xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: if_bge.c,v 1.77 2004/10/30 18:09:22 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.77 2004/10/30 18:09:22 thorpej Exp $");
83 
84 #include "bpfilter.h"
85 #include "vlan.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #ifdef INET
104 #include <netinet/in.h>
105 #include <netinet/in_systm.h>
106 #include <netinet/in_var.h>
107 #include <netinet/ip.h>
108 #endif
109 
110 #if NBPFILTER > 0
111 #include <net/bpf.h>
112 #endif
113 
114 #include <dev/pci/pcireg.h>
115 #include <dev/pci/pcivar.h>
116 #include <dev/pci/pcidevs.h>
117 
118 #include <dev/mii/mii.h>
119 #include <dev/mii/miivar.h>
120 #include <dev/mii/miidevs.h>
121 #include <dev/mii/brgphyreg.h>
122 
123 #include <dev/pci/if_bgereg.h>
124 
125 #include <uvm/uvm_extern.h>
126 
127 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
128 
129 
130 /*
131  * Tunable thresholds for rx-side bge interrupt mitigation.
132  */
133 
134 /*
135  * The pairs of values below were obtained from empirical measurement
136  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
137  * interrupt for every N packets received, where N is, approximately,
138  * the second value (rx_max_bds) in each pair.  The values are chosen
139  * such that moving from one pair to the succeeding pair was observed
140  * to roughly halve interrupt rate under sustained input packet load.
141  * The values were empirically chosen to avoid overflowing internal
142  * limits on the  bcm5700: inreasing rx_ticks much beyond 600
143  * results in internal wrapping and higher interrupt rates.
144  * The limit of 46 frames was chosen to match NFS workloads.
145  *
146  * These values also work well on bcm5701, bcm5704C, and (less
147  * tested) bcm5703.  On other chipsets, (including the Altima chip
148  * family), the larger values may overflow internal chip limits,
149  * leading to increasing interrupt rates rather than lower interrupt
150  * rates.
151  *
152  * Applications using heavy interrupt mitigation (interrupting every
153  * 32 or 46 frames) in both directions may need to increase the TCP
154  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
155  * full link bandwidth, due to ACKs and window updates lingering
156  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
157  */
158 struct bge_load_rx_thresh {
159 	int rx_ticks;
160 	int rx_max_bds; }
161 bge_rx_threshes[] = {
162 	{ 32,   2 },
163 	{ 50,   4 },
164 	{ 100,  8 },
165 	{ 192, 16 },
166 	{ 416, 32 },
167 	{ 598, 46 }
168 };
169 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
170 
171 /* XXX patchable; should be sysctl'able */
172 static int	bge_auto_thresh = 1;
173 static int	bge_rx_thresh_lvl;
174 
175 #ifdef __NetBSD__
176 static int bge_rxthresh_nodenum;
177 #endif /* __NetBSD__ */
178 
179 int bge_probe(struct device *, struct cfdata *, void *);
180 void bge_attach(struct device *, struct device *, void *);
181 void bge_release_resources(struct bge_softc *);
182 void bge_txeof(struct bge_softc *);
183 void bge_rxeof(struct bge_softc *);
184 
185 void bge_tick(void *);
186 void bge_stats_update(struct bge_softc *);
187 int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *);
188 static __inline int bge_cksum_pad(struct mbuf *pkt);
189 static __inline int bge_compact_dma_runt(struct mbuf *pkt);
190 
191 int bge_intr(void *);
192 void bge_start(struct ifnet *);
193 int bge_ioctl(struct ifnet *, u_long, caddr_t);
194 int bge_init(struct ifnet *);
195 void bge_stop(struct bge_softc *);
196 void bge_watchdog(struct ifnet *);
197 void bge_shutdown(void *);
198 int bge_ifmedia_upd(struct ifnet *);
199 void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
200 
201 u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *);
202 int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
203 
204 void bge_setmulti(struct bge_softc *);
205 
206 void bge_handle_events(struct bge_softc *);
207 int bge_alloc_jumbo_mem(struct bge_softc *);
208 void bge_free_jumbo_mem(struct bge_softc *);
209 void *bge_jalloc(struct bge_softc *);
210 void bge_jfree(struct mbuf *, caddr_t, size_t, void *);
211 int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t);
212 int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
213 int bge_init_rx_ring_std(struct bge_softc *);
214 void bge_free_rx_ring_std(struct bge_softc *);
215 int bge_init_rx_ring_jumbo(struct bge_softc *);
216 void bge_free_rx_ring_jumbo(struct bge_softc *);
217 void bge_free_tx_ring(struct bge_softc *);
218 int bge_init_tx_ring(struct bge_softc *);
219 
220 int bge_chipinit(struct bge_softc *);
221 int bge_blockinit(struct bge_softc *);
222 int bge_setpowerstate(struct bge_softc *, int);
223 
224 #ifdef notdef
225 u_int8_t bge_vpd_readbyte(struct bge_softc *, int);
226 void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, int);
227 void bge_vpd_read(struct bge_softc *);
228 #endif
229 
230 u_int32_t bge_readmem_ind(struct bge_softc *, int);
231 void bge_writemem_ind(struct bge_softc *, int, int);
232 #ifdef notdef
233 u_int32_t bge_readreg_ind(struct bge_softc *, int);
234 #endif
235 void bge_writereg_ind(struct bge_softc *, int, int);
236 
237 int bge_miibus_readreg(struct device *, int, int);
238 void bge_miibus_writereg(struct device *, int, int, int);
239 void bge_miibus_statchg(struct device *);
240 
241 void bge_reset(struct bge_softc *);
242 
243 void	bge_set_thresh(struct ifnet *  /*ifp*/, int /*lvl*/);
244 void	bge_update_all_threshes(int /*lvl*/);
245 
246 void bge_dump_status(struct bge_softc *);
247 void bge_dump_rxbd(struct bge_rx_bd *);
248 
249 #define BGE_DEBUG
250 #ifdef BGE_DEBUG
251 #define DPRINTF(x)	if (bgedebug) printf x
252 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
253 int	bgedebug = 0;
254 #else
255 #define DPRINTF(x)
256 #define DPRINTFN(n,x)
257 #endif
258 
259 #ifdef BGE_EVENT_COUNTERS
260 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
261 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
262 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
263 #else
264 #define	BGE_EVCNT_INCR(ev)	/* nothing */
265 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
266 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
267 #endif
268 
269 /* Various chip quirks. */
270 #define	BGE_QUIRK_LINK_STATE_BROKEN	0x00000001
271 #define	BGE_QUIRK_CSUM_BROKEN		0x00000002
272 #define	BGE_QUIRK_ONLY_PHY_1		0x00000004
273 #define	BGE_QUIRK_5700_SMALLDMA		0x00000008
274 #define	BGE_QUIRK_5700_PCIX_REG_BUG	0x00000010
275 #define	BGE_QUIRK_PRODUCER_BUG		0x00000020
276 #define	BGE_QUIRK_PCIX_DMA_ALIGN_BUG	0x00000040
277 #define	BGE_QUIRK_5705_CORE		0x00000080
278 #define	BGE_QUIRK_FEWER_MBUFS		0x00000100
279 
280 /* following bugs are common to bcm5700 rev B, all flavours */
281 #define BGE_QUIRK_5700_COMMON \
282 	(BGE_QUIRK_5700_SMALLDMA|BGE_QUIRK_PRODUCER_BUG)
283 
284 CFATTACH_DECL(bge, sizeof(struct bge_softc),
285     bge_probe, bge_attach, NULL, NULL);
286 
287 u_int32_t
288 bge_readmem_ind(sc, off)
289 	struct bge_softc *sc;
290 	int off;
291 {
292 	struct pci_attach_args	*pa = &(sc->bge_pa);
293 	pcireg_t val;
294 
295 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
296 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA);
297 	return val;
298 }
299 
300 void
301 bge_writemem_ind(sc, off, val)
302 	struct bge_softc *sc;
303 	int off, val;
304 {
305 	struct pci_attach_args	*pa = &(sc->bge_pa);
306 
307 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off);
308 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val);
309 }
310 
311 #ifdef notdef
312 u_int32_t
313 bge_readreg_ind(sc, off)
314 	struct bge_softc *sc;
315 	int off;
316 {
317 	struct pci_attach_args	*pa = &(sc->bge_pa);
318 
319 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
320 	return(pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA));
321 }
322 #endif
323 
324 void
325 bge_writereg_ind(sc, off, val)
326 	struct bge_softc *sc;
327 	int off, val;
328 {
329 	struct pci_attach_args	*pa = &(sc->bge_pa);
330 
331 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off);
332 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val);
333 }
334 
335 #ifdef notdef
336 u_int8_t
337 bge_vpd_readbyte(sc, addr)
338 	struct bge_softc *sc;
339 	int addr;
340 {
341 	int i;
342 	u_int32_t val;
343 	struct pci_attach_args	*pa = &(sc->bge_pa);
344 
345 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR, addr);
346 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
347 		DELAY(10);
348 		if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_ADDR) &
349 		    BGE_VPD_FLAG)
350 			break;
351 	}
352 
353 	if (i == BGE_TIMEOUT) {
354 		printf("%s: VPD read timed out\n", sc->bge_dev.dv_xname);
355 		return(0);
356 	}
357 
358 	val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_VPD_DATA);
359 
360 	return((val >> ((addr % 4) * 8)) & 0xFF);
361 }
362 
363 void
364 bge_vpd_read_res(sc, res, addr)
365 	struct bge_softc *sc;
366 	struct vpd_res *res;
367 	int addr;
368 {
369 	int i;
370 	u_int8_t *ptr;
371 
372 	ptr = (u_int8_t *)res;
373 	for (i = 0; i < sizeof(struct vpd_res); i++)
374 		ptr[i] = bge_vpd_readbyte(sc, i + addr);
375 }
376 
377 void
378 bge_vpd_read(sc)
379 	struct bge_softc *sc;
380 {
381 	int pos = 0, i;
382 	struct vpd_res res;
383 
384 	if (sc->bge_vpd_prodname != NULL)
385 		free(sc->bge_vpd_prodname, M_DEVBUF);
386 	if (sc->bge_vpd_readonly != NULL)
387 		free(sc->bge_vpd_readonly, M_DEVBUF);
388 	sc->bge_vpd_prodname = NULL;
389 	sc->bge_vpd_readonly = NULL;
390 
391 	bge_vpd_read_res(sc, &res, pos);
392 
393 	if (res.vr_id != VPD_RES_ID) {
394 		printf("%s: bad VPD resource id: expected %x got %x\n",
395 			sc->bge_dev.dv_xname, VPD_RES_ID, res.vr_id);
396 		return;
397 	}
398 
399 	pos += sizeof(res);
400 	sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
401 	if (sc->bge_vpd_prodname == NULL)
402 		panic("bge_vpd_read");
403 	for (i = 0; i < res.vr_len; i++)
404 		sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos);
405 	sc->bge_vpd_prodname[i] = '\0';
406 	pos += i;
407 
408 	bge_vpd_read_res(sc, &res, pos);
409 
410 	if (res.vr_id != VPD_RES_READ) {
411 		printf("%s: bad VPD resource id: expected %x got %x\n",
412 		    sc->bge_dev.dv_xname, VPD_RES_READ, res.vr_id);
413 		return;
414 	}
415 
416 	pos += sizeof(res);
417 	sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
418 	if (sc->bge_vpd_readonly == NULL)
419 		panic("bge_vpd_read");
420 	for (i = 0; i < res.vr_len + 1; i++)
421 		sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos);
422 }
423 #endif
424 
425 /*
426  * Read a byte of data stored in the EEPROM at address 'addr.' The
427  * BCM570x supports both the traditional bitbang interface and an
428  * auto access interface for reading the EEPROM. We use the auto
429  * access method.
430  */
431 u_int8_t
432 bge_eeprom_getbyte(sc, addr, dest)
433 	struct bge_softc *sc;
434 	int addr;
435 	u_int8_t *dest;
436 {
437 	int i;
438 	u_int32_t byte = 0;
439 
440 	/*
441 	 * Enable use of auto EEPROM access so we can avoid
442 	 * having to use the bitbang method.
443 	 */
444 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
445 
446 	/* Reset the EEPROM, load the clock period. */
447 	CSR_WRITE_4(sc, BGE_EE_ADDR,
448 	    BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
449 	DELAY(20);
450 
451 	/* Issue the read EEPROM command. */
452 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
453 
454 	/* Wait for completion */
455 	for(i = 0; i < BGE_TIMEOUT * 10; i++) {
456 		DELAY(10);
457 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
458 			break;
459 	}
460 
461 	if (i == BGE_TIMEOUT) {
462 		printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname);
463 		return(0);
464 	}
465 
466 	/* Get result. */
467 	byte = CSR_READ_4(sc, BGE_EE_DATA);
468 
469 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
470 
471 	return(0);
472 }
473 
474 /*
475  * Read a sequence of bytes from the EEPROM.
476  */
477 int
478 bge_read_eeprom(sc, dest, off, cnt)
479 	struct bge_softc *sc;
480 	caddr_t dest;
481 	int off;
482 	int cnt;
483 {
484 	int err = 0, i;
485 	u_int8_t byte = 0;
486 
487 	for (i = 0; i < cnt; i++) {
488 		err = bge_eeprom_getbyte(sc, off + i, &byte);
489 		if (err)
490 			break;
491 		*(dest + i) = byte;
492 	}
493 
494 	return(err ? 1 : 0);
495 }
496 
497 int
498 bge_miibus_readreg(dev, phy, reg)
499 	struct device *dev;
500 	int phy, reg;
501 {
502 	struct bge_softc *sc = (struct bge_softc *)dev;
503 	u_int32_t val;
504 	u_int32_t saved_autopoll;
505 	int i;
506 
507 	/*
508 	 * Several chips with builtin PHYs will incorrectly answer to
509 	 * other PHY instances than the builtin PHY at id 1.
510 	 */
511 	if (phy != 1 && (sc->bge_quirks & BGE_QUIRK_ONLY_PHY_1))
512 		return(0);
513 
514 	/* Reading with autopolling on may trigger PCI errors */
515 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
516 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
517 		CSR_WRITE_4(sc, BGE_MI_MODE,
518 		    saved_autopoll &~ BGE_MIMODE_AUTOPOLL);
519 		DELAY(40);
520 	}
521 
522 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY|
523 	    BGE_MIPHY(phy)|BGE_MIREG(reg));
524 
525 	for (i = 0; i < BGE_TIMEOUT; i++) {
526 		val = CSR_READ_4(sc, BGE_MI_COMM);
527 		if (!(val & BGE_MICOMM_BUSY))
528 			break;
529 		delay(10);
530 	}
531 
532 	if (i == BGE_TIMEOUT) {
533 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
534 		val = 0;
535 		goto done;
536 	}
537 
538 	val = CSR_READ_4(sc, BGE_MI_COMM);
539 
540 done:
541 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
542 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
543 		DELAY(40);
544 	}
545 
546 	if (val & BGE_MICOMM_READFAIL)
547 		return(0);
548 
549 	return(val & 0xFFFF);
550 }
551 
552 void
553 bge_miibus_writereg(dev, phy, reg, val)
554 	struct device *dev;
555 	int phy, reg, val;
556 {
557 	struct bge_softc *sc = (struct bge_softc *)dev;
558 	u_int32_t saved_autopoll;
559 	int i;
560 
561 	/* Touching the PHY while autopolling is on may trigger PCI errors */
562 	saved_autopoll = CSR_READ_4(sc, BGE_MI_MODE);
563 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
564 		delay(40);
565 		CSR_WRITE_4(sc, BGE_MI_MODE,
566 		    saved_autopoll & (~BGE_MIMODE_AUTOPOLL));
567 		delay(10); /* 40 usec is supposed to be adequate */
568 	}
569 
570 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY|
571 	    BGE_MIPHY(phy)|BGE_MIREG(reg)|val);
572 
573 	for (i = 0; i < BGE_TIMEOUT; i++) {
574 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY))
575 			break;
576 		delay(10);
577 	}
578 
579 	if (saved_autopoll & BGE_MIMODE_AUTOPOLL) {
580 		CSR_WRITE_4(sc, BGE_MI_MODE, saved_autopoll);
581 		delay(40);
582 	}
583 
584 	if (i == BGE_TIMEOUT) {
585 		printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname);
586 	}
587 }
588 
589 void
590 bge_miibus_statchg(dev)
591 	struct device *dev;
592 {
593 	struct bge_softc *sc = (struct bge_softc *)dev;
594 	struct mii_data *mii = &sc->bge_mii;
595 
596 	/*
597 	 * Get flow control negotiation result.
