1 /* $NetBSD: if_aq.c,v 1.11 2020/02/15 12:20:35 ryo Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.11 2020/02/15 12:20:35 ryo Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 /* 120 * TERMINOLOGY 121 * MPI = MAC PHY INTERFACE? 122 * RPO = RX Protocol Offloading 123 * TPO = TX Protocol Offloading 124 * RPF = RX Packet Filter 125 * TPB = TX Packet buffer 126 * RPB = RX Packet buffer 127 */ 128 129 /* registers */ 130 #define AQ_FW_SOFTRESET_REG 0x0000 131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 133 134 #define AQ_FW_VERSION_REG 0x0018 135 #define AQ_HW_REVISION_REG 0x001c 136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 137 138 #define AQ_FW_MBOX_CMD_REG 0x0200 139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 141 #define AQ_FW_MBOX_ADDR_REG 0x0208 142 #define AQ_FW_MBOX_VAL_REG 0x020c 143 144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 145 #define FW2X_LED_REG 0x031c 146 #define FW2X_LED_DEFAULT 0x00000000 147 #define FW2X_LED_NONE 0x0000003f 148 #define FW2X_LINKLED __BITS(0,1) 149 #define FW2X_LINKLED_ACTIVE 0 150 #define FW2X_LINKLED_ON 1 151 #define FW2X_LINKLED_BLINK 2 152 #define FW2X_LINKLED_OFF 3 153 #define FW2X_STATUSLED __BITS(2,5) 154 #define FW2X_STATUSLED_ORANGE 0 155 #define FW2X_STATUSLED_ORANGE_BLINK 2 156 #define FW2X_STATUSLED_OFF 3 157 #define FW2X_STATUSLED_GREEN 4 158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 159 #define FW2X_STATUSLED_GREEN_BLINK 10 160 161 #define FW_MPI_MBOX_ADDR_REG 0x0360 162 #define FW1X_MPI_INIT1_REG 0x0364 163 #define FW1X_MPI_CONTROL_REG 0x0368 164 #define FW1X_MPI_STATE_REG 0x036c 165 #define FW1X_MPI_STATE_MODE __BITS(7,0) 166 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 169 #define FW1X_MPI_INIT2_REG 0x0370 170 #define FW1X_MPI_EFUSEADDR_REG 0x0374 171 172 #define FW2X_MPI_EFUSEADDR_REG 0x0364 173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 175 #define FW_BOOT_EXIT_CODE_REG 0x0388 176 #define RBL_STATUS_DEAD 0x0000dead 177 #define RBL_STATUS_SUCCESS 0x0000abba 178 #define RBL_STATUS_FAILURE 0x00000bad 179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 180 181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 183 184 #define AQ_FW_GLB_CTL2_REG 0x0404 185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 186 187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 189 190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 191 192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 193 194 // msix bitmap */ 195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 199 #define AQ_INTR_AUTOMASK_REG 0x2090 200 201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 209 210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 212 #define AQ_B0_ERR_INT 8U 213 214 #define AQ_INTR_CTRL_REG 0x2300 215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 217 #define AQ_INTR_CTRL_IRQMODE_MSI 1 218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 224 225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 226 227 #define FW_MPI_RESETCTRL_REG 0x4000 228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 229 230 #define RX_SYSCONTROL_REG 0x5000 231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 233 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 234 235 #define RX_TCP_RSS_HASH_REG 0x5040 236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 238 239 /* for RPF_*_REG.ACTION */ 240 #define RPF_ACTION_DISCARD 0 241 #define RPF_ACTION_HOST 1 242 #define RPF_ACTION_MANAGEMENT 2 243 #define RPF_ACTION_HOST_MANAGEMENT 3 244 #define RPF_ACTION_WOL 4 245 246 #define RPF_L2BC_REG 0x5100 247 #define RPF_L2BC_EN __BIT(0) 248 #define RPF_L2BC_PROMISC __BIT(3) 249 #define RPF_L2BC_ACTION __BITS(12,14) 250 #define RPF_L2BC_THRESHOLD __BITS(31,16) 251 252 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 256 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 257 #define RPF_L2UC_MSW_EN __BIT(31) 258 #define AQ_HW_MAC_OWN 0 /* index of own address */ 259 #define AQ_HW_MAC_NUM 34 260 261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 263 #define RPF_MCAST_FILTER_EN __BIT(31) 264 #define RPF_MCAST_FILTER_MASK_REG 0x5270 265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 266 267 #define RPF_VLAN_MODE_REG 0x5280 268 #define RPF_VLAN_MODE_PROMISC __BIT(1) 269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 271 272 #define RPF_VLAN_TPID_REG 0x5284 273 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 274 #define RPF_VLAN_TPID_INNER __BITS(15,0) 275 276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 277 #define RPF_VLAN_MAX_FILTERS 16 278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 279 #define RPF_VLAN_FILTER_EN __BIT(31) 280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 283 #define RPF_VLAN_FILTER_ID __BITS(11,0) 284 285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 295 296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 298 #define RPF_L3_FILTER_L4_EN __BIT(31) 299 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 305 #define RPF_L3_FILTER_ARP_EN __BIT(24) 306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 311 #define RPF_L3_FILTER_L4_PROTO_TCP 0 312 #define RPF_L3_FILTER_L4_PROTO_UDP 1 313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 315 /* parameters of RPF_L3_FILTER_REG[8] */ 316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 320 321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 323 324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 326 327 #define RPF_RSS_KEY_ADDR_REG 0x54d0 328 #define RPF_RSS_KEY_ADDR __BITS(4,0) 329 #define RPF_RSS_KEY_WR_EN __BIT(5) 330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 332 333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 334 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 335 #define RPF_RSS_REDIR_WR_EN __BIT(4) 336 337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 339 340 #define RPO_HWCSUM_REG 0x5580 341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 343 344 #define RPO_LRO_ENABLE_REG 0x5590 345 346 #define RPO_LRO_CONF_REG 0x5594 347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 351 #define RPO_LRO_RSC_MAX_REG 0x5598 352 353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 356 #define RPO_LRO_TB_DIV_REG 0x5620 357 #define RPO_LRO_TB_DIV __BITS(20,31) 358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 362 363 #define RPB_RPF_RX_REG 0x5700 364 #define RPB_RPF_RX_TC_MODE __BIT(8) 365 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 366 #define RPB_RPF_RX_BUF_EN __BIT(0) 367 368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 370 #define RPB_RXB_BUFSIZE __BITS(8,0) 371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 372 #define RPB_RXB_XOFF_EN __BIT(31) 373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 375 376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 377 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 378 379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 382 383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 385 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 388 389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 394 #define RX_DMA_DESC_RESET __BIT(25) 395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 397 #define RX_DMA_DESC_EN __BIT(31) 398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 404 405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 407 #define RX_DMA_DCAD_CPUID __BITS(7,0) 408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 409 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 410 #define RX_DMA_DCAD_DESC_EN __BIT(31) 411 412 #define RX_DMA_DCA_REG 0x6180 413 #define RX_DMA_DCA_EN __BIT(31) 414 #define RX_DMA_DCA_MODE __BITS(3,0) 415 416 /* counters */ 417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 421 422 #define TX_SYSCONTROL_REG 0x7000 423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 425 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 426 427 #define TX_TPO2_REG 0x7040 428 #define TX_TPO2_EN __BIT(16) 429 430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 431 #define TPS_DESC_VM_ARB_MODE __BIT(0) 432 #define TPS_DESC_RATE_REG 0x7310 433 #define TPS_DESC_RATE_TA_RST __BIT(31) 434 #define TPS_DESC_RATE_LIM __BITS(10,0) 435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 438 #define TPS_DATA_TC_ARB_MODE __BIT(0) 439 440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 448 449 #define AQ_HW_TXBUF_MAX 160 450 #define AQ_HW_RXBUF_MAX 320 451 452 #define TPO_HWCSUM_REG 0x7800 453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 455 456 #define TDM_LSO_EN_REG 0x7810 457 458 #define THM_LSO_TCP_FLAG1_REG 0x7820 459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 461 #define THM_LSO_TCP_FLAG2_REG 0x7824 462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 463 464 #define TPB_TX_BUF_REG 0x7900 465 #define TPB_TX_BUF_EN __BIT(0) 466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 468 469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 471 #define TPB_TXB_BUFSIZE __BITS(7,0) 472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 473 #define TPB_TXB_THRESH_HI __BITS(16,28) 474 #define TPB_TXB_THRESH_LO __BITS(12,0) 475 476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 480 481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 486 #define TX_DMA_DESC_EN __BIT(31) 487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 492 493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 495 #define TDM_DCAD_CPUID __BITS(7,0) 496 #define TDM_DCAD_CPUID_EN __BIT(31) 497 498 #define TDM_DCA_REG 0x8480 499 #define TDM_DCA_EN __BIT(31) 500 #define TDM_DCA_MODE __BITS(3,0) 501 502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 504 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 507 508 #define FW1X_CTRL_10G __BIT(0) 509 #define FW1X_CTRL_5G __BIT(1) 510 #define FW1X_CTRL_5GSR __BIT(2) 511 #define FW1X_CTRL_2G5 __BIT(3) 512 #define FW1X_CTRL_1G __BIT(4) 513 #define FW1X_CTRL_100M __BIT(5) 514 515 #define FW2X_CTRL_10BASET_HD __BIT(0) 516 #define FW2X_CTRL_10BASET_FD __BIT(1) 517 #define FW2X_CTRL_100BASETX_HD __BIT(2) 518 #define FW2X_CTRL_100BASET4_HD __BIT(3) 519 #define FW2X_CTRL_100BASET2_HD __BIT(4) 520 #define FW2X_CTRL_100BASETX_FD __BIT(5) 521 #define FW2X_CTRL_100BASET2_FD __BIT(6) 522 #define FW2X_CTRL_1000BASET_HD __BIT(7) 523 #define FW2X_CTRL_1000BASET_FD __BIT(8) 524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 525 #define FW2X_CTRL_5GBASET_FD __BIT(10) 526 #define FW2X_CTRL_10GBASET_FD __BIT(11) 527 #define FW2X_CTRL_RESERVED1 __BIT(32) 528 #define FW2X_CTRL_10BASET_EEE __BIT(33) 529 #define FW2X_CTRL_RESERVED2 __BIT(34) 530 #define FW2X_CTRL_PAUSE __BIT(35) 531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 532 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 533 #define FW2X_CTRL_RESERVED3 __BIT(38) 534 #define FW2X_CTRL_RESERVED4 __BIT(39) 535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 539 #define FW2X_CTRL_RESERVED5 __BIT(44) 540 #define FW2X_CTRL_RESERVED6 __BIT(45) 541 #define FW2X_CTRL_RESERVED7 __BIT(46) 542 #define FW2X_CTRL_RESERVED8 __BIT(47) 543 #define FW2X_CTRL_RESERVED9 __BIT(48) 544 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 545 #define FW2X_CTRL_TEMPERATURE __BIT(50) 546 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 549 #define FW2X_CTRL_LINK_DROP __BIT(54) 550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 551 #define FW2X_CTRL_WOL __BIT(56) 552 #define FW2X_CTRL_MAC_STOP __BIT(57) 553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 556 #define FW2X_CTRL_WOL_TIMER __BIT(61) 557 #define FW2X_CTRL_STATISTICS __BIT(62) 558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 559 560 #define FW2X_SNPRINTB \ 561 "\177\020" \ 562 "b\x23" "PAUSE\0" \ 563 "b\x24" "ASYMMETRIC-PAUSE\0" \ 564 "b\x31" "CABLE-DIAG\0" \ 565 "b\x32" "TEMPERATURE\0" \ 566 "b\x33" "DOWNSHIFT\0" \ 567 "b\x34" "PTP-AVB\0" \ 568 "b\x35" "MEDIA-DETECT\0" \ 569 "b\x36" "LINK-DROP\0" \ 570 "b\x37" "SLEEP-PROXY\0" \ 571 "b\x38" "WOL\0" \ 572 "b\x39" "MAC-STOP\0" \ 573 "b\x3a" "EXT-LOOPBACK\0" \ 574 "b\x3b" "INT-LOOPBACK\0" \ 575 "b\x3c" "EFUSE-AGENT\0" \ 576 "b\x3d" "WOL-TIMER\0" \ 577 "b\x3e" "STATISTICS\0" \ 578 "b\x3f" "TRANSACTION-ID\0" \ 579 "\0" 580 581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 586 #define FW2X_CTRL_RATE_MASK \ 587 (FW2X_CTRL_RATE_100M | \ 588 FW2X_CTRL_RATE_1G | \ 589 FW2X_CTRL_RATE_2G5 | \ 590 FW2X_CTRL_RATE_5G | \ 591 FW2X_CTRL_RATE_10G) 592 #define FW2X_CTRL_EEE_MASK \ 593 (FW2X_CTRL_10BASET_EEE | \ 594 FW2X_CTRL_100BASETX_EEE | \ 595 FW2X_CTRL_1000BASET_FD_EEE | \ 596 FW2X_CTRL_2P5GBASET_FD_EEE | \ 597 FW2X_CTRL_5GBASET_FD_EEE | \ 598 FW2X_CTRL_10GBASET_FD_EEE) 599 600 typedef enum aq_fw_bootloader_mode { 601 FW_BOOT_MODE_UNKNOWN = 0, 602 FW_BOOT_MODE_FLB, 603 FW_BOOT_MODE_RBL_FLASH, 604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 605 } aq_fw_bootloader_mode_t; 606 607 #define AQ_WRITE_REG(sc, reg, val) \ 608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 609 610 #define AQ_READ_REG(sc, reg) \ 611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 612 613 #define AQ_READ64_REG(sc, reg) \ 614 ((uint64_t)AQ_READ_REG(sc, reg) | \ 615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 616 617 #define AQ_WRITE64_REG(sc, reg, val) \ 618 do { \ 619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 621 } while (/* CONSTCOND */0) 622 623 #define AQ_READ_REG_BIT(sc, reg, mask) \ 624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 625 626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 627 do { \ 628 uint32_t _v; \ 629 _v = AQ_READ_REG((sc), (reg)); \ 630 _v &= ~(mask); \ 631 if ((val) != 0) \ 632 _v |= __SHIFTIN((val), (mask)); \ 633 AQ_WRITE_REG((sc), (reg), _v); \ 634 } while (/* CONSTCOND */ 0) 635 636 #define WAIT_FOR(expr, us, n, errp) \ 637 do { \ 638 unsigned int _n; \ 639 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 640 delay((us)); \ 641 } \ 642 if ((errp != NULL)) { \ 643 if (_n == 0) \ 644 *(errp) = ETIMEDOUT; \ 645 else \ 646 *(errp) = 0; \ 647 } \ 648 } while (/* CONSTCOND */ 0) 649 650 #define msec_delay(x) DELAY(1000 * (x)) 651 652 typedef struct aq_mailbox_header { 653 uint32_t version; 654 uint32_t transaction_id; 655 int32_t error; 656 } __packed aq_mailbox_header_t; 657 658 typedef struct aq_hw_stats_s { 659 uint32_t uprc; 660 uint32_t mprc; 661 uint32_t bprc; 662 uint32_t erpt; 663 uint32_t uptc; 664 uint32_t mptc; 665 uint32_t bptc; 666 uint32_t erpr; 667 uint32_t mbtc; 668 uint32_t bbtc; 669 uint32_t mbrc; 670 uint32_t bbrc; 671 uint32_t ubrc; 672 uint32_t ubtc; 673 uint32_t ptc; 674 uint32_t prc; 675 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 676 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 677 } __packed aq_hw_stats_s_t; 678 679 typedef struct fw1x_mailbox { 680 aq_mailbox_header_t header; 681 aq_hw_stats_s_t msm; 682 } __packed fw1x_mailbox_t; 683 684 typedef struct fw2x_msm_statistics { 685 uint32_t uprc; 686 uint32_t mprc; 687 uint32_t bprc; 688 uint32_t erpt; 689 uint32_t uptc; 690 uint32_t mptc; 691 uint32_t bptc; 692 uint32_t erpr; 693 uint32_t mbtc; 694 uint32_t bbtc; 695 uint32_t mbrc; 696 uint32_t bbrc; 697 uint32_t ubrc; 698 uint32_t ubtc; 699 uint32_t ptc; 700 uint32_t prc; 701 } __packed fw2x_msm_statistics_t; 702 703 typedef struct fw2x_phy_cable_diag_data { 704 uint32_t lane_data[4]; 705 } __packed fw2x_phy_cable_diag_data_t; 706 707 typedef struct fw2x_capabilities { 708 uint32_t caps_lo; 709 uint32_t caps_hi; 710 } __packed fw2x_capabilities_t; 711 712 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 713 aq_mailbox_header_t header; 714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 715 716 uint32_t phy_info1; 717 #define PHYINFO1_FAULT_CODE __BITS(31,16) 718 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 719 uint32_t phy_info2; 720 #define PHYINFO2_TEMPERATURE __BITS(15,0) 721 #define PHYINFO2_CABLE_LEN __BITS(23,16) 722 723 fw2x_phy_cable_diag_data_t diag_data; 724 uint32_t reserved[8]; 725 726 fw2x_capabilities_t caps; 727 728 /* ... */ 729 } __packed fw2x_mailbox_t; 730 731 typedef enum aq_link_speed { 732 AQ_LINK_NONE = 0, 733 AQ_LINK_100M = (1 << 0), 734 AQ_LINK_1G = (1 << 1), 735 AQ_LINK_2G5 = (1 << 2), 736 AQ_LINK_5G = (1 << 3), 737 AQ_LINK_10G = (1 << 4) 738 } aq_link_speed_t; 739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 740 AQ_LINK_5G | AQ_LINK_10G ) 741 #define AQ_LINK_AUTO AQ_LINK_ALL 742 743 typedef enum aq_link_fc { 744 AQ_FC_NONE = 0, 745 AQ_FC_RX = __BIT(0), 