xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: if_bge.c,v 1.145 2008/02/07 01:21:55 dyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.145 2008/02/07 01:21:55 dyoung Exp $");
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109 
110 /* Headers for TCP  Segmentation Offload (TSO) */
111 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
112 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
113 #include <netinet/ip.h>			/* for struct ip */
114 #include <netinet/tcp.h>		/* for struct tcphdr */
115 
116 
117 #if NBPFILTER > 0
118 #include <net/bpf.h>
119 #endif
120 
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124 
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/miidevs.h>
128 #include <dev/mii/brgphyreg.h>
129 
130 #include <dev/pci/if_bgereg.h>
131 
132 #include <uvm/uvm_extern.h>
133 
134 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
135 
136 
137 /*
138  * Tunable thresholds for rx-side bge interrupt mitigation.
139  */
140 
141 /*
142  * The pairs of values below were obtained from empirical measurement
143  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
144  * interrupt for every N packets received, where N is, approximately,
145  * the second value (rx_max_bds) in each pair.  The values are chosen
146  * such that moving from one pair to the succeeding pair was observed
147  * to roughly halve interrupt rate under sustained input packet load.
148  * The values were empirically chosen to avoid overflowing internal
149  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
150  * results in internal wrapping and higher interrupt rates.
151  * The limit of 46 frames was chosen to match NFS workloads.
152  *
153  * These values also work well on bcm5701, bcm5704C, and (less
154  * tested) bcm5703.  On other chipsets, (including the Altima chip
155  * family), the larger values may overflow internal chip limits,
156  * leading to increasing interrupt rates rather than lower interrupt
157  * rates.
158  *
159  * Applications using heavy interrupt mitigation (interrupting every
160  * 32 or 46 frames) in both directions may need to increase the TCP
161  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
162  * full link bandwidth, due to ACKs and window updates lingering
163  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
164  */
165 static const struct bge_load_rx_thresh {
166 	int rx_ticks;
167 	int rx_max_bds; }
168 bge_rx_threshes[] = {
169 	{ 32,   2 },
170 	{ 50,   4 },
171 	{ 100,  8 },
172 	{ 192, 16 },
173 	{ 416, 32 },
174 	{ 598, 46 }
175 };
176 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
177 
178 /* XXX patchable; should be sysctl'able */
179 static int	bge_auto_thresh = 1;
180 static int	bge_rx_thresh_lvl;
181 
182 static int	bge_rxthresh_nodenum;
183 
184 static int	bge_probe(device_t, cfdata_t, void *);
185 static void	bge_attach(device_t, device_t, void *);
186 static void	bge_release_resources(struct bge_softc *);
187 static void	bge_txeof(struct bge_softc *);
188 static void	bge_rxeof(struct bge_softc *);
189 
190 static void	bge_tick(void *);
191 static void	bge_stats_update(struct bge_softc *);
192 static int	bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
193 
194 static int	bge_intr(void *);
195 static void	bge_start(struct ifnet *);
196 static int	bge_ioctl(struct ifnet *, u_long, void *);
197 static int	bge_init(struct ifnet *);
198 static void	bge_stop(struct ifnet *, int);
199 static void	bge_watchdog(struct ifnet *);
200 static int	bge_ifmedia_upd(struct ifnet *);
201 static void	bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
202 
203 static void	bge_setmulti(struct bge_softc *);
204 
205 static void	bge_handle_events(struct bge_softc *);
206 static int	bge_alloc_jumbo_mem(struct bge_softc *);
207 #if 0 /* XXX */
208 static void	bge_free_jumbo_mem(struct bge_softc *);
209 #endif
210 static void	*bge_jalloc(struct bge_softc *);
211 static void	bge_jfree(struct mbuf *, void *, size_t, void *);
212 static int	bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
213 			       bus_dmamap_t);
214 static int	bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
215 static int	bge_init_rx_ring_std(struct bge_softc *);
216 static void	bge_free_rx_ring_std(struct bge_softc *);
217 static int	bge_init_rx_ring_jumbo(struct bge_softc *);
218 static void	bge_free_rx_ring_jumbo(struct bge_softc *);
219 static void	bge_free_tx_ring(struct bge_softc *);
220 static int	bge_init_tx_ring(struct bge_softc *);
221 
222 static int	bge_chipinit(struct bge_softc *);
223 static int	bge_blockinit(struct bge_softc *);
224 static int	bge_setpowerstate(struct bge_softc *, int);
225 
226 static void	bge_reset(struct bge_softc *);
227 
228 #define BGE_DEBUG
229 #ifdef BGE_DEBUG
230 #define DPRINTF(x)	if (bgedebug) printf x
231 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
232 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
233 int	bgedebug = 0;
234 int	bge_tso_debug = 0;
235 #else
236 #define DPRINTF(x)
237 #define DPRINTFN(n,x)
238 #define BGE_TSO_PRINTF(x)
239 #endif
240 
241 #ifdef BGE_EVENT_COUNTERS
242 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
243 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
244 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
245 #else
246 #define	BGE_EVCNT_INCR(ev)	/* nothing */
247 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
248 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
249 #endif
250 
251 /* Various chip quirks. */
252 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
253 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
254 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
255 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
256 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
257 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
258 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
259 #define	BGE_QUIRK_5705_CORE		0x00000080
260 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
261 
262 /*
263  * XXX: how to handle variants based on 5750 and derivatives:
264  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
265  * in general behave like a 5705, except with additional quirks.
266  * This driver's current handling of the 5721 is wrong;
267  * how we map ASIC revision to "quirks" needs more thought.
268  * (defined here until the thought is done).
269  */
270 #define BGE_IS_5714_FAMILY(sc) \
271 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \
272 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||	\
273 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 )
274 
275 #define BGE_IS_5750_OR_BEYOND(sc)  \
276 	(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \
277 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \
278 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \
279 	 BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \
280 	 BGE_IS_5714_FAMILY(sc) )
281 
282 #define BGE_IS_5705_OR_BEYOND(sc)  \
283 	( ((sc)->bge_quirks & BGE_QUIRK_5705_CORE) || \
284 	  BGE_IS_5750_OR_BEYOND(sc) )
285 
286 
287 /* following bugs are common to bcm5700 rev B, all flavours */
288 #define BGE_QUIRK_5700_COMMON \
289 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
290 
291 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
292     bge_probe, bge_attach, NULL, NULL);
293 
294 static u_int32_t
295 bge_readmem_ind(struct bge_softc *sc, int off)
296 {
297 	pcireg_t val;
298 
299 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
300 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
301 	return val;
302 }
303 
304 static void
305 bge_writemem_ind(struct bge_softc *sc, int off, int val)
306 {
307 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
308 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
309 }
310 
311 #ifdef notdef
312 static u_int32_t
313 bge_readreg_ind(struct bge_softc *sc, int off)
314 {
315 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
316 	return(pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
317 }
318 #endif
319 
320 static void
321 bge_writereg_ind(struct bge_softc *sc, int off, int val)
322 {
323 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
324 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
325 }
326 
327 #ifdef notdef
328 static u_int8_t
329 bge_vpd_readbyte(struct bge_softc *sc, int addr)
330 {
331 	int i;
332 	u_int32_t val;
333 
334 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR, addr);
335 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
336 		DELAY(10);
337 		if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_VPD_ADDR) &
338 		    BGE_VPD_FLAG)
339 			break;
340 	}
341 
342 	if (i == BGE_TIMEOUT) {
343 		aprint_error_dev(sc->bge_dev, "VPD read timed out\n");
344 		return(0);
345 	}
346 
347 	val = pci_conf_read(sc->sc_pc, sc->sca_pcitag, BGE_PCI_VPD_DATA);
348 
349 	return((val >> ((addr % 4) * 8)) & 0xFF);
350 }
351 
352 static void
353 bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, int addr)
354 {
355 	int i;
356 	u_int8_t *ptr;
357 
358 	ptr = (u_int8_t *)res;
359 	for (i = 0; i < sizeof(struct vpd_res); i++)
360 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
361 }
362 
363 static void
364 bge_vpd_read(struct bge_softc *sc)
365 {
366 	int pos = 0, i;
367 	struct vpd_res res;
368 
369 	if (sc->bge_vpd_prodname != NULL)
370 		free(sc->bge_vpd_prodname, M_DEVBUF);
371 	if (sc->bge_vpd_readonly != NULL)
372 		free(sc->bge_vpd_readonly, M_DEVBUF);
373 	sc->bge_vpd_prodname = NULL;
374 	sc->bge_vpd_readonly = NULL;
375 
376 	bge_vpd_read_res(sc, &res, pos);
377 
378 	if (res.vr_id != VPD_RES_ID) {
379 		aprint_error_dev("bad VPD resource id: expected %x got %x\n",
380 		    VPD_RES_ID, res.vr_id);
381 		return;
382 	}
383 
384 	pos += sizeof(res);
385 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
386 	if (sc->bge_vpd_prodname == NULL)
387 		panic("bge_vpd_read");
388 	for (i = 0; i < res.vr_len; i++)
389 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
390 	sc->bge_vpd_prodname[i] = '\0';
391 	pos += i;
392 
393 	bge_vpd_read_res(sc, &res, pos);
394 
395 	if (res.vr_id != VPD_RES_READ) {
396 		aprint_error_dev(sc->bge_dev,
397 		    "bad VPD resource id: expected %x got %x\n",
398 		    VPD_RES_READ, res.vr_id);
399 		return;
400 	}
401 
402 	pos += sizeof(res);
403 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
404 	if (sc->bge_vpd_readonly == NULL)
405 		panic("bge_vpd_read");
406 	for (i = 0; i < res.vr_len + 1; i++)
407 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
408 }
409 #endif
410 
411 /*
412  * Read a byte of data stored in the EEPROM at address 'addr.' The
413  * BCM570x supports both the traditional bitbang interface and an
414  * auto access interface for reading the EEPROM. We use the auto
415  * access method.
416  */
417 static u_int8_t
418 bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest)
419 {
420 	int i;
421 	u_int32_t byte = 0;
422 
423 	/*
424 	 * Enable use of auto EEPROM access so we can avoid
425 	 * having to use the bitbang method.
426 	 */
427 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
428 
429 	/* Reset the EEPROM, load the clock period. */
430 	CSR_WRITE_4(sc, BGE_EE_ADDR,
431 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
432 	DELAY(20);
433 
434 	/* Issue the read EEPROM command. */
435 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
436 
437 	/* Wait for completion */
438 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
439 		DELAY(10);
440 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
441 			break;
442 	}
443 
444 	if (i == BGE_TIMEOUT) {
445 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
446 		return(0);
447 	}
448 
449 	/* Get result. */
450 	byte = CSR_READ_4(sc, BGE_EE_DATA);
451 
452 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
453 
454 	return(0);
455 }
456 
457 /*
458  * Read a sequence of bytes from the EEPROM.
459  */
460 static int
461 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
462 {
463 	int err = 0, i;
464 	u_int8_t byte = 0;
465 	char *dest = destv;
466 
467 	for (i = 0; i < cnt; i++) {
468 		err = bge_eeprom_getbyte(sc, off + i, &byte);
469 		if (err)
470 			break;
471 		*(dest + i) = byte;
472 	}
473 
474 	return(err ? 1 : 0);
475 }
476 
477 static int
478 bge_miibus_readreg(device_t dev, int phy, int reg)
479 {
480 	struct bge_softc *sc = device_private(dev);
481 	u_int32_t val;
482 	u_int32_t saved_autopoll;
483 	int i;
484 
485 	/*
486 	 * Several chips with builtin PHYs will incorrectly answer to
487 	 * other PHY instances than the builtin PHY at id 1.
488 	 */
489 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
490 		return(0);
491 
492 	/* Reading with autopolling on may trigger PCI errors */
493 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
494 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
495 		CSR_WRITE_4(sc, BGE_MI_MODE,
496 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
497 		DELAY(40);
498 	}
499 
500 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
501 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
502 
503 	for (i = 0; i < BGE_TIMEOUT; i++) {
504 		val = CSR_READ_4(sc, BGE_MI_COMM);
505 		if (!(val & BGE_MICOMM_BUSY))
506 			break;
507 		delay(10);
508 	}
509 
510 	if (i == BGE_TIMEOUT) {
511 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
512 		val = 0;
513 		goto done;
514 	}
515 
516 	val = CSR_READ_4(sc, BGE_MI_COMM);
517 
518 done:
519 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
520 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
521 		DELAY(40);
522 	}
523 
524 	if (val & BGE_MICOMM_READFAIL)
525 		return(0);
526 
527 	return(val & 0xFFFF);
528 }
529 
530 static void
531 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
532 {
533 	struct bge_softc *sc = device_private(dev);
534 	u_int32_t saved_autopoll;
535 	int i;
536 
537 	/* Touching the PHY while autopolling is on may trigger PCI errors */
538 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
539 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
540 		delay(40);
541 		CSR_WRITE_4(sc, BGE_MI_MODE,
542 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
543 		delay(10); /* 40 usec is supposed to be adequate */
544 	}
545 
546 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
547 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
548 
549 	for (i = 0; i < BGE_TIMEOUT; i++) {
550 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
551 			break;
552 		delay(10);
553 	}
554 
555 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
556 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
557 		delay(40);
558 	}
559 
560 	if (i == BGE_TIMEOUT)
561 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
562 }
563 
564 static void
565 bge_miibus_statchg(device_t dev)
566 {
567 	struct bge_softc *sc = device_private(dev);
568 	struct mii_data *mii = &sc->bge_mii;
569 
570 	/*
571 	 * Get flow control negotiation result.
572 	 */
573 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
574 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
575 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
576 		mii->mii_media_active &= ~IFM_ETH_FMASK;
577 	}
578 
579 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
580 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
581 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
582 	} else {
583 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
584 	}
585 
586 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
587 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
588 	} else {
589 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
590 	}
591 
592 	/*
593 	 * 802.3x flow control
594 	 */
595 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
596 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
597 	} else {
598 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
599 	}
600 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
601 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
602 	} else {
603 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
604 	}
605 }
606 
607 /*
608  * Update rx threshold levels to values in a particular slot
609  * of the interrupt-mitigation table bge_rx_threshes.
610  */
611 static void
612 bge_set_thresh(struct ifnet *ifp, int lvl)
613 {
614 	struct bge_softc *sc = ifp->if_softc;
615 	int s;
616 
617 	/* For now, just save the new Rx-intr thresholds and record
618 	 * that a threshold update is pending.  Updating the hardware
619 	 * registers here (even at splhigh()) is observed to
620 	 * occasionaly cause glitches where Rx-interrupts are not
621 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
622 	 */
623 	s = splnet();
624 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
625 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
626 	sc->bge_pending_rxintr_change = 1;
627 	splx(s);
628 
629 	 return;
630 }
631 
632 
633 /*
634  * Update Rx thresholds of all bge devices
635  */
636 static void
637 bge_update_all_threshes(int lvl)
638 {
639 	struct ifnet *ifp;
640 	const char * const namebuf = "bge";
641 	int namelen;
642 
643 	if (lvl < 0)
644 		lvl = 0;
645 	else if( lvl >= NBGE_RX_THRESH)
646 		lvl = NBGE_RX_THRESH - 1;
647 
648 	namelen = strlen(namebuf);
649 	/*
650 	 * Now search all the interfaces for this name/number
651 	 */
652 	IFNET_FOREACH(ifp) {
653 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
654 		      continue;
655 		/* We got a match: update if doing auto-threshold-tuning */
656 		if (bge_auto_thresh)
657 			bge_set_thresh(ifp, lvl);
658 	}
659 }
660 
661 /*
662  * Handle events that have triggered interrupts.