598 	 */
599 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
600 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
601 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
602 		mii->mii_media_active &= ~IFM_ETH_FMASK;
603 	}
604 
605 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
606 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
607 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
608 	} else {
609 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
610 	}
611 
612 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
613 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
614 	} else {
615 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
616 	}
617 
618 	/*
619 	 * 802.3x flow control
620 	 */
621 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE) {
622 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
623 	} else {
624 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
625 	}
626 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE) {
627 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
628 	} else {
629 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
630 	}
631 }
632 
633 /*
634  * Update rx threshold levels to values in a particular slot
635  * of the interrupt-mitigation table bge_rx_threshes.
636  */
637 void
638 bge_set_thresh(struct ifnet *ifp, int lvl)
639 {
640 	struct bge_softc *sc = ifp->if_softc;
641 	int s;
642 
643 	/* For now, just save the new Rx-intr thresholds and record
644 	 * that a threshold update is pending.  Updating the hardware
645 	 * registers here (even at splhigh()) is observed to
646 	 * occasionaly cause glitches where Rx-interrupts are not
647 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
648 	 */
649 	s = splnet();
650 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
651 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
652 	sc->bge_pending_rxintr_change = 1;
653 	splx(s);
654 
655 	 return;
656 }
657 
658 
659 /*
660  * Update Rx thresholds of all bge devices
661  */
662 void
663 bge_update_all_threshes(int lvl)
664 {
665 	struct ifnet *ifp;
666 	const char * const namebuf = "bge";
667 	int namelen;
668 
669 	if (lvl < 0)
670 		lvl = 0;
671 	else if( lvl >= NBGE_RX_THRESH)
672 		lvl = NBGE_RX_THRESH - 1;
673 
674 	namelen = strlen(namebuf);
675 	/*
676 	 * Now search all the interfaces for this name/number
677 	 */
678 	TAILQ_FOREACH(ifp, &ifnet, if_list) {
679 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
680 		      continue;
681 		/* We got a match: update if doing auto-threshold-tuning */
682 		if (bge_auto_thresh)
683 			bge_set_thresh(ifp, lvl);
684 	}
685 }
686 
687 /*
688  * Handle events that have triggered interrupts.
689  */
690 void
691 bge_handle_events(sc)
692 	struct bge_softc		*sc;
693 {
694 
695 	return;
696 }
697 
698 /*
699  * Memory management for jumbo frames.
700  */
701 
702 int
703 bge_alloc_jumbo_mem(sc)
704 	struct bge_softc		*sc;
705 {
706 	caddr_t			ptr, kva;
707 	bus_dma_segment_t	seg;
708 	int		i, rseg, state, error;
709 	struct bge_jpool_entry   *entry;
710 
711 	state = error = 0;
712 
713 	/* Grab a big chunk o' storage. */
714 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
715 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
716 		printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname);
717 		return ENOBUFS;
718 	}
719 
720 	state = 1;
721 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva,
722 	    BUS_DMA_NOWAIT)) {
723 		printf("%s: can't map DMA buffers (%d bytes)\n",
724 		    sc->bge_dev.dv_xname, (int)BGE_JMEM);
725 		error = ENOBUFS;
726 		goto out;
727 	}
728 
729 	state = 2;
730 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
731 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
732 		printf("%s: can't create DMA map\n", sc->bge_dev.dv_xname);
733 		error = ENOBUFS;
734 		goto out;
735 	}
736 
737 	state = 3;
738 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
739 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
740 		printf("%s: can't load DMA map\n", sc->bge_dev.dv_xname);
741 		error = ENOBUFS;
742 		goto out;
743 	}
744 
745 	state = 4;
746 	sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva;
747 	DPRINTFN(1,("bge_jumbo_buf = 0x%p\n", sc->bge_cdata.bge_jumbo_buf));
748 
749 	SLIST_INIT(&sc->bge_jfree_listhead);
750 	SLIST_INIT(&sc->bge_jinuse_listhead);
751 
752 	/*
753 	 * Now divide it up into 9K pieces and save the addresses
754 	 * in an array.
755 	 */
756 	ptr = sc->bge_cdata.bge_jumbo_buf;
757 	for (i = 0; i < BGE_JSLOTS; i++) {
758 		sc->bge_cdata.bge_jslots[i] = ptr;
759 		ptr += BGE_JLEN;
760 		entry = malloc(sizeof(struct bge_jpool_entry),
761 		    M_DEVBUF, M_NOWAIT);
762 		if (entry == NULL) {
763 			printf("%s: no memory for jumbo buffer queue!\n",
764 			    sc->bge_dev.dv_xname);
765 			error = ENOBUFS;
766 			goto out;
767 		}
768 		entry->slot = i;
769 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
770 				 entry, jpool_entries);
771 	}
772 out:
773 	if (error != 0) {
774 		switch (state) {
775 		case 4:
776 			bus_dmamap_unload(sc->bge_dmatag,
777 			    sc->bge_cdata.bge_rx_jumbo_map);
778 		case 3:
779 			bus_dmamap_destroy(sc->bge_dmatag,
780 			    sc->bge_cdata.bge_rx_jumbo_map);
781 		case 2:
782 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
783 		case 1:
784 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
785 			break;
786 		default:
787 			break;
788 		}
789 	}
790 
791 	return error;
792 }
793 
794 /*
795  * Allocate a jumbo buffer.
796  */
797 void *
798 bge_jalloc(sc)
799 	struct bge_softc		*sc;
800 {
801 	struct bge_jpool_entry   *entry;
802 
803 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
804 
805 	if (entry == NULL) {
806 		printf("%s: no free jumbo buffers\n", sc->bge_dev.dv_xname);
807 		return(NULL);
808 	}
809 
810 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
811 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
812 	return(sc->bge_cdata.bge_jslots[entry->slot]);
813 }
814 
815 /*
816  * Release a jumbo buffer.
817  */
818 void
819 bge_jfree(m, buf, size, arg)
820 	struct mbuf	*m;
821 	caddr_t		buf;
822 	size_t		size;
823 	void		*arg;
824 {
825 	struct bge_jpool_entry *entry;
826 	struct bge_softc *sc;
827 	int i, s;
828 
829 	/* Extract the softc struct pointer. */
830 	sc = (struct bge_softc *)arg;
831 
832 	if (sc == NULL)
833 		panic("bge_jfree: can't find softc pointer!");
834 
835 	/* calculate the slot this buffer belongs to */
836 
837 	i = ((caddr_t)buf
838 	     - (caddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
839 
840 	if ((i < 0) || (i >= BGE_JSLOTS))
841 		panic("bge_jfree: asked to free buffer that we don't manage!");
842 
843 	s = splvm();
844 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
845 	if (entry == NULL)
846 		panic("bge_jfree: buffer not in use!");
847 	entry->slot = i;
848 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
849 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
850 
851 	if (__predict_true(m != NULL))
852   		pool_cache_put(&mbpool_cache, m);
853 	splx(s);
854 }
855 
856 
857 /*
858  * Intialize a standard receive ring descriptor.
859  */
860 int
861 bge_newbuf_std(sc, i, m, dmamap)
862 	struct bge_softc	*sc;
863 	int			i;
864 	struct mbuf		*m;
865 	bus_dmamap_t dmamap;
866 {
867 	struct mbuf		*m_new = NULL;
868 	struct bge_rx_bd	*r;
869 	int			error;
870 
871 	if (dmamap == NULL) {
872 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
873 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
874 		if (error != 0)
875 			return error;
876 	}
877 
878 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
879 
880 	if (m == NULL) {
881 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
882 		if (m_new == NULL) {
883 			return(ENOBUFS);
884 		}
885 
886 		MCLGET(m_new, M_DONTWAIT);
887 		if (!(m_new->m_flags & M_EXT)) {
888 			m_freem(m_new);
889 			return(ENOBUFS);
890 		}
891 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
892 		if (!sc->bge_rx_alignment_bug)
893 		    m_adj(m_new, ETHER_ALIGN);
894 
895 		if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
896 		    BUS_DMA_READ|BUS_DMA_NOWAIT))
897 			return(ENOBUFS);
898 	} else {
899 		m_new = m;
900 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
901 		m_new->m_data = m_new->m_ext.ext_buf;
902 		if (!sc->bge_rx_alignment_bug)
903 		    m_adj(m_new, ETHER_ALIGN);
904 	}
905 
906 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
907 	r = &sc->bge_rdata->bge_rx_std_ring[i];
908 	bge_set_hostaddr(&r->bge_addr,
909 	    dmamap->dm_segs[0].ds_addr);
910 	r->bge_flags = BGE_RXBDFLAG_END;
911 	r->bge_len = m_new->m_len;
912 	r->bge_idx = i;
913 
914 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
915 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
916 		i * sizeof (struct bge_rx_bd),
917 	    sizeof (struct bge_rx_bd),
918 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
919 
920 	return(0);
921 }
922 
923 /*
924  * Initialize a jumbo receive ring descriptor. This allocates
925  * a jumbo buffer from the pool managed internally by the driver.
926  */
927 int
928 bge_newbuf_jumbo(sc, i, m)
929 	struct bge_softc *sc;
930 	int i;
931 	struct mbuf *m;
932 {
933 	struct mbuf *m_new = NULL;
934 	struct bge_rx_bd *r;
935 
936 	if (m == NULL) {
937 		caddr_t			buf = NULL;
938 
939 		/* Allocate the mbuf. */
940 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
941 		if (m_new == NULL) {
942 			return(ENOBUFS);
943 		}
944 
945 		/* Allocate the jumbo buffer */
946 		buf = bge_jalloc(sc);
947 		if (buf == NULL) {
948 			m_freem(m_new);
949 			printf("%s: jumbo allocation failed "
950 			    "-- packet dropped!\n", sc->bge_dev.dv_xname);
951 			return(ENOBUFS);
952 		}
953 
954 		/* Attach the buffer to the mbuf. */
955 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
956 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
957 		    bge_jfree, sc);
958 		m_new->m_flags |= M_EXT_RW;
959 	} else {
960 		m_new = m;
961 		m_new->m_data = m_new->m_ext.ext_buf;
962 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
963 	}
964 
965 	if (!sc->bge_rx_alignment_bug)
966 	    m_adj(m_new, ETHER_ALIGN);
967 	/* Set up the descriptor. */
968 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
969 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
970 	bge_set_hostaddr(&r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
971 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
972 	r->bge_len = m_new->m_len;
973 	r->bge_idx = i;
974 
975 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
976 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
977 		i * sizeof (struct bge_rx_bd),
978 	    sizeof (struct bge_rx_bd),
979 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
980 
981 	return(0);
982 }
983 
984 /*
985  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
986  * that's 1MB or memory, which is a lot. For now, we fill only the first
987  * 256 ring entries and hope that our CPU is fast enough to keep up with
988  * the NIC.
989  */
990 int
991 bge_init_rx_ring_std(sc)
992 	struct bge_softc *sc;
993 {
994 	int i;
995 
996 	if (sc->bge_flags & BGE_RXRING_VALID)
997 		return 0;
998 
999 	for (i = 0; i < BGE_SSLOTS; i++) {
1000 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1001 			return(ENOBUFS);
1002 	}
1003 
1004 	sc->bge_std = i - 1;
1005 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1006 
1007 	sc->bge_flags |= BGE_RXRING_VALID;
1008 
1009 	return(0);
1010 }
1011 
1012 void
1013 bge_free_rx_ring_std(sc)
1014 	struct bge_softc *sc;
1015 {
1016 	int i;
1017 
1018 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1019 		return;
1020 
1021 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1022 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1023 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1024 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1025 			bus_dmamap_destroy(sc->bge_dmatag,
1026 			    sc->bge_cdata.bge_rx_std_map[i]);
1027 		}
1028 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1029 		    sizeof(struct bge_rx_bd));
1030 	}
1031 
1032 	sc->bge_flags &= ~BGE_RXRING_VALID;
1033 }
1034 
1035 int
1036 bge_init_rx_ring_jumbo(sc)
1037 	struct bge_softc *sc;
1038 {
1039 	int i;
1040 	volatile struct bge_rcb *rcb;
1041 
1042 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1043 		return 0;
1044 
1045 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1046 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1047 			return(ENOBUFS);
1048 	};
1049 
1050 	sc->bge_jumbo = i - 1;
1051 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1052 
1053 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1054 	rcb->bge_maxlen_flags = 0;
1055 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1056 
1057 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1058 
1059 	return(0);
1060 }
1061 
1062 void
1063 bge_free_rx_ring_jumbo(sc)
1064 	struct bge_softc *sc;
1065 {
1066 	int i;
1067 
1068 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1069 		return;
1070 
1071 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1072 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1073 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1074 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1075 		}
1076 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1077 		    sizeof(struct bge_rx_bd));
1078 	}
1079 
1080 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1081 }
1082 
1083 void
1084 bge_free_tx_ring(sc)
1085 	struct bge_softc *sc;
1086 {
1087 	int i, freed;
1088 	struct txdmamap_pool_entry *dma;
1089 
1090 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1091 		return;
1092 
1093 	freed = 0;
1094 
1095 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1096 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1097 			freed++;
1098 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1099 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1100 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1101 					    link);
1102 			sc->txdma[i] = 0;
1103 		}
1104 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1105 		    sizeof(struct bge_tx_bd));
1106 	}
1107 
1108 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1109 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1110 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1111 		free(dma, M_DEVBUF);
1112 	}
1113 
1114 	sc->bge_flags &= ~BGE_TXRING_VALID;
1115 }
1116 
1117 int
1118 bge_init_tx_ring(sc)
1119 	struct bge_softc *sc;
1120 {
1121 	int i;
1122 	bus_dmamap_t dmamap;
1123 	struct txdmamap_pool_entry *dma;
1124 
1125 	if (sc->bge_flags & BGE_TXRING_VALID)
1126 		return 0;
1127 
1128 	sc->bge_txcnt = 0;
1129 	sc->bge_tx_saved_considx = 0;
1130 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1131 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1132 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1133 
1134 	CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1135 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
1136 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0);
1137 
1138 	SLIST_INIT(&sc->txdma_list);
1139 	for (i = 0; i < BGE_RSLOTS; i++) {
1140 		if (bus_dmamap_create(sc->bge_dmatag, ETHER_MAX_LEN_JUMBO,
1141 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1142 		    &dmamap))
1143 			return(ENOBUFS);
1144 		if (dmamap == NULL)
1145 			panic("dmamap NULL in bge_init_tx_ring");
1146 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1147 		if (dma == NULL) {
1148 			printf("%s: can't alloc txdmamap_pool_entry\n",
1149 			    sc->bge_dev.dv_xname);
1150 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1151 			return (ENOMEM);
1152 		}
1153 		dma->dmamap = dmamap;
1154 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1155 	}
1156 
1157 	sc->bge_flags |= BGE_TXRING_VALID;
1158 
1159 	return(0);
1160 }
1161 
1162 void
1163 bge_setmulti(sc)
1164 	struct bge_softc *sc;
1165 {
1166 	struct ethercom		*ac = &sc->ethercom;
1167 	struct ifnet		*ifp = &ac->ec_if;
1168 	struct ether_multi	*enm;
1169 	struct ether_multistep  step;
1170 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
1171 	u_int32_t		h;
1172 	int			i;
1173 
1174 	if (ifp->if_flags & IFF_PROMISC)
1175 		goto allmulti;
1176 
1177 	/* Now program new ones. */
1178 	ETHER_FIRST_MULTI(step, ac, enm);
1179 	while (enm != NULL) {
1180 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1181 			/*
1182 			 * We must listen to a range of multicast addresses.
