998 	/* Set misc. local control, enable interrupts on attentions */
2999 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
3000 	if (BGE_IS_5717_PLUS(sc)) {
3001 		CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
3002 		/* 5718 step 46 */
3003 		DELAY(100);
3004 	}
3005 
3006 	/* 57XX step 81 */
3007 	/* Turn on DMA completion state machine */
3008 	if (!(BGE_IS_5705_PLUS(sc)))
3009 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3010 
3011 	/* 5718 step 47, 57XX step 82 */
3012 	val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
3013 
3014 	/* 5718 step 48 */
3015 	/* Enable host coalescing bug fix. */
3016 	if (BGE_IS_5755_PLUS(sc))
3017 		val |= BGE_WDMAMODE_STATUS_TAG_FIX;
3018 
3019 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
3020 		val |= BGE_WDMAMODE_BURST_ALL_DATA;
3021 
3022 	/* Turn on write DMA state machine */
3023 	CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
3024 	/* 5718 step 49 */
3025 	DELAY(40);
3026 
3027 	val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
3028 
3029 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
3030 		val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
3031 
3032 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3033 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3034 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3035 		val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
3036 		    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
3037 		    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
3038 
3039 	if (sc->bge_flags & BGEF_PCIE)
3040 		val |= BGE_RDMAMODE_FIFO_LONG_BURST;
3041 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
3042 		if (ifp->if_mtu <= ETHERMTU)
3043 			val |= BGE_RDMAMODE_JMB_2K_MMRR;
3044 	}
3045 	if (sc->bge_flags & BGEF_TSO)
3046 		val |= BGE_RDMAMODE_TSO4_ENABLE;
3047 
3048 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3049 		val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
3050 		    BGE_RDMAMODE_H2BNC_VLAN_DET;
3051 		/*
3052 		 * Allow multiple outstanding read requests from
3053 		 * non-LSO read DMA engine.
3054 		 */
3055 		val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
3056 	}
3057 
3058 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3059 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3060 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3061 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
3062 	    BGE_IS_57765_PLUS(sc)) {
3063 		dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
3064 		/*
3065 		 * Adjust tx margin to prevent TX data corruption and
3066 		 * fix internal FIFO overflow.
3067 		 */
3068 		if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3069 			dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
3070 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
3071 			    BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
3072 			dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
3073 			    BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
3074 			    BGE_RDMA_RSRVCTRL_TXMRGN_320B;
3075 		}
3076 		/*
3077 		 * Enable fix for read DMA FIFO overruns.
3078 		 * The fix is to limit the number of RX BDs
3079 		 * the hardware would fetch at a fime.
3080 		 */
3081 		CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
3082 		    BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
3083 	}
3084 
3085 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
3086 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3087 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3088 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
3089 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3090 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
3091 		/*
3092 		 * Allow 4KB burst length reads for non-LSO frames.
3093 		 * Enable 512B burst length reads for buffer descriptors.
3094 		 */
3095 		CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
3096 		    CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
3097 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
3098 		    BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
3099 	}
3100 
3101 	/* Turn on read DMA state machine */
3102 	CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
3103 	/* 5718 step 52 */
3104 	delay(40);
3105 
3106 	/* 5718 step 56, 57XX step 84 */
3107 	/* Turn on RX data completion state machine */
3108 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3109 
3110 	/* Turn on RX data and RX BD initiator state machine */
3111 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
3112 
3113 	/* 57XX step 85 */
3114 	/* Turn on Mbuf cluster free state machine */
3115 	if (!BGE_IS_5705_PLUS(sc))
3116 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3117 
3118 	/* 5718 step 57, 57XX step 86 */
3119 	/* Turn on send data completion state machine */
3120 	val = BGE_SDCMODE_ENABLE;
3121 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
3122 		val |= BGE_SDCMODE_CDELAY;
3123 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
3124 
3125 	/* 5718 step 58 */
3126 	/* Turn on send BD completion state machine */
3127 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3128 
3129 	/* 57XX step 88 */
3130 	/* Turn on RX BD initiator state machine */
3131 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3132 
3133 	/* 5718 step 60, 57XX step 90 */
3134 	/* Turn on send data initiator state machine */
3135 	if (sc->bge_flags & BGEF_TSO) {
3136 		/* XXX: magic value from Linux driver */
3137 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
3138 		    BGE_SDIMODE_HW_LSO_PRE_DMA);
3139 	} else
3140 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3141 
3142 	/* 5718 step 61, 57XX step 91 */
3143 	/* Turn on send BD initiator state machine */
3144 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3145 
3146 	/* 5718 step 62, 57XX step 92 */
3147 	/* Turn on send BD selector state machine */
3148 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3149 
3150 	/* 5718 step 31, 57XX step 60 */
3151 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
3152 	/* 5718 step 32, 57XX step 61 */
3153 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
3154 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
3155 
3156 	/* ack/clear link change events */
3157 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3158 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3159 	    BGE_MACSTAT_LINK_CHANGED);
3160 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
3161 
3162 	/*
3163 	 * Enable attention when the link has changed state for
3164 	 * devices that use auto polling.
3165 	 */
3166 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3167 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
3168 	} else {
3169 		/* 5718 step 68 */
3170 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
3171 		/* 5718 step 69 (optionally) */
3172 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
3173 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
3174 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3175 			    BGE_EVTENB_MI_INTERRUPT);
3176 	}
3177 
3178 	/*
3179 	 * Clear any pending link state attention.
3180 	 * Otherwise some link state change events may be lost until attention
3181 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
3182 	 * It's not necessary on newer BCM chips - perhaps enabling link
3183 	 * state change attentions implies clearing pending attention.
3184 	 */
3185 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
3186 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
3187 	    BGE_MACSTAT_LINK_CHANGED);
3188 
3189 	/* Enable link state change attentions. */
3190 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
3191 
3192 	return 0;
3193 }
3194 
3195 static const struct bge_revision *
3196 bge_lookup_rev(uint32_t chipid)
3197 {
3198 	const struct bge_revision *br;
3199 
3200 	for (br = bge_revisions; br->br_name != NULL; br++) {
3201 		if (br->br_chipid == chipid)
3202 			return br;
3203 	}
3204 
3205 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
3206 		if (br->br_chipid == BGE_ASICREV(chipid))
3207 			return br;
3208 	}
3209 
3210 	return NULL;
3211 }
3212 
3213 static const struct bge_product *
3214 bge_lookup(const struct pci_attach_args *pa)
3215 {
3216 	const struct bge_product *bp;
3217 
3218 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
3219 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
3220 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
3221 			return bp;
3222 	}
3223 
3224 	return NULL;
3225 }
3226 
3227 static uint32_t
3228 bge_chipid(const struct pci_attach_args *pa)
3229 {
3230 	uint32_t id;
3231 
3232 	id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
3233 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
3234 
3235 	if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
3236 		switch (PCI_PRODUCT(pa->pa_id)) {
3237 		case PCI_PRODUCT_BROADCOM_BCM5717:
3238 		case PCI_PRODUCT_BROADCOM_BCM5718:
3239 		case PCI_PRODUCT_BROADCOM_BCM5719:
3240 		case PCI_PRODUCT_BROADCOM_BCM5720:
3241 		case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
3242 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3243 			    BGE_PCI_GEN2_PRODID_ASICREV);
3244 			break;
3245 		case PCI_PRODUCT_BROADCOM_BCM57761:
3246 		case PCI_PRODUCT_BROADCOM_BCM57762:
3247 		case PCI_PRODUCT_BROADCOM_BCM57765:
3248 		case PCI_PRODUCT_BROADCOM_BCM57766:
3249 		case PCI_PRODUCT_BROADCOM_BCM57781:
3250 		case PCI_PRODUCT_BROADCOM_BCM57785:
3251 		case PCI_PRODUCT_BROADCOM_BCM57791:
3252 		case PCI_PRODUCT_BROADCOM_BCM57795:
3253 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3254 			    BGE_PCI_GEN15_PRODID_ASICREV);
3255 			break;
3256 		default:
3257 			id = pci_conf_read(pa->pa_pc, pa->pa_tag,
3258 			    BGE_PCI_PRODID_ASICREV);
3259 			break;
3260 		}
3261 	}
3262 
3263 	return id;
3264 }
3265 
3266 /*
3267  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
3268  * against our list and return its name if we find a match. Note
3269  * that since the Broadcom controller contains VPD support, we
3270  * can get the device name string from the controller itself instead
3271  * of the compiled-in string. This is a little slow, but it guarantees
3272  * we'll always announce the right product name.
3273  */
3274 static int
3275 bge_probe(device_t parent, cfdata_t match, void *aux)
3276 {
3277 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
3278 
3279 	if (bge_lookup(pa) != NULL)
3280 		return 1;
3281 
3282 	return 0;
3283 }
3284 
3285 static void
3286 bge_attach(device_t parent, device_t self, void *aux)
3287 {
3288 	struct bge_softc	*sc = device_private(self);
3289 	struct pci_attach_args	*pa = aux;
3290 	prop_dictionary_t dict;
3291 	const struct bge_product *bp;
3292 	const struct bge_revision *br;
3293 	pci_chipset_tag_t	pc;
3294 	pci_intr_handle_t	ih;
3295 	const char		*intrstr = NULL;
3296 	uint32_t 		hwcfg, hwcfg2, hwcfg3, hwcfg4;
3297 	uint32_t		command;
3298 	struct ifnet		*ifp;
3299 	uint32_t		misccfg, mimode;
3300 	void *			kva;
3301 	u_char			eaddr[ETHER_ADDR_LEN];
3302 	pcireg_t		memtype, subid, reg;
3303 	bus_addr_t		memaddr;
3304 	uint32_t		pm_ctl;
3305 	bool			no_seeprom;
3306 	int			capmask;
3307 	char intrbuf[PCI_INTRSTR_LEN];
3308 
3309 	bp = bge_lookup(pa);
3310 	KASSERT(bp != NULL);
3311 
3312 	sc->sc_pc = pa->pa_pc;
3313 	sc->sc_pcitag = pa->pa_tag;
3314 	sc->bge_dev = self;
3315 
3316 	sc->bge_pa = *pa;
3317 	pc = sc->sc_pc;
3318 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
3319 
3320 	aprint_naive(": Ethernet controller\n");
3321 	aprint_normal(": %s\n", bp->bp_name);
3322 
3323 	/*
3324 	 * Map control/status registers.
3325 	 */
3326 	DPRINTFN(5, ("Map control/status regs\n"));
3327 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3328 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
3329 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
3330 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
3331 
3332 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
3333 		aprint_error_dev(sc->bge_dev,
3334 		    "failed to enable memory mapping!\n");
3335 		return;
3336 	}
3337 
3338 	DPRINTFN(5, ("pci_mem_find\n"));
3339 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
3340 	switch (memtype) {
3341 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
3342 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
3343 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
3344 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
3345 		    &memaddr, &sc->bge_bsize) == 0)
3346 			break;
3347 	default:
3348 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
3349 		return;
3350 	}
3351 
3352 	DPRINTFN(5, ("pci_intr_map\n"));
3353 	if (pci_intr_map(pa, &ih)) {
3354 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
3355 		return;
3356 	}
3357 
3358 	DPRINTFN(5, ("pci_intr_string\n"));
3359 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
3360 
3361 	DPRINTFN(5, ("pci_intr_establish\n"));
3362 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
3363 
3364 	if (sc->bge_intrhand == NULL) {
3365 		aprint_error_dev(sc->bge_dev,
3366 		    "couldn't establish interrupt%s%s\n",
3367 		    intrstr ? " at " : "", intrstr ? intrstr : "");
3368 		return;
3369 	}
3370 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
3371 
3372 	/* Save various chip information. */
3373 	sc->bge_chipid = bge_chipid(pa);
3374 	sc->bge_phy_addr = bge_phy_addr(sc);
3375 
3376 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
3377 	        &sc->bge_pciecap, NULL) != 0)
3378 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
3379 		/* PCIe */
3380 		sc->bge_flags |= BGEF_PCIE;
3381 		/* Extract supported maximum payload size. */
3382 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3383 		    sc->bge_pciecap + PCIE_DCAP);
3384 		sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
3385 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
3386 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
3387 			sc->bge_expmrq = 2048;
3388 		else
3389 			sc->bge_expmrq = 4096;
3390 		bge_set_max_readrq(sc);
3391 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
3392 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
3393 		/* PCI-X */
3394 		sc->bge_flags |= BGEF_PCIX;
3395 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
3396 			&sc->bge_pcixcap, NULL) == 0)
3397 			aprint_error_dev(sc->bge_dev,
3398 			    "unable to find PCIX capability\n");
3399 	}
3400 
3401 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
3402 		/*
3403 		 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
3404 		 * can clobber the chip's PCI config-space power control
3405 		 * registers, leaving the card in D3 powersave state. We do
3406 		 * not have memory-mapped registers in this state, so force
3407 		 * device into D0 state before starting initialization.