746 AQ_FC_TX = __BIT(1), 747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 748 } aq_link_fc_t; 749 750 typedef enum aq_link_eee { 751 AQ_EEE_DISABLE = 0, 752 AQ_EEE_ENABLE = 1 753 } aq_link_eee_t; 754 755 typedef enum aq_hw_fw_mpi_state { 756 MPI_DEINIT = 0, 757 MPI_RESET = 1, 758 MPI_INIT = 2, 759 MPI_POWER = 4 760 } aq_hw_fw_mpi_state_t; 761 762 enum aq_media_type { 763 AQ_MEDIA_TYPE_UNKNOWN = 0, 764 AQ_MEDIA_TYPE_FIBRE, 765 AQ_MEDIA_TYPE_TP 766 }; 767 768 struct aq_rx_desc_read { 769 uint64_t buf_addr; 770 uint64_t hdr_addr; 771 } __packed; 772 773 struct aq_rx_desc_wb { 774 uint32_t type; 775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 776 #define RXDESC_TYPE_RSSTYPE_NONE 0 777 #define RXDESC_TYPE_RSSTYPE_IPV4 2 778 #define RXDESC_TYPE_RSSTYPE_IPV6 3 779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 797 #define RXDESC_TYPE_RESERVED __BITS(18,13) 798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 800 #define RXDESC_TYPE_SPH __BIT(21) 801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 802 uint32_t rss_hash; 803 uint16_t status; 804 #define RXDESC_STATUS_DD __BIT(0) 805 #define RXDESC_STATUS_EOP __BIT(1) 806 #define RXDESC_STATUS_MACERR __BIT(2) 807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 810 811 #define RXDESC_STATUS_STAT __BITS(2,5) 812 #define RXDESC_STATUS_ESTAT __BITS(6,11) 813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 814 uint16_t pkt_len; 815 uint16_t next_desc_ptr; 816 uint16_t vlan; 817 } __packed; 818 819 typedef union aq_rx_desc { 820 struct aq_rx_desc_read read; 821 struct aq_rx_desc_wb wb; 822 } __packed aq_rx_desc_t; 823 824 typedef struct aq_tx_desc { 825 uint64_t buf_addr; 826 uint32_t ctl1; 827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 843 uint32_t ctl2; 844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 847 } __packed aq_tx_desc_t; 848 849 struct aq_txring { 850 struct aq_softc *txr_sc; 851 int txr_index; 852 kmutex_t txr_mutex; 853 bool txr_active; 854 855 pcq_t *txr_pcq; 856 void *txr_softint; 857 858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 859 bus_dmamap_t txr_txdesc_dmamap; 860 bus_dma_segment_t txr_txdesc_seg[1]; 861 bus_size_t txr_txdesc_size; 862 863 struct { 864 struct mbuf *m; 865 bus_dmamap_t dmamap; 866 } txr_mbufs[AQ_TXD_NUM]; 867 unsigned int txr_prodidx; 868 unsigned int txr_considx; 869 int txr_nfree; 870 }; 871 872 struct aq_rxring { 873 struct aq_softc *rxr_sc; 874 int rxr_index; 875 kmutex_t rxr_mutex; 876 bool rxr_active; 877 878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 879 bus_dmamap_t rxr_rxdesc_dmamap; 880 bus_dma_segment_t rxr_rxdesc_seg[1]; 881 bus_size_t rxr_rxdesc_size; 882 struct { 883 struct mbuf *m; 884 bus_dmamap_t dmamap; 885 } rxr_mbufs[AQ_RXD_NUM]; 886 unsigned int rxr_readidx; 887 }; 888 889 struct aq_queue { 890 struct aq_softc *sc; 891 struct aq_txring txring; 892 struct aq_rxring rxring; 893 }; 894 895 struct aq_softc; 896 struct aq_firmware_ops { 897 int (*reset)(struct aq_softc *); 898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 903 #if NSYSMON_ENVSYS > 0 904 int (*get_temperature)(struct aq_softc *, uint32_t *); 905 #endif 906 }; 907 908 #ifdef AQ_EVENT_COUNTERS 909 #define AQ_EVCNT_DECL(name) \ 910 char sc_evcount_##name##_name[32]; \ 911 struct evcnt sc_evcount_##name##_ev; 912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 913 do { \ 914 snprintf((sc)->sc_evcount_##name##_name, \ 915 sizeof((sc)->sc_evcount_##name##_name), \ 916 "%s", desc); \ 917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 918 (evtype), NULL, device_xname((sc)->sc_dev), \ 919 (sc)->sc_evcount_##name##_name); \ 920 } while (/*CONSTCOND*/0) 921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 923 #define AQ_EVCNT_DETACH(sc, name) \ 924 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 925 #define AQ_EVCNT_ADD(sc, name, val) \ 926 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 927 #endif /* AQ_EVENT_COUNTERS */ 928 929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 931 932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 935 936 937 struct aq_softc { 938 device_t sc_dev; 939 940 bus_space_tag_t sc_iot; 941 bus_space_handle_t sc_ioh; 942 bus_size_t sc_iosize; 943 bus_dma_tag_t sc_dmat;; 944 945 void *sc_ihs[AQ_NINTR_MAX]; 946 pci_intr_handle_t *sc_intrs; 947 948 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 949 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 950 int sc_linkstat_irq; 951 bool sc_use_txrx_independent_intr; 952 bool sc_poll_linkstat; 953 bool sc_detect_linkstat; 954 955 #if NSYSMON_ENVSYS > 0 956 struct sysmon_envsys *sc_sme; 957 envsys_data_t sc_sensor_temp; 958 #endif 959 960 callout_t sc_tick_ch; 961 962 int sc_nintrs; 963 bool sc_msix; 964 965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 966 int sc_nqueues; 967 968 pci_chipset_tag_t sc_pc; 969 pcitag_t sc_pcitag; 970 uint16_t sc_product; 971 uint16_t sc_revision; 972 973 kmutex_t sc_mutex; 974 kmutex_t sc_mpi_mutex; 975 976 const struct aq_firmware_ops *sc_fw_ops; 977 uint64_t sc_fw_caps; 978 enum aq_media_type sc_media_type; 979 aq_link_speed_t sc_available_rates; 980 981 aq_link_speed_t sc_link_rate; 982 aq_link_fc_t sc_link_fc; 983 aq_link_eee_t sc_link_eee; 984 985 uint32_t sc_fw_version; 986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 989 uint32_t sc_features; 990 #define FEATURES_MIPS 0x00000001 991 #define FEATURES_TPO2 0x00000002 992 #define FEATURES_RPF2 0x00000004 993 #define FEATURES_MPI_AQ 0x00000008 994 #define FEATURES_REV_A0 0x10000000 995 #define FEATURES_REV_A (FEATURES_REV_A0) 996 #define FEATURES_REV_B0 0x20000000 997 #define FEATURES_REV_B1 0x40000000 998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 999 uint32_t sc_mbox_addr; 1000 1001 bool sc_rbl_enabled; 1002 bool sc_fast_start_enabled; 1003 bool sc_flash_present; 1004 1005 bool sc_intr_moderation_enable; 1006 bool sc_rss_enable; 1007 1008 struct ethercom sc_ethercom; 1009 struct ether_addr sc_enaddr; 1010 struct ifmedia sc_media; 1011 int sc_ec_capenable; /* last ec_capenable */ 1012 unsigned short sc_if_flags; /* last if_flags */ 1013 1014 #ifdef AQ_EVENT_COUNTERS 1015 aq_hw_stats_s_t sc_statistics[2]; 1016 int sc_statistics_idx; 1017 bool sc_poll_statistics; 1018 1019 AQ_EVCNT_DECL(uprc); 1020 AQ_EVCNT_DECL(mprc); 1021 AQ_EVCNT_DECL(bprc); 1022 AQ_EVCNT_DECL(erpt); 1023 AQ_EVCNT_DECL(uptc); 1024 AQ_EVCNT_DECL(mptc); 1025 AQ_EVCNT_DECL(bptc); 1026 AQ_EVCNT_DECL(erpr); 1027 AQ_EVCNT_DECL(mbtc); 1028 AQ_EVCNT_DECL(bbtc); 1029 AQ_EVCNT_DECL(mbrc); 1030 AQ_EVCNT_DECL(bbrc); 1031 AQ_EVCNT_DECL(ubrc); 1032 AQ_EVCNT_DECL(ubtc); 1033 AQ_EVCNT_DECL(ptc); 1034 AQ_EVCNT_DECL(prc); 1035 AQ_EVCNT_DECL(dpc); 1036 AQ_EVCNT_DECL(cprc); 1037 #endif 1038 }; 1039 1040 static int aq_match(device_t, cfdata_t, void *); 1041 static void aq_attach(device_t, device_t, void *); 1042 static int aq_detach(device_t, int); 1043 1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1045 bool, bool); 1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1047 pci_intr_type_t); 1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1049 1050 static int aq_ifmedia_change(struct ifnet * const); 1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1053 static int aq_ifflags_cb(struct ethercom *); 1054 static int aq_init(struct ifnet *); 1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1056 struct aq_txring *, bool); 1057 static int aq_transmit(struct ifnet *, struct mbuf *); 1058 static void aq_deferred_transmit(void *); 1059 static void aq_start(struct ifnet *); 1060 static void aq_stop(struct ifnet *, int); 1061 static void aq_watchdog(struct ifnet *); 1062 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1063 1064 static int aq_txrx_rings_alloc(struct aq_softc *); 1065 static void aq_txrx_rings_free(struct aq_softc *); 1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1068 1069 static void aq_initmedia(struct aq_softc *); 1070 static void aq_enable_intr(struct aq_softc *, bool, bool); 1071 1072 #if NSYSMON_ENVSYS > 0 1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1074 #endif 1075 static void aq_tick(void *); 1076 static int aq_legacy_intr(void *); 1077 static int aq_link_intr(void *); 1078 static int aq_txrx_intr(void *); 1079 static int aq_tx_intr(void *); 1080 static int aq_rx_intr(void *); 1081 1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1083 aq_link_eee_t); 1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1085 aq_link_eee_t *); 1086 1087 static int aq_fw_reset(struct aq_softc *); 1088 static int aq_fw_version_init(struct aq_softc *); 1089 static int aq_hw_init(struct aq_softc *); 1090 static int aq_hw_init_ucp(struct aq_softc *); 1091 static int aq_hw_reset(struct aq_softc *); 1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1093 uint32_t); 1094 static int aq_get_mac_addr(struct aq_softc *); 1095 static int aq_init_rss(struct aq_softc *); 1096 static int aq_set_capability(struct aq_softc *); 1097 1098 static int fw1x_reset(struct aq_softc *); 1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1104 1105 static int fw2x_reset(struct aq_softc *); 1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1111 #if NSYSMON_ENVSYS > 0 1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1113 #endif 1114 1115 static const struct aq_firmware_ops aq_fw1x_ops = { 1116 .reset = fw1x_reset, 1117 .set_mode = fw1x_set_mode, 1118 .get_mode = fw1x_get_mode, 1119 .get_stats = fw1x_get_stats, 1120 #if NSYSMON_ENVSYS > 0 1121 .get_temperature = NULL 1122 #endif 1123 }; 1124 1125 static const struct aq_firmware_ops aq_fw2x_ops = { 1126 .reset = fw2x_reset, 1127 .set_mode = fw2x_set_mode, 1128 .get_mode = fw2x_get_mode, 1129 .get_stats = fw2x_get_stats, 1130 #if NSYSMON_ENVSYS > 0 1131 .get_temperature = fw2x_get_temperature 1132 #endif 1133 }; 1134 1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1137 1138 static const struct aq_product { 1139 pci_vendor_id_t aq_vendor; 1140 pci_product_id_t aq_product; 1141 const char *aq_name; 1142 enum aq_media_type aq_media_type; 1143 aq_link_speed_t aq_available_rates; 1144 } aq_products[] = { 1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1146 "Aquantia AQC107 10 Gigabit Network Adapter", 1147 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1148 }, 1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1150 "Aquantia AQC108 5 Gigabit Network Adapter", 1151 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1152 }, 1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1154 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1156 }, 1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1158 "Aquantia AQC111 5 Gigabit Network Adapter", 1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1160 }, 1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1162 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1164 }, 1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1166 "Aquantia AQC107S 10 Gigabit Network Adapter", 1167 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1168 }, 1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1170 "Aquantia AQC108S 5 Gigabit Network Adapter", 1171 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1172 }, 1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1174 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1175 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1176 }, 1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1178 "Aquantia AQC111S 5 Gigabit Network Adapter", 1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1180 }, 1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1182 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1184 }, 1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1186 "Aquantia D107 10 Gigabit Network Adapter", 1187 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1188 }, 1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1190 "Aquantia D108 5 Gigabit Network Adapter", 1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1192 }, 1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1194 "Aquantia D109 2.5 Gigabit Network Adapter", 1195 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1196 } 1197 }; 1198 1199 static const struct aq_product * 1200 aq_lookup(const struct pci_attach_args *pa) 1201 { 1202 unsigned int i; 1203 1204 for (i = 0; i < __arraycount(aq_products); i++) { 1205 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1206 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1207 return &aq_products[i]; 1208 } 1209 return NULL; 1210 } 1211 1212 static int 1213 aq_match(device_t parent, cfdata_t cf, void *aux) 1214 { 1215 struct pci_attach_args *pa = aux; 1216 1217 if (aq_lookup(pa) != NULL) 1218 return 1; 1219 1220 return 0; 1221 } 1222 1223 static void 1224 aq_attach(device_t parent, device_t self, void *aux) 1225 { 1226 struct aq_softc *sc = device_private(self); 1227 struct pci_attach_args *pa = aux; 1228 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1229 pci_chipset_tag_t pc; 1230 pcitag_t tag; 1231 pcireg_t command, memtype, bar; 1232 const struct aq_product *aqp; 1233 int error; 1234 1235 sc->sc_dev = self; 1236 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1237 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1238 1239 sc->sc_pc = pc = pa->pa_pc; 1240 sc->sc_pcitag = tag = pa->pa_tag; 1241 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1242 1243 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1244 command |= PCI_COMMAND_MASTER_ENABLE; 1245 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1246 1247 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1248 sc->sc_revision = PCI_REVISION(pa->pa_class); 1249 1250 aqp = aq_lookup(pa); 1251 KASSERT(aqp != NULL); 1252 1253 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1254 1255 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1256 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1257 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1258 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1259 return; 1260 } 1261 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1262 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1263 NULL, &sc->sc_iosize) != 0) { 1264 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1265 return; 1266 } 1267 1268 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1269 1270 /* max queue num is 8, and must be 2^n */ 1271 if (ncpu >= 8) 1272 sc->sc_nqueues = 8; 1273 else if (ncpu >= 4) 1274 sc->sc_nqueues = 4; 1275 else if (ncpu >= 2) 1276 sc->sc_nqueues = 2; 1277 else 1278 sc->sc_nqueues = 1; 1279 1280 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1281 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1282 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1283 /* TX intrs + RX intrs + LINKSTAT intrs */ 1284 sc->sc_use_txrx_independent_intr = true; 1285 sc->sc_poll_linkstat = false; 1286 sc->sc_msix = true; 1287 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1288 /* TX intrs + RX intrs */ 1289 sc->sc_use_txrx_independent_intr = true; 1290 sc->sc_poll_linkstat = true; 1291 sc->sc_msix = true; 1292 } else 1293 #endif 1294 if (msixcount >= (sc->sc_nqueues + 1)) { 1295 /* TX/RX intrs LINKSTAT intrs */ 1296 sc->sc_use_txrx_independent_intr = false; 1297 sc->sc_poll_linkstat = false; 1298 sc->sc_msix = true; 1299 } else if (msixcount >= sc->sc_nqueues) { 1300 /* TX/RX intrs */ 1301 sc->sc_use_txrx_independent_intr = false; 1302 sc->sc_poll_linkstat = true; 1303 sc->sc_msix = true; 1304 } else { 1305 /* giving up using MSI-X */ 1306 sc->sc_msix = false; 1307 } 1308 1309 aprint_debug_dev(sc->sc_dev, 1310 "ncpu=%d, pci_msix_count=%d." 1311 " allocate %d interrupts for %d%s queues%s\n", 1312 ncpu, msixcount, 1313 (sc->sc_use_txrx_independent_intr ? 1314 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1315 (sc->sc_poll_linkstat ? 