1183 			 * For now, just accept all multicasts, rather than
1184 			 * trying to set only those filter bits needed to match
1185 			 * the range.  (At this time, the only use of address
1186 			 * ranges is for IP multicast routing, for which the
1187 			 * range is big enough to require all bits set.)
1188 			 */
1189 			goto allmulti;
1190 		}
1191 
1192 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1193 
1194 		/* Just want the 7 least-significant bits. */
1195 		h &= 0x7f;
1196 
1197 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1198 		ETHER_NEXT_MULTI(step, enm);
1199 	}
1200 
1201 	ifp->if_flags &= ~IFF_ALLMULTI;
1202 	goto setit;
1203 
1204  allmulti:
1205 	ifp->if_flags |= IFF_ALLMULTI;
1206 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1207 
1208  setit:
1209 	for (i = 0; i < 4; i++)
1210 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1211 }
1212 
1213 const int bge_swapbits[] = {
1214 	0,
1215 	BGE_MODECTL_BYTESWAP_DATA,
1216 	BGE_MODECTL_WORDSWAP_DATA,
1217 	BGE_MODECTL_BYTESWAP_NONFRAME,
1218 	BGE_MODECTL_WORDSWAP_NONFRAME,
1219 
1220 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA,
1221 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1222 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1223 
1224 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME,
1225 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_WORDSWAP_NONFRAME,
1226 
1227 	BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1228 
1229 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1230 	    BGE_MODECTL_BYTESWAP_NONFRAME,
1231 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1232 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1233 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1234 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1235 	BGE_MODECTL_WORDSWAP_DATA|BGE_MODECTL_BYTESWAP_NONFRAME|
1236 	    BGE_MODECTL_WORDSWAP_NONFRAME,
1237 
1238 	BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA|
1239 	    BGE_MODECTL_BYTESWAP_NONFRAME|BGE_MODECTL_WORDSWAP_NONFRAME,
1240 };
1241 
1242 int bge_swapindex = 0;
1243 
1244 /*
1245  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1246  * self-test results.
1247  */
1248 int
1249 bge_chipinit(sc)
1250 	struct bge_softc *sc;
1251 {
1252 	u_int32_t		cachesize;
1253 	int			i;
1254 	u_int32_t		dma_rw_ctl;
1255 	struct pci_attach_args	*pa = &(sc->bge_pa);
1256 
1257 
1258 	/* Set endianness before we access any non-PCI registers. */
1259 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
1260 	    BGE_INIT);
1261 
1262 	/* Set power state to D0. */
1263 	bge_setpowerstate(sc, 0);
1264 
1265 	/*
1266 	 * Check the 'ROM failed' bit on the RX CPU to see if
1267 	 * self-tests passed.
1268 	 */
1269 	if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) {
1270 		printf("%s: RX CPU self-diagnostics failed!\n",
1271 		    sc->bge_dev.dv_xname);
1272 		return(ENODEV);
1273 	}
1274 
1275 	/* Clear the MAC control register */
1276 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1277 
1278 	/*
1279 	 * Clear the MAC statistics block in the NIC's
1280 	 * internal memory.
1281 	 */
1282 	for (i = BGE_STATS_BLOCK;
1283 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t))
1284 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1285 
1286 	for (i = BGE_STATUS_BLOCK;
1287 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t))
1288 		BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0);
1289 
1290 	/* Set up the PCI DMA control register. */
1291 	if (sc->bge_pcie) {
1292 		/* From FreeBSD */
1293 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1294 		    sc->bge_dev.dv_xname));
1295 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1296 		    (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1297 		    (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1298 	} else if (pci_conf_read(pa->pa_pc, pa->pa_tag,BGE_PCI_PCISTATE) &
1299 	    BGE_PCISTATE_PCI_BUSMODE) {
1300 		/* Conventional PCI bus */
1301 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n", sc->bge_dev.dv_xname));
1302 		dma_rw_ctl = (BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD |
1303 		   (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1304 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT));
1305 		if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1306 			dma_rw_ctl |= 0x0F;
1307 		}
1308 	} else {
1309 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n", sc->bge_dev.dv_xname));
1310 		/* PCI-X bus */
1311 		dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1312 		    (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1313 		    (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1314 		    (0x0F);
1315 		/*
1316 		 * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1317 		 * for hardware bugs, which means we should also clear
1318 		 * the low-order MINDMA bits.  In addition, the 5704
1319 		 * uses a different encoding of read/write watermarks.
1320 		 */
1321 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1322 			dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1323 			  /* should be 0x1f0000 */
1324 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1325 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1326 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1327 		}
1328 		else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
1329 			dma_rw_ctl &=  0xfffffff0;
1330 			dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1331 		}
1332 	}
1333 
1334 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl);
1335 
1336 	/*
1337 	 * Set up general mode register.
1338 	 */
1339 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1340 		    BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1341 		    BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM);
1342 
1343 	/* Get cache line size. */
1344 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
1345 
1346 	/*
1347 	 * Avoid violating PCI spec on certain chip revs.
1348 	 */
1349 	if (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD) &
1350 	    PCIM_CMD_MWIEN) {
1351 		switch(cachesize) {
1352 		case 1:
1353 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1354 				   BGE_PCI_WRITE_BNDRY_16BYTES);
1355 			break;
1356 		case 2:
1357 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1358 				   BGE_PCI_WRITE_BNDRY_32BYTES);
1359 			break;
1360 		case 4:
1361 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1362 				   BGE_PCI_WRITE_BNDRY_64BYTES);
1363 			break;
1364 		case 8:
1365 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1366 				   BGE_PCI_WRITE_BNDRY_128BYTES);
1367 			break;
1368 		case 16:
1369 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1370 				   BGE_PCI_WRITE_BNDRY_256BYTES);
1371 			break;
1372 		case 32:
1373 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1374 				   BGE_PCI_WRITE_BNDRY_512BYTES);
1375 			break;
1376 		case 64:
1377 			PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL,
1378 				   BGE_PCI_WRITE_BNDRY_1024BYTES);
1379 			break;
1380 		default:
1381 		/* Disable PCI memory write and invalidate. */
1382 #if 0
1383 			if (bootverbose)
1384 				printf("%s: cache line size %d not "
1385 				    "supported; disabling PCI MWI\n",
1386 				    sc->bge_dev.dv_xname, cachesize);
1387 #endif
1388 			PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD,
1389 			    PCIM_CMD_MWIEN);
1390 			break;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * Disable memory write invalidate.  Apparently it is not supported
1396 	 * properly by these devices.
1397 	 */
1398 	PCI_CLRBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, PCIM_CMD_MWIEN);
1399 
1400 
1401 #ifdef __brokenalpha__
1402 	/*
1403 	 * Must insure that we do not cross an 8K (bytes) boundary
1404 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1405 	 * restriction on some ALPHA platforms with early revision
1406 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1407 	 */
1408 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1409 #endif
1410 
1411 	/* Set the timer prescaler (always 66MHz) */
1412 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1413 
1414 	return(0);
1415 }
1416 
1417 int
1418 bge_blockinit(sc)
1419 	struct bge_softc *sc;
1420 {
1421 	volatile struct bge_rcb		*rcb;
1422 	bus_size_t		rcb_addr;
1423 	int			i;
1424 	struct ifnet		*ifp = &sc->ethercom.ec_if;
1425 	bge_hostaddr		taddr;
1426 
1427 	/*
1428 	 * Initialize the memory window pointer register so that
1429 	 * we can access the first 32K of internal NIC RAM. This will
1430 	 * allow us to set up the TX send ring RCBs and the RX return
1431 	 * ring RCBs, plus other things which live in NIC memory.
1432 	 */
1433 
1434 	pci_conf_write(sc->bge_pa.pa_pc, sc->bge_pa.pa_tag,
1435 	    BGE_PCI_MEMWIN_BASEADDR, 0);
1436 
1437 	/* Configure mbuf memory pool */
1438 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1439 		if (sc->bge_extram) {
1440 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1441 			    BGE_EXT_SSRAM);
1442 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1443 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1444 			else
1445 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1446 		} else {
1447 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1448 			    BGE_BUFFPOOL_1);
1449 			if ((sc->bge_quirks & BGE_QUIRK_FEWER_MBUFS) != 0)
1450 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1451 			else
1452 				CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1453 		}
1454 
1455 		/* Configure DMA resource pool */
1456 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1457 		    BGE_DMA_DESCRIPTORS);
1458 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1459 	}
1460 
1461 	/* Configure mbuf pool watermarks */
1462 #ifdef ORIG_WPAUL_VALUES
1463 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1464 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1465 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1466 #else
1467 	/* new broadcom docs strongly recommend these: */
1468 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1469 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1470 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1471 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1472 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1473 		} else {
1474 			/* Values from Linux driver... */
1475 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1476 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1477 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1478 		}
1479 	} else {
1480 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1481 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1482 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1483 	}
1484 #endif
1485 
1486 	/* Configure DMA resource watermarks */
1487 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1488 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1489 
1490 	/* Enable buffer manager */
1491 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1492 		CSR_WRITE_4(sc, BGE_BMAN_MODE,
1493 		    BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1494 
1495 		/* Poll for buffer manager start indication */
1496 		for (i = 0; i < BGE_TIMEOUT; i++) {
1497 			if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1498 				break;
1499 			DELAY(10);
1500 		}
1501 
1502 		if (i == BGE_TIMEOUT) {
1503 			printf("%s: buffer manager failed to start\n",
1504 			    sc->bge_dev.dv_xname);
1505 			return(ENXIO);
1506 		}
1507 	}
1508 
1509 	/* Enable flow-through queues */
1510 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1511 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1512 
1513 	/* Wait until queue initialization is complete */
1514 	for (i = 0; i < BGE_TIMEOUT; i++) {
1515 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1516 			break;
1517 		DELAY(10);
1518 	}
1519 
1520 	if (i == BGE_TIMEOUT) {
1521 		printf("%s: flow-through queue init failed\n",
1522 		    sc->bge_dev.dv_xname);
1523 		return(ENXIO);
1524 	}
1525 
1526 	/* Initialize the standard RX ring control block */
1527 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
1528 	bge_set_hostaddr(&rcb->bge_hostaddr,
1529 	    BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
1530 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1531 		rcb->bge_maxlen_flags =
1532 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1533 	} else {
1534 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1535 	}
1536 	if (sc->bge_extram)
1537 		rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS;
1538 	else
1539 		rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1540 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1541 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1542 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1543 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1544 
1545 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1546 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
1547 	} else {
1548 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
1549 	}
1550 
1551 	/*
1552 	 * Initialize the jumbo RX ring control block
1553 	 * We set the 'ring disabled' bit in the flags
1554 	 * field until we're actually ready to start
1555 	 * using this ring (i.e. once we set the MTU
1556 	 * high enough to require it).
1557 	 */
1558 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1559 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1560 		bge_set_hostaddr(&rcb->bge_hostaddr,
1561 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
1562 		rcb->bge_maxlen_flags =
1563 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1564 			BGE_RCB_FLAG_RING_DISABLED);
1565 		if (sc->bge_extram)
1566 			rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS;
1567 		else
1568 			rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1569 
1570 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1571 		    rcb->bge_hostaddr.bge_addr_hi);
1572 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1573 		    rcb->bge_hostaddr.bge_addr_lo);
1574 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1575 		    rcb->bge_maxlen_flags);
1576 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1577 
1578 		/* Set up dummy disabled mini ring RCB */
1579 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
1580 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
1581 		    BGE_RCB_FLAG_RING_DISABLED);
1582 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1583 		    rcb->bge_maxlen_flags);
1584 
1585 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1586 		    offsetof(struct bge_ring_data, bge_info),
1587 		    sizeof (struct bge_gib),
1588 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589 	}
1590 
1591 	/*
1592 	 * Set the BD ring replentish thresholds. The recommended
1593 	 * values are 1/8th the number of descriptors allocated to
1594 	 * each ring.
1595 	 */
1596 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8);
1597 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8);
1598 
1599 	/*
1600 	 * Disable all unused send rings by setting the 'ring disabled'
1601 	 * bit in the flags field of all the TX send ring control blocks.
1602 	 * These are located in NIC memory.
1603 	 */
1604 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1605 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
1606 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1607 		    BGE_RCB_MAXLEN_FLAGS(0,BGE_RCB_FLAG_RING_DISABLED));
1608 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1609 		rcb_addr += sizeof(struct bge_rcb);
1610 	}
1611 
1612 	/* Configure TX RCB 0 (we use only the first ring) */
1613 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1614 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
1615 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1616 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1617 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
1618 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1619 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1620 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1621 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1622 	}
1623 
1624 	/* Disable all unused RX return rings */
1625 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1626 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
1627 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
1628 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
1629 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1630 			    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
1631                                      BGE_RCB_FLAG_RING_DISABLED));
1632 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
1633 		CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO +
1634 		    (i * (sizeof(u_int64_t))), 0);
1635 		rcb_addr += sizeof(struct bge_rcb);
1636 	}
1637 
1638 	/* Initialize RX ring indexes */
1639 	CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1640 	CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1641 	CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1642 
1643 	/*
1644 	 * Set up RX return ring 0
1645 	 * Note that the NIC address for RX return rings is 0x00000000.
1646 	 * The return rings live entirely within the host, so the
1647 	 * nicaddr field in the RCB isn't used.
1648 	 */
1649 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1650 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
1651 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1652 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1653 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
1654 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
1655 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1656 
1657 	/* Set random backoff seed for TX */
1658 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1659 	    LLADDR(ifp->if_sadl)[0] + LLADDR(ifp->if_sadl)[1] +
1660 	    LLADDR(ifp->if_sadl)[2] + LLADDR(ifp->if_sadl)[3] +
1661 	    LLADDR(ifp->if_sadl)[4] + LLADDR(ifp->if_sadl)[5] +
1662 	    BGE_TX_BACKOFF_SEED_MASK);
1663 
1664 	/* Set inter-packet gap */
1665 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1666 
1667 	/*
1668 	 * Specify which ring to use for packets that don't match
1669 	 * any RX rules.