3408 		 */
3409 		pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
3410 		pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
3411 		pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
3412 		pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
3413 		DELAY(1000);	/* 27 usec is allegedly sufficent */
3414 	}
3415 
3416 	/* Save chipset family. */
3417 	switch (BGE_ASICREV(sc->bge_chipid)) {
3418 	case BGE_ASICREV_BCM5717:
3419 	case BGE_ASICREV_BCM5719:
3420 	case BGE_ASICREV_BCM5720:
3421 		sc->bge_flags |= BGEF_5717_PLUS;
3422 		/* FALLTHROUGH */
3423 	case BGE_ASICREV_BCM57765:
3424 	case BGE_ASICREV_BCM57766:
3425 		if (!BGE_IS_5717_PLUS(sc))
3426 			sc->bge_flags |= BGEF_57765_FAMILY;
3427 		sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
3428 		    BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
3429 		/* Jumbo frame on BCM5719 A0 does not work. */
3430 		if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
3431 		    (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
3432 			sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
3433 		break;
3434 	case BGE_ASICREV_BCM5755:
3435 	case BGE_ASICREV_BCM5761:
3436 	case BGE_ASICREV_BCM5784:
3437 	case BGE_ASICREV_BCM5785:
3438 	case BGE_ASICREV_BCM5787:
3439 	case BGE_ASICREV_BCM57780:
3440 		sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
3441 		break;
3442 	case BGE_ASICREV_BCM5700:
3443 	case BGE_ASICREV_BCM5701:
3444 	case BGE_ASICREV_BCM5703:
3445 	case BGE_ASICREV_BCM5704:
3446 		sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
3447 		break;
3448 	case BGE_ASICREV_BCM5714_A0:
3449 	case BGE_ASICREV_BCM5780:
3450 	case BGE_ASICREV_BCM5714:
3451 		sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
3452 		/* FALLTHROUGH */
3453 	case BGE_ASICREV_BCM5750:
3454 	case BGE_ASICREV_BCM5752:
3455 	case BGE_ASICREV_BCM5906:
3456 		sc->bge_flags |= BGEF_575X_PLUS;
3457 		/* FALLTHROUGH */
3458 	case BGE_ASICREV_BCM5705:
3459 		sc->bge_flags |= BGEF_5705_PLUS;
3460 		break;
3461 	}
3462 
3463 	/* Identify chips with APE processor. */
3464 	switch (BGE_ASICREV(sc->bge_chipid)) {
3465 	case BGE_ASICREV_BCM5717:
3466 	case BGE_ASICREV_BCM5719:
3467 	case BGE_ASICREV_BCM5720:
3468 	case BGE_ASICREV_BCM5761:
3469 		sc->bge_flags |= BGEF_APE;
3470 		break;
3471 	}
3472 
3473 	/*
3474 	 * The 40bit DMA bug applies to the 5714/5715 controllers and is
3475 	 * not actually a MAC controller bug but an issue with the embedded
3476 	 * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3477 	 */
3478 	if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
3479 		sc->bge_flags |= BGEF_40BIT_BUG;
3480 
3481 	/* Chips with APE need BAR2 access for APE registers/memory. */
3482 	if ((sc->bge_flags & BGEF_APE) != 0) {
3483 		memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
3484 		if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
3485 			&sc->bge_apetag, &sc->bge_apehandle, NULL,
3486 			&sc->bge_apesize)) {
3487 			aprint_error_dev(sc->bge_dev,
3488 			    "couldn't map BAR2 memory\n");
3489 			return;
3490 		}
3491 
3492 		/* Enable APE register/memory access by host driver. */
3493 		reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
3494 		reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3495 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3496 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3497 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
3498 
3499 		bge_ape_lock_init(sc);
3500 		bge_ape_read_fw_ver(sc);
3501 	}
3502 
3503 	/* Identify the chips that use an CPMU. */
3504 	if (BGE_IS_5717_PLUS(sc) ||
3505 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3506 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3507 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
3508 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
3509 		sc->bge_flags |= BGEF_CPMU_PRESENT;
3510 
3511 	/* Set MI_MODE */
3512 	mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
3513 	if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
3514 		mimode |= BGE_MIMODE_500KHZ_CONST;
3515 	else
3516 		mimode |= BGE_MIMODE_BASE;
3517 	CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
3518 
3519 	/*
3520 	 * When using the BCM5701 in PCI-X mode, data corruption has
3521 	 * been observed in the first few bytes of some received packets.
3522 	 * Aligning the packet buffer in memory eliminates the corruption.
3523 	 * Unfortunately, this misaligns the packet payloads.  On platforms
3524 	 * which do not support unaligned accesses, we will realign the
3525 	 * payloads by copying the received packets.
3526 	 */
3527 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
3528 	    sc->bge_flags & BGEF_PCIX)
3529 		sc->bge_flags |= BGEF_RX_ALIGNBUG;
3530 
3531 	if (BGE_IS_5700_FAMILY(sc))
3532 		sc->bge_flags |= BGEF_JUMBO_CAPABLE;
3533 
3534 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
3535 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
3536 
3537 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3538 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3539 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
3540 		sc->bge_flags |= BGEF_IS_5788;
3541 
3542 	/*
3543 	 * Some controllers seem to require a special firmware to use
3544 	 * TSO. But the firmware is not available to FreeBSD and Linux
3545 	 * claims that the TSO performed by the firmware is slower than
3546 	 * hardware based TSO. Moreover the firmware based TSO has one
3547 	 * known bug which can't handle TSO if ethernet header + IP/TCP
3548 	 * header is greater than 80 bytes. The workaround for the TSO
3549 	 * bug exist but it seems it's too expensive than not using
3550 	 * TSO at all. Some hardwares also have the TSO bug so limit
3551 	 * the TSO to the controllers that are not affected TSO issues
3552 	 * (e.g. 5755 or higher).
3553 	 */
3554 	if (BGE_IS_5755_PLUS(sc)) {
3555 		/*
3556 		 * BCM5754 and BCM5787 shares the same ASIC id so
3557 		 * explicit device id check is required.
3558 		 */
3559 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
3560 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
3561 			sc->bge_flags |= BGEF_TSO;
3562 	}
3563 
3564 	capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
3565 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
3566 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
3567 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3568 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3569 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
3570 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
3571 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
3572 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
3573 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
3574 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
3575 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
3576 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
3577 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
3578 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
3579 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3580 		capmask &= ~BMSR_EXTSTAT;
3581 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3582 	}
3583 
3584 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3585 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
3586 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3587 		 sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3588 		sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
3589 
3590 	/* Set various PHY bug flags. */
3591 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3592 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3593 		sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
3594 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
3595 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
3596 		sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
3597 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3598 		sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
3599 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3600 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
3601 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
3602 		sc->bge_phy_flags |= BGEPHYF_NO_3LED;
3603 	if (BGE_IS_5705_PLUS(sc) &&
3604 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
3605 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3606 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
3607 	    !BGE_IS_57765_PLUS(sc)) {
3608 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
3609 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
3610 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
3611 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
3612 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
3613 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
3614 				sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
3615 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
3616 				sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
3617 		} else
3618 			sc->bge_phy_flags |= BGEPHYF_BER_BUG;
3619 	}
3620 
3621 	/*
3622 	 * SEEPROM check.
3623 	 * First check if firmware knows we do not have SEEPROM.
3624 	 */
3625 	if (prop_dictionary_get_bool(device_properties(self),
3626 	     "without-seeprom", &no_seeprom) && no_seeprom)
3627 	 	sc->bge_flags |= BGEF_NO_EEPROM;
3628 
3629 	else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
3630 		sc->bge_flags |= BGEF_NO_EEPROM;
3631 
3632 	/* Now check the 'ROM failed' bit on the RX CPU */
3633 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
3634 		sc->bge_flags |= BGEF_NO_EEPROM;
3635 
3636 	sc->bge_asf_mode = 0;
3637 	/* No ASF if APE present. */
3638 	if ((sc->bge_flags & BGEF_APE) == 0) {
3639 		if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3640 			BGE_SRAM_DATA_SIG_MAGIC)) {
3641 			if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3642 			    BGE_HWCFG_ASF) {
3643 				sc->bge_asf_mode |= ASF_ENABLE;
3644 				sc->bge_asf_mode |= ASF_STACKUP;
3645 				if (BGE_IS_575X_PLUS(sc))
3646 					sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3647 			}
3648 		}
3649 	}
3650 
3651 	/*
3652 	 * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
3653 	 * lock in bge_reset().
3654 	 */
3655 	CSR_WRITE_4(sc, BGE_EE_ADDR,
3656 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
3657 	delay(1000);
3658 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
3659 
3660 	bge_stop_fw(sc);
3661 	bge_sig_pre_reset(sc, BGE_RESET_START);
3662 	if (bge_reset(sc))
3663 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
3664 
3665 	/*
3666 	 * Read the hardware config word in the first 32k of NIC internal
3667 	 * memory, or fall back to the config word in the EEPROM.
3668 	 * Note: on some BCM5700 cards, this value appears to be unset.
3669 	 */
3670 	hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
3671 	if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3672 	    BGE_SRAM_DATA_SIG_MAGIC) {
3673 		uint32_t tmp;
3674 
3675 		hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3676 		tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
3677 		    BGE_SRAM_DATA_VER_SHIFT;
3678 		if ((0 < tmp) && (tmp < 0x100))
3679 			hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
3680 		if (sc->bge_flags & BGEF_PCIE)
3681 			hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
3682 		if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
3683 			hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
3684 	} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
3685 		bge_read_eeprom(sc, (void *)&hwcfg,
3686 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
3687 		hwcfg = be32toh(hwcfg);
3688 	}
3689 	aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
3690 	    hwcfg, hwcfg2, hwcfg3, hwcfg4);
3691 
3692 	bge_sig_legacy(sc, BGE_RESET_START);
3693 	bge_sig_post_reset(sc, BGE_RESET_START);
3694 
3695 	if (bge_chipinit(sc)) {
3696 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
3697 		bge_release_resources(sc);
3698 		return;
3699 	}
3700 
3701 	/*
3702 	 * Get station address from the EEPROM.
