xref: /netbsd-src/sys/dev/pci/if_bge.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $	*/
2 
3 /*
4  * Copyright (c) 2001 Wind River Systems
5  * Copyright (c) 1997, 1998, 1999, 2001
6  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by Bill Paul.
19  * 4. Neither the name of the author nor the names of any co-contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33  * THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
36  */
37 
38 /*
39  * Broadcom BCM570x family gigabit ethernet driver for NetBSD.
40  *
41  * NetBSD version by:
42  *
43  *	Frank van der Linden <fvdl@wasabisystems.com>
44  *	Jason Thorpe <thorpej@wasabisystems.com>
45  *	Jonathan Stone <jonathan@dsg.stanford.edu>
46  *
47  * Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
48  * Senior Engineer, Wind River Systems
49  */
50 
51 /*
52  * The Broadcom BCM5700 is based on technology originally developed by
53  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
54  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
55  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
56  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
57  * frames, highly configurable RX filtering, and 16 RX and TX queues
58  * (which, along with RX filter rules, can be used for QOS applications).
59  * Other features, such as TCP segmentation, may be available as part
60  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
61  * firmware images can be stored in hardware and need not be compiled
62  * into the driver.
63  *
64  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
65  * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
66  *
67  * The BCM5701 is a single-chip solution incorporating both the BCM5700
68  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
69  * does not support external SSRAM.
70  *
71  * Broadcom also produces a variation of the BCM5700 under the "Altima"
72  * brand name, which is functionally similar but lacks PCI-X support.
73  *
74  * Without external SSRAM, you can only have at most 4 TX rings,
75  * and the use of the mini RX ring is disabled. This seems to imply
76  * that these features are simply not available on the BCM5701. As a
77  * result, this driver does not implement any support for the mini RX
78  * ring.
79  */
80 
81 #include <sys/cdefs.h>
82 __KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $");
83 
84 #include "vlan.h"
85 #include "rnd.h"
86 
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/sockio.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/device.h>
95 #include <sys/socket.h>
96 #include <sys/sysctl.h>
97 
98 #include <net/if.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_ether.h>
102 
103 #if NRND > 0
104 #include <sys/rnd.h>
105 #endif
106 
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #endif
113 
114 /* Headers for TCP  Segmentation Offload (TSO) */
115 #include <netinet/in_systm.h>		/* n_time for <netinet/ip.h>... */
116 #include <netinet/in.h>			/* ip_{src,dst}, for <netinet/ip.h> */
117 #include <netinet/ip.h>			/* for struct ip */
118 #include <netinet/tcp.h>		/* for struct tcphdr */
119 
120 
121 #include <net/bpf.h>
122 
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126 
127 #include <dev/mii/mii.h>
128 #include <dev/mii/miivar.h>
129 #include <dev/mii/miidevs.h>
130 #include <dev/mii/brgphyreg.h>
131 
132 #include <dev/pci/if_bgereg.h>
133 #include <dev/pci/if_bgevar.h>
134 
135 #include <prop/proplib.h>
136 
137 #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
138 
139 
140 /*
141  * Tunable thresholds for rx-side bge interrupt mitigation.
142  */
143 
144 /*
145  * The pairs of values below were obtained from empirical measurement
146  * on bcm5700 rev B2; they ar designed to give roughly 1 receive
147  * interrupt for every N packets received, where N is, approximately,
148  * the second value (rx_max_bds) in each pair.  The values are chosen
149  * such that moving from one pair to the succeeding pair was observed
150  * to roughly halve interrupt rate under sustained input packet load.
151  * The values were empirically chosen to avoid overflowing internal
152  * limits on the  bcm5700: increasing rx_ticks much beyond 600
153  * results in internal wrapping and higher interrupt rates.
154  * The limit of 46 frames was chosen to match NFS workloads.
155  *
156  * These values also work well on bcm5701, bcm5704C, and (less
157  * tested) bcm5703.  On other chipsets, (including the Altima chip
158  * family), the larger values may overflow internal chip limits,
159  * leading to increasing interrupt rates rather than lower interrupt
160  * rates.
161  *
162  * Applications using heavy interrupt mitigation (interrupting every
163  * 32 or 46 frames) in both directions may need to increase the TCP
164  * windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
165  * full link bandwidth, due to ACKs and window updates lingering
166  * in the RX queue during the 30-to-40-frame interrupt-mitigation window.
167  */
168 static const struct bge_load_rx_thresh {
169 	int rx_ticks;
170 	int rx_max_bds; }
171 bge_rx_threshes[] = {
172 	{ 32,   2 },
173 	{ 50,   4 },
174 	{ 100,  8 },
175 	{ 192, 16 },
176 	{ 416, 32 },
177 	{ 598, 46 }
178 };
179 #define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
180 
181 /* XXX patchable; should be sysctl'able */
182 static int bge_auto_thresh = 1;
183 static int bge_rx_thresh_lvl;
184 
185 static int bge_rxthresh_nodenum;
186 
187 typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
188 
189 static int bge_probe(device_t, cfdata_t, void *);
190 static void bge_attach(device_t, device_t, void *);
191 static void bge_release_resources(struct bge_softc *);
192 
193 static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
194 static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
195 static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
196 static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
197 static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
198 
199 static void bge_txeof(struct bge_softc *);
200 static void bge_rxeof(struct bge_softc *);
201 
202 static void bge_asf_driver_up (struct bge_softc *);
203 static void bge_tick(void *);
204 static void bge_stats_update(struct bge_softc *);
205 static void bge_stats_update_regs(struct bge_softc *);
206 static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
207 
208 static int bge_intr(void *);
209 static void bge_start(struct ifnet *);
210 static int bge_ifflags_cb(struct ethercom *);
211 static int bge_ioctl(struct ifnet *, u_long, void *);
212 static int bge_init(struct ifnet *);
213 static void bge_stop(struct ifnet *, int);
214 static void bge_watchdog(struct ifnet *);
215 static int bge_ifmedia_upd(struct ifnet *);
216 static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
217 
218 static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
219 static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
220 
221 static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
222 static int bge_read_eeprom(struct bge_softc *, void *, int, int);
223 static void bge_setmulti(struct bge_softc *);
224 
225 static void bge_handle_events(struct bge_softc *);
226 static int bge_alloc_jumbo_mem(struct bge_softc *);
227 #if 0 /* XXX */
228 static void bge_free_jumbo_mem(struct bge_softc *);
229 #endif
230 static void *bge_jalloc(struct bge_softc *);
231 static void bge_jfree(struct mbuf *, void *, size_t, void *);
232 static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
233 			       bus_dmamap_t);
234 static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
235 static int bge_init_rx_ring_std(struct bge_softc *);
236 static void bge_free_rx_ring_std(struct bge_softc *);
237 static int bge_init_rx_ring_jumbo(struct bge_softc *);
238 static void bge_free_rx_ring_jumbo(struct bge_softc *);
239 static void bge_free_tx_ring(struct bge_softc *);
240 static int bge_init_tx_ring(struct bge_softc *);
241 
242 static int bge_chipinit(struct bge_softc *);
243 static int bge_blockinit(struct bge_softc *);
244 static int bge_setpowerstate(struct bge_softc *, int);
245 static uint32_t bge_readmem_ind(struct bge_softc *, int);
246 static void bge_writemem_ind(struct bge_softc *, int, int);
247 static void bge_writembx(struct bge_softc *, int, int);
248 static void bge_writemem_direct(struct bge_softc *, int, int);
249 static void bge_writereg_ind(struct bge_softc *, int, int);
250 static void bge_set_max_readrq(struct bge_softc *);
251 
252 static int bge_miibus_readreg(device_t, int, int);
253 static void bge_miibus_writereg(device_t, int, int, int);
254 static void bge_miibus_statchg(device_t);
255 
256 #define	BGE_RESET_START 1
257 #define	BGE_RESET_STOP  2
258 static void bge_sig_post_reset(struct bge_softc *, int);
259 static void bge_sig_legacy(struct bge_softc *, int);
260 static void bge_sig_pre_reset(struct bge_softc *, int);
261 static void bge_stop_fw(struct bge_softc *);
262 static int bge_reset(struct bge_softc *);
263 static void bge_link_upd(struct bge_softc *);
264 static void sysctl_bge_init(struct bge_softc *);
265 static int sysctl_bge_verify(SYSCTLFN_PROTO);
266 
267 #ifdef BGE_DEBUG
268 #define DPRINTF(x)	if (bgedebug) printf x
269 #define DPRINTFN(n,x)	if (bgedebug >= (n)) printf x
270 #define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
271 int	bgedebug = 0;
272 int	bge_tso_debug = 0;
273 void		bge_debug_info(struct bge_softc *);
274 #else
275 #define DPRINTF(x)
276 #define DPRINTFN(n,x)
277 #define BGE_TSO_PRINTF(x)
278 #endif
279 
280 #ifdef BGE_EVENT_COUNTERS
281 #define	BGE_EVCNT_INCR(ev)	(ev).ev_count++
282 #define	BGE_EVCNT_ADD(ev, val)	(ev).ev_count += (val)
283 #define	BGE_EVCNT_UPD(ev, val)	(ev).ev_count = (val)
284 #else
285 #define	BGE_EVCNT_INCR(ev)	/* nothing */
286 #define	BGE_EVCNT_ADD(ev, val)	/* nothing */
287 #define	BGE_EVCNT_UPD(ev, val)	/* nothing */
288 #endif
289 
290 static const struct bge_product {
291 	pci_vendor_id_t		bp_vendor;
292 	pci_product_id_t	bp_product;
293 	const char		*bp_name;
294 } bge_products[] = {
295 	/*
296 	 * The BCM5700 documentation seems to indicate that the hardware
297 	 * still has the Alteon vendor ID burned into it, though it
298 	 * should always be overridden by the value in the EEPROM.  We'll
299 	 * check for it anyway.
300 	 */
301 	{ PCI_VENDOR_ALTEON,
302 	  PCI_PRODUCT_ALTEON_BCM5700,
303 	  "Broadcom BCM5700 Gigabit Ethernet",
304 	  },
305 	{ PCI_VENDOR_ALTEON,
306 	  PCI_PRODUCT_ALTEON_BCM5701,
307 	  "Broadcom BCM5701 Gigabit Ethernet",
308 	  },
309 	{ PCI_VENDOR_ALTIMA,
310 	  PCI_PRODUCT_ALTIMA_AC1000,
311 	  "Altima AC1000 Gigabit Ethernet",
312 	  },
313 	{ PCI_VENDOR_ALTIMA,
314 	  PCI_PRODUCT_ALTIMA_AC1001,
315 	  "Altima AC1001 Gigabit Ethernet",
316 	   },
317 	{ PCI_VENDOR_ALTIMA,
318 	  PCI_PRODUCT_ALTIMA_AC9100,
319 	  "Altima AC9100 Gigabit Ethernet",
320 	  },
321 	{ PCI_VENDOR_BROADCOM,
322 	  PCI_PRODUCT_BROADCOM_BCM5700,
323 	  "Broadcom BCM5700 Gigabit Ethernet",
324 	  },
325 	{ PCI_VENDOR_BROADCOM,
326 	  PCI_PRODUCT_BROADCOM_BCM5701,
327 	  "Broadcom BCM5701 Gigabit Ethernet",
328 	  },
329 	{ PCI_VENDOR_BROADCOM,
330 	  PCI_PRODUCT_BROADCOM_BCM5702,
331 	  "Broadcom BCM5702 Gigabit Ethernet",
332 	  },
333 	{ PCI_VENDOR_BROADCOM,
334 	  PCI_PRODUCT_BROADCOM_BCM5702X,
335 	  "Broadcom BCM5702X Gigabit Ethernet" },
336 	{ PCI_VENDOR_BROADCOM,
337 	  PCI_PRODUCT_BROADCOM_BCM5703,
338 	  "Broadcom BCM5703 Gigabit Ethernet",
339 	  },
340 	{ PCI_VENDOR_BROADCOM,
341 	  PCI_PRODUCT_BROADCOM_BCM5703X,
342 	  "Broadcom BCM5703X Gigabit Ethernet",
343 	  },
344 	{ PCI_VENDOR_BROADCOM,
345 	  PCI_PRODUCT_BROADCOM_BCM5703_ALT,
346 	  "Broadcom BCM5703 Gigabit Ethernet",
347 	  },
348 	{ PCI_VENDOR_BROADCOM,
349 	  PCI_PRODUCT_BROADCOM_BCM5704C,
350 	  "Broadcom BCM5704C Dual Gigabit Ethernet",
351 	  },
352 	{ PCI_VENDOR_BROADCOM,
353 	  PCI_PRODUCT_BROADCOM_BCM5704S,
354 	  "Broadcom BCM5704S Dual Gigabit Ethernet",
355 	  },
356 	{ PCI_VENDOR_BROADCOM,
357 	  PCI_PRODUCT_BROADCOM_BCM5705,
358 	  "Broadcom BCM5705 Gigabit Ethernet",
359 	  },
360 	{ PCI_VENDOR_BROADCOM,
361 	  PCI_PRODUCT_BROADCOM_BCM5705F,
362 	  "Broadcom BCM5705F Gigabit Ethernet",
363 	  },
364 	{ PCI_VENDOR_BROADCOM,
365 	  PCI_PRODUCT_BROADCOM_BCM5705K,
366 	  "Broadcom BCM5705K Gigabit Ethernet",
367 	  },
368 	{ PCI_VENDOR_BROADCOM,
369 	  PCI_PRODUCT_BROADCOM_BCM5705M,
370 	  "Broadcom BCM5705M Gigabit Ethernet",
371 	  },
372 	{ PCI_VENDOR_BROADCOM,
373 	  PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
374 	  "Broadcom BCM5705M Gigabit Ethernet",
375 	  },
376 	{ PCI_VENDOR_BROADCOM,
377 	  PCI_PRODUCT_BROADCOM_BCM5714,
378 	  "Broadcom BCM5714 Gigabit Ethernet",
379 	  },
380 	{ PCI_VENDOR_BROADCOM,
381 	  PCI_PRODUCT_BROADCOM_BCM5714S,
382 	  "Broadcom BCM5714S Gigabit Ethernet",
383 	  },
384 	{ PCI_VENDOR_BROADCOM,
385 	  PCI_PRODUCT_BROADCOM_BCM5715,
386 	  "Broadcom BCM5715 Gigabit Ethernet",
387 	  },
388 	{ PCI_VENDOR_BROADCOM,
389 	  PCI_PRODUCT_BROADCOM_BCM5715S,
390 	  "Broadcom BCM5715S Gigabit Ethernet",
391 	  },
392 	{ PCI_VENDOR_BROADCOM,
393 	  PCI_PRODUCT_BROADCOM_BCM5717,
394 	  "Broadcom BCM5717 Gigabit Ethernet",
395 	  },
396 	{ PCI_VENDOR_BROADCOM,
397 	  PCI_PRODUCT_BROADCOM_BCM5718,
398 	  "Broadcom BCM5718 Gigabit Ethernet",
399 	  },
400 	{ PCI_VENDOR_BROADCOM,
401 	  PCI_PRODUCT_BROADCOM_BCM5720,
402 	  "Broadcom BCM5720 Gigabit Ethernet",
403 	  },
404 	{ PCI_VENDOR_BROADCOM,
405 	  PCI_PRODUCT_BROADCOM_BCM5721,
406 	  "Broadcom BCM5721 Gigabit Ethernet",
407 	  },
408 	{ PCI_VENDOR_BROADCOM,
409 	  PCI_PRODUCT_BROADCOM_BCM5722,
410 	  "Broadcom BCM5722 Gigabit Ethernet",
411 	  },
412 	{ PCI_VENDOR_BROADCOM,
413 	  PCI_PRODUCT_BROADCOM_BCM5723,
414 	  "Broadcom BCM5723 Gigabit Ethernet",
415 	  },
416 	{ PCI_VENDOR_BROADCOM,
417 	  PCI_PRODUCT_BROADCOM_BCM5724,
418 	  "Broadcom BCM5724 Gigabit Ethernet",
419 	  },
420 	{ PCI_VENDOR_BROADCOM,
421 	  PCI_PRODUCT_BROADCOM_BCM5750,
422 	  "Broadcom BCM5750 Gigabit Ethernet",
423 	  },
424 	{ PCI_VENDOR_BROADCOM,
425 	  PCI_PRODUCT_BROADCOM_BCM5750M,
426 	  "Broadcom BCM5750M Gigabit Ethernet",
427 	  },
428 	{ PCI_VENDOR_BROADCOM,
429 	  PCI_PRODUCT_BROADCOM_BCM5751,
430 	  "Broadcom BCM5751 Gigabit Ethernet",
431 	  },
432 	{ PCI_VENDOR_BROADCOM,
433 	  PCI_PRODUCT_BROADCOM_BCM5751F,
434 	  "Broadcom BCM5751F Gigabit Ethernet",
435 	  },
436 	{ PCI_VENDOR_BROADCOM,
437 	  PCI_PRODUCT_BROADCOM_BCM5751M,
438 	  "Broadcom BCM5751M Gigabit Ethernet",
439 	  },
440 	{ PCI_VENDOR_BROADCOM,
441 	  PCI_PRODUCT_BROADCOM_BCM5752,
442 	  "Broadcom BCM5752 Gigabit Ethernet",
443 	  },
444 	{ PCI_VENDOR_BROADCOM,
445 	  PCI_PRODUCT_BROADCOM_BCM5752M,
446 	  "Broadcom BCM5752M Gigabit Ethernet",
447 	  },
448 	{ PCI_VENDOR_BROADCOM,
449 	  PCI_PRODUCT_BROADCOM_BCM5753,
450 	  "Broadcom BCM5753 Gigabit Ethernet",
451 	  },
452 	{ PCI_VENDOR_BROADCOM,
453 	  PCI_PRODUCT_BROADCOM_BCM5753F,
454 	  "Broadcom BCM5753F Gigabit Ethernet",
455 	  },
456 	{ PCI_VENDOR_BROADCOM,
457 	  PCI_PRODUCT_BROADCOM_BCM5753M,
458 	  "Broadcom BCM5753M Gigabit Ethernet",
459 	  },
460 	{ PCI_VENDOR_BROADCOM,
461 	  PCI_PRODUCT_BROADCOM_BCM5754,
462 	  "Broadcom BCM5754 Gigabit Ethernet",
463 	},
464 	{ PCI_VENDOR_BROADCOM,
465 	  PCI_PRODUCT_BROADCOM_BCM5754M,
466 	  "Broadcom BCM5754M Gigabit Ethernet",
467 	},
468 	{ PCI_VENDOR_BROADCOM,
469 	  PCI_PRODUCT_BROADCOM_BCM5755,
470 	  "Broadcom BCM5755 Gigabit Ethernet",
471 	},
472 	{ PCI_VENDOR_BROADCOM,
473 	  PCI_PRODUCT_BROADCOM_BCM5755M,
474 	  "Broadcom BCM5755M Gigabit Ethernet",
475 	},
476 	{ PCI_VENDOR_BROADCOM,
477 	  PCI_PRODUCT_BROADCOM_BCM5756,
478 	  "Broadcom BCM5756 Gigabit Ethernet",
479 	},
480 	{ PCI_VENDOR_BROADCOM,
481 	  PCI_PRODUCT_BROADCOM_BCM5761,
482 	  "Broadcom BCM5761 Gigabit Ethernet",
483 	},
484 	{ PCI_VENDOR_BROADCOM,
485 	  PCI_PRODUCT_BROADCOM_BCM5761E,
486 	  "Broadcom BCM5761E Gigabit Ethernet",
487 	},
488 	{ PCI_VENDOR_BROADCOM,
489 	  PCI_PRODUCT_BROADCOM_BCM5761S,
490 	  "Broadcom BCM5761S Gigabit Ethernet",
491 	},
492 	{ PCI_VENDOR_BROADCOM,
493 	  PCI_PRODUCT_BROADCOM_BCM5761SE,
494 	  "Broadcom BCM5761SE Gigabit Ethernet",
495 	},
496 	{ PCI_VENDOR_BROADCOM,
497 	  PCI_PRODUCT_BROADCOM_BCM5764,
498 	  "Broadcom BCM5764 Gigabit Ethernet",
499 	  },
500 	{ PCI_VENDOR_BROADCOM,
501 	  PCI_PRODUCT_BROADCOM_BCM5780,
502 	  "Broadcom BCM5780 Gigabit Ethernet",
503 	  },
504 	{ PCI_VENDOR_BROADCOM,
505 	  PCI_PRODUCT_BROADCOM_BCM5780S,
506 	  "Broadcom BCM5780S Gigabit Ethernet",
507 	  },
508 	{ PCI_VENDOR_BROADCOM,
509 	  PCI_PRODUCT_BROADCOM_BCM5781,
510 	  "Broadcom BCM5781 Gigabit Ethernet",
511 	  },
512 	{ PCI_VENDOR_BROADCOM,
513 	  PCI_PRODUCT_BROADCOM_BCM5782,
514 	  "Broadcom BCM5782 Gigabit Ethernet",
515 	},
516 	{ PCI_VENDOR_BROADCOM,
517 	  PCI_PRODUCT_BROADCOM_BCM5784M,
518 	  "BCM5784M NetLink 1000baseT Ethernet",
519 	},
520 	{ PCI_VENDOR_BROADCOM,
521 	  PCI_PRODUCT_BROADCOM_BCM5786,
522 	  "Broadcom BCM5786 Gigabit Ethernet",
523 	},
524 	{ PCI_VENDOR_BROADCOM,
525 	  PCI_PRODUCT_BROADCOM_BCM5787,
526 	  "Broadcom BCM5787 Gigabit Ethernet",
527 	},
528 	{ PCI_VENDOR_BROADCOM,
529 	  PCI_PRODUCT_BROADCOM_BCM5787M,
530 	  "Broadcom BCM5787M Gigabit Ethernet",
531 	},
532 	{ PCI_VENDOR_BROADCOM,
533 	  PCI_PRODUCT_BROADCOM_BCM5788,
534 	  "Broadcom BCM5788 Gigabit Ethernet",
535 	  },
536 	{ PCI_VENDOR_BROADCOM,
537 	  PCI_PRODUCT_BROADCOM_BCM5789,
538 	  "Broadcom BCM5789 Gigabit Ethernet",
539 	  },
540 	{ PCI_VENDOR_BROADCOM,
541 	  PCI_PRODUCT_BROADCOM_BCM5901,
542 	  "Broadcom BCM5901 Fast Ethernet",
543 	  },
544 	{ PCI_VENDOR_BROADCOM,
545 	  PCI_PRODUCT_BROADCOM_BCM5901A2,
546 	  "Broadcom BCM5901A2 Fast Ethernet",
547 	  },
548 	{ PCI_VENDOR_BROADCOM,
549 	  PCI_PRODUCT_BROADCOM_BCM5903M,
550 	  "Broadcom BCM5903M Fast Ethernet",
551 	  },
552 	{ PCI_VENDOR_BROADCOM,
553 	  PCI_PRODUCT_BROADCOM_BCM5906,
554 	  "Broadcom BCM5906 Fast Ethernet",
555 	  },
556 	{ PCI_VENDOR_BROADCOM,
557 	  PCI_PRODUCT_BROADCOM_BCM5906M,
558 	  "Broadcom BCM5906M Fast Ethernet",
559 	  },
560 	{ PCI_VENDOR_BROADCOM,
561 	  PCI_PRODUCT_BROADCOM_BCM57760,
562 	  "Broadcom BCM57760 Fast Ethernet",
563 	  },
564 	{ PCI_VENDOR_BROADCOM,
565 	  PCI_PRODUCT_BROADCOM_BCM57761,
566 	  "Broadcom BCM57761 Fast Ethernet",
567 	  },
568 	{ PCI_VENDOR_BROADCOM,
569 	  PCI_PRODUCT_BROADCOM_BCM57765,
570 	  "Broadcom BCM57765 Fast Ethernet",
571 	  },
572 	{ PCI_VENDOR_BROADCOM,
573 	  PCI_PRODUCT_BROADCOM_BCM57780,
574 	  "Broadcom BCM57780 Fast Ethernet",
575 	  },
576 	{ PCI_VENDOR_BROADCOM,
577 	  PCI_PRODUCT_BROADCOM_BCM57781,
578 	  "Broadcom BCM57781 Fast Ethernet",
579 	  },
580 	{ PCI_VENDOR_BROADCOM,
581 	  PCI_PRODUCT_BROADCOM_BCM57785,
582 	  "Broadcom BCM57785 Fast Ethernet",
583 	  },
584 	{ PCI_VENDOR_BROADCOM,
585 	  PCI_PRODUCT_BROADCOM_BCM57788,
586 	  "Broadcom BCM57788 Fast Ethernet",
587 	  },
588 	{ PCI_VENDOR_BROADCOM,
589 	  PCI_PRODUCT_BROADCOM_BCM57790,