663  */
664 static void
665 bge_handle_events(struct bge_softc *sc)
666 {
667 
668 	return;
669 }
670 
671 /*
672  * Memory management for jumbo frames.
673  */
674 
675 static int
676 bge_alloc_jumbo_mem(struct bge_softc *sc)
677 {
678 	char *ptr, *kva;
679 	bus_dma_segment_t	seg;
680 	int		i, rseg, state, error;
681 	struct bge_jpool_entry   *entry;
682 
683 	state = error = 0;
684 
685 	/* Grab a big chunk o' storage. */
686 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
687 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
688 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
689 		return ENOBUFS;
690 	}
691 
692 	state = 1;
693 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
694 	    BUS_DMA_NOWAIT)) {
695 		aprint_error_dev(sc->bge_dev,
696 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
697 		error = ENOBUFS;
698 		goto out;
699 	}
700 
701 	state = 2;
702 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
703 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
704 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
705 		error = ENOBUFS;
706 		goto out;
707 	}
708 
709 	state = 3;
710 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
711 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
712 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
713 		error = ENOBUFS;
714 		goto out;
715 	}
716 
717 	state = 4;
718 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
719 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
720 
721 	SLIST_INIT(&sc->bge_jfree_listhead);
722 	SLIST_INIT(&sc->bge_jinuse_listhead);
723 
724 	/*
725 	 * Now divide it up into 9K pieces and save the addresses
726 	 * in an array.
727 	 */
728 	ptr = sc->bge_cdata.bge_jumbo_buf;
729 	for (i = 0; i < BGE_JSLOTS; i++) {
730 		sc->bge_cdata.bge_jslots[i] = ptr;
731 		ptr += BGE_JLEN;
732 		entry = malloc(sizeof(struct bge_jpool_entry),
733 		    M_DEVBUF, M_NOWAIT);
734 		if (entry == NULL) {
735 			aprint_error_dev(sc->bge_dev,
736 			    "no memory for jumbo buffer queue!\n");
737 			error = ENOBUFS;
738 			goto out;
739 		}
740 		entry->slot = i;
741 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
742 				 entry, jpool_entries);
743 	}
744 out:
745 	if (error != 0) {
746 		switch (state) {
747 		case 4:
748 			bus_dmamap_unload(sc->bge_dmatag,
749 			    sc->bge_cdata.bge_rx_jumbo_map);
750 		case 3:
751 			bus_dmamap_destroy(sc->bge_dmatag,
752 			    sc->bge_cdata.bge_rx_jumbo_map);
753 		case 2:
754 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
755 		case 1:
756 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
757 			break;
758 		default:
759 			break;
760 		}
761 	}
762 
763 	return error;
764 }
765 
766 /*
767  * Allocate a jumbo buffer.
768  */
769 static void *
770 bge_jalloc(struct bge_softc *sc)
771 {
772 	struct bge_jpool_entry   *entry;
773 
774 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
775 
776 	if (entry == NULL) {
777 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
778 		return(NULL);
779 	}
780 
781 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
782 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
783 	return(sc->bge_cdata.bge_jslots[entry->slot]);
784 }
785 
786 /*
787  * Release a jumbo buffer.
788  */
789 static void
790 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
791 {
792 	struct bge_jpool_entry *entry;
793 	struct bge_softc *sc;
794 	int i, s;
795 
796 	/* Extract the softc struct pointer. */
797 	sc = (struct bge_softc *)arg;
798 
799 	if (sc == NULL)
800 		panic("bge_jfree: can't find softc pointer!");
801 
802 	/* calculate the slot this buffer belongs to */
803 
804 	i = ((char *)buf
805 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
806 
807 	if ((i < 0) || (i >= BGE_JSLOTS))
808 		panic("bge_jfree: asked to free buffer that we don't manage!");
809 
810 	s = splvm();
811 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
812 	if (entry == NULL)
813 		panic("bge_jfree: buffer not in use!");
814 	entry->slot = i;
815 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
816 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
817 
818 	if (__predict_true(m != NULL))
819   		pool_cache_put(mb_cache, m);
820 	splx(s);
821 }
822 
823 
824 /*
825  * Intialize a standard receive ring descriptor.
826  */
827 static int
828 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap)
829 {
830 	struct mbuf		*m_new = NULL;
831 	struct bge_rx_bd	*r;
832 	int			error;
833 
834 	if (dmamap == NULL) {
835 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
836 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
837 		if (error != 0)
838 			return error;
839 	}
840 
841 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
842 
843 	if (m == NULL) {
844 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
845 		if (m_new == NULL) {
846 			return(ENOBUFS);
847 		}
848 
849 		MCLGET(m_new, M_DONTWAIT);
850 		if (!(m_new->m_flags & M_EXT)) {
851 			m_freem(m_new);
852 			return(ENOBUFS);
853 		}
854 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
855 
856 	} else {
857 		m_new = m;
858 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
859 		m_new->m_data = m_new->m_ext.ext_buf;
860 	}
861 	if (!sc->bge_rx_alignment_bug)
862 	    m_adj(m_new, ETHER_ALIGN);
863 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
864 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
865 		return(ENOBUFS);
866 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
867 	    BUS_DMASYNC_PREREAD);
868 
869 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
870 	r = &sc->bge_rdata->bge_rx_std_ring[i];
871 	bge_set_hostaddr(&r->bge_addr,
872 	    dmamap->dm_segs[0].ds_addr);
873 	r->bge_flags = BGE_RXBDFLAG_END;
874 	r->bge_len = m_new->m_len;
875 	r->bge_idx = i;
876 
877 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
878 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
879 		i * sizeof (struct bge_rx_bd),
880 	    sizeof (struct bge_rx_bd),
881 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
882 
883 	return(0);
884 }
885 
886 /*
887  * Initialize a jumbo receive ring descriptor. This allocates
888  * a jumbo buffer from the pool managed internally by the driver.
889  */
890 static int
891 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
892 {
893 	struct mbuf *m_new = NULL;
894 	struct bge_rx_bd *r;
895 	void *buf = NULL;
896 
897 	if (m == NULL) {
898 
899 		/* Allocate the mbuf. */
900 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
901 		if (m_new == NULL) {
902 			return(ENOBUFS);
903 		}
904 
905 		/* Allocate the jumbo buffer */
906 		buf = bge_jalloc(sc);
907 		if (buf == NULL) {
908 			m_freem(m_new);
909 			aprint_error_dev(sc->bge_dev,
910 			    "jumbo allocation failed -- packet dropped!\n");
911 			return(ENOBUFS);
912 		}
913 
914 		/* Attach the buffer to the mbuf. */
915 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
916 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
917 		    bge_jfree, sc);
918 		m_new->m_flags |= M_EXT_RW;
919 	} else {
920 		m_new = m;
921 		buf = m_new->m_data = m_new->m_ext.ext_buf;
922 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
923 	}
924 	if (!sc->bge_rx_alignment_bug)
925 	    m_adj(m_new, ETHER_ALIGN);
926 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
927 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
928 	    BUS_DMASYNC_PREREAD);
929 	/* Set up the descriptor. */
930 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
931 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
932 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
933 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
934 	r->bge_len = m_new->m_len;
935 	r->bge_idx = i;
936 
937 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
938 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
939 		i * sizeof (struct bge_rx_bd),
940 	    sizeof (struct bge_rx_bd),
941 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
942 
943 	return(0);
944 }
945 
946 /*
947  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
948  * that's 1MB or memory, which is a lot. For now, we fill only the first
949  * 256 ring entries and hope that our CPU is fast enough to keep up with
950  * the NIC.
951  */
952 static int
953 bge_init_rx_ring_std(struct bge_softc *sc)
954 {
955 	int i;
956 
957 	if (sc->bge_flags & BGE_RXRING_VALID)
958 		return 0;
959 
960 	for (i = 0; i < BGE_SSLOTS; i++) {
961 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
962 			return(ENOBUFS);
963 	}
964 
965 	sc->bge_std = i - 1;
966 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
967 
968 	sc->bge_flags |= BGE_RXRING_VALID;
969 
970 	return(0);
971 }
972 
973 static void
974 bge_free_rx_ring_std(struct bge_softc *sc)
975 {
976 	int i;
977 
978 	if (!(sc->bge_flags & BGE_RXRING_VALID))
979 		return;
980 
981 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
982 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
983 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
984 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
985 			bus_dmamap_destroy(sc->bge_dmatag,
986 			    sc->bge_cdata.bge_rx_std_map[i]);
987 		}
988 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
989 		    sizeof(struct bge_rx_bd));
990 	}
991 
992 	sc->bge_flags &= ~BGE_RXRING_VALID;
993 }
994 
995 static int
996 bge_init_rx_ring_jumbo(struct bge_softc *sc)
997 {
998 	int i;
999 	volatile struct bge_rcb *rcb;
1000 
1001 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1002 		return 0;
1003 
1004 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1005 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1006 			return(ENOBUFS);
1007 	};
1008 
1009 	sc->bge_jumbo = i - 1;
1010 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1011 
1012 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1013 	rcb->bge_maxlen_flags = 0;
1014 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1015 
1016 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1017 
1018 	return(0);
1019 }
1020 
1021 static void
1022 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1023 {
1024 	int i;
1025 
1026 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1027 		return;
1028 
1029 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1030 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1031 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1032 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1033 		}
1034 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1035 		    sizeof(struct bge_rx_bd));
1036 	}
1037 
1038 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1039 }
1040 
1041 static void
1042 bge_free_tx_ring(struct bge_softc *sc)
1043 {
1044 	int i, freed;
1045 	struct txdmamap_pool_entry *dma;
1046 
1047 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1048 		return;
1049 
1050 	freed = 0;
1051 
1052 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1053 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1054 			freed++;
1055 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1056 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1057 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1058 					    link);
1059 			sc->txdma[i] = 0;
1060 		}
1061 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1062 		    sizeof(struct bge_tx_bd));
1063 	}
1064 
1065 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1066 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1067 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1068 		free(dma, M_DEVBUF);
1069 	}
1070 
1071 	sc->bge_flags &= ~BGE_TXRING_VALID;
1072 }
1073 
1074 static int
1075 bge_init_tx_ring(struct bge_softc *sc)
1076 {
1077 	int i;
1078 	bus_dmamap_t dmamap;
1079 	struct txdmamap_pool_entry *dma;
1080 
1081 	if (sc->bge_flags & BGE_TXRING_VALID)
1082 		return 0;
1083 
1084 	sc->bge_txcnt = 0;
1085 	sc->bge_tx_saved_considx = 0;
1086 
1087 	/* Initialize transmit producer index for host-memory send ring. */
1088 	sc->bge_tx_prodidx = 0;
1089 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1090 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1091 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1092 
1093 	/* NIC-memory send ring  not used; initialize to zero. */
1094 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1095 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1096 		CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1097 
1098 	SLIST_INIT(&sc->txdma_list);
1099 	for (i = 0; i < BGE_RSLOTS; i++) {
1100 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1101 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1102 		    &dmamap))
1103 			return(ENOBUFS);
1104 		if (dmamap == NULL)
1105 			panic("dmamap NULL in bge_init_tx_ring");
1106 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1107 		if (dma == NULL) {
1108 			aprint_error_dev(sc->bge_dev,
1109 			    "can't alloc txdmamap_pool_entry\n");
1110 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1111 			return (ENOMEM);
1112 		}
1113 		dma->dmamap = dmamap;
1114 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1115 	}
1116 
1117 	sc->bge_flags |= BGE_TXRING_VALID;
1118 
1119 	return(0);
1120 }
1121 
1122 static void
1123 bge_setmulti(struct bge_softc *sc)
1124 {
1125 	struct ethercom		*ac = &sc->ethercom;
1126 	struct ifnet		*ifp = &ac->ec_if;
1127 	struct ether_multi	*enm;
1128 	struct ether_multistep  step;
1129 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1130 	u_int32_t		h;
1131 	int			i;
1132 
1133 	if (ifp->if_flags & IFF_PROMISC)
1134 		goto allmulti;
1135 
1136 	/* Now program new ones. */
1137 	ETHER_FIRST_MULTI(step, ac, enm);
1138 	while (enm != NULL) {
1139 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1140 			/*
1141 			 * We must listen to a range of multicast addresses.
1142 			 * For now, just accept all multicasts, rather than
1143 			 * trying to set only those filter bits needed to match
1144 			 * the range.  (At this time, the only use of address
1145 			 * ranges is for IP multicast routing, for which the
1146 			 * range is big enough to require all bits set.)
1147 			 */
1148 			goto allmulti;
1149 		}
1150 
1151 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1152 
1153 		/* Just want the 7 least-significant bits. */
1154 		h &= 0x7f;
1155 
1156 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1157 		ETHER_NEXT_MULTI(step, enm);
1158 	}
1159 
1160 	ifp->if_flags &= ~IFF_ALLMULTI;
1161 	goto setit;
1162 
1163  allmulti:
1164 	ifp->if_flags |= IFF_ALLMULTI;
1165 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1166 
1167  setit:
1168 	for (i = 0; i < 4; i++)
1169 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1170 }
1171 
1172 const int bge_swapbits[] = {
1173 	0,
1174 	BGE_MODECTL_BYTESWAP_DATA,
1175 	BGE_MODECTL_WORDSWAP_DATA,
1176 	BGE_MODECTL_BYTESWAP_NONFRAME,
1177 	BGE_MODECTL_WORDSWAP_NONFRAME,
1178 
1179 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1180 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1181 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1182 
1183 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1184 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1185 
1186 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1187 
1188 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1189 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1190 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1191 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1192 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1193 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1194 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1195 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1196 
1197 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1198 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1199 };
1200 
1201 int bge_swapindex = 0;
1202 
1203 /*
1204  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1205  * self-test results.
1206  */
1207 static int
1208 bge_chipinit(struct bge_softc *sc)
1209 {
1210 	u_int32_t		cachesize;
1211 	int			i;
1212 	u_int32_t		dma_rw_ctl;
1213 
1214 
1215 	/* Set endianness before we access any non-PCI registers. */
1216 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1217 	    BGE_INIT);
1218 
1219 	/* Set power state to D0. */
1220 	bge_setpowerstate(sc, 0);
1221 
1222 	/*
1223 	 * Check the 'ROM failed' bit on the RX CPU to see if
1224 	 * self-tests passed.
1225 	 */
1226 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1227 		aprint_error_dev(sc->bge_dev,
1228 		    "RX CPU self-diagnostics failed!\n");
1229 		return(ENODEV);
1230 	}
1231 
1232 	/* Clear the MAC control register */
1233 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1234 
1235 	/*
1236 	 * Clear the MAC statistics block in the NIC's
1237 	 * internal memory.
1238 	 */
1239 	for (i = BGE_STATS_BLOCK;
1240 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1241 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1242 
1243 	for (i = BGE_STATUS_BLOCK;
1244 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1245 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1246 
1247 	/* Set up the PCI DMA control register. */
1248 	if (sc->bge_pcie) {
1249 	  u_int32_t device_ctl;
1250 
1251 		/* From FreeBSD */
1252 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1253 		    device_xname(sc->bge_dev)));
1254 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1255 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1256 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1257 
1258 		/* jonathan: alternative from Linux driver */
1259 #define DMA_CTRL_WRITE_PCIE_H20MARK_128         0x00180000
1260 #define DMA_CTRL_WRITE_PCIE_H20MARK_256         0x00380000
1261 
1262 		dma_rw_ctl =   0x76000000; /* XXX XXX XXX */;
1263 		device_ctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
1264 					   BGE_PCI_CONF_DEV_CTRL);
1265 		aprint_debug_dev(sc->bge_dev, "pcie mode=0x%x\n", device_ctl);
1266 
1267 		if ((device_ctl & 0x00e0) && 0) {
1268 			/*
1269 			 * XXX jonathan@NetBSD.org:
1270 			 * This clause is exactly what the Broadcom-supplied
1271 			 * Linux does; but given overall register programming
1272 			 * by if_bge(4), this larger DMA-write watermark
1273 			 * value causes bcm5721 chips to totally wedge.