3703 	 */
3704 	if (bge_get_eaddr(sc, eaddr)) {
3705 		aprint_error_dev(sc->bge_dev,
3706 		    "failed to read station address\n");
3707 		bge_release_resources(sc);
3708 		return;
3709 	}
3710 
3711 	br = bge_lookup_rev(sc->bge_chipid);
3712 
3713 	if (br == NULL) {
3714 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
3715 		    sc->bge_chipid);
3716 	} else {
3717 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
3718 		    br->br_name, sc->bge_chipid);
3719 	}
3720 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
3721 
3722 	/* Allocate the general information block and ring buffers. */
3723 	if (pci_dma64_available(pa))
3724 		sc->bge_dmatag = pa->pa_dmat64;
3725 	else
3726 		sc->bge_dmatag = pa->pa_dmat;
3727 
3728 	/* 40bit DMA workaround */
3729 	if (sizeof(bus_addr_t) > 4) {
3730 		if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
3731 			bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
3732 
3733 			if (bus_dmatag_subregion(olddmatag, 0,
3734 				(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
3735 				BUS_DMA_NOWAIT) != 0) {
3736 				aprint_error_dev(self,
3737 				    "WARNING: failed to restrict dma range,"
3738 				    " falling back to parent bus dma range\n");
3739 				sc->bge_dmatag = olddmatag;
3740 			}
3741 		}
3742 	}
3743 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
3744 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
3745 			     PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
3746 		&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
3747 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
3748 		return;
3749 	}
3750 	DPRINTFN(5, ("bus_dmamem_map\n"));
3751 	if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
3752 		sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
3753 			   BUS_DMA_NOWAIT)) {
3754 		aprint_error_dev(sc->bge_dev,
3755 		    "can't map DMA buffers (%zu bytes)\n",
3756 		    sizeof(struct bge_ring_data));
3757 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3758 		    sc->bge_ring_rseg);
3759 		return;
3760 	}
3761 	DPRINTFN(5, ("bus_dmamem_create\n"));
3762 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
3763 	    sizeof(struct bge_ring_data), 0,
3764 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
3765 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
3766 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3767 				 sizeof(struct bge_ring_data));
3768 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3769 		    sc->bge_ring_rseg);
3770 		return;
3771 	}
3772 	DPRINTFN(5, ("bus_dmamem_load\n"));
3773 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
3774 			    sizeof(struct bge_ring_data), NULL,
3775 			    BUS_DMA_NOWAIT)) {
3776 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
3777 		bus_dmamem_unmap(sc->bge_dmatag, kva,
3778 				 sizeof(struct bge_ring_data));
3779 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
3780 		    sc->bge_ring_rseg);
3781 		return;
3782 	}
3783 
3784 	DPRINTFN(5, ("bzero\n"));
3785 	sc->bge_rdata = (struct bge_ring_data *)kva;
3786 
3787 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
3788 
3789 	/* Try to allocate memory for jumbo buffers. */
3790 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
3791 		if (bge_alloc_jumbo_mem(sc)) {
3792 			aprint_error_dev(sc->bge_dev,
3793 			    "jumbo buffer allocation failed\n");
3794 		} else
3795 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
3796 	}
3797 
3798 	/* Set default tuneable values. */
3799 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3800 	sc->bge_rx_coal_ticks = 150;
3801 	sc->bge_rx_max_coal_bds = 64;
3802 	sc->bge_tx_coal_ticks = 300;
3803 	sc->bge_tx_max_coal_bds = 400;
3804 	if (BGE_IS_5705_PLUS(sc)) {
3805 		sc->bge_tx_coal_ticks = (12 * 5);
3806 		sc->bge_tx_max_coal_bds = (12 * 5);
3807 			aprint_verbose_dev(sc->bge_dev,
3808 			    "setting short Tx thresholds\n");
3809 	}
3810 
3811 	if (BGE_IS_5717_PLUS(sc))
3812 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3813 	else if (BGE_IS_5705_PLUS(sc))
3814 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3815 	else
3816 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3817 
3818 	/* Set up ifnet structure */
3819 	ifp = &sc->ethercom.ec_if;
3820 	ifp->if_softc = sc;
3821 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
3822 	ifp->if_ioctl = bge_ioctl;
3823 	ifp->if_stop = bge_stop;
3824 	ifp->if_start = bge_start;
3825 	ifp->if_init = bge_init;
3826 	ifp->if_watchdog = bge_watchdog;
3827 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
3828 	IFQ_SET_READY(&ifp->if_snd);
3829 	DPRINTFN(5, ("strcpy if_xname\n"));
3830 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
3831 
3832 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
3833 		sc->ethercom.ec_if.if_capabilities |=
3834 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
3835 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
3836 		sc->ethercom.ec_if.if_capabilities |=
3837 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
3838 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
3839 #endif
3840 	sc->ethercom.ec_capabilities |=
3841 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
3842 
3843 	if (sc->bge_flags & BGEF_TSO)
3844 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
3845 
3846 	/*
3847 	 * Do MII setup.
3848 	 */
3849 	DPRINTFN(5, ("mii setup\n"));
3850 	sc->bge_mii.mii_ifp = ifp;
3851 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
3852 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
3853 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
3854 
3855 	/*
3856 	 * Figure out what sort of media we have by checking the hardware
3857 	 * config word.  Note: on some BCM5700 cards, this value appears to be
3858 	 * unset. If that's the case, we have to rely on identifying the NIC
3859 	 * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
3860 	 * The SysKonnect SK-9D41 is a 1000baseSX card.
3861 	 */
3862 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
3863 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3864 		if (BGE_IS_5714_FAMILY(sc))
3865 		    sc->bge_flags |= BGEF_FIBER_MII;
3866 		else
3867 		    sc->bge_flags |= BGEF_FIBER_TBI;
3868 	}
3869 
3870 	/* Set bge_phy_flags before prop_dictionary_set_uint32() */
3871 	if (BGE_IS_JUMBO_CAPABLE(sc))
3872 		sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
3873 
3874 	/* set phyflags and chipid before mii_attach() */
3875 	dict = device_properties(self);
3876 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
3877 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
3878 
3879 	if (sc->bge_flags & BGEF_FIBER_TBI) {
3880 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3881 		    bge_ifmedia_sts);
3882 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
3883 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
3884 			    0, NULL);
3885 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3886 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3887 		/* Pretend the user requested this setting */
3888 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3889 	} else {
3890 		/*
3891 		 * Do transceiver setup and tell the firmware the
3892 		 * driver is down so we can try to get access the
3893 		 * probe if ASF is running.  Retry a couple of times
3894 		 * if we get a conflict with the ASF firmware accessing
3895 		 * the PHY.
3896 		 */
3897 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3898 		bge_asf_driver_up(sc);
3899 
3900 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3901 			     bge_ifmedia_sts);
3902 		mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
3903 			   sc->bge_phy_addr, MII_OFFSET_ANY,
3904 			   MIIF_DOPAUSE);
3905 
3906 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3907 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3908 			ifmedia_add(&sc->bge_mii.mii_media,
3909 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3910 			ifmedia_set(&sc->bge_mii.mii_media,
3911 				    IFM_ETHER|IFM_MANUAL);
3912 		} else
3913 			ifmedia_set(&sc->bge_mii.mii_media,
3914 				    IFM_ETHER|IFM_AUTO);
3915 
3916 		/*
3917 		 * Now tell the firmware we are going up after probing the PHY
3918 		 */
3919 		if (sc->bge_asf_mode & ASF_STACKUP)
3920 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3921 	}
3922 
3923 	/*
3924 	 * Call MI attach routine.
3925 	 */
3926 	DPRINTFN(5, ("if_attach\n"));
3927 	if_attach(ifp);
3928 	DPRINTFN(5, ("ether_ifattach\n"));
3929 	ether_ifattach(ifp, eaddr);
3930 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3931 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3932 		RND_TYPE_NET, 0);
3933 #ifdef BGE_EVENT_COUNTERS
3934 	/*
3935 	 * Attach event counters.
3936 	 */
3937 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3938 	    NULL, device_xname(sc->bge_dev), "intr");
3939 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3940 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3941 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3942 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3943 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3944 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3945 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3946 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3947 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3948 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3949 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3950 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3951 #endif /* BGE_EVENT_COUNTERS */
3952 	DPRINTFN(5, ("callout_init\n"));
3953 	callout_init(&sc->bge_timeout, 0);
3954 
3955 	if (pmf_device_register(self, NULL, NULL))
3956 		pmf_class_network_register(self, ifp);
3957 	else
3958 		aprint_error_dev(self, "couldn't establish power handler\n");
3959 
3960 	bge_sysctl_init(sc);
3961 
3962 #ifdef BGE_DEBUG
3963 	bge_debug_info(sc);
3964 #endif
3965 }
3966 
3967 /*
3968  * Stop all chip I/O so that the kernel's probe routines don't
3969  * get confused by errant DMAs when rebooting.
3970  */
3971 static int
3972 bge_detach(device_t self, int flags __unused)
3973 {
3974 	struct bge_softc *sc = device_private(self);
3975 	struct ifnet *ifp = &sc->ethercom.ec_if;
3976 	int s;
3977 
3978 	s = splnet();
3979 	/* Stop the interface. Callouts are stopped in it. */
3980 	bge_stop(ifp, 1);
3981 	splx(s);
3982 
3983 	mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
3984 
3985 	/* Delete all remaining media. */
3986 	ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
3987 
3988 	ether_ifdetach(ifp);
3989 	if_detach(ifp);
3990 
3991 	bge_release_resources(sc);
3992 
3993 	return 0;
3994 }
3995 
3996 static void
3997 bge_release_resources(struct bge_softc *sc)
3998 {
3999 
4000 	/* Disestablish the interrupt handler */
4001 	if (sc->bge_intrhand != NULL) {
4002 		pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
4003 		sc->bge_intrhand = NULL;
4004 	}
4005 
4006 	if (sc->bge_dmatag != NULL) {
4007 		bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
4008 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
4009 		bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
4010 		    sizeof(struct bge_ring_data));
4011 		bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
4012 	}
4013 
4014 	/* Unmap the device registers */
4015 	if (sc->bge_bsize != 0) {
4016 		bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
4017 		sc->bge_bsize = 0;
4018 	}
4019 
4020 	/* Unmap the APE registers */
4021 	if (sc->bge_apesize != 0) {
4022 		bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
4023 		    sc->bge_apesize);
4024 		sc->bge_apesize = 0;
4025 	}
4026 }
4027 
4028 static int
4029 bge_reset(struct bge_softc *sc)
4030 {
4031 	uint32_t cachesize, command;
4032 	uint32_t reset, mac_mode, mac_mode_mask;
4033 	pcireg_t devctl, reg;
4034 	int i, val;
4035 	void (*write_op)(struct bge_softc *, int, int);
4036 
4037 	/* Make mask for BGE_MAC_MODE register. */
4038 	mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4039 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4040 		mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4041 	/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
4042 	mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4043 
4044 	if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4045 	    (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
4046 	    	if (sc->bge_flags & BGEF_PCIE)
4047 			write_op = bge_writemem_direct;
4048 		else
4049 			write_op = bge_writemem_ind;
4050 	} else
4051 		write_op = bge_writereg_ind;
4052 
4053 	/* 57XX step 4 */
4054 	/* Acquire the NVM lock */
4055 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
4056 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
4057 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
4058 		CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4059 		for (i = 0; i < 8000; i++) {
4060 			if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4061 			    BGE_NVRAMSWARB_GNT1)
4062 				break;
4063 			DELAY(20);
4064 		}
4065 		if (i == 8000) {
4066 			printf("%s: NVRAM lock timedout!\n",
4067 			    device_xname(sc->bge_dev));
4068 		}
4069 	}
4070 
4071 	/* Take APE lock when performing reset. */
4072 	bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4073 
4074 	/* 57XX step 3 */
4075 	/* Save some important PCI state. */
4076 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
4077 	/* 5718 reset step 3 */
4078 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4079 
4080 	/* 5718 reset step 5, 57XX step 5b-5d */
4081 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4082 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4083 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4084 
4085 	/* XXX ???: Disable fastboot on controllers that support it. */
4086 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
4087 	    BGE_IS_5755_PLUS(sc))
4088 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
4089 
4090 	/* 5718 reset step 2, 57XX step 6 */
4091 	/*
4092 	 * Write the magic number to SRAM at offset 0xB50.
4093 	 * When firmware finishes its initialization it will
4094 	 * write ~BGE_MAGIC_NUMBER to the same location.
4095 	 */
4096 	bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4097 
4098 	/* 5718 reset step 6, 57XX step 7 */
4099 	reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4100 	/*
4101 	 * XXX: from FreeBSD/Linux; no documentation
4102 	 */
4103 	if (sc->bge_flags & BGEF_PCIE) {
4104 		if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
4105 		    !BGE_IS_57765_PLUS(sc) &&
4106 		    (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
4107 			(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
4108 			/* PCI Express 1.0 system */
4109 			CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
4110 			    BGE_PHY_PCIE_SCRAM_MODE);
4111 		}
4112 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4113 			/*
4114 			 * Prevent PCI Express link training
4115 			 * during global reset.