1670 	 */
1671 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1672 
1673 	/*
1674 	 * Configure number of RX lists. One interrupt distribution
1675 	 * list, sixteen active lists, one bad frames class.
1676 	 */
1677 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1678 
1679 	/* Inialize RX list placement stats mask. */
1680 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1681 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1682 
1683 	/* Disable host coalescing until we get it set up */
1684 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1685 
1686 	/* Poll to make sure it's shut down. */
1687 	for (i = 0; i < BGE_TIMEOUT; i++) {
1688 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1689 			break;
1690 		DELAY(10);
1691 	}
1692 
1693 	if (i == BGE_TIMEOUT) {
1694 		printf("%s: host coalescing engine failed to idle\n",
1695 		    sc->bge_dev.dv_xname);
1696 		return(ENXIO);
1697 	}
1698 
1699 	/* Set up host coalescing defaults */
1700 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1701 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1702 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
1703 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
1704 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1705 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
1706 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
1707 	}
1708 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
1709 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
1710 
1711 	/* Set up address of statistics block */
1712 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1713 		bge_set_hostaddr(&taddr,
1714 		    BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
1715 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1716 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1717 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
1718 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
1719 	}
1720 
1721 	/* Set up address of status block */
1722 	bge_set_hostaddr(&taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
1723 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1724 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
1725 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
1726 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
1727 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
1728 
1729 	/* Turn on host coalescing state machine */
1730 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
1731 
1732 	/* Turn on RX BD completion state machine and enable attentions */
1733 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
1734 	    BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1735 
1736 	/* Turn on RX list placement state machine */
1737 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1738 
1739 	/* Turn on RX list selector state machine. */
1740 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1741 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1742 	}
1743 
1744 	/* Turn on DMA, clear stats */
1745 	CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB|
1746 	    BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR|
1747 	    BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB|
1748 	    BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB|
1749 	    (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII));
1750 
1751 	/* Set misc. local control, enable interrupts on attentions */
1752 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
1753 
1754 #ifdef notdef
1755 	/* Assert GPIO pins for PHY reset */
1756 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1757 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1758 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1759 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1760 #endif
1761 
1762 #if defined(not_quite_yet)
1763 	/* Linux driver enables enable gpio pin #1 on 5700s */
1764 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
1765 		sc->bge_local_ctrl_reg |=
1766 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
1767 	}
1768 #endif
1769 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
1770 
1771 	/* Turn on DMA completion state machine */
1772 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1773 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1774 	}
1775 
1776 	/* Turn on write DMA state machine */
1777 	CSR_WRITE_4(sc, BGE_WDMA_MODE,
1778 	    BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS);
1779 
1780 	/* Turn on read DMA state machine */
1781 	CSR_WRITE_4(sc, BGE_RDMA_MODE,
1782 	    BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS);
1783 
1784 	/* Turn on RX data completion state machine */
1785 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1786 
1787 	/* Turn on RX BD initiator state machine */
1788 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1789 
1790 	/* Turn on RX data and RX BD initiator state machine */
1791 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1792 
1793 	/* Turn on Mbuf cluster free state machine */
1794 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
1795 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1796 	}
1797 
1798 	/* Turn on send BD completion state machine */
1799 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1800 
1801 	/* Turn on send data completion state machine */
1802 	CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
1803 
1804 	/* Turn on send data initiator state machine */
1805 	CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1806 
1807 	/* Turn on send BD initiator state machine */
1808 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1809 
1810 	/* Turn on send BD selector state machine */
1811 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1812 
1813 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1814 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1815 	    BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1816 
1817 	/* ack/clear link change events */
1818 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1819 	    BGE_MACSTAT_CFG_CHANGED);
1820 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
1821 
1822 	/* Enable PHY auto polling (for MII/GMII only) */
1823 	if (sc->bge_tbi) {
1824 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1825  	} else {
1826 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16);
1827 		if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN)
1828 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1829 			    BGE_EVTENB_MI_INTERRUPT);
1830 	}
1831 
1832 	/* Enable link state change attentions. */
1833 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1834 
1835 	return(0);
1836 }
1837 
1838 static const struct bge_revision {
1839 	uint32_t		br_chipid;
1840 	uint32_t		br_quirks;
1841 	const char		*br_name;
1842 } bge_revisions[] = {
1843 	{ BGE_CHIPID_BCM5700_A0,
1844 	  BGE_QUIRK_LINK_STATE_BROKEN,
1845 	  "BCM5700 A0" },
1846 
1847 	{ BGE_CHIPID_BCM5700_A1,
1848 	  BGE_QUIRK_LINK_STATE_BROKEN,
1849 	  "BCM5700 A1" },
1850 
1851 	{ BGE_CHIPID_BCM5700_B0,
1852 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_CSUM_BROKEN|BGE_QUIRK_5700_COMMON,
1853 	  "BCM5700 B0" },
1854 
1855 	{ BGE_CHIPID_BCM5700_B1,
1856 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1857 	  "BCM5700 B1" },
1858 
1859 	{ BGE_CHIPID_BCM5700_B2,
1860 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1861 	  "BCM5700 B2" },
1862 
1863 	/* This is treated like a BCM5700 Bx */
1864 	{ BGE_CHIPID_BCM5700_ALTIMA,
1865 	  BGE_QUIRK_LINK_STATE_BROKEN|BGE_QUIRK_5700_COMMON,
1866 	  "BCM5700 Altima" },
1867 
1868 	{ BGE_CHIPID_BCM5700_C0,
1869 	  0,
1870 	  "BCM5700 C0" },
1871 
1872 	{ BGE_CHIPID_BCM5701_A0,
1873 	  0, /*XXX really, just not known */
1874 	  "BCM5701 A0" },
1875 
1876 	{ BGE_CHIPID_BCM5701_B0,
1877 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1878 	  "BCM5701 B0" },
1879 
1880 	{ BGE_CHIPID_BCM5701_B2,
1881 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1882 	  "BCM5701 B2" },
1883 
1884 	{ BGE_CHIPID_BCM5701_B5,
1885 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1886 	  "BCM5701 B5" },
1887 
1888 	{ BGE_CHIPID_BCM5703_A0,
1889 	  0,
1890 	  "BCM5703 A0" },
1891 
1892 	{ BGE_CHIPID_BCM5703_A1,
1893 	  0,
1894 	  "BCM5703 A1" },
1895 
1896 	{ BGE_CHIPID_BCM5703_A2,
1897 	  BGE_QUIRK_ONLY_PHY_1,
1898 	  "BCM5703 A2" },
1899 
1900 	{ BGE_CHIPID_BCM5703_A3,
1901 	  BGE_QUIRK_ONLY_PHY_1,
1902 	  "BCM5703 A3" },
1903 
1904 	{ BGE_CHIPID_BCM5704_A0,
1905   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1906 	  "BCM5704 A0" },
1907 
1908 	{ BGE_CHIPID_BCM5704_A1,
1909   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1910 	  "BCM5704 A1" },
1911 
1912 	{ BGE_CHIPID_BCM5704_A2,
1913   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1914 	  "BCM5704 A2" },
1915 
1916 	{ BGE_CHIPID_BCM5704_A3,
1917   	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_FEWER_MBUFS,
1918 	  "BCM5704 A3" },
1919 
1920 	{ BGE_CHIPID_BCM5705_A0,
1921 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1922 	  "BCM5705 A0" },
1923 
1924 	{ BGE_CHIPID_BCM5705_A1,
1925 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1926 	  "BCM5705 A1" },
1927 
1928 	{ BGE_CHIPID_BCM5705_A2,
1929 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1930 	  "BCM5705 A2" },
1931 
1932 	{ BGE_CHIPID_BCM5705_A3,
1933 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1934 	  "BCM5705 A3" },
1935 
1936 	{ BGE_CHIPID_BCM5750_A0,
1937 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1938 	  "BCM5750 A1" },
1939 
1940 	{ BGE_CHIPID_BCM5750_A1,
1941 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1942 	  "BCM5750 A1" },
1943 
1944 	{ 0, 0, NULL }
1945 };
1946 
1947 /*
1948  * Some defaults for major revisions, so that newer steppings
1949  * that we don't know about have a shot at working.
1950  */
1951 static const struct bge_revision bge_majorrevs[] = {
1952 	{ BGE_ASICREV_BCM5700,
1953 	  BGE_QUIRK_LINK_STATE_BROKEN,
1954 	  "unknown BCM5700" },
1955 
1956 	{ BGE_ASICREV_BCM5701,
1957 	  BGE_QUIRK_PCIX_DMA_ALIGN_BUG,
1958 	  "unknown BCM5701" },
1959 
1960 	{ BGE_ASICREV_BCM5703,
1961 	  0,
1962 	  "unknown BCM5703" },
1963 
1964 	{ BGE_ASICREV_BCM5704,
1965 	  BGE_QUIRK_ONLY_PHY_1,
1966 	  "unknown BCM5704" },
1967 
1968 	{ BGE_ASICREV_BCM5705,
1969 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1970 	  "unknown BCM5705" },
1971 
1972 	{ BGE_ASICREV_BCM5750,
1973 	  BGE_QUIRK_ONLY_PHY_1|BGE_QUIRK_5705_CORE,
1974 	  "unknown BCM5750" },
1975 
1976 	{ 0,
1977 	  0,
1978 	  NULL }
1979 };
1980 
1981 
1982 static const struct bge_revision *
1983 bge_lookup_rev(uint32_t chipid)
1984 {
1985 	const struct bge_revision *br;
1986 
1987 	for (br = bge_revisions; br->br_name != NULL; br++) {
1988 		if (br->br_chipid == chipid)
1989 			return (br);
1990 	}
1991 
1992 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
1993 		if (br->br_chipid == BGE_ASICREV(chipid))
1994 			return (br);
1995 	}
1996 
1997 	return (NULL);
1998 }
1999 
2000 static const struct bge_product {
2001 	pci_vendor_id_t		bp_vendor;
2002 	pci_product_id_t	bp_product;
2003 	const char		*bp_name;
2004 } bge_products[] = {
2005 	/*
2006 	 * The BCM5700 documentation seems to indicate that the hardware
2007 	 * still has the Alteon vendor ID burned into it, though it
2008 	 * should always be overridden by the value in the EEPROM.  We'll
2009 	 * check for it anyway.
2010 	 */
2011 	{ PCI_VENDOR_ALTEON,
2012 	  PCI_PRODUCT_ALTEON_BCM5700,
2013 	  "Broadcom BCM5700 Gigabit Ethernet",
2014 	  },
2015 	{ PCI_VENDOR_ALTEON,
2016 	  PCI_PRODUCT_ALTEON_BCM5701,
2017 	  "Broadcom BCM5701 Gigabit Ethernet",
2018 	  },
2019 
2020 	{ PCI_VENDOR_ALTIMA,
2021 	  PCI_PRODUCT_ALTIMA_AC1000,
2022 	  "Altima AC1000 Gigabit Ethernet",
2023 	  },
2024 	{ PCI_VENDOR_ALTIMA,
2025 	  PCI_PRODUCT_ALTIMA_AC1001,
2026 	  "Altima AC1001 Gigabit Ethernet",
2027 	   },
2028 	{ PCI_VENDOR_ALTIMA,
2029 	  PCI_PRODUCT_ALTIMA_AC9100,
2030 	  "Altima AC9100 Gigabit Ethernet",
2031 	  },
2032 
2033 	{ PCI_VENDOR_BROADCOM,
2034 	  PCI_PRODUCT_BROADCOM_BCM5700,
2035 	  "Broadcom BCM5700 Gigabit Ethernet",
2036 	  },
2037 	{ PCI_VENDOR_BROADCOM,
2038 	  PCI_PRODUCT_BROADCOM_BCM5701,
2039 	  "Broadcom BCM5701 Gigabit Ethernet",
2040 	  },
2041 	{ PCI_VENDOR_BROADCOM,
2042 	  PCI_PRODUCT_BROADCOM_BCM5702,
2043 	  "Broadcom BCM5702 Gigabit Ethernet",
2044 	  },
2045 	{ PCI_VENDOR_BROADCOM,
2046 	  PCI_PRODUCT_BROADCOM_BCM5702X,
2047 	  "Broadcom BCM5702X Gigabit Ethernet" },
2048 
2049 	{ PCI_VENDOR_BROADCOM,
2050 	  PCI_PRODUCT_BROADCOM_BCM5703,
2051 	  "Broadcom BCM5703 Gigabit Ethernet",
2052 	  },
2053 	{ PCI_VENDOR_BROADCOM,
2054 	  PCI_PRODUCT_BROADCOM_BCM5703X,
2055 	  "Broadcom BCM5703X Gigabit Ethernet",
2056 	  },
2057 	{ PCI_VENDOR_BROADCOM,
2058 	  PCI_PRODUCT_BROADCOM_BCM5703A3,
2059 	  "Broadcom BCM5703A3 Gigabit Ethernet",
2060 	  },
2061 
2062    	{ PCI_VENDOR_BROADCOM,
2063 	  PCI_PRODUCT_BROADCOM_BCM5704C,
2064 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
2065 	  },
2066    	{ PCI_VENDOR_BROADCOM,
2067 	  PCI_PRODUCT_BROADCOM_BCM5704S,
2068 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
2069 	  },
2070 
2071    	{ PCI_VENDOR_BROADCOM,
2072 	  PCI_PRODUCT_BROADCOM_BCM5705,
2073 	  "Broadcom BCM5705 Gigabit Ethernet",
2074 	  },
2075    	{ PCI_VENDOR_BROADCOM,
2076 	  PCI_PRODUCT_BROADCOM_BCM5705_ALT,
2077 	  "Broadcom BCM5705 Gigabit Ethernet",
2078 	  },
2079    	{ PCI_VENDOR_BROADCOM,
2080 	  PCI_PRODUCT_BROADCOM_BCM5705M,
2081 	  "Broadcom BCM5705M Gigabit Ethernet",
2082 	  },
2083 
2084 	{ PCI_VENDOR_BROADCOM,
2085 	  PCI_PRODUCT_BROADCOM_BCM5750,
2086 	  "Broadcom BCM5750 Gigabit Ethernet",
2087 	  },
2088 
2089 	{ PCI_VENDOR_BROADCOM,
2090 	  PCI_PRODUCT_BROADCOM_BCM5750M,
2091 	  "Broadcom BCM5750M Gigabit Ethernet",
2092 	  },
2093 
2094 	{ PCI_VENDOR_BROADCOM,
2095 	  PCI_PRODUCT_BROADCOM_BCM5751,
2096 	  "Broadcom BCM5751 Gigabit Ethernet",
2097 	  },
2098 
2099    	{ PCI_VENDOR_BROADCOM,
2100 	  PCI_PRODUCT_BROADCOM_BCM5782,
2101 	  "Broadcom BCM5782 Gigabit Ethernet",
2102 	  },
2103    	{ PCI_VENDOR_BROADCOM,
2104 	  PCI_PRODUCT_BROADCOM_BCM5788,
2105 	  "Broadcom BCM5788 Gigabit Ethernet",
2106 	  },
2107 
2108    	{ PCI_VENDOR_BROADCOM,
2109 	  PCI_PRODUCT_BROADCOM_BCM5901,
2110 	  "Broadcom BCM5901 Fast Ethernet",
2111 	  },
2112    	{ PCI_VENDOR_BROADCOM,
2113 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
2114 	  "Broadcom BCM5901A2 Fast Ethernet",
2115 	  },
2116 
2117 	{ PCI_VENDOR_SCHNEIDERKOCH,
2118 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
2119 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
2120 	  },
2121 
2122 	{ PCI_VENDOR_3COM,
2123 	  PCI_PRODUCT_3COM_3C996,
2124 	  "3Com 3c996 Gigabit Ethernet",
2125 	  },
2126 
2127 	{ 0,
2128 	  0,
2129 	  NULL },
2130 };
2131 
2132 static const struct bge_product *
2133 bge_lookup(const struct pci_attach_args *pa)
2134 {
2135 	const struct bge_product *bp;
2136 
2137 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2138 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2139 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2140 			return (bp);
2141 	}
2142 
2143 	return (NULL);
2144 }
2145 
2146 int
2147 bge_setpowerstate(sc, powerlevel)
2148 	struct bge_softc *sc;
2149 	int powerlevel;
2150 {
2151 #ifdef NOTYET
2152 	u_int32_t pm_ctl = 0;
2153 
2154 	/* XXX FIXME: make sure indirect accesses enabled? */
2155 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2156 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2157 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2158 
2159 	/* clear the PME_assert bit and power state bits, enable PME */
2160 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2161 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2162 	pm_ctl |= (1 << 8);
2163 
2164 	if (powerlevel == 0) {
2165 		pm_ctl |= PCIM_PSTAT_D0;
2166 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2167 		    pm_ctl, 2);
2168 		DELAY(10000);
2169 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2170 		DELAY(10000);
2171 
2172 #ifdef NOTYET
2173 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2174 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2175 #endif
2176 		DELAY(40); DELAY(40); DELAY(40);
2177 		DELAY(10000);	/* above not quite adequate on 5700 */
2178 		return 0;
2179 	}
2180 
2181 
2182 	/*
2183 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2184 	 * GMII gpio pins. Example code assumes all hardware vendors
2185 	 * followed Broadom's sample pcb layout. Until we verify that
2186 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2187 	 */
2188 	printf("%s: power state %d unimplemented; check GPIO pins\n",
2189 	       sc->bge_dev.dv_xname, powerlevel);
2190 #endif
2191 	return EOPNOTSUPP;
2192 }
2193 
2194 
2195 /*
2196  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2197  * against our list and return its name if we find a match. Note
2198  * that since the Broadcom controller contains VPD support, we
2199  * can get the device name string from the controller itself instead
2200  * of the compiled-in string. This is a little slow, but it guarantees
2201  * we'll always announce the right product name.