1274 			 */
1275 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_256;
1276 		} else {
1277 			dma_rw_ctl |= BGE_PCIDMA_RWCTL_PCIE_WRITE_WATRMARK_128;
1278 		}
1279 	} else if (pci_conf_read(sc->sc_pc, sc->sc_pcitag,BGE_PCI_PCISTATE) &
1280 	    BGE_PCISTATE_PCI_BUSMODE) {
1281 		/* Conventional PCI bus */
1282 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1283 		    device_xname(sc->bge_dev)));
1284 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1285 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1286 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1287 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1288 			dma_rw_ctl |= 0x0F;
1289 		}
1290 	} else {
1291 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1292 		    device_xname(sc->bge_dev)));
1293 		/* PCI-X bus */
1294 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1295 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1296 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1297 		    (0x0F);
1298 		/*
1299 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1300 		 * for hardware bugs, which means we should also clear
1301 		 * the low-order MINDMA bits.  In addition, the 5704
1302 		 * uses a different encoding of read/write watermarks.
1303 		 */
1304 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1305 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1306 			  /* should be 0x1f0000 */
1307 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1308 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1309 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1310 		}
1311 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1312 			dma_rw_ctl &=  0xfffffff0;
1313 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1314 		}
1315 		else if (BGE_IS_5714_FAMILY(sc)) {
1316 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1317 			dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1318 			/* XXX magic values, Broadcom-supplied Linux driver */
1319 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1320 				dma_rw_ctl |= (1 << 20) | (1 << 18) |
1321 				  BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1322 			else
1323 				dma_rw_ctl |= (1<<20) | (1<<18) | (1 << 15);
1324 		}
1325 	}
1326 
1327 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1328 
1329 	/*
1330 	 * Set up general mode register.
1331 	 */
1332 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1333 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1334 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1335 
1336 	/* Get cache line size. */
1337 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
1338 
1339 	/*
1340 	 * Avoid violating PCI spec on certain chip revs.
1341 	 */
1342 	if (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD) &
1343 	    PCIM_CMD_MWIEN) {
1344 		switch(cachesize) {
1345 		case 1:
1346 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1347 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1348 			break;
1349 		case 2:
1350 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1351 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1352 			break;
1353 		case 4:
1354 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1355 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1356 			break;
1357 		case 8:
1358 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1359 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1360 			break;
1361 		case 16:
1362 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1363 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1364 			break;
1365 		case 32:
1366 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1367 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1368 			break;
1369 		case 64:
1370 			PCI_SETBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1371 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1372 			break;
1373 		default:
1374 		/* Disable PCI memory write and invalidate. */
1375 #if 0
1376 			if (bootverbose)
1377 				aprint_error_dev(sc->bge_dev,
1378 				    "cache line size %d not supported "
1379 				    "disabling PCI MWI\n",
1380 #endif
1381 			PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD,
1382 			    PCIM_CMD_MWIEN);
1383 			break;
1384 		}
1385 	}
1386 
1387 	/*
1388 	 * Disable memory write invalidate.  Apparently it is not supported
1389 	 * properly by these devices.
1390 	 */
1391 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1392 
1393 
1394 #ifdef __brokenalpha__
1395 	/*
1396 	 * Must insure that we do not cross an 8K (bytes) boundary
1397 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1398 	 * restriction on some ALPHA platforms with early revision
1399 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1400 	 */
1401 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1402 #endif
1403 
1404 	/* Set the timer prescaler (always 66MHz) */
1405 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1406 
1407 	return(0);
1408 }
1409 
1410 static int
1411 bge_blockinit(struct bge_softc *sc)
1412 {
1413 	volatile struct bge_rcb		*rcb;
1414 	bus_size_t		rcb_addr;
1415 	int			i;
1416 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1417 	bge_hostaddr		taddr;
1418 
1419 	/*
1420 	 * Initialize the memory window pointer register so that
1421 	 * we can access the first 32K of internal NIC RAM. This will
1422 	 * allow us to set up the TX send ring RCBs and the RX return
1423 	 * ring RCBs, plus other things which live in NIC memory.
1424 	 */
1425 
1426 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1427 
1428 	/* Configure mbuf memory pool */
1429 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1430 		if (sc->bge_extram) {
1431 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1432 			    BGE_EXT_SSRAM);
1433 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1434 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1435 			else
1436 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1437 		} else {
1438 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1439 			    BGE_BUFFPOOL_1);
1440 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1441 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1442 			else
1443 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1444 		}
1445 
1446 		/* Configure DMA resource pool */
1447 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1448 		    BGE_DMA_DESCRIPTORS);
1449 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1450 	}
1451 
1452 	/* Configure mbuf pool watermarks */
1453 #ifdef ORIG_WPAUL_VALUES
1454 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1455 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1456 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1457 #else
1458 	/* new broadcom docs strongly recommend these: */
1459 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1460 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1461 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1462 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1463 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1464 		} else {
1465 			/* Values from Linux driver... */
1466 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1467 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1468 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1469 		}
1470 	} else {
1471 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1472 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1473 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1474 	}
1475 #endif
1476 
1477 	/* Configure DMA resource watermarks */
1478 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1479 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1480 
1481 	/* Enable buffer manager */
1482 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
1483 	    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1484 
1485 	/* Poll for buffer manager start indication */
1486 	for (i = 0; i < BGE_TIMEOUT; i++) {
1487 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1488 			break;
1489 		DELAY(10);
1490 	}
1491 
1492 	if (i == BGE_TIMEOUT) {
1493 		aprint_error_dev(sc->bge_dev,
1494 		    "buffer manager failed to start\n");
1495 		return(ENXIO);
1496 	}
1497 
1498 	/* Enable flow-through queues */
1499 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1500 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1501 
1502 	/* Wait until queue initialization is complete */
1503 	for (i = 0; i < BGE_TIMEOUT; i++) {
1504 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1505 			break;
1506 		DELAY(10);
1507 	}
1508 
1509 	if (i == BGE_TIMEOUT) {
1510 		aprint_error_dev(sc->bge_dev,
1511 		    "flow-through queue init failed\n");
1512 		return(ENXIO);
1513 	}
1514 
1515 	/* Initialize the standard RX ring control block */
1516 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1517 	bge_set_hostaddr(&rcb->bge_hostaddr,
1518 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1519 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1520 		rcb->bge_maxlen_flags =
1521 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1522 	} else {
1523 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1524 	}
1525 	if (sc->bge_extram)
1526 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1527 	else
1528 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1529 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1530 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1531 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1532 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1533 
1534 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1535 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1536 	} else {
1537 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1538 	}
1539 
1540 	/*
1541 	 * Initialize the jumbo RX ring control block
1542 	 * We set the 'ring disabled' bit in the flags
1543 	 * field until we're actually ready to start
1544 	 * using this ring (i.e. once we set the MTU
1545 	 * high enough to require it).
1546 	 */
1547 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1548 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1549 		bge_set_hostaddr(&rcb->bge_hostaddr,
1550 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1551 		rcb->bge_maxlen_flags =
1552 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1553 			BGE_RCB_FLAG_RING_DISABLED);
1554 		if (sc->bge_extram)
1555 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1556 		else
1557 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1558 
1559 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1560 		    rcb->bge_hostaddr.bge_addr_hi);
1561 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1562 		    rcb->bge_hostaddr.bge_addr_lo);
1563 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1564 		    rcb->bge_maxlen_flags);
1565 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1566 
1567 		/* Set up dummy disabled mini ring RCB */
1568 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1569 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1570 		    BGE_RCB_FLAG_RING_DISABLED);
1571 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1572 		    rcb->bge_maxlen_flags);
1573 
1574 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1575 		    offsetof(struct bge_ring_data, bge_info),
1576 		    sizeof (struct bge_gib),
1577 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1578 	}
1579 
1580 	/*
1581 	 * Set the BD ring replenish thresholds. The recommended
1582 	 * values are 1/8th the number of descriptors allocated to
1583 	 * each ring.
1584 	 */
1585 	i = BGE_STD_RX_RING_CNT / 8;
1586 
1587 	/*
1588  	 * Use a value of 8 for the following chips to workaround HW errata.
1589 	 * Some of these chips have been added based on empirical
1590 	 * evidence (they don't work unless this is done).
1591 	 */
1592 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
1593 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
1594 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1595 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1596 		i = 8;
1597 
1598 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
1599 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1600 
1601 	/*
1602 	 * Disable all unused send rings by setting the 'ring disabled'
1603 	 * bit in the flags field of all the TX send ring control blocks.
1604 	 * These are located in NIC memory.
1605 	 */
1606 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1607 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1608 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1609 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1610 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1611 		rcb_addr += sizeof(struct bge_rcb);
1612 	}
1613 
1614 	/* Configure TX RCB 0 (we use only the first ring) */
1615 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1616 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1617 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1618 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1619 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1620 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1621 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1622 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1623 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1624 	}
1625 
1626 	/* Disable all unused RX return rings */
1627 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1628 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1629 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1630 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1631 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1632 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1633                                      BGE_RCB_FLAG_RING_DISABLED));
1634 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1635 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1636 		    (i * (sizeof(u_int64_t))), 0);
1637 		rcb_addr += sizeof(struct bge_rcb);
1638 	}
1639 
1640 	/* Initialize RX ring indexes */
1641 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1642 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1643 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1644 
1645 	/*
1646 	 * Set up RX return ring 0
1647 	 * Note that the NIC address for RX return rings is 0x00000000.
1648 	 * The return rings live entirely within the host, so the
1649 	 * nicaddr field in the RCB isn't used.
1650 	 */
1651 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1652 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1653 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1654 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1655 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1656 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1657 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1658 
1659 	/* Set random backoff seed for TX */
1660 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1661 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
1662 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
1663 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
1664 	    BGE_TX_BACKOFF_SEED_MASK);
1665 
1666 	/* Set inter-packet gap */
1667 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1668 
1669 	/*
1670 	 * Specify which ring to use for packets that don't match
1671 	 * any RX rules.
1672 	 */
1673 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1674 
1675 	/*
1676 	 * Configure number of RX lists. One interrupt distribution
1677 	 * list, sixteen active lists, one bad frames class.
1678 	 */
1679 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1680 
1681 	/* Inialize RX list placement stats mask. */
1682 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1683 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1684 
1685 	/* Disable host coalescing until we get it set up */
1686 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1687 
1688 	/* Poll to make sure it's shut down. */
1689 	for (i = 0; i < BGE_TIMEOUT; i++) {
1690 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1691 			break;
1692 		DELAY(10);
1693 	}
1694 
1695 	if (i == BGE_TIMEOUT) {
1696 		aprint_error_dev(sc->bge_dev,
1697 		    "host coalescing engine failed to idle\n");
1698 		return(ENXIO);
1699 	}
1700 
1701 	/* Set up host coalescing defaults */
1702 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1703 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1704 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1705 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1706 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1707 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1708 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1709 	}
1710 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1711 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1712 
1713 	/* Set up address of statistics block */
1714 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1715 		bge_set_hostaddr(&taddr,
1716 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1717 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1718 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1719 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1720 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1721 	}
1722 
1723 	/* Set up address of status block */
1724 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1725 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1726 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1727 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1728 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1729 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1730 
1731 	/* Turn on host coalescing state machine */
1732 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1733 
1734 	/* Turn on RX BD completion state machine and enable attentions */
1735 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1736 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1737 
1738 	/* Turn on RX list placement state machine */
1739 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1740 
1741 	/* Turn on RX list selector state machine. */
1742 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1743 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1744 	}
1745 
1746 	/* Turn on DMA, clear stats */
1747 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1748 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1749 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1750 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1751 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1752 
1753 	/* Set misc. local control, enable interrupts on attentions */
1754 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1755 
1756 #ifdef notdef
1757 	/* Assert GPIO pins for PHY reset */
1758 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1759 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1760 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1761 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1762 #endif
1763 
1764 #if defined(not_quite_yet)
1765 	/* Linux driver enables enable gpio pin #1 on 5700s */
1766 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1767 		sc->bge_local_ctrl_reg |=
1768 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1769 	}
1770 #endif
1771 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1772 
1773 	/* Turn on DMA completion state machine */
1774 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1775 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1776 	}
1777 
1778 	/* Turn on write DMA state machine */
1779 	{
1780 		uint32_t bge_wdma_mode =
1781 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1782 
1783 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
1784 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
1785 		  /* Enable host coalescing bug fix; see Linux tg3.c */
1786 		  bge_wdma_mode |= (1 << 29);
1787 
1788 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
1789         }
1790 
1791 	/* Turn on read DMA state machine */
1792 	{
1793 		uint32_t dma_read_modebits;
1794 
1795 		dma_read_modebits =
1796 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1797 
1798 		if (sc->bge_pcie && 0) {
1799 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
1800 		} else if ((sc->bge_quirks & BGE_QUIRK_5705_CORE)) {
1801 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_SIZE_128;
1802 		}
1803 
1804 		/* XXX broadcom-supplied linux driver; undocumented */
1805 		if (BGE_IS_5750_OR_BEYOND(sc)) {
1806  			/*
1807 			 * XXX: magic values.
1808 			 * From Broadcom-supplied Linux driver;  apparently
1809 			 * required to workaround a DMA bug affecting TSO
1810 			 * on bcm575x/bcm5721?
