xref: /netbsd-src/sys/dev/pci/if_aq.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: if_aq.c,v 1.11 2020/02/15 12:20:35 ryo Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.11 2020/02/15 12:20:35 ryo Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 /*
120  * TERMINOLOGY
121  *	MPI = MAC PHY INTERFACE?
122  *	RPO = RX Protocol Offloading
123  *	TPO = TX Protocol Offloading
124  *	RPF = RX Packet Filter
125  *	TPB = TX Packet buffer
126  *	RPB = RX Packet buffer
127  */
128 
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG			0x0000
131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
133 
134 #define AQ_FW_VERSION_REG			0x0018
135 #define AQ_HW_REVISION_REG			0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
137 
138 #define AQ_FW_MBOX_CMD_REG			0x0200
139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
141 #define AQ_FW_MBOX_ADDR_REG			0x0208
142 #define AQ_FW_MBOX_VAL_REG			0x020c
143 
144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
145 #define FW2X_LED_REG				0x031c
146 #define  FW2X_LED_DEFAULT			0x00000000
147 #define  FW2X_LED_NONE				0x0000003f
148 #define  FW2X_LINKLED				__BITS(0,1)
149 #define   FW2X_LINKLED_ACTIVE			0
150 #define   FW2X_LINKLED_ON			1
151 #define   FW2X_LINKLED_BLINK			2
152 #define   FW2X_LINKLED_OFF			3
153 #define  FW2X_STATUSLED				__BITS(2,5)
154 #define   FW2X_STATUSLED_ORANGE			0
155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
156 #define   FW2X_STATUSLED_OFF			3
157 #define   FW2X_STATUSLED_GREEN			4
158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
159 #define   FW2X_STATUSLED_GREEN_BLINK		10
160 
161 #define FW_MPI_MBOX_ADDR_REG			0x0360
162 #define FW1X_MPI_INIT1_REG			0x0364
163 #define FW1X_MPI_CONTROL_REG			0x0368
164 #define FW1X_MPI_STATE_REG			0x036c
165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
169 #define FW1X_MPI_INIT2_REG			0x0370
170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
171 
172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG			0x0388
176 #define  RBL_STATUS_DEAD			0x0000dead
177 #define  RBL_STATUS_SUCCESS			0x0000abba
178 #define  RBL_STATUS_FAILURE			0x00000bad
179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
180 
181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
183 
184 #define AQ_FW_GLB_CTL2_REG			0x0404
185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
186 
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
189 
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
191 
192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
193 
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG			0x2090
200 
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
209 
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
212 #define  AQ_B0_ERR_INT				8U
213 
214 #define AQ_INTR_CTRL_REG			0x2300
215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
224 
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
226 
227 #define FW_MPI_RESETCTRL_REG			0x4000
228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
229 
230 #define RX_SYSCONTROL_REG			0x5000
231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
234 
235 #define RX_TCP_RSS_HASH_REG			0x5040
236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
238 
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD			0
241 #define RPF_ACTION_HOST				1
242 #define RPF_ACTION_MANAGEMENT			2
243 #define RPF_ACTION_HOST_MANAGEMENT		3
244 #define RPF_ACTION_WOL				4
245 
246 #define RPF_L2BC_REG				0x5100
247 #define  RPF_L2BC_EN				__BIT(0)
248 #define  RPF_L2BC_PROMISC			__BIT(3)
249 #define  RPF_L2BC_ACTION			__BITS(12,14)
250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
251 
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
257 #define  RPF_L2UC_MSW_EN			__BIT(31)
258 #define AQ_HW_MAC_OWN			0	/* index of own address */
259 #define AQ_HW_MAC_NUM			34
260 
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
266 
267 #define RPF_VLAN_MODE_REG			0x5280
268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
271 
272 #define RPF_VLAN_TPID_REG			0x5284
273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
275 
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS			16
278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
284 
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
295 
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
320 
321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
323 
324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
326 
327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
332 
333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
336 
337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
339 
340 #define RPO_HWCSUM_REG				0x5580
341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
343 
344 #define RPO_LRO_ENABLE_REG			0x5590
345 
346 #define RPO_LRO_CONF_REG			0x5594
347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG			0x5598
352 
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG			0x5620
357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
362 
363 #define RPB_RPF_RX_REG				0x5700
364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
367 
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
372 #define  RPB_RXB_XOFF_EN			__BIT(31)
373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
375 
376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
378 
379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
382 
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
388 