2202  */
2203 int
2204 bge_probe(parent, match, aux)
2205 	struct device *parent;
2206 	struct cfdata *match;
2207 	void *aux;
2208 {
2209 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2210 
2211 	if (bge_lookup(pa) != NULL)
2212 		return (1);
2213 
2214 	return (0);
2215 }
2216 
2217 void
2218 bge_attach(parent, self, aux)
2219 	struct device *parent, *self;
2220 	void *aux;
2221 {
2222 	struct bge_softc	*sc = (struct bge_softc *)self;
2223 	struct pci_attach_args	*pa = aux;
2224 	const struct bge_product *bp;
2225 	const struct bge_revision *br;
2226 	pci_chipset_tag_t	pc = pa->pa_pc;
2227 	pci_intr_handle_t	ih;
2228 	const char		*intrstr = NULL;
2229 	bus_dma_segment_t	seg;
2230 	int			rseg;
2231 	u_int32_t		hwcfg = 0;
2232 	u_int32_t		mac_addr = 0;
2233 	u_int32_t		command;
2234 	struct ifnet		*ifp;
2235 	caddr_t			kva;
2236 	u_char			eaddr[ETHER_ADDR_LEN];
2237 	pcireg_t		memtype;
2238 	bus_addr_t		memaddr;
2239 	bus_size_t		memsize;
2240 	u_int32_t		pm_ctl;
2241 
2242 	bp = bge_lookup(pa);
2243 	KASSERT(bp != NULL);
2244 
2245 	sc->bge_pa = *pa;
2246 
2247 	aprint_naive(": Ethernet controller\n");
2248 	aprint_normal(": %s\n", bp->bp_name);
2249 
2250 	/*
2251 	 * Map control/status registers.
2252 	 */
2253 	DPRINTFN(5, ("Map control/status regs\n"));
2254 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2255 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2256 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
2257 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
2258 
2259 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2260 		aprint_error("%s: failed to enable memory mapping!\n",
2261 		    sc->bge_dev.dv_xname);
2262 		return;
2263 	}
2264 
2265 	DPRINTFN(5, ("pci_mem_find\n"));
2266 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0);
2267  	switch (memtype) {
2268 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2269 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2270 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2271 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2272 		    &memaddr, &memsize) == 0)
2273 			break;
2274 	default:
2275 		aprint_error("%s: can't find mem space\n",
2276 		    sc->bge_dev.dv_xname);
2277 		return;
2278 	}
2279 
2280 	DPRINTFN(5, ("pci_intr_map\n"));
2281 	if (pci_intr_map(pa, &ih)) {
2282 		aprint_error("%s: couldn't map interrupt\n",
2283 		    sc->bge_dev.dv_xname);
2284 		return;
2285 	}
2286 
2287 	DPRINTFN(5, ("pci_intr_string\n"));
2288 	intrstr = pci_intr_string(pc, ih);
2289 
2290 	DPRINTFN(5, ("pci_intr_establish\n"));
2291 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2292 
2293 	if (sc->bge_intrhand == NULL) {
2294 		aprint_error("%s: couldn't establish interrupt",
2295 		    sc->bge_dev.dv_xname);
2296 		if (intrstr != NULL)
2297 			aprint_normal(" at %s", intrstr);
2298 		aprint_normal("\n");
2299 		return;
2300 	}
2301 	aprint_normal("%s: interrupting at %s\n",
2302 	    sc->bge_dev.dv_xname, intrstr);
2303 
2304 	/*
2305 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2306 	 * can clobber the chip's PCI config-space power control registers,
2307 	 * leaving the card in D3 powersave state.
2308 	 * We do not have memory-mapped registers in this state,
2309 	 * so force device into D0 state before starting initialization.
2310 	 */
2311 	pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD);
2312 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2313 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2314 	pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2315 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2316 
2317 	/*
2318 	 * Save ASIC rev.  Look up any quirks associated with this
2319 	 * ASIC.
2320 	 */
2321 	sc->bge_chipid =
2322 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL) &
2323 	    BGE_PCIMISCCTL_ASICREV;
2324 
2325 	/*
2326 	 * Detect PCI-Express devices
2327 	 * XXX: guessed from Linux/FreeBSD; no documentation
2328 	 */
2329 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 &&
2330 	    pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
2331 	    NULL, NULL) != 0)
2332 		sc->bge_pcie = 1;
2333 	else
2334 		sc->bge_pcie = 0;
2335 
2336 	/* Try to reset the chip. */
2337 	DPRINTFN(5, ("bge_reset\n"));
2338 	bge_reset(sc);
2339 
2340 	if (bge_chipinit(sc)) {
2341 		aprint_error("%s: chip initialization failed\n",
2342 		    sc->bge_dev.dv_xname);
2343 		bge_release_resources(sc);
2344 		return;
2345 	}
2346 
2347 	/*
2348 	 * Get station address from the EEPROM.
2349 	 */
2350 	mac_addr = bge_readmem_ind(sc, 0x0c14);
2351 	if ((mac_addr >> 16) == 0x484b) {
2352 		eaddr[0] = (u_char)(mac_addr >> 8);
2353 		eaddr[1] = (u_char)(mac_addr >> 0);
2354 		mac_addr = bge_readmem_ind(sc, 0x0c18);
2355 		eaddr[2] = (u_char)(mac_addr >> 24);
2356 		eaddr[3] = (u_char)(mac_addr >> 16);
2357 		eaddr[4] = (u_char)(mac_addr >> 8);
2358 		eaddr[5] = (u_char)(mac_addr >> 0);
2359 	} else if (bge_read_eeprom(sc, (caddr_t)eaddr,
2360 	    BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
2361 		aprint_error("%s: failed to read station address\n",
2362 		    sc->bge_dev.dv_xname);
2363 		bge_release_resources(sc);
2364 		return;
2365 	}
2366 
2367 	br = bge_lookup_rev(sc->bge_chipid);
2368 	aprint_normal("%s: ", sc->bge_dev.dv_xname);
2369 
2370 	if (br == NULL) {
2371 		aprint_normal("unknown ASIC (0x%04x)", sc->bge_chipid >> 16);
2372 		sc->bge_quirks = 0;
2373 	} else {
2374 		aprint_normal("ASIC %s (0x%04x)",
2375 		    br->br_name, sc->bge_chipid >> 16);
2376 		sc->bge_quirks |= br->br_quirks;
2377 	}
2378 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2379 
2380 	/* Allocate the general information block and ring buffers. */
2381 	if (pci_dma64_available(pa))
2382 		sc->bge_dmatag = pa->pa_dmat64;
2383 	else
2384 		sc->bge_dmatag = pa->pa_dmat;
2385 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2386 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2387 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2388 		aprint_error("%s: can't alloc rx buffers\n",
2389 		    sc->bge_dev.dv_xname);
2390 		return;
2391 	}
2392 	DPRINTFN(5, ("bus_dmamem_map\n"));
2393 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2394 			   sizeof(struct bge_ring_data), &kva,
2395 			   BUS_DMA_NOWAIT)) {
2396 		aprint_error("%s: can't map DMA buffers (%d bytes)\n",
2397 		    sc->bge_dev.dv_xname, (int)sizeof(struct bge_ring_data));
2398 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2399 		return;
2400 	}
2401 	DPRINTFN(5, ("bus_dmamem_create\n"));
2402 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2403 	    sizeof(struct bge_ring_data), 0,
2404 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2405 		aprint_error("%s: can't create DMA map\n",
2406 		    sc->bge_dev.dv_xname);
2407 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2408 				 sizeof(struct bge_ring_data));
2409 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2410 		return;
2411 	}
2412 	DPRINTFN(5, ("bus_dmamem_load\n"));
2413 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2414 			    sizeof(struct bge_ring_data), NULL,
2415 			    BUS_DMA_NOWAIT)) {
2416 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2417 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2418 				 sizeof(struct bge_ring_data));
2419 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2420 		return;
2421 	}
2422 
2423 	DPRINTFN(5, ("bzero\n"));
2424 	sc->bge_rdata = (struct bge_ring_data *)kva;
2425 
2426 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2427 
2428 	/* Try to allocate memory for jumbo buffers. */
2429 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2430 		if (bge_alloc_jumbo_mem(sc)) {
2431 			aprint_error("%s: jumbo buffer allocation failed\n",
2432 			    sc->bge_dev.dv_xname);
2433 		} else
2434 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2435 	}
2436 
2437 	/* Set default tuneable values. */
2438 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2439 	sc->bge_rx_coal_ticks = 150;
2440 	sc->bge_rx_max_coal_bds = 64;
2441 #ifdef ORIG_WPAUL_VALUES
2442 	sc->bge_tx_coal_ticks = 150;
2443 	sc->bge_tx_max_coal_bds = 128;
2444 #else
2445 	sc->bge_tx_coal_ticks = 300;
2446 	sc->bge_tx_max_coal_bds = 400;
2447 #endif
2448 
2449 	/* Set up ifnet structure */
2450 	ifp = &sc->ethercom.ec_if;
2451 	ifp->if_softc = sc;
2452 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2453 	ifp->if_ioctl = bge_ioctl;
2454 	ifp->if_start = bge_start;
2455 	ifp->if_init = bge_init;
2456 	ifp->if_watchdog = bge_watchdog;
2457 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2458 	IFQ_SET_READY(&ifp->if_snd);
2459 	DPRINTFN(5, ("bcopy\n"));
2460 	strcpy(ifp->if_xname, sc->bge_dev.dv_xname);
2461 
2462 	if ((sc->bge_quirks & BGE_QUIRK_CSUM_BROKEN) == 0)
2463 		sc->ethercom.ec_if.if_capabilities |=
2464 		    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
2465 	sc->ethercom.ec_capabilities |=
2466 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2467 
2468 	/*
2469 	 * Do MII setup.
2470 	 */
2471 	DPRINTFN(5, ("mii setup\n"));
2472 	sc->bge_mii.mii_ifp = ifp;
2473 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2474 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2475 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2476 
2477 	/*
2478 	 * Figure out what sort of media we have by checking the
2479 	 * hardware config word in the first 32k of NIC internal memory,
2480 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2481 	 * cards, this value appears to be unset. If that's the
2482 	 * case, we have to rely on identifying the NIC by its PCI
2483 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2484 	 */
2485 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2486 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2487 	} else {
2488 		bge_read_eeprom(sc, (caddr_t)&hwcfg,
2489 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2490 		hwcfg = be32toh(hwcfg);
2491 	}
2492 	if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER)
2493 		sc->bge_tbi = 1;
2494 
2495 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2496 	if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_SUBSYS) >> 16) ==
2497 	    SK_SUBSYSID_9D41)
2498 		sc->bge_tbi = 1;
2499 
2500 	if (sc->bge_tbi) {
2501 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2502 		    bge_ifmedia_sts);
2503 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2504 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX,
2505 			    0, NULL);
2506 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2507 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2508 	} else {
2509 		/*
2510 		 * Do transceiver setup.
2511 		 */
2512 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
2513 			     bge_ifmedia_sts);
2514 		mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff,
2515 			   MII_PHY_ANY, MII_OFFSET_ANY,
2516 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
2517 
2518 		if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) {
2519 			printf("%s: no PHY found!\n", sc->bge_dev.dv_xname);
2520 			ifmedia_add(&sc->bge_mii.mii_media,
2521 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
2522 			ifmedia_set(&sc->bge_mii.mii_media,
2523 				    IFM_ETHER|IFM_MANUAL);
2524 		} else
2525 			ifmedia_set(&sc->bge_mii.mii_media,
2526 				    IFM_ETHER|IFM_AUTO);
2527 	}
2528 
2529 	/*
2530 	 * When using the BCM5701 in PCI-X mode, data corruption has
2531 	 * been observed in the first few bytes of some received packets.
2532 	 * Aligning the packet buffer in memory eliminates the corruption.
2533 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2534 	 * which do not support unaligned accesses, we will realign the
2535 	 * payloads by copying the received packets.
2536 	 */
2537 	if (sc->bge_quirks & BGE_QUIRK_PCIX_DMA_ALIGN_BUG) {
2538 		/* If in PCI-X mode, work around the alignment bug. */
2539 		if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) &
2540                     (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) ==
2541                          BGE_PCISTATE_PCI_BUSSPEED)
2542 		sc->bge_rx_alignment_bug = 1;
2543         }
2544 
2545 	/*
2546 	 * Call MI attach routine.