4116 			 */
4117 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4118 			reset |= (1 << 29);
4119 		}
4120 	}
4121 
4122 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
4123 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
4124 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4125 		    i | BGE_VCPU_STATUS_DRV_RESET);
4126 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4127 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4128 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4129 	}
4130 
4131 	/*
4132 	 * Set GPHY Power Down Override to leave GPHY
4133 	 * powered up in D0 uninitialized.
4134 	 */
4135 	if (BGE_IS_5705_PLUS(sc) &&
4136 	    (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4137 		reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4138 
4139 	/* Issue global reset */
4140 	write_op(sc, BGE_MISC_CFG, reset);
4141 
4142 	/* 5718 reset step 7, 57XX step 8 */
4143 	if (sc->bge_flags & BGEF_PCIE)
4144 		delay(100*1000); /* too big */
4145 	else
4146 		delay(1000);
4147 
4148 	if (sc->bge_flags & BGEF_PCIE) {
4149 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4150 			DELAY(500000);
4151 			/* XXX: Magic Numbers */
4152 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4153 			    BGE_PCI_UNKNOWN0);
4154 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4155 			    BGE_PCI_UNKNOWN0,
4156 			    reg | (1 << 15));
4157 		}
4158 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4159 		    sc->bge_pciecap + PCIE_DCSR);
4160 		/* Clear enable no snoop and disable relaxed ordering. */
4161 		devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
4162 		    PCIE_DCSR_ENA_NO_SNOOP);
4163 
4164 		/* Set PCIE max payload size to 128 for older PCIe devices */
4165 		if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
4166 			devctl &= ~(0x00e0);
4167 		/* Clear device status register. Write 1b to clear */
4168 		devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
4169 		    | PCIE_DCSR_NFED | PCIE_DCSR_CED;
4170 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
4171 		    sc->bge_pciecap + PCIE_DCSR, devctl);
4172 		bge_set_max_readrq(sc);
4173 	}
4174 
4175 	/* From Linux: dummy read to flush PCI posted writes */
4176 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
4177 
4178 	/*
4179 	 * Reset some of the PCI state that got zapped by reset
4180 	 * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
4181 	 * set, too.
4182 	 */
4183 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
4184 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4185 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
4186 	val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4187 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4188 	    (sc->bge_flags & BGEF_PCIX) != 0)
4189 		val |= BGE_PCISTATE_RETRY_SAME_DMA;
4190 	if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4191 		val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4192 		    BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4193 		    BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4194 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
4195 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
4196 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
4197 
4198 	/* 57xx step 11: disable PCI-X Relaxed Ordering. */
4199 	if (sc->bge_flags & BGEF_PCIX) {
4200 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4201 		    + PCIX_CMD);
4202 		/* Set max memory read byte count to 2K */
4203 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
4204 			reg &= ~PCIX_CMD_BYTECNT_MASK;
4205 			reg |= PCIX_CMD_BCNT_2048;
4206 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
4207 			/*
4208 			 * For 5704, set max outstanding split transaction
4209 			 * field to 0 (0 means it supports 1 request)
4210 			 */
4211 			reg &= ~(PCIX_CMD_SPLTRANS_MASK
4212 			    | PCIX_CMD_BYTECNT_MASK);
4213 			reg |= PCIX_CMD_BCNT_2048;
4214 		}
4215 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
4216 		    + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
4217 	}
4218 
4219 	/* 5718 reset step 10, 57XX step 12 */
4220 	/* Enable memory arbiter. */
4221 	if (BGE_IS_5714_FAMILY(sc)) {
4222 		val = CSR_READ_4(sc, BGE_MARB_MODE);
4223 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4224 	} else
4225 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4226 
4227 	/* XXX 5721, 5751 and 5752 */
4228 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
4229 		/* Step 19: */
4230 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
4231 		/* Step 20: */
4232 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
4233 	}
4234 
4235 	/* 5718 reset step 13, 57XX step 17 */
4236 	/* Poll until the firmware initialization is complete */
4237 	bge_poll_fw(sc);
4238 
4239 	/* 5718 reset step 12, 57XX step 15 and 16 */
4240 	/* Fix up byte swapping */
4241 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
4242 
4243 	/* 57XX step 21 */
4244 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
4245 		pcireg_t msidata;
4246 
4247 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
4248 		    BGE_PCI_MSI_DATA);
4249 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
4250 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
4251 		    msidata);
4252 	}
4253 
4254 	/* 57XX step 18 */
4255 	/* Write mac mode. */
4256 	val = CSR_READ_4(sc, BGE_MAC_MODE);
4257 	/* Restore mac_mode_mask's bits using mac_mode */
4258 	val = (val & ~mac_mode_mask) | mac_mode;
4259 	CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
4260 	DELAY(40);
4261 
4262 	bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4263 
4264 	/*
4265 	 * The 5704 in TBI mode apparently needs some special
4266 	 * adjustment to insure the SERDES drive level is set
4267 	 * to 1.2V.
4268 	 */
4269 	if (sc->bge_flags & BGEF_FIBER_TBI &&
4270 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4271 		uint32_t serdescfg;
4272 
4273 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
4274 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
4275 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
4276 	}
4277 
4278 	if (sc->bge_flags & BGEF_PCIE &&
4279 	    !BGE_IS_57765_PLUS(sc) &&
4280 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4281 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
4282 		uint32_t v;
4283 
4284 		/* Enable PCI Express bug fix */
4285 		v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
4286 		CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
4287 		    v | BGE_TLP_DATA_FIFO_PROTECT);
4288 	}
4289 
4290 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
4291 		BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4292 		    CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4293 
4294 	return 0;
4295 }
4296 
4297 /*
4298  * Frame reception handling. This is called if there's a frame
4299  * on the receive return list.
4300  *
4301  * Note: we have to be able to handle two possibilities here:
4302  * 1) the frame is from the jumbo receive ring
4303  * 2) the frame is from the standard receive ring
4304  */
4305 
4306 static void
4307 bge_rxeof(struct bge_softc *sc)
4308 {
4309 	struct ifnet *ifp;
4310 	uint16_t rx_prod, rx_cons;
4311 	int stdcnt = 0, jumbocnt = 0;
4312 	bus_dmamap_t dmamap;
4313 	bus_addr_t offset, toff;
4314 	bus_size_t tlen;
4315 	int tosync;
4316 
4317 	rx_cons = sc->bge_rx_saved_considx;
4318 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
4319 
4320 	/* Nothing to do */
4321 	if (rx_cons == rx_prod)
4322 		return;
4323 
4324 	ifp = &sc->ethercom.ec_if;
4325 
4326 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4327 	    offsetof(struct bge_ring_data, bge_status_block),
4328 	    sizeof (struct bge_status_block),
4329 	    BUS_DMASYNC_POSTREAD);
4330 
4331 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
4332 	tosync = rx_prod - rx_cons;
4333 
4334 	if (tosync != 0)
4335 		rnd_add_uint32(&sc->rnd_source, tosync);
4336 
4337 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
4338 
4339 	if (tosync < 0) {
4340 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
4341 		    sizeof (struct bge_rx_bd);
4342 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4343 		    toff, tlen, BUS_DMASYNC_POSTREAD);
4344 		tosync = -tosync;
4345 	}
4346 
4347 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4348 	    offset, tosync * sizeof (struct bge_rx_bd),
4349 	    BUS_DMASYNC_POSTREAD);
4350 
4351 	while (rx_cons != rx_prod) {
4352 		struct bge_rx_bd	*cur_rx;
4353 		uint32_t		rxidx;
4354 		struct mbuf		*m = NULL;
4355 
4356 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
4357 
4358 		rxidx = cur_rx->bge_idx;
4359 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4360 
4361 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4362 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4363 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4364 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
4365 			jumbocnt++;
4366 			bus_dmamap_sync(sc->bge_dmatag,
4367 			    sc->bge_cdata.bge_rx_jumbo_map,
4368 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
4369 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
4370 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4371 				ifp->if_ierrors++;
4372 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4373 				continue;
4374 			}
4375 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
4376 					     NULL)== ENOBUFS) {
4377 				ifp->if_ierrors++;
4378 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
4379 				continue;
4380 			}
4381 		} else {
4382 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4383 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4384 
4385 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
4386 			stdcnt++;
4387 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
4388 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
4389 			if (dmamap == NULL) {
4390 				ifp->if_ierrors++;
4391 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4392 				continue;
4393 			}
4394 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
4395 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
4396 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
4397 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4398 				ifp->if_ierrors++;
4399 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4400 				continue;
4401 			}
4402 			if (bge_newbuf_std(sc, sc->bge_std,
4403 			    NULL, dmamap) == ENOBUFS) {
4404 				ifp->if_ierrors++;
4405 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
4406 				continue;
4407 			}
4408 		}
4409 
4410 		ifp->if_ipackets++;
4411 #ifndef __NO_STRICT_ALIGNMENT
4412 		/*
4413 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
4414 		 * the Rx buffer has the layer-2 header unaligned.
4415 		 * If our CPU requires alignment, re-align by copying.
4416 		 */
4417 		if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
4418 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
4419 				cur_rx->bge_len);
4420 			m->m_data += ETHER_ALIGN;
4421 		}
4422 #endif
4423 
4424 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4425 		m->m_pkthdr.rcvif = ifp;
4426 
4427 		/*
4428 		 * Handle BPF listeners. Let the BPF user see the packet.
4429 		 */
4430 		bpf_mtap(ifp, m);
4431 
4432 		bge_rxcsum(sc, cur_rx, m);
4433 
4434 		/*
4435 		 * If we received a packet with a vlan tag, pass it
4436 		 * to vlan_input() instead of ether_input().
4437 		 */
4438 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4439 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
4440 		}
4441 
4442 		(*ifp->if_input)(ifp, m);
4443 	}
4444 
4445 	sc->bge_rx_saved_considx = rx_cons;
4446 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4447 	if (stdcnt)
4448 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
4449 	if (jumbocnt)
4450 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
4451 }
4452 
4453 static void
4454 bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4455 {
4456 
4457 	if (BGE_IS_57765_PLUS(sc)) {
4458 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4459 			if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4460 				m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4461 			if ((cur_rx->bge_error_flag &
4462 				BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
4463 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4464 			if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4465 				m->m_pkthdr.csum_data =
4466 				    cur_rx->bge_tcp_udp_csum;
4467 				m->m_pkthdr.csum_flags |=
4468 				    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4469 					M_CSUM_DATA);
4470 			}
4471 		}
4472 	} else {
4473 		if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
4474 			m->m_pkthdr.csum_flags = M_CSUM_IPv4;
4475 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
4476 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
4477 		/*
4478 		 * Rx transport checksum-offload may also
4479 		 * have bugs with packets which, when transmitted,
4480 		 * were `runts' requiring padding.
4481 		 */
4482 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4483 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
4484 			    m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
4485 			m->m_pkthdr.csum_data =
4486 			    cur_rx->bge_tcp_udp_csum;
4487 			m->m_pkthdr.csum_flags |=
4488 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
4489 				M_CSUM_DATA);
4490 		}
4491 	}
4492 }
4493 
4494 static void
4495 bge_txeof(struct bge_softc *sc)
4496 {
4497 	struct bge_tx_bd *cur_tx = NULL;
4498 	struct ifnet *ifp;
4499 	struct txdmamap_pool_entry *dma;
4500 	bus_addr_t offset, toff;
4501 	bus_size_t tlen;
4502 	int tosync;
4503 	struct mbuf *m;
4504 
4505 	ifp = &sc->ethercom.ec_if;
4506 
4507 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4508 	    offsetof(struct bge_ring_data, bge_status_block),
4509 	    sizeof (struct bge_status_block),
4510 	    BUS_DMASYNC_POSTREAD);
4511 
4512 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
4513 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
4514 	    sc->bge_tx_saved_considx;
4515 
4516 	if (tosync != 0)
4517 		rnd_add_uint32(&sc->rnd_source, tosync);
4518 
4519 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
4520 
4521 	if (tosync < 0) {
4522 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
4523 		    sizeof (struct bge_tx_bd);
4524 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4525 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4526 		tosync = -tosync;
4527 	}
4528 
4529 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4530 	    offset, tosync * sizeof (struct bge_tx_bd),
4531 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
4532 
4533 	/*
4534 	 * Go through our tx ring and free mbufs for those
4535 	 * frames that have been sent.