0 : 1), 1316 sc->sc_nqueues, 1317 sc->sc_use_txrx_independent_intr ? "*2" : "", 1318 sc->sc_poll_linkstat ? "" : ", and link status"); 1319 1320 if (sc->sc_msix) 1321 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1322 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1323 else 1324 error = ENODEV; 1325 1326 if (error != 0) { 1327 /* if MSI-X failed, fallback to MSI with single queue */ 1328 sc->sc_use_txrx_independent_intr = false; 1329 sc->sc_poll_linkstat = false; 1330 sc->sc_msix = false; 1331 sc->sc_nqueues = 1; 1332 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1333 } 1334 if (error != 0) { 1335 /* if MSI failed, fallback to INTx */ 1336 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1337 } 1338 if (error != 0) 1339 return; 1340 1341 callout_init(&sc->sc_tick_ch, 0); 1342 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1343 1344 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1345 1346 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1347 sc->sc_rss_enable = true; 1348 else 1349 sc->sc_rss_enable = false; 1350 1351 error = aq_txrx_rings_alloc(sc); 1352 if (error != 0) 1353 goto attach_failure; 1354 1355 error = aq_fw_reset(sc); 1356 if (error != 0) 1357 goto attach_failure; 1358 1359 error = aq_fw_version_init(sc); 1360 if (error != 0) 1361 goto attach_failure; 1362 1363 error = aq_hw_init_ucp(sc); 1364 if (error < 0) 1365 goto attach_failure; 1366 1367 KASSERT(sc->sc_mbox_addr != 0); 1368 error = aq_hw_reset(sc); 1369 if (error != 0) 1370 goto attach_failure; 1371 1372 aq_get_mac_addr(sc); 1373 aq_init_rss(sc); 1374 1375 error = aq_hw_init(sc); /* initialize and interrupts */ 1376 if (error != 0) 1377 goto attach_failure; 1378 1379 sc->sc_media_type = aqp->aq_media_type; 1380 sc->sc_available_rates = aqp->aq_available_rates; 1381 1382 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1383 ifmedia_init(&sc->sc_media, IFM_IMASK, 1384 aq_ifmedia_change, aq_ifmedia_status); 1385 aq_initmedia(sc); 1386 1387 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1388 ifp->if_softc = sc; 1389 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1390 ifp->if_baudrate = IF_Gbps(10); 1391 ifp->if_init = aq_init; 1392 ifp->if_ioctl = aq_ioctl; 1393 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1394 ifp->if_transmit = aq_transmit; 1395 ifp->if_start = aq_start; 1396 ifp->if_stop = aq_stop; 1397 ifp->if_watchdog = aq_watchdog; 1398 IFQ_SET_READY(&ifp->if_snd); 1399 1400 /* initialize capabilities */ 1401 sc->sc_ethercom.ec_capabilities = 0; 1402 sc->sc_ethercom.ec_capenable = 0; 1403 #if notyet 1404 /* TODO */ 1405 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1406 #endif 1407 sc->sc_ethercom.ec_capabilities |= 1408 ETHERCAP_JUMBO_MTU | 1409 ETHERCAP_VLAN_MTU | 1410 ETHERCAP_VLAN_HWTAGGING | 1411 ETHERCAP_VLAN_HWFILTER; 1412 sc->sc_ethercom.ec_capenable |= 1413 ETHERCAP_VLAN_HWTAGGING | 1414 ETHERCAP_VLAN_HWFILTER; 1415 1416 ifp->if_capabilities = 0; 1417 ifp->if_capenable = 0; 1418 #ifdef CONFIG_LRO_SUPPORT 1419 ifp->if_capabilities |= IFCAP_LRO; 1420 ifp->if_capenable |= IFCAP_LRO; 1421 #endif 1422 #if notyet 1423 /* TSO */ 1424 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1425 #endif 1426 1427 #if notyet 1428 /* 1429 * XXX: 1430 * Rx L4 CSUM doesn't work well for fragment packet. 1431 * aq marks 'CHEDKED' and 'BAD' for them. 1432 * we need to ignore (clear) hw-csum flags if the packet is fragmented 1433 * 1434 * TODO: test with LRO enabled 1435 */ 1436 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1437 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1438 #endif 1439 /* TX hardware checksum offloadding */ 1440 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1441 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1442 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1443 /* RX hardware checksum offloadding */ 1444 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1445 1446 if_attach(ifp); 1447 if_deferred_start_init(ifp, NULL); 1448 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1449 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1450 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1451 1452 aq_enable_intr(sc, true, false); /* only intr about link */ 1453 1454 /* update media */ 1455 aq_ifmedia_change(ifp); 1456 1457 #if NSYSMON_ENVSYS > 0 1458 /* temperature monitoring */ 1459 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1460 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1461 1462 sc->sc_sme = sysmon_envsys_create(); 1463 sc->sc_sme->sme_name = device_xname(self); 1464 sc->sc_sme->sme_cookie = sc; 1465 sc->sc_sme->sme_flags = 0; 1466 sc->sc_sme->sme_refresh = aq_temp_refresh; 1467 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1468 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1469 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1470 1471 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1472 sysmon_envsys_register(sc->sc_sme); 1473 1474 /* 1475 * for unknown reasons, the first call of fw2x_get_temperature() 1476 * will always fail (firmware matter?), so run once now. 1477 */ 1478 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1479 } 1480 #endif 1481 1482 #ifdef AQ_EVENT_COUNTERS 1483 /* get starting statistics values */ 1484 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1485 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1486 sc->sc_poll_statistics = true; 1487 } 1488 1489 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1490 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1491 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1492 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1493 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1494 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1495 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1496 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1497 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1498 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1499 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1500 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1501 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1502 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1503 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1504 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1505 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1506 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1507 #endif 1508 1509 return; 1510 1511 attach_failure: 1512 aq_detach(self, 0); 1513 } 1514 1515 static int 1516 aq_detach(device_t self, int flags __unused) 1517 { 1518 struct aq_softc *sc = device_private(self); 1519 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1520 int i, s; 1521 1522 if (sc->sc_iosize != 0) { 1523 if (ifp->if_softc != NULL) { 1524 s = splnet(); 1525 aq_stop(ifp, 0); 1526 splx(s); 1527 } 1528 1529 for (i = 0; i < AQ_NINTR_MAX; i++) { 1530 if (sc->sc_ihs[i] != NULL) { 1531 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1532 sc->sc_ihs[i] = NULL; 1533 } 1534 } 1535 if (sc->sc_nintrs > 0) { 1536 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1537 sc->sc_nintrs); 1538 sc->sc_intrs = NULL; 1539 sc->sc_nintrs = 0; 1540 } 1541 1542 aq_txrx_rings_free(sc); 1543 1544 if (ifp->if_softc != NULL) { 1545 ether_ifdetach(ifp); 1546 if_detach(ifp); 1547 } 1548 1549 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1550 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1551 sc->sc_iosize = 0; 1552 } 1553 1554 callout_stop(&sc->sc_tick_ch); 1555 1556 #if NSYSMON_ENVSYS > 0 1557 if (sc->sc_sme != NULL) { 1558 /* all sensors associated with this will also be detached */ 1559 sysmon_envsys_unregister(sc->sc_sme); 1560 sc->sc_sme = NULL; 1561 } 1562 #endif 1563 1564 #ifdef AQ_EVENT_COUNTERS 1565 AQ_EVCNT_DETACH(sc, uprc); 1566 AQ_EVCNT_DETACH(sc, mprc); 1567 AQ_EVCNT_DETACH(sc, bprc); 1568 AQ_EVCNT_DETACH(sc, erpt); 1569 AQ_EVCNT_DETACH(sc, uptc); 1570 AQ_EVCNT_DETACH(sc, mptc); 1571 AQ_EVCNT_DETACH(sc, bptc); 1572 AQ_EVCNT_DETACH(sc, erpr); 1573 AQ_EVCNT_DETACH(sc, mbtc); 1574 AQ_EVCNT_DETACH(sc, bbtc); 1575 AQ_EVCNT_DETACH(sc, mbrc); 1576 AQ_EVCNT_DETACH(sc, bbrc); 1577 AQ_EVCNT_DETACH(sc, ubrc); 1578 AQ_EVCNT_DETACH(sc, ubtc); 1579 AQ_EVCNT_DETACH(sc, ptc); 1580 AQ_EVCNT_DETACH(sc, prc); 1581 AQ_EVCNT_DETACH(sc, dpc); 1582 AQ_EVCNT_DETACH(sc, cprc); 1583 #endif 1584 1585 ifmedia_fini(&sc->sc_media); 1586 1587 mutex_destroy(&sc->sc_mpi_mutex); 1588 mutex_destroy(&sc->sc_mutex); 1589 1590 return 0; 1591 } 1592 1593 static int 1594 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1595 int (*func)(void *), void *arg, const char *xname) 1596 { 1597 char intrbuf[PCI_INTRSTR_LEN]; 1598 pci_chipset_tag_t pc = sc->sc_pc; 1599 void *vih; 1600 const char *intrstr = NULL; 1601 1602 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1603 sizeof(intrbuf)); 1604 1605 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1606 1607 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1608 IPL_NET, func, arg, xname); 1609 if (vih == NULL) { 1610 aprint_error_dev(sc->sc_dev, 1611 "unable to establish MSI-X%s%s for %s\n", 1612 intrstr ? " at " : "", 1613 intrstr ? intrstr : "", xname); 1614 return EIO; 1615 } 1616 sc->sc_ihs[intno] = vih; 1617 1618 if (affinity != NULL) { 1619 /* Round-robin affinity */ 1620 kcpuset_zero(affinity); 1621 kcpuset_set(affinity, intno % ncpu); 1622 interrupt_distribute(vih, affinity, NULL); 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int 1629 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1630 bool linkintr) 1631 { 1632 kcpuset_t *affinity; 1633 int error, intno, i; 1634 char intr_xname[INTRDEVNAMEBUF]; 1635 1636 kcpuset_create(&affinity, false); 1637 1638 intno = 0; 1639 1640 if (txrx_independent) { 1641 for (i = 0; i < sc->sc_nqueues; i++) { 1642 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1643 device_xname(sc->sc_dev), i); 1644 sc->sc_rx_irq[i] = intno; 1645 error = aq_establish_intr(sc, intno++, affinity, 1646 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1647 if (error != 0) 1648 goto fail; 1649 } 1650 for (i = 0; i < sc->sc_nqueues; i++) { 1651 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1652 device_xname(sc->sc_dev), i); 1653 sc->sc_tx_irq[i] = intno; 1654 error = aq_establish_intr(sc, intno++, affinity, 1655 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1656 if (error != 0) 1657 goto fail; 1658 } 1659 } else { 1660 for (i = 0; i < sc->sc_nqueues; i++) { 1661 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1662 device_xname(sc->sc_dev), i); 1663 sc->sc_rx_irq[i] = intno; 1664 sc->sc_tx_irq[i] = intno; 1665 error = aq_establish_intr(sc, intno++, affinity, 1666 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1667 if (error != 0) 1668 goto fail; 1669 } 1670 } 1671 1672 if (linkintr) { 1673 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1674 device_xname(sc->sc_dev)); 1675 sc->sc_linkstat_irq = intno; 1676 error = aq_establish_intr(sc, intno++, affinity, 1677 aq_link_intr, sc, intr_xname); 1678 if (error != 0) 1679 goto fail; 1680 } 1681 1682 kcpuset_destroy(affinity); 1683 return 0; 1684 1685 fail: 1686 for (i = 0; i < AQ_NINTR_MAX; i++) { 1687 if (sc->sc_ihs[i] != NULL) { 1688 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1689 sc->sc_ihs[i] = NULL; 1690 } 1691 } 1692 1693 kcpuset_destroy(affinity); 1694 return ENOMEM; 1695 } 1696 1697 static int 1698 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1699 bool txrx_independent, bool linkintr) 1700 { 1701 int error, nintr; 1702 1703 if (txrx_independent) 1704 nintr = nqueue * 2; 1705 else 1706 nintr = nqueue; 1707 1708 if (linkintr) 1709 nintr++; 1710 1711 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1712 if (error != 0) { 1713 aprint_error_dev(sc->sc_dev, 1714 "failed to allocate MSI-X interrupts\n"); 1715 goto fail; 1716 } 1717 1718 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1719 if (error == 0) { 1720 sc->sc_nintrs = nintr; 1721 } else { 1722 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1723 sc->sc_nintrs = 0; 1724 } 1725 fail: 1726 return error; 1727 1728 } 1729 1730 static int 1731 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1732 pci_intr_type_t inttype) 1733 { 1734 int counts[PCI_INTR_TYPE_SIZE]; 1735 int error, nintr; 1736 1737 nintr = 1; 1738 1739 memset(counts, 0, sizeof(counts)); 1740 counts[inttype] = nintr; 1741 1742 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1743 if (error != 0) { 1744 aprint_error_dev(sc->sc_dev, 1745 "failed to allocate%s interrupts\n", 1746 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1747 return error; 1748 } 1749 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1750 device_xname(sc->sc_dev)); 1751 if (error == 0) { 1752 sc->sc_nintrs = nintr; 1753 } else { 1754 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1755 sc->sc_nintrs = 0; 1756 } 1757 return error; 1758 } 1759 1760 static void 1761 global_software_reset(struct aq_softc *sc) 1762 { 1763 uint32_t v; 1764 1765 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1766 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1767 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1768 FW_MPI_RESETCTRL_RESET_DIS, 0); 1769 1770 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1771 v &= ~AQ_FW_SOFTRESET_DIS; 1772 v |= AQ_FW_SOFTRESET_RESET; 1773 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1774 } 1775 1776 static int 1777 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1778 { 1779 int timo; 1780 1781 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1782 1783 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1784 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1785 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1786 1787 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1788 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1789 1790 global_software_reset(sc); 1791 1792 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1793 1794 /* Wait for RBL to finish boot process. */ 1795 #define RBL_TIMEOUT_MS 10000 1796 uint16_t rbl_status; 1797 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1798 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1799 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1800 break; 1801 msec_delay(1); 1802 } 1803 if (timo <= 0) { 1804 aprint_error_dev(sc->sc_dev, 1805 "RBL> RBL restart failed: timeout\n"); 1806 return EBUSY; 1807 } 1808 switch (rbl_status) { 1809 case RBL_STATUS_SUCCESS: 1810 if (mode != NULL) 1811 *mode = FW_BOOT_MODE_RBL_FLASH; 1812 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1813 break; 1814 case RBL_STATUS_HOST_BOOT: 1815 if (mode != NULL) 1816 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1817 aprint_debug_dev(sc->sc_dev, 1818 "RBL> reset complete! [Host Bootload]\n"); 1819 break; 1820 case RBL_STATUS_FAILURE: 1821 default: 1822 aprint_error_dev(sc->sc_dev, 1823 "unknown RBL status 0x%x\n", rbl_status); 1824 return EBUSY; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int 1831 mac_soft_reset_flb(struct aq_softc *sc) 1832 { 1833 uint32_t v; 1834 int timo; 1835 1836 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1837 /* 1838 * Let Felicity hardware to complete SMBUS transaction before 1839 * Global software reset. 1840 */ 1841 msec_delay(50); 1842 1843 /* 1844 * If SPI burst transaction was interrupted(before running the script), 1845 * global software reset may not clear SPI interface. 1846 * Clean it up manually before global reset. 1847 */ 1848 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1849 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1850 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1851 msec_delay(50); 1852 1853 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1854 v &= ~AQ_FW_SOFTRESET_DIS; 1855 v |= AQ_FW_SOFTRESET_RESET; 1856 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1857 1858 /* Kickstart. */ 1859 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1860 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1861 if (!sc->sc_fast_start_enabled) 1862 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1863 1864 /* 1865 * For the case SPI burst transaction was interrupted (by MCP reset 1866 * above), wait until it is completed by hardware. 1867 */ 1868 msec_delay(50); 1869 1870 /* MAC Kickstart */ 1871 if (!sc->sc_fast_start_enabled) { 1872 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1873 1874 uint32_t flb_status; 1875 for (timo = 0; timo < 1000; timo++) { 1876 flb_status = AQ_READ_REG(sc, 1877 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1878 if (flb_status != 0) 1879 break; 1880 msec_delay(1); 1881 } 1882 if (flb_status == 0) { 1883 aprint_error_dev(sc->sc_dev, 1884 "FLB> MAC kickstart failed: timed out\n"); 1885 return ETIMEDOUT; 1886 } 1887 aprint_debug_dev(sc->sc_dev, 1888 "FLB> MAC kickstart done, %d ms\n", timo); 1889 /* FW reset */ 1890 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1891 /* 1892 * Let Felicity hardware complete SMBUS transaction before 1893 * Global software reset. 