1811 			 */
1812 			dma_read_modebits |= (1 << 27);
1813 		}
1814 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
1815 	}
1816 
1817 	/* Turn on RX data completion state machine */
1818 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1819 
1820 	/* Turn on RX BD initiator state machine */
1821 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1822 
1823 	/* Turn on RX data and RX BD initiator state machine */
1824 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1825 
1826 	/* Turn on Mbuf cluster free state machine */
1827 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1828 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1829 	}
1830 
1831 	/* Turn on send BD completion state machine */
1832 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1833 
1834 	/* Turn on send data completion state machine */
1835 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1836 
1837 	/* Turn on send data initiator state machine */
1838 	if (BGE_IS_5750_OR_BEYOND(sc)) {
1839 		/* XXX: magic value from Linux driver */
1840 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
1841 	} else {
1842 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1843 	}
1844 
1845 	/* Turn on send BD initiator state machine */
1846 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1847 
1848 	/* Turn on send BD selector state machine */
1849 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1850 
1851 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1852 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1853 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1854 
1855 	/* ack/clear link change events */
1856 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1857 	    BGE_MACSTAT_CFG_CHANGED);
1858 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1859 
1860 	/* Enable PHY auto polling (for MII/GMII only) */
1861 	if (sc->bge_tbi) {
1862 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1863  	} else {
1864 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1865 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1866 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1867 			    BGE_EVTENB_MI_INTERRUPT);
1868 	}
1869 
1870 	/* Enable link state change attentions. */
1871 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1872 
1873 	return(0);
1874 }
1875 
1876 static const struct bge_revision {
1877 	uint32_t		br_chipid;
1878 	uint32_t		br_quirks;
1879 	const char		*br_name;
1880 } bge_revisions[] = {
1881 	{ BGE_CHIPID_BCM5700_A0,
1882 	  BGE_QUIRK_LINK_STATE_BROKEN,
1883 	  "BCM5700 A0" },
1884 
1885 	{ BGE_CHIPID_BCM5700_A1,
1886 	  BGE_QUIRK_LINK_STATE_BROKEN,
1887 	  "BCM5700 A1" },
1888 
1889 	{ BGE_CHIPID_BCM5700_B0,
1890 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1891 	  "BCM5700 B0" },
1892 
1893 	{ BGE_CHIPID_BCM5700_B1,
1894 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1895 	  "BCM5700 B1" },
1896 
1897 	{ BGE_CHIPID_BCM5700_B2,
1898 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1899 	  "BCM5700 B2" },
1900 
1901 	{ BGE_CHIPID_BCM5700_B3,
1902 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1903 	  "BCM5700 B3" },
1904 
1905 	/* This is treated like a BCM5700 Bx */
1906 	{ BGE_CHIPID_BCM5700_ALTIMA,
1907 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1908 	  "BCM5700 Altima" },
1909 
1910 	{ BGE_CHIPID_BCM5700_C0,
1911 	  0,
1912 	  "BCM5700 C0" },
1913 
1914 	{ BGE_CHIPID_BCM5701_A0,
1915 	  0, /*XXX really, just not known */
1916 	  "BCM5701 A0" },
1917 
1918 	{ BGE_CHIPID_BCM5701_B0,
1919 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1920 	  "BCM5701 B0" },
1921 
1922 	{ BGE_CHIPID_BCM5701_B2,
1923 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1924 	  "BCM5701 B2" },
1925 
1926 	{ BGE_CHIPID_BCM5701_B5,
1927 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1928 	  "BCM5701 B5" },
1929 
1930 	{ BGE_CHIPID_BCM5703_A0,
1931 	  0,
1932 	  "BCM5703 A0" },
1933 
1934 	{ BGE_CHIPID_BCM5703_A1,
1935 	  0,
1936 	  "BCM5703 A1" },
1937 
1938 	{ BGE_CHIPID_BCM5703_A2,
1939 	  BGE_QUIRK_ONLY_PHY_1,
1940 	  "BCM5703 A2" },
1941 
1942 	{ BGE_CHIPID_BCM5703_A3,
1943 	  BGE_QUIRK_ONLY_PHY_1,
1944 	  "BCM5703 A3" },
1945 
1946 	{ BGE_CHIPID_BCM5703_B0,
1947 	  BGE_QUIRK_ONLY_PHY_1,
1948 	  "BCM5703 B0" },
1949 
1950 	{ BGE_CHIPID_BCM5704_A0,
1951   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1952 	  "BCM5704 A0" },
1953 
1954 	{ BGE_CHIPID_BCM5704_A1,
1955   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1956 	  "BCM5704 A1" },
1957 
1958 	{ BGE_CHIPID_BCM5704_A2,
1959   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1960 	  "BCM5704 A2" },
1961 
1962 	{ BGE_CHIPID_BCM5704_A3,
1963   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1964 	  "BCM5704 A3" },
1965 
1966 	{ BGE_CHIPID_BCM5705_A0,
1967 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1968 	  "BCM5705 A0" },
1969 
1970 	{ BGE_CHIPID_BCM5705_A1,
1971 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1972 	  "BCM5705 A1" },
1973 
1974 	{ BGE_CHIPID_BCM5705_A2,
1975 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1976 	  "BCM5705 A2" },
1977 
1978 	{ BGE_CHIPID_BCM5705_A3,
1979 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1980 	  "BCM5705 A3" },
1981 
1982 	{ BGE_CHIPID_BCM5750_A0,
1983 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1984 	  "BCM5750 A0" },
1985 
1986 	{ BGE_CHIPID_BCM5750_A1,
1987 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1988 	  "BCM5750 A1" },
1989 
1990 	{ BGE_CHIPID_BCM5751_A1,
1991 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1992 	  "BCM5751 A1" },
1993 
1994 	{ BGE_CHIPID_BCM5752_A0,
1995 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1996 	  "BCM5752 A0" },
1997 
1998 	{ BGE_CHIPID_BCM5752_A1,
1999 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2000 	  "BCM5752 A1" },
2001 
2002 	{ BGE_CHIPID_BCM5752_A2,
2003 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2004 	  "BCM5752 A2" },
2005 
2006 	{ BGE_CHIPID_BCM5787_A0,
2007 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2008 	  "BCM5754/5787 A0" },
2009 
2010 	{ BGE_CHIPID_BCM5787_A1,
2011 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2012 	  "BCM5754/5787 A1" },
2013 
2014 	{ BGE_CHIPID_BCM5787_A2,
2015 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2016 	  "BCM5754/5787 A2" },
2017 
2018 	{ 0, 0, NULL }
2019 };
2020 
2021 /*
2022  * Some defaults for major revisions, so that newer steppings
2023  * that we don't know about have a shot at working.
2024  */
2025 static const struct bge_revision bge_majorrevs[] = {
2026 	{ BGE_ASICREV_BCM5700,
2027 	  BGE_QUIRK_LINK_STATE_BROKEN,
2028 	  "unknown BCM5700" },
2029 
2030 	{ BGE_ASICREV_BCM5701,
2031 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
2032 	  "unknown BCM5701" },
2033 
2034 	{ BGE_ASICREV_BCM5703,
2035 	  0,
2036 	  "unknown BCM5703" },
2037 
2038 	{ BGE_ASICREV_BCM5704,
2039 	  BGE_QUIRK_ONLY_PHY_1,
2040 	  "unknown BCM5704" },
2041 
2042 	{ BGE_ASICREV_BCM5705,
2043 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2044 	  "unknown BCM5705" },
2045 
2046 	{ BGE_ASICREV_BCM5750,
2047 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2048 	  "unknown BCM575x family" },
2049 
2050 	{ BGE_ASICREV_BCM5714_A0,
2051 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2052 	  "unknown BCM5714" },
2053 
2054 	{ BGE_ASICREV_BCM5714,
2055 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2056 	  "unknown BCM5714" },
2057 
2058 	{ BGE_ASICREV_BCM5752,
2059 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2060 	  "unknown BCM5752 family" },
2061 
2062 	{ BGE_ASICREV_BCM5755,
2063 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2064 	  "unknown BCM5755" },
2065 
2066 	{ BGE_ASICREV_BCM5780,
2067 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2068 	  "unknown BCM5780" },
2069 
2070 	{ BGE_ASICREV_BCM5787,
2071 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
2072 	  "unknown BCM5787" },
2073 
2074 	{ 0,
2075 	  0,
2076 	  NULL }
2077 };
2078 
2079 
2080 static const struct bge_revision *
2081 bge_lookup_rev(uint32_t chipid)
2082 {
2083 	const struct bge_revision *br;
2084 
2085 	for (br = bge_revisions; br->br_name != NULL; br++) {
2086 		if (br->br_chipid == chipid)
2087 			return (br);
2088 	}
2089 
2090 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2091 		if (br->br_chipid == BGE_ASICREV(chipid))
2092 			return (br);
2093 	}
2094 
2095 	return (NULL);
2096 }
2097 
2098 static const struct bge_product {
2099 	pci_vendor_id_t		bp_vendor;
2100 	pci_product_id_t	bp_product;
2101 	const char		*bp_name;
2102 } bge_products[] = {
2103 	/*
2104 	 * The BCM5700 documentation seems to indicate that the hardware
2105 	 * still has the Alteon vendor ID burned into it, though it
2106 	 * should always be overridden by the value in the EEPROM.  We'll
2107 	 * check for it anyway.
2108 	 */
2109 	{ PCI_VENDOR_ALTEON,
2110 	  PCI_PRODUCT_ALTEON_BCM5700,
2111 	  "Broadcom BCM5700 Gigabit Ethernet",
2112 	  },
2113 	{ PCI_VENDOR_ALTEON,
2114 	  PCI_PRODUCT_ALTEON_BCM5701,
2115 	  "Broadcom BCM5701 Gigabit Ethernet",
2116 	  },
2117 
2118 	{ PCI_VENDOR_ALTIMA,
2119 	  PCI_PRODUCT_ALTIMA_AC1000,
2120 	  "Altima AC1000 Gigabit Ethernet",
2121 	  },
2122 	{ PCI_VENDOR_ALTIMA,
2123 	  PCI_PRODUCT_ALTIMA_AC1001,
2124 	  "Altima AC1001 Gigabit Ethernet",
2125 	   },
2126 	{ PCI_VENDOR_ALTIMA,
2127 	  PCI_PRODUCT_ALTIMA_AC9100,
2128 	  "Altima AC9100 Gigabit Ethernet",
2129 	  },
2130 
2131 	{ PCI_VENDOR_BROADCOM,
2132 	  PCI_PRODUCT_BROADCOM_BCM5700,
2133 	  "Broadcom BCM5700 Gigabit Ethernet",
2134 	  },
2135 	{ PCI_VENDOR_BROADCOM,
2136 	  PCI_PRODUCT_BROADCOM_BCM5701,
2137 	  "Broadcom BCM5701 Gigabit Ethernet",
2138 	  },
2139 	{ PCI_VENDOR_BROADCOM,
2140 	  PCI_PRODUCT_BROADCOM_BCM5702,
2141 	  "Broadcom BCM5702 Gigabit Ethernet",
2142 	  },
2143 	{ PCI_VENDOR_BROADCOM,
2144 	  PCI_PRODUCT_BROADCOM_BCM5702X,
2145 	  "Broadcom BCM5702X Gigabit Ethernet" },
2146 
2147 	{ PCI_VENDOR_BROADCOM,
2148 	  PCI_PRODUCT_BROADCOM_BCM5703,
2149 	  "Broadcom BCM5703 Gigabit Ethernet",
2150 	  },
2151 	{ PCI_VENDOR_BROADCOM,
2152 	  PCI_PRODUCT_BROADCOM_BCM5703X,
2153 	  "Broadcom BCM5703X Gigabit Ethernet",
2154 	  },
2155 	{ PCI_VENDOR_BROADCOM,
2156 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
2157 	  "Broadcom BCM5703 Gigabit Ethernet",
2158 	  },
2159 
2160    	{ PCI_VENDOR_BROADCOM,
2161 	  PCI_PRODUCT_BROADCOM_BCM5704C,
2162 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
2163 	  },
2164    	{ PCI_VENDOR_BROADCOM,
2165 	  PCI_PRODUCT_BROADCOM_BCM5704S,
2166 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
2167 	  },
2168 
2169    	{ PCI_VENDOR_BROADCOM,
2170 	  PCI_PRODUCT_BROADCOM_BCM5705,
2171 	  "Broadcom BCM5705 Gigabit Ethernet",
2172 	  },
2173    	{ PCI_VENDOR_BROADCOM,
2174 	  PCI_PRODUCT_BROADCOM_BCM5705K,
2175 	  "Broadcom BCM5705K Gigabit Ethernet",
2176 	  },
2177    	{ PCI_VENDOR_BROADCOM,
2178 	  PCI_PRODUCT_BROADCOM_BCM5705M,
2179 	  "Broadcom BCM5705M Gigabit Ethernet",
2180 	  },
2181    	{ PCI_VENDOR_BROADCOM,
2182 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
2183 	  "Broadcom BCM5705M Gigabit Ethernet",
2184 	  },
2185 
2186 	{ PCI_VENDOR_BROADCOM,
2187 	  PCI_PRODUCT_BROADCOM_BCM5714,
2188 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
2189 	  },
2190 	{ PCI_VENDOR_BROADCOM,
2191 	  PCI_PRODUCT_BROADCOM_BCM5715,
2192 	  "Broadcom BCM5714/5715 Gigabit Ethernet",
2193 	  },
2194 	{ PCI_VENDOR_BROADCOM,
2195 	  PCI_PRODUCT_BROADCOM_BCM5789,
2196 	  "Broadcom BCM5789 Gigabit Ethernet",
2197 	  },
2198 
2199 	{ PCI_VENDOR_BROADCOM,
2200 	  PCI_PRODUCT_BROADCOM_BCM5721,
2201 	  "Broadcom BCM5721 Gigabit Ethernet",
2202 	  },
2203 
2204 	{ PCI_VENDOR_BROADCOM,
2205 	  PCI_PRODUCT_BROADCOM_BCM5750,
2206 	  "Broadcom BCM5750 Gigabit Ethernet",
2207 	  },
2208 
2209 	{ PCI_VENDOR_BROADCOM,
2210 	  PCI_PRODUCT_BROADCOM_BCM5750M,
2211 	  "Broadcom BCM5750M Gigabit Ethernet",
2212 	  },
2213 
2214 	{ PCI_VENDOR_BROADCOM,
2215 	  PCI_PRODUCT_BROADCOM_BCM5751,
2216 	  "Broadcom BCM5751 Gigabit Ethernet",
2217 	  },
2218 
2219 	{ PCI_VENDOR_BROADCOM,
2220 	  PCI_PRODUCT_BROADCOM_BCM5751M,
2221 	  "Broadcom BCM5751M Gigabit Ethernet",
2222 	  },
2223 
2224 	{ PCI_VENDOR_BROADCOM,
2225 	  PCI_PRODUCT_BROADCOM_BCM5752,
2226 	  "Broadcom BCM5752 Gigabit Ethernet",
2227 	  },
2228 
2229 	{ PCI_VENDOR_BROADCOM,
2230 	  PCI_PRODUCT_BROADCOM_BCM5752M,
2231 	  "Broadcom BCM5752M Gigabit Ethernet",
2232 	  },
2233 
2234 	{ PCI_VENDOR_BROADCOM,
2235 	  PCI_PRODUCT_BROADCOM_BCM5753,
2236 	  "Broadcom BCM5753 Gigabit Ethernet",
2237 	  },
2238 
2239 	{ PCI_VENDOR_BROADCOM,
2240 	  PCI_PRODUCT_BROADCOM_BCM5753M,
2241 	  "Broadcom BCM5753M Gigabit Ethernet",
2242 	  },
2243 
2244 	{ PCI_VENDOR_BROADCOM,
2245 	  PCI_PRODUCT_BROADCOM_BCM5754,
2246 	  "Broadcom BCM5754 Gigabit Ethernet",
2247 	},
2248 
2249 	{ PCI_VENDOR_BROADCOM,
2250 	  PCI_PRODUCT_BROADCOM_BCM5754M,
2251 	  "Broadcom BCM5754M Gigabit Ethernet",
2252 	},
2253 
2254 	{ PCI_VENDOR_BROADCOM,
2255 	  PCI_PRODUCT_BROADCOM_BCM5755,
2256 	  "Broadcom BCM5755 Gigabit Ethernet",
2257 	},
2258 
2259 	{ PCI_VENDOR_BROADCOM,
2260 	  PCI_PRODUCT_BROADCOM_BCM5755M,
2261 	  "Broadcom BCM5755M Gigabit Ethernet",
2262 	},
2263 
2264    	{ PCI_VENDOR_BROADCOM,
2265 	  PCI_PRODUCT_BROADCOM_BCM5780,
2266 	  "Broadcom BCM5780 Gigabit Ethernet",
2267 	  },
2268 
2269    	{ PCI_VENDOR_BROADCOM,
2270 	  PCI_PRODUCT_BROADCOM_BCM5780S,
2271 	  "Broadcom BCM5780S Gigabit Ethernet",
2272 	  },
2273 
2274    	{ PCI_VENDOR_BROADCOM,
2275 	  PCI_PRODUCT_BROADCOM_BCM5782,
2276 	  "Broadcom BCM5782 Gigabit Ethernet",
2277 	},
2278 
2279 	{ PCI_VENDOR_BROADCOM,
2280 	  PCI_PRODUCT_BROADCOM_BCM5786,
2281 	  "Broadcom BCM5786 Gigabit Ethernet",
2282 	},
2283 
2284 	{ PCI_VENDOR_BROADCOM,
2285 	  PCI_PRODUCT_BROADCOM_BCM5787,
2286 	  "Broadcom BCM5787 Gigabit Ethernet",
2287 	},
2288 
2289 	{ PCI_VENDOR_BROADCOM,
2290 	  PCI_PRODUCT_BROADCOM_BCM5787M,
2291 	  "Broadcom BCM5787M Gigabit Ethernet",
2292 	},
2293 
2294    	{ PCI_VENDOR_BROADCOM,
2295 	  PCI_PRODUCT_BROADCOM_BCM5788,
2296 	  "Broadcom BCM5788 Gigabit Ethernet",
2297 	  },
2298    	{ PCI_VENDOR_BROADCOM,
2299 	  PCI_PRODUCT_BROADCOM_BCM5789,
2300 	  "Broadcom BCM5789 Gigabit Ethernet",
2301 	  },
2302 
2303    	{ PCI_VENDOR_BROADCOM,
2304 	  PCI_PRODUCT_BROADCOM_BCM5901,
2305 	  "Broadcom BCM5901 Fast Ethernet",
2306 	  },
2307    	{ PCI_VENDOR_BROADCOM,
2308 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
2309 	  "Broadcom BCM5901A2 Fast Ethernet",
2310 	  },
2311 
2312 	{ PCI_VENDOR_SCHNEIDERKOCH,
2313 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2314 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
2315 	  },
2316 
2317 	{ PCI_VENDOR_3COM,
2318 	  PCI_PRODUCT_3COM_3C996,
2319 	  "3Com 3c996 Gigabit Ethernet",
2320 	  },
2321 
2322 	{ 0,
2323 	  0,
2324 	  NULL },
2325 };
2326 
2327 static const struct bge_product *
2328 bge_lookup(const struct pci_attach_args *pa)
2329 {
2330 	const struct bge_product *bp;
2331 
2332 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2333 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2334 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2335 			return (bp);
2336 	}
2337 
2338 	return (NULL);
2339 }
2340 
2341 static int
2342 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2343 {
2344 #ifdef NOTYET
2345 	u_int32_t pm_ctl = 0;
2346 
2347 	/* XXX FIXME: make sure indirect accesses enabled? */
2348 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2349 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2350 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2351 
2352 	/* clear the PME_assert bit and power state bits, enable PME */
2353 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2354 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2355 	pm_ctl |= (1 << 8);
2356 
2357 	if (powerlevel == 0) {
2358 		pm_ctl |= PCIM_PSTAT_D0;
2359 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2360 		    pm_ctl, 2);
2361 		DELAY(10000);
2362 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2363 		DELAY(10000);
2364 
2365 #ifdef NOTYET
2366 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2367 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2368 #endif
2369 		DELAY(40); DELAY(40); DELAY(40);
2370 		DELAY(10000);	/* above not quite adequate on 5700 */
2371 		return 0;
2372 	}
2373 
2374 
2375 	/*
2376 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2377 	 * GMII gpio pins. Example code assumes all hardware vendors
2378 	 * followed Broadom's sample pcb layout. Until we verify that
2379 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2380 	 */
2381 	aprint_error_dev(sc->bge_dev,
2382 	    "power state %d unimplemented; check GPIO pins\n",
2383 	    powerlevel);
2384 #endif
2385 	return EOPNOTSUPP;
2386 }
2387 
2388 
2389 /*
2390  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2391  * against our list and return its name if we find a match. Note
2392  * that since the Broadcom controller contains VPD support, we
2393  * can get the device name string from the controller itself instead
2394  * of the compiled-in string. This is a little slow, but it guarantees
2395  * we'll always announce the right product name.