4536 	 */
4537 	while (sc->bge_tx_saved_considx !=
4538 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
4539 		uint32_t		idx = 0;
4540 
4541 		idx = sc->bge_tx_saved_considx;
4542 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
4543 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4544 			ifp->if_opackets++;
4545 		m = sc->bge_cdata.bge_tx_chain[idx];
4546 		if (m != NULL) {
4547 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
4548 			dma = sc->txdma[idx];
4549 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
4550 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4551 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
4552 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
4553 			sc->txdma[idx] = NULL;
4554 
4555 			m_freem(m);
4556 		}
4557 		sc->bge_txcnt--;
4558 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4559 		ifp->if_timer = 0;
4560 	}
4561 
4562 	if (cur_tx != NULL)
4563 		ifp->if_flags &= ~IFF_OACTIVE;
4564 }
4565 
4566 static int
4567 bge_intr(void *xsc)
4568 {
4569 	struct bge_softc *sc;
4570 	struct ifnet *ifp;
4571 	uint32_t statusword;
4572 	uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
4573 
4574 	sc = xsc;
4575 	ifp = &sc->ethercom.ec_if;
4576 
4577 	/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
4578 	if (BGE_IS_5717_PLUS(sc))
4579 		intrmask = 0;
4580 
4581 	/* It is possible for the interrupt to arrive before
4582 	 * the status block is updated prior to the interrupt.
4583 	 * Reading the PCI State register will confirm whether the
4584 	 * interrupt is ours and will flush the status block.
4585 	 */
4586 
4587 	/* read status word from status block */
4588 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
4589 	    offsetof(struct bge_ring_data, bge_status_block),
4590 	    sizeof (struct bge_status_block),
4591 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4592 	statusword = sc->bge_rdata->bge_status_block.bge_status;
4593 
4594 	if ((statusword & BGE_STATFLAG_UPDATED) ||
4595 	    (~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
4596 		/* Ack interrupt and stop others from occuring. */
4597 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
4598 
4599 		BGE_EVCNT_INCR(sc->bge_ev_intr);
4600 
4601 		/* clear status word */
4602 		sc->bge_rdata->bge_status_block.bge_status = 0;
4603 
4604 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4605 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
4606 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
4607 			bge_link_upd(sc);
4608 
4609 		if (ifp->if_flags & IFF_RUNNING) {
4610 			/* Check RX return ring producer/consumer */
4611 			bge_rxeof(sc);
4612 
4613 			/* Check TX ring producer/consumer */
4614 			bge_txeof(sc);
4615 		}
4616 
4617 		if (sc->bge_pending_rxintr_change) {
4618 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
4619 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
4620 
4621 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
4622 			DELAY(10);
4623 			(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4624 
4625 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
4626 			DELAY(10);
4627 			(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4628 
4629 			sc->bge_pending_rxintr_change = 0;
4630 		}
4631 		bge_handle_events(sc);
4632 
4633 		/* Re-enable interrupts. */
4634 		bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
4635 
4636 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4637 			bge_start(ifp);
4638 
4639 		return 1;
4640 	} else
4641 		return 0;
4642 }
4643 
4644 static void
4645 bge_asf_driver_up(struct bge_softc *sc)
4646 {
4647 	if (sc->bge_asf_mode & ASF_STACKUP) {
4648 		/* Send ASF heartbeat aprox. every 2s */
4649 		if (sc->bge_asf_count)
4650 			sc->bge_asf_count --;
4651 		else {
4652 			sc->bge_asf_count = 2;
4653 
4654 			bge_wait_for_event_ack(sc);
4655 
4656 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4657 			    BGE_FW_CMD_DRV_ALIVE);
4658 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4659 			bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4660 			    BGE_FW_HB_TIMEOUT_SEC);
4661 			CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
4662 			    CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4663 			    BGE_RX_CPU_DRV_EVENT);
4664 		}
4665 	}
4666 }
4667 
4668 static void
4669 bge_tick(void *xsc)
4670 {
4671 	struct bge_softc *sc = xsc;
4672 	struct mii_data *mii = &sc->bge_mii;
4673 	int s;
4674 
4675 	s = splnet();
4676 
4677 	if (BGE_IS_5705_PLUS(sc))
4678 		bge_stats_update_regs(sc);
4679 	else
4680 		bge_stats_update(sc);
4681 
4682 	if (sc->bge_flags & BGEF_FIBER_TBI) {
4683 		/*
4684 		 * Since in TBI mode auto-polling can't be used we should poll
4685 		 * link status manually. Here we register pending link event
4686 		 * and trigger interrupt.
4687 		 */
4688 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4689 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4690 	} else {
4691 		/*
4692 		 * Do not touch PHY if we have link up. This could break
4693 		 * IPMI/ASF mode or produce extra input errors.
4694 		 * (extra input errors was reported for bcm5701 & bcm5704).
4695 		 */
4696 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
4697 			mii_tick(mii);
4698 	}
4699 
4700 	bge_asf_driver_up(sc);
4701 
4702 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4703 
4704 	splx(s);
4705 }
4706 
4707 static void
4708 bge_stats_update_regs(struct bge_softc *sc)
4709 {
4710 	struct ifnet *ifp = &sc->ethercom.ec_if;
4711 
4712 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
4713 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
4714 
4715 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4716 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4717 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4718 }
4719 
4720 static void
4721 bge_stats_update(struct bge_softc *sc)
4722 {
4723 	struct ifnet *ifp = &sc->ethercom.ec_if;
4724 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4725 
4726 #define READ_STAT(sc, stats, stat) \
4727 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4728 
4729 	ifp->if_collisions +=
4730 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
4731 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
4732 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
4733 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
4734 	  ifp->if_collisions;
4735 
4736 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
4737 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
4738 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
4739 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
4740 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
4741 		      READ_STAT(sc, stats,
4742 		      		xoffPauseFramesReceived.bge_addr_lo));
4743 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
4744 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
4745 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
4746 		      READ_STAT(sc, stats,
4747 		      		macControlFramesReceived.bge_addr_lo));
4748 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
4749 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
4750 
4751 #undef READ_STAT
4752 
4753 #ifdef notdef
4754 	ifp->if_collisions +=
4755 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
4756 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
4757 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
4758 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
4759 	   ifp->if_collisions;
4760 #endif
4761 }
4762 
4763 /*
4764  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
4765  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
4766  * but when such padded frames employ the  bge IP/TCP checksum offload,
4767  * the hardware checksum assist gives incorrect results (possibly
4768  * from incorporating its own padding into the UDP/TCP checksum; who knows).
4769  * If we pad such runts with zeros, the onboard checksum comes out correct.
4770  */
4771 static inline int
4772 bge_cksum_pad(struct mbuf *pkt)
4773 {
4774 	struct mbuf *last = NULL;
4775 	int padlen;
4776 
4777 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
4778 
4779 	/* if there's only the packet-header and we can pad there, use it. */
4780 	if (pkt->m_pkthdr.len == pkt->m_len &&
4781 	    M_TRAILINGSPACE(pkt) >= padlen) {
4782 		last = pkt;
4783 	} else {
4784 		/*
4785 		 * Walk packet chain to find last mbuf. We will either
4786 		 * pad there, or append a new mbuf and pad it
4787 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
4788 		 */
4789 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
4790 	      	       continue; /* do nothing */
4791 		}
4792 
4793 		/* `last' now points to last in chain. */
4794 		if (M_TRAILINGSPACE(last) < padlen) {
4795 			/* Allocate new empty mbuf, pad it. Compact later. */
4796 			struct mbuf *n;
4797 			MGET(n, M_DONTWAIT, MT_DATA);
4798 			if (n == NULL)
4799 				return ENOBUFS;
4800 			n->m_len = 0;
4801 			last->m_next = n;
4802 			last = n;
4803 		}
4804 	}
4805 
4806 	KDASSERT(!M_READONLY(last));
4807 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
4808 
4809 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
4810 	memset(mtod(last, char *) + last->m_len, 0, padlen);
4811 	last->m_len += padlen;
4812 	pkt->m_pkthdr.len += padlen;
4813 	return 0;
4814 }
4815 
4816 /*
4817  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
4818  */
4819 static inline int
4820 bge_compact_dma_runt(struct mbuf *pkt)
4821 {
4822 	struct mbuf	*m, *prev;
4823 	int 		totlen;
4824 
4825 	prev = NULL;
4826 	totlen = 0;
4827 
4828 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
4829 		int mlen = m->m_len;
4830 		int shortfall = 8 - mlen ;
4831 
4832 		totlen += mlen;
4833 		if (mlen == 0)
4834 			continue;
4835 		if (mlen >= 8)
4836 			continue;
4837 
4838 		/* If we get here, mbuf data is too small for DMA engine.
4839 		 * Try to fix by shuffling data to prev or next in chain.
4840 		 * If that fails, do a compacting deep-copy of the whole chain.
4841 		 */
4842 
4843 		/* Internal frag. If fits in prev, copy it there. */
4844 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
4845 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
4846 			prev->m_len += mlen;
4847 			m->m_len = 0;
4848 			/* XXX stitch chain */
4849 			prev->m_next = m_free(m);
4850 			m = prev;
4851 			continue;
4852 		}
4853 		else if (m->m_next != NULL &&
4854 			     M_TRAILINGSPACE(m) >= shortfall &&
4855 			     m->m_next->m_len >= (8 + shortfall)) {
4856 		    /* m is writable and have enough data in next, pull up. */
4857 
4858 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
4859 			    shortfall);
4860 			m->m_len += shortfall;
4861 			m->m_next->m_len -= shortfall;
4862 			m->m_next->m_data += shortfall;
4863 		}
4864 		else if (m->m_next == NULL || 1) {
4865 		  	/* Got a runt at the very end of the packet.
4866 			 * borrow data from the tail of the preceding mbuf and
4867 			 * update its length in-place. (The original data is still
4868 			 * valid, so we can do this even if prev is not writable.)
4869 			 */
4870 
4871 			/* if we'd make prev a runt, just move all of its data. */
4872 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
4873 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
4874 
4875 			if ((prev->m_len - shortfall) < 8)
4876 				shortfall = prev->m_len;
4877 
4878 #ifdef notyet	/* just do the safe slow thing for now */
4879 			if (!M_READONLY(m)) {
4880 				if (M_LEADINGSPACE(m) < shorfall) {
4881 					void *m_dat;
4882 					m_dat = (m->m_flags & M_PKTHDR) ?
4883 					  m->m_pktdat : m->dat;
4884 					memmove(m_dat, mtod(m, void*), m->m_len);
4885 					m->m_data = m_dat;
4886 				    }
4887 			} else
4888 #endif	/* just do the safe slow thing */
4889 			{
4890 				struct mbuf * n = NULL;
4891 				int newprevlen = prev->m_len - shortfall;
4892 
4893 				MGET(n, M_NOWAIT, MT_DATA);
4894 				if (n == NULL)
4895 				   return ENOBUFS;
4896 				KASSERT(m->m_len + shortfall < MLEN
4897 					/*,
4898 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
4899 
4900 				/* first copy the data we're stealing from prev */
4901 				memcpy(n->m_data, prev->m_data + newprevlen,
4902 				    shortfall);
4903 
4904 				/* update prev->m_len accordingly */
4905 				prev->m_len -= shortfall;
4906 
4907 				/* copy data from runt m */
4908 				memcpy(n->m_data + shortfall, m->m_data,
4909 				    m->m_len);
4910 
4911 				/* n holds what we stole from prev, plus m */
4912 				n->m_len = shortfall + m->m_len;
4913 
4914 				/* stitch n into chain and free m */
4915 				n->m_next = m->m_next;
4916 				prev->m_next = n;
4917 				/* KASSERT(m->m_next == NULL); */
4918 				m->m_next = NULL;
4919 				m_free(m);
4920 				m = n;	/* for continuing loop */
4921 			}
4922 		}
4923 	}
4924 	return 0;
4925 }
4926 
4927 /*
4928  * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
4929  * pointers to descriptors.