590 	  "Broadcom BCM57790 Fast Ethernet",
591 	  },
592 	{ PCI_VENDOR_BROADCOM,
593 	  PCI_PRODUCT_BROADCOM_BCM57791,
594 	  "Broadcom BCM57791 Fast Ethernet",
595 	  },
596 	{ PCI_VENDOR_BROADCOM,
597 	  PCI_PRODUCT_BROADCOM_BCM57795,
598 	  "Broadcom BCM57795 Fast Ethernet",
599 	  },
600 	{ PCI_VENDOR_SCHNEIDERKOCH,
601 	  PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
602 	  "SysKonnect SK-9Dx1 Gigabit Ethernet",
603 	  },
604 	{ PCI_VENDOR_3COM,
605 	  PCI_PRODUCT_3COM_3C996,
606 	  "3Com 3c996 Gigabit Ethernet",
607 	  },
608 	{ PCI_VENDOR_FUJITSU4,
609 	  PCI_PRODUCT_FUJITSU4_PW008GE4,
610 	  "Fujitsu PW008GE4 Gigabit Ethernet",
611 	  },
612 	{ PCI_VENDOR_FUJITSU4,
613 	  PCI_PRODUCT_FUJITSU4_PW008GE5,
614 	  "Fujitsu PW008GE5 Gigabit Ethernet",
615 	  },
616 	{ PCI_VENDOR_FUJITSU4,
617 	  PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
618 	  "Fujitsu Primepower 250/450 Gigabit Ethernet",
619 	  },
620 	{ 0,
621 	  0,
622 	  NULL },
623 };
624 
625 /*
626  * XXX: how to handle variants based on 5750 and derivatives:
627  * 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
628  * in general behave like a 5705, except with additional quirks.
629  * This driver's current handling of the 5721 is wrong;
630  * how we map ASIC revision to "quirks" needs more thought.
631  * (defined here until the thought is done).
632  */
633 #define BGE_IS_5700_FAMILY(sc)		((sc)->bge_flags & BGE_5700_FAMILY)
634 #define BGE_IS_5714_FAMILY(sc)		((sc)->bge_flags & BGE_5714_FAMILY)
635 #define BGE_IS_5705_PLUS(sc)	((sc)->bge_flags & BGE_5705_PLUS)
636 #define BGE_IS_5750_OR_BEYOND(sc)	((sc)->bge_flags & BGE_5750_PLUS)
637 #define BGE_IS_5755_PLUS(sc)	((sc)->bge_flags & BGE_5755_PLUS)
638 #define BGE_IS_JUMBO_CAPABLE(sc)	((sc)->bge_flags & BGE_JUMBO_CAPABLE)
639 
640 static const struct bge_revision {
641 	uint32_t		br_chipid;
642 	const char		*br_name;
643 } bge_revisions[] = {
644 	{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
645 	{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
646 	{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
647 	{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
648 	{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
649 	{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
650 	/* This is treated like a BCM5700 Bx */
651 	{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
652 	{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
653 	{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
654 	{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
655 	{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
656 	{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
657 	{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
658 	{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
659 	{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
660 	{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
661 	{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
662 	{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
663 	{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
664 	{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
665 	{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
666 	{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
667 	{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
668 	{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
669 	{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
670 	{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
671 	{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
672 	{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
673 	{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
674 	{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
675 	{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
676 	{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
677 	{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
678 	{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
679 	{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
680 	{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
681 	{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
682 	{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
683 	{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
684 	{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
685 	{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
686 	{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
687 	{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
688 	{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
689 	{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
690 	{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
691 	{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
692 	{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
693 	{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
694 	{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
695 	{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
696 	/* 5754 and 5787 share the same ASIC ID */
697 	{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
698 	{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
699 	{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
700 	{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
701 	{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
702 	{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
703 	{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
704 
705 	{ 0, NULL }
706 };
707 
708 /*
709  * Some defaults for major revisions, so that newer steppings
710  * that we don't know about have a shot at working.
711  */
712 static const struct bge_revision bge_majorrevs[] = {
713 	{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
714 	{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
715 	{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
716 	{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
717 	{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
718 	{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
719 	{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
720 	{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
721 	{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
722 	{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
723 	{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
724 	{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
725 	{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
726 	{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
727 	/* 5754 and 5787 share the same ASIC ID */
728 	{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
729 	{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
730 	{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
731 	{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
732 	{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
733 
734 	{ 0, NULL }
735 };
736 
737 static int bge_allow_asf = 1;
738 
739 CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
740     bge_probe, bge_attach, NULL, NULL);
741 
742 static uint32_t
743 bge_readmem_ind(struct bge_softc *sc, int off)
744 {
745 	pcireg_t val;
746 
747 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
748 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
749 	return val;
750 }
751 
752 static void
753 bge_writemem_ind(struct bge_softc *sc, int off, int val)
754 {
755 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
756 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
757 }
758 
759 /*
760  * PCI Express only
761  */
762 static void
763 bge_set_max_readrq(struct bge_softc *sc)
764 {
765 	pcireg_t val;
766 
767 	val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
768 	    + PCI_PCIE_DCSR);
769 	if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
770 	    BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
771 		aprint_verbose_dev(sc->bge_dev,
772 		    "adjust device control 0x%04x ", val);
773 		val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
774 		val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
775 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
776 		    + PCI_PCIE_DCSR, val);
777 		aprint_verbose("-> 0x%04x\n", val);
778 	}
779 }
780 
781 #ifdef notdef
782 static uint32_t
783 bge_readreg_ind(struct bge_softc *sc, int off)
784 {
785 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
786 	return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
787 }
788 #endif
789 
790 static void
791 bge_writereg_ind(struct bge_softc *sc, int off, int val)
792 {
793 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
794 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
795 }
796 
797 static void
798 bge_writemem_direct(struct bge_softc *sc, int off, int val)
799 {
800 	CSR_WRITE_4(sc, off, val);
801 }
802 
803 static void
804 bge_writembx(struct bge_softc *sc, int off, int val)
805 {
806 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
807 		off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
808 
809 	CSR_WRITE_4(sc, off, val);
810 }
811 
812 static uint8_t
813 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
814 {
815 	uint32_t access, byte = 0;
816 	int i;
817 
818 	/* Lock. */
819 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
820 	for (i = 0; i < 8000; i++) {
821 		if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
822 			break;
823 		DELAY(20);
824 	}
825 	if (i == 8000)
826 		return 1;
827 
828 	/* Enable access. */
829 	access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
830 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
831 
832 	CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
833 	CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
834 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
835 		DELAY(10);
836 		if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
837 			DELAY(10);
838 			break;
839 		}
840 	}
841 
842 	if (i == BGE_TIMEOUT * 10) {
843 		aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
844 		return 1;
845 	}
846 
847 	/* Get result. */
848 	byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
849 
850 	*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
851 
852 	/* Disable access. */
853 	CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
854 
855 	/* Unlock. */
856 	CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
857 	CSR_READ_4(sc, BGE_NVRAM_SWARB);
858 
859 	return 0;
860 }
861 
862 /*
863  * Read a sequence of bytes from NVRAM.
864  */
865 static int
866 bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
867 {
868 	int err = 0, i;
869 	uint8_t byte = 0;
870 
871 	if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
872 		return 1;
873 
874 	for (i = 0; i < cnt; i++) {
875 		err = bge_nvram_getbyte(sc, off + i, &byte);
876 		if (err)
877 			break;
878 		*(dest + i) = byte;
879 	}
880 
881 	return (err ? 1 : 0);
882 }
883 
884 /*
885  * Read a byte of data stored in the EEPROM at address 'addr.' The
886  * BCM570x supports both the traditional bitbang interface and an
887  * auto access interface for reading the EEPROM. We use the auto
888  * access method.
889  */
890 static uint8_t
891 bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
892 {
893 	int i;
894 	uint32_t byte = 0;
895 
896 	/*
897 	 * Enable use of auto EEPROM access so we can avoid
898 	 * having to use the bitbang method.
899 	 */
900 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
901 
902 	/* Reset the EEPROM, load the clock period. */
903 	CSR_WRITE_4(sc, BGE_EE_ADDR,
904 	    BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
905 	DELAY(20);
906 
907 	/* Issue the read EEPROM command. */
908 	CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
909 
910 	/* Wait for completion */
911 	for (i = 0; i < BGE_TIMEOUT * 10; i++) {
912 		DELAY(10);
913 		if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
914 			break;
915 	}
916 
917 	if (i == BGE_TIMEOUT * 10) {
918 		aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
919 		return 1;
920 	}
921 
922 	/* Get result. */
923 	byte = CSR_READ_4(sc, BGE_EE_DATA);
924 
925 	*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
926 
927 	return 0;
928 }
929 
930 /*
931  * Read a sequence of bytes from the EEPROM.
932  */
933 static int
934 bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
935 {
936 	int err = 0, i;
937 	uint8_t byte = 0;
938 	char *dest = destv;
939 
940 	for (i = 0; i < cnt; i++) {
941 		err = bge_eeprom_getbyte(sc, off + i, &byte);
942 		if (err)
943 			break;
944 		*(dest + i) = byte;
945 	}
946 
947 	return (err ? 1 : 0);
948 }
949 
950 static int
951 bge_miibus_readreg(device_t dev, int phy, int reg)
952 {
953 	struct bge_softc *sc = device_private(dev);
954 	uint32_t val;
955 	uint32_t autopoll;
956 	int i;
957 
958 	/*
959 	 * Broadcom's own driver always assumes the internal
960 	 * PHY is at GMII address 1. On some chips, the PHY responds
961 	 * to accesses at all addresses, which could cause us to
962 	 * bogusly attach the PHY 32 times at probe type. Always
963 	 * restricting the lookup to address 1 is simpler than
964 	 * trying to figure out which chips revisions should be
965 	 * special-cased.
966 	 */
967 	if (phy != 1)
968 		return 0;
969 
970 	/* Reading with autopolling on may trigger PCI errors */
971 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
972 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
973 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
974 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
975 		DELAY(40);
976 	}
977 
978 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
979 	    BGE_MIPHY(phy) | BGE_MIREG(reg));
980 
981 	for (i = 0; i < BGE_TIMEOUT; i++) {
982 		val = CSR_READ_4(sc, BGE_MI_COMM);
983 		if (!(val & BGE_MICOMM_BUSY))
984 			break;
985 		delay(10);
986 	}
987 
988 	if (i == BGE_TIMEOUT) {
989 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
990 		val = 0;
991 		goto done;
992 	}
993 
994 	val = CSR_READ_4(sc, BGE_MI_COMM);
995 
996 done:
997 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
998 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
999 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1000 		DELAY(40);
1001 	}
1002 
1003 	if (val & BGE_MICOMM_READFAIL)
1004 		return 0;
1005 
1006 	return (val & 0xFFFF);
1007 }
1008 
1009 static void
1010 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1011 {
1012 	struct bge_softc *sc = device_private(dev);
1013 	uint32_t autopoll;
1014 	int i;
1015 
1016 	if (phy!=1) {
1017 		return;
1018 	}
1019 
1020 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
1021 	    (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
1022 		return;
1023 	}
1024 
1025 	/* Reading with autopolling on may trigger PCI errors */
1026 	autopoll = CSR_READ_4(sc, BGE_MI_MODE);
1027 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1028 		delay(40);
1029 		BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
1030 		BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1031 		delay(10); /* 40 usec is supposed to be adequate */
1032 	}
1033 
1034 	CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1035 	    BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1036 
1037 	for (i = 0; i < BGE_TIMEOUT; i++) {
1038 		delay(10);
1039 		if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1040 			delay(5);
1041 			CSR_READ_4(sc, BGE_MI_COMM);
1042 			break;
1043 		}
1044 	}
1045 
1046 	if (autopoll & BGE_MIMODE_AUTOPOLL) {
1047 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
1048 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
1049 		delay(40);
1050 	}
1051 
1052 	if (i == BGE_TIMEOUT)
1053 		aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
1054 }
1055 
1056 static void
1057 bge_miibus_statchg(device_t dev)
1058 {
1059 	struct bge_softc *sc = device_private(dev);
1060 	struct mii_data *mii = &sc->bge_mii;
1061 
1062 	/*
1063 	 * Get flow control negotiation result.
1064 	 */
1065 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1066 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
1067 		sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1068 		mii->mii_media_active &= ~IFM_ETH_FMASK;
1069 	}
1070 
1071 	BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
1072 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1073 	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1074 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
1075 	else
1076 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
1077 
1078 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1079 		BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1080 	else
1081 		BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
1082 
1083 	/*
1084 	 * 802.3x flow control
1085 	 */
1086 	if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
1087 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1088 	else
1089 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
1090 
1091 	if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
1092 		BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1093 	else
1094 		BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
1095 }
1096 
1097 /*
1098  * Update rx threshold levels to values in a particular slot
1099  * of the interrupt-mitigation table bge_rx_threshes.
1100  */
1101 static void
1102 bge_set_thresh(struct ifnet *ifp, int lvl)
1103 {
1104 	struct bge_softc *sc = ifp->if_softc;
1105 	int s;
1106 
1107 	/* For now, just save the new Rx-intr thresholds and record
1108 	 * that a threshold update is pending.  Updating the hardware
1109 	 * registers here (even at splhigh()) is observed to
1110 	 * occasionaly cause glitches where Rx-interrupts are not
1111 	 * honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
1112 	 */
1113 	s = splnet();
1114 	sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
1115 	sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
1116 	sc->bge_pending_rxintr_change = 1;
1117 	splx(s);
1118 
1119 	 return;
1120 }
1121 
1122 
1123 /*
1124  * Update Rx thresholds of all bge devices
1125  */
1126 static void
1127 bge_update_all_threshes(int lvl)
1128 {
1129 	struct ifnet *ifp;
1130 	const char * const namebuf = "bge";
1131 	int namelen;
1132 
1133 	if (lvl < 0)
1134 		lvl = 0;
1135 	else if (lvl >= NBGE_RX_THRESH)
1136 		lvl = NBGE_RX_THRESH - 1;
1137 
1138 	namelen = strlen(namebuf);
1139 	/*
1140 	 * Now search all the interfaces for this name/number
1141 	 */
1142 	IFNET_FOREACH(ifp) {
1143 		if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
1144 		      continue;
1145 		/* We got a match: update if doing auto-threshold-tuning */
1146 		if (bge_auto_thresh)
1147 			bge_set_thresh(ifp, lvl);
1148 	}
1149 }
1150 
1151 /*
1152  * Handle events that have triggered interrupts.
1153  */
1154 static void
1155 bge_handle_events(struct bge_softc *sc)
1156 {
1157 
1158 	return;
1159 }
1160 
1161 /*
1162  * Memory management for jumbo frames.