2547 	 */
2548 	DPRINTFN(5, ("if_attach\n"));
2549 	if_attach(ifp);
2550 	DPRINTFN(5, ("ether_ifattach\n"));
2551 	ether_ifattach(ifp, eaddr);
2552 #ifdef BGE_EVENT_COUNTERS
2553 	/*
2554 	 * Attach event counters.
2555 	 */
2556 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
2557 	    NULL, sc->bge_dev.dv_xname, "intr");
2558 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
2559 	    NULL, sc->bge_dev.dv_xname, "tx_xoff");
2560 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
2561 	    NULL, sc->bge_dev.dv_xname, "tx_xon");
2562 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
2563 	    NULL, sc->bge_dev.dv_xname, "rx_xoff");
2564 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
2565 	    NULL, sc->bge_dev.dv_xname, "rx_xon");
2566 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
2567 	    NULL, sc->bge_dev.dv_xname, "rx_macctl");
2568 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
2569 	    NULL, sc->bge_dev.dv_xname, "xoffentered");
2570 #endif /* BGE_EVENT_COUNTERS */
2571 	DPRINTFN(5, ("callout_init\n"));
2572 	callout_init(&sc->bge_timeout);
2573 }
2574 
2575 void
2576 bge_release_resources(sc)
2577 	struct bge_softc *sc;
2578 {
2579 	if (sc->bge_vpd_prodname != NULL)
2580 		free(sc->bge_vpd_prodname, M_DEVBUF);
2581 
2582 	if (sc->bge_vpd_readonly != NULL)
2583 		free(sc->bge_vpd_readonly, M_DEVBUF);
2584 }
2585 
2586 void
2587 bge_reset(sc)
2588 	struct bge_softc *sc;
2589 {
2590 	struct pci_attach_args *pa = &sc->bge_pa;
2591 	u_int32_t cachesize, command, pcistate, new_pcistate;
2592 	int i, val;
2593 
2594 	/* Save some important PCI state. */
2595 	cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ);
2596 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD);
2597 	pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
2598 
2599 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2600 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2601 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2602 
2603 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
2604 	/*
2605 	 * XXX: from FreeBSD/Linux; no documentation
2606 	 */
2607 	if (sc->bge_pcie) {
2608 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
2609 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
2610 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2611 			/* No idea what that actually means */
2612 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
2613 			val |= (1<<29);
2614 		}
2615 	}
2616 
2617 	/* Issue global reset */
2618 	bge_writereg_ind(sc, BGE_MISC_CFG, val);
2619 
2620 	DELAY(1000);
2621 
2622 	/*
2623 	 * XXX: from FreeBSD/Linux; no documentation
2624 	 */
2625 	if (sc->bge_pcie) {
2626 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2627 			pcireg_t reg;
2628 
2629 			DELAY(500000);
2630 			/* XXX: Magic Numbers */
2631 			reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0);
2632 			pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN0,
2633 			    reg | (1 << 15));
2634 		}
2635 		/* XXX: Magic Numbers */
2636 		pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_UNKNOWN1, 0xf5000);
2637 	}
2638 
2639 	/* Reset some of the PCI state that got zapped by reset */
2640 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL,
2641 	    BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2642 	    BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW);
2643 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command);
2644 	pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize);
2645 	bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1));
2646 
2647 	/* Enable memory arbiter. */
2648 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2649 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2650 	}
2651 
2652 	/*
2653 	 * Prevent PXE restart: write a magic number to the
2654 	 * general communications memory at 0xB50.
2655 	 */
2656 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2657 
2658 	/*
2659 	 * Poll the value location we just wrote until
2660 	 * we see the 1's complement of the magic number.
2661 	 * This indicates that the firmware initialization
2662 	 * is complete.
2663 	 */
2664 	for (i = 0; i < 750; i++) {
2665 		val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2666 		if (val == ~BGE_MAGIC_NUMBER)
2667 			break;
2668 		DELAY(1000);
2669 	}
2670 
2671 	if (i == 750) {
2672 		printf("%s: firmware handshake timed out, val = %x\n",
2673 		    sc->bge_dev.dv_xname, val);
2674 		return;
2675 	}
2676 
2677 	/*
2678 	 * XXX Wait for the value of the PCISTATE register to
2679 	 * return to its original pre-reset state. This is a
2680 	 * fairly good indicator of reset completion. If we don't
2681 	 * wait for the reset to fully complete, trying to read
2682 	 * from the device's non-PCI registers may yield garbage
2683 	 * results.
2684 	 */
2685 	for (i = 0; i < BGE_TIMEOUT; i++) {
2686 		new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag,
2687 		    BGE_PCI_PCISTATE);
2688 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
2689 		    (pcistate & ~BGE_PCISTATE_RESERVED))
2690 			break;
2691 		DELAY(10);
2692 	}
2693 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
2694 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
2695 		printf("%s: pcistate failed to revert\n",
2696 		    sc->bge_dev.dv_xname);
2697 	}
2698 
2699 	/* XXX: from FreeBSD/Linux; no documentation */
2700 	if (sc->bge_pcie && sc->bge_chipid != BGE_CHIPID_BCM5750_A0)
2701 		CSR_WRITE_4(sc, BGE_PCIE_CTL0, CSR_READ_4(sc, BGE_PCIE_CTL0) | (1<<25));
2702 
2703 	/* Enable memory arbiter. */
2704 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
2705 		CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2706 	}
2707 
2708 	/* Fix up byte swapping */
2709 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
2710 
2711 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2712 
2713 	DELAY(10000);
2714 }
2715 
2716 /*
2717  * Frame reception handling. This is called if there's a frame
2718  * on the receive return list.
2719  *
2720  * Note: we have to be able to handle two possibilities here:
2721  * 1) the frame is from the jumbo recieve ring
2722  * 2) the frame is from the standard receive ring
2723  */
2724 
2725 void
2726 bge_rxeof(sc)
2727 	struct bge_softc *sc;
2728 {
2729 	struct ifnet *ifp;
2730 	int stdcnt = 0, jumbocnt = 0;
2731 	int have_tag = 0;
2732 	u_int16_t vlan_tag = 0;
2733 	bus_dmamap_t dmamap;
2734 	bus_addr_t offset, toff;
2735 	bus_size_t tlen;
2736 	int tosync;
2737 
2738 	ifp = &sc->ethercom.ec_if;
2739 
2740 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2741 	    offsetof(struct bge_ring_data, bge_status_block),
2742 	    sizeof (struct bge_status_block),
2743 	    BUS_DMASYNC_POSTREAD);
2744 
2745 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
2746 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx -
2747 	    sc->bge_rx_saved_considx;
2748 
2749 	toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd));
2750 
2751 	if (tosync < 0) {
2752 		tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) *
2753 		    sizeof (struct bge_rx_bd);
2754 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2755 		    toff, tlen, BUS_DMASYNC_POSTREAD);
2756 		tosync = -tosync;
2757 	}
2758 
2759 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2760 	    offset, tosync * sizeof (struct bge_rx_bd),
2761 	    BUS_DMASYNC_POSTREAD);
2762 
2763 	while(sc->bge_rx_saved_considx !=
2764 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) {
2765 		struct bge_rx_bd	*cur_rx;
2766 		u_int32_t		rxidx;
2767 		struct mbuf		*m = NULL;
2768 
2769 		cur_rx = &sc->bge_rdata->
2770 			bge_rx_return_ring[sc->bge_rx_saved_considx];
2771 
2772 		rxidx = cur_rx->bge_idx;
2773 		BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2774 
2775 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2776 			have_tag = 1;
2777 			vlan_tag = cur_rx->bge_vlan_tag;
2778 		}
2779 
2780 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2781 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2782 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
2783 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
2784 			jumbocnt++;
2785 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2786 				ifp->if_ierrors++;
2787 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2788 				continue;
2789 			}
2790 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
2791 					     NULL)== ENOBUFS) {
2792 				ifp->if_ierrors++;
2793 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
2794 				continue;
2795 			}
2796 		} else {
2797 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2798 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
2799 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
2800 			stdcnt++;
2801 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
2802 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
2803 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2804 				ifp->if_ierrors++;
2805 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2806 				continue;
2807 			}
2808 			if (bge_newbuf_std(sc, sc->bge_std,
2809 			    NULL, dmamap) == ENOBUFS) {
2810 				ifp->if_ierrors++;
2811 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
2812 				continue;
2813 			}
2814 		}
2815 
2816 		ifp->if_ipackets++;
2817 #ifndef __NO_STRICT_ALIGNMENT
2818                 /*
2819                  * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
2820                  * the Rx buffer has the layer-2 header unaligned.
2821                  * If our CPU requires alignment, re-align by copying.
2822                  */
2823 		if (sc->bge_rx_alignment_bug) {
2824 			memmove(mtod(m, caddr_t) + ETHER_ALIGN, m->m_data,
2825                                 cur_rx->bge_len);
2826 			m->m_data += ETHER_ALIGN;
2827 		}
2828 #endif
2829 
2830 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2831 		m->m_pkthdr.rcvif = ifp;
2832 
2833 #if NBPFILTER > 0
2834 		/*
2835 		 * Handle BPF listeners. Let the BPF user see the packet.
2836 		 */
2837 		if (ifp->if_bpf)
2838 			bpf_mtap(ifp->if_bpf, m);
2839 #endif
2840 
2841 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
2842 
2843 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
2844 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
2845 		/*
2846 		 * Rx transport checksum-offload may also
2847 		 * have bugs with packets which, when transmitted,
2848 		 * were `runts' requiring padding.
2849 		 */
2850 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
2851 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
2852 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
2853 			m->m_pkthdr.csum_data =
2854 			    cur_rx->bge_tcp_udp_csum;
2855 			m->m_pkthdr.csum_flags |=
2856 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
2857 			     M_CSUM_DATA|M_CSUM_NO_PSEUDOHDR);
2858 		}
2859 
2860 		/*
2861 		 * If we received a packet with a vlan tag, pass it
2862 		 * to vlan_input() instead of ether_input().
2863 		 */
2864 		if (have_tag) {
2865 			struct m_tag *mtag;
2866 
2867 			mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
2868 			    M_NOWAIT);
2869 			if (mtag != NULL) {
2870 				*(u_int *)(mtag + 1) = vlan_tag;
2871 				m_tag_prepend(m, mtag);
2872 				have_tag = vlan_tag = 0;
2873 			} else {
2874 				printf("%s: no mbuf for tag\n", ifp->if_xname);
2875 				m_freem(m);
2876 				have_tag = vlan_tag = 0;
2877 				continue;
2878 			}
2879 		}
2880 		(*ifp->if_input)(ifp, m);
2881 	}
2882 
2883 	CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2884 	if (stdcnt)
2885 		CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2886 	if (jumbocnt)
2887 		CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2888 }
2889 
2890 void
2891 bge_txeof(sc)
2892 	struct bge_softc *sc;
2893 {
2894 	struct bge_tx_bd *cur_tx = NULL;
2895 	struct ifnet *ifp;
2896 	struct txdmamap_pool_entry *dma;
2897 	bus_addr_t offset, toff;
2898 	bus_size_t tlen;
2899 	int tosync;
2900 	struct mbuf *m;
2901 
2902 	ifp = &sc->ethercom.ec_if;
2903 
2904 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2905 	    offsetof(struct bge_ring_data, bge_status_block),
2906 	    sizeof (struct bge_status_block),
2907 	    BUS_DMASYNC_POSTREAD);
2908 
2909 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
2910 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
2911 	    sc->bge_tx_saved_considx;
2912 
2913 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
2914 
2915 	if (tosync < 0) {
2916 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
2917 		    sizeof (struct bge_tx_bd);
2918 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2919 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2920 		tosync = -tosync;
2921 	}
2922 
2923 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2924 	    offset, tosync * sizeof (struct bge_tx_bd),
2925 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2926 
2927 	/*
2928 	 * Go through our tx ring and free mbufs for those
2929 	 * frames that have been sent.
2930 	 */
2931 	while (sc->bge_tx_saved_considx !=
2932 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
2933 		u_int32_t		idx = 0;
2934 
2935 		idx = sc->bge_tx_saved_considx;
2936 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
2937 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2938 			ifp->if_opackets++;
2939 		m = sc->bge_cdata.bge_tx_chain[idx];
2940 		if (m != NULL) {
2941 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
2942 			dma = sc->txdma[idx];
2943 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
2944 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2945 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
2946 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
2947 			sc->txdma[idx] = NULL;
2948 
2949 			m_freem(m);
2950 		}
2951 		sc->bge_txcnt--;
2952 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2953 		ifp->if_timer = 0;
2954 	}
2955 
2956 	if (cur_tx != NULL)
2957 		ifp->if_flags &= ~IFF_OACTIVE;
2958 }
2959 
2960 int
2961 bge_intr(xsc)
2962 	void *xsc;
2963 {
2964 	struct bge_softc *sc;
2965 	struct ifnet *ifp;
2966 
2967 	sc = xsc;
2968 	ifp = &sc->ethercom.ec_if;
2969 
2970 #ifdef notdef
2971 	/* Avoid this for now -- checking this register is expensive. */
2972 	/* Make sure this is really our interrupt. */
2973 	if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE))
2974 		return (0);
2975 #endif
2976 	/* Ack interrupt and stop others from occuring. */
2977 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
2978 
2979 	BGE_EVCNT_INCR(sc->bge_ev_intr);
2980 
2981 	/*
2982 	 * Process link state changes.
2983 	 * Grrr. The link status word in the status block does
2984 	 * not work correctly on the BCM5700 rev AX and BX chips,
2985 	 * according to all avaibable information. Hence, we have
2986 	 * to enable MII interrupts in order to properly obtain
2987 	 * async link changes. Unfortunately, this also means that
2988 	 * we have to read the MAC status register to detect link
2989 	 * changes, thereby adding an additional register access to
2990 	 * the interrupt handler.