4930  */
4931 static int
4932 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
4933 {
4934 	struct bge_tx_bd	*f = NULL;
4935 	uint32_t		frag, cur;
4936 	uint16_t		csum_flags = 0;
4937 	uint16_t		txbd_tso_flags = 0;
4938 	struct txdmamap_pool_entry *dma;
4939 	bus_dmamap_t dmamap;
4940 	int			i = 0;
4941 	struct m_tag		*mtag;
4942 	int			use_tso, maxsegsize, error;
4943 
4944 	cur = frag = *txidx;
4945 
4946 	if (m_head->m_pkthdr.csum_flags) {
4947 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
4948 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
4949 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
4950 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
4951 	}
4952 
4953 	/*
4954 	 * If we were asked to do an outboard checksum, and the NIC
4955 	 * has the bug where it sometimes adds in the Ethernet padding,
4956 	 * explicitly pad with zeros so the cksum will be correct either way.
4957 	 * (For now, do this for all chip versions, until newer
4958 	 * are confirmed to not require the workaround.)
4959 	 */
4960 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
4961 #ifdef notyet
4962 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
4963 #endif
4964 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
4965 		goto check_dma_bug;
4966 
4967 	if (bge_cksum_pad(m_head) != 0)
4968 	    return ENOBUFS;
4969 
4970 check_dma_bug:
4971 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
4972 		goto doit;
4973 
4974 	/*
4975 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
4976 	 * less than eight bytes.  If we encounter a teeny mbuf
4977 	 * at the end of a chain, we can pad.  Otherwise, copy.
4978 	 */
4979 	if (bge_compact_dma_runt(m_head) != 0)
4980 		return ENOBUFS;
4981 
4982 doit:
4983 	dma = SLIST_FIRST(&sc->txdma_list);
4984 	if (dma == NULL)
4985 		return ENOBUFS;
4986 	dmamap = dma->dmamap;
4987 
4988 	/*
4989 	 * Set up any necessary TSO state before we start packing...
4990 	 */
4991 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
4992 	if (!use_tso) {
4993 		maxsegsize = 0;
4994 	} else {	/* TSO setup */
4995 		unsigned  mss;
4996 		struct ether_header *eh;
4997 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
4998 		struct mbuf * m0 = m_head;
4999 		struct ip *ip;
5000 		struct tcphdr *th;
5001 		int iphl, hlen;
5002 
5003 		/*
5004 		 * XXX It would be nice if the mbuf pkthdr had offset
5005 		 * fields for the protocol headers.
5006 		 */
5007 
5008 		eh = mtod(m0, struct ether_header *);
5009 		switch (htons(eh->ether_type)) {
5010 		case ETHERTYPE_IP:
5011 			offset = ETHER_HDR_LEN;
5012 			break;
5013 
5014 		case ETHERTYPE_VLAN:
5015 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
5016 			break;
5017 
5018 		default:
5019 			/*
5020 			 * Don't support this protocol or encapsulation.
5021 			 */
5022 			return ENOBUFS;
5023 		}
5024 
5025 		/*
5026 		 * TCP/IP headers are in the first mbuf; we can do
5027 		 * this the easy way.
5028 		 */
5029 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
5030 		hlen = iphl + offset;
5031 		if (__predict_false(m0->m_len <
5032 				    (hlen + sizeof(struct tcphdr)))) {
5033 
5034 			aprint_debug_dev(sc->bge_dev,
5035 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
5036 			    "not handled yet\n",
5037 			     m0->m_len, hlen+ sizeof(struct tcphdr));
5038 #ifdef NOTYET
5039 			/*
5040 			 * XXX jonathan@NetBSD.org: untested.
5041 			 * how to force  this branch to be taken?
5042 			 */
5043 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
5044 
5045 			m_copydata(m0, offset, sizeof(ip), &ip);
5046 			m_copydata(m0, hlen, sizeof(th), &th);
5047 
5048 			ip.ip_len = 0;
5049 
5050 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
5051 			    sizeof(ip.ip_len), &ip.ip_len);
5052 
5053 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
5054 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
5055 
5056 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
5057 			    sizeof(th.th_sum), &th.th_sum);
5058 
5059 			hlen += th.th_off << 2;
5060 			iptcp_opt_words	= hlen;
5061 #else
5062 			/*
5063 			 * if_wm "hard" case not yet supported, can we not
5064 			 * mandate it out of existence?
5065 			 */
5066 			(void) ip; (void)th; (void) ip_tcp_hlen;
5067 
5068 			return ENOBUFS;
5069 #endif
5070 		} else {
5071 			ip = (struct ip *) (mtod(m0, char *) + offset);
5072 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
5073 			ip_tcp_hlen = iphl +  (th->th_off << 2);
5074 
5075 			/* Total IP/TCP options, in 32-bit words */
5076 			iptcp_opt_words = (ip_tcp_hlen
5077 					   - sizeof(struct tcphdr)
5078 					   - sizeof(struct ip)) >> 2;
5079 		}
5080 		if (BGE_IS_575X_PLUS(sc)) {
5081 			th->th_sum = 0;
5082 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
5083 		} else {
5084 			/*
5085 			 * XXX jonathan@NetBSD.org: 5705 untested.
5086 			 * Requires TSO firmware patch for 5701/5703/5704.
5087 			 */
5088 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
5089 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
5090 		}
5091 
5092 		mss = m_head->m_pkthdr.segsz;
5093 		txbd_tso_flags |=
5094 		    BGE_TXBDFLAG_CPU_PRE_DMA |
5095 		    BGE_TXBDFLAG_CPU_POST_DMA;
5096 
5097 		/*
5098 		 * Our NIC TSO-assist assumes TSO has standard, optionless
5099 		 * IPv4 and TCP headers, which total 40 bytes. By default,
5100 		 * the NIC copies 40 bytes of IP/TCP header from the
5101 		 * supplied header into the IP/TCP header portion of
5102 		 * each post-TSO-segment. If the supplied packet has IP or
5103 		 * TCP options, we need to tell the NIC to copy those extra
5104 		 * bytes into each  post-TSO header, in addition to the normal
5105 		 * 40-byte IP/TCP header (and to leave space accordingly).
5106 		 * Unfortunately, the driver encoding of option length
5107 		 * varies across different ASIC families.
5108 		 */
5109 		tcp_seg_flags = 0;
5110 		if (iptcp_opt_words) {
5111 			if (BGE_IS_5705_PLUS(sc)) {
5112 				tcp_seg_flags =
5113 					iptcp_opt_words << 11;
5114 			} else {
5115 				txbd_tso_flags |=
5116 					iptcp_opt_words << 12;
5117 			}
5118 		}
5119 		maxsegsize = mss | tcp_seg_flags;
5120 		ip->ip_len = htons(mss + ip_tcp_hlen);
5121 
5122 	}	/* TSO setup */
5123 
5124 	/*
5125 	 * Start packing the mbufs in this chain into
5126 	 * the fragment pointers. Stop when we run out
5127 	 * of fragments or hit the end of the mbuf chain.
5128 	 */
5129 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
5130 	    BUS_DMA_NOWAIT);
5131 	if (error)
5132 		return ENOBUFS;
5133 	/*
5134 	 * Sanity check: avoid coming within 16 descriptors
5135 	 * of the end of the ring.
5136 	 */
5137 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
5138 		BGE_TSO_PRINTF(("%s: "
5139 		    " dmamap_load_mbuf too close to ring wrap\n",
5140 		    device_xname(sc->bge_dev)));
5141 		goto fail_unload;
5142 	}
5143 
5144 	mtag = sc->ethercom.ec_nvlans ?
5145 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
5146 
5147 
5148 	/* Iterate over dmap-map fragments. */
5149 	for (i = 0; i < dmamap->dm_nsegs; i++) {
5150 		f = &sc->bge_rdata->bge_tx_ring[frag];
5151 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
5152 			break;
5153 
5154 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
5155 		f->bge_len = dmamap->dm_segs[i].ds_len;
5156 
5157 		/*
5158 		 * For 5751 and follow-ons, for TSO we must turn
5159 		 * off checksum-assist flag in the tx-descr, and
5160 		 * supply the ASIC-revision-specific encoding
5161 		 * of TSO flags and segsize.
5162 		 */
5163 		if (use_tso) {
5164 			if (BGE_IS_575X_PLUS(sc) || i == 0) {
5165 				f->bge_rsvd = maxsegsize;
5166 				f->bge_flags = csum_flags | txbd_tso_flags;
5167 			} else {
5168 				f->bge_rsvd = 0;
5169 				f->bge_flags =
5170 				  (csum_flags | txbd_tso_flags) & 0x0fff;
5171 			}
5172 		} else {
5173 			f->bge_rsvd = 0;
5174 			f->bge_flags = csum_flags;
5175 		}
5176 
5177 		if (mtag != NULL) {
5178 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
5179 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
5180 		} else {
5181 			f->bge_vlan_tag = 0;
5182 		}
5183 		cur = frag;
5184 		BGE_INC(frag, BGE_TX_RING_CNT);
5185 	}
5186 
5187 	if (i < dmamap->dm_nsegs) {
5188 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
5189 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
5190 		goto fail_unload;
5191 	}
5192 
5193 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
5194 	    BUS_DMASYNC_PREWRITE);
5195 
5196 	if (frag == sc->bge_tx_saved_considx) {
5197 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
5198 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
5199 
5200 		goto fail_unload;
5201 	}
5202 
5203 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
5204 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
5205 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
5206 	sc->txdma[cur] = dma;
5207 	sc->bge_txcnt += dmamap->dm_nsegs;
5208 
5209 	*txidx = frag;
5210 
5211 	return 0;
5212 
5213 fail_unload:
5214 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
5215 
5216 	return ENOBUFS;
5217 }
5218 
5219 /*
5220  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
5221  * to the mbuf data regions directly in the transmit descriptors.
5222  */
5223 static void
5224 bge_start(struct ifnet *ifp)
5225 {
5226 	struct bge_softc *sc;
5227 	struct mbuf *m_head = NULL;
5228 	uint32_t prodidx;
5229 	int pkts = 0;
5230 
5231 	sc = ifp->if_softc;
5232 
5233 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
5234 		return;
5235 
5236 	prodidx = sc->bge_tx_prodidx;
5237 
5238 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
5239 		IFQ_POLL(&ifp->if_snd, m_head);
5240 		if (m_head == NULL)
5241 			break;
5242 
5243 #if 0
5244 		/*
5245 		 * XXX
5246 		 * safety overkill.  If this is a fragmented packet chain
5247 		 * with delayed TCP/UDP checksums, then only encapsulate
5248 		 * it if we have enough descriptors to handle the entire
5249 		 * chain at once.
5250 		 * (paranoia -- may not actually be needed)
5251 		 */
5252 		if (m_head->m_flags & M_FIRSTFRAG &&
5253 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
5254 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
5255 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
5256 				ifp->if_flags |= IFF_OACTIVE;
5257 				break;
5258 			}
5259 		}
5260 #endif
5261 
5262 		/*
5263 		 * Pack the data into the transmit ring. If we
5264 		 * don't have room, set the OACTIVE flag and wait
5265 		 * for the NIC to drain the ring.
5266 		 */
5267 		if (bge_encap(sc, m_head, &prodidx)) {
5268 			ifp->if_flags |= IFF_OACTIVE;
5269 			break;
5270 		}
5271 
5272 		/* now we are committed to transmit the packet */
5273 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
5274 		pkts++;
5275 
5276 		/*
5277 		 * If there's a BPF listener, bounce a copy of this frame
5278 		 * to him.