1163  */
1164 
1165 static int
1166 bge_alloc_jumbo_mem(struct bge_softc *sc)
1167 {
1168 	char *ptr, *kva;
1169 	bus_dma_segment_t	seg;
1170 	int		i, rseg, state, error;
1171 	struct bge_jpool_entry   *entry;
1172 
1173 	state = error = 0;
1174 
1175 	/* Grab a big chunk o' storage. */
1176 	if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
1177 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1178 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
1179 		return ENOBUFS;
1180 	}
1181 
1182 	state = 1;
1183 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
1184 	    BUS_DMA_NOWAIT)) {
1185 		aprint_error_dev(sc->bge_dev,
1186 		    "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
1187 		error = ENOBUFS;
1188 		goto out;
1189 	}
1190 
1191 	state = 2;
1192 	if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
1193 	    BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
1194 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
1195 		error = ENOBUFS;
1196 		goto out;
1197 	}
1198 
1199 	state = 3;
1200 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1201 	    kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
1202 		aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
1203 		error = ENOBUFS;
1204 		goto out;
1205 	}
1206 
1207 	state = 4;
1208 	sc->bge_cdata.bge_jumbo_buf = (void *)kva;
1209 	DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
1210 
1211 	SLIST_INIT(&sc->bge_jfree_listhead);
1212 	SLIST_INIT(&sc->bge_jinuse_listhead);
1213 
1214 	/*
1215 	 * Now divide it up into 9K pieces and save the addresses
1216 	 * in an array.
1217 	 */
1218 	ptr = sc->bge_cdata.bge_jumbo_buf;
1219 	for (i = 0; i < BGE_JSLOTS; i++) {
1220 		sc->bge_cdata.bge_jslots[i] = ptr;
1221 		ptr += BGE_JLEN;
1222 		entry = malloc(sizeof(struct bge_jpool_entry),
1223 		    M_DEVBUF, M_NOWAIT);
1224 		if (entry == NULL) {
1225 			aprint_error_dev(sc->bge_dev,
1226 			    "no memory for jumbo buffer queue!\n");
1227 			error = ENOBUFS;
1228 			goto out;
1229 		}
1230 		entry->slot = i;
1231 		SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
1232 				 entry, jpool_entries);
1233 	}
1234 out:
1235 	if (error != 0) {
1236 		switch (state) {
1237 		case 4:
1238 			bus_dmamap_unload(sc->bge_dmatag,
1239 			    sc->bge_cdata.bge_rx_jumbo_map);
1240 		case 3:
1241 			bus_dmamap_destroy(sc->bge_dmatag,
1242 			    sc->bge_cdata.bge_rx_jumbo_map);
1243 		case 2:
1244 			bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
1245 		case 1:
1246 			bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
1247 			break;
1248 		default:
1249 			break;
1250 		}
1251 	}
1252 
1253 	return error;
1254 }
1255 
1256 /*
1257  * Allocate a jumbo buffer.
1258  */
1259 static void *
1260 bge_jalloc(struct bge_softc *sc)
1261 {
1262 	struct bge_jpool_entry   *entry;
1263 
1264 	entry = SLIST_FIRST(&sc->bge_jfree_listhead);
1265 
1266 	if (entry == NULL) {
1267 		aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
1268 		return NULL;
1269 	}
1270 
1271 	SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
1272 	SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
1273 	return (sc->bge_cdata.bge_jslots[entry->slot]);
1274 }
1275 
1276 /*
1277  * Release a jumbo buffer.
1278  */
1279 static void
1280 bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1281 {
1282 	struct bge_jpool_entry *entry;
1283 	struct bge_softc *sc;
1284 	int i, s;
1285 
1286 	/* Extract the softc struct pointer. */
1287 	sc = (struct bge_softc *)arg;
1288 
1289 	if (sc == NULL)
1290 		panic("bge_jfree: can't find softc pointer!");
1291 
1292 	/* calculate the slot this buffer belongs to */
1293 
1294 	i = ((char *)buf
1295 	     - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
1296 
1297 	if ((i < 0) || (i >= BGE_JSLOTS))
1298 		panic("bge_jfree: asked to free buffer that we don't manage!");
1299 
1300 	s = splvm();
1301 	entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
1302 	if (entry == NULL)
1303 		panic("bge_jfree: buffer not in use!");
1304 	entry->slot = i;
1305 	SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
1306 	SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
1307 
1308 	if (__predict_true(m != NULL))
1309   		pool_cache_put(mb_cache, m);
1310 	splx(s);
1311 }
1312 
1313 
1314 /*
1315  * Initialize a standard receive ring descriptor.
1316  */
1317 static int
1318 bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
1319     bus_dmamap_t dmamap)
1320 {
1321 	struct mbuf		*m_new = NULL;
1322 	struct bge_rx_bd	*r;
1323 	int			error;
1324 
1325 	if (dmamap == NULL) {
1326 		error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
1327 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
1328 		if (error != 0)
1329 			return error;
1330 	}
1331 
1332 	sc->bge_cdata.bge_rx_std_map[i] = dmamap;
1333 
1334 	if (m == NULL) {
1335 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1336 		if (m_new == NULL)
1337 			return ENOBUFS;
1338 
1339 		MCLGET(m_new, M_DONTWAIT);
1340 		if (!(m_new->m_flags & M_EXT)) {
1341 			m_freem(m_new);
1342 			return ENOBUFS;
1343 		}
1344 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1345 
1346 	} else {
1347 		m_new = m;
1348 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
1349 		m_new->m_data = m_new->m_ext.ext_buf;
1350 	}
1351 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1352 	    m_adj(m_new, ETHER_ALIGN);
1353 	if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
1354 	    BUS_DMA_READ|BUS_DMA_NOWAIT))
1355 		return ENOBUFS;
1356 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
1357 	    BUS_DMASYNC_PREREAD);
1358 
1359 	sc->bge_cdata.bge_rx_std_chain[i] = m_new;
1360 	r = &sc->bge_rdata->bge_rx_std_ring[i];
1361 	BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
1362 	r->bge_flags = BGE_RXBDFLAG_END;
1363 	r->bge_len = m_new->m_len;
1364 	r->bge_idx = i;
1365 
1366 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1367 	    offsetof(struct bge_ring_data, bge_rx_std_ring) +
1368 		i * sizeof (struct bge_rx_bd),
1369 	    sizeof (struct bge_rx_bd),
1370 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Initialize a jumbo receive ring descriptor. This allocates
1377  * a jumbo buffer from the pool managed internally by the driver.
1378  */
1379 static int
1380 bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
1381 {
1382 	struct mbuf *m_new = NULL;
1383 	struct bge_rx_bd *r;
1384 	void *buf = NULL;
1385 
1386 	if (m == NULL) {
1387 
1388 		/* Allocate the mbuf. */
1389 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1390 		if (m_new == NULL)
1391 			return ENOBUFS;
1392 
1393 		/* Allocate the jumbo buffer */
1394 		buf = bge_jalloc(sc);
1395 		if (buf == NULL) {
1396 			m_freem(m_new);
1397 			aprint_error_dev(sc->bge_dev,
1398 			    "jumbo allocation failed -- packet dropped!\n");
1399 			return ENOBUFS;
1400 		}
1401 
1402 		/* Attach the buffer to the mbuf. */
1403 		m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
1404 		MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
1405 		    bge_jfree, sc);
1406 		m_new->m_flags |= M_EXT_RW;
1407 	} else {
1408 		m_new = m;
1409 		buf = m_new->m_data = m_new->m_ext.ext_buf;
1410 		m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1411 	}
1412 	if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
1413 	    m_adj(m_new, ETHER_ALIGN);
1414 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
1415 	    mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
1416 	    BUS_DMASYNC_PREREAD);
1417 	/* Set up the descriptor. */
1418 	r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
1419 	sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
1420 	BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
1421 	r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1422 	r->bge_len = m_new->m_len;
1423 	r->bge_idx = i;
1424 
1425 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
1426 	    offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
1427 		i * sizeof (struct bge_rx_bd),
1428 	    sizeof (struct bge_rx_bd),
1429 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1430 
1431 	return 0;
1432 }
1433 
1434 /*
1435  * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
1436  * that's 1MB or memory, which is a lot. For now, we fill only the first
1437  * 256 ring entries and hope that our CPU is fast enough to keep up with
1438  * the NIC.
1439  */
1440 static int
1441 bge_init_rx_ring_std(struct bge_softc *sc)
1442 {
1443 	int i;
1444 
1445 	if (sc->bge_flags & BGE_RXRING_VALID)
1446 		return 0;
1447 
1448 	for (i = 0; i < BGE_SSLOTS; i++) {
1449 		if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
1450 			return ENOBUFS;
1451 	}
1452 
1453 	sc->bge_std = i - 1;
1454 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1455 
1456 	sc->bge_flags |= BGE_RXRING_VALID;
1457 
1458 	return 0;
1459 }
1460 
1461 static void
1462 bge_free_rx_ring_std(struct bge_softc *sc)
1463 {
1464 	int i;
1465 
1466 	if (!(sc->bge_flags & BGE_RXRING_VALID))
1467 		return;
1468 
1469 	for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1470 		if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1471 			m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1472 			sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1473 			bus_dmamap_destroy(sc->bge_dmatag,
1474 			    sc->bge_cdata.bge_rx_std_map[i]);
1475 		}
1476 		memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
1477 		    sizeof(struct bge_rx_bd));
1478 	}
1479 
1480 	sc->bge_flags &= ~BGE_RXRING_VALID;
1481 }
1482 
1483 static int
1484 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1485 {
1486 	int i;
1487 	volatile struct bge_rcb *rcb;
1488 
1489 	if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
1490 		return 0;
1491 
1492 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1493 		if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
1494 			return ENOBUFS;
1495 	};
1496 
1497 	sc->bge_jumbo = i - 1;
1498 	sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
1499 
1500 	rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
1501 	rcb->bge_maxlen_flags = 0;
1502 	CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1503 
1504 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1505 
1506 	return 0;
1507 }
1508 
1509 static void
1510 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1511 {
1512 	int i;
1513 
1514 	if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
1515 		return;
1516 
1517 	for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1518 		if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1519 			m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1520 			sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1521 		}
1522 		memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
1523 		    sizeof(struct bge_rx_bd));
1524 	}
1525 
1526 	sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
1527 }
1528 
1529 static void
1530 bge_free_tx_ring(struct bge_softc *sc)
1531 {
1532 	int i, freed;
1533 	struct txdmamap_pool_entry *dma;
1534 
1535 	if (!(sc->bge_flags & BGE_TXRING_VALID))
1536 		return;
1537 
1538 	freed = 0;
1539 
1540 	for (i = 0; i < BGE_TX_RING_CNT; i++) {
1541 		if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1542 			freed++;
1543 			m_freem(sc->bge_cdata.bge_tx_chain[i]);
1544 			sc->bge_cdata.bge_tx_chain[i] = NULL;
1545 			SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
1546 					    link);
1547 			sc->txdma[i] = 0;
1548 		}
1549 		memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
1550 		    sizeof(struct bge_tx_bd));
1551 	}
1552 
1553 	while ((dma = SLIST_FIRST(&sc->txdma_list))) {
1554 		SLIST_REMOVE_HEAD(&sc->txdma_list, link);
1555 		bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
1556 		free(dma, M_DEVBUF);
1557 	}
1558 
1559 	sc->bge_flags &= ~BGE_TXRING_VALID;
1560 }
1561 
1562 static int
1563 bge_init_tx_ring(struct bge_softc *sc)
1564 {
1565 	int i;
1566 	bus_dmamap_t dmamap;
1567 	struct txdmamap_pool_entry *dma;
1568 
1569 	if (sc->bge_flags & BGE_TXRING_VALID)
1570 		return 0;
1571 
1572 	sc->bge_txcnt = 0;
1573 	sc->bge_tx_saved_considx = 0;
1574 
1575 	/* Initialize transmit producer index for host-memory send ring. */
1576 	sc->bge_tx_prodidx = 0;
1577 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1578 	/* 5700 b2 errata */
1579 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1580 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1581 
1582 	/* NIC-memory send ring not used; initialize to zero. */
1583 	bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1584 	/* 5700 b2 errata */
1585 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
1586 		bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1587 
1588 	SLIST_INIT(&sc->txdma_list);
1589 	for (i = 0; i < BGE_RSLOTS; i++) {
1590 		if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
1591 		    BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
1592 		    &dmamap))
1593 			return ENOBUFS;
1594 		if (dmamap == NULL)
1595 			panic("dmamap NULL in bge_init_tx_ring");
1596 		dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
1597 		if (dma == NULL) {
1598 			aprint_error_dev(sc->bge_dev,
1599 			    "can't alloc txdmamap_pool_entry\n");
1600 			bus_dmamap_destroy(sc->bge_dmatag, dmamap);
1601 			return ENOMEM;
1602 		}
1603 		dma->dmamap = dmamap;
1604 		SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
1605 	}
1606 
1607 	sc->bge_flags |= BGE_TXRING_VALID;
1608 
1609 	return 0;
1610 }
1611 
1612 static void
1613 bge_setmulti(struct bge_softc *sc)
1614 {
1615 	struct ethercom		*ac = &sc->ethercom;
1616 	struct ifnet		*ifp = &ac->ec_if;
1617 	struct ether_multi	*enm;
1618 	struct ether_multistep  step;
1619 	uint32_t		hashes[4] = { 0, 0, 0, 0 };
1620 	uint32_t		h;
1621 	int			i;
1622 
1623 	if (ifp->if_flags & IFF_PROMISC)
1624 		goto allmulti;
1625 
1626 	/* Now program new ones. */
1627 	ETHER_FIRST_MULTI(step, ac, enm);
1628 	while (enm != NULL) {
1629 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1630 			/*
1631 			 * We must listen to a range of multicast addresses.
1632 			 * For now, just accept all multicasts, rather than
1633 			 * trying to set only those filter bits needed to match
1634 			 * the range.  (At this time, the only use of address
1635 			 * ranges is for IP multicast routing, for which the
1636 			 * range is big enough to require all bits set.)
1637 			 */
1638 			goto allmulti;
1639 		}
1640 
1641 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1642 
1643 		/* Just want the 7 least-significant bits. */
1644 		h &= 0x7f;
1645 
1646 		hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1647 		ETHER_NEXT_MULTI(step, enm);
1648 	}
1649 
1650 	ifp->if_flags &= ~IFF_ALLMULTI;
1651 	goto setit;
1652 
1653  allmulti:
1654 	ifp->if_flags |= IFF_ALLMULTI;
1655 	hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
1656 
1657  setit:
1658 	for (i = 0; i < 4; i++)
1659 		CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1660 }
1661 
1662 static void
1663 bge_sig_pre_reset(struct bge_softc *sc, int type)
1664 {
1665 	/*
1666 	 * Some chips don't like this so only do this if ASF is enabled
1667 	 */
1668 	if (sc->bge_asf_mode)
1669 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
1670 
1671 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1672 		switch (type) {
1673 		case BGE_RESET_START:
1674 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1675 			break;
1676 		case BGE_RESET_STOP:
1677 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1678 			break;
1679 		}
1680 	}
1681 }
1682 
1683 static void
1684 bge_sig_post_reset(struct bge_softc *sc, int type)
1685 {
1686 
1687 	if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1688 		switch (type) {
1689 		case BGE_RESET_START:
1690 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
1691 			/* START DONE */
1692 			break;
1693 		case BGE_RESET_STOP:
1694 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
1695 			break;
1696 		}
1697 	}
1698 }
1699 
1700 static void
1701 bge_sig_legacy(struct bge_softc *sc, int type)
1702 {
1703 
1704 	if (sc->bge_asf_mode) {
1705 		switch (type) {
1706 		case BGE_RESET_START:
1707 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
1708 			break;
1709 		case BGE_RESET_STOP:
1710 			bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
1711 			break;
1712 		}
1713 	}
1714 }
1715 
1716 static void
1717 bge_stop_fw(struct bge_softc *sc)
1718 {
1719 	int i;
1720 
1721 	if (sc->bge_asf_mode) {
1722 		bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
1723 		CSR_WRITE_4(sc, BGE_CPU_EVENT,
1724 		    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
1725 
1726 		for (i = 0; i < 100; i++) {
1727 			if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
1728 				break;
1729 			DELAY(10);
1730 		}
1731 	}
1732 }
1733 
1734 static int
1735 bge_poll_fw(struct bge_softc *sc)
1736 {
1737 	uint32_t val;
1738 	int i;
1739 
1740 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1741 		for (i = 0; i < BGE_TIMEOUT; i++) {
1742 			val = CSR_READ_4(sc, BGE_VCPU_STATUS);
1743 			if (val & BGE_VCPU_STATUS_INIT_DONE)
1744 				break;
1745 			DELAY(100);
1746 		}
1747 		if (i >= BGE_TIMEOUT) {
1748 			aprint_error_dev(sc->bge_dev, "reset timed out\n");
1749 			return -1;
1750 		}
1751 	} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
1752 		/*
1753 		 * Poll the value location we just wrote until
1754 		 * we see the 1's complement of the magic number.
1755 		 * This indicates that the firmware initialization
1756 		 * is complete.
1757 		 * XXX 1000ms for Flash and 10000ms for SEEPROM.
1758 		 */
1759 		for (i = 0; i < BGE_TIMEOUT; i++) {
1760 			val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
1761 			if (val == ~BGE_MAGIC_NUMBER)
1762 				break;
1763 			DELAY(10);
1764 		}
1765 
1766 		if (i >= BGE_TIMEOUT) {
1767 			aprint_error_dev(sc->bge_dev,
1768 			    "firmware handshake timed out, val = %x\n", val);
1769 			return -1;
1770 		}
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1778  * self-test results.
1779  */
1780 static int
1781 bge_chipinit(struct bge_softc *sc)
1782 {
1783 	int i;
1784 	uint32_t dma_rw_ctl;
1785 
1786 	/* Set endianness before we access any non-PCI registers. */
1787 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
1788 	    BGE_INIT);
1789 
1790 	/* Set power state to D0. */
1791 	bge_setpowerstate(sc, 0);
1792 
1793 	/* Clear the MAC control register */
1794 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1795 
1796 	/*
1797 	 * Clear the MAC statistics block in the NIC's
1798 	 * internal memory.
1799 	 */
1800 	for (i = BGE_STATS_BLOCK;
1801 	    i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1802 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1803 
1804 	for (i = BGE_STATUS_BLOCK;
1805 	    i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1806 		BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
1807 
1808 	/* Set up the PCI DMA control register. */
1809 	dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
1810 	if (sc->bge_flags & BGE_PCIE) {
1811 		/* Read watermark not used, 128 bytes for write. */
1812 		DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
1813 		    device_xname(sc->bge_dev)));
1814 		dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1815 	} else if (sc->bge_flags & BGE_PCIX) {
1816 	  	DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
1817 		    device_xname(sc->bge_dev)));
1818 		/* PCI-X bus */
1819 		if (BGE_IS_5714_FAMILY(sc)) {
1820 			/* 256 bytes for read and write. */
1821 			dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1822 			    (0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1823 
1824 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
1825 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1826 			else
1827 				dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1828 		} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1829 			/* 1536 bytes for read, 384 bytes for write. */
1830 			dma_rw_ctl |=
1831 			  (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1832 			  (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1833 		} else {
1834 			/* 384 bytes for read and write. */
1835 			dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1836 			    (0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1837 			    (0x0F);
1838 		}
1839 
1840 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1841 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
1842 			uint32_t tmp;
1843 
1844 			/* Set ONEDMA_ATONCE for hardware workaround. */
1845 			tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1846 			if (tmp == 6 || tmp == 7)
1847 				dma_rw_ctl |=
1848 				    BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1849 
1850 			/* Set PCI-X DMA write workaround. */
1851 			dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1852 		}
1853 	} else {
1854 		/* Conventional PCI bus: 256 bytes for read and write. */
1855 	  	DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
1856 		    device_xname(sc->bge_dev)));
1857 		dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1858 		   (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1859 		if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
1860 		    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
1861 			dma_rw_ctl |= 0x0F;
1862 	}
1863 
1864 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
1865 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
1866 		dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1867 		    BGE_PCIDMARWCTL_ASRT_ALL_BE;
1868 
1869 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
1870 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1871 		dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1872 
1873 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
1874 	    dma_rw_ctl);
1875 
1876 	/*
1877 	 * Set up general mode register.