2991 	 */
2992 
2993 	if (sc->bge_quirks & BGE_QUIRK_LINK_STATE_BROKEN) {
2994 		u_int32_t		status;
2995 
2996 		status = CSR_READ_4(sc, BGE_MAC_STS);
2997 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
2998 			sc->bge_link = 0;
2999 			callout_stop(&sc->bge_timeout);
3000 			bge_tick(sc);
3001 			/* Clear the interrupt */
3002 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
3003 			    BGE_EVTENB_MI_INTERRUPT);
3004 			bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR);
3005 			bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR,
3006 			    BRGPHY_INTRS);
3007 		}
3008 	} else {
3009 		if (sc->bge_rdata->bge_status_block.bge_status &
3010 		    BGE_STATFLAG_LINKSTATE_CHANGED) {
3011 			sc->bge_link = 0;
3012 			callout_stop(&sc->bge_timeout);
3013 			bge_tick(sc);
3014 			/* Clear the interrupt */
3015 			CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
3016 			    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
3017 			    BGE_MACSTAT_LINK_CHANGED);
3018 		}
3019 	}
3020 
3021 	if (ifp->if_flags & IFF_RUNNING) {
3022 		/* Check RX return ring producer/consumer */
3023 		bge_rxeof(sc);
3024 
3025 		/* Check TX ring producer/consumer */
3026 		bge_txeof(sc);
3027 	}
3028 
3029 	if (sc->bge_pending_rxintr_change) {
3030 		uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3031 		uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3032 		uint32_t junk;
3033 
3034 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3035 		DELAY(10);
3036 		junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3037 
3038 		CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3039 		DELAY(10);
3040 		junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3041 
3042 		sc->bge_pending_rxintr_change = 0;
3043 	}
3044 	bge_handle_events(sc);
3045 
3046 	/* Re-enable interrupts. */
3047 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3048 
3049 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3050 		bge_start(ifp);
3051 
3052 	return (1);
3053 }
3054 
3055 void
3056 bge_tick(xsc)
3057 	void *xsc;
3058 {
3059 	struct bge_softc *sc = xsc;
3060 	struct mii_data *mii = &sc->bge_mii;
3061 	struct ifmedia *ifm = NULL;
3062 	struct ifnet *ifp = &sc->ethercom.ec_if;
3063 	int s;
3064 
3065 	s = splnet();
3066 
3067 	bge_stats_update(sc);
3068 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3069 	if (sc->bge_link) {
3070 		splx(s);
3071 		return;
3072 	}
3073 
3074 	if (sc->bge_tbi) {
3075 		ifm = &sc->bge_ifmedia;
3076 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3077 		    BGE_MACSTAT_TBI_PCS_SYNCHED) {
3078 			sc->bge_link++;
3079 			CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
3080 			if (!IFQ_IS_EMPTY(&ifp->if_snd))
3081 				bge_start(ifp);
3082 		}
3083 		splx(s);
3084 		return;
3085 	}
3086 
3087 	mii_tick(mii);
3088 
3089 	if (!sc->bge_link && mii->mii_media_status & IFM_ACTIVE &&
3090 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
3091 		sc->bge_link++;
3092 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3093 			bge_start(ifp);
3094 	}
3095 
3096 	splx(s);
3097 }
3098 
3099 void
3100 bge_stats_update(sc)
3101 	struct bge_softc *sc;
3102 {
3103 	struct ifnet *ifp = &sc->ethercom.ec_if;
3104 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3105 	bus_size_t rstats = BGE_RX_STATS;
3106 
3107 #define READ_RSTAT(sc, stats, stat) \
3108 	  CSR_READ_4(sc, stats + offsetof(struct bge_mac_stats_regs, stat))
3109 
3110 	if (sc->bge_quirks & BGE_QUIRK_5705_CORE) {
3111 		ifp->if_collisions +=
3112 		    READ_RSTAT(sc, rstats, dot3StatsSingleCollisionFrames) +
3113 		    READ_RSTAT(sc, rstats, dot3StatsMultipleCollisionFrames) +
3114 		    READ_RSTAT(sc, rstats, dot3StatsExcessiveCollisions) +
3115 		    READ_RSTAT(sc, rstats, dot3StatsLateCollisions);
3116 
3117 		BGE_EVCNT_ADD(sc->bge_ev_tx_xoff,
3118 			      READ_RSTAT(sc, rstats, outXoffSent));
3119 		BGE_EVCNT_ADD(sc->bge_ev_tx_xon,
3120 			      READ_RSTAT(sc, rstats, outXonSent));
3121 		BGE_EVCNT_ADD(sc->bge_ev_rx_xoff,
3122 			      READ_RSTAT(sc, rstats, xoffPauseFramesReceived));
3123 		BGE_EVCNT_ADD(sc->bge_ev_rx_xon,
3124 			      READ_RSTAT(sc, rstats, xonPauseFramesReceived));
3125 		BGE_EVCNT_ADD(sc->bge_ev_rx_macctl,
3126 			      READ_RSTAT(sc, rstats, macControlFramesReceived));
3127 		BGE_EVCNT_ADD(sc->bge_ev_xoffentered,
3128 			      READ_RSTAT(sc, rstats, xoffStateEntered));
3129 		return;
3130 	}
3131 
3132 #undef READ_RSTAT
3133 #define READ_STAT(sc, stats, stat) \
3134 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3135 
3136 	ifp->if_collisions +=
3137 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3138 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3139 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3140 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3141 	  ifp->if_collisions;
3142 
3143 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3144 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3145 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3146 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3147 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3148 		      READ_STAT(sc, stats,
3149 		      		xoffPauseFramesReceived.bge_addr_lo));
3150 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3151 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3152 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3153 		      READ_STAT(sc, stats,
3154 		      		macControlFramesReceived.bge_addr_lo));
3155 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3156 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3157 
3158 #undef READ_STAT
3159 
3160 #ifdef notdef
3161 	ifp->if_collisions +=
3162 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3163 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3164 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3165 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3166 	   ifp->if_collisions;
3167 #endif
3168 }
3169 
3170 /*
3171  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3172  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3173  * but when such padded frames employ the  bge IP/TCP checksum offload,
3174  * the hardware checksum assist gives incorrect results (possibly
3175  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3176  * If we pad such runts with zeros, the onboard checksum comes out correct.
3177  */
3178 static __inline int
3179 bge_cksum_pad(struct mbuf *pkt)
3180 {
3181 	struct mbuf *last = NULL;
3182 	int padlen;
3183 
3184 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3185 
3186 	/* if there's only the packet-header and we can pad there, use it. */
3187 	if (pkt->m_pkthdr.len == pkt->m_len &&
3188 	    !M_READONLY(pkt) && M_TRAILINGSPACE(pkt) >= padlen) {
3189 		last = pkt;
3190 	} else {
3191 		/*
3192 		 * Walk packet chain to find last mbuf. We will either
3193 		 * pad there, or append a new mbuf and pad it
3194 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3195 		 */
3196 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3197 	      	       (void) 0; /* do nothing*/
3198 		}
3199 
3200 		/* `last' now points to last in chain. */
3201 		if (!M_READONLY(last) && M_TRAILINGSPACE(last) >= padlen) {
3202 			(void) 0; /* we can pad here, in-place. */
3203 		} else {
3204 			/* Allocate new empty mbuf, pad it. Compact later. */
3205 			struct mbuf *n;
3206 			MGET(n, M_DONTWAIT, MT_DATA);
3207 			n->m_len = 0;
3208 			last->m_next = n;
3209 			last = n;
3210 		}
3211 	}
3212 
3213 #ifdef DEBUG
3214 	  /*KASSERT(M_WRITABLE(last), ("to-pad mbuf not writeable\n"));*/
3215 	  KASSERT(M_TRAILINGSPACE(last) >= padlen /*, ("insufficient space to pad\n")*/ );
3216 #endif
3217 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3218 	memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
3219 	last->m_len += padlen;
3220 	pkt->m_pkthdr.len += padlen;
3221 	return 0;
3222 }
3223 
3224 /*
3225  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3226  */
3227 static __inline int
3228 bge_compact_dma_runt(struct mbuf *pkt)
3229 {
3230 	struct mbuf	*m, *prev;
3231 	int 		totlen, prevlen;
3232 
3233 	prev = NULL;
3234 	totlen = 0;
3235 	prevlen = -1;
3236 
3237 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3238 		int mlen = m->m_len;
3239 		int shortfall = 8 - mlen ;
3240 
3241 		totlen += mlen;
3242 		if (mlen == 0) {
3243 			continue;
3244 		}
3245 		if (mlen >= 8)
3246 			continue;
3247 
3248 		/* If we get here, mbuf data is too small for DMA engine.
3249 		 * Try to fix by shuffling data to prev or next in chain.
3250 		 * If that fails, do a compacting deep-copy of the whole chain.
3251 		 */
3252 
3253 		/* Internal frag. If fits in prev, copy it there. */
3254 		if (prev && !M_READONLY(prev) &&
3255 		      M_TRAILINGSPACE(prev) >= m->m_len) {
3256 		  	bcopy(m->m_data,
3257 			      prev->m_data+prev->m_len,
3258 			      mlen);
3259 			prev->m_len += mlen;
3260 			m->m_len = 0;
3261 			/* XXX stitch chain */
3262 			prev->m_next = m_free(m);
3263 			m = prev;
3264 			continue;
3265 		}
3266 		else if (m->m_next != NULL && !M_READONLY(m) &&
3267 			     M_TRAILINGSPACE(m) >= shortfall &&
3268 			     m->m_next->m_len >= (8 + shortfall)) {
3269 		    /* m is writable and have enough data in next, pull up. */
3270 
3271 		  	bcopy(m->m_next->m_data,
3272 			      m->m_data+m->m_len,
3273 			      shortfall);
3274 			m->m_len += shortfall;
3275 			m->m_next->m_len -= shortfall;
3276 			m->m_next->m_data += shortfall;
3277 		}
3278 		else if (m->m_next == NULL || 1) {
3279 		  	/* Got a runt at the very end of the packet.
3280 			 * borrow data from the tail of the preceding mbuf and
3281 			 * update its length in-place. (The original data is still
3282 			 * valid, so we can do this even if prev is not writable.)
3283 			 */
3284 
3285 			/* if we'd make prev a runt, just move all of its data. */
3286 #ifdef DEBUG
3287 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3288 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3289 #endif
3290 			if ((prev->m_len - shortfall) < 8)
3291 				shortfall = prev->m_len;
3292 
3293 #ifdef notyet	/* just do the safe slow thing for now */
3294 			if (!M_READONLY(m)) {
3295 				if (M_LEADINGSPACE(m) < shorfall) {
3296 					void *m_dat;
3297 					m_dat = (m->m_flags & M_PKTHDR) ?
3298 					  m->m_pktdat : m->dat;
3299 					memmove(m_dat, mtod(m, void*), m->m_len);
3300 					m->m_data = m_dat;
3301 				    }
3302 			} else
3303 #endif	/* just do the safe slow thing */
3304 			{
3305 				struct mbuf * n = NULL;
3306 				int newprevlen = prev->m_len - shortfall;
3307 
3308 				MGET(n, M_NOWAIT, MT_DATA);
3309 				if (n == NULL)
3310 				   return ENOBUFS;
3311 				KASSERT(m->m_len + shortfall < MLEN
3312 					/*,
3313 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3314 
3315 				/* first copy the data we're stealing from prev */
3316 				bcopy(prev->m_data + newprevlen, n->m_data, shortfall);
3317 
3318 				/* update prev->m_len accordingly */
3319 				prev->m_len -= shortfall;
3320 
3321 				/* copy data from runt m */
3322 				bcopy(m->m_data, n->m_data + shortfall, m->m_len);
3323 
3324 				/* n holds what we stole from prev, plus m */
3325 				n->m_len = shortfall + m->m_len;
3326 
3327 				/* stitch n into chain and free m */
3328 				n->m_next = m->m_next;
3329 				prev->m_next = n;
3330 				/* KASSERT(m->m_next == NULL); */
3331 				m->m_next = NULL;
3332 				m_free(m);
3333 				m = n;	/* for continuing loop */
3334 			}
3335 		}
3336 		prevlen = m->m_len;
3337 	}
3338 	return 0;
3339 }
3340 
3341 /*
3342  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3343  * pointers to descriptors.
3344  */
3345 int
3346 bge_encap(sc, m_head, txidx)
3347 	struct bge_softc *sc;
3348 	struct mbuf *m_head;
3349 	u_int32_t *txidx;
3350 {
3351 	struct bge_tx_bd	*f = NULL;
3352 	u_int32_t		frag, cur, cnt = 0;
3353 	u_int16_t		csum_flags = 0;
3354 	struct txdmamap_pool_entry *dma;
3355 	bus_dmamap_t dmamap;
3356 	int			i = 0;
3357 	struct m_tag		*mtag;
3358 
3359 	cur = frag = *txidx;
3360 
3361 	if (m_head->m_pkthdr.csum_flags) {
3362 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3363 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3364 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3365 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3366 	}
3367 
3368 	/*
3369 	 * If we were asked to do an outboard checksum, and the NIC
3370 	 * has the bug where it sometimes adds in the Ethernet padding,
3371 	 * explicitly pad with zeros so the cksum will be correct either way.
3372 	 * (For now, do this for all chip versions, until newer
3373 	 * are confirmed to not require the workaround.)
3374 	 */
3375 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3376 #ifdef notyet
3377 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3378 #endif
3379 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3380 		goto check_dma_bug;
3381 
3382 	if (bge_cksum_pad(m_head) != 0)
3383 	    return ENOBUFS;
3384 
3385 check_dma_bug:
3386 	if (!(sc->bge_quirks & BGE_QUIRK_5700_SMALLDMA))
3387 		goto doit;
3388 	/*
3389 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3390 	 * less than eight bytes.  If we encounter a teeny mbuf
3391 	 * at the end of a chain, we can pad.  Otherwise, copy.
3392 	 */
3393 	if (bge_compact_dma_runt(m_head) != 0)
3394 		return ENOBUFS;
3395 
3396 doit:
3397 	dma = SLIST_FIRST(&sc->txdma_list);
3398 	if (dma == NULL)
3399 		return ENOBUFS;
3400 	dmamap = dma->dmamap;
3401 
3402 	/*
3403 	 * Start packing the mbufs in this chain into
3404 	 * the fragment pointers. Stop when we run out
3405 	 * of fragments or hit the end of the mbuf chain.
3406 	 */
3407 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
3408 	    BUS_DMA_NOWAIT))
3409 		return(ENOBUFS);
3410 
3411 	mtag = sc->ethercom.ec_nvlans ?
3412 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
3413 
3414 	for (i = 0; i < dmamap->dm_nsegs; i++) {
3415 		f = &sc->bge_rdata->bge_tx_ring[frag];
3416 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
3417 			break;
3418 		bge_set_hostaddr(&f->bge_addr, dmamap->dm_segs[i].ds_addr);
3419 		f->bge_len = dmamap->dm_segs[i].ds_len;
3420 		f->bge_flags = csum_flags;
3421 
3422 		if (mtag != NULL) {
3423 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3424 			f->bge_vlan_tag = *(u_int *)(mtag + 1);
3425 		} else {
3426 			f->bge_vlan_tag = 0;
3427 		}
3428 		/*
3429 		 * Sanity check: avoid coming within 16 descriptors
3430 		 * of the end of the ring.
3431 		 */
3432 		if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16)
3433 			return(ENOBUFS);
3434 		cur = frag;
3435 		BGE_INC(frag, BGE_TX_RING_CNT);
3436 		cnt++;
3437 	}
3438 
3439 	if (i < dmamap->dm_nsegs)
3440 		return ENOBUFS;
3441 
3442 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
3443 	    BUS_DMASYNC_PREWRITE);
3444 
3445 	if (frag == sc->bge_tx_saved_considx)
3446 		return(ENOBUFS);
3447 
3448 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
3449 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
3450 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
3451 	sc->txdma[cur] = dma;
3452 	sc->bge_txcnt += cnt;
3453 
3454 	*txidx = frag;
3455 
3456 	return(0);
3457 }
3458 
3459 /*
3460  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3461  * to the mbuf data regions directly in the transmit descriptors.
3462  */
3463 void
3464 bge_start(ifp)
3465 	struct ifnet *ifp;
3466 {
3467 	struct bge_softc *sc;
3468 	struct mbuf *m_head = NULL;
3469 	u_int32_t prodidx = 0;
3470 	int pkts = 0;
3471 
3472 	sc = ifp->if_softc;
3473 
3474 	if (!sc->bge_link && ifp->if_snd.ifq_len < 10)
3475 		return;
3476 
3477 	prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO);
3478 
3479 	while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3480 		IFQ_POLL(&ifp->if_snd, m_head);
3481 		if (m_head == NULL)
3482 			break;
3483 
3484 #if 0
3485 		/*
3486 		 * XXX
3487 		 * safety overkill.  If this is a fragmented packet chain
3488 		 * with delayed TCP/UDP checksums, then only encapsulate
3489 		 * it if we have enough descriptors to handle the entire
3490 		 * chain at once.