1894 */ 1895 msec_delay(50); 1896 sc->sc_fast_start_enabled = true; 1897 } 1898 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1899 1900 /* PHY Kickstart: #undone */ 1901 global_software_reset(sc); 1902 1903 for (timo = 0; timo < 1000; timo++) { 1904 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1905 break; 1906 msec_delay(10); 1907 } 1908 if (timo >= 1000) { 1909 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1910 return ETIMEDOUT; 1911 } 1912 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1913 return 0; 1914 1915 } 1916 1917 static int 1918 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1919 { 1920 if (sc->sc_rbl_enabled) 1921 return mac_soft_reset_rbl(sc, mode); 1922 1923 if (mode != NULL) 1924 *mode = FW_BOOT_MODE_FLB; 1925 return mac_soft_reset_flb(sc); 1926 } 1927 1928 static int 1929 aq_fw_read_version(struct aq_softc *sc) 1930 { 1931 int i, error = EBUSY; 1932 #define MAC_FW_START_TIMEOUT_MS 10000 1933 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1934 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1935 if (sc->sc_fw_version != 0) { 1936 error = 0; 1937 break; 1938 } 1939 delay(1000); 1940 } 1941 return error; 1942 } 1943 1944 static int 1945 aq_fw_reset(struct aq_softc *sc) 1946 { 1947 uint32_t ver, v, bootExitCode; 1948 int i, error; 1949 1950 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1951 1952 for (i = 1000; i > 0; i--) { 1953 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1954 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1955 if (v != 0x06000000 || bootExitCode != 0) 1956 break; 1957 } 1958 if (i <= 0) { 1959 aprint_error_dev(sc->sc_dev, 1960 "F/W reset failed. Neither RBL nor FLB started\n"); 1961 return ETIMEDOUT; 1962 } 1963 sc->sc_rbl_enabled = (bootExitCode != 0); 1964 1965 /* 1966 * Having FW version 0 is an indicator that cold start 1967 * is in progress. This means two things: 1968 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1969 * 2) Driver may skip reset sequence and save time. 1970 */ 1971 if (sc->sc_fast_start_enabled && (ver != 0)) { 1972 error = aq_fw_read_version(sc); 1973 /* Skip reset as it just completed */ 1974 if (error == 0) 1975 return 0; 1976 } 1977 1978 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 1979 error = mac_soft_reset(sc, &mode); 1980 if (error != 0) { 1981 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 1982 return error; 1983 } 1984 1985 switch (mode) { 1986 case FW_BOOT_MODE_FLB: 1987 aprint_debug_dev(sc->sc_dev, 1988 "FLB> F/W successfully loaded from flash.\n"); 1989 sc->sc_flash_present = true; 1990 return aq_fw_read_version(sc); 1991 case FW_BOOT_MODE_RBL_FLASH: 1992 aprint_debug_dev(sc->sc_dev, 1993 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 1994 sc->sc_flash_present = true; 1995 return aq_fw_read_version(sc); 1996 case FW_BOOT_MODE_UNKNOWN: 1997 aprint_error_dev(sc->sc_dev, 1998 "F/W bootload error: unknown bootloader type\n"); 1999 return ENOTSUP; 2000 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2001 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2002 break; 2003 } 2004 2005 /* 2006 * XXX: TODO: add support Host Boot 2007 */ 2008 aprint_error_dev(sc->sc_dev, 2009 "RBL> F/W Host Bootload not implemented\n"); 2010 return ENOTSUP; 2011 } 2012 2013 static int 2014 aq_hw_reset(struct aq_softc *sc) 2015 { 2016 int error; 2017 2018 /* disable irq */ 2019 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2020 2021 /* apply */ 2022 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2023 2024 /* wait ack 10 times by 1ms */ 2025 WAIT_FOR( 2026 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2027 1000, 10, &error); 2028 if (error != 0) { 2029 aprint_error_dev(sc->sc_dev, 2030 "atlantic: IRQ reset failed: %d\n", error); 2031 return error; 2032 } 2033 2034 return sc->sc_fw_ops->reset(sc); 2035 } 2036 2037 static int 2038 aq_hw_init_ucp(struct aq_softc *sc) 2039 { 2040 int timo; 2041 2042 if (FW_VERSION_MAJOR(sc) == 1) { 2043 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) { 2044 uint32_t data; 2045 cprng_fast(&data, sizeof(data)); 2046 data &= 0xfefefefe; 2047 data |= 0x02020202; 2048 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data); 2049 } 2050 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2051 } 2052 2053 for (timo = 100; timo > 0; timo--) { 2054 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2055 if (sc->sc_mbox_addr != 0) 2056 break; 2057 delay(1000); 2058 } 2059 2060 #define AQ_FW_MIN_VERSION 0x01050006 2061 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2062 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2063 aprint_error_dev(sc->sc_dev, 2064 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2065 " or later required, this is %d.%d.%d\n", 2066 FW_VERSION_MAJOR(sc), 2067 FW_VERSION_MINOR(sc), 2068 FW_VERSION_BUILD(sc)); 2069 return ENOTSUP; 2070 } 2071 2072 return 0; 2073 } 2074 2075 static int 2076 aq_fw_version_init(struct aq_softc *sc) 2077 { 2078 int error = 0; 2079 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2080 2081 if (FW_VERSION_MAJOR(sc) == 1) { 2082 sc->sc_fw_ops = &aq_fw1x_ops; 2083 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2084 sc->sc_fw_ops = &aq_fw2x_ops; 2085 } else { 2086 aprint_error_dev(sc->sc_dev, 2087 "Unsupported F/W version %d.%d.%d\n", 2088 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2089 FW_VERSION_BUILD(sc)); 2090 return ENOTSUP; 2091 } 2092 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2093 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2094 2095 /* detect revision */ 2096 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2097 switch (hwrev & 0x0000000f) { 2098 case 0x01: 2099 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2100 fw_vers); 2101 sc->sc_features |= FEATURES_REV_A0 | 2102 FEATURES_MPI_AQ | FEATURES_MIPS; 2103 break; 2104 case 0x02: 2105 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2106 fw_vers); 2107 sc->sc_features |= FEATURES_REV_B0 | 2108 FEATURES_MPI_AQ | FEATURES_MIPS | 2109 FEATURES_TPO2 | FEATURES_RPF2; 2110 break; 2111 case 0x0A: 2112 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2113 fw_vers); 2114 sc->sc_features |= FEATURES_REV_B1 | 2115 FEATURES_MPI_AQ | FEATURES_MIPS | 2116 FEATURES_TPO2 | FEATURES_RPF2; 2117 break; 2118 default: 2119 aprint_error_dev(sc->sc_dev, 2120 "Unknown revision (0x%08x)\n", hwrev); 2121 error = ENOTSUP; 2122 break; 2123 } 2124 return error; 2125 } 2126 2127 static int 2128 fw1x_reset(struct aq_softc *sc) 2129 { 2130 struct aq_mailbox_header mbox; 2131 const int retryCount = 1000; 2132 uint32_t tid0; 2133 int i; 2134 2135 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2136 2137 for (i = 0; i < retryCount; ++i) { 2138 /* 2139 * Read the beginning of Statistics structure to capture 2140 * the Transaction ID. 2141 */ 2142 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2143 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2144 2145 /* Successfully read the stats. */ 2146 if (tid0 == ~0U) { 2147 /* We have read the initial value. */ 2148 tid0 = mbox.transaction_id; 2149 continue; 2150 } else if (mbox.transaction_id != tid0) { 2151 /* 2152 * Compare transaction ID to initial value. 2153 * If it's different means f/w is alive. 2154 * We're done. 2155 */ 2156 return 0; 2157 } 2158 2159 /* 2160 * Transaction ID value haven't changed since last time. 2161 * Try reading the stats again. 2162 */ 2163 delay(10); 2164 } 2165 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2166 return EBUSY; 2167 } 2168 2169 static int 2170 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2171 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2172 { 2173 uint32_t mpictrl = 0; 2174 uint32_t mpispeed = 0; 2175 2176 if (speed & AQ_LINK_10G) 2177 mpispeed |= FW1X_CTRL_10G; 2178 if (speed & AQ_LINK_5G) 2179 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2180 if (speed & AQ_LINK_2G5) 2181 mpispeed |= FW1X_CTRL_2G5; 2182 if (speed & AQ_LINK_1G) 2183 mpispeed |= FW1X_CTRL_1G; 2184 if (speed & AQ_LINK_100M) 2185 mpispeed |= FW1X_CTRL_100M; 2186 2187 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2188 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2189 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2190 return 0; 2191 } 2192 2193 static int 2194 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2195 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2196 { 2197 uint32_t mpistate, mpi_speed; 2198 aq_link_speed_t speed = AQ_LINK_NONE; 2199 2200 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2201 2202 if (modep != NULL) 2203 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2204 2205 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2206 if (mpi_speed & FW1X_CTRL_10G) 2207 speed = AQ_LINK_10G; 2208 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2209 speed = AQ_LINK_5G; 2210 else if (mpi_speed & FW1X_CTRL_2G5) 2211 speed = AQ_LINK_2G5; 2212 else if (mpi_speed & FW1X_CTRL_1G) 2213 speed = AQ_LINK_1G; 2214 else if (mpi_speed & FW1X_CTRL_100M) 2215 speed = AQ_LINK_100M; 2216 2217 if (speedp != NULL) 2218 *speedp = speed; 2219 2220 if (fcp != NULL) 2221 *fcp = AQ_FC_NONE; 2222 2223 if (eeep != NULL) 2224 *eeep = AQ_EEE_DISABLE; 2225 2226 return 0; 2227 } 2228 2229 static int 2230 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2231 { 2232 int error; 2233 2234 error = aq_fw_downld_dwords(sc, 2235 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2236 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2237 if (error < 0) { 2238 device_printf(sc->sc_dev, 2239 "fw1x> download statistics data FAILED, error %d", error); 2240 return error; 2241 } 2242 2243 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2244 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2245 return 0; 2246 } 2247 2248 static int 2249 fw2x_reset(struct aq_softc *sc) 2250 { 2251 fw2x_capabilities_t caps = { 0 }; 2252 int error; 2253 2254 error = aq_fw_downld_dwords(sc, 2255 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2256 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2257 if (error != 0) { 2258 aprint_error_dev(sc->sc_dev, 2259 "fw2x> can't get F/W capabilities mask, error %d\n", 2260 error); 2261 return error; 2262 } 2263 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2264 2265 char buf[256]; 2266 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2267 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2268 2269 return 0; 2270 } 2271 2272 static int 2273 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2274 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2275 { 2276 uint64_t mpi_ctrl; 2277 int error = 0; 2278 2279 AQ_MPI_LOCK(sc); 2280 2281 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2282 2283 switch (mode) { 2284 case MPI_INIT: 2285 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2286 if (speed & AQ_LINK_10G) 2287 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2288 if (speed & AQ_LINK_5G) 2289 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2290 if (speed & AQ_LINK_2G5) 2291 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2292 if (speed & AQ_LINK_1G) 2293 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2294 if (speed & AQ_LINK_100M) 2295 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2296 2297 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2298 2299 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2300 if (eee == AQ_EEE_ENABLE) 2301 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2302 2303 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2304 if (fc & AQ_FC_RX) 2305 mpi_ctrl |= FW2X_CTRL_PAUSE; 2306 if (fc & AQ_FC_TX) 2307 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2308 break; 2309 case MPI_DEINIT: 2310 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2311 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2312 break; 2313 default: 2314 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2315 error = EINVAL; 2316 goto failure; 2317 } 2318 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2319 2320 failure: 2321 AQ_MPI_UNLOCK(sc); 2322 return error; 2323 } 2324 2325 static int 2326 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2327 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2328 { 2329 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2330 2331 if (modep != NULL) { 2332 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2333 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2334 *modep = MPI_INIT; 2335 else 2336 *modep = MPI_DEINIT; 2337 } 2338 2339 aq_link_speed_t speed = AQ_LINK_NONE; 2340 if (mpi_state & FW2X_CTRL_RATE_10G) 2341 speed = AQ_LINK_10G; 2342 else if (mpi_state & FW2X_CTRL_RATE_5G) 2343 speed = AQ_LINK_5G; 2344 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2345 speed = AQ_LINK_2G5; 2346 else if (mpi_state & FW2X_CTRL_RATE_1G) 2347 speed = AQ_LINK_1G; 2348 else if (mpi_state & FW2X_CTRL_RATE_100M) 2349 speed = AQ_LINK_100M; 2350 2351 if (speedp != NULL) 2352 *speedp = speed; 2353 2354 aq_link_fc_t fc = AQ_FC_NONE; 2355 if (mpi_state & FW2X_CTRL_PAUSE) 2356 fc |= AQ_FC_RX; 2357 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2358 fc |= AQ_FC_TX; 2359 if (fcp != NULL) 2360 *fcp = fc; 2361 2362 /* XXX: TODO: EEE */ 2363 if (eeep != NULL) 2364 *eeep = AQ_EEE_DISABLE; 2365 2366 return 0; 2367 } 2368 2369 static int 2370 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2371 uint32_t timeout_ms, uint32_t try_count) 2372 { 2373 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2374 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2375 int error; 2376 2377 /* First, check that control and state values are consistent */ 2378 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2379 device_printf(sc->sc_dev, 2380 "fw2x> MPI control (%#llx) and state (%#llx)" 2381 " are not consistent for mask %#llx!\n", 2382 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2383 (unsigned long long)mask); 2384 return EINVAL; 2385 } 2386 2387 /* Invert bits (toggle) in control register */ 2388 mpi_ctrl ^= mask; 2389 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2390 2391 /* Clear all bits except masked */ 2392 mpi_ctrl &= mask; 2393 2394 /* Wait for FW reflecting change in state register */ 2395 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2396 1000 * timeout_ms, try_count, &error); 2397 if (error != 0) { 2398 device_printf(sc->sc_dev, 2399 "f/w2x> timeout while waiting for response" 2400 " in state register for bit %#llx!", 2401 (unsigned long long)mask); 2402 return error; 2403 } 2404 return 0; 2405 } 2406 2407 static int 2408 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2409 { 2410 int error; 2411 2412 AQ_MPI_LOCK(sc); 2413 /* Say to F/W to update the statistics */ 2414 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2415 if (error != 0) { 2416 device_printf(sc->sc_dev, 2417 "fw2x> statistics update error %d\n", error); 2418 goto failure; 2419 } 2420 2421 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2422 error = aq_fw_downld_dwords(sc, 2423 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2424 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2425 if (error != 0) { 2426 device_printf(sc->sc_dev, 2427 "fw2x> download statistics data FAILED, error %d", error); 2428 goto failure; 2429 } 2430 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2431 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2432 2433 failure: 2434 AQ_MPI_UNLOCK(sc); 2435 return error; 2436 } 2437 2438 #if NSYSMON_ENVSYS > 0 2439 static int 2440 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2441 { 2442 int error; 2443 uint32_t value, celsius; 2444 2445 AQ_MPI_LOCK(sc); 2446 2447 /* Say to F/W to update the temperature */ 2448 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2449 if (error != 0) 2450 goto failure; 2451 2452 error = aq_fw_downld_dwords(sc, 2453 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2454 &value, sizeof(value) / sizeof(uint32_t)); 2455 if (error != 0) 2456 goto failure; 2457 2458 /* 1/256 decrees C to microkelvin */ 2459 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2460 if (celsius == 0) { 2461 error = EIO; 2462 goto failure; 2463 } 2464 *temp = celsius * (1000000 / 256) + 273150000; 2465 2466 failure: 2467 AQ_MPI_UNLOCK(sc); 2468 return 0; 2469 } 2470 #endif 2471 2472 static int 2473 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2474 uint32_t cnt) 2475 { 2476 uint32_t v; 2477 int error = 0; 2478 2479 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2480 if (error != 0) { 2481 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2482 