1878 	 */
1879 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
1880 	    BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1881 	    BGE_MODECTL_TX_NO_PHDR_CSUM);
1882 
1883 	/*
1884 	 * BCM5701 B5 have a bug causing data corruption when using
1885 	 * 64-bit DMA reads, which can be terminated early and then
1886 	 * completed later as 32-bit accesses, in combination with
1887 	 * certain bridges.
1888 	 */
1889 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
1890 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1891 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1892 
1893 	/*
1894 	 * Tell the firmware the driver is running
1895 	 */
1896 	if (sc->bge_asf_mode & ASF_STACKUP)
1897 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
1898 
1899 	/*
1900 	 * Disable memory write invalidate.  Apparently it is not supported
1901 	 * properly by these devices.
1902 	 */
1903 	PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
1904 		   PCI_COMMAND_INVALIDATE_ENABLE);
1905 
1906 #ifdef __brokenalpha__
1907 	/*
1908 	 * Must insure that we do not cross an 8K (bytes) boundary
1909 	 * for DMA reads.  Our highest limit is 1K bytes.  This is a
1910 	 * restriction on some ALPHA platforms with early revision
1911 	 * 21174 PCI chipsets, such as the AlphaPC 164lx
1912 	 */
1913 	PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
1914 #endif
1915 
1916 	/* Set the timer prescaler (always 66MHz) */
1917 	CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1918 
1919 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1920 		DELAY(40);	/* XXX */
1921 
1922 		/* Put PHY into ready state */
1923 		BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1924 		CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1925 		DELAY(40);
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 static int
1932 bge_blockinit(struct bge_softc *sc)
1933 {
1934 	volatile struct bge_rcb	 *rcb;
1935 	bus_size_t rcb_addr;
1936 	int i;
1937 	struct ifnet *ifp = &sc->ethercom.ec_if;
1938 	bge_hostaddr taddr;
1939 	uint32_t val;
1940 
1941 	/*
1942 	 * Initialize the memory window pointer register so that
1943 	 * we can access the first 32K of internal NIC RAM. This will
1944 	 * allow us to set up the TX send ring RCBs and the RX return
1945 	 * ring RCBs, plus other things which live in NIC memory.
1946 	 */
1947 
1948 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
1949 
1950 	/* Step 33: Configure mbuf memory pool */
1951 	if (BGE_IS_5700_FAMILY(sc)) {
1952 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
1953 		    BGE_BUFFPOOL_1);
1954 
1955 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
1956 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1957 		else
1958 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1959 
1960 		/* Configure DMA resource pool */
1961 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1962 		    BGE_DMA_DESCRIPTORS);
1963 		CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1964 	}
1965 
1966 	/* Step 35: Configure mbuf pool watermarks */
1967 #ifdef ORIG_WPAUL_VALUES
1968 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
1969 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
1970 	CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
1971 #else
1972 
1973 	/* new broadcom docs strongly recommend these: */
1974 	if (!BGE_IS_5705_PLUS(sc)) {
1975 		if (ifp->if_mtu > ETHER_MAX_LEN) {
1976 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1977 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1978 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1979 		} else {
1980 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
1981 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
1982 			CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
1983 		}
1984 	} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
1985 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1986 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1987 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1988 	} else {
1989 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1990 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1991 		CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1992 	}
1993 #endif
1994 
1995 	/* Step 36: Configure DMA resource watermarks */
1996 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1997 	CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1998 
1999 	/* Step 38: Enable buffer manager */
2000 	CSR_WRITE_4(sc, BGE_BMAN_MODE,
2001 	    BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
2002 
2003 	/* Step 39: Poll for buffer manager start indication */
2004 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2005 		if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
2006 			break;
2007 		DELAY(10);
2008 	}
2009 
2010 	if (i == BGE_TIMEOUT * 2) {
2011 		aprint_error_dev(sc->bge_dev,
2012 		    "buffer manager failed to start\n");
2013 		return ENXIO;
2014 	}
2015 
2016 	/* Step 40: Enable flow-through queues */
2017 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2018 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2019 
2020 	/* Wait until queue initialization is complete */
2021 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2022 		if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2023 			break;
2024 		DELAY(10);
2025 	}
2026 
2027 	if (i == BGE_TIMEOUT * 2) {
2028 		aprint_error_dev(sc->bge_dev,
2029 		    "flow-through queue init failed\n");
2030 		return ENXIO;
2031 	}
2032 
2033 	/* Step 41: Initialize the standard RX ring control block */
2034 	rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
2035 	BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
2036 	if (BGE_IS_5705_PLUS(sc))
2037 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2038 	else
2039 		rcb->bge_maxlen_flags =
2040 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2041 	rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2042 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2043 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2044 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2045 	CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2046 
2047 	/*
2048 	 * Step 42: Initialize the jumbo RX ring control block
2049 	 * We set the 'ring disabled' bit in the flags
2050 	 * field until we're actually ready to start
2051 	 * using this ring (i.e. once we set the MTU
2052 	 * high enough to require it).
2053 	 */
2054 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2055 		rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
2056 		BGE_HOSTADDR(rcb->bge_hostaddr,
2057 		    BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
2058 		rcb->bge_maxlen_flags =
2059 		    BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
2060 			BGE_RCB_FLAG_RING_DISABLED);
2061 		rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2062 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2063 		    rcb->bge_hostaddr.bge_addr_hi);
2064 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2065 		    rcb->bge_hostaddr.bge_addr_lo);
2066 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2067 		    rcb->bge_maxlen_flags);
2068 		CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2069 
2070 		/* Set up dummy disabled mini ring RCB */
2071 		rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
2072 		rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2073 		    BGE_RCB_FLAG_RING_DISABLED);
2074 		CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2075 		    rcb->bge_maxlen_flags);
2076 
2077 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
2078 		    offsetof(struct bge_ring_data, bge_info),
2079 		    sizeof (struct bge_gib),
2080 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2081 	}
2082 
2083 	/*
2084 	 * Set the BD ring replenish thresholds. The recommended
2085 	 * values are 1/8th the number of descriptors allocated to
2086 	 * each ring.
2087 	 */
2088 	i = BGE_STD_RX_RING_CNT / 8;
2089 
2090 	/*
2091 	 * Use a value of 8 for the following chips to workaround HW errata.
2092 	 * Some of these chips have been added based on empirical
2093 	 * evidence (they don't work unless this is done).
2094 	 */
2095 	if (BGE_IS_5705_PLUS(sc))
2096 		i = 8;
2097 
2098 	CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
2099 	CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
2100 
2101 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2102 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
2103 		CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
2104 		CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
2105 	}
2106 
2107 	/*
2108 	 * Disable all unused send rings by setting the 'ring disabled'
2109 	 * bit in the flags field of all the TX send ring control blocks.
2110 	 * These are located in NIC memory.
2111 	 */
2112 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2113 	for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
2114 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2115 		    BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2116 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2117 		rcb_addr += sizeof(struct bge_rcb);
2118 	}
2119 
2120 	/* Configure TX RCB 0 (we use only the first ring) */
2121 	rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2122 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
2123 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2124 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2125 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
2126 		    BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2127 	if (BGE_IS_5700_FAMILY(sc))
2128 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2129 		    BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2130 
2131 	/* Disable all unused RX return rings */
2132 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2133 	for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
2134 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
2135 		RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
2136 		RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2137 		    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
2138 			BGE_RCB_FLAG_RING_DISABLED));
2139 		RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
2140 		bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2141 		    (i * (sizeof(uint64_t))), 0);
2142 		rcb_addr += sizeof(struct bge_rcb);
2143 	}
2144 
2145 	/* Initialize RX ring indexes */
2146 	bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2147 	bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2148 	bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2149 
2150 	/*
2151 	 * Set up RX return ring 0
2152 	 * Note that the NIC address for RX return rings is 0x00000000.
2153 	 * The return rings live entirely within the host, so the
2154 	 * nicaddr field in the RCB isn't used.
2155 	 */
2156 	rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2157 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
2158 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2159 	RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2160 	RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
2161 	RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
2162 	    BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2163 
2164 	/* Set random backoff seed for TX */
2165 	CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2166 	    CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
2167 	    CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
2168 	    CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
2169 	    BGE_TX_BACKOFF_SEED_MASK);
2170 
2171 	/* Set inter-packet gap */
2172 	CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
2173 
2174 	/*
2175 	 * Specify which ring to use for packets that don't match
2176 	 * any RX rules.
2177 	 */
2178 	CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2179 
2180 	/*
2181 	 * Configure number of RX lists. One interrupt distribution
2182 	 * list, sixteen active lists, one bad frames class.
2183 	 */
2184 	CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2185 
2186 	/* Inialize RX list placement stats mask. */
2187 	CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2188 	CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2189 
2190 	/* Disable host coalescing until we get it set up */
2191 	CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2192 
2193 	/* Poll to make sure it's shut down. */
2194 	for (i = 0; i < BGE_TIMEOUT * 2; i++) {
2195 		if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2196 			break;
2197 		DELAY(10);
2198 	}
2199 
2200 	if (i == BGE_TIMEOUT * 2) {
2201 		aprint_error_dev(sc->bge_dev,
2202 		    "host coalescing engine failed to idle\n");
2203 		return ENXIO;
2204 	}
2205 
2206 	/* Set up host coalescing defaults */
2207 	CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2208 	CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2209 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2210 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2211 	if (BGE_IS_5700_FAMILY(sc)) {
2212 		CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2213 		CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2214 	}
2215 	CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
2216 	CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
2217 
2218 	/* Set up address of statistics block */
2219 	if (BGE_IS_5700_FAMILY(sc)) {
2220 		BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
2221 		CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2222 		CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2223 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
2224 		CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
2225 	}
2226 
2227 	/* Set up address of status block */
2228 	BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
2229 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2230 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
2231 	CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
2232 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
2233 	sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
2234 
2235 	/* Turn on host coalescing state machine */
2236 	CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
2237 
2238 	/* Turn on RX BD completion state machine and enable attentions */
2239 	CSR_WRITE_4(sc, BGE_RBDC_MODE,
2240 	    BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2241 
2242 	/* Turn on RX list placement state machine */
2243 	CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2244 
2245 	/* Turn on RX list selector state machine. */
2246 	if (BGE_IS_5700_FAMILY(sc))
2247 		CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2248 
2249 	val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2250 	    BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2251 	    BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2252 	    BGE_MACMODE_FRMHDR_DMA_ENB;
2253 
2254 	if (sc->bge_flags & BGE_PHY_FIBER_TBI)
2255 		val |= BGE_PORTMODE_TBI;
2256 	else if (sc->bge_flags & BGE_PHY_FIBER_MII)
2257 		val |= BGE_PORTMODE_GMII;
2258 	else
2259 		val |= BGE_PORTMODE_MII;
2260 
2261 	/* Turn on DMA, clear stats */
2262 	CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2263 
2264 	/* Set misc. local control, enable interrupts on attentions */
2265 	sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
2266 
2267 #ifdef notdef
2268 	/* Assert GPIO pins for PHY reset */
2269 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
2270 	    BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
2271 	BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
2272 	    BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
2273 #endif
2274 
2275 #if defined(not_quite_yet)
2276 	/* Linux driver enables enable gpio pin #1 on 5700s */
2277 	if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
2278 		sc->bge_local_ctrl_reg |=
2279 		  (BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
2280 	}
2281 #endif
2282 	CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2283 
2284 	/* Turn on DMA completion state machine */
2285 	if (BGE_IS_5700_FAMILY(sc))
2286 		CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2287 
2288 	/* Turn on write DMA state machine */
2289 	{
2290 		uint32_t bge_wdma_mode =
2291 			BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
2292 
2293 		/* Enable host coalescing bug fix; see Linux tg3.c */
2294 		if (BGE_IS_5755_PLUS(sc))
2295 			bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
2296 
2297 		CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
2298 	}
2299 
2300 	/* Turn on read DMA state machine */
2301 	{
2302 		uint32_t dma_read_modebits;
2303 
2304 		dma_read_modebits =
2305 		  BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2306 
2307 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2308 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2309 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2310 			dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2311 			    BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2312 			    BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2313 
2314 		if (sc->bge_flags & BGE_PCIE)
2315 			dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
2316 		if (sc->bge_flags & BGE_TSO)
2317 			dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
2318 		CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
2319 		delay(40);
2320 	}
2321 
2322 	/* Turn on RX data completion state machine */
2323 	CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2324 
2325 	/* Turn on RX BD initiator state machine */
2326 	CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2327 
2328 	/* Turn on RX data and RX BD initiator state machine */
2329 	CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2330 
2331 	/* Turn on Mbuf cluster free state machine */
2332 	if (BGE_IS_5700_FAMILY(sc))
2333 		CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2334 
2335 	/* Turn on send BD completion state machine */
2336 	CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2337 
2338 	/* Turn on send data completion state machine */
2339 	val = BGE_SDCMODE_ENABLE;
2340 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
2341 		val |= BGE_SDCMODE_CDELAY;
2342 	CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2343 
2344 	/* Turn on send data initiator state machine */
2345 	if (sc->bge_flags & BGE_TSO) {
2346 		/* XXX: magic value from Linux driver */
2347 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
2348 	} else
2349 		CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2350 
2351 	/* Turn on send BD initiator state machine */
2352 	CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2353 
2354 	/* Turn on send BD selector state machine */
2355 	CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2356 
2357 	CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2358 	CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2359 	    BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2360 
2361 	/* ack/clear link change events */
2362 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2363 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2364 	    BGE_MACSTAT_LINK_CHANGED);
2365 	CSR_WRITE_4(sc, BGE_MI_STS, 0);
2366 
2367 	/* Enable PHY auto polling (for MII/GMII only) */
2368 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2369 		CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2370 	} else {
2371 		BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
2372 		BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
2373 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
2374 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2375 			    BGE_EVTENB_MI_INTERRUPT);
2376 	}
2377 
2378 	/*
2379 	 * Clear any pending link state attention.
2380 	 * Otherwise some link state change events may be lost until attention
2381 	 * is cleared by bge_intr() -> bge_link_upd() sequence.
2382 	 * It's not necessary on newer BCM chips - perhaps enabling link
2383 	 * state change attentions implies clearing pending attention.
2384 	 */
2385 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2386 	    BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2387 	    BGE_MACSTAT_LINK_CHANGED);
2388 
2389 	/* Enable link state change attentions. */
2390 	BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2391 
2392 	return 0;
2393 }
2394 
2395 static const struct bge_revision *
2396 bge_lookup_rev(uint32_t chipid)
2397 {
2398 	const struct bge_revision *br;
2399 
2400 	for (br = bge_revisions; br->br_name != NULL; br++) {
2401 		if (br->br_chipid == chipid)
2402 			return br;
2403 	}
2404 
2405 	for (br = bge_majorrevs; br->br_name != NULL; br++) {
2406 		if (br->br_chipid == BGE_ASICREV(chipid))
2407 			return br;
2408 	}
2409 
2410 	return NULL;
2411 }
2412 
2413 static const struct bge_product *
2414 bge_lookup(const struct pci_attach_args *pa)
2415 {
2416 	const struct bge_product *bp;
2417 
2418 	for (bp = bge_products; bp->bp_name != NULL; bp++) {
2419 		if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
2420 		    PCI_PRODUCT(pa->pa_id) == bp->bp_product)
2421 			return bp;
2422 	}
2423 
2424 	return NULL;
2425 }
2426 
2427 static int
2428 bge_setpowerstate(struct bge_softc *sc, int powerlevel)
2429 {
2430 #ifdef NOTYET
2431 	uint32_t pm_ctl = 0;
2432 
2433 	/* XXX FIXME: make sure indirect accesses enabled? */
2434 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
2435 	pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
2436 	pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
2437 
2438 	/* clear the PME_assert bit and power state bits, enable PME */
2439 	pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
2440 	pm_ctl &= ~PCIM_PSTAT_DMASK;
2441 	pm_ctl |= (1 << 8);
2442 
2443 	if (powerlevel == 0) {
2444 		pm_ctl |= PCIM_PSTAT_D0;
2445 		pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
2446 		    pm_ctl, 2);
2447 		DELAY(10000);
2448 		CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
2449 		DELAY(10000);
2450 
2451 #ifdef NOTYET
2452 		/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
2453 		bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
2454 #endif
2455 		DELAY(40); DELAY(40); DELAY(40);
2456 		DELAY(10000);	/* above not quite adequate on 5700 */
2457 		return 0;
2458 	}
2459 
2460 
2461 	/*
2462 	 * Entering ACPI power states D1-D3 is achieved by wiggling
2463 	 * GMII gpio pins. Example code assumes all hardware vendors
2464 	 * followed Broadcom's sample pcb layout. Until we verify that
2465 	 * for all supported OEM cards, states D1-D3 are  unsupported.
2466 	 */
2467 	aprint_error_dev(sc->bge_dev,
2468 	    "power state %d unimplemented; check GPIO pins\n",
2469 	    powerlevel);
2470 #endif
2471 	return EOPNOTSUPP;
2472 }
2473 
2474 
2475 /*
2476  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
2477  * against our list and return its name if we find a match. Note
2478  * that since the Broadcom controller contains VPD support, we
2479  * can get the device name string from the controller itself instead
2480  * of the compiled-in string. This is a little slow, but it guarantees
2481  * we'll always announce the right product name.
2482  */
2483 static int
2484 bge_probe(device_t parent, cfdata_t match, void *aux)
2485 {
2486 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
2487 
2488 	if (bge_lookup(pa) != NULL)
2489 		return 1;
2490 
2491 	return 0;
2492 }
2493 
2494 static void
2495 bge_attach(device_t parent, device_t self, void *aux)
2496 {
2497 	struct bge_softc	*sc = device_private(self);
2498 	struct pci_attach_args	*pa = aux;
2499 	prop_dictionary_t dict;
2500 	const struct bge_product *bp;
2501 	const struct bge_revision *br;
2502 	pci_chipset_tag_t	pc;
2503 	pci_intr_handle_t	ih;
2504 	const char		*intrstr = NULL;
2505 	bus_dma_segment_t	seg;
2506 	int			rseg;
2507 	uint32_t		hwcfg = 0;
2508 	uint32_t		command;
2509 	struct ifnet		*ifp;
2510 	uint32_t		misccfg;
2511 	void *			kva;
2512 	u_char			eaddr[ETHER_ADDR_LEN];
2513 	pcireg_t		memtype, subid;
2514 	bus_addr_t		memaddr;
2515 	bus_size_t		memsize;
2516 	uint32_t		pm_ctl;
2517 	bool			no_seeprom;
2518 
2519 	bp = bge_lookup(pa);
2520 	KASSERT(bp != NULL);
2521 
2522 	sc->sc_pc = pa->pa_pc;
2523 	sc->sc_pcitag = pa->pa_tag;
2524 	sc->bge_dev = self;
2525 
2526 	pc = sc->sc_pc;
2527 	subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
2528 
2529 	aprint_naive(": Ethernet controller\n");
2530 	aprint_normal(": %s\n", bp->bp_name);
2531 
2532 	/*
2533 	 * Map control/status registers.
2534 	 */
2535 	DPRINTFN(5, ("Map control/status regs\n"));
2536 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2537 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
2538 	pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
2539 	command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
2540 
2541 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
2542 		aprint_error_dev(sc->bge_dev,
2543 		    "failed to enable memory mapping!\n");
2544 		return;
2545 	}
2546 
2547 	DPRINTFN(5, ("pci_mem_find\n"));
2548 	memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
2549 	switch (memtype) {
2550 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
2551 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
2552 		if (pci_mapreg_map(pa, BGE_PCI_BAR0,
2553 		    memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
2554 		    &memaddr, &memsize) == 0)
2555 			break;
2556 	default:
2557 		aprint_error_dev(sc->bge_dev, "can't find mem space\n");
2558 		return;
2559 	}
2560 
2561 	DPRINTFN(5, ("pci_intr_map\n"));
2562 	if (pci_intr_map(pa, &ih)) {
2563 		aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
2564 		return;
2565 	}
2566 
2567 	DPRINTFN(5, ("pci_intr_string\n"));
2568 	intrstr = pci_intr_string(pc, ih);
2569 
2570 	DPRINTFN(5, ("pci_intr_establish\n"));
2571 	sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
2572 
2573 	if (sc->bge_intrhand == NULL) {
2574 		aprint_error_dev(sc->bge_dev,
2575 		    "couldn't establish interrupt%s%s\n",
2576 		    intrstr ? " at " : "", intrstr ? intrstr : "");
2577 		return;
2578 	}
2579 	aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
2580 
2581 	/*
2582 	 * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
2583 	 * can clobber the chip's PCI config-space power control registers,
2584 	 * leaving the card in D3 powersave state.