2396  */
2397 static int
2398 bge_probe(device_t parent, cfdata_t match, void *aux)
2399 {
2400 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2401 
2402 	if (bge_lookup(pa) != NULL)
2403 		return (1);
2404 
2405 	return (0);
2406 }
2407 
2408 static void
2409 bge_attach(device_t parent, device_t self, void *aux)
2410 {
2411 	struct bge_softc	*sc = device_private(self);
2412 	struct pci_attach_args	*pa = aux;
2413 	const struct bge_product *bp;
2414 	const struct bge_revision *br;
2415 	pci_chipset_tag_t	pc;
2416 	pci_intr_handle_t	ih;
2417 	const char		*intrstr = NULL;
2418 	bus_dma_segment_t	seg;
2419 	int			rseg;
2420 	u_int32_t		hwcfg = 0;
2421 	u_int32_t		mac_addr = 0;
2422 	u_int32_t		command;
2423 	struct ifnet		*ifp;
2424 	void *			kva;
2425 	u_char			eaddr[ETHER_ADDR_LEN];
2426 	pcireg_t		memtype;
2427 	bus_addr_t		memaddr;
2428 	bus_size_t		memsize;
2429 	u_int32_t		pm_ctl;
2430 
2431 	bp = bge_lookup(pa);
2432 	KASSERT(bp != NULL);
2433 
2434 	sc->sc_pc = pa->pa_pc;
2435 	sc->sc_pcitag = pa->pa_tag;
2436 	sc->bge_dev = self;
2437 
2438 	aprint_naive(": Ethernet controller\n");
2439 	aprint_normal(": %s\n", bp->bp_name);
2440 
2441 	/*
2442 	 * Map control/status registers.
2443 	 */
2444 	DPRINTFN(5, ("Map control/status regs\n"));
2445 	pc = sc->sc_pc;
2446 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2447 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2448 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2449 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2450 
2451 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2452 		aprint_error_dev(sc->bge_dev,
2453 		    "failed to enable memory mapping!\n");
2454 		return;
2455 	}
2456 
2457 	DPRINTFN(5, ("pci_mem_find\n"));
2458 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2459  	switch (memtype) {
2460 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2461 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2462 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2463 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2464 		    &memaddr, &memsize) == 0)
2465 			break;
2466 	default:
2467 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2468 		return;
2469 	}
2470 
2471 	DPRINTFN(5, ("pci_intr_map\n"));
2472 	if (pci_intr_map(pa, &ih)) {
2473 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2474 		return;
2475 	}
2476 
2477 	DPRINTFN(5, ("pci_intr_string\n"));
2478 	intrstr = pci_intr_string(pc, ih);
2479 
2480 	DPRINTFN(5, ("pci_intr_establish\n"));
2481 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2482 
2483 	if (sc->bge_intrhand == NULL) {
2484 		aprint_error_dev(sc->bge_dev,
2485 		    "couldn't establish interrupt%s%s\n",
2486 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2487 		return;
2488 	}
2489 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2490 
2491 	/*
2492 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2493 	 * can clobber the chip's PCI config-space power control registers,
2494 	 * leaving the card in D3 powersave state.
2495 	 * We do not have memory-mapped registers in this state,
2496 	 * so force device into D0 state before starting initialization.
2497 	 */
2498 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2499 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2500 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2501 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2502 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2503 
2504 	/*
2505 	 * Save ASIC rev.  Look up any quirks associated with this
2506 	 * ASIC.
2507 	 */
2508 	sc->bge_chipid =
2509 	    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL) &
2510 	    BGE_PCIMISCCTL_ASICREV;
2511 
2512 	/*
2513 	 * Detect PCI-Express devices
2514 	 * XXX: guessed from Linux/FreeBSD; no documentation
2515 	 */
2516 	if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2517 	        NULL, NULL) != 0)
2518 		sc->bge_pcie = 1;
2519 	else
2520 		sc->bge_pcie = 0;
2521 
2522 	/* Try to reset the chip. */
2523 	DPRINTFN(5, ("bge_reset\n"));
2524 	bge_reset(sc);
2525 
2526 	if (bge_chipinit(sc)) {
2527 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2528 		bge_release_resources(sc);
2529 		return;
2530 	}
2531 
2532 	/*
2533 	 * Get station address from the EEPROM.
2534 	 */
2535 	mac_addr = bge_readmem_ind(sc, 0x0c14);
2536 	if ((mac_addr >> 16) == 0x484b) {
2537 		eaddr[0] = (u_char)(mac_addr >> 8);
2538 		eaddr[1] = (u_char)(mac_addr >> 0);
2539 		mac_addr = bge_readmem_ind(sc, 0x0c18);
2540 		eaddr[2] = (u_char)(mac_addr >> 24);
2541 		eaddr[3] = (u_char)(mac_addr >> 16);
2542 		eaddr[4] = (u_char)(mac_addr >> 8);
2543 		eaddr[5] = (u_char)(mac_addr >> 0);
2544 	} else if (bge_read_eeprom(sc, (void *)eaddr,
2545 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2546 		aprint_error_dev(sc->bge_dev,
2547 		    "failed to read station address\n");
2548 		bge_release_resources(sc);
2549 		return;
2550 	}
2551 
2552 	br = bge_lookup_rev(sc->bge_chipid);
2553 
2554 	if (br == NULL) {
2555 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%04x)",
2556 		    sc->bge_chipid >> 16);
2557 		sc->bge_quirks = 0;
2558 	} else {
2559 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%04x)",
2560 		    br->br_name, sc->bge_chipid >> 16);
2561 		sc->bge_quirks |= br->br_quirks;
2562 	}
2563 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2564 
2565 	/* Allocate the general information block and ring buffers. */
2566 	if (pci_dma64_available(pa))
2567 		sc->bge_dmatag = pa->pa_dmat64;
2568 	else
2569 		sc->bge_dmatag = pa->pa_dmat;
2570 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2571 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2572 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2573 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2574 		return;
2575 	}
2576 	DPRINTFN(5, ("bus_dmamem_map\n"));
2577 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2578 			   sizeof(struct bge_ring_data), &kva,
2579 			   BUS_DMA_NOWAIT)) {
2580 		aprint_error_dev(sc->bge_dev,
2581 		    "can't map DMA buffers (%zu bytes)\n",
2582 		    sizeof(struct bge_ring_data));
2583 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2584 		return;
2585 	}
2586 	DPRINTFN(5, ("bus_dmamem_create\n"));
2587 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2588 	    sizeof(struct bge_ring_data), 0,
2589 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2590 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2591 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2592 				 sizeof(struct bge_ring_data));
2593 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2594 		return;
2595 	}
2596 	DPRINTFN(5, ("bus_dmamem_load\n"));
2597 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2598 			    sizeof(struct bge_ring_data), NULL,
2599 			    BUS_DMA_NOWAIT)) {
2600 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2601 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2602 				 sizeof(struct bge_ring_data));
2603 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2604 		return;
2605 	}
2606 
2607 	DPRINTFN(5, ("bzero\n"));
2608 	sc->bge_rdata = (struct bge_ring_data *)kva;
2609 
2610 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2611 
2612 	/* Try to allocate memory for jumbo buffers. */
2613 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2614 		if (bge_alloc_jumbo_mem(sc)) {
2615 			aprint_error_dev(sc->bge_dev,
2616 			    "jumbo buffer allocation failed\n");
2617 		} else
2618 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2619 	}
2620 
2621 	/* Set default tuneable values. */
2622 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2623 	sc->bge_rx_coal_ticks = 150;
2624 	sc->bge_rx_max_coal_bds = 64;
2625 #ifdef ORIG_WPAUL_VALUES
2626 	sc->bge_tx_coal_ticks = 150;
2627 	sc->bge_tx_max_coal_bds = 128;
2628 #else
2629 	sc->bge_tx_coal_ticks = 300;
2630 	sc->bge_tx_max_coal_bds = 400;
2631 #endif
2632 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
2633 		sc->bge_tx_coal_ticks = (12 * 5);
2634 		sc->bge_rx_max_coal_bds = (12 * 5);
2635 			aprint_verbose_dev(sc->bge_dev,
2636 			    "setting short Tx thresholds\n");
2637 	}
2638 
2639 	/* Set up ifnet structure */
2640 	ifp = &sc->ethercom.ec_if;
2641 	ifp->if_softc = sc;
2642 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2643 	ifp->if_ioctl = bge_ioctl;
2644 	ifp->if_stop = bge_stop;
2645 	ifp->if_start = bge_start;
2646 	ifp->if_init = bge_init;
2647 	ifp->if_watchdog = bge_watchdog;
2648 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2649 	IFQ_SET_READY(&ifp->if_snd);
2650 	DPRINTFN(5, ("strcpy if_xname\n"));
2651 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2652 
2653 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2654 		sc->ethercom.ec_if.if_capabilities |=
2655 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
2656 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2657 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2658 	sc->ethercom.ec_capabilities |=
2659 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2660 
2661 	if (sc->bge_pcie)
2662 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2663 
2664 	/*
2665 	 * Do MII setup.
2666 	 */
2667 	DPRINTFN(5, ("mii setup\n"));
2668 	sc->bge_mii.mii_ifp = ifp;
2669 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2670 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2671 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2672 
2673 	/*
2674 	 * Figure out what sort of media we have by checking the
2675 	 * hardware config word in the first 32k of NIC internal memory,
2676 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2677 	 * cards, this value appears to be unset. If that's the
2678 	 * case, we have to rely on identifying the NIC by its PCI
2679 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2680 	 */
2681 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2682 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2683 	} else {
2684 		bge_read_eeprom(sc, (void *)&hwcfg,
2685 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2686 		hwcfg = be32toh(hwcfg);
2687 	}
2688 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2689 		sc->bge_tbi = 1;
2690 
2691 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2692 	if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_SUBSYS) >> 16) ==
2693 	    SK_SUBSYSID_9D41)
2694 		sc->bge_tbi = 1;
2695 
2696 	if (sc->bge_tbi) {
2697 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2698 		    bge_ifmedia_sts);
2699 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2700 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2701 			    0, NULL);
2702 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2703 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2704 	} else {
2705 		/*
2706 		 * Do transceiver setup.
2707 		 */
2708 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2709 			     bge_ifmedia_sts);
2710 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
2711 			   MII_PHY_ANY, MII_OFFSET_ANY,
2712 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
2713 
2714 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
2715 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
2716 			ifmedia_add(&sc->bge_mii.mii_media,
2717 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2718 			ifmedia_set(&sc->bge_mii.mii_media,
2719 				    IFM_ETHER|IFM_MANUAL);
2720 		} else
2721 			ifmedia_set(&sc->bge_mii.mii_media,
2722 				    IFM_ETHER|IFM_AUTO);
2723 	}
2724 
2725 	/*
2726 	 * When using the BCM5701 in PCI-X mode, data corruption has
2727 	 * been observed in the first few bytes of some received packets.
2728 	 * Aligning the packet buffer in memory eliminates the corruption.
2729 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2730 	 * which do not support unaligned accesses, we will realign the
2731 	 * payloads by copying the received packets.
2732 	 */
2733 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2734 		/* If in PCI-X mode, work around the alignment bug. */
2735 		if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2736                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2737                          BGE_PCISTATE_PCI_BUSSPEED)
2738 		sc->bge_rx_alignment_bug = 1;
2739         }
2740 
2741 	/*
2742 	 * Call MI attach routine.
2743 	 */
2744 	DPRINTFN(5, ("if_attach\n"));
2745 	if_attach(ifp);
2746 	DPRINTFN(5, ("ether_ifattach\n"));
2747 	ether_ifattach(ifp, eaddr);
2748 #ifdef BGE_EVENT_COUNTERS
2749 	/*
2750 	 * Attach event counters.