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2483 if (v == 0) { 2484 device_printf(sc->sc_dev, 2485 "%s:%d: timeout\n", __func__, __LINE__); 2486 return ETIMEDOUT; 2487 } 2488 } 2489 2490 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2491 2492 error = 0; 2493 for (; cnt > 0 && error == 0; cnt--) { 2494 /* execute mailbox interface */ 2495 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2496 AQ_FW_MBOX_CMD_EXECUTE, 1); 2497 if (sc->sc_features & FEATURES_REV_B1) { 2498 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2499 1, 1000, &error); 2500 } else { 2501 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2502 AQ_FW_MBOX_CMD_BUSY) == 0, 2503 1, 1000, &error); 2504 } 2505 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2506 addr += sizeof(uint32_t); 2507 } 2508 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2509 2510 if (error != 0) 2511 device_printf(sc->sc_dev, 2512 "%s:%d: timeout\n", __func__, __LINE__); 2513 2514 return error; 2515 } 2516 2517 /* read my mac address */ 2518 static int 2519 aq_get_mac_addr(struct aq_softc *sc) 2520 { 2521 uint32_t mac_addr[2]; 2522 uint32_t efuse_shadow_addr; 2523 int err; 2524 2525 efuse_shadow_addr = 0; 2526 if (FW_VERSION_MAJOR(sc) >= 2) 2527 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2528 else 2529 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2530 2531 if (efuse_shadow_addr == 0) { 2532 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2533 return ENXIO; 2534 } 2535 2536 memset(mac_addr, 0, sizeof(mac_addr)); 2537 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2538 mac_addr, __arraycount(mac_addr)); 2539 if (err < 0) 2540 return err; 2541 2542 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2543 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2544 return ENXIO; 2545 } 2546 2547 mac_addr[0] = bswap32(mac_addr[0]); 2548 mac_addr[1] = bswap32(mac_addr[1]); 2549 2550 memcpy(sc->sc_enaddr.ether_addr_octet, 2551 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2552 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2553 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2554 2555 return 0; 2556 } 2557 2558 /* set multicast filter. index 0 for own address */ 2559 static int 2560 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2561 { 2562 uint32_t h, l; 2563 2564 if (index >= AQ_HW_MAC_NUM) 2565 return EINVAL; 2566 2567 if (enaddr == NULL) { 2568 /* disable */ 2569 AQ_WRITE_REG_BIT(sc, 2570 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2571 return 0; 2572 } 2573 2574 h = (enaddr[0] << 8) | (enaddr[1]); 2575 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2576 (enaddr[4] << 8) | (enaddr[5]); 2577 2578 /* disable, set, and enable */ 2579 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2580 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2581 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2582 RPF_L2UC_MSW_MACADDR_HI, h); 2583 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2584 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2585 2586 return 0; 2587 } 2588 2589 static int 2590 aq_set_capability(struct aq_softc *sc) 2591 { 2592 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2593 int ip4csum_tx = 2594 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2595 int ip4csum_rx = 2596 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2597 int l4csum_tx = ((ifp->if_capenable & 2598 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2599 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2600 int l4csum_rx = 2601 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2602 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2603 uint32_t lso = 2604 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2605 0 : 0xffffffff; 2606 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2607 0 : 0xffffffff; 2608 uint32_t i, v; 2609 2610 /* TX checksums offloads*/ 2611 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2612 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2613 2614 /* RX checksums offloads*/ 2615 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2616 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2617 2618 /* LSO offloads*/ 2619 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2620 2621 #define AQ_B0_LRO_RXD_MAX 16 2622 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2623 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2624 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2625 for (i = 0; i < AQ_RINGS_NUM; i++) { 2626 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2627 RPO_LRO_LDES_MAX_MASK(i), v); 2628 } 2629 2630 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2631 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2632 RPO_LRO_INACTIVE_IVAL, 0); 2633 /* 2634 * the LRO timebase divider is 5 uS (0x61a), 2635 * to get a maximum coalescing interval of 250 uS, 2636 * we need to multiply by 50(0x32) to get 2637 * the default value 250 uS 2638 */ 2639 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2640 RPO_LRO_MAX_COALESCING_IVAL, 50); 2641 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2642 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2643 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2644 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2645 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2646 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2647 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2648 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2649 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2650 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2651 2652 return 0; 2653 } 2654 2655 static int 2656 aq_set_filter(struct aq_softc *sc) 2657 { 2658 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2659 struct ethercom *ec = &sc->sc_ethercom; 2660 struct ether_multi *enm; 2661 struct ether_multistep step; 2662 int idx, error = 0; 2663 2664 if (ifp->if_flags & IFF_PROMISC) { 2665 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2666 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2667 ec->ec_flags |= ETHER_F_ALLMULTI; 2668 goto done; 2669 } 2670 2671 /* clear all table */ 2672 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2673 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2674 continue; 2675 aq_set_mac_addr(sc, idx, NULL); 2676 } 2677 2678 /* don't accept all multicast */ 2679 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2680 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2681 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2682 RPF_MCAST_FILTER_EN, 0); 2683 2684 idx = 0; 2685 ETHER_LOCK(ec); 2686 ETHER_FIRST_MULTI(step, ec, enm); 2687 while (enm != NULL) { 2688 if (idx == AQ_HW_MAC_OWN) 2689 idx++; 2690 2691 if ((idx >= AQ_HW_MAC_NUM) || 2692 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2693 /* 2694 * too many filters. 2695 * fallback to accept all multicast addresses. 2696 */ 2697 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2698 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2699 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2700 RPF_MCAST_FILTER_EN, 1); 2701 ec->ec_flags |= ETHER_F_ALLMULTI; 2702 ETHER_UNLOCK(ec); 2703 goto done; 2704 } 2705 2706 /* add a filter */ 2707 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2708 2709 ETHER_NEXT_MULTI(step, enm); 2710 } 2711 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2712 ETHER_UNLOCK(ec); 2713 2714 done: 2715 return error; 2716 } 2717 2718 static int 2719 aq_ifmedia_change(struct ifnet * const ifp) 2720 { 2721 struct aq_softc *sc = ifp->if_softc; 2722 aq_link_speed_t rate = AQ_LINK_NONE; 2723 aq_link_fc_t fc = AQ_FC_NONE; 2724 aq_link_eee_t eee = AQ_EEE_DISABLE; 2725 2726 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2727 return EINVAL; 2728 2729 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2730 case IFM_AUTO: 2731 rate = AQ_LINK_AUTO; 2732 break; 2733 case IFM_NONE: 2734 rate = AQ_LINK_NONE; 2735 break; 2736 case IFM_100_TX: 2737 rate = AQ_LINK_100M; 2738 break; 2739 case IFM_1000_T: 2740 rate = AQ_LINK_1G; 2741 break; 2742 case IFM_2500_T: 2743 rate = AQ_LINK_2G5; 2744 break; 2745 case IFM_5000_T: 2746 rate = AQ_LINK_5G; 2747 break; 2748 case IFM_10G_T: 2749 rate = AQ_LINK_10G; 2750 break; 2751 default: 2752 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2753 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2754 return ENODEV; 2755 } 2756 2757 if (sc->sc_media.ifm_media & IFM_FLOW) 2758 fc = AQ_FC_ALL; 2759 2760 /* XXX: todo EEE */ 2761 2762 /* re-initialize hardware with new parameters */ 2763 aq_set_linkmode(sc, rate, fc, eee); 2764 2765 return 0; 2766 } 2767 2768 static void 2769 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2770 { 2771 struct aq_softc *sc = ifp->if_softc; 2772 2773 /* update ifm_active */ 2774 ifmr->ifm_active = IFM_ETHER; 2775 if (sc->sc_link_fc & AQ_FC_RX) 2776 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2777 if (sc->sc_link_fc & AQ_FC_TX) 2778 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2779 2780 switch (sc->sc_link_rate) { 2781 case AQ_LINK_100M: 2782 /* XXX: need to detect fulldup or halfdup */ 2783 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2784 break; 2785 case AQ_LINK_1G: 2786 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2787 break; 2788 case AQ_LINK_2G5: 2789 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2790 break; 2791 case AQ_LINK_5G: 2792 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2793 break; 2794 case AQ_LINK_10G: 2795 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2796 break; 2797 default: 2798 ifmr->ifm_active |= IFM_NONE; 2799 break; 2800 } 2801 2802 /* update ifm_status */ 2803 ifmr->ifm_status = IFM_AVALID; 2804 if (sc->sc_link_rate != AQ_LINK_NONE) 2805 ifmr->ifm_status |= IFM_ACTIVE; 2806 } 2807 2808 static void 2809 aq_initmedia(struct aq_softc *sc) 2810 { 2811 #define IFMEDIA_ETHER_ADD(sc, media) \ 2812 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2813 2814 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2815 if (sc->sc_available_rates & AQ_LINK_100M) { 2816 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2817 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2818 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2819 } 2820 if (sc->sc_available_rates & AQ_LINK_1G) { 2821 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2822 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2823 } 2824 if (sc->sc_available_rates & AQ_LINK_2G5) { 2825 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2826 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2827 } 2828 if (sc->sc_available_rates & AQ_LINK_5G) { 2829 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2830 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2831 } 2832 if (sc->sc_available_rates & AQ_LINK_10G) { 2833 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2834 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2835 } 2836 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2837 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2838 2839 /* default: auto without flowcontrol */ 2840 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2841 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2842 } 2843 2844 static int 2845 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2846 aq_link_eee_t eee) 2847 { 2848 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2849 } 2850 2851 static int 2852 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2853 aq_link_eee_t *eee) 2854 { 2855 aq_hw_fw_mpi_state_t mode; 2856 int error; 2857 2858 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2859 if (error != 0) 2860 return error; 2861 if (mode != MPI_INIT) 2862 return ENXIO; 2863 2864 return 0; 2865 } 2866 2867 static void 2868 aq_hw_init_tx_path(struct aq_softc *sc) 2869 { 2870 /* Tx TC/RSS number config */ 2871 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2872 2873 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2874 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2875 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2876 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2877 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2878 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2879 2880 /* misc */ 2881 AQ_WRITE_REG(sc, TX_TPO2_REG, 2882 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2883 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2884 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2885 2886 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2887 } 2888 2889 static void 2890 aq_hw_init_rx_path(struct aq_softc *sc) 2891 { 2892 int i; 2893 2894 /* clear setting */ 2895 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2896 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2897 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2898 for (i = 0; i < 32; i++) { 2899 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2900 RPF_ETHERTYPE_FILTER_EN, 0); 2901 } 2902 2903 if (sc->sc_rss_enable) { 2904 /* Rx TC/RSS number config */ 2905 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2906 2907 /* Rx flow control */ 2908 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2909 2910 /* RSS Ring selection */ 2911 switch (sc->sc_nqueues) { 2912 case 2: 2913 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2914 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2915 break; 2916 case 4: 2917 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2918 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2919 break; 2920 case 8: 2921 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2922 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2923 break; 2924 } 2925 } 2926 2927 /* L2 and Multicast filters */ 2928 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2929 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2930 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2931 RPF_ACTION_HOST); 2932 } 2933 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2934 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2935 2936 /* Vlan filters */ 2937 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2938 ETHERTYPE_QINQ); 2939 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2940 ETHERTYPE_VLAN); 2941 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2942 2943 if (sc->sc_features & FEATURES_REV_B) { 2944 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2945 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2946 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2947 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2948 } 2949 2950 /* misc */ 2951 if (sc->sc_features & FEATURES_RPF2) 2952 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2953 else 2954 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2955 2956 /* 2957 * XXX: RX_TCP_RSS_HASH_REG: 2958 * linux set 0x000f0000 2959 * freebsd set 0x000f001e 2960 */ 2961 /* RSS hash type set for IP/TCP */ 2962 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2963 RX_TCP_RSS_HASH_TYPE, 0x001e); 2964 2965 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 2966 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 2967 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 2968 2969 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 2970 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 2971 } 2972 2973 static void 2974 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 2975 { 2976 int i; 2977 2978 if (sc->sc_intr_moderation_enable) { 2979 unsigned int tx_min, rx_min; /* 0-255 */ 2980 unsigned int tx_max, rx_max; /* 0-511? */ 2981 2982 switch (sc->sc_link_rate) { 2983 case AQ_LINK_100M: 2984 tx_min = 0x4f; 2985 tx_max = 0xff; 2986 rx_min = 0x04; 2987 rx_max = 0x50; 2988 break; 2989 case AQ_LINK_1G: 2990 default: 2991 tx_min = 0x4f; 2992 tx_max = 0xff; 2993 rx_min = 0x30; 2994 rx_max = 0x80; 2995 break; 2996 case AQ_LINK_2G5: 2997 tx_min = 0x4f; 2998 tx_max = 0xff; 2999 rx_min = 0x18; 3000 rx_max = 0xe0; 3001 break; 3002 case AQ_LINK_5G: 3003 tx_min = 0x4f; 3004 tx_max = 0xff; 3005 rx_min = 0x0c; 3006 rx_max = 0x70; 3007 break; 3008 case AQ_LINK_10G: 3009 tx_min = 0x4f; 3010 tx_max = 0x1ff; 3011 rx_min = 0x06; /* freebsd use 80 */ 3012 rx_max = 0x38; /* freebsd use 120 */ 3013 break; 3014 } 3015 3016 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3017 TX_DMA_INT_DESC_WRWB_EN, 0); 3018 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3019 