5279 		 */
5280 		bpf_mtap(ifp, m_head);
5281 	}
5282 	if (pkts == 0)
5283 		return;
5284 
5285 	/* Transmit */
5286 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5287 	/* 5700 b2 errata */
5288 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
5289 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5290 
5291 	sc->bge_tx_prodidx = prodidx;
5292 
5293 	/*
5294 	 * Set a timeout in case the chip goes out to lunch.
5295 	 */
5296 	ifp->if_timer = 5;
5297 }
5298 
5299 static int
5300 bge_init(struct ifnet *ifp)
5301 {
5302 	struct bge_softc *sc = ifp->if_softc;
5303 	const uint16_t *m;
5304 	uint32_t mode, reg;
5305 	int s, error = 0;
5306 
5307 	s = splnet();
5308 
5309 	ifp = &sc->ethercom.ec_if;
5310 
5311 	/* Cancel pending I/O and flush buffers. */
5312 	bge_stop(ifp, 0);
5313 
5314 	bge_stop_fw(sc);
5315 	bge_sig_pre_reset(sc, BGE_RESET_START);
5316 	bge_reset(sc);
5317 	bge_sig_legacy(sc, BGE_RESET_START);
5318 	bge_sig_post_reset(sc, BGE_RESET_START);
5319 
5320 	bge_chipinit(sc);
5321 
5322 	/*
5323 	 * Init the various state machines, ring
5324 	 * control blocks and firmware.
5325 	 */
5326 	error = bge_blockinit(sc);
5327 	if (error != 0) {
5328 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
5329 		    error);
5330 		splx(s);
5331 		return error;
5332 	}
5333 
5334 	ifp = &sc->ethercom.ec_if;
5335 
5336 	/* 5718 step 25, 57XX step 54 */
5337 	/* Specify MTU. */
5338 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
5339 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
5340 
5341 	/* 5718 step 23 */
5342 	/* Load our MAC address. */
5343 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
5344 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5345 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5346 
5347 	/* Enable or disable promiscuous mode as needed. */
5348 	if (ifp->if_flags & IFF_PROMISC)
5349 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5350 	else
5351 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5352 
5353 	/* Program multicast filter. */
5354 	bge_setmulti(sc);
5355 
5356 	/* Init RX ring. */
5357 	bge_init_rx_ring_std(sc);
5358 
5359 	/*
5360 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5361 	 * memory to insure that the chip has in fact read the first
5362 	 * entry of the ring.
5363 	 */
5364 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5365 		uint32_t		v, i;
5366 		for (i = 0; i < 10; i++) {
5367 			DELAY(20);
5368 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5369 			if (v == (MCLBYTES - ETHER_ALIGN))
5370 				break;
5371 		}
5372 		if (i == 10)
5373 			aprint_error_dev(sc->bge_dev,
5374 			    "5705 A0 chip failed to load RX ring\n");
5375 	}
5376 
5377 	/* Init jumbo RX ring. */
5378 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
5379 		bge_init_rx_ring_jumbo(sc);
5380 
5381 	/* Init our RX return ring index */
5382 	sc->bge_rx_saved_considx = 0;
5383 
5384 	/* Init TX ring. */
5385 	bge_init_tx_ring(sc);
5386 
5387 	/* 5718 step 63, 57XX step 94 */
5388 	/* Enable TX MAC state machine lockup fix. */
5389 	mode = CSR_READ_4(sc, BGE_TX_MODE);
5390 	if (BGE_IS_5755_PLUS(sc) ||
5391 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
5392 		mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5393 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
5394 		mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5395 		mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5396 		    (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5397 	}
5398 
5399 	/* Turn on transmitter */
5400 	CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5401 	/* 5718 step 64 */
5402 	DELAY(100);
5403 
5404 	/* 5718 step 65, 57XX step 95 */
5405 	/* Turn on receiver */
5406 	mode = CSR_READ_4(sc, BGE_RX_MODE);
5407 	if (BGE_IS_5755_PLUS(sc))
5408 		mode |= BGE_RXMODE_IPV6_ENABLE;
5409 	CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5410 	/* 5718 step 66 */
5411 	DELAY(10);
5412 
5413 	/* 5718 step 12, 57XX step 37 */
5414 	/*
5415 	 * XXX Doucments of 5718 series and 577xx say the recommended value
5416 	 * is 1, but tg3 set 1 only on 57765 series.
5417 	 */
5418 	if (BGE_IS_57765_PLUS(sc))
5419 		reg = 1;
5420 	else
5421 		reg = 2;
5422 	CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
5423 
5424 	/* Tell firmware we're alive. */
5425 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5426 
5427 	/* Enable host interrupts. */
5428 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5429 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5430 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
5431 
5432 	if ((error = bge_ifmedia_upd(ifp)) != 0)
5433 		goto out;
5434 
5435 	ifp->if_flags |= IFF_RUNNING;
5436 	ifp->if_flags &= ~IFF_OACTIVE;
5437 
5438 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
5439 
5440 out:
5441 	sc->bge_if_flags = ifp->if_flags;
5442 	splx(s);
5443 
5444 	return error;
5445 }
5446 
5447 /*
5448  * Set media options.
5449  */
5450 static int
5451 bge_ifmedia_upd(struct ifnet *ifp)
5452 {
5453 	struct bge_softc *sc = ifp->if_softc;
5454 	struct mii_data *mii = &sc->bge_mii;
5455 	struct ifmedia *ifm = &sc->bge_ifmedia;
5456 	int rc;
5457 
5458 	/* If this is a 1000baseX NIC, enable the TBI port. */
5459 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5460 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5461 			return EINVAL;
5462 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
5463 		case IFM_AUTO:
5464 			/*
5465 			 * The BCM5704 ASIC appears to have a special
5466 			 * mechanism for programming the autoneg
5467 			 * advertisement registers in TBI mode.
5468 			 */
5469 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
5470 				uint32_t sgdig;
5471 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5472 				if (sgdig & BGE_SGDIGSTS_DONE) {
5473 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5474 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5475 					sgdig |= BGE_SGDIGCFG_AUTO |
5476 					    BGE_SGDIGCFG_PAUSE_CAP |
5477 					    BGE_SGDIGCFG_ASYM_PAUSE;
5478 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5479 					    sgdig | BGE_SGDIGCFG_SEND);
5480 					DELAY(5);
5481 					CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
5482 					    sgdig);
5483 				}
5484 			}
5485 			break;
5486 		case IFM_1000_SX:
5487 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5488 				BGE_CLRBIT(sc, BGE_MAC_MODE,
5489 				    BGE_MACMODE_HALF_DUPLEX);
5490 			} else {
5491 				BGE_SETBIT(sc, BGE_MAC_MODE,
5492 				    BGE_MACMODE_HALF_DUPLEX);
5493 			}
5494 			DELAY(40);
5495 			break;
5496 		default:
5497 			return EINVAL;
5498 		}
5499 		/* XXX 802.3x flow control for 1000BASE-SX */
5500 		return 0;
5501 	}
5502 
5503 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
5504 	if ((rc = mii_mediachg(mii)) == ENXIO)
5505 		return 0;
5506 
5507 	/*
5508 	 * Force an interrupt so that we will call bge_link_upd
5509 	 * if needed and clear any pending link state attention.
5510 	 * Without this we are not getting any further interrupts
5511 	 * for link state changes and thus will not UP the link and
5512 	 * not be able to send in bge_start. The only way to get
5513 	 * things working was to receive a packet and get a RX intr.
5514 	 */
5515 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
5516 	    sc->bge_flags & BGEF_IS_5788)
5517 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5518 	else
5519 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5520 
5521 	return rc;
5522 }
5523 
5524 /*
5525  * Report current media status.
5526  */
5527 static void
5528 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
5529 {
5530 	struct bge_softc *sc = ifp->if_softc;
5531 	struct mii_data *mii = &sc->bge_mii;
5532 
5533 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5534 		ifmr->ifm_status = IFM_AVALID;
5535 		ifmr->ifm_active = IFM_ETHER;
5536 		if (CSR_READ_4(sc, BGE_MAC_STS) &
5537 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
5538 			ifmr->ifm_status |= IFM_ACTIVE;
5539 		ifmr->ifm_active |= IFM_1000_SX;
5540 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5541 			ifmr->ifm_active |= IFM_HDX;
5542 		else
5543 			ifmr->ifm_active |= IFM_FDX;
5544 		return;
5545 	}
5546 
5547 	mii_pollstat(mii);
5548 	ifmr->ifm_status = mii->mii_media_status;
5549 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
5550 	    sc->bge_flowflags;
5551 }
5552 
5553 static int
5554 bge_ifflags_cb(struct ethercom *ec)
5555 {
5556 	struct ifnet *ifp = &ec->ec_if;
5557 	struct bge_softc *sc = ifp->if_softc;
5558 	int change = ifp->if_flags ^ sc->bge_if_flags;
5559 
5560 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
5561 		return ENETRESET;
5562 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
5563 		return 0;
5564 
5565 	if ((ifp->if_flags & IFF_PROMISC) == 0)
5566 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5567 	else
5568 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
5569 
5570 	bge_setmulti(sc);
5571 
5572 	sc->bge_if_flags = ifp->if_flags;
5573 	return 0;
5574 }
5575 
5576 static int
5577 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
5578 {
5579 	struct bge_softc *sc = ifp->if_softc;
5580 	struct ifreq *ifr = (struct ifreq *) data;
5581 	int s, error = 0;
5582 	struct mii_data *mii;
5583 
5584 	s = splnet();
5585 
5586 	switch (command) {
5587 	case SIOCSIFMEDIA:
5588 		/* XXX Flow control is not supported for 1000BASE-SX */
5589 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5590 			ifr->ifr_media &= ~IFM_ETH_FMASK;
5591 			sc->bge_flowflags = 0;
5592 		}
5593 
5594 		/* Flow control requires full-duplex mode. */
5595 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5596 		    (ifr->ifr_media & IFM_FDX) == 0) {
5597 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
5598 		}
5599 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5600 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5601 				/* We can do both TXPAUSE and RXPAUSE. */
5602 				ifr->ifr_media |=
5603 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5604 			}
5605 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5606 		}
5607 		/* FALLTHROUGH */
5608 	case SIOCGIFMEDIA:
5609 		if (sc->bge_flags & BGEF_FIBER_TBI) {
5610 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
5611 			    command);
5612 		} else {
5613 			mii = &sc->bge_mii;
5614 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
5615 			    command);
5616 		}
5617 		break;
5618 	default:
5619 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
5620 			break;
5621 
5622 		error = 0;
5623 
5624 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
5625 			;
5626 		else if (ifp->if_flags & IFF_RUNNING)
5627 			bge_setmulti(sc);
5628 		break;
5629 	}
5630 
5631 	splx(s);
5632 
5633 	return error;
5634 }
5635 
5636 static void
5637 bge_watchdog(struct ifnet *ifp)
5638 {
5639 	struct bge_softc *sc;
5640 
5641 	sc = ifp->if_softc;
5642 
5643 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
5644 
5645 	ifp->if_flags &= ~IFF_RUNNING;
5646 	bge_init(ifp);
5647 
5648 	ifp->if_oerrors++;
5649 }
5650 
5651 static void
5652 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
5653 {
5654 	int i;
5655 
5656 	BGE_CLRBIT_FLUSH(sc, reg, bit);
5657 
5658 	for (i = 0; i < 1000; i++) {
5659 		delay(100);
5660 		if ((CSR_READ_4(sc, reg) & bit) == 0)
5661 			return;
5662 	}
5663 
5664 	/*
5665 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
5666 	 * on some environment (and once after boot?)
5667 	 */
5668 	if (reg != BGE_SRS_MODE)
5669 		aprint_error_dev(sc->bge_dev,
5670 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
5671 		    (u_long)reg, bit);
5672 }
5673 
5674 /*
5675  * Stop the adapter and free any mbufs allocated to the
5676  * RX and TX lists.