2585 	 * We do not have memory-mapped registers in this state,
2586 	 * so force device into D0 state before starting initialization.
2587 	 */
2588 	pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
2589 	pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
2590 	pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
2591 	pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
2592 	DELAY(1000);	/* 27 usec is allegedly sufficent */
2593 
2594 	/*
2595 	 * Save ASIC rev.
2596 	 */
2597 	sc->bge_chipid =
2598 	    pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
2599 		>> BGE_PCIMISCCTL_ASICREV_SHIFT;
2600 
2601 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
2602 		if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
2603 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
2604 		    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
2605 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2606 			    BGE_PCI_GEN2_PRODID_ASICREV);
2607 		else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
2608 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
2609 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
2610 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
2611 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
2612 			 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
2613 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2614 			    BGE_PCI_GEN15_PRODID_ASICREV);
2615 		else
2616 			sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
2617 			    BGE_PCI_PRODID_ASICREV);
2618 	}
2619 
2620 	if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
2621 	        &sc->bge_pciecap, NULL) != 0)
2622 	    || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
2623 		/* PCIe */
2624 		sc->bge_flags |= BGE_PCIE;
2625 		bge_set_max_readrq(sc);
2626 	} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
2627 		BGE_PCISTATE_PCI_BUSMODE) == 0) {
2628 		/* PCI-X */
2629 		sc->bge_flags |= BGE_PCIX;
2630 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
2631 			&sc->bge_pcixcap, NULL) == 0)
2632 			aprint_error_dev(sc->bge_dev,
2633 			    "unable to find PCIX capability\n");
2634 	}
2635 
2636 	/* chipid */
2637 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2638 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
2639 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
2640 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
2641 		sc->bge_flags |= BGE_5700_FAMILY;
2642 
2643 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
2644 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
2645 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
2646 		sc->bge_flags |= BGE_5714_FAMILY;
2647 
2648 	/* Intentionally exclude BGE_ASICREV_BCM5906 */
2649 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
2650 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2651 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2652 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2653 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
2654 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
2655 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
2656 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
2657 		sc->bge_flags |= BGE_5755_PLUS;
2658 
2659 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
2660 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
2661 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
2662 	    BGE_IS_5755_PLUS(sc) ||
2663 	    BGE_IS_5714_FAMILY(sc))
2664 		sc->bge_flags |= BGE_5750_PLUS;
2665 
2666 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
2667 	    BGE_IS_5750_OR_BEYOND(sc))
2668 		sc->bge_flags |= BGE_5705_PLUS;
2669 
2670 	/*
2671 	 * When using the BCM5701 in PCI-X mode, data corruption has
2672 	 * been observed in the first few bytes of some received packets.
2673 	 * Aligning the packet buffer in memory eliminates the corruption.
2674 	 * Unfortunately, this misaligns the packet payloads.  On platforms
2675 	 * which do not support unaligned accesses, we will realign the
2676 	 * payloads by copying the received packets.
2677 	 */
2678 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
2679 	    sc->bge_flags & BGE_PCIX)
2680 		sc->bge_flags |= BGE_RX_ALIGNBUG;
2681 
2682 	if (BGE_IS_5700_FAMILY(sc))
2683 		sc->bge_flags |= BGE_JUMBO_CAPABLE;
2684 
2685 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2686 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
2687 	    PCI_VENDOR(subid) == PCI_VENDOR_DELL)
2688 		sc->bge_flags |= BGE_NO_3LED;
2689 
2690 	misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
2691 	misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
2692 
2693 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2694 	    (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2695 	     misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2696 		sc->bge_flags |= BGE_IS_5788;
2697 
2698 	/*
2699 	 * Some controllers seem to require a special firmware to use
2700 	 * TSO. But the firmware is not available to FreeBSD and Linux
2701 	 * claims that the TSO performed by the firmware is slower than
2702 	 * hardware based TSO. Moreover the firmware based TSO has one
2703 	 * known bug which can't handle TSO if ethernet header + IP/TCP
2704 	 * header is greater than 80 bytes. The workaround for the TSO
2705 	 * bug exist but it seems it's too expensive than not using
2706 	 * TSO at all. Some hardwares also have the TSO bug so limit
2707 	 * the TSO to the controllers that are not affected TSO issues
2708 	 * (e.g. 5755 or higher).
2709 	 */
2710 	if (BGE_IS_5755_PLUS(sc)) {
2711 		/*
2712 		 * BCM5754 and BCM5787 shares the same ASIC id so
2713 		 * explicit device id check is required.
2714 		 */
2715 		if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
2716 		    (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
2717 			sc->bge_flags |= BGE_TSO;
2718 	}
2719 
2720 	if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
2721 	     (misccfg == 0x4000 || misccfg == 0x8000)) ||
2722 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2723 	     PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2724 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
2725 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2726 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2727 	    (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
2728 	     (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
2729 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
2730 	      PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2731 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
2732 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2733 		sc->bge_flags |= BGE_10_100_ONLY;
2734 
2735 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
2736 	    (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
2737 	     (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2738 	      sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2739 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
2740 		sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
2741 
2742 	if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2743 	    sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2744 		sc->bge_flags |= BGE_PHY_CRC_BUG;
2745 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
2746 	    BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
2747 		sc->bge_flags |= BGE_PHY_ADC_BUG;
2748 	if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2749 		sc->bge_flags |= BGE_PHY_5704_A0_BUG;
2750 
2751 	if (BGE_IS_5705_PLUS(sc) &&
2752 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
2753 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
2754 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
2755 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
2756 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
2757 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
2758 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
2759 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
2760 		    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
2761 			if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
2762 			    PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
2763 				sc->bge_flags |= BGE_PHY_JITTER_BUG;
2764 			if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
2765 				sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
2766 		} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
2767 			sc->bge_flags |= BGE_PHY_BER_BUG;
2768 	}
2769 
2770 	/*
2771 	 * SEEPROM check.
2772 	 * First check if firmware knows we do not have SEEPROM.
2773 	 */
2774 	if (prop_dictionary_get_bool(device_properties(self),
2775 	     "without-seeprom", &no_seeprom) && no_seeprom)
2776 	 	sc->bge_flags |= BGE_NO_EEPROM;
2777 
2778 	/* Now check the 'ROM failed' bit on the RX CPU */
2779 	else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
2780 		sc->bge_flags |= BGE_NO_EEPROM;
2781 
2782 	/* Try to reset the chip. */
2783 	DPRINTFN(5, ("bge_reset\n"));
2784 	bge_reset(sc);
2785 
2786 	sc->bge_asf_mode = 0;
2787 	if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
2788 	    == BGE_MAGIC_NUMBER)) {
2789 		if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
2790 		    & BGE_HWCFG_ASF) {
2791 			sc->bge_asf_mode |= ASF_ENABLE;
2792 			sc->bge_asf_mode |= ASF_STACKUP;
2793 			if (BGE_IS_5750_OR_BEYOND(sc)) {
2794 				sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
2795 			}
2796 		}
2797 	}
2798 
2799 	/* Try to reset the chip again the nice way. */
2800 	bge_stop_fw(sc);
2801 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
2802 	if (bge_reset(sc))
2803 		aprint_error_dev(sc->bge_dev, "chip reset failed\n");
2804 
2805 	bge_sig_legacy(sc, BGE_RESET_STOP);
2806 	bge_sig_post_reset(sc, BGE_RESET_STOP);
2807 
2808 	if (bge_chipinit(sc)) {
2809 		aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
2810 		bge_release_resources(sc);
2811 		return;
2812 	}
2813 
2814 	/*
2815 	 * Get station address from the EEPROM
2816 	 */
2817 	if (bge_get_eaddr(sc, eaddr)) {
2818 		aprint_error_dev(sc->bge_dev,
2819 		    "failed to read station address\n");
2820 		bge_release_resources(sc);
2821 		return;
2822 	}
2823 
2824 	br = bge_lookup_rev(sc->bge_chipid);
2825 
2826 	if (br == NULL) {
2827 		aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
2828 		    sc->bge_chipid);
2829 	} else {
2830 		aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
2831 		    br->br_name, sc->bge_chipid);
2832 	}
2833 	aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
2834 
2835 	/* Allocate the general information block and ring buffers. */
2836 	if (pci_dma64_available(pa))
2837 		sc->bge_dmatag = pa->pa_dmat64;
2838 	else
2839 		sc->bge_dmatag = pa->pa_dmat;
2840 	DPRINTFN(5, ("bus_dmamem_alloc\n"));
2841 	if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
2842 			     PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2843 		aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
2844 		return;
2845 	}
2846 	DPRINTFN(5, ("bus_dmamem_map\n"));
2847 	if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
2848 			   sizeof(struct bge_ring_data), &kva,
2849 			   BUS_DMA_NOWAIT)) {
2850 		aprint_error_dev(sc->bge_dev,
2851 		    "can't map DMA buffers (%zu bytes)\n",
2852 		    sizeof(struct bge_ring_data));
2853 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2854 		return;
2855 	}
2856 	DPRINTFN(5, ("bus_dmamem_create\n"));
2857 	if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
2858 	    sizeof(struct bge_ring_data), 0,
2859 	    BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
2860 		aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
2861 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2862 				 sizeof(struct bge_ring_data));
2863 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2864 		return;
2865 	}
2866 	DPRINTFN(5, ("bus_dmamem_load\n"));
2867 	if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
2868 			    sizeof(struct bge_ring_data), NULL,
2869 			    BUS_DMA_NOWAIT)) {
2870 		bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
2871 		bus_dmamem_unmap(sc->bge_dmatag, kva,
2872 				 sizeof(struct bge_ring_data));
2873 		bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
2874 		return;
2875 	}
2876 
2877 	DPRINTFN(5, ("bzero\n"));
2878 	sc->bge_rdata = (struct bge_ring_data *)kva;
2879 
2880 	memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
2881 
2882 	/* Try to allocate memory for jumbo buffers. */
2883 	if (BGE_IS_JUMBO_CAPABLE(sc)) {
2884 		if (bge_alloc_jumbo_mem(sc)) {
2885 			aprint_error_dev(sc->bge_dev,
2886 			    "jumbo buffer allocation failed\n");
2887 		} else
2888 			sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
2889 	}
2890 
2891 	/* Set default tuneable values. */
2892 	sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2893 	sc->bge_rx_coal_ticks = 150;
2894 	sc->bge_rx_max_coal_bds = 64;
2895 #ifdef ORIG_WPAUL_VALUES
2896 	sc->bge_tx_coal_ticks = 150;
2897 	sc->bge_tx_max_coal_bds = 128;
2898 #else
2899 	sc->bge_tx_coal_ticks = 300;
2900 	sc->bge_tx_max_coal_bds = 400;
2901 #endif
2902 	if (BGE_IS_5705_PLUS(sc)) {
2903 		sc->bge_tx_coal_ticks = (12 * 5);
2904 		sc->bge_tx_max_coal_bds = (12 * 5);
2905 			aprint_verbose_dev(sc->bge_dev,
2906 			    "setting short Tx thresholds\n");
2907 	}
2908 
2909 	if (BGE_IS_5705_PLUS(sc))
2910 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2911 	else
2912 		sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2913 
2914 	/* Set up ifnet structure */
2915 	ifp = &sc->ethercom.ec_if;
2916 	ifp->if_softc = sc;
2917 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2918 	ifp->if_ioctl = bge_ioctl;
2919 	ifp->if_stop = bge_stop;
2920 	ifp->if_start = bge_start;
2921 	ifp->if_init = bge_init;
2922 	ifp->if_watchdog = bge_watchdog;
2923 	IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
2924 	IFQ_SET_READY(&ifp->if_snd);
2925 	DPRINTFN(5, ("strcpy if_xname\n"));
2926 	strcpy(ifp->if_xname, device_xname(sc->bge_dev));
2927 
2928 	if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
2929 		sc->ethercom.ec_if.if_capabilities |=
2930 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
2931 #if 1	/* XXX TCP/UDP checksum offload breaks with pf(4) */
2932 		sc->ethercom.ec_if.if_capabilities |=
2933 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
2934 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
2935 #endif
2936 	sc->ethercom.ec_capabilities |=
2937 	    ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
2938 
2939 	if (sc->bge_flags & BGE_TSO)
2940 		sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
2941 
2942 	/*
2943 	 * Do MII setup.
2944 	 */
2945 	DPRINTFN(5, ("mii setup\n"));
2946 	sc->bge_mii.mii_ifp = ifp;
2947 	sc->bge_mii.mii_readreg = bge_miibus_readreg;
2948 	sc->bge_mii.mii_writereg = bge_miibus_writereg;
2949 	sc->bge_mii.mii_statchg = bge_miibus_statchg;
2950 
2951 	/*
2952 	 * Figure out what sort of media we have by checking the
2953 	 * hardware config word in the first 32k of NIC internal memory,
2954 	 * or fall back to the config word in the EEPROM. Note: on some BCM5700
2955 	 * cards, this value appears to be unset. If that's the
2956 	 * case, we have to rely on identifying the NIC by its PCI
2957 	 * subsystem ID, as we do below for the SysKonnect SK-9D41.
2958 	 */
2959 	if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2960 		hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2961 	} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
2962 		bge_read_eeprom(sc, (void *)&hwcfg,
2963 		    BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
2964 		hwcfg = be32toh(hwcfg);
2965 	}
2966 	/* The SysKonnect SK-9D41 is a 1000baseSX card. */
2967 	if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
2968 	    (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2969 		if (BGE_IS_5714_FAMILY(sc))
2970 		    sc->bge_flags |= BGE_PHY_FIBER_MII;
2971 		else
2972 		    sc->bge_flags |= BGE_PHY_FIBER_TBI;
2973 	}
2974 
2975 	/* set phyflags and chipid before mii_attach() */
2976 	dict = device_properties(self);
2977 	prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
2978 	prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
2979 
2980 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
2981 		ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
2982 		    bge_ifmedia_sts);
2983 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
2984 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
2985 			    0, NULL);
2986 		ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
2987 		ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
2988 		/* Pretend the user requested this setting */
2989 		sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2990 	} else {
2991 		/*
2992 		 * Do transceiver setup and tell the firmware the
2993 		 * driver is down so we can try to get access the
2994 		 * probe if ASF is running.  Retry a couple of times
2995 		 * if we get a conflict with the ASF firmware accessing
2996 		 * the PHY.
2997 		 */
2998 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
2999 		bge_asf_driver_up(sc);
3000 
3001 		ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
3002 			     bge_ifmedia_sts);
3003 		mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
3004 			   MII_PHY_ANY, MII_OFFSET_ANY,
3005 			   MIIF_FORCEANEG|MIIF_DOPAUSE);
3006 
3007 		if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
3008 			aprint_error_dev(sc->bge_dev, "no PHY found!\n");
3009 			ifmedia_add(&sc->bge_mii.mii_media,
3010 				    IFM_ETHER|IFM_MANUAL, 0, NULL);
3011 			ifmedia_set(&sc->bge_mii.mii_media,
3012 				    IFM_ETHER|IFM_MANUAL);
3013 		} else
3014 			ifmedia_set(&sc->bge_mii.mii_media,
3015 				    IFM_ETHER|IFM_AUTO);
3016 
3017 		/*
3018 		 * Now tell the firmware we are going up after probing the PHY
3019 		 */
3020 		if (sc->bge_asf_mode & ASF_STACKUP)
3021 			BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3022 	}
3023 
3024 	/*
3025 	 * Call MI attach routine.
3026 	 */
3027 	DPRINTFN(5, ("if_attach\n"));
3028 	if_attach(ifp);
3029 	DPRINTFN(5, ("ether_ifattach\n"));
3030 	ether_ifattach(ifp, eaddr);
3031 	ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
3032 #if NRND > 0
3033 	rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
3034 		RND_TYPE_NET, 0);
3035 #endif
3036 #ifdef BGE_EVENT_COUNTERS
3037 	/*
3038 	 * Attach event counters.
3039 	 */
3040 	evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
3041 	    NULL, device_xname(sc->bge_dev), "intr");
3042 	evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
3043 	    NULL, device_xname(sc->bge_dev), "tx_xoff");
3044 	evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
3045 	    NULL, device_xname(sc->bge_dev), "tx_xon");
3046 	evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
3047 	    NULL, device_xname(sc->bge_dev), "rx_xoff");
3048 	evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
3049 	    NULL, device_xname(sc->bge_dev), "rx_xon");
3050 	evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
3051 	    NULL, device_xname(sc->bge_dev), "rx_macctl");
3052 	evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
3053 	    NULL, device_xname(sc->bge_dev), "xoffentered");
3054 #endif /* BGE_EVENT_COUNTERS */
3055 	DPRINTFN(5, ("callout_init\n"));
3056 	callout_init(&sc->bge_timeout, 0);
3057 
3058 	if (pmf_device_register(self, NULL, NULL))
3059 		pmf_class_network_register(self, ifp);
3060 	else
3061 		aprint_error_dev(self, "couldn't establish power handler\n");
3062 
3063 	sysctl_bge_init(sc);
3064 
3065 #ifdef BGE_DEBUG
3066 	bge_debug_info(sc);
3067 #endif
3068 }
3069 
3070 static void
3071 bge_release_resources(struct bge_softc *sc)
3072 {
3073 	if (sc->bge_vpd_prodname != NULL)
3074 		free(sc->bge_vpd_prodname, M_DEVBUF);
3075 
3076 	if (sc->bge_vpd_readonly != NULL)
3077 		free(sc->bge_vpd_readonly, M_DEVBUF);
3078 }
3079 
3080 static int
3081 bge_reset(struct bge_softc *sc)
3082 {
3083 	uint32_t cachesize, command, pcistate, marbmode;
3084 #if 0
3085 	uint32_t new_pcistate;
3086 #endif
3087 	pcireg_t devctl, reg;
3088 	int i, val;
3089 	void (*write_op)(struct bge_softc *, int, int);
3090 
3091 	if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
3092 	    && (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
3093 	    	if (sc->bge_flags & BGE_PCIE)
3094 			write_op = bge_writemem_direct;
3095 		else
3096 			write_op = bge_writemem_ind;
3097 	} else
3098 		write_op = bge_writereg_ind;
3099 
3100 	/* Save some important PCI state. */
3101 	cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
3102 	command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3103 	pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
3104 
3105 	/* Step 5a: Enable memory arbiter. */
3106 	marbmode = 0;
3107 	if (BGE_IS_5714_FAMILY(sc))
3108 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3109 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3110 
3111 	/* Step 5b-5d: */
3112 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3113 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3114 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
3115 
3116 	/* XXX ???: Disable fastboot on controllers that support it. */
3117 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
3118 	    BGE_IS_5755_PLUS(sc))
3119 		CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
3120 
3121 	/*
3122 	 * Step 6: Write the magic number to SRAM at offset 0xB50.
3123 	 * When firmware finishes its initialization it will
3124 	 * write ~BGE_MAGIC_NUMBER to the same location.
3125 	 */
3126 	bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
3127 
3128 	/* Step 7: */
3129 	val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
3130 	/*
3131 	 * XXX: from FreeBSD/Linux; no documentation
3132 	 */
3133 	if (sc->bge_flags & BGE_PCIE) {
3134 		if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
3135 			/* PCI Express 1.0 system */
3136 			CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
3137 		if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
3138 			/*
3139 			 * Prevent PCI Express link training
3140 			 * during global reset.