TX_DMA_INT_DESC_MODERATE_EN, 1); 3020 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3021 RX_DMA_INT_DESC_WRWB_EN, 0); 3022 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3023 RX_DMA_INT_DESC_MODERATE_EN, 1); 3024 3025 for (i = 0; i < AQ_RINGS_NUM; i++) { 3026 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3027 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3028 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3029 TX_INTR_MODERATION_CTL_EN); 3030 } 3031 for (i = 0; i < AQ_RINGS_NUM; i++) { 3032 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3033 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3034 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3035 RX_INTR_MODERATION_CTL_EN); 3036 } 3037 3038 } else { 3039 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3040 TX_DMA_INT_DESC_WRWB_EN, 1); 3041 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3042 TX_DMA_INT_DESC_MODERATE_EN, 0); 3043 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3044 RX_DMA_INT_DESC_WRWB_EN, 1); 3045 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3046 RX_DMA_INT_DESC_MODERATE_EN, 0); 3047 3048 for (i = 0; i < AQ_RINGS_NUM; i++) { 3049 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3050 } 3051 for (i = 0; i < AQ_RINGS_NUM; i++) { 3052 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3053 } 3054 } 3055 } 3056 3057 static void 3058 aq_hw_qos_set(struct aq_softc *sc) 3059 { 3060 uint32_t tc = 0; 3061 uint32_t buff_size; 3062 3063 /* TPS Descriptor rate init */ 3064 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3065 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3066 3067 /* TPS VM init */ 3068 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3069 3070 /* TPS TC credits init */ 3071 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3072 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3073 3074 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3075 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3076 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3077 TPS_DATA_TCT_WEIGHT, 0x64); 3078 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3079 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3080 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3081 TPS_DESC_TCT_WEIGHT, 0x1e); 3082 3083 /* Tx buf size */ 3084 tc = 0; 3085 buff_size = AQ_HW_TXBUF_MAX; 3086 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3087 buff_size); 3088 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3089 (buff_size * (1024 / 32) * 66) / 100); 3090 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3091 (buff_size * (1024 / 32) * 50) / 100); 3092 3093 /* QoS Rx buf size per TC */ 3094 tc = 0; 3095 buff_size = AQ_HW_RXBUF_MAX; 3096 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3097 buff_size); 3098 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3099 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3100 (buff_size * (1024 / 32) * 66) / 100); 3101 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3102 (buff_size * (1024 / 32) * 50) / 100); 3103 3104 /* QoS 802.1p priority -> TC mapping */ 3105 int i_priority; 3106 for (i_priority = 0; i_priority < 8; i_priority++) { 3107 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3108 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3109 } 3110 } 3111 3112 /* called once from aq_attach */ 3113 static int 3114 aq_init_rss(struct aq_softc *sc) 3115 { 3116 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3117 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3118 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3119 unsigned int i; 3120 int error; 3121 3122 /* initialize rss key */ 3123 rss_getkey((uint8_t *)rss_key); 3124 3125 /* hash to ring table */ 3126 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3127 rss_table[i] = i % sc->sc_nqueues; 3128 } 3129 3130 /* 3131 * set rss key 3132 */ 3133 for (i = 0; i < __arraycount(rss_key); i++) { 3134 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3135 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3136 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3137 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3138 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3139 RPF_RSS_KEY_WR_EN, 1); 3140 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3141 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3142 if (error != 0) { 3143 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3144 __func__); 3145 goto rss_set_timeout; 3146 } 3147 } 3148 3149 /* 3150 * set rss indirection table 3151 * 3152 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3153 * we'll make it by __BITMAP(3) macros. 3154 */ 3155 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3156 __BITMAP_ZERO(&bit3x64); 3157 3158 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3159 do { \ 3160 if (val & 1) { \ 3161 __BITMAP_SET((idx) * 3, (bitmap)); \ 3162 } else { \ 3163 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3164 } \ 3165 if (val & 2) { \ 3166 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3167 } else { \ 3168 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3169 } \ 3170 if (val & 4) { \ 3171 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3172 } else { \ 3173 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3174 } \ 3175 } while (0 /* CONSTCOND */) 3176 3177 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3178 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3179 } 3180 3181 /* write 192bit data in steps of 16bit */ 3182 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3183 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3184 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3185 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3186 RPF_RSS_REDIR_ADDR, i); 3187 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3188 RPF_RSS_REDIR_WR_EN, 1); 3189 3190 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3191 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3192 if (error != 0) 3193 break; 3194 } 3195 3196 rss_set_timeout: 3197 return error; 3198 } 3199 3200 static void 3201 aq_hw_l3_filter_set(struct aq_softc *sc) 3202 { 3203 int i; 3204 3205 /* clear all filter */ 3206 for (i = 0; i < 8; i++) { 3207 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3208 RPF_L3_FILTER_L4_EN, 0); 3209 } 3210 } 3211 3212 static void 3213 aq_set_vlan_filters(struct aq_softc *sc) 3214 { 3215 struct ethercom *ec = &sc->sc_ethercom; 3216 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3217 struct vlanid_list *vlanidp; 3218 int i; 3219 3220 ETHER_LOCK(ec); 3221 3222 /* disable all vlan filters */ 3223 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3224 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3225 3226 /* count VID */ 3227 i = 0; 3228 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3229 i++; 3230 3231 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3232 (ifp->if_flags & IFF_PROMISC) || 3233 (i > RPF_VLAN_MAX_FILTERS)) { 3234 /* 3235 * no vlan hwfilter, in promiscuous mode, or too many VID? 3236 * must receive all VID 3237 */ 3238 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3239 RPF_VLAN_MODE_PROMISC, 1); 3240 goto done; 3241 } 3242 3243 /* receive only selected VID */ 3244 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3245 i = 0; 3246 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3247 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3248 RPF_VLAN_FILTER_EN, 1); 3249 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3250 RPF_VLAN_FILTER_RXQ_EN, 0); 3251 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3252 RPF_VLAN_FILTER_RXQ, 0); 3253 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3254 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3255 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3256 RPF_VLAN_FILTER_ID, vlanidp->vid); 3257 i++; 3258 } 3259 3260 done: 3261 ETHER_UNLOCK(ec); 3262 } 3263 3264 static int 3265 aq_hw_init(struct aq_softc *sc) 3266 { 3267 uint32_t v; 3268 3269 /* Force limit MRRS on RDM/TDM to 2K */ 3270 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3271 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3272 3273 /* 3274 * TX DMA total request limit. B0 hardware is not capable to 3275 * handle more than (8K-MRRS) incoming DMA data. 3276 * Value 24 in 256byte units 3277 */ 3278 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3279 3280 aq_hw_init_tx_path(sc); 3281 aq_hw_init_rx_path(sc); 3282 3283 aq_hw_interrupt_moderation_set(sc); 3284 3285 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3286 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3287 3288 aq_hw_qos_set(sc); 3289 3290 /* Enable interrupt */ 3291 int irqmode; 3292 if (sc->sc_msix) 3293 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3294 else 3295 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3296 3297 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3298 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3299 sc->sc_msix ? 1 : 0); 3300 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3301 3302 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3303 3304 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3305 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3306 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3307 ); 3308 3309 /* link interrupt */ 3310 if (!sc->sc_msix) 3311 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3312 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3313 __BIT(7) | sc->sc_linkstat_irq); 3314 3315 return 0; 3316 } 3317 3318 static int 3319 aq_update_link_status(struct aq_softc *sc) 3320 { 3321 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3322 aq_link_speed_t rate = AQ_LINK_NONE; 3323 aq_link_fc_t fc = AQ_FC_NONE; 3324 aq_link_eee_t eee = AQ_EEE_DISABLE; 3325 unsigned int speed; 3326 int changed = 0; 3327 3328 aq_get_linkmode(sc, &rate, &fc, &eee); 3329 3330 if (sc->sc_link_rate != rate) 3331 changed = 1; 3332 if (sc->sc_link_fc != fc) 3333 changed = 1; 3334 if (sc->sc_link_eee != eee) 3335 changed = 1; 3336 3337 if (changed) { 3338 switch (rate) { 3339 case AQ_LINK_100M: 3340 speed = 100; 3341 break; 3342 case AQ_LINK_1G: 3343 speed = 1000; 3344 break; 3345 case AQ_LINK_2G5: 3346 speed = 2500; 3347 break; 3348 case AQ_LINK_5G: 3349 speed = 5000; 3350 break; 3351 case AQ_LINK_10G: 3352 speed = 10000; 3353 break; 3354 case AQ_LINK_NONE: 3355 default: 3356 speed = 0; 3357 break; 3358 } 3359 3360 if (sc->sc_link_rate == AQ_LINK_NONE) { 3361 /* link DOWN -> UP */ 3362 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3363 speed); 3364 if_link_state_change(ifp, LINK_STATE_UP); 3365 } else if (rate == AQ_LINK_NONE) { 3366 /* link UP -> DOWN */ 3367 device_printf(sc->sc_dev, "link is DOWN\n"); 3368 if_link_state_change(ifp, LINK_STATE_DOWN); 3369 } else { 3370 device_printf(sc->sc_dev, 3371 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3372 speed, fc, eee); 3373 } 3374 3375 sc->sc_link_rate = rate; 3376 sc->sc_link_fc = fc; 3377 sc->sc_link_eee = eee; 3378 3379 /* update interrupt timing according to new link speed */ 3380 aq_hw_interrupt_moderation_set(sc); 3381 } 3382 3383 return changed; 3384 } 3385 3386 #ifdef AQ_EVENT_COUNTERS 3387 static void 3388 aq_update_statistics(struct aq_softc *sc) 3389 { 3390 int prev = sc->sc_statistics_idx; 3391 int cur = prev ^ 1; 3392 3393 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3394 3395 /* 3396 * aq's internal statistics counter is 32bit. 3397 * cauculate delta, and add to evcount 3398 */ 3399 #define ADD_DELTA(cur, prev, name) \ 3400 do { \ 3401 uint32_t n; \ 3402 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3403 sc->sc_statistics[prev].name); \ 3404 if (n != 0) { \ 3405 AQ_EVCNT_ADD(sc, name, n); \ 3406 } \ 3407 } while (/*CONSTCOND*/0); 3408 3409 ADD_DELTA(cur, prev, uprc); 3410 ADD_DELTA(cur, prev, mprc); 3411 ADD_DELTA(cur, prev, bprc); 3412 ADD_DELTA(cur, prev, prc); 3413 ADD_DELTA(cur, prev, erpr); 3414 ADD_DELTA(cur, prev, uptc); 3415 ADD_DELTA(cur, prev, mptc); 3416 ADD_DELTA(cur, prev, bptc); 3417 ADD_DELTA(cur, prev, ptc); 3418 ADD_DELTA(cur, prev, erpt); 3419 ADD_DELTA(cur, prev, mbtc); 3420 ADD_DELTA(cur, prev, bbtc); 3421 ADD_DELTA(cur, prev, mbrc); 3422 ADD_DELTA(cur, prev, bbrc); 3423 ADD_DELTA(cur, prev, ubrc); 3424 ADD_DELTA(cur, prev, ubtc); 3425 ADD_DELTA(cur, prev, dpc); 3426 ADD_DELTA(cur, prev, cprc); 3427 3428 sc->sc_statistics_idx = cur; 3429 } 3430 #endif /* AQ_EVENT_COUNTERS */ 3431 3432 /* allocate and map one DMA block */ 3433 static int 3434 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3435 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3436 { 3437 int nsegs, error; 3438 3439 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3440 1, &nsegs, 0)) != 0) { 3441 aprint_error_dev(sc->sc_dev, 3442 "unable to allocate DMA buffer, error=%d\n", error); 3443 goto fail_alloc; 3444 } 3445 3446 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3447 BUS_DMA_COHERENT)) != 0) { 3448 aprint_error_dev(sc->sc_dev, 3449 "unable to map DMA buffer, error=%d\n", error); 3450 goto fail_map; 3451 } 3452 3453 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3454 0, mapp)) != 0) { 3455 aprint_error_dev(sc->sc_dev, 3456 "unable to create DMA map, error=%d\n", error); 3457 goto fail_create; 3458 } 3459 3460 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3461 0)) != 0) { 3462 aprint_error_dev(sc->sc_dev, 3463 "unable to load DMA map, error=%d\n", error); 3464 goto fail_load; 3465 } 3466 3467 *sizep = size; 3468 return 0; 3469 3470 fail_load: 3471 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3472 *mapp = NULL; 3473 fail_create: 3474 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3475 *addrp = NULL; 3476 fail_map: 3477 bus_dmamem_free(sc->sc_dmat, seg, 1); 3478 memset(seg, 0, sizeof(*seg)); 3479 fail_alloc: 3480 *sizep = 0; 3481 return error; 3482 } 3483 3484 static void 3485 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3486 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3487 { 3488 if (*mapp != NULL) { 3489 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3490 *mapp = NULL; 3491 } 3492 if (*addrp != NULL) { 3493 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3494 *addrp = NULL; 3495 } 3496 if (*sizep != 0) { 3497 bus_dmamem_free(sc->sc_dmat, seg, 1); 3498 memset(seg, 0, sizeof(*seg)); 3499 *sizep = 0; 3500 } 3501 } 3502 3503 static int 3504 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3505 { 3506 int i, error; 3507 3508 /* allocate tx descriptors */ 3509 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3510 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3511 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3512 if (error != 0) 3513 return error; 3514 3515 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3516 3517 /* fill tx ring with dmamap */ 3518 for (i = 0; i < AQ_TXD_NUM; i++) { 3519 #define AQ_MAXDMASIZE (16 * 1024) 3520 #define AQ_NTXSEGS 32 3521 /* XXX: TODO: error check */ 3522 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3523 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3524 } 3525 return 0; 3526 } 3527 3528 static void 3529 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3530 { 3531 int i; 3532 3533 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3534 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3535 3536 for (i = 0; i < AQ_TXD_NUM; i++) { 3537 if (txring->txr_mbufs[i].dmamap != NULL) { 3538 if (txring->txr_mbufs[i].m != NULL) { 3539 bus_dmamap_unload(sc->sc_dmat, 3540 txring->txr_mbufs[i].dmamap); 3541 m_freem(txring->txr_mbufs[i].m); 3542 txring->txr_mbufs[i].m = NULL; 3543 } 3544 bus_dmamap_destroy(sc->sc_dmat, 3545 txring->txr_mbufs[i].dmamap); 3546 txring->txr_mbufs[i].dmamap = NULL; 3547 } 3548 } 3549 } 3550 3551 static int 3552 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3553 { 3554 int i, error; 3555 3556 /* allocate rx descriptors */ 3557 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3558 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3559 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3560 if (error != 0) 3561 return error; 3562 3563 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3564 3565 /* fill rxring with dmamaps */ 3566 for (i = 0; i < AQ_RXD_NUM; i++) { 3567 rxring->rxr_mbufs[i].m = NULL; 3568 /* XXX: TODO: error check */ 3569 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3570 &rxring->rxr_mbufs[i].dmamap); 3571 } 3572 return 