2751 	 */
2752 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2753 	    NULL, device_xname(sc->bge_dev), "intr");
2754 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2755 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
2756 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2757 	    NULL, device_xname(sc->bge_dev), "tx_xon");
2758 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2759 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
2760 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2761 	    NULL, device_xname(sc->bge_dev), "rx_xon");
2762 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2763 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
2764 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2765 	    NULL, device_xname(sc->bge_dev), "xoffentered");
2766 #endif /* BGE_EVENT_COUNTERS */
2767 	DPRINTFN(5, ("callout_init\n"));
2768 	callout_init(&sc->bge_timeout, 0);
2769 
2770 	if (!pmf_device_register(self, NULL, NULL))
2771 		aprint_error_dev(self, "couldn't establish power handler\n");
2772 	else
2773 		pmf_class_network_register(self, ifp);
2774 }
2775 
2776 static void
2777 bge_release_resources(struct bge_softc *sc)
2778 {
2779 	if (sc->bge_vpd_prodname != NULL)
2780 		free(sc->bge_vpd_prodname, M_DEVBUF);
2781 
2782 	if (sc->bge_vpd_readonly != NULL)
2783 		free(sc->bge_vpd_readonly, M_DEVBUF);
2784 }
2785 
2786 static void
2787 bge_reset(struct bge_softc *sc)
2788 {
2789 	u_int32_t cachesize, command, pcistate, new_pcistate;
2790 	int i, val;
2791 
2792 	/* Save some important PCI state. */
2793 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
2794 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
2795 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
2796 
2797 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2798 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2799 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2800 
2801 	/*
2802 	 * Disable the firmware fastboot feature on 5752 ASIC
2803 	 * to avoid firmware timeout.
2804 	 */
2805 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2806 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2807 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787)
2808 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
2809 
2810 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2811 	/*
2812 	 * XXX: from FreeBSD/Linux; no documentation
2813 	 */
2814 	if (sc->bge_pcie) {
2815 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2816 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2817 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2818 			/* No idea what that actually means */
2819 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2820 			val |= (1<<29);
2821 		}
2822 	}
2823 
2824 	/* Issue global reset */
2825 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
2826 
2827 	DELAY(1000);
2828 
2829 	/*
2830 	 * XXX: from FreeBSD/Linux; no documentation
2831 	 */
2832 	if (sc->bge_pcie) {
2833 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2834 			pcireg_t reg;
2835 
2836 			DELAY(500000);
2837 			/* XXX: Magic Numbers */
2838 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0);
2839 			pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_UNKNOWN0,
2840 			    reg | (1 << 15));
2841 		}
2842 		/*
2843 		 * XXX: Magic Numbers.
2844 		 * Sets maximal PCI-e payload and clears any PCI-e errors.
2845 		 * Should be replaced with references to PCI config-space
2846 		 * capability block for PCI-Express.
2847 		 */
2848 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
2849 		    BGE_PCI_CONF_DEV_CTRL, 0xf5000);
2850 
2851 	}
2852 
2853 	/* Reset some of the PCI state that got zapped by reset */
2854 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
2855 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2856 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2857 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
2858 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
2859 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2860 
2861 	/* Enable memory arbiter. */
2862 	{
2863 		uint32_t marbmode = 0;
2864 		if (BGE_IS_5714_FAMILY(sc)) {
2865 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2866 		}
2867  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2868 	}
2869 
2870 	/*
2871 	 * Write the magic number to the firmware mailbox at 0xb50
2872 	 * so that the driver can synchronize with the firmware.
2873 	 */
2874 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2875 
2876 	/*
2877 	 * Poll the value location we just wrote until
2878 	 * we see the 1's complement of the magic number.
2879 	 * This indicates that the firmware initialization
2880 	 * is complete.
2881 	 */
2882 	for (i = 0; i < BGE_TIMEOUT; i++) {
2883 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2884 		if (val == ~BGE_MAGIC_NUMBER)
2885 			break;
2886 		DELAY(1000);
2887 	}
2888 
2889 	if (i >= BGE_TIMEOUT) {
2890 		aprint_error_dev(sc->bge_dev,
2891 		    "firmware handshake timed out, val = %x\n", val);
2892 		/*
2893 		 * XXX: occasionally fired on bcm5721, but without
2894 		 * apparent harm.  For now, keep going if we timeout
2895 		 * against PCI-E devices.
2896 		 */
2897 		 if (!sc->bge_pcie)
2898 		  return;
2899 	}
2900 
2901 	/*
2902 	 * XXX Wait for the value of the PCISTATE register to
2903 	 * return to its original pre-reset state. This is a
2904 	 * fairly good indicator of reset completion. If we don't
2905 	 * wait for the reset to fully complete, trying to read
2906 	 * from the device's non-PCI registers may yield garbage
2907 	 * results.
2908 	 */
2909 	for (i = 0; i < 10000; i++) {
2910 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
2911 		    BGE_PCI_PCISTATE);
2912 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2913 		    (pcistate & ~BGE_PCISTATE_RESERVED))
2914 			break;
2915 		DELAY(10);
2916 	}
2917 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2918 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
2919 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
2920 	}
2921 
2922 	/* XXX: from FreeBSD/Linux; no documentation */
2923 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2924 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2925 
2926 	/* Enable memory arbiter. */
2927 	/* XXX why do this twice? */
2928 	{
2929 		uint32_t marbmode = 0;
2930 		if (BGE_IS_5714_FAMILY(sc)) {
2931 			marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
2932 		}
2933  		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
2934 	}
2935 
2936 	/* Fix up byte swapping */
2937 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2938 
2939 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2940 
2941 	DELAY(10000);
2942 }
2943 
2944 /*
2945  * Frame reception handling. This is called if there's a frame
2946  * on the receive return list.
2947  *
2948  * Note: we have to be able to handle two possibilities here:
2949  * 1) the frame is from the jumbo recieve ring
2950  * 2) the frame is from the standard receive ring
2951  */
2952 
2953 static void
2954 bge_rxeof(struct bge_softc *sc)
2955 {
2956 	struct ifnet *ifp;
2957 	int stdcnt = 0, jumbocnt = 0;
2958 	bus_dmamap_t dmamap;
2959 	bus_addr_t offset, toff;
2960 	bus_size_t tlen;
2961 	int tosync;
2962 
2963 	ifp = &sc->ethercom.ec_if;
2964 
2965 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2966 	    offsetof(struct bge_ring_data, bge_status_block),
2967 	    sizeof (struct bge_status_block),
2968 	    BUS_DMASYNC_POSTREAD);
2969 
2970 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2971 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2972 	    sc->bge_rx_saved_considx;
2973 
2974 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2975 
2976 	if (tosync < 0) {
2977 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2978 		    sizeof (struct bge_rx_bd);
2979 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2980 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2981 		tosync = -tosync;
2982 	}
2983 
2984 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2985 	    offset, tosync * sizeof (struct bge_rx_bd),
2986 	    BUS_DMASYNC_POSTREAD);
2987 
2988 	while(sc->bge_rx_saved_considx !=
2989 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2990 		struct bge_rx_bd	*cur_rx;
2991 		u_int32_t		rxidx;
2992 		struct mbuf		*m = NULL;
2993 
2994 		cur_rx = &sc->bge_rdata->
2995 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2996 
2997 		rxidx = cur_rx->bge_idx;
2998 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2999 
3000 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3001 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3002 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3003 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3004 			jumbocnt++;
3005 			bus_dmamap_sync(sc->bge_dmatag,
3006 			    sc->bge_cdata.bge_rx_jumbo_map,
3007 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3008 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3009 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3010 				ifp->if_ierrors++;
3011 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3012 				continue;
3013 			}
3014 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3015 					     NULL)== ENOBUFS) {
3016 				ifp->if_ierrors++;
3017 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3018 				continue;
3019 			}
3020 		} else {
3021 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3022 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3023 
3024 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3025 			stdcnt++;
3026 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3027 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3028 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3029 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3030 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3031 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3032 				ifp->if_ierrors++;
3033 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3034 				continue;
3035 			}
3036 			if (bge_newbuf_std(sc, sc->bge_std,
3037 			    NULL, dmamap) == ENOBUFS) {
3038 				ifp->if_ierrors++;
3039 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3040 				continue;
3041 			}
3042 		}
3043 
3044 		ifp->if_ipackets++;
3045 #ifndef __NO_STRICT_ALIGNMENT
3046                 /*
3047                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3048                  * the Rx buffer has the layer-2 header unaligned.
3049                  * If our CPU requires alignment, re-align by copying.
3050                  */
3051 		if (sc->bge_rx_alignment_bug) {
3052 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3053                                 cur_rx->bge_len);
3054 			m->m_data += ETHER_ALIGN;
3055 		}
3056 #endif
3057 
3058 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3059 		m->m_pkthdr.rcvif = ifp;
3060 
3061 #if NBPFILTER > 0
3062 		/*
3063 		 * Handle BPF listeners. Let the BPF user see the packet.
3064 		 */
3065 		if (ifp->if_bpf)
3066 			bpf_mtap(ifp->if_bpf, m);
3067 #endif
3068 
3069 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3070 
3071 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3072 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3073 		/*
3074 		 * Rx transport checksum-offload may also
3075 		 * have bugs with packets which, when transmitted,
3076 		 * were `runts' requiring padding.
3077 		 */
3078 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3079 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3080 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3081 			m->m_pkthdr.csum_data =
3082 			    cur_rx->bge_tcp_udp_csum;
3083 			m->m_pkthdr.csum_flags |=
3084 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3085 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
3086 		}
3087 
3088 		/*
3089 		 * If we received a packet with a vlan tag, pass it
3090 		 * to vlan_input() instead of ether_input().
3091 		 */
3092 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
3093 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3094 
3095 		(*ifp->if_input)(ifp, m);
3096 	}
3097 
3098 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3099 	if (stdcnt)
3100 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3101 	if (jumbocnt)
3102 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3103 }
3104 
3105 static void
3106 bge_txeof(struct bge_softc *sc)
3107 {
3108 	struct bge_tx_bd *cur_tx = NULL;
3109 	struct ifnet *ifp;
3110 	struct txdmamap_pool_entry *dma;
3111 	bus_addr_t offset, toff;
3112 	bus_size_t tlen;
3113 	int tosync;
3114 	struct mbuf *m;
3115 
3116 	ifp = &sc->ethercom.ec_if;
3117 
3118 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3119 	    offsetof(struct bge_ring_data, bge_status_block),
3120 	    sizeof (struct bge_status_block),
3121 	    BUS_DMASYNC_POSTREAD);
3122 
3123 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3124 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3125 	    sc->bge_tx_saved_considx;
3126 
3127 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3128 
3129 	if (tosync < 0) {
3130 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3131 		    sizeof (struct bge_tx_bd);
3132 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3133 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3134 		tosync = -tosync;
3135 	}
3136 
3137 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3138 	    offset, tosync * sizeof (struct bge_tx_bd),
3139 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3140 
3141 	/*
3142 	 * Go through our tx ring and free mbufs for those
3143 	 * frames that have been sent.
3144 	 */
3145 	while (sc->bge_tx_saved_considx !=
3146 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3147 		u_int32_t		idx = 0;
3148 
3149 		idx = sc->bge_tx_saved_considx;
3150 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3151 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3152 			ifp->if_opackets++;
3153 		m = sc->bge_cdata.bge_tx_chain[idx];
3154 		if (m != NULL) {
3155 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3156 			dma = sc->txdma[idx];
3157 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3158 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3159 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3160 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3161 			sc->txdma[idx] = NULL;
3162 
3163 			m_freem(m);
3164 		}
3165 		sc->bge_txcnt--;
3166 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3167 		ifp->if_timer = 0;
3168 	}
3169 
3170 	if (cur_tx != NULL)
3171 		ifp->if_flags &= ~IFF_OACTIVE;
3172 }
3173 
3174 static int
3175 bge_intr(void *xsc)
3176 {
3177 	struct bge_softc *sc;
3178 	struct ifnet *ifp;
3179 
3180 	sc = xsc;
3181 	ifp = &sc->ethercom.ec_if;
3182 
3183 	/*
3184 	 * Ascertain whether the interrupt is from this bge device.
3185 	 * Do the cheap test first.
3186 	 */
3187 	if ((sc->bge_rdata->bge_status_block.bge_status &
3188 	    BGE_STATFLAG_UPDATED) == 0) {
3189 		/*
3190 		 * Sometimes, the interrupt comes in before the
3191 		 * DMA update of the status block (performed prior
3192 		 * to the  interrupt itself) has completed.
3193 		 * In that case, do the (extremely expensive!)
3194 		 * PCI-config-space register read.
3195 		 */
3196 		uint32_t pcistate =
3197 		    pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3198 
3199 		if (pcistate & BGE_PCISTATE_INTR_STATE)
3200 			return (0);
3201 
3202 	}
3203 	/*
3204 	 *  If we reach here, then the interrupt is for us.
3205 	 */
3206 
3207 	/* Ack interrupt and stop others from occuring. */
3208 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3209 
3210 	BGE_EVCNT_INCR(sc->bge_ev_intr);
3211 
3212 	/*
3213 	 * Process link state changes.
3214 	 * Grrr. The link status word in the status block does
3215 	 * not work correctly on the BCM5700 rev AX and BX chips,
3216 	 * according to all available information. Hence, we have
3217 	 * to enable MII interrupts in order to properly obtain
3218 	 * async link changes. Unfortunately, this also means that
3219 	 * we have to read the MAC status register to detect link
3220 	 * changes, thereby adding an additional register access to
3221 	 * the interrupt handler.
3222 	 */
3223 
3224 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
3225 		u_int32_t		status;
3226 
3227 		status = CSR_READ_4(sc, BGE_MAC_STS);
3228 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
3229 			sc->bge_link = 0;
3230 			callout_stop(&sc->bge_timeout);
3231 			bge_tick(sc);
3232 			/* Clear the interrupt */
3233 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3234 			    BGE_EVTENB_MI_INTERRUPT);
3235 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
3236 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
3237 			    BRGPHY_INTRS);
3238 		}
3239 	} else {
3240 		u_int32_t		status;
3241 
3242 		status = CSR_READ_4(sc, BGE_MAC_STS);
3243 		if (status & BGE_MACSTAT_LINK_CHANGED) {
3244 			sc->bge_link = 0;
3245 			callout_stop(&sc->bge_timeout);
3246 			bge_tick(sc);
3247 			/* Clear the interrupt */
3248 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3249 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3250 			    BGE_MACSTAT_LINK_CHANGED);
3251 		}
3252 	}
3253 
3254 	if (ifp->if_flags & IFF_RUNNING) {
3255 		/* Check RX return ring producer/consumer */
3256 		bge_rxeof(sc);
3257 
3258 		/* Check TX ring producer/consumer */
3259 		bge_txeof(sc);
3260 	}
3261 
3262 	if (sc->bge_pending_rxintr_change) {
3263 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3264 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3265 		uint32_t junk;
3266 
3267 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3268 		DELAY(10);
3269 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3270 
3271 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3272 		DELAY(10);
3273 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3274 
3275 		sc->bge_pending_rxintr_change = 0;
3276 	}
3277 	bge_handle_events(sc);
3278 
3279 	/* Re-enable interrupts. */
3280 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3281 
3282 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3283 		bge_start(ifp);
3284 
3285 	return (1);
3286 }
3287 
3288 static void
3289 bge_tick(void *xsc)
3290 {
3291 	struct bge_softc *sc = xsc;
3292 	struct mii_data *mii = &sc->bge_mii;
3293 	struct ifnet *ifp = &sc->ethercom.ec_if;
3294 	int s;
3295 
3296 	s = splnet();
3297 
3298 	bge_stats_update(sc);
3299 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3300 	if (sc->bge_link) {
3301 		splx(s);
3302 		return;
3303 	}
3304 
3305 	if (sc->bge_tbi) {
3306 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3307 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3308 			sc->bge_link++;
3309 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3310 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
3311 				bge_start(ifp);
3312 		}
3313 		splx(s);
3314 		return;
3315 	}
3316 
3317 	mii_tick(mii);
3318 
3319 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3320 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3321 		sc->bge_link++;
3322 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3323 			bge_start(ifp);
3324 	}
3325 
3326 	splx(s);
3327 }
3328 
3329 static void
3330 bge_stats_update(struct bge_softc *sc)
3331 {
3332 	struct ifnet *ifp = &sc->ethercom.ec_if;
3333 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3334 	bus_size_t rstats = BGE_RX_STATS;
3335 
3336 #define READ_RSTAT(sc, stats, stat) \
3337 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3338 
3339 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3340 		ifp->if_collisions +=
3341 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3342 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3343 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3344 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3345 
3346 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3347 			      READ_RSTAT(sc, rstats, outXoffSent));
3348 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3349 			      READ_RSTAT(sc, rstats, outXonSent));
3350 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3351 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3352 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3353 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3354 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3355 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
3356 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3357 			      READ_RSTAT(sc, rstats, xoffStateEntered));
3358 		return;
3359 	}
3360 
3361 #undef READ_RSTAT
3362 #define READ_STAT(sc, stats, stat) \
3363 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3364 
3365 	ifp->if_collisions +=
3366 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3367 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3368 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3369 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3370 	  ifp->if_collisions;
3371 
3372 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3373 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3374 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3375 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3376 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3377 		      READ_STAT(sc, stats,
3378 		      		xoffPauseFramesReceived.bge_addr_lo));
3379 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3380 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3381 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3382 		      READ_STAT(sc, stats,
3383 		      		macControlFramesReceived.bge_addr_lo));
3384 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3385 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3386 
3387 #undef READ_STAT
3388 
3389 #ifdef notdef
3390 	ifp->if_collisions +=
3391 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3392 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3393 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3394 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3395 	   ifp->if_collisions;
3396 #endif
3397 }
3398 
3399 /*
3400  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3401  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3402  * but when such padded frames employ the  bge IP/TCP checksum offload,
3403  * the hardware checksum assist gives incorrect results (possibly
3404  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3405  * If we pad such runts with zeros, the onboard checksum comes out correct.