3491 		 * (paranoia -- may not actually be needed)
3492 		 */
3493 		if (m_head->m_flags & M_FIRSTFRAG &&
3494 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
3495 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3496 			    m_head->m_pkthdr.csum_data + 16) {
3497 				ifp->if_flags |= IFF_OACTIVE;
3498 				break;
3499 			}
3500 		}
3501 #endif
3502 
3503 		/*
3504 		 * Pack the data into the transmit ring. If we
3505 		 * don't have room, set the OACTIVE flag and wait
3506 		 * for the NIC to drain the ring.
3507 		 */
3508 		if (bge_encap(sc, m_head, &prodidx)) {
3509 			ifp->if_flags |= IFF_OACTIVE;
3510 			break;
3511 		}
3512 
3513 		/* now we are committed to transmit the packet */
3514 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
3515 		pkts++;
3516 
3517 #if NBPFILTER > 0
3518 		/*
3519 		 * If there's a BPF listener, bounce a copy of this frame
3520 		 * to him.
3521 		 */
3522 		if (ifp->if_bpf)
3523 			bpf_mtap(ifp->if_bpf, m_head);
3524 #endif
3525 	}
3526 	if (pkts == 0)
3527 		return;
3528 
3529 	/* Transmit */
3530 	CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3531 	if (sc->bge_quirks & BGE_QUIRK_PRODUCER_BUG)	/* 5700 b2 errata */
3532 		CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3533 
3534 	/*
3535 	 * Set a timeout in case the chip goes out to lunch.
3536 	 */
3537 	ifp->if_timer = 5;
3538 }
3539 
3540 int
3541 bge_init(ifp)
3542 	struct ifnet *ifp;
3543 {
3544 	struct bge_softc *sc = ifp->if_softc;
3545 	u_int16_t *m;
3546 	int s, error;
3547 
3548 	s = splnet();
3549 
3550 	ifp = &sc->ethercom.ec_if;
3551 
3552 	/* Cancel pending I/O and flush buffers. */
3553 	bge_stop(sc);
3554 	bge_reset(sc);
3555 	bge_chipinit(sc);
3556 
3557 	/*
3558 	 * Init the various state machines, ring
3559 	 * control blocks and firmware.
3560 	 */
3561 	error = bge_blockinit(sc);
3562 	if (error != 0) {
3563 		printf("%s: initialization error %d\n", sc->bge_dev.dv_xname,
3564 		    error);
3565 		splx(s);
3566 		return error;
3567 	}
3568 
3569 	ifp = &sc->ethercom.ec_if;
3570 
3571 	/* Specify MTU. */
3572 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3573 	    ETHER_HDR_LEN + ETHER_CRC_LEN);
3574 
3575 	/* Load our MAC address. */
3576 	m = (u_int16_t *)&(LLADDR(ifp->if_sadl)[0]);
3577 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3578 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3579 
3580 	/* Enable or disable promiscuous mode as needed. */
3581 	if (ifp->if_flags & IFF_PROMISC) {
3582 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3583 	} else {
3584 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3585 	}
3586 
3587 	/* Program multicast filter. */
3588 	bge_setmulti(sc);
3589 
3590 	/* Init RX ring. */
3591 	bge_init_rx_ring_std(sc);
3592 
3593 	/* Init jumbo RX ring. */
3594 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
3595 		bge_init_rx_ring_jumbo(sc);
3596 
3597 	/* Init our RX return ring index */
3598 	sc->bge_rx_saved_considx = 0;
3599 
3600 	/* Init TX ring. */
3601 	bge_init_tx_ring(sc);
3602 
3603 	/* Turn on transmitter */
3604 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
3605 
3606 	/* Turn on receiver */
3607 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3608 
3609 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3610 
3611 	/* Tell firmware we're alive. */
3612 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3613 
3614 	/* Enable host interrupts. */
3615 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
3616 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3617 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0);
3618 
3619 	bge_ifmedia_upd(ifp);
3620 
3621 	ifp->if_flags |= IFF_RUNNING;
3622 	ifp->if_flags &= ~IFF_OACTIVE;
3623 
3624 	splx(s);
3625 
3626 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3627 
3628 	return 0;
3629 }
3630 
3631 /*
3632  * Set media options.
3633  */
3634 int
3635 bge_ifmedia_upd(ifp)
3636 	struct ifnet *ifp;
3637 {
3638 	struct bge_softc *sc = ifp->if_softc;
3639 	struct mii_data *mii = &sc->bge_mii;
3640 	struct ifmedia *ifm = &sc->bge_ifmedia;
3641 
3642 	/* If this is a 1000baseX NIC, enable the TBI port. */
3643 	if (sc->bge_tbi) {
3644 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3645 			return(EINVAL);
3646 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
3647 		case IFM_AUTO:
3648 			break;
3649 		case IFM_1000_SX:
3650 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3651 				BGE_CLRBIT(sc, BGE_MAC_MODE,
3652 				    BGE_MACMODE_HALF_DUPLEX);
3653 			} else {
3654 				BGE_SETBIT(sc, BGE_MAC_MODE,
3655 				    BGE_MACMODE_HALF_DUPLEX);
3656 			}
3657 			break;
3658 		default:
3659 			return(EINVAL);
3660 		}
3661 		/* XXX 802.3x flow control for 1000BASE-SX */
3662 		return(0);
3663 	}
3664 
3665 	sc->bge_link = 0;
3666 	mii_mediachg(mii);
3667 
3668 	return(0);
3669 }
3670 
3671 /*
3672  * Report current media status.
3673  */
3674 void
3675 bge_ifmedia_sts(ifp, ifmr)
3676 	struct ifnet *ifp;
3677 	struct ifmediareq *ifmr;
3678 {
3679 	struct bge_softc *sc = ifp->if_softc;
3680 	struct mii_data *mii = &sc->bge_mii;
3681 
3682 	if (sc->bge_tbi) {
3683 		ifmr->ifm_status = IFM_AVALID;
3684 		ifmr->ifm_active = IFM_ETHER;
3685 		if (CSR_READ_4(sc, BGE_MAC_STS) &
3686 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
3687 			ifmr->ifm_status |= IFM_ACTIVE;
3688 		ifmr->ifm_active |= IFM_1000_SX;
3689 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3690 			ifmr->ifm_active |= IFM_HDX;
3691 		else
3692 			ifmr->ifm_active |= IFM_FDX;
3693 		return;
3694 	}
3695 
3696 	mii_pollstat(mii);
3697 	ifmr->ifm_status = mii->mii_media_status;
3698 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
3699 	    sc->bge_flowflags;
3700 }
3701 
3702 int
3703 bge_ioctl(ifp, command, data)
3704 	struct ifnet *ifp;
3705 	u_long command;
3706 	caddr_t data;
3707 {
3708 	struct bge_softc *sc = ifp->if_softc;
3709 	struct ifreq *ifr = (struct ifreq *) data;
3710 	int s, error = 0;
3711 	struct mii_data *mii;
3712 
3713 	s = splnet();
3714 
3715 	switch(command) {
3716 	case SIOCSIFFLAGS:
3717 		if (ifp->if_flags & IFF_UP) {
3718 			/*
3719 			 * If only the state of the PROMISC flag changed,
3720 			 * then just use the 'set promisc mode' command
3721 			 * instead of reinitializing the entire NIC. Doing
3722 			 * a full re-init means reloading the firmware and
3723 			 * waiting for it to start up, which may take a
3724 			 * second or two.
3725 			 */
3726 			if (ifp->if_flags & IFF_RUNNING &&
3727 			    ifp->if_flags & IFF_PROMISC &&
3728 			    !(sc->bge_if_flags & IFF_PROMISC)) {
3729 				BGE_SETBIT(sc, BGE_RX_MODE,
3730 				    BGE_RXMODE_RX_PROMISC);
3731 			} else if (ifp->if_flags & IFF_RUNNING &&
3732 			    !(ifp->if_flags & IFF_PROMISC) &&
3733 			    sc->bge_if_flags & IFF_PROMISC) {
3734 				BGE_CLRBIT(sc, BGE_RX_MODE,
3735 				    BGE_RXMODE_RX_PROMISC);
3736 			} else
3737 				bge_init(ifp);
3738 		} else {
3739 			if (ifp->if_flags & IFF_RUNNING) {
3740 				bge_stop(sc);
3741 			}
3742 		}
3743 		sc->bge_if_flags = ifp->if_flags;
3744 		error = 0;
3745 		break;
3746 	case SIOCSIFMEDIA:
3747 		/* XXX Flow control is not supported for 1000BASE-SX */
3748 		if (sc->bge_tbi) {
3749 			ifr->ifr_media &= ~IFM_ETH_FMASK;
3750 			sc->bge_flowflags = 0;
3751 		}
3752 
3753 		/* Flow control requires full-duplex mode. */
3754 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
3755 		    (ifr->ifr_media & IFM_FDX) == 0) {
3756 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
3757 		}
3758 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
3759 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
3760 				/* We an do both TXPAUSE and RXPAUSE. */
3761 				ifr->ifr_media |=
3762 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
3763 			}
3764 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
3765 		}
3766 		/* FALLTHROUGH */
3767 	case SIOCGIFMEDIA:
3768 		if (sc->bge_tbi) {
3769 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
3770 			    command);
3771 		} else {
3772 			mii = &sc->bge_mii;
3773 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
3774 			    command);
3775 		}
3776 		break;
3777 	default:
3778 		error = ether_ioctl(ifp, command, data);
3779 		if (error == ENETRESET) {
3780 			if (ifp->if_flags & IFF_RUNNING)
3781 				bge_setmulti(sc);
3782 			error = 0;
3783 		}
3784 		break;
3785 	}
3786 
3787 	splx(s);
3788 
3789 	return(error);
3790 }
3791 
3792 void
3793 bge_watchdog(ifp)
3794 	struct ifnet *ifp;
3795 {
3796 	struct bge_softc *sc;
3797 
3798 	sc = ifp->if_softc;
3799 
3800 	printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname);
3801 
3802 	ifp->if_flags &= ~IFF_RUNNING;
3803 	bge_init(ifp);
3804 
3805 	ifp->if_oerrors++;
3806 }
3807 
3808 static void
3809 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
3810 {
3811 	int i;
3812 
3813 	BGE_CLRBIT(sc, reg, bit);
3814 
3815 	for (i = 0; i < BGE_TIMEOUT; i++) {
3816 		if ((CSR_READ_4(sc, reg) & bit) == 0)
3817 			return;
3818 		delay(100);
3819 	}
3820 
3821 	printf("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n",
3822 	    sc->bge_dev.dv_xname, (u_long) reg, bit);
3823 }
3824 
3825 /*
3826  * Stop the adapter and free any mbufs allocated to the
3827  * RX and TX lists.
3828  */
3829 void
3830 bge_stop(sc)
3831 	struct bge_softc *sc;
3832 {
3833 	struct ifnet *ifp = &sc->ethercom.ec_if;
3834 
3835 	callout_stop(&sc->bge_timeout);
3836 
3837 	/*
3838 	 * Disable all of the receiver blocks
3839 	 */
3840 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3841 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3842 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3843 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3844 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3845 	}
3846 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3847 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3848 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3849 
3850 	/*
3851 	 * Disable all of the transmit blocks
3852 	 */
3853 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3854 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3855 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3856 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3857 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3858 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3859 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3860 	}
3861 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3862 
3863 	/*
3864 	 * Shut down all of the memory managers and related
3865 	 * state machines.
3866 	 */
3867 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3868 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3869 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3870 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3871 	}
3872 
3873 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3874 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3875 
3876 	if ((sc->bge_quirks & BGE_QUIRK_5705_CORE) == 0) {
3877 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3878 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3879 	}
3880 
3881 	/* Disable host interrupts. */
3882 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
3883 	CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1);
3884 
3885 	/*
3886 	 * Tell firmware we're shutting down.
3887 	 */
3888 	BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3889 
3890 	/* Free the RX lists. */
3891 	bge_free_rx_ring_std(sc);
3892 
3893 	/* Free jumbo RX list. */
3894 	bge_free_rx_ring_jumbo(sc);
3895 
3896 	/* Free TX buffers. */
3897 	bge_free_tx_ring(sc);
3898 
3899 	/*
3900 	 * Isolate/power down the PHY.
3901 	 */
3902 	if (!sc->bge_tbi)
3903 		mii_down(&sc->bge_mii);
3904 
3905 	sc->bge_link = 0;
3906 
3907 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3908 
3909 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3910 }
3911 
3912 /*
3913  * Stop all chip I/O so that the kernel's probe routines don't
3914  * get confused by errant DMAs when rebooting.
3915  */
3916 void
3917 bge_shutdown(xsc)
3918 	void *xsc;
3919 {
3920 	struct bge_softc *sc = (struct bge_softc *)xsc;
3921 
3922 	bge_stop(sc);
3923 	bge_reset(sc);
3924 }
3925 
3926 
3927 static int
3928 sysctl_bge_verify(SYSCTLFN_ARGS)
3929 {
3930 	int error, t;
3931 	struct sysctlnode node;
3932 
3933 	node = *rnode;
3934 	t = *(int*)rnode->sysctl_data;
3935 	node.sysctl_data = &t;
3936 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
3937 	if (error || newp == NULL)
3938 		return (error);
3939 
3940 #if 0
3941 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
3942 	    node.sysctl_num, rnode->sysctl_num));
3943 #endif
3944 
3945 	if (node.sysctl_num == bge_rxthresh_nodenum) {
3946 		if (t < 0 || t >= NBGE_RX_THRESH)
3947 			return (EINVAL);
3948 		bge_update_all_threshes(t);
3949 	} else
3950 		return (EINVAL);
3951 
3952 	*(int*)rnode->sysctl_data = t;
3953 
3954 	return (0);
3955 }
3956 
3957 /*
3958  * Set up sysctl(3) MIB, hw.bge.*.
3959  *
3960  * TBD condition SYSCTL_PERMANENT on being an LKM or not
3961  */
3962 SYSCTL_SETUP(sysctl_bge, "sysctl bge subtree setup")
3963 {
3964 	int rc, bge_root_num;
3965 	struct sysctlnode *node;
3966 
3967 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
3968 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
3969 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
3970 		goto err;
3971 	}
3972 
3973 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3974 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "bge",
3975 	    SYSCTL_DESCR("BGE interface controls"),
3976 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
3977 		goto err;
3978 	}
3979 
3980 	bge_root_num = node->sysctl_num;
3981 
3982 	/* BGE Rx interrupt mitigation level */
3983 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
3984 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3985 	    CTLTYPE_INT, "rx_lvl",
3986 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
3987 	    sysctl_bge_verify, 0,
3988 	    &bge_rx_thresh_lvl,
3989 	    0, CTL_HW, bge_root_num, CTL_CREATE,
3990 	    CTL_EOL)) != 0) {
3991 		goto err;
3992 	}
3993 
3994 	bge_rxthresh_nodenum = node->sysctl_num;
3995 
3996 	return;
3997 
3998 err:
3999 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4000 }
4001