3141 			 */
3142 			CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
3143 			val |= (1<<29);
3144 		}
3145 	}
3146 
3147 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
3148 		i = CSR_READ_4(sc, BGE_VCPU_STATUS);
3149 		CSR_WRITE_4(sc, BGE_VCPU_STATUS,
3150 		    i | BGE_VCPU_STATUS_DRV_RESET);
3151 		i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
3152 		CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
3153 		    i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
3154 	}
3155 
3156 	/*
3157 	 * Set GPHY Power Down Override to leave GPHY
3158 	 * powered up in D0 uninitialized.
3159 	 */
3160 	if (BGE_IS_5705_PLUS(sc))
3161 		val |= BGE_MISCCFG_KEEP_GPHY_POWER;
3162 
3163 	/* XXX 5721, 5751 and 5752 */
3164 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
3165 		val |= BGE_MISCCFG_GRC_RESET_DISABLE;
3166 
3167 	/* Issue global reset */
3168 	write_op(sc, BGE_MISC_CFG, val);
3169 
3170 	/* Step 8: wait for complete */
3171 	if (sc->bge_flags & BGE_PCIE)
3172 		delay(100*1000); /* too big */
3173 	else
3174 		delay(100);
3175 
3176 	/* From Linux: dummy read to flush PCI posted writes */
3177 	reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
3178 
3179 	/* Step 9-10: Reset some of the PCI state that got zapped by reset */
3180 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
3181 	    BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
3182 	    BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
3183 		| BGE_PCIMISCCTL_CLOCKCTL_RW);
3184 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
3185 	write_op(sc, BGE_MISC_CFG, (65 << 1));
3186 
3187 	/* Step 11: disable PCI-X Relaxed Ordering. */
3188 	if (sc->bge_flags & BGE_PCIX) {
3189 		reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3190 		    + PCI_PCIX_CMD);
3191 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
3192 		    + PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
3193 	}
3194 
3195 	if (sc->bge_flags & BGE_PCIE) {
3196 		if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
3197 			DELAY(500000);
3198 			/* XXX: Magic Numbers */
3199 			reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3200 			    BGE_PCI_UNKNOWN0);
3201 			pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3202 			    BGE_PCI_UNKNOWN0,
3203 			    reg | (1 << 15));
3204 		}
3205 		devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3206 		    sc->bge_pciecap + PCI_PCIE_DCSR);
3207 		/* Clear enable no snoop and disable relaxed ordering. */
3208 		devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
3209 		/* Set PCIE max payload size to 128. */
3210 		devctl &= ~(0x00e0);
3211 		/* Clear device status register. Write 1b to clear */
3212 		devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
3213 		    | PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
3214 		pci_conf_write(sc->sc_pc, sc->sc_pcitag,
3215 		    sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
3216 	}
3217 
3218 	/* Step 12: Enable memory arbiter. */
3219 	marbmode = 0;
3220 	if (BGE_IS_5714_FAMILY(sc))
3221 		marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
3222 	CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
3223 
3224 	/* Step 17: Poll until the firmware initialization is complete */
3225 	bge_poll_fw(sc);
3226 
3227 	/* XXX 5721, 5751 and 5752 */
3228 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
3229 		/* Step 19: */
3230 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
3231 		/* Step 20: */
3232 		BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
3233 	}
3234 
3235 	/*
3236 	 * Step 18: wirte mac mode
3237 	 * XXX Write 0x0c for 5703S and 5704S
3238 	 */
3239 	CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
3240 
3241 
3242 	/* Step 21: 5822 B0 errata */
3243 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
3244 		pcireg_t msidata;
3245 
3246 		msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3247 		    BGE_PCI_MSI_DATA);
3248 		msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
3249 		pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
3250 		    msidata);
3251 	}
3252 
3253 	/* Step 23: restore cache line size */
3254 	pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
3255 
3256 #if 0
3257 	/*
3258 	 * XXX Wait for the value of the PCISTATE register to
3259 	 * return to its original pre-reset state. This is a
3260 	 * fairly good indicator of reset completion. If we don't
3261 	 * wait for the reset to fully complete, trying to read
3262 	 * from the device's non-PCI registers may yield garbage
3263 	 * results.
3264 	 */
3265 	for (i = 0; i < BGE_TIMEOUT; i++) {
3266 		new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
3267 		    BGE_PCI_PCISTATE);
3268 		if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
3269 		    (pcistate & ~BGE_PCISTATE_RESERVED))
3270 			break;
3271 		DELAY(10);
3272 	}
3273 	if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
3274 	    (pcistate & ~BGE_PCISTATE_RESERVED)) {
3275 		aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
3276 	}
3277 #endif
3278 
3279 	/* Step 28: Fix up byte swapping */
3280 	CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
3281 
3282 	/* Tell the ASF firmware we are up */
3283 	if (sc->bge_asf_mode & ASF_STACKUP)
3284 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3285 
3286 	/*
3287 	 * The 5704 in TBI mode apparently needs some special
3288 	 * adjustment to insure the SERDES drive level is set
3289 	 * to 1.2V.
3290 	 */
3291 	if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
3292 	    BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
3293 		uint32_t serdescfg;
3294 
3295 		serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
3296 		serdescfg = (serdescfg & ~0xFFF) | 0x880;
3297 		CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
3298 	}
3299 
3300 	if (sc->bge_flags & BGE_PCIE &&
3301 	    sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
3302 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
3303 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
3304 	    BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
3305 		uint32_t v;
3306 
3307 		/* Enable PCI Express bug fix */
3308 		v = CSR_READ_4(sc, 0x7c00);
3309 		CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
3310 	}
3311 	DELAY(10000);
3312 
3313 	return 0;
3314 }
3315 
3316 /*
3317  * Frame reception handling. This is called if there's a frame
3318  * on the receive return list.
3319  *
3320  * Note: we have to be able to handle two possibilities here:
3321  * 1) the frame is from the jumbo receive ring
3322  * 2) the frame is from the standard receive ring
3323  */
3324 
3325 static void
3326 bge_rxeof(struct bge_softc *sc)
3327 {
3328 	struct ifnet *ifp;
3329 	uint16_t rx_prod, rx_cons;
3330 	int stdcnt = 0, jumbocnt = 0;
3331 	bus_dmamap_t dmamap;
3332 	bus_addr_t offset, toff;
3333 	bus_size_t tlen;
3334 	int tosync;
3335 
3336 	rx_cons = sc->bge_rx_saved_considx;
3337 	rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
3338 
3339 	/* Nothing to do */
3340 	if (rx_cons == rx_prod)
3341 		return;
3342 
3343 	ifp = &sc->ethercom.ec_if;
3344 
3345 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3346 	    offsetof(struct bge_ring_data, bge_status_block),
3347 	    sizeof (struct bge_status_block),
3348 	    BUS_DMASYNC_POSTREAD);
3349 
3350 	offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
3351 	tosync = rx_prod - rx_cons;
3352 
3353 #if NRND > 0
3354 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3355 		rnd_add_uint32(&sc->rnd_source, tosync);
3356 #endif
3357 
3358 	toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
3359 
3360 	if (tosync < 0) {
3361 		tlen = (sc->bge_return_ring_cnt - rx_cons) *
3362 		    sizeof (struct bge_rx_bd);
3363 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3364 		    toff, tlen, BUS_DMASYNC_POSTREAD);
3365 		tosync = -tosync;
3366 	}
3367 
3368 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3369 	    offset, tosync * sizeof (struct bge_rx_bd),
3370 	    BUS_DMASYNC_POSTREAD);
3371 
3372 	while (rx_cons != rx_prod) {
3373 		struct bge_rx_bd	*cur_rx;
3374 		uint32_t		rxidx;
3375 		struct mbuf		*m = NULL;
3376 
3377 		cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
3378 
3379 		rxidx = cur_rx->bge_idx;
3380 		BGE_INC(rx_cons, sc->bge_return_ring_cnt);
3381 
3382 		if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
3383 			BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
3384 			m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
3385 			sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
3386 			jumbocnt++;
3387 			bus_dmamap_sync(sc->bge_dmatag,
3388 			    sc->bge_cdata.bge_rx_jumbo_map,
3389 			    mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
3390 			    BGE_JLEN, BUS_DMASYNC_POSTREAD);
3391 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3392 				ifp->if_ierrors++;
3393 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3394 				continue;
3395 			}
3396 			if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
3397 					     NULL)== ENOBUFS) {
3398 				ifp->if_ierrors++;
3399 				bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
3400 				continue;
3401 			}
3402 		} else {
3403 			BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
3404 			m = sc->bge_cdata.bge_rx_std_chain[rxidx];
3405 
3406 			sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
3407 			stdcnt++;
3408 			dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
3409 			sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
3410 			if (dmamap == NULL) {
3411 				ifp->if_ierrors++;
3412 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3413 				continue;
3414 			}
3415 			bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
3416 			    dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3417 			bus_dmamap_unload(sc->bge_dmatag, dmamap);
3418 			if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
3419 				ifp->if_ierrors++;
3420 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3421 				continue;
3422 			}
3423 			if (bge_newbuf_std(sc, sc->bge_std,
3424 			    NULL, dmamap) == ENOBUFS) {
3425 				ifp->if_ierrors++;
3426 				bge_newbuf_std(sc, sc->bge_std, m, dmamap);
3427 				continue;
3428 			}
3429 		}
3430 
3431 		ifp->if_ipackets++;
3432 #ifndef __NO_STRICT_ALIGNMENT
3433 		/*
3434 		 * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
3435 		 * the Rx buffer has the layer-2 header unaligned.
3436 		 * If our CPU requires alignment, re-align by copying.
3437 		 */
3438 		if (sc->bge_flags & BGE_RX_ALIGNBUG) {
3439 			memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
3440 				cur_rx->bge_len);
3441 			m->m_data += ETHER_ALIGN;
3442 		}
3443 #endif
3444 
3445 		m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
3446 		m->m_pkthdr.rcvif = ifp;
3447 
3448 		/*
3449 		 * Handle BPF listeners. Let the BPF user see the packet.
3450 		 */
3451 		bpf_mtap(ifp, m);
3452 
3453 		m->m_pkthdr.csum_flags = M_CSUM_IPv4;
3454 
3455 		if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
3456 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
3457 		/*
3458 		 * Rx transport checksum-offload may also
3459 		 * have bugs with packets which, when transmitted,
3460 		 * were `runts' requiring padding.
3461 		 */
3462 		if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
3463 		    (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
3464 		     m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
3465 			m->m_pkthdr.csum_data =
3466 			    cur_rx->bge_tcp_udp_csum;
3467 			m->m_pkthdr.csum_flags |=
3468 			    (M_CSUM_TCPv4|M_CSUM_UDPv4|
3469 			     M_CSUM_DATA);
3470 		}
3471 
3472 		/*
3473 		 * If we received a packet with a vlan tag, pass it
3474 		 * to vlan_input() instead of ether_input().
3475 		 */
3476 		if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
3477 			VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
3478 		}
3479 
3480 		(*ifp->if_input)(ifp, m);
3481 	}
3482 
3483 	sc->bge_rx_saved_considx = rx_cons;
3484 	bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
3485 	if (stdcnt)
3486 		bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
3487 	if (jumbocnt)
3488 		bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
3489 }
3490 
3491 static void
3492 bge_txeof(struct bge_softc *sc)
3493 {
3494 	struct bge_tx_bd *cur_tx = NULL;
3495 	struct ifnet *ifp;
3496 	struct txdmamap_pool_entry *dma;
3497 	bus_addr_t offset, toff;
3498 	bus_size_t tlen;
3499 	int tosync;
3500 	struct mbuf *m;
3501 
3502 	ifp = &sc->ethercom.ec_if;
3503 
3504 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3505 	    offsetof(struct bge_ring_data, bge_status_block),
3506 	    sizeof (struct bge_status_block),
3507 	    BUS_DMASYNC_POSTREAD);
3508 
3509 	offset = offsetof(struct bge_ring_data, bge_tx_ring);
3510 	tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
3511 	    sc->bge_tx_saved_considx;
3512 
3513 #if NRND > 0
3514 	if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
3515 		rnd_add_uint32(&sc->rnd_source, tosync);
3516 #endif
3517 
3518 	toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
3519 
3520 	if (tosync < 0) {
3521 		tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
3522 		    sizeof (struct bge_tx_bd);
3523 		bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3524 		    toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3525 		tosync = -tosync;
3526 	}
3527 
3528 	bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
3529 	    offset, tosync * sizeof (struct bge_tx_bd),
3530 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
3531 
3532 	/*
3533 	 * Go through our tx ring and free mbufs for those
3534 	 * frames that have been sent.
3535 	 */
3536 	while (sc->bge_tx_saved_considx !=
3537 	    sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
3538 		uint32_t		idx = 0;
3539 
3540 		idx = sc->bge_tx_saved_considx;
3541 		cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
3542 		if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
3543 			ifp->if_opackets++;
3544 		m = sc->bge_cdata.bge_tx_chain[idx];
3545 		if (m != NULL) {
3546 			sc->bge_cdata.bge_tx_chain[idx] = NULL;
3547 			dma = sc->txdma[idx];
3548 			bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
3549 			    dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3550 			bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
3551 			SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
3552 			sc->txdma[idx] = NULL;
3553 
3554 			m_freem(m);
3555 		}
3556 		sc->bge_txcnt--;
3557 		BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
3558 		ifp->if_timer = 0;
3559 	}
3560 
3561 	if (cur_tx != NULL)
3562 		ifp->if_flags &= ~IFF_OACTIVE;
3563 }
3564 
3565 static int
3566 bge_intr(void *xsc)
3567 {
3568 	struct bge_softc *sc;
3569 	struct ifnet *ifp;
3570 	uint32_t statusword;
3571 
3572 	sc = xsc;
3573 	ifp = &sc->ethercom.ec_if;
3574 
3575 	/* It is possible for the interrupt to arrive before
3576 	 * the status block is updated prior to the interrupt.
3577 	 * Reading the PCI State register will confirm whether the
3578 	 * interrupt is ours and will flush the status block.
3579 	 */
3580 
3581 	/* read status word from status block */
3582 	statusword = sc->bge_rdata->bge_status_block.bge_status;
3583 
3584 	if ((statusword & BGE_STATFLAG_UPDATED) ||
3585 	    (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
3586 		/* Ack interrupt and stop others from occuring. */
3587 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3588 
3589 		BGE_EVCNT_INCR(sc->bge_ev_intr);
3590 
3591 		/* clear status word */
3592 		sc->bge_rdata->bge_status_block.bge_status = 0;
3593 
3594 		if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
3595 		    statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
3596 		    BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
3597 			bge_link_upd(sc);
3598 
3599 		if (ifp->if_flags & IFF_RUNNING) {
3600 			/* Check RX return ring producer/consumer */
3601 			bge_rxeof(sc);
3602 
3603 			/* Check TX ring producer/consumer */
3604 			bge_txeof(sc);
3605 		}
3606 
3607 		if (sc->bge_pending_rxintr_change) {
3608 			uint32_t rx_ticks = sc->bge_rx_coal_ticks;
3609 			uint32_t rx_bds = sc->bge_rx_max_coal_bds;
3610 			uint32_t junk;
3611 
3612 			CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
3613 			DELAY(10);
3614 			junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
3615 
3616 			CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
3617 			DELAY(10);
3618 			junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
3619 
3620 			sc->bge_pending_rxintr_change = 0;
3621 		}
3622 		bge_handle_events(sc);
3623 
3624 		/* Re-enable interrupts. */
3625 		bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3626 
3627 		if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
3628 			bge_start(ifp);
3629 
3630 		return 1;
3631 	} else
3632 		return 0;
3633 }
3634 
3635 static void
3636 bge_asf_driver_up(struct bge_softc *sc)
3637 {
3638 	if (sc->bge_asf_mode & ASF_STACKUP) {
3639 		/* Send ASF heartbeat aprox. every 2s */
3640 		if (sc->bge_asf_count)
3641 			sc->bge_asf_count --;
3642 		else {
3643 			sc->bge_asf_count = 2;
3644 			bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
3645 			    BGE_FW_DRV_ALIVE);
3646 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
3647 			bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
3648 			CSR_WRITE_4(sc, BGE_CPU_EVENT,
3649 			    CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
3650 		}
3651 	}
3652 }
3653 
3654 static void
3655 bge_tick(void *xsc)
3656 {
3657 	struct bge_softc *sc = xsc;
3658 	struct mii_data *mii = &sc->bge_mii;
3659 	int s;
3660 
3661 	s = splnet();
3662 
3663 	if (BGE_IS_5705_PLUS(sc))
3664 		bge_stats_update_regs(sc);
3665 	else
3666 		bge_stats_update(sc);
3667 
3668 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
3669 		/*
3670 		 * Since in TBI mode auto-polling can't be used we should poll
3671 		 * link status manually. Here we register pending link event
3672 		 * and trigger interrupt.
3673 		 */
3674 		BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
3675 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3676 	} else {
3677 		/*
3678 		 * Do not touch PHY if we have link up. This could break
3679 		 * IPMI/ASF mode or produce extra input errors.
3680 		 * (extra input errors was reported for bcm5701 & bcm5704).
3681 		 */
3682 		if (!BGE_STS_BIT(sc, BGE_STS_LINK))
3683 			mii_tick(mii);
3684 	}
3685 
3686 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
3687 
3688 	splx(s);
3689 }
3690 
3691 static void
3692 bge_stats_update_regs(struct bge_softc *sc)
3693 {
3694 	struct ifnet *ifp = &sc->ethercom.ec_if;
3695 
3696 	ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
3697 	    offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
3698 
3699 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
3700 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
3701 	ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
3702 }
3703 
3704 static void
3705 bge_stats_update(struct bge_softc *sc)
3706 {
3707 	struct ifnet *ifp = &sc->ethercom.ec_if;
3708 	bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3709 
3710 #define READ_STAT(sc, stats, stat) \
3711 	  CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3712 
3713 	ifp->if_collisions +=
3714 	  (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
3715 	   READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3716 	   READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
3717 	   READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
3718 	  ifp->if_collisions;
3719 
3720 	BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
3721 		      READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
3722 	BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
3723 		      READ_STAT(sc, stats, outXonSent.bge_addr_lo));
3724 	BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
3725 		      READ_STAT(sc, stats,
3726 		      		xoffPauseFramesReceived.bge_addr_lo));
3727 	BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
3728 		      READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
3729 	BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
3730 		      READ_STAT(sc, stats,
3731 		      		macControlFramesReceived.bge_addr_lo));
3732 	BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
3733 		      READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
3734 
3735 #undef READ_STAT
3736 
3737 #ifdef notdef
3738 	ifp->if_collisions +=
3739 	   (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3740 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3741 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3742 	   sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3743 	   ifp->if_collisions;
3744 #endif
3745 }
3746 
3747 /*
3748  * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
3749  * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
3750  * but when such padded frames employ the  bge IP/TCP checksum offload,
3751  * the hardware checksum assist gives incorrect results (possibly
3752  * from incorporating its own padding into the UDP/TCP checksum; who knows).
3753  * If we pad such runts with zeros, the onboard checksum comes out correct.
3754  */
3755 static inline int
3756 bge_cksum_pad(struct mbuf *pkt)
3757 {
3758 	struct mbuf *last = NULL;
3759 	int padlen;
3760 
3761 	padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
3762 
3763 	/* if there's only the packet-header and we can pad there, use it. */
3764 	if (pkt->m_pkthdr.len == pkt->m_len &&
3765 	    M_TRAILINGSPACE(pkt) >= padlen) {
3766 		last = pkt;
3767 	} else {
3768 		/*
3769 		 * Walk packet chain to find last mbuf. We will either
3770 		 * pad there, or append a new mbuf and pad it
3771 		 * (thus perhaps avoiding the bcm5700 dma-min bug).