3406  */
3407 static inline int
3408 bge_cksum_pad(struct mbuf *pkt)
3409 {
3410 	struct mbuf *last = NULL;
3411 	int padlen;
3412 
3413 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3414 
3415 	/* if there's only the packet-header and we can pad there, use it. */
3416 	if (pkt->m_pkthdr.len == pkt->m_len &&
3417 	    M_TRAILINGSPACE(pkt) >= padlen) {
3418 		last = pkt;
3419 	} else {
3420 		/*
3421 		 * Walk packet chain to find last mbuf. We will either
3422 		 * pad there, or append a new mbuf and pad it
3423 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3424 		 */
3425 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3426 	      	       continue; /* do nothing */
3427 		}
3428 
3429 		/* `last' now points to last in chain. */
3430 		if (M_TRAILINGSPACE(last) < padlen) {
3431 			/* Allocate new empty mbuf, pad it. Compact later. */
3432 			struct mbuf *n;
3433 			MGET(n, M_DONTWAIT, MT_DATA);
3434 			if (n == NULL)
3435 				return ENOBUFS;
3436 			n->m_len = 0;
3437 			last->m_next = n;
3438 			last = n;
3439 		}
3440 	}
3441 
3442 	KDASSERT(!M_READONLY(last));
3443 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3444 
3445 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3446 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3447 	last->m_len += padlen;
3448 	pkt->m_pkthdr.len += padlen;
3449 	return 0;
3450 }
3451 
3452 /*
3453  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3454  */
3455 static inline int
3456 bge_compact_dma_runt(struct mbuf *pkt)
3457 {
3458 	struct mbuf	*m, *prev;
3459 	int 		totlen, prevlen;
3460 
3461 	prev = NULL;
3462 	totlen = 0;
3463 	prevlen = -1;
3464 
3465 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3466 		int mlen = m->m_len;
3467 		int shortfall = 8 - mlen ;
3468 
3469 		totlen += mlen;
3470 		if (mlen == 0) {
3471 			continue;
3472 		}
3473 		if (mlen >= 8)
3474 			continue;
3475 
3476 		/* If we get here, mbuf data is too small for DMA engine.
3477 		 * Try to fix by shuffling data to prev or next in chain.
3478 		 * If that fails, do a compacting deep-copy of the whole chain.
3479 		 */
3480 
3481 		/* Internal frag. If fits in prev, copy it there. */
3482 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3483 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3484 			prev->m_len += mlen;
3485 			m->m_len = 0;
3486 			/* XXX stitch chain */
3487 			prev->m_next = m_free(m);
3488 			m = prev;
3489 			continue;
3490 		}
3491 		else if (m->m_next != NULL &&
3492 			     M_TRAILINGSPACE(m) >= shortfall &&
3493 			     m->m_next->m_len >= (8 + shortfall)) {
3494 		    /* m is writable and have enough data in next, pull up. */
3495 
3496 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3497 			    shortfall);
3498 			m->m_len += shortfall;
3499 			m->m_next->m_len -= shortfall;
3500 			m->m_next->m_data += shortfall;
3501 		}
3502 		else if (m->m_next == NULL || 1) {
3503 		  	/* Got a runt at the very end of the packet.
3504 			 * borrow data from the tail of the preceding mbuf and
3505 			 * update its length in-place. (The original data is still
3506 			 * valid, so we can do this even if prev is not writable.)
3507 			 */
3508 
3509 			/* if we'd make prev a runt, just move all of its data. */
3510 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3511 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3512 
3513 			if ((prev->m_len - shortfall) < 8)
3514 				shortfall = prev->m_len;
3515 
3516 #ifdef notyet	/* just do the safe slow thing for now */
3517 			if (!M_READONLY(m)) {
3518 				if (M_LEADINGSPACE(m) < shorfall) {
3519 					void *m_dat;
3520 					m_dat = (m->m_flags & M_PKTHDR) ?
3521 					  m->m_pktdat : m->dat;
3522 					memmove(m_dat, mtod(m, void*), m->m_len);
3523 					m->m_data = m_dat;
3524 				    }
3525 			} else
3526 #endif	/* just do the safe slow thing */
3527 			{
3528 				struct mbuf * n = NULL;
3529 				int newprevlen = prev->m_len - shortfall;
3530 
3531 				MGET(n, M_NOWAIT, MT_DATA);
3532 				if (n == NULL)
3533 				   return ENOBUFS;
3534 				KASSERT(m->m_len + shortfall < MLEN
3535 					/*,
3536 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3537 
3538 				/* first copy the data we're stealing from prev */
3539 				memcpy(n->m_data, prev->m_data + newprevlen,
3540 				    shortfall);
3541 
3542 				/* update prev->m_len accordingly */
3543 				prev->m_len -= shortfall;
3544 
3545 				/* copy data from runt m */
3546 				memcpy(n->m_data + shortfall, m->m_data,
3547 				    m->m_len);
3548 
3549 				/* n holds what we stole from prev, plus m */
3550 				n->m_len = shortfall + m->m_len;
3551 
3552 				/* stitch n into chain and free m */
3553 				n->m_next = m->m_next;
3554 				prev->m_next = n;
3555 				/* KASSERT(m->m_next == NULL); */
3556 				m->m_next = NULL;
3557 				m_free(m);
3558 				m = n;	/* for continuing loop */
3559 			}
3560 		}
3561 		prevlen = m->m_len;
3562 	}
3563 	return 0;
3564 }
3565 
3566 /*
3567  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3568  * pointers to descriptors.
3569  */
3570 static int
3571 bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx)
3572 {
3573 	struct bge_tx_bd	*f = NULL;
3574 	u_int32_t		frag, cur;
3575 	u_int16_t		csum_flags = 0;
3576 	u_int16_t		txbd_tso_flags = 0;
3577 	struct txdmamap_pool_entry *dma;
3578 	bus_dmamap_t dmamap;
3579 	int			i = 0;
3580 	struct m_tag		*mtag;
3581 	int			use_tso, maxsegsize, error;
3582 
3583 	cur = frag = *txidx;
3584 
3585 	if (m_head->m_pkthdr.csum_flags) {
3586 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3587 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3588 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3589 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3590 	}
3591 
3592 	/*
3593 	 * If we were asked to do an outboard checksum, and the NIC
3594 	 * has the bug where it sometimes adds in the Ethernet padding,
3595 	 * explicitly pad with zeros so the cksum will be correct either way.
3596 	 * (For now, do this for all chip versions, until newer
3597 	 * are confirmed to not require the workaround.)
3598 	 */
3599 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3600 #ifdef notyet
3601 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3602 #endif
3603 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3604 		goto check_dma_bug;
3605 
3606 	if (bge_cksum_pad(m_head) != 0) {
3607 	    return ENOBUFS;
3608 	}
3609 
3610 check_dma_bug:
3611 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3612 		goto doit;
3613 	/*
3614 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3615 	 * less than eight bytes.  If we encounter a teeny mbuf
3616 	 * at the end of a chain, we can pad.  Otherwise, copy.
3617 	 */
3618 	if (bge_compact_dma_runt(m_head) != 0)
3619 		return ENOBUFS;
3620 
3621 doit:
3622 	dma = SLIST_FIRST(&sc->txdma_list);
3623 	if (dma == NULL)
3624 		return ENOBUFS;
3625 	dmamap = dma->dmamap;
3626 
3627 	/*
3628 	 * Set up any necessary TSO state before we start packing...
3629 	 */
3630 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3631 	if (!use_tso) {
3632 		maxsegsize = 0;
3633 	} else {	/* TSO setup */
3634 		unsigned  mss;
3635 		struct ether_header *eh;
3636 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3637 		struct mbuf * m0 = m_head;
3638 		struct ip *ip;
3639 		struct tcphdr *th;
3640 		int iphl, hlen;
3641 
3642 		/*
3643 		 * XXX It would be nice if the mbuf pkthdr had offset
3644 		 * fields for the protocol headers.
3645 		 */
3646 
3647 		eh = mtod(m0, struct ether_header *);
3648 		switch (htons(eh->ether_type)) {
3649 		case ETHERTYPE_IP:
3650 			offset = ETHER_HDR_LEN;
3651 			break;
3652 
3653 		case ETHERTYPE_VLAN:
3654 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
3655 			break;
3656 
3657 		default:
3658 			/*
3659 			 * Don't support this protocol or encapsulation.
3660 			 */
3661 			return (ENOBUFS);
3662 		}
3663 
3664 		/*
3665 		 * TCP/IP headers are in the first mbuf; we can do
3666 		 * this the easy way.
3667 		 */
3668 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
3669 		hlen = iphl + offset;
3670 		if (__predict_false(m0->m_len <
3671 				    (hlen + sizeof(struct tcphdr)))) {
3672 
3673 			aprint_debug_dev(sc->bge_dev,
3674 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
3675 			    "not handled yet\n",
3676 			     m0->m_len, hlen+ sizeof(struct tcphdr));
3677 #ifdef NOTYET
3678 			/*
3679 			 * XXX jonathan@NetBSD.org: untested.
3680 			 * how to force  this branch to be taken?
3681 			 */
3682 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
3683 
3684 			m_copydata(m0, offset, sizeof(ip), &ip);
3685 			m_copydata(m0, hlen, sizeof(th), &th);
3686 
3687 			ip.ip_len = 0;
3688 
3689 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
3690 			    sizeof(ip.ip_len), &ip.ip_len);
3691 
3692 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
3693 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
3694 
3695 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
3696 			    sizeof(th.th_sum), &th.th_sum);
3697 
3698 			hlen += th.th_off << 2;
3699 			iptcp_opt_words	= hlen;
3700 #else
3701 			/*
3702 			 * if_wm "hard" case not yet supported, can we not
3703 			 * mandate it out of existence?
3704 			 */
3705 			(void) ip; (void)th; (void) ip_tcp_hlen;
3706 
3707 			return ENOBUFS;
3708 #endif
3709 		} else {
3710 			ip = (struct ip *) (mtod(m0, char *) + offset);
3711 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
3712 			ip_tcp_hlen = iphl +  (th->th_off << 2);
3713 
3714 			/* Total IP/TCP options, in 32-bit words */
3715 			iptcp_opt_words = (ip_tcp_hlen
3716 					   - sizeof(struct tcphdr)
3717 					   - sizeof(struct ip)) >> 2;
3718 		}
3719 		if (BGE_IS_5750_OR_BEYOND(sc)) {
3720 			th->th_sum = 0;
3721 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
3722 		} else {
3723 			/*
3724 			 * XXX jonathan@NetBSD.org: 5705 untested.
3725 			 * Requires TSO firmware patch for 5701/5703/5704.
3726 			 */
3727 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
3728 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
3729 		}
3730 
3731 		mss = m_head->m_pkthdr.segsz;
3732 		txbd_tso_flags |=
3733 		    BGE_TXBDFLAG_CPU_PRE_DMA |
3734 		    BGE_TXBDFLAG_CPU_POST_DMA;
3735 
3736 		/*
3737 		 * Our NIC TSO-assist assumes TSO has standard, optionless
3738 		 * IPv4 and TCP headers, which total 40 bytes. By default,
3739 		 * the NIC copies 40 bytes of IP/TCP header from the
3740 		 * supplied header into the IP/TCP header portion of
3741 		 * each post-TSO-segment. If the supplied packet has IP or
3742 		 * TCP options, we need to tell the NIC to copy those extra
3743 		 * bytes into each  post-TSO header, in addition to the normal
3744 		 * 40-byte IP/TCP header (and to leave space accordingly).
3745 		 * Unfortunately, the driver encoding of option length
3746 		 * varies across different ASIC families.
3747 		 */
3748 		tcp_seg_flags = 0;
3749 		if (iptcp_opt_words) {
3750 			if ( BGE_IS_5705_OR_BEYOND(sc)) {
3751 				tcp_seg_flags =
3752 					iptcp_opt_words << 11;
3753 			} else {
3754 				txbd_tso_flags |=
3755 					iptcp_opt_words << 12;
3756 			}
3757 		}
3758 		maxsegsize = mss | tcp_seg_flags;
3759 		ip->ip_len = htons(mss + ip_tcp_hlen);
3760 
3761 	}	/* TSO setup */
3762 
3763 	/*
3764 	 * Start packing the mbufs in this chain into
3765 	 * the fragment pointers. Stop when we run out
3766 	 * of fragments or hit the end of the mbuf chain.
3767 	 */
3768 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3769 	    BUS_DMA_NOWAIT);
3770 	if (error) {
3771 		return(ENOBUFS);
3772 	}
3773 	/*
3774 	 * Sanity check: avoid coming within 16 descriptors
3775 	 * of the end of the ring.
3776 	 */
3777 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
3778 		BGE_TSO_PRINTF(("%s: "
3779 		    " dmamap_load_mbuf too close to ring wrap\n",
3780 		    device_xname(sc->bge_dev)));
3781 		goto fail_unload;
3782 	}
3783 
3784 	mtag = sc->ethercom.ec_nvlans ?
3785 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3786 
3787 
3788 	/* Iterate over dmap-map fragments. */
3789 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3790 		f = &sc->bge_rdata->bge_tx_ring[frag];
3791 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3792 			break;
3793 
3794 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3795 		f->bge_len = dmamap->dm_segs[i].ds_len;
3796 
3797 		/*
3798 		 * For 5751 and follow-ons, for TSO we must turn
3799 		 * off checksum-assist flag in the tx-descr, and
3800 		 * supply the ASIC-revision-specific encoding
3801 		 * of TSO flags and segsize.