5677  */
5678 static void
5679 bge_stop(struct ifnet *ifp, int disable)
5680 {
5681 	struct bge_softc *sc = ifp->if_softc;
5682 
5683 	callout_stop(&sc->bge_timeout);
5684 
5685 	/* Disable host interrupts. */
5686 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5687 	bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
5688 
5689 	/*
5690 	 * Tell firmware we're shutting down.
5691 	 */
5692 	bge_stop_fw(sc);
5693 	bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5694 
5695 	/*
5696 	 * Disable all of the receiver blocks.
5697 	 */
5698 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5699 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5700 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5701 	if (BGE_IS_5700_FAMILY(sc))
5702 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5703 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5704 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5705 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5706 
5707 	/*
5708 	 * Disable all of the transmit blocks.
5709 	 */
5710 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5711 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
5712 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
5713 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
5714 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
5715 	if (BGE_IS_5700_FAMILY(sc))
5716 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
5717 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
5718 
5719 	BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
5720 	delay(40);
5721 
5722 	bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
5723 
5724 	/*
5725 	 * Shut down all of the memory managers and related
5726 	 * state machines.
5727 	 */
5728 	/* 5718 step 5a,5b */
5729 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
5730 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
5731 	if (BGE_IS_5700_FAMILY(sc))
5732 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
5733 
5734 	/* 5718 step 5c,5d */
5735 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
5736 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
5737 
5738 	if (BGE_IS_5700_FAMILY(sc)) {
5739 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
5740 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
5741 	}
5742 
5743 	bge_reset(sc);
5744 	bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
5745 	bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
5746 
5747 	/*
5748 	 * Keep the ASF firmware running if up.
5749 	 */
5750 	if (sc->bge_asf_mode & ASF_STACKUP)
5751 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5752 	else
5753 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5754 
5755 	/* Free the RX lists. */
5756 	bge_free_rx_ring_std(sc);
5757 
5758 	/* Free jumbo RX list. */
5759 	if (BGE_IS_JUMBO_CAPABLE(sc))
5760 		bge_free_rx_ring_jumbo(sc);
5761 
5762 	/* Free TX buffers. */
5763 	bge_free_tx_ring(sc);
5764 
5765 	/*
5766 	 * Isolate/power down the PHY.
5767 	 */
5768 	if (!(sc->bge_flags & BGEF_FIBER_TBI))
5769 		mii_down(&sc->bge_mii);
5770 
5771 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
5772 
5773 	/* Clear MAC's link state (PHY may still have link UP). */
5774 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5775 
5776 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
5777 }
5778 
5779 static void
5780 bge_link_upd(struct bge_softc *sc)
5781 {
5782 	struct ifnet *ifp = &sc->ethercom.ec_if;
5783 	struct mii_data *mii = &sc->bge_mii;
5784 	uint32_t status;
5785 	int link;
5786 
5787 	/* Clear 'pending link event' flag */
5788 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
5789 
5790 	/*
5791 	 * Process link state changes.
5792 	 * Grrr. The link status word in the status block does
5793 	 * not work correctly on the BCM5700 rev AX and BX chips,
5794 	 * according to all available information. Hence, we have
5795 	 * to enable MII interrupts in order to properly obtain
5796 	 * async link changes. Unfortunately, this also means that
5797 	 * we have to read the MAC status register to detect link
5798 	 * changes, thereby adding an additional register access to
5799 	 * the interrupt handler.
5800 	 */
5801 
5802 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
5803 		status = CSR_READ_4(sc, BGE_MAC_STS);
5804 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
5805 			mii_pollstat(mii);
5806 
5807 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5808 			    mii->mii_media_status & IFM_ACTIVE &&
5809 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5810 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5811 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5812 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5813 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5814 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5815 
5816 			/* Clear the interrupt */
5817 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
5818 			    BGE_EVTENB_MI_INTERRUPT);
5819 			bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
5820 			    BRGPHY_MII_ISR);
5821 			bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
5822 			    BRGPHY_MII_IMR, BRGPHY_INTRS);
5823 		}
5824 		return;
5825 	}
5826 
5827 	if (sc->bge_flags & BGEF_FIBER_TBI) {
5828 		status = CSR_READ_4(sc, BGE_MAC_STS);
5829 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
5830 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
5831 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5832 				if (BGE_ASICREV(sc->bge_chipid)
5833 				    == BGE_ASICREV_BCM5704) {
5834 					BGE_CLRBIT(sc, BGE_MAC_MODE,
5835 					    BGE_MACMODE_TBI_SEND_CFGS);
5836 					DELAY(40);
5837 				}
5838 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
5839 				if_link_state_change(ifp, LINK_STATE_UP);
5840 			}
5841 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
5842 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5843 			if_link_state_change(ifp, LINK_STATE_DOWN);
5844 		}
5845 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
5846 		/*
5847 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
5848 		 * bit in status word always set. Workaround this bug by
5849 		 * reading PHY link status directly.
5850 		 */
5851 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
5852 		    BGE_STS_LINK : 0;
5853 
5854 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
5855 			mii_pollstat(mii);
5856 
5857 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
5858 			    mii->mii_media_status & IFM_ACTIVE &&
5859 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
5860 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
5861 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
5862 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
5863 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
5864 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
5865 		}
5866 	} else {
5867 		/*
5868 		 * For controllers that call mii_tick, we have to poll
5869 		 * link status.
5870 		 */
5871 		mii_pollstat(mii);
5872 	}
5873 
5874 	/* Clear the attention */
5875 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
5876 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
5877 	    BGE_MACSTAT_LINK_CHANGED);
5878 }
5879 
5880 static int
5881 bge_sysctl_verify(SYSCTLFN_ARGS)
5882 {
5883 	int error, t;
5884 	struct sysctlnode node;
5885 
5886 	node = *rnode;
5887 	t = *(int*)rnode->sysctl_data;
5888 	node.sysctl_data = &t;
5889 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
5890 	if (error || newp == NULL)
5891 		return error;
5892 
5893 #if 0
5894 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
5895 	    node.sysctl_num, rnode->sysctl_num));
5896 #endif
5897 
5898 	if (node.sysctl_num == bge_rxthresh_nodenum) {
5899 		if (t < 0 || t >= NBGE_RX_THRESH)
5900 			return EINVAL;
5901 		bge_update_all_threshes(t);
5902 	} else
5903 		return EINVAL;
5904 
5905 	*(int*)rnode->sysctl_data = t;
5906 
5907 	return 0;
5908 }
5909 
5910 /*
5911  * Set up sysctl(3) MIB, hw.bge.*.
5912  */
5913 static void
5914 bge_sysctl_init(struct bge_softc *sc)
5915 {
5916 	int rc, bge_root_num;
5917 	const struct sysctlnode *node;
5918 
5919 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5920 	    0, CTLTYPE_NODE, "bge",
5921 	    SYSCTL_DESCR("BGE interface controls"),
5922 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
5923 		goto out;
5924 	}
5925 
5926 	bge_root_num = node->sysctl_num;
5927 
5928 	/* BGE Rx interrupt mitigation level */
5929 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
5930 	    CTLFLAG_READWRITE,
5931 	    CTLTYPE_INT, "rx_lvl",
5932 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
5933 	    bge_sysctl_verify, 0,
5934 	    &bge_rx_thresh_lvl,
5935 	    0, CTL_HW, bge_root_num, CTL_CREATE,
5936 	    CTL_EOL)) != 0) {
5937 		goto out;
5938 	}
5939 
5940 	bge_rxthresh_nodenum = node->sysctl_num;
5941 
5942 	return;
5943 
5944 out:
5945 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
5946 }
5947 
5948 #ifdef BGE_DEBUG
5949 void
5950 bge_debug_info(struct bge_softc *sc)
5951 {
5952 
5953 	printf("Hardware Flags:\n");
5954 	if (BGE_IS_57765_PLUS(sc))
5955 		printf(" - 57765 Plus\n");
5956 	if (BGE_IS_5717_PLUS(sc))
5957 		printf(" - 5717 Plus\n");
5958 	if (BGE_IS_5755_PLUS(sc))
5959 		printf(" - 5755 Plus\n");
5960 	if (BGE_IS_575X_PLUS(sc))
5961 		printf(" - 575X Plus\n");
5962 	if (BGE_IS_5705_PLUS(sc))
5963 		printf(" - 5705 Plus\n");
5964 	if (BGE_IS_5714_FAMILY(sc))
5965 		printf(" - 5714 Family\n");
5966 	if (BGE_IS_5700_FAMILY(sc))
5967 		printf(" - 5700 Family\n");
5968 	if (sc->bge_flags & BGEF_IS_5788)
5969 		printf(" - 5788\n");
5970 	if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
5971 		printf(" - Supports Jumbo Frames\n");
5972 	if (sc->bge_flags & BGEF_NO_EEPROM)
5973 		printf(" - No EEPROM\n");
5974 	if (sc->bge_flags & BGEF_PCIX)
5975 		printf(" - PCI-X Bus\n");
5976 	if (sc->bge_flags & BGEF_PCIE)
5977 		printf(" - PCI Express Bus\n");
5978 	if (sc->bge_flags & BGEF_RX_ALIGNBUG)
5979 		printf(" - RX Alignment Bug\n");
5980 	if (sc->bge_flags & BGEF_APE)
5981 		printf(" - APE\n");
5982 	if (sc->bge_flags & BGEF_CPMU_PRESENT)
5983 		printf(" - CPMU\n");
5984 	if (sc->bge_flags & BGEF_TSO)
5985 		printf(" - TSO\n");
5986 
5987 	if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
5988 		printf(" - No 3 LEDs\n");
5989 	if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
5990 		printf(" - CRC bug\n");
5991 	if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
5992 		printf(" - ADC bug\n");
5993 	if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
5994 		printf(" - 5704 A0 bug\n");
5995 	if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
5996 		printf(" - jitter bug\n");
5997 	if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
5998 		printf(" - BER bug\n");
5999 	if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
6000 		printf(" - adjust trim\n");
6001 	if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
6002 		printf(" - no wirespeed\n");
6003 }
6004 #endif /* BGE_DEBUG */
6005 
6006 static int
6007 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6008 {
6009 	prop_dictionary_t dict;
6010 	prop_data_t ea;
6011 
6012 	if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
6013 		return 1;
6014 
6015 	dict = device_properties(sc->bge_dev);
6016 	ea = prop_dictionary_get(dict, "mac-address");
6017 	if (ea != NULL) {
6018 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
6019 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
6020 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
6021 		return 0;
6022 	}
6023 
6024 	return 1;
6025 }
6026 
6027 static int
6028 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6029 {
6030 	uint32_t mac_addr;
6031 
6032 	mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6033 	if ((mac_addr >> 16) == 0x484b) {
6034 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
6035 		ether_addr[1] = (uint8_t)mac_addr;
6036 		mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6037 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
6038 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
6039 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
6040 		ether_addr[5] = (uint8_t)mac_addr;
6041 		return 0;
6042 	}
6043 	return 1;
6044 }
6045 
6046 static int
6047 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6048 {
6049 	int mac_offset = BGE_EE_MAC_OFFSET;
6050 
6051 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6052 		mac_offset = BGE_EE_MAC_OFFSET_5906;
6053 
6054 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6055 	    ETHER_ADDR_LEN));
6056 }
6057 
6058 static int
6059 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6060 {
6061 
6062 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
6063 		return 1;
6064 
6065 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6066 	   ETHER_ADDR_LEN));
6067 }
6068 
6069 static int
6070 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6071 {
6072 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6073 		/* NOTE: Order is critical */
6074 		bge_get_eaddr_fw,
6075 		bge_get_eaddr_mem,
6076 		bge_get_eaddr_nvram,
6077 		bge_get_eaddr_eeprom,
6078 		NULL
6079 	};
6080 	const bge_eaddr_fcn_t *func;
6081 
6082 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6083 		if ((*func)(sc, eaddr) == 0)
6084 			break;
6085 	}
6086 	return (*func == NULL ? ENXIO : 0);
6087 }
6088