0; 3573 } 3574 3575 static void 3576 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3577 { 3578 int i; 3579 3580 /* free all mbufs allocated for RX */ 3581 for (i = 0; i < AQ_RXD_NUM; i++) { 3582 if (rxring->rxr_mbufs[i].m != NULL) { 3583 bus_dmamap_unload(sc->sc_dmat, 3584 rxring->rxr_mbufs[i].dmamap); 3585 m_freem(rxring->rxr_mbufs[i].m); 3586 rxring->rxr_mbufs[i].m = NULL; 3587 } 3588 } 3589 } 3590 3591 static void 3592 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3593 { 3594 int i; 3595 3596 /* free all mbufs and dmamaps */ 3597 aq_rxdrain(sc, rxring); 3598 for (i = 0; i < AQ_RXD_NUM; i++) { 3599 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3600 bus_dmamap_destroy(sc->sc_dmat, 3601 rxring->rxr_mbufs[i].dmamap); 3602 rxring->rxr_mbufs[i].dmamap = NULL; 3603 } 3604 } 3605 3606 /* free RX descriptor */ 3607 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3608 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3609 } 3610 3611 static void 3612 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3613 struct mbuf *m) 3614 { 3615 int error; 3616 3617 /* if mbuf already exists, unload and free */ 3618 if (rxring->rxr_mbufs[idx].m != NULL) { 3619 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3620 m_freem(rxring->rxr_mbufs[idx].m); 3621 rxring->rxr_mbufs[idx].m = NULL; 3622 } 3623 3624 rxring->rxr_mbufs[idx].m = m; 3625 3626 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3627 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3628 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3629 if (error) { 3630 device_printf(sc->sc_dev, 3631 "unable to load rx DMA map %d, error = %d\n", idx, error); 3632 panic("%s: unable to load rx DMA map. error=%d", 3633 __func__, error); 3634 } 3635 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3636 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3637 } 3638 3639 static inline void 3640 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3641 { 3642 /* refill rxdesc, and sync */ 3643 rxring->rxr_rxdesc[idx].read.buf_addr = 3644 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3645 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3646 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3647 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3648 BUS_DMASYNC_PREWRITE); 3649 } 3650 3651 static struct mbuf * 3652 aq_alloc_mbuf(void) 3653 { 3654 struct mbuf *m; 3655 3656 MGETHDR(m, M_DONTWAIT, MT_DATA); 3657 if (m == NULL) 3658 return NULL; 3659 3660 MCLGET(m, M_DONTWAIT); 3661 if ((m->m_flags & M_EXT) == 0) { 3662 m_freem(m); 3663 return NULL; 3664 } 3665 3666 return m; 3667 } 3668 3669 /* allocate mbuf and unload dmamap */ 3670 static int 3671 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3672 { 3673 struct mbuf *m; 3674 3675 m = aq_alloc_mbuf(); 3676 if (m == NULL) 3677 return ENOBUFS; 3678 3679 aq_rxring_setmbuf(sc, rxring, idx, m); 3680 return 0; 3681 } 3682 3683 static int 3684 aq_txrx_rings_alloc(struct aq_softc *sc) 3685 { 3686 int n, error; 3687 3688 for (n = 0; n < sc->sc_nqueues; n++) { 3689 sc->sc_queue[n].sc = sc; 3690 sc->sc_queue[n].txring.txr_sc = sc; 3691 sc->sc_queue[n].txring.txr_index = n; 3692 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3693 IPL_NET); 3694 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3695 if (error != 0) 3696 goto failure; 3697 3698 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3699 if (error != 0) 3700 goto failure; 3701 3702 sc->sc_queue[n].rxring.rxr_sc = sc; 3703 sc->sc_queue[n].rxring.rxr_index = n; 3704 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3705 IPL_NET); 3706 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3707 if (error != 0) 3708 break; 3709 } 3710 3711 failure: 3712 return error; 3713 } 3714 3715 static void 3716 aq_txrx_rings_free(struct aq_softc *sc) 3717 { 3718 int n; 3719 3720 for (n = 0; n < sc->sc_nqueues; n++) { 3721 aq_txring_free(sc, &sc->sc_queue[n].txring); 3722 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3723 3724 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3725 3726 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3727 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3728 } 3729 } 3730 3731 static int 3732 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3733 { 3734 int error = 0; 3735 txring->txr_softint = NULL; 3736 3737 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3738 if (txring->txr_pcq == NULL) { 3739 aprint_error_dev(sc->sc_dev, 3740 "unable to allocate pcq for TXring[%d]\n", 3741 txring->txr_index); 3742 error = ENOMEM; 3743 goto done; 3744 } 3745 3746 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3747 aq_deferred_transmit, txring); 3748 if (txring->txr_softint == NULL) { 3749 aprint_error_dev(sc->sc_dev, 3750 "unable to establish softint for TXring[%d]\n", 3751 txring->txr_index); 3752 error = ENOENT; 3753 } 3754 3755 done: 3756 return error; 3757 } 3758 3759 static void 3760 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3761 { 3762 struct mbuf *m; 3763 3764 if (txring->txr_softint != NULL) { 3765 softint_disestablish(txring->txr_softint); 3766 txring->txr_softint = NULL; 3767 } 3768 3769 if (txring->txr_pcq != NULL) { 3770 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3771 m_freem(m); 3772 pcq_destroy(txring->txr_pcq); 3773 txring->txr_pcq = NULL; 3774 } 3775 } 3776 3777 #if NSYSMON_ENVSYS > 0 3778 static void 3779 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3780 { 3781 struct aq_softc *sc; 3782 uint32_t temp; 3783 int error; 3784 3785 sc = sme->sme_cookie; 3786 3787 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3788 if (error == 0) { 3789 edata->value_cur = temp; 3790 edata->state = ENVSYS_SVALID; 3791 } else { 3792 edata->state = ENVSYS_SINVALID; 3793 } 3794 } 3795 #endif 3796 3797 static void 3798 aq_tick(void *arg) 3799 { 3800 struct aq_softc *sc = arg; 3801 3802 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3803 sc->sc_detect_linkstat = false; 3804 aq_update_link_status(sc); 3805 } 3806 3807 #ifdef AQ_EVENT_COUNTERS 3808 if (sc->sc_poll_statistics) 3809 aq_update_statistics(sc); 3810 #endif 3811 3812 if (sc->sc_poll_linkstat 3813 #ifdef AQ_EVENT_COUNTERS 3814 || sc->sc_poll_statistics 3815 #endif 3816 ) { 3817 callout_schedule(&sc->sc_tick_ch, hz); 3818 } 3819 } 3820 3821 /* interrupt enable/disable */ 3822 static void 3823 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3824 { 3825 uint32_t imask = 0; 3826 int i; 3827 3828 if (txrx) { 3829 for (i = 0; i < sc->sc_nqueues; i++) { 3830 imask |= __BIT(sc->sc_tx_irq[i]); 3831 imask |= __BIT(sc->sc_rx_irq[i]); 3832 } 3833 } 3834 3835 if (link) 3836 imask |= __BIT(sc->sc_linkstat_irq); 3837 3838 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3839 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3840 } 3841 3842 static int 3843 aq_legacy_intr(void *arg) 3844 { 3845 struct aq_softc *sc = arg; 3846 uint32_t status; 3847 int nintr = 0; 3848 3849 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3850 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3851 3852 if (status & __BIT(sc->sc_linkstat_irq)) { 3853 sc->sc_detect_linkstat = true; 3854 callout_schedule(&sc->sc_tick_ch, 0); 3855 nintr++; 3856 } 3857 3858 if (status & __BIT(sc->sc_rx_irq[0])) { 3859 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3860 } 3861 3862 if (status & __BIT(sc->sc_tx_irq[0])) { 3863 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3864 } 3865 3866 return nintr; 3867 } 3868 3869 static int 3870 aq_txrx_intr(void *arg) 3871 { 3872 struct aq_queue *queue = arg; 3873 struct aq_softc *sc = queue->sc; 3874 struct aq_txring *txring = &queue->txring; 3875 struct aq_rxring *rxring = &queue->rxring; 3876 uint32_t status; 3877 int nintr = 0; 3878 int txringidx, rxringidx, txirq, rxirq; 3879 3880 txringidx = txring->txr_index; 3881 rxringidx = rxring->rxr_index; 3882 txirq = sc->sc_tx_irq[txringidx]; 3883 rxirq = sc->sc_rx_irq[rxringidx]; 3884 3885 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3886 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3887 /* stray interrupt? */ 3888 return 0; 3889 } 3890 3891 nintr += aq_rx_intr(rxring); 3892 nintr += aq_tx_intr(txring); 3893 3894 return nintr; 3895 } 3896 3897 static int 3898 aq_link_intr(void *arg) 3899 { 3900 struct aq_softc *sc = arg; 3901 uint32_t status; 3902 int nintr = 0; 3903 3904 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3905 if (status & __BIT(sc->sc_linkstat_irq)) { 3906 sc->sc_detect_linkstat = true; 3907 callout_schedule(&sc->sc_tick_ch, 0); 3908 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3909 __BIT(sc->sc_linkstat_irq)); 3910 nintr++; 3911 } 3912 3913 return nintr; 3914 } 3915 3916 static void 3917 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3918 { 3919 const int ringidx = txring->txr_index; 3920 int i; 3921 3922 mutex_enter(&txring->txr_mutex); 3923 3924 txring->txr_prodidx = 0; 3925 txring->txr_considx = 0; 3926 txring->txr_nfree = AQ_TXD_NUM; 3927 txring->txr_active = false; 3928 3929 /* free mbufs untransmitted */ 3930 for (i = 0; i < AQ_TXD_NUM; i++) { 3931 if (txring->txr_mbufs[i].m != NULL) { 3932 m_freem(txring->txr_mbufs[i].m); 3933 txring->txr_mbufs[i].m = NULL; 3934 } 3935 } 3936 3937 /* disable DMA */ 3938 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3939 3940 if (start) { 3941 /* TX descriptor physical address */ 3942 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3943 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3944 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3945 (uint32_t)((uint64_t)paddr >> 32)); 3946 3947 /* TX descriptor size */ 3948 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3949 AQ_TXD_NUM / 8); 3950 3951 /* reload TAIL pointer */ 3952 txring->txr_prodidx = txring->txr_considx = 3953 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3954 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3955 3956 /* Mapping interrupt vector */ 3957 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3958 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3959 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3960 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3961 3962 /* enable DMA */ 3963 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3964 TX_DMA_DESC_EN, 1); 3965 3966 const int cpuid = 0; /* XXX? */ 3967 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3968 TDM_DCAD_CPUID, cpuid); 3969 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3970 TDM_DCAD_CPUID_EN, 0); 3971 3972 txring->txr_active = true; 3973 } 3974 3975 mutex_exit(&txring->txr_mutex); 3976 } 3977 3978 static int 3979 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 3980 { 3981 const int ringidx = rxring->rxr_index; 3982 int i; 3983 int error = 0; 3984 3985 mutex_enter(&rxring->rxr_mutex); 3986 rxring->rxr_active = false; 3987 3988 /* disable DMA */ 3989 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 3990 3991 /* free all RX mbufs */ 3992 aq_rxdrain(sc, rxring); 3993 3994 if (start) { 3995 for (i = 0; i < AQ_RXD_NUM; i++) { 3996 error = aq_rxring_add(sc, rxring, i); 3997 if (error != 0) { 3998 aq_rxdrain(sc, rxring); 3999 return error; 4000 } 4001 aq_rxring_reset_desc(sc, rxring, i); 4002 } 4003 4004 /* RX descriptor physical address */ 4005 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4006 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4007 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4008 (uint32_t)((uint64_t)paddr >> 32)); 4009 4010 /* RX descriptor size */ 4011 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4012 AQ_RXD_NUM / 8); 4013 4014 /* maximum receive frame size */ 4015 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4016 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4017 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4018 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4019 4020 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4021 RX_DMA_DESC_HEADER_SPLIT, 0); 4022 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4023 RX_DMA_DESC_VLAN_STRIP, 4024 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4025 1 : 0); 4026 4027 /* 4028 * reload TAIL pointer, and update readidx 4029 * (HEAD pointer cannot write) 4030 */ 4031 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4032 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4033 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4034 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4035 4036 /* Rx ring set mode */ 4037 4038 /* Mapping interrupt vector */ 4039 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4040 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4041 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4042 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4043 4044 const int cpuid = 0; /* XXX? */ 4045 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4046 RX_DMA_DCAD_CPUID, cpuid); 4047 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4048 RX_DMA_DCAD_DESC_EN, 0); 4049 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4050 RX_DMA_DCAD_HEADER_EN, 0); 4051 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4052 RX_DMA_DCAD_PAYLOAD_EN, 0); 4053 4054 /* enable DMA. start receiving */ 4055 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4056 RX_DMA_DESC_EN, 1); 4057 4058 rxring->rxr_active = true; 4059 } 4060 4061 mutex_exit(&rxring->rxr_mutex); 4062 return error; 4063 } 4064 4065 #define TXRING_NEXTIDX(idx) \ 4066 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4067 #define RXRING_NEXTIDX(idx) \ 4068 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4069 4070 static int 4071 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4072 { 4073 bus_dmamap_t map; 4074 struct mbuf *m = *mp; 4075 uint32_t ctl1, ctl1_ctx, ctl2; 4076 int idx, i, error; 4077 4078 idx = txring->txr_prodidx; 4079 map = txring->txr_mbufs[idx].dmamap; 4080 4081 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4082 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4083 if (error == EFBIG) { 4084 struct mbuf *n; 4085 n = m_defrag(m, M_DONTWAIT); 4086 if (n == NULL) 4087 return EFBIG; 4088 /* m_defrag() preserve m */ 4089 KASSERT(n == m); 4090 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4091 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4092 } 4093 if (error != 0) 4094 return error; 4095 4096 /* 4097 * check spaces of free descriptors. 4098 * +1 is additional descriptor for context (vlan, etc,.) 