3802 		 */
3803 		if (use_tso) {
3804 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
3805 				f->bge_rsvd = maxsegsize;
3806 				f->bge_flags = csum_flags | txbd_tso_flags;
3807 			} else {
3808 				f->bge_rsvd = 0;
3809 				f->bge_flags =
3810 				  (csum_flags | txbd_tso_flags) & 0x0fff;
3811 			}
3812 		} else {
3813 			f->bge_rsvd = 0;
3814 			f->bge_flags = csum_flags;
3815 		}
3816 
3817 		if (mtag != NULL) {
3818 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3819 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
3820 		} else {
3821 			f->bge_vlan_tag = 0;
3822 		}
3823 		cur = frag;
3824 		BGE_INC(frag, BGE_TX_RING_CNT);
3825 	}
3826 
3827 	if (i < dmamap->dm_nsegs) {
3828 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
3829 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
3830 		goto fail_unload;
3831 	}
3832 
3833 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3834 	    BUS_DMASYNC_PREWRITE);
3835 
3836 	if (frag == sc->bge_tx_saved_considx) {
3837 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
3838 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
3839 
3840 		goto fail_unload;
3841 	}
3842 
3843 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3844 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
3845 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3846 	sc->txdma[cur] = dma;
3847 	sc->bge_txcnt += dmamap->dm_nsegs;
3848 
3849 	*txidx = frag;
3850 
3851 	return(0);
3852 
3853  fail_unload:
3854 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
3855 
3856 	return ENOBUFS;
3857 }
3858 
3859 /*
3860  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3861  * to the mbuf data regions directly in the transmit descriptors.
3862  */
3863 static void
3864 bge_start(struct ifnet *ifp)
3865 {
3866 	struct bge_softc *sc;
3867 	struct mbuf *m_head = NULL;
3868 	u_int32_t prodidx;
3869 	int pkts = 0;
3870 
3871 	sc = ifp->if_softc;
3872 
3873 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3874 		return;
3875 
3876 	prodidx = sc->bge_tx_prodidx;
3877 
3878 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3879 		IFQ_POLL(&ifp->if_snd, m_head);
3880 		if (m_head == NULL)
3881 			break;
3882 
3883 #if 0
3884 		/*
3885 		 * XXX
3886 		 * safety overkill.  If this is a fragmented packet chain
3887 		 * with delayed TCP/UDP checksums, then only encapsulate
3888 		 * it if we have enough descriptors to handle the entire
3889 		 * chain at once.
3890 		 * (paranoia -- may not actually be needed)
3891 		 */
3892 		if (m_head->m_flags & M_FIRSTFRAG &&
3893 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3894 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3895 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
3896 				ifp->if_flags |= IFF_OACTIVE;
3897 				break;
3898 			}
3899 		}
3900 #endif
3901 
3902 		/*
3903 		 * Pack the data into the transmit ring. If we
3904 		 * don't have room, set the OACTIVE flag and wait
3905 		 * for the NIC to drain the ring.
3906 		 */
3907 		if (bge_encap(sc, m_head, &prodidx)) {
3908 			ifp->if_flags |= IFF_OACTIVE;
3909 			break;
3910 		}
3911 
3912 		/* now we are committed to transmit the packet */
3913 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
3914 		pkts++;
3915 
3916 #if NBPFILTER > 0
3917 		/*
3918 		 * If there's a BPF listener, bounce a copy of this frame
3919 		 * to him.
3920 		 */
3921 		if (ifp->if_bpf)
3922 			bpf_mtap(ifp->if_bpf, m_head);
3923 #endif
3924 	}
3925 	if (pkts == 0)
3926 		return;
3927 
3928 	/* Transmit */
3929 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3930 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
3931 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3932 
3933 	sc->bge_tx_prodidx = prodidx;
3934 
3935 	/*
3936 	 * Set a timeout in case the chip goes out to lunch.
3937 	 */
3938 	ifp->if_timer = 5;
3939 }
3940 
3941 static int
3942 bge_init(struct ifnet *ifp)
3943 {
3944 	struct bge_softc *sc = ifp->if_softc;
3945 	const u_int16_t *m;
3946 	int s, error = 0;
3947 
3948 	s = splnet();
3949 
3950 	ifp = &sc->ethercom.ec_if;
3951 
3952 	/* Cancel pending I/O and flush buffers. */
3953 	bge_stop(ifp, 0);
3954 	bge_reset(sc);
3955 	bge_chipinit(sc);
3956 
3957 	/*
3958 	 * Init the various state machines, ring
3959 	 * control blocks and firmware.
3960 	 */
3961 	error = bge_blockinit(sc);
3962 	if (error != 0) {
3963 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
3964 		    error);
3965 		splx(s);
3966 		return error;
3967 	}
3968 
3969 	ifp = &sc->ethercom.ec_if;
3970 
3971 	/* Specify MTU. */
3972 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3973 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
3974 
3975 	/* Load our MAC address. */
3976 	m = (const u_int16_t *)&(CLLADDR(ifp->if_sadl)[0]);
3977 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3978 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3979 
3980 	/* Enable or disable promiscuous mode as needed. */
3981 	if (ifp->if_flags & IFF_PROMISC) {
3982 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3983 	} else {
3984 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3985 	}
3986 
3987 	/* Program multicast filter. */
3988 	bge_setmulti(sc);
3989 
3990 	/* Init RX ring. */
3991 	bge_init_rx_ring_std(sc);
3992 
3993 	/* Init jumbo RX ring. */
3994 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3995 		bge_init_rx_ring_jumbo(sc);
3996 
3997 	/* Init our RX return ring index */
3998 	sc->bge_rx_saved_considx = 0;
3999 
4000 	/* Init TX ring. */
4001 	bge_init_tx_ring(sc);
4002 
4003 	/* Turn on transmitter */
4004 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4005 
4006 	/* Turn on receiver */
4007 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4008 
4009 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4010 
4011 	/* Tell firmware we're alive. */
4012 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4013 
4014 	/* Enable host interrupts. */
4015 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4016 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4017 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
4018 
4019 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4020 		goto out;
4021 
4022 	ifp->if_flags |= IFF_RUNNING;
4023 	ifp->if_flags &= ~IFF_OACTIVE;
4024 
4025 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4026 
4027 out:
4028 	splx(s);
4029 
4030 	return error;
4031 }
4032 
4033 /*
4034  * Set media options.
4035  */
4036 static int
4037 bge_ifmedia_upd(struct ifnet *ifp)
4038 {
4039 	struct bge_softc *sc = ifp->if_softc;
4040 	struct mii_data *mii = &sc->bge_mii;
4041 	struct ifmedia *ifm = &sc->bge_ifmedia;
4042 	int rc;
4043 
4044 	/* If this is a 1000baseX NIC, enable the TBI port. */
4045 	if (sc->bge_tbi) {
4046 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4047 			return(EINVAL);
4048 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
4049 		case IFM_AUTO:
4050 			break;
4051 		case IFM_1000_SX:
4052 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4053 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4054 				    BGE_MACMODE_HALF_DUPLEX);
4055 			} else {
4056 				BGE_SETBIT(sc, BGE_MAC_MODE,
4057 				    BGE_MACMODE_HALF_DUPLEX);
4058 			}
4059 			break;
4060 		default:
4061 			return(EINVAL);
4062 		}
4063 		/* XXX 802.3x flow control for 1000BASE-SX */
4064 		return(0);
4065 	}
4066 
4067 	sc->bge_link = 0;
4068 	if ((rc = mii_mediachg(mii)) == ENXIO)
4069 		return 0;
4070 	return rc;
4071 }
4072 
4073 /*
4074  * Report current media status.
4075  */
4076 static void
4077 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4078 {
4079 	struct bge_softc *sc = ifp->if_softc;
4080 	struct mii_data *mii = &sc->bge_mii;
4081 
4082 	if (sc->bge_tbi) {
4083 		ifmr->ifm_status = IFM_AVALID;
4084 		ifmr->ifm_active = IFM_ETHER;
4085 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4086 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4087 			ifmr->ifm_status |= IFM_ACTIVE;
4088 		ifmr->ifm_active |= IFM_1000_SX;
4089 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4090 			ifmr->ifm_active |= IFM_HDX;
4091 		else
4092 			ifmr->ifm_active |= IFM_FDX;
4093 		return;
4094 	}
4095 
4096 	mii_pollstat(mii);
4097 	ifmr->ifm_status = mii->mii_media_status;
4098 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4099 	    sc->bge_flowflags;
4100 }
4101 
4102 static int
4103 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4104 {
4105 	struct bge_softc *sc = ifp->if_softc;
4106 	struct ifreq *ifr = (struct ifreq *) data;
4107 	int s, error = 0;
4108 	struct mii_data *mii;
4109 
4110 	s = splnet();
4111 
4112 	switch(command) {
4113 	case SIOCSIFFLAGS:
4114 		if (ifp->if_flags & IFF_UP) {
4115 			/*
4116 			 * If only the state of the PROMISC flag changed,
4117 			 * then just use the 'set promisc mode' command
4118 			 * instead of reinitializing the entire NIC. Doing
4119 			 * a full re-init means reloading the firmware and
4120 			 * waiting for it to start up, which may take a
4121 			 * second or two.
4122 			 */
4123 			if (ifp->if_flags & IFF_RUNNING &&
4124 			    ifp->if_flags & IFF_PROMISC &&
4125 			    !(sc->bge_if_flags & IFF_PROMISC)) {
4126 				BGE_SETBIT(sc, BGE_RX_MODE,
4127 				    BGE_RXMODE_RX_PROMISC);
4128 			} else if (ifp->if_flags & IFF_RUNNING &&
4129 			    !(ifp->if_flags & IFF_PROMISC) &&
4130 			    sc->bge_if_flags & IFF_PROMISC) {
4131 				BGE_CLRBIT(sc, BGE_RX_MODE,
4132 				    BGE_RXMODE_RX_PROMISC);
4133 			} else if (!(sc->bge_if_flags & IFF_UP))
4134 				bge_init(ifp);
4135 		} else {
4136 			if (ifp->if_flags & IFF_RUNNING)
4137 				bge_stop(ifp, 1);
4138 		}
4139 		sc->bge_if_flags = ifp->if_flags;
4140 		error = 0;
4141 		break;
4142 	case SIOCSIFMEDIA:
4143 		/* XXX Flow control is not supported for 1000BASE-SX */
4144 		if (sc->bge_tbi) {
4145 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4146 			sc->bge_flowflags = 0;
4147 		}
4148 
4149 		/* Flow control requires full-duplex mode. */
4150 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4151 		    (ifr->ifr_media & IFM_FDX) == 0) {
4152 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4153 		}
4154 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4155 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4156 				/* We an do both TXPAUSE and RXPAUSE. */
4157 				ifr->ifr_media |=
4158 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4159 			}
4160 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4161 		}
4162 		/* FALLTHROUGH */
4163 	case SIOCGIFMEDIA:
4164 		if (sc->bge_tbi) {
4165 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4166 			    command);
4167 		} else {
4168 			mii = &sc->bge_mii;
4169 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4170 			    command);
4171 		}
4172 		break;
4173 	default:
4174 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4175 			break;
4176 
4177 		error = 0;
4178 
4179 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4180 			;
4181 		else if (ifp->if_flags & IFF_RUNNING)
4182 			bge_setmulti(sc);
4183 		break;
4184 	}
4185 
4186 	splx(s);
4187 
4188 	return(error);
4189 }
4190 
4191 static void
4192 bge_watchdog(struct ifnet *ifp)
4193 {
4194 	struct bge_softc *sc;
4195 
4196 	sc = ifp->if_softc;
4197 
4198 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4199 
4200 	ifp->if_flags &= ~IFF_RUNNING;
4201 	bge_init(ifp);
4202 
4203 	ifp->if_oerrors++;
4204 }
4205 
4206 static void
4207 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4208 {
4209 	int i;
4210 
4211 	BGE_CLRBIT(sc, reg, bit);
4212 
4213 	for (i = 0; i < BGE_TIMEOUT; i++) {
4214 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4215 			return;
4216 		delay(100);
4217 		if (sc->bge_pcie)
4218 		  DELAY(1000);
4219 	}
4220 
4221 	aprint_error_dev(sc->bge_dev,
4222 	    "block failed to stop: reg 0x%lx, bit 0x%08x\n", (u_long)reg, bit);
4223 }
4224 
4225 /*
4226  * Stop the adapter and free any mbufs allocated to the
4227  * RX and TX lists.
4228  */
4229 static void
4230 bge_stop(struct ifnet *ifp, int disable)
4231 {
4232 	struct bge_softc *sc = ifp->if_softc;
4233 
4234 	callout_stop(&sc->bge_timeout);
4235 
4236 	/*
4237 	 * Disable all of the receiver blocks
4238 	 */
4239 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4240 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4241 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4242 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4243 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4244 	}
4245 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4246 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4247 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4248 
4249 	/*
4250 	 * Disable all of the transmit blocks
4251 	 */
4252 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4253 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4254 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4255 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4256 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4257 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4258 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4259 	}
4260 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4261 
4262 	/*
4263 	 * Shut down all of the memory managers and related
4264 	 * state machines.
4265 	 */
4266 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4267 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4268 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4269 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4270 	}
4271 
4272 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4273 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4274 
4275 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
4276 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4277 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4278 	}
4279 
4280 	/* Disable host interrupts. */
4281 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4282 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
4283 
4284 	/*
4285 	 * Tell firmware we're shutting down.
4286 	 */
4287 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4288 
4289 	/* Free the RX lists. */
4290 	bge_free_rx_ring_std(sc);
4291 
4292 	/* Free jumbo RX list. */
4293 	bge_free_rx_ring_jumbo(sc);
4294 
4295 	/* Free TX buffers. */
4296 	bge_free_tx_ring(sc);
4297 
4298 	/*
4299 	 * Isolate/power down the PHY.
4300 	 */
4301 	if (!sc->bge_tbi)
4302 		mii_down(&sc->bge_mii);
4303 
4304 	sc->bge_link = 0;
4305 
4306 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4307 
4308 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4309 }
4310 
4311 static int
4312 sysctl_bge_verify(SYSCTLFN_ARGS)
4313 {
4314 	int error, t;
4315 	struct sysctlnode node;
4316 
4317 	node = *rnode;
4318 	t = *(int*)rnode->sysctl_data;
4319 	node.sysctl_data = &t;
4320 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4321 	if (error || newp == NULL)
4322 		return (error);
4323 
4324 #if 0
4325 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4326 	    node.sysctl_num, rnode->sysctl_num));
4327 #endif
4328 
4329 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4330 		if (t < 0 || t >= NBGE_RX_THRESH)
4331 			return (EINVAL);
4332 		bge_update_all_threshes(t);
4333 	} else
4334 		return (EINVAL);
4335 
4336 	*(int*)rnode->sysctl_data = t;
4337 
4338 	return (0);
4339 }
4340 
4341 /*
4342  * Set up sysctl(3) MIB, hw.bge.*.
4343  *
4344  * TBD condition SYSCTL_PERMANENT on being an LKM or not
4345  */
4346 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
4347 {
4348 	int rc, bge_root_num;
4349 	const struct sysctlnode *node;
4350 
4351 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
4352 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4353 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4354 		goto err;
4355 	}
4356 
4357 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4358 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
4359 	    SYSCTL_DESCR("BGE interface controls"),
4360 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4361 		goto err;
4362 	}
4363 
4364 	bge_root_num = node->sysctl_num;
4365 
4366 	/* BGE Rx interrupt mitigation level */
4367 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
4368 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
4369 	    CTLTYPE_INT, "rx_lvl",
4370 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4371 	    sysctl_bge_verify, 0,
4372 	    &bge_rx_thresh_lvl,
4373 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4374 	    CTL_EOL)) != 0) {
4375 		goto err;
4376 	}
4377 
4378 	bge_rxthresh_nodenum = node->sysctl_num;
4379 
4380 	return;
4381 
4382 err:
4383 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4384 }
4385