3772 		 */
3773 		for (last = pkt; last->m_next != NULL; last = last->m_next) {
3774 	      	       continue; /* do nothing */
3775 		}
3776 
3777 		/* `last' now points to last in chain. */
3778 		if (M_TRAILINGSPACE(last) < padlen) {
3779 			/* Allocate new empty mbuf, pad it. Compact later. */
3780 			struct mbuf *n;
3781 			MGET(n, M_DONTWAIT, MT_DATA);
3782 			if (n == NULL)
3783 				return ENOBUFS;
3784 			n->m_len = 0;
3785 			last->m_next = n;
3786 			last = n;
3787 		}
3788 	}
3789 
3790 	KDASSERT(!M_READONLY(last));
3791 	KDASSERT(M_TRAILINGSPACE(last) >= padlen);
3792 
3793 	/* Now zero the pad area, to avoid the bge cksum-assist bug */
3794 	memset(mtod(last, char *) + last->m_len, 0, padlen);
3795 	last->m_len += padlen;
3796 	pkt->m_pkthdr.len += padlen;
3797 	return 0;
3798 }
3799 
3800 /*
3801  * Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
3802  */
3803 static inline int
3804 bge_compact_dma_runt(struct mbuf *pkt)
3805 {
3806 	struct mbuf	*m, *prev;
3807 	int 		totlen, prevlen;
3808 
3809 	prev = NULL;
3810 	totlen = 0;
3811 	prevlen = -1;
3812 
3813 	for (m = pkt; m != NULL; prev = m,m = m->m_next) {
3814 		int mlen = m->m_len;
3815 		int shortfall = 8 - mlen ;
3816 
3817 		totlen += mlen;
3818 		if (mlen == 0) {
3819 			continue;
3820 		}
3821 		if (mlen >= 8)
3822 			continue;
3823 
3824 		/* If we get here, mbuf data is too small for DMA engine.
3825 		 * Try to fix by shuffling data to prev or next in chain.
3826 		 * If that fails, do a compacting deep-copy of the whole chain.
3827 		 */
3828 
3829 		/* Internal frag. If fits in prev, copy it there. */
3830 		if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
3831 		  	memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
3832 			prev->m_len += mlen;
3833 			m->m_len = 0;
3834 			/* XXX stitch chain */
3835 			prev->m_next = m_free(m);
3836 			m = prev;
3837 			continue;
3838 		}
3839 		else if (m->m_next != NULL &&
3840 			     M_TRAILINGSPACE(m) >= shortfall &&
3841 			     m->m_next->m_len >= (8 + shortfall)) {
3842 		    /* m is writable and have enough data in next, pull up. */
3843 
3844 		  	memcpy(m->m_data + m->m_len, m->m_next->m_data,
3845 			    shortfall);
3846 			m->m_len += shortfall;
3847 			m->m_next->m_len -= shortfall;
3848 			m->m_next->m_data += shortfall;
3849 		}
3850 		else if (m->m_next == NULL || 1) {
3851 		  	/* Got a runt at the very end of the packet.
3852 			 * borrow data from the tail of the preceding mbuf and
3853 			 * update its length in-place. (The original data is still
3854 			 * valid, so we can do this even if prev is not writable.)
3855 			 */
3856 
3857 			/* if we'd make prev a runt, just move all of its data. */
3858 			KASSERT(prev != NULL /*, ("runt but null PREV")*/);
3859 			KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
3860 
3861 			if ((prev->m_len - shortfall) < 8)
3862 				shortfall = prev->m_len;
3863 
3864 #ifdef notyet	/* just do the safe slow thing for now */
3865 			if (!M_READONLY(m)) {
3866 				if (M_LEADINGSPACE(m) < shorfall) {
3867 					void *m_dat;
3868 					m_dat = (m->m_flags & M_PKTHDR) ?
3869 					  m->m_pktdat : m->dat;
3870 					memmove(m_dat, mtod(m, void*), m->m_len);
3871 					m->m_data = m_dat;
3872 				    }
3873 			} else
3874 #endif	/* just do the safe slow thing */
3875 			{
3876 				struct mbuf * n = NULL;
3877 				int newprevlen = prev->m_len - shortfall;
3878 
3879 				MGET(n, M_NOWAIT, MT_DATA);
3880 				if (n == NULL)
3881 				   return ENOBUFS;
3882 				KASSERT(m->m_len + shortfall < MLEN
3883 					/*,
3884 					  ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
3885 
3886 				/* first copy the data we're stealing from prev */
3887 				memcpy(n->m_data, prev->m_data + newprevlen,
3888 				    shortfall);
3889 
3890 				/* update prev->m_len accordingly */
3891 				prev->m_len -= shortfall;
3892 
3893 				/* copy data from runt m */
3894 				memcpy(n->m_data + shortfall, m->m_data,
3895 				    m->m_len);
3896 
3897 				/* n holds what we stole from prev, plus m */
3898 				n->m_len = shortfall + m->m_len;
3899 
3900 				/* stitch n into chain and free m */
3901 				n->m_next = m->m_next;
3902 				prev->m_next = n;
3903 				/* KASSERT(m->m_next == NULL); */
3904 				m->m_next = NULL;
3905 				m_free(m);
3906 				m = n;	/* for continuing loop */
3907 			}
3908 		}
3909 		prevlen = m->m_len;
3910 	}
3911 	return 0;
3912 }
3913 
3914 /*
3915  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3916  * pointers to descriptors.
3917  */
3918 static int
3919 bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
3920 {
3921 	struct bge_tx_bd	*f = NULL;
3922 	uint32_t		frag, cur;
3923 	uint16_t		csum_flags = 0;
3924 	uint16_t		txbd_tso_flags = 0;
3925 	struct txdmamap_pool_entry *dma;
3926 	bus_dmamap_t dmamap;
3927 	int			i = 0;
3928 	struct m_tag		*mtag;
3929 	int			use_tso, maxsegsize, error;
3930 
3931 	cur = frag = *txidx;
3932 
3933 	if (m_head->m_pkthdr.csum_flags) {
3934 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
3935 			csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3936 		if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
3937 			csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3938 	}
3939 
3940 	/*
3941 	 * If we were asked to do an outboard checksum, and the NIC
3942 	 * has the bug where it sometimes adds in the Ethernet padding,
3943 	 * explicitly pad with zeros so the cksum will be correct either way.
3944 	 * (For now, do this for all chip versions, until newer
3945 	 * are confirmed to not require the workaround.)
3946 	 */
3947 	if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
3948 #ifdef notyet
3949 	    (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
3950 #endif
3951 	    m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
3952 		goto check_dma_bug;
3953 
3954 	if (bge_cksum_pad(m_head) != 0)
3955 	    return ENOBUFS;
3956 
3957 check_dma_bug:
3958 	if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
3959 		goto doit;
3960 
3961 	/*
3962 	 * bcm5700 Revision B silicon cannot handle DMA descriptors with
3963 	 * less than eight bytes.  If we encounter a teeny mbuf
3964 	 * at the end of a chain, we can pad.  Otherwise, copy.
3965 	 */
3966 	if (bge_compact_dma_runt(m_head) != 0)
3967 		return ENOBUFS;
3968 
3969 doit:
3970 	dma = SLIST_FIRST(&sc->txdma_list);
3971 	if (dma == NULL)
3972 		return ENOBUFS;
3973 	dmamap = dma->dmamap;
3974 
3975 	/*
3976 	 * Set up any necessary TSO state before we start packing...
3977 	 */
3978 	use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
3979 	if (!use_tso) {
3980 		maxsegsize = 0;
3981 	} else {	/* TSO setup */
3982 		unsigned  mss;
3983 		struct ether_header *eh;
3984 		unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
3985 		struct mbuf * m0 = m_head;
3986 		struct ip *ip;
3987 		struct tcphdr *th;
3988 		int iphl, hlen;
3989 
3990 		/*
3991 		 * XXX It would be nice if the mbuf pkthdr had offset
3992 		 * fields for the protocol headers.
3993 		 */
3994 
3995 		eh = mtod(m0, struct ether_header *);
3996 		switch (htons(eh->ether_type)) {
3997 		case ETHERTYPE_IP:
3998 			offset = ETHER_HDR_LEN;
3999 			break;
4000 
4001 		case ETHERTYPE_VLAN:
4002 			offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
4003 			break;
4004 
4005 		default:
4006 			/*
4007 			 * Don't support this protocol or encapsulation.
4008 			 */
4009 			return ENOBUFS;
4010 		}
4011 
4012 		/*
4013 		 * TCP/IP headers are in the first mbuf; we can do
4014 		 * this the easy way.
4015 		 */
4016 		iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
4017 		hlen = iphl + offset;
4018 		if (__predict_false(m0->m_len <
4019 				    (hlen + sizeof(struct tcphdr)))) {
4020 
4021 			aprint_debug_dev(sc->bge_dev,
4022 			    "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
4023 			    "not handled yet\n",
4024 			     m0->m_len, hlen+ sizeof(struct tcphdr));
4025 #ifdef NOTYET
4026 			/*
4027 			 * XXX jonathan@NetBSD.org: untested.
4028 			 * how to force  this branch to be taken?
4029 			 */
4030 			BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
4031 
4032 			m_copydata(m0, offset, sizeof(ip), &ip);
4033 			m_copydata(m0, hlen, sizeof(th), &th);
4034 
4035 			ip.ip_len = 0;
4036 
4037 			m_copyback(m0, hlen + offsetof(struct ip, ip_len),
4038 			    sizeof(ip.ip_len), &ip.ip_len);
4039 
4040 			th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
4041 			    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
4042 
4043 			m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
4044 			    sizeof(th.th_sum), &th.th_sum);
4045 
4046 			hlen += th.th_off << 2;
4047 			iptcp_opt_words	= hlen;
4048 #else
4049 			/*
4050 			 * if_wm "hard" case not yet supported, can we not
4051 			 * mandate it out of existence?
4052 			 */
4053 			(void) ip; (void)th; (void) ip_tcp_hlen;
4054 
4055 			return ENOBUFS;
4056 #endif
4057 		} else {
4058 			ip = (struct ip *) (mtod(m0, char *) + offset);
4059 			th = (struct tcphdr *) (mtod(m0, char *) + hlen);
4060 			ip_tcp_hlen = iphl +  (th->th_off << 2);
4061 
4062 			/* Total IP/TCP options, in 32-bit words */
4063 			iptcp_opt_words = (ip_tcp_hlen
4064 					   - sizeof(struct tcphdr)
4065 					   - sizeof(struct ip)) >> 2;
4066 		}
4067 		if (BGE_IS_5750_OR_BEYOND(sc)) {
4068 			th->th_sum = 0;
4069 			csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
4070 		} else {
4071 			/*
4072 			 * XXX jonathan@NetBSD.org: 5705 untested.
4073 			 * Requires TSO firmware patch for 5701/5703/5704.
4074 			 */
4075 			th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
4076 			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
4077 		}
4078 
4079 		mss = m_head->m_pkthdr.segsz;
4080 		txbd_tso_flags |=
4081 		    BGE_TXBDFLAG_CPU_PRE_DMA |
4082 		    BGE_TXBDFLAG_CPU_POST_DMA;
4083 
4084 		/*
4085 		 * Our NIC TSO-assist assumes TSO has standard, optionless
4086 		 * IPv4 and TCP headers, which total 40 bytes. By default,
4087 		 * the NIC copies 40 bytes of IP/TCP header from the
4088 		 * supplied header into the IP/TCP header portion of
4089 		 * each post-TSO-segment. If the supplied packet has IP or
4090 		 * TCP options, we need to tell the NIC to copy those extra
4091 		 * bytes into each  post-TSO header, in addition to the normal
4092 		 * 40-byte IP/TCP header (and to leave space accordingly).
4093 		 * Unfortunately, the driver encoding of option length
4094 		 * varies across different ASIC families.
4095 		 */
4096 		tcp_seg_flags = 0;
4097 		if (iptcp_opt_words) {
4098 			if (BGE_IS_5705_PLUS(sc)) {
4099 				tcp_seg_flags =
4100 					iptcp_opt_words << 11;
4101 			} else {
4102 				txbd_tso_flags |=
4103 					iptcp_opt_words << 12;
4104 			}
4105 		}
4106 		maxsegsize = mss | tcp_seg_flags;
4107 		ip->ip_len = htons(mss + ip_tcp_hlen);
4108 
4109 	}	/* TSO setup */
4110 
4111 	/*
4112 	 * Start packing the mbufs in this chain into
4113 	 * the fragment pointers. Stop when we run out
4114 	 * of fragments or hit the end of the mbuf chain.
4115 	 */
4116 	error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
4117 	    BUS_DMA_NOWAIT);
4118 	if (error)
4119 		return ENOBUFS;
4120 	/*
4121 	 * Sanity check: avoid coming within 16 descriptors
4122 	 * of the end of the ring.
4123 	 */
4124 	if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
4125 		BGE_TSO_PRINTF(("%s: "
4126 		    " dmamap_load_mbuf too close to ring wrap\n",
4127 		    device_xname(sc->bge_dev)));
4128 		goto fail_unload;
4129 	}
4130 
4131 	mtag = sc->ethercom.ec_nvlans ?
4132 	    m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
4133 
4134 
4135 	/* Iterate over dmap-map fragments. */
4136 	for (i = 0; i < dmamap->dm_nsegs; i++) {
4137 		f = &sc->bge_rdata->bge_tx_ring[frag];
4138 		if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
4139 			break;
4140 
4141 		BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
4142 		f->bge_len = dmamap->dm_segs[i].ds_len;
4143 
4144 		/*
4145 		 * For 5751 and follow-ons, for TSO we must turn
4146 		 * off checksum-assist flag in the tx-descr, and
4147 		 * supply the ASIC-revision-specific encoding
4148 		 * of TSO flags and segsize.
4149 		 */
4150 		if (use_tso) {
4151 			if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
4152 				f->bge_rsvd = maxsegsize;
4153 				f->bge_flags = csum_flags | txbd_tso_flags;
4154 			} else {
4155 				f->bge_rsvd = 0;
4156 				f->bge_flags =
4157 				  (csum_flags | txbd_tso_flags) & 0x0fff;
4158 			}
4159 		} else {
4160 			f->bge_rsvd = 0;
4161 			f->bge_flags = csum_flags;
4162 		}
4163 
4164 		if (mtag != NULL) {
4165 			f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
4166 			f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
4167 		} else {
4168 			f->bge_vlan_tag = 0;
4169 		}
4170 		cur = frag;
4171 		BGE_INC(frag, BGE_TX_RING_CNT);
4172 	}
4173 
4174 	if (i < dmamap->dm_nsegs) {
4175 		BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
4176 		    device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
4177 		goto fail_unload;
4178 	}
4179 
4180 	bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
4181 	    BUS_DMASYNC_PREWRITE);
4182 
4183 	if (frag == sc->bge_tx_saved_considx) {
4184 		BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
4185 		    device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
4186 
4187 		goto fail_unload;
4188 	}
4189 
4190 	sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
4191 	sc->bge_cdata.bge_tx_chain[cur] = m_head;
4192 	SLIST_REMOVE_HEAD(&sc->txdma_list, link);
4193 	sc->txdma[cur] = dma;
4194 	sc->bge_txcnt += dmamap->dm_nsegs;
4195 
4196 	*txidx = frag;
4197 
4198 	return 0;
4199 
4200 fail_unload:
4201 	bus_dmamap_unload(sc->bge_dmatag, dmamap);
4202 
4203 	return ENOBUFS;
4204 }
4205 
4206 /*
4207  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
4208  * to the mbuf data regions directly in the transmit descriptors.
4209  */
4210 static void
4211 bge_start(struct ifnet *ifp)
4212 {
4213 	struct bge_softc *sc;
4214 	struct mbuf *m_head = NULL;
4215 	uint32_t prodidx;
4216 	int pkts = 0;
4217 
4218 	sc = ifp->if_softc;
4219 
4220 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
4221 		return;
4222 
4223 	prodidx = sc->bge_tx_prodidx;
4224 
4225 	while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
4226 		IFQ_POLL(&ifp->if_snd, m_head);
4227 		if (m_head == NULL)
4228 			break;
4229 
4230 #if 0
4231 		/*
4232 		 * XXX
4233 		 * safety overkill.  If this is a fragmented packet chain
4234 		 * with delayed TCP/UDP checksums, then only encapsulate
4235 		 * it if we have enough descriptors to handle the entire
4236 		 * chain at once.
4237 		 * (paranoia -- may not actually be needed)
4238 		 */
4239 		if (m_head->m_flags & M_FIRSTFRAG &&
4240 		    m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
4241 			if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
4242 			    M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
4243 				ifp->if_flags |= IFF_OACTIVE;
4244 				break;
4245 			}
4246 		}
4247 #endif
4248 
4249 		/*
4250 		 * Pack the data into the transmit ring. If we
4251 		 * don't have room, set the OACTIVE flag and wait
4252 		 * for the NIC to drain the ring.
4253 		 */
4254 		if (bge_encap(sc, m_head, &prodidx)) {
4255 			ifp->if_flags |= IFF_OACTIVE;
4256 			break;
4257 		}
4258 
4259 		/* now we are committed to transmit the packet */
4260 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
4261 		pkts++;
4262 
4263 		/*
4264 		 * If there's a BPF listener, bounce a copy of this frame
4265 		 * to him.
4266 		 */
4267 		bpf_mtap(ifp, m_head);
4268 	}
4269 	if (pkts == 0)
4270 		return;
4271 
4272 	/* Transmit */
4273 	bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4274 	/* 5700 b2 errata */
4275 	if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
4276 		bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
4277 
4278 	sc->bge_tx_prodidx = prodidx;
4279 
4280 	/*
4281 	 * Set a timeout in case the chip goes out to lunch.
4282 	 */
4283 	ifp->if_timer = 5;
4284 }
4285 
4286 static int
4287 bge_init(struct ifnet *ifp)
4288 {
4289 	struct bge_softc *sc = ifp->if_softc;
4290 	const uint16_t *m;
4291 	int s, error = 0;
4292 
4293 	s = splnet();
4294 
4295 	ifp = &sc->ethercom.ec_if;
4296 
4297 	/* Cancel pending I/O and flush buffers. */
4298 	bge_stop(ifp, 0);
4299 
4300 	bge_stop_fw(sc);
4301 	bge_sig_pre_reset(sc, BGE_RESET_START);
4302 	bge_reset(sc);
4303 	bge_sig_legacy(sc, BGE_RESET_START);
4304 	bge_sig_post_reset(sc, BGE_RESET_START);
4305 
4306 	bge_chipinit(sc);
4307 
4308 	/*
4309 	 * Init the various state machines, ring
4310 	 * control blocks and firmware.
4311 	 */
4312 	error = bge_blockinit(sc);
4313 	if (error != 0) {
4314 		aprint_error_dev(sc->bge_dev, "initialization error %d\n",
4315 		    error);
4316 		splx(s);
4317 		return error;
4318 	}
4319 
4320 	ifp = &sc->ethercom.ec_if;
4321 
4322 	/* Specify MTU. */
4323 	CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
4324 	    ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
4325 
4326 	/* Load our MAC address. */
4327 	m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
4328 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
4329 	CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
4330 
4331 	/* Enable or disable promiscuous mode as needed. */
4332 	if (ifp->if_flags & IFF_PROMISC)
4333 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4334 	else
4335 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4336 
4337 	/* Program multicast filter. */
4338 	bge_setmulti(sc);
4339 
4340 	/* Init RX ring. */
4341 	bge_init_rx_ring_std(sc);
4342 
4343 	/*
4344 	 * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
4345 	 * memory to insure that the chip has in fact read the first
4346 	 * entry of the ring.