4099 */ 4100 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4101 device_printf(sc->sc_dev, 4102 "TX: not enough descriptors left %d for %d segs\n", 4103 txring->txr_nfree, map->dm_nsegs + 1); 4104 bus_dmamap_unload(sc->sc_dmat, map); 4105 return ENOBUFS; 4106 } 4107 4108 /* sync dma for mbuf */ 4109 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4110 BUS_DMASYNC_PREWRITE); 4111 4112 ctl1_ctx = 0; 4113 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4114 4115 if (vlan_has_tag(m)) { 4116 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4117 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4118 4119 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4120 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4121 4122 /* fill context descriptor and forward index */ 4123 txring->txr_txdesc[idx].buf_addr = 0; 4124 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4125 txring->txr_txdesc[idx].ctl2 = 0; 4126 4127 idx = TXRING_NEXTIDX(idx); 4128 txring->txr_nfree--; 4129 } 4130 4131 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4132 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4133 if (m->m_pkthdr.csum_flags & 4134 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4135 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4136 } 4137 4138 /* fill descriptor(s) */ 4139 for (i = 0; i < map->dm_nsegs; i++) { 4140 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4141 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4142 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4143 4144 if (i == 0) { 4145 /* remember mbuf of these descriptors */ 4146 txring->txr_mbufs[idx].m = m; 4147 } else { 4148 txring->txr_mbufs[idx].m = NULL; 4149 } 4150 4151 if (i == map->dm_nsegs - 1) { 4152 /* last segment, mark an EndOfPacket, and cause intr */ 4153 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4154 } 4155 4156 txring->txr_txdesc[idx].buf_addr = 4157 htole64(map->dm_segs[i].ds_addr); 4158 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4159 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4160 4161 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4162 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4163 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4164 4165 idx = TXRING_NEXTIDX(idx); 4166 txring->txr_nfree--; 4167 } 4168 4169 txring->txr_prodidx = idx; 4170 4171 return 0; 4172 } 4173 4174 static int 4175 aq_tx_intr(void *arg) 4176 { 4177 struct aq_txring *txring = arg; 4178 struct aq_softc *sc = txring->txr_sc; 4179 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4180 struct mbuf *m; 4181 const int ringidx = txring->txr_index; 4182 unsigned int idx, hw_head, n = 0; 4183 4184 mutex_enter(&txring->txr_mutex); 4185 4186 if (!txring->txr_active) 4187 goto tx_intr_done; 4188 4189 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4190 TX_DMA_DESC_HEAD_PTR); 4191 if (hw_head == txring->txr_considx) { 4192 goto tx_intr_done; 4193 } 4194 4195 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4196 4197 for (idx = txring->txr_considx; idx != hw_head; 4198 idx = TXRING_NEXTIDX(idx), n++) { 4199 4200 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4201 bus_dmamap_unload(sc->sc_dmat, 4202 txring->txr_mbufs[idx].dmamap); 4203 4204 if_statinc_ref(nsr, if_opackets); 4205 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4206 if (m->m_flags & M_MCAST) 4207 if_statinc_ref(nsr, if_omcasts); 4208 4209 m_freem(m); 4210 txring->txr_mbufs[idx].m = NULL; 4211 } 4212 4213 txring->txr_nfree++; 4214 } 4215 txring->txr_considx = idx; 4216 4217 IF_STAT_PUTREF(ifp); 4218 4219 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4220 ifp->if_flags &= ~IFF_OACTIVE; 4221 4222 /* no more pending TX packet, cancel watchdog */ 4223 if (txring->txr_nfree >= AQ_TXD_NUM) 4224 ifp->if_timer = 0; 4225 4226 tx_intr_done: 4227 mutex_exit(&txring->txr_mutex); 4228 4229 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4230 return n; 4231 } 4232 4233 static int 4234 aq_rx_intr(void *arg) 4235 { 4236 struct aq_rxring *rxring = arg; 4237 struct aq_softc *sc = rxring->rxr_sc; 4238 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4239 const int ringidx = rxring->rxr_index; 4240 aq_rx_desc_t *rxd; 4241 struct mbuf *m, *m0, *mprev, *new_m; 4242 uint32_t rxd_type, rxd_hash __unused; 4243 uint16_t rxd_status, rxd_pktlen; 4244 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4245 unsigned int idx, n = 0; 4246 4247 mutex_enter(&rxring->rxr_mutex); 4248 4249 if (!rxring->rxr_active) 4250 goto rx_intr_done; 4251 4252 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4253 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4254 goto rx_intr_done; 4255 } 4256 4257 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4258 4259 m0 = mprev = NULL; 4260 for (idx = rxring->rxr_readidx; 4261 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4262 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4263 4264 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4265 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4266 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4267 4268 rxd = &rxring->rxr_rxdesc[idx]; 4269 rxd_status = le16toh(rxd->wb.status); 4270 4271 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4272 break; /* not yet done */ 4273 4274 rxd_type = le32toh(rxd->wb.type); 4275 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4276 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4277 rxd_hash = le32toh(rxd->wb.rss_hash); 4278 rxd_vlan = le16toh(rxd->wb.vlan); 4279 4280 if ((rxd_status & RXDESC_STATUS_MACERR) || 4281 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4282 if_statinc_ref(nsr, if_ierrors); 4283 goto rx_next; 4284 } 4285 4286 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4287 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4288 BUS_DMASYNC_POSTREAD); 4289 m = rxring->rxr_mbufs[idx].m; 4290 4291 new_m = aq_alloc_mbuf(); 4292 if (new_m == NULL) { 4293 /* 4294 * cannot allocate new mbuf. 4295 * discard this packet, and reuse mbuf for next. 4296 */ 4297 if_statinc_ref(nsr, if_iqdrops); 4298 goto rx_next; 4299 } 4300 rxring->rxr_mbufs[idx].m = NULL; 4301 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4302 4303 if (m0 == NULL) { 4304 m0 = m; 4305 } else { 4306 if (m->m_flags & M_PKTHDR) 4307 m_remove_pkthdr(m); 4308 mprev->m_next = m; 4309 } 4310 mprev = m; 4311 4312 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4313 m->m_len = MCLBYTES; 4314 } else { 4315 /* last buffer */ 4316 m->m_len = rxd_pktlen % MCLBYTES; 4317 m0->m_pkthdr.len = rxd_pktlen; 4318 /* VLAN offloading */ 4319 if ((sc->sc_ethercom.ec_capenable & 4320 ETHERCAP_VLAN_HWTAGGING) && 4321 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4322 __SHIFTOUT(rxd_type, 4323 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4324 vlan_set_tag(m0, rxd_vlan); 4325 } 4326 4327 /* Checksum offloading */ 4328 unsigned int pkttype_eth = 4329 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4330 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4331 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4332 __SHIFTOUT(rxd_type, 4333 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4334 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4335 if (__SHIFTOUT(rxd_status, 4336 RXDESC_STATUS_IPV4_CSUM_NG)) 4337 m0->m_pkthdr.csum_flags |= 4338 M_CSUM_IPv4_BAD; 4339 } 4340 #if notyet 4341 /* 4342 * XXX: aq always marks BAD for fragmented packet. 4343 * we should peek L3 header, and ignore cksum flags 4344 * if the packet is fragmented. 4345 */ 4346 if (__SHIFTOUT(rxd_type, 4347 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4348 bool checked = false; 4349 unsigned int pkttype_proto = 4350 __SHIFTOUT(rxd_type, 4351 RXDESC_TYPE_PKTTYPE_PROTO); 4352 4353 if (pkttype_proto == 4354 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4355 if ((pkttype_eth == 4356 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4357 (ifp->if_capabilities & 4358 IFCAP_CSUM_TCPv4_Rx)) { 4359 m0->m_pkthdr.csum_flags |= 4360 M_CSUM_TCPv4; 4361 checked = true; 4362 } else if ((pkttype_eth == 4363 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4364 (ifp->if_capabilities & 4365 IFCAP_CSUM_TCPv6_Rx)) { 4366 m0->m_pkthdr.csum_flags |= 4367 M_CSUM_TCPv6; 4368 checked = true; 4369 } 4370 } else if (pkttype_proto == 4371 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4372 if ((pkttype_eth == 4373 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4374 (ifp->if_capabilities & 4375 IFCAP_CSUM_UDPv4_Rx)) { 4376 m0->m_pkthdr.csum_flags |= 4377 M_CSUM_UDPv4; 4378 checked = true; 4379 } else if ((pkttype_eth == 4380 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4381 (ifp->if_capabilities & 4382 IFCAP_CSUM_UDPv6_Rx)) { 4383 m0->m_pkthdr.csum_flags |= 4384 M_CSUM_UDPv6; 4385 checked = true; 4386 } 4387 } 4388 if (checked && 4389 (__SHIFTOUT(rxd_status, 4390 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4391 !__SHIFTOUT(rxd_status, 4392 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4393 m0->m_pkthdr.csum_flags |= 4394 M_CSUM_TCP_UDP_BAD; 4395 } 4396 } 4397 #endif 4398 m_set_rcvif(m0, ifp); 4399 if_statinc_ref(nsr, if_ipackets); 4400 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4401 if_percpuq_enqueue(ifp->if_percpuq, m0); 4402 m0 = mprev = NULL; 4403 } 4404 4405 rx_next: 4406 aq_rxring_reset_desc(sc, rxring, idx); 4407 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4408 } 4409 rxring->rxr_readidx = idx; 4410 4411 IF_STAT_PUTREF(ifp); 4412 4413 rx_intr_done: 4414 mutex_exit(&rxring->rxr_mutex); 4415 4416 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4417 return n; 4418 } 4419 4420 static int 4421 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4422 { 4423 struct ifnet *ifp = &ec->ec_if; 4424 struct aq_softc *sc = ifp->if_softc; 4425 4426 aq_set_vlan_filters(sc); 4427 return 0; 4428 } 4429 4430 static int 4431 aq_ifflags_cb(struct ethercom *ec) 4432 { 4433 struct ifnet *ifp = &ec->ec_if; 4434 struct aq_softc *sc = ifp->if_softc; 4435 int i, ecchange, error = 0; 4436 unsigned short iffchange; 4437 4438 AQ_LOCK(sc); 4439 4440 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4441 if ((iffchange & IFF_PROMISC) != 0) 4442 error = aq_set_filter(sc); 4443 4444 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4445 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4446 for (i = 0; i < AQ_RINGS_NUM; i++) { 4447 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4448 RX_DMA_DESC_VLAN_STRIP, 4449 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4450 1 : 0); 4451 } 4452 } 4453 4454 /* vlan configuration depends on also interface promiscuous mode */ 4455 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4456 aq_set_vlan_filters(sc); 4457 4458 sc->sc_ec_capenable = ec->ec_capenable; 4459 sc->sc_if_flags = ifp->if_flags; 4460 4461 AQ_UNLOCK(sc); 4462 4463 return error; 4464 } 4465 4466 static int 4467 aq_init(struct ifnet *ifp) 4468 { 4469 struct aq_softc *sc = ifp->if_softc; 4470 int i, error = 0; 4471 4472 AQ_LOCK(sc); 4473 4474 aq_set_vlan_filters(sc); 4475 aq_set_capability(sc); 4476 4477 for (i = 0; i < sc->sc_nqueues; i++) { 4478 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4479 } 4480 4481 /* invalidate RX descriptor cache */ 4482 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4483 AQ_READ_REG_BIT(sc, 4484 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4485 4486 /* start RX */ 4487 for (i = 0; i < sc->sc_nqueues; i++) { 4488 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4489 if (error != 0) { 4490 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4491 __func__); 4492 goto aq_init_failure; 4493 } 4494 } 4495 aq_init_rss(sc); 4496 aq_hw_l3_filter_set(sc); 4497 4498 /* need to start callout? */ 4499 if (sc->sc_poll_linkstat 4500 #ifdef AQ_EVENT_COUNTERS 4501 || sc->sc_poll_statistics 4502 #endif 4503 ) { 4504 callout_schedule(&sc->sc_tick_ch, hz); 4505 } 4506 4507 /* ready */ 4508 ifp->if_flags |= IFF_RUNNING; 4509 ifp->if_flags &= ~IFF_OACTIVE; 4510 4511 /* start TX and RX */ 4512 aq_enable_intr(sc, true, true); 4513 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4514 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4515 4516 aq_init_failure: 4517 sc->sc_if_flags = ifp->if_flags; 4518 4519 AQ_UNLOCK(sc); 4520 4521 return error; 4522 } 4523 4524 static void 4525 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4526 struct aq_txring *txring, bool is_transmit) 4527 { 4528 struct mbuf *m; 4529 int npkt, error; 4530 4531 if ((ifp->if_flags & IFF_RUNNING) == 0) 4532 return; 4533 4534 for (npkt = 0; ; npkt++) { 4535 if (is_transmit) 4536 m = pcq_peek(txring->txr_pcq); 4537 else 4538 IFQ_POLL(&ifp->if_snd, m); 4539 4540 if (m == NULL) 4541 break; 4542 4543 if (txring->txr_nfree < AQ_TXD_MIN) 4544 break; 4545 4546 if (is_transmit) 4547 pcq_get(txring->txr_pcq); 4548 else 4549 IFQ_DEQUEUE(&ifp->if_snd, m); 4550 4551 error = aq_encap_txring(sc, txring, &m); 4552 if (error != 0) { 4553 /* too many mbuf chains? or not enough descriptors? */ 4554 m_freem(m); 4555 if_statinc(ifp, if_oerrors); 4556 if (txring->txr_index == 0 && error == ENOBUFS) 4557 ifp->if_flags |= IFF_OACTIVE; 4558 break; 4559 } 4560 4561 /* update tail ptr */ 4562 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4563 txring->txr_prodidx); 4564 4565 /* Pass the packet to any BPF listeners */ 4566 bpf_mtap(ifp, m, BPF_D_OUT); 4567 } 4568 4569 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4570 ifp->if_flags |= IFF_OACTIVE; 4571 4572 if (npkt) 4573 ifp->if_timer = 5; 4574 } 4575 4576 static void 4577 aq_start(struct ifnet *ifp) 4578 { 4579 struct aq_softc *sc; 4580 struct aq_txring *txring; 4581 4582 sc = ifp->if_softc; 4583 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4584 4585 mutex_enter(&txring->txr_mutex); 4586 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4587 aq_send_common_locked(ifp, sc, txring, false); 4588 mutex_exit(&txring->txr_mutex); 4589 } 4590 4591 static inline unsigned int 4592 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4593 { 4594 return (cpu_index(curcpu()) % sc->sc_nqueues); 4595 } 4596 4597 static int 4598 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4599 { 4600 struct aq_softc *sc = ifp->if_softc; 4601 struct aq_txring *txring; 4602 int ringidx; 4603 4604 ringidx = aq_select_txqueue(sc, m); 4605 txring = &sc->sc_queue[ringidx].txring; 4606 4607 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4608 m_freem(m); 4609 return ENOBUFS; 4610 } 4611 4612 if (mutex_tryenter(&txring->txr_mutex)) { 4613 aq_send_common_locked(ifp, sc, txring, true); 4614 mutex_exit(&txring->txr_mutex); 4615 } else { 4616 softint_schedule(txring->txr_softint); 4617 } 4618 return 0; 4619 } 4620 4621 static void 4622 aq_deferred_transmit(void *arg) 4623 { 4624 struct aq_txring *txring = arg; 4625 struct aq_softc *sc = txring->txr_sc; 4626 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4627 4628 mutex_enter(&txring->txr_mutex); 4629 if (pcq_peek(txring->txr_pcq) != NULL) 4630 aq_send_common_locked(ifp, sc, txring, true); 4631 mutex_exit(&txring->txr_mutex); 4632 } 4633 4634 static void 4635 aq_stop(struct ifnet *ifp, int disable) 4636 { 4637 struct aq_softc *sc = ifp->if_softc; 4638 int i; 4639 4640 AQ_LOCK(sc); 4641 4642 ifp->if_timer = 0; 4643 4644 /* disable tx/rx interrupts */ 4645 aq_enable_intr(sc, true, false); 4646 4647 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4648 for (i = 0; i < sc->sc_nqueues; i++) { 4649 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4650 } 4651 4652 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4653 for (i = 0; i < sc->sc_nqueues; i++) { 4654 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4655 } 4656 4657 /* invalidate RX descriptor cache */ 4658 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4659 AQ_READ_REG_BIT(sc, 4660 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4661 4662 ifp->if_timer = 0; 4663 4664 if (!disable) { 4665 /* when pmf stop, disable link status intr and callout */ 4666 aq_enable_intr(sc, false, false); 4667 callout_stop(&sc->sc_tick_ch); 4668 } 4669 4670 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4671 4672 AQ_UNLOCK(sc); 4673 } 4674 4675 static void 4676 aq_watchdog(struct ifnet *ifp) 4677 { 4678 struct aq_softc *sc = ifp->if_softc; 4679 struct aq_txring *txring; 4680 int n, head, tail; 4681 4682 AQ_LOCK(sc); 4683 4684 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4685 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4686 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4687 4688 for (n = 0; n < sc->sc_nqueues; n++) { 4689 txring = &sc->sc_queue[n].txring; 4690 head = AQ_READ_REG_BIT(sc, 4691 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4692 TX_DMA_DESC_HEAD_PTR), 4693 tail = AQ_READ_REG(sc, 4694 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4695 4696 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4697 __func__, txring->txr_index, head, tail); 4698 4699 aq_tx_intr(txring); 4700 } 4701 4702 AQ_UNLOCK(sc); 4703 4704 aq_init(ifp); 4705 } 4706 4707 static int 4708 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4709 { 4710 struct aq_softc *sc __unused; 4711 struct ifreq *ifr __unused; 4712 int error, s; 4713 4714 sc = (struct aq_softc *)ifp->if_softc; 4715 ifr = (struct ifreq *)data; 4716 error = 0; 4717 4718 s = splnet(); 4719 error = ether_ioctl(ifp, cmd, data); 4720 splx(s); 4721 4722 if (error != ENETRESET) 4723 return error; 4724 4725 switch (cmd) { 4726 case SIOCSIFCAP: 4727 error = aq_set_capability(sc); 4728 break; 4729 case SIOCADDMULTI: 4730 case SIOCDELMULTI: 4731 if ((ifp->if_flags & IFF_RUNNING) == 0) 4732 break; 4733 4734 /* 4735 * Multicast list has changed; set the hardware filter 4736 * accordingly. 4737 */ 4738 error = aq_set_filter(sc); 4739 break; 4740 } 4741 4742 return error; 4743 } 4744 4745 4746 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4747 4748 #ifdef _MODULE 4749 #include "ioconf.c" 4750 #endif 4751 4752 static int 4753 if_aq_modcmd(modcmd_t cmd, void *opaque) 4754 { 4755 int error = 0; 4756 4757 switch (cmd) { 4758 case MODULE_CMD_INIT: 4759 #ifdef _MODULE 4760 error = config_init_component(cfdriver_ioconf_if_aq, 4761 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4762 #endif 4763 return error; 4764 case MODULE_CMD_FINI: 4765 #ifdef _MODULE 4766 error = config_fini_component(cfdriver_ioconf_if_aq, 4767 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4768 #endif 4769 return error; 4770 default: 4771 return ENOTTY; 4772 } 4773 } 4774