4347 	 */
4348 	if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
4349 		uint32_t		v, i;
4350 		for (i = 0; i < 10; i++) {
4351 			DELAY(20);
4352 			v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
4353 			if (v == (MCLBYTES - ETHER_ALIGN))
4354 				break;
4355 		}
4356 		if (i == 10)
4357 			aprint_error_dev(sc->bge_dev,
4358 			    "5705 A0 chip failed to load RX ring\n");
4359 	}
4360 
4361 	/* Init jumbo RX ring. */
4362 	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
4363 		bge_init_rx_ring_jumbo(sc);
4364 
4365 	/* Init our RX return ring index */
4366 	sc->bge_rx_saved_considx = 0;
4367 
4368 	/* Init TX ring. */
4369 	bge_init_tx_ring(sc);
4370 
4371 	/* Turn on transmitter */
4372 	BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
4373 
4374 	/* Turn on receiver */
4375 	BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4376 
4377 	CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
4378 
4379 	/* Tell firmware we're alive. */
4380 	BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4381 
4382 	/* Enable host interrupts. */
4383 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
4384 	BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4385 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4386 
4387 	if ((error = bge_ifmedia_upd(ifp)) != 0)
4388 		goto out;
4389 
4390 	ifp->if_flags |= IFF_RUNNING;
4391 	ifp->if_flags &= ~IFF_OACTIVE;
4392 
4393 	callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
4394 
4395 out:
4396 	sc->bge_if_flags = ifp->if_flags;
4397 	splx(s);
4398 
4399 	return error;
4400 }
4401 
4402 /*
4403  * Set media options.
4404  */
4405 static int
4406 bge_ifmedia_upd(struct ifnet *ifp)
4407 {
4408 	struct bge_softc *sc = ifp->if_softc;
4409 	struct mii_data *mii = &sc->bge_mii;
4410 	struct ifmedia *ifm = &sc->bge_ifmedia;
4411 	int rc;
4412 
4413 	/* If this is a 1000baseX NIC, enable the TBI port. */
4414 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4415 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
4416 			return EINVAL;
4417 		switch (IFM_SUBTYPE(ifm->ifm_media)) {
4418 		case IFM_AUTO:
4419 			/*
4420 			 * The BCM5704 ASIC appears to have a special
4421 			 * mechanism for programming the autoneg
4422 			 * advertisement registers in TBI mode.
4423 			 */
4424 			if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
4425 				uint32_t sgdig;
4426 				sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
4427 				if (sgdig & BGE_SGDIGSTS_DONE) {
4428 					CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
4429 					sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
4430 					sgdig |= BGE_SGDIGCFG_AUTO |
4431 					    BGE_SGDIGCFG_PAUSE_CAP |
4432 					    BGE_SGDIGCFG_ASYM_PAUSE;
4433 					CSR_WRITE_4(sc, BGE_SGDIG_CFG,
4434 					    sgdig | BGE_SGDIGCFG_SEND);
4435 					DELAY(5);
4436 					CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
4437 				}
4438 			}
4439 			break;
4440 		case IFM_1000_SX:
4441 			if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
4442 				BGE_CLRBIT(sc, BGE_MAC_MODE,
4443 				    BGE_MACMODE_HALF_DUPLEX);
4444 			} else {
4445 				BGE_SETBIT(sc, BGE_MAC_MODE,
4446 				    BGE_MACMODE_HALF_DUPLEX);
4447 			}
4448 			break;
4449 		default:
4450 			return EINVAL;
4451 		}
4452 		/* XXX 802.3x flow control for 1000BASE-SX */
4453 		return 0;
4454 	}
4455 
4456 	BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
4457 	if ((rc = mii_mediachg(mii)) == ENXIO)
4458 		return 0;
4459 
4460 	/*
4461 	 * Force an interrupt so that we will call bge_link_upd
4462 	 * if needed and clear any pending link state attention.
4463 	 * Without this we are not getting any further interrupts
4464 	 * for link state changes and thus will not UP the link and
4465 	 * not be able to send in bge_start. The only way to get
4466 	 * things working was to receive a packet and get a RX intr.
4467 	 */
4468 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
4469 	    sc->bge_flags & BGE_IS_5788)
4470 		BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4471 	else
4472 		BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4473 
4474 	return rc;
4475 }
4476 
4477 /*
4478  * Report current media status.
4479  */
4480 static void
4481 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4482 {
4483 	struct bge_softc *sc = ifp->if_softc;
4484 	struct mii_data *mii = &sc->bge_mii;
4485 
4486 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4487 		ifmr->ifm_status = IFM_AVALID;
4488 		ifmr->ifm_active = IFM_ETHER;
4489 		if (CSR_READ_4(sc, BGE_MAC_STS) &
4490 		    BGE_MACSTAT_TBI_PCS_SYNCHED)
4491 			ifmr->ifm_status |= IFM_ACTIVE;
4492 		ifmr->ifm_active |= IFM_1000_SX;
4493 		if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
4494 			ifmr->ifm_active |= IFM_HDX;
4495 		else
4496 			ifmr->ifm_active |= IFM_FDX;
4497 		return;
4498 	}
4499 
4500 	mii_pollstat(mii);
4501 	ifmr->ifm_status = mii->mii_media_status;
4502 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4503 	    sc->bge_flowflags;
4504 }
4505 
4506 static int
4507 bge_ifflags_cb(struct ethercom *ec)
4508 {
4509 	struct ifnet *ifp = &ec->ec_if;
4510 	struct bge_softc *sc = ifp->if_softc;
4511 	int change = ifp->if_flags ^ sc->bge_if_flags;
4512 
4513 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
4514 		return ENETRESET;
4515 	else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
4516 		return 0;
4517 
4518 	if ((ifp->if_flags & IFF_PROMISC) == 0)
4519 		BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4520 	else
4521 		BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
4522 
4523 	bge_setmulti(sc);
4524 
4525 	sc->bge_if_flags = ifp->if_flags;
4526 	return 0;
4527 }
4528 
4529 static int
4530 bge_ioctl(struct ifnet *ifp, u_long command, void *data)
4531 {
4532 	struct bge_softc *sc = ifp->if_softc;
4533 	struct ifreq *ifr = (struct ifreq *) data;
4534 	int s, error = 0;
4535 	struct mii_data *mii;
4536 
4537 	s = splnet();
4538 
4539 	switch (command) {
4540 	case SIOCSIFMEDIA:
4541 		/* XXX Flow control is not supported for 1000BASE-SX */
4542 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4543 			ifr->ifr_media &= ~IFM_ETH_FMASK;
4544 			sc->bge_flowflags = 0;
4545 		}
4546 
4547 		/* Flow control requires full-duplex mode. */
4548 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
4549 		    (ifr->ifr_media & IFM_FDX) == 0) {
4550 		    	ifr->ifr_media &= ~IFM_ETH_FMASK;
4551 		}
4552 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
4553 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
4554 				/* We can do both TXPAUSE and RXPAUSE. */
4555 				ifr->ifr_media |=
4556 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
4557 			}
4558 			sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
4559 		}
4560 		/* FALLTHROUGH */
4561 	case SIOCGIFMEDIA:
4562 		if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4563 			error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
4564 			    command);
4565 		} else {
4566 			mii = &sc->bge_mii;
4567 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
4568 			    command);
4569 		}
4570 		break;
4571 	default:
4572 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4573 			break;
4574 
4575 		error = 0;
4576 
4577 		if (command != SIOCADDMULTI && command != SIOCDELMULTI)
4578 			;
4579 		else if (ifp->if_flags & IFF_RUNNING)
4580 			bge_setmulti(sc);
4581 		break;
4582 	}
4583 
4584 	splx(s);
4585 
4586 	return error;
4587 }
4588 
4589 static void
4590 bge_watchdog(struct ifnet *ifp)
4591 {
4592 	struct bge_softc *sc;
4593 
4594 	sc = ifp->if_softc;
4595 
4596 	aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
4597 
4598 	ifp->if_flags &= ~IFF_RUNNING;
4599 	bge_init(ifp);
4600 
4601 	ifp->if_oerrors++;
4602 }
4603 
4604 static void
4605 bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
4606 {
4607 	int i;
4608 
4609 	BGE_CLRBIT(sc, reg, bit);
4610 
4611 	for (i = 0; i < 1000; i++) {
4612 		if ((CSR_READ_4(sc, reg) & bit) == 0)
4613 			return;
4614 		delay(100);
4615 	}
4616 
4617 	/*
4618 	 * Doesn't print only when the register is BGE_SRS_MODE. It occurs
4619 	 * on some environment (and once after boot?)
4620 	 */
4621 	if (reg != BGE_SRS_MODE)
4622 		aprint_error_dev(sc->bge_dev,
4623 		    "block failed to stop: reg 0x%lx, bit 0x%08x\n",
4624 		    (u_long)reg, bit);
4625 }
4626 
4627 /*
4628  * Stop the adapter and free any mbufs allocated to the
4629  * RX and TX lists.
4630  */
4631 static void
4632 bge_stop(struct ifnet *ifp, int disable)
4633 {
4634 	struct bge_softc *sc = ifp->if_softc;
4635 
4636 	callout_stop(&sc->bge_timeout);
4637 
4638 	/*
4639 	 * Tell firmware we're shutting down.
4640 	 */
4641 	bge_stop_fw(sc);
4642 	bge_sig_pre_reset(sc, BGE_RESET_STOP);
4643 
4644 	/* Disable host interrupts. */
4645 	BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
4646 	bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4647 
4648 	/*
4649 	 * Disable all of the receiver blocks
4650 	 */
4651 	bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
4652 	bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
4653 	bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
4654 	if (BGE_IS_5700_FAMILY(sc))
4655 		bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
4656 	bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
4657 	bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
4658 	bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
4659 
4660 	/*
4661 	 * Disable all of the transmit blocks
4662 	 */
4663 	bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
4664 	bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
4665 	bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
4666 	bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
4667 	bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
4668 	if (BGE_IS_5700_FAMILY(sc))
4669 		bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
4670 	bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
4671 
4672 	/*
4673 	 * Shut down all of the memory managers and related
4674 	 * state machines.
4675 	 */
4676 	bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
4677 	bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
4678 	if (BGE_IS_5700_FAMILY(sc))
4679 		bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
4680 
4681 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
4682 	CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
4683 
4684 	if (BGE_IS_5700_FAMILY(sc)) {
4685 		bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
4686 		bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4687 	}
4688 
4689 	bge_reset(sc);
4690 	bge_sig_legacy(sc, BGE_RESET_STOP);
4691 	bge_sig_post_reset(sc, BGE_RESET_STOP);
4692 
4693 	/*
4694 	 * Keep the ASF firmware running if up.
4695 	 */
4696 	if (sc->bge_asf_mode & ASF_STACKUP)
4697 		BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4698 	else
4699 		BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
4700 
4701 	/* Free the RX lists. */
4702 	bge_free_rx_ring_std(sc);
4703 
4704 	/* Free jumbo RX list. */
4705 	if (BGE_IS_JUMBO_CAPABLE(sc))
4706 		bge_free_rx_ring_jumbo(sc);
4707 
4708 	/* Free TX buffers. */
4709 	bge_free_tx_ring(sc);
4710 
4711 	/*
4712 	 * Isolate/power down the PHY.
4713 	 */
4714 	if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
4715 		mii_down(&sc->bge_mii);
4716 
4717 	sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
4718 
4719 	/* Clear MAC's link state (PHY may still have link UP). */
4720 	BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4721 
4722 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4723 }
4724 
4725 static void
4726 bge_link_upd(struct bge_softc *sc)
4727 {
4728 	struct ifnet *ifp = &sc->ethercom.ec_if;
4729 	struct mii_data *mii = &sc->bge_mii;
4730 	uint32_t status;
4731 	int link;
4732 
4733 	/* Clear 'pending link event' flag */
4734 	BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
4735 
4736 	/*
4737 	 * Process link state changes.
4738 	 * Grrr. The link status word in the status block does
4739 	 * not work correctly on the BCM5700 rev AX and BX chips,
4740 	 * according to all available information. Hence, we have
4741 	 * to enable MII interrupts in order to properly obtain
4742 	 * async link changes. Unfortunately, this also means that
4743 	 * we have to read the MAC status register to detect link
4744 	 * changes, thereby adding an additional register access to
4745 	 * the interrupt handler.
4746 	 */
4747 
4748 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
4749 		status = CSR_READ_4(sc, BGE_MAC_STS);
4750 		if (status & BGE_MACSTAT_MI_INTERRUPT) {
4751 			mii_pollstat(mii);
4752 
4753 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4754 			    mii->mii_media_status & IFM_ACTIVE &&
4755 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4756 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4757 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4758 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4759 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4760 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4761 
4762 			/* Clear the interrupt */
4763 			CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
4764 			    BGE_EVTENB_MI_INTERRUPT);
4765 			bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4766 			bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
4767 			    BRGPHY_INTRS);
4768 		}
4769 		return;
4770 	}
4771 
4772 	if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
4773 		status = CSR_READ_4(sc, BGE_MAC_STS);
4774 		if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4775 			if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
4776 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4777 				if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
4778 					BGE_CLRBIT(sc, BGE_MAC_MODE,
4779 					    BGE_MACMODE_TBI_SEND_CFGS);
4780 				CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4781 				if_link_state_change(ifp, LINK_STATE_UP);
4782 			}
4783 		} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
4784 			BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4785 			if_link_state_change(ifp, LINK_STATE_DOWN);
4786 		}
4787 	/*
4788 	 * Discard link events for MII/GMII cards if MI auto-polling disabled.
4789 	 * This should not happen since mii callouts are locked now, but
4790 	 * we keep this check for debug.
4791 	 */
4792 	} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
4793 		/*
4794 		 * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
4795 		 * bit in status word always set. Workaround this bug by
4796 		 * reading PHY link status directly.
4797 		 */
4798 		link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
4799 		    BGE_STS_LINK : 0;
4800 
4801 		if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
4802 			mii_pollstat(mii);
4803 
4804 			if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
4805 			    mii->mii_media_status & IFM_ACTIVE &&
4806 			    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
4807 				BGE_STS_SETBIT(sc, BGE_STS_LINK);
4808 			else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
4809 			    (!(mii->mii_media_status & IFM_ACTIVE) ||
4810 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
4811 				BGE_STS_CLRBIT(sc, BGE_STS_LINK);
4812 		}
4813 	}
4814 
4815 	/* Clear the attention */
4816 	CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
4817 	    BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
4818 	    BGE_MACSTAT_LINK_CHANGED);
4819 }
4820 
4821 static int
4822 sysctl_bge_verify(SYSCTLFN_ARGS)
4823 {
4824 	int error, t;
4825 	struct sysctlnode node;
4826 
4827 	node = *rnode;
4828 	t = *(int*)rnode->sysctl_data;
4829 	node.sysctl_data = &t;
4830 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
4831 	if (error || newp == NULL)
4832 		return error;
4833 
4834 #if 0
4835 	DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
4836 	    node.sysctl_num, rnode->sysctl_num));
4837 #endif
4838 
4839 	if (node.sysctl_num == bge_rxthresh_nodenum) {
4840 		if (t < 0 || t >= NBGE_RX_THRESH)
4841 			return EINVAL;
4842 		bge_update_all_threshes(t);
4843 	} else
4844 		return EINVAL;
4845 
4846 	*(int*)rnode->sysctl_data = t;
4847 
4848 	return 0;
4849 }
4850 
4851 /*
4852  * Set up sysctl(3) MIB, hw.bge.*.
4853  */
4854 static void
4855 sysctl_bge_init(struct bge_softc *sc)
4856 {
4857 	int rc, bge_root_num;
4858 	const struct sysctlnode *node;
4859 
4860 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
4861 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
4862 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
4863 		goto err;
4864 	}
4865 
4866 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4867 	    0, CTLTYPE_NODE, "bge",
4868 	    SYSCTL_DESCR("BGE interface controls"),
4869 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
4870 		goto err;
4871 	}
4872 
4873 	bge_root_num = node->sysctl_num;
4874 
4875 	/* BGE Rx interrupt mitigation level */
4876 	if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
4877 	    CTLFLAG_READWRITE,
4878 	    CTLTYPE_INT, "rx_lvl",
4879 	    SYSCTL_DESCR("BGE receive interrupt mitigation level"),
4880 	    sysctl_bge_verify, 0,
4881 	    &bge_rx_thresh_lvl,
4882 	    0, CTL_HW, bge_root_num, CTL_CREATE,
4883 	    CTL_EOL)) != 0) {
4884 		goto err;
4885 	}
4886 
4887 	bge_rxthresh_nodenum = node->sysctl_num;
4888 
4889 	return;
4890 
4891 err:
4892 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
4893 }
4894 
4895 #ifdef BGE_DEBUG
4896 void
4897 bge_debug_info(struct bge_softc *sc)
4898 {
4899 
4900 	printf("Hardware Flags:\n");
4901 	if (BGE_IS_5755_PLUS(sc))
4902 		printf(" - 5755 Plus\n");
4903 	if (BGE_IS_5750_OR_BEYOND(sc))
4904 		printf(" - 5750 Plus\n");
4905 	if (BGE_IS_5705_PLUS(sc))
4906 		printf(" - 5705 Plus\n");
4907 	if (BGE_IS_5714_FAMILY(sc))
4908 		printf(" - 5714 Family\n");
4909 	if (BGE_IS_5700_FAMILY(sc))
4910 		printf(" - 5700 Family\n");
4911 	if (sc->bge_flags & BGE_IS_5788)
4912 		printf(" - 5788\n");
4913 	if (sc->bge_flags & BGE_JUMBO_CAPABLE)
4914 		printf(" - Supports Jumbo Frames\n");
4915 	if (sc->bge_flags & BGE_NO_EEPROM)
4916 		printf(" - No EEPROM\n");
4917 	if (sc->bge_flags & BGE_PCIX)
4918 		printf(" - PCI-X Bus\n");
4919 	if (sc->bge_flags & BGE_PCIE)
4920 		printf(" - PCI Express Bus\n");
4921 	if (sc->bge_flags & BGE_NO_3LED)
4922 		printf(" - No 3 LEDs\n");
4923 	if (sc->bge_flags & BGE_RX_ALIGNBUG)
4924 		printf(" - RX Alignment Bug\n");
4925 	if (sc->bge_flags & BGE_TSO)
4926 		printf(" - TSO\n");
4927 }
4928 #endif /* BGE_DEBUG */
4929 
4930 static int
4931 bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
4932 {
4933 	prop_dictionary_t dict;
4934 	prop_data_t ea;
4935 
4936 	if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
4937 		return 1;
4938 
4939 	dict = device_properties(sc->bge_dev);
4940 	ea = prop_dictionary_get(dict, "mac-address");
4941 	if (ea != NULL) {
4942 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
4943 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
4944 		memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
4945 		return 0;
4946 	}
4947 
4948 	return 1;
4949 }
4950 
4951 static int
4952 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4953 {
4954 	uint32_t mac_addr;
4955 
4956 	mac_addr = bge_readmem_ind(sc, 0x0c14);
4957 	if ((mac_addr >> 16) == 0x484b) {
4958 		ether_addr[0] = (uint8_t)(mac_addr >> 8);
4959 		ether_addr[1] = (uint8_t)mac_addr;
4960 		mac_addr = bge_readmem_ind(sc, 0x0c18);
4961 		ether_addr[2] = (uint8_t)(mac_addr >> 24);
4962 		ether_addr[3] = (uint8_t)(mac_addr >> 16);
4963 		ether_addr[4] = (uint8_t)(mac_addr >> 8);
4964 		ether_addr[5] = (uint8_t)mac_addr;
4965 		return 0;
4966 	}
4967 	return 1;
4968 }
4969 
4970 static int
4971 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4972 {
4973 	int mac_offset = BGE_EE_MAC_OFFSET;
4974 
4975 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4976 		mac_offset = BGE_EE_MAC_OFFSET_5906;
4977 
4978 	return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
4979 	    ETHER_ADDR_LEN));
4980 }
4981 
4982 static int
4983 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4984 {
4985 
4986 	if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
4987 		return 1;
4988 
4989 	return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4990 	   ETHER_ADDR_LEN));
4991 }
4992 
4993 static int
4994 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4995 {
4996 	static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4997 		/* NOTE: Order is critical */
4998 		bge_get_eaddr_fw,
4999 		bge_get_eaddr_mem,
5000 		bge_get_eaddr_nvram,
5001 		bge_get_eaddr_eeprom,
5002 		NULL
5003 	};
5004 	const bge_eaddr_fcn_t *func;
5005 
5006 	for (func = bge_eaddr_funcs; *func != NULL; ++func) {
5007 		if ((*func)(sc, eaddr) == 0)
5008 			break;
5009 	}
5010 	return (*func == NULL ? ENXIO : 0);
5011 }
5012