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
394 #define  RX_DMA_DESC_RESET			__BIT(25)
395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
397 #define  RX_DMA_DESC_EN				__BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
404 
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
411 
412 #define RX_DMA_DCA_REG				0x6180
413 #define  RX_DMA_DCA_EN				__BIT(31)
414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
415 
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
421 
422 #define TX_SYSCONTROL_REG			0x7000
423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
426 
427 #define TX_TPO2_REG				0x7040
428 #define  TX_TPO2_EN				__BIT(16)
429 
430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
432 #define TPS_DESC_RATE_REG			0x7310
433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
439 
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
448 
449 #define AQ_HW_TXBUF_MAX		160
450 #define AQ_HW_RXBUF_MAX		320
451 
452 #define TPO_HWCSUM_REG				0x7800
453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
455 
456 #define TDM_LSO_EN_REG				0x7810
457 
458 #define THM_LSO_TCP_FLAG1_REG			0x7820
459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG			0x7824
462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
463 
464 #define TPB_TX_BUF_REG				0x7900
465 #define  TPB_TX_BUF_EN				__BIT(0)
466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
468 
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
475 
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
480 
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
486 #define  TX_DMA_DESC_EN				__BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
492 
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
495 #define  TDM_DCAD_CPUID				__BITS(7,0)
496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
497 
498 #define TDM_DCA_REG				0x8480
499 #define  TDM_DCA_EN				__BIT(31)
500 #define  TDM_DCA_MODE				__BITS(3,0)
501 
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
507 
508 #define FW1X_CTRL_10G				__BIT(0)
509 #define FW1X_CTRL_5G				__BIT(1)
510 #define FW1X_CTRL_5GSR				__BIT(2)
511 #define FW1X_CTRL_2G5				__BIT(3)
512 #define FW1X_CTRL_1G				__BIT(4)
513 #define FW1X_CTRL_100M				__BIT(5)
514 
515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
527 #define FW2X_CTRL_RESERVED1			__BIT(32)
528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
529 #define FW2X_CTRL_RESERVED2			__BIT(34)
530 #define FW2X_CTRL_PAUSE				__BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
533 #define FW2X_CTRL_RESERVED3			__BIT(38)
534 #define FW2X_CTRL_RESERVED4			__BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
539 #define FW2X_CTRL_RESERVED5			__BIT(44)
540 #define FW2X_CTRL_RESERVED6			__BIT(45)
541 #define FW2X_CTRL_RESERVED7			__BIT(46)
542 #define FW2X_CTRL_RESERVED8			__BIT(47)
543 #define FW2X_CTRL_RESERVED9			__BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
551 #define FW2X_CTRL_WOL				__BIT(56)
552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
557 #define FW2X_CTRL_STATISTICS			__BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
559 
560 #define FW2X_SNPRINTB			\
561 	"\177\020"			\
562 	"b\x23" "PAUSE\0"		\
563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
564 	"b\x31" "CABLE-DIAG\0"		\
565 	"b\x32" "TEMPERATURE\0"		\
566 	"b\x33" "DOWNSHIFT\0"		\
567 	"b\x34" "PTP-AVB\0"		\
568 	"b\x35" "MEDIA-DETECT\0"	\
569 	"b\x36" "LINK-DROP\0"		\
570 	"b\x37" "SLEEP-PROXY\0"		\
571 	"b\x38" "WOL\0"			\
572 	"b\x39" "MAC-STOP\0"		\
573 	"b\x3a" "EXT-LOOPBACK\0"	\
574 	"b\x3b" "INT-LOOPBACK\0"	\
575 	"b\x3c" "EFUSE-AGENT\0"		\
576 	"b\x3d" "WOL-TIMER\0"		\
577 	"b\x3e" "STATISTICS\0"		\
578 	"b\x3f" "TRANSACTION-ID\0"	\
579 	"\0"
580 
581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK		\
587 	(FW2X_CTRL_RATE_100M |		\
588 	 FW2X_CTRL_RATE_1G |		\
589 	 FW2X_CTRL_RATE_2G5 |		\
590 	 FW2X_CTRL_RATE_5G |		\
591 	 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK		\
593 	(FW2X_CTRL_10BASET_EEE |	\
594 	 FW2X_CTRL_100BASETX_EEE |	\
595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
598 	 FW2X_CTRL_10GBASET_FD_EEE)
599 
600 typedef enum aq_fw_bootloader_mode {
601 	FW_BOOT_MODE_UNKNOWN = 0,
602 	FW_BOOT_MODE_FLB,
603 	FW_BOOT_MODE_RBL_FLASH,
604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606 
607 #define AQ_WRITE_REG(sc, reg, val)				\
608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609 
610 #define AQ_READ_REG(sc, reg)					\
611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612 
613 #define AQ_READ64_REG(sc, reg)					\
614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616 
617 #define AQ_WRITE64_REG(sc, reg, val)				\
618 	do {							\
619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 	} while (/* CONSTCOND */0)
622 
623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625 
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
627 	do {							\
628 		uint32_t _v;					\
629 		_v = AQ_READ_REG((sc), (reg));			\
630 		_v &= ~(mask);					\
631 		if ((val) != 0)					\
632 			_v |= __SHIFTIN((val), (mask));		\
633 		AQ_WRITE_REG((sc), (reg), _v);			\
634 	} while (/* CONSTCOND */ 0)
635 
636 #define WAIT_FOR(expr, us, n, errp)				\
637 	do {							\
638 		unsigned int _n;				\
639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
640 			delay((us));				\
641 		}						\
642 		if ((errp != NULL)) {				\
643 			if (_n == 0)				\
644 				*(errp) = ETIMEDOUT;		\
645 			else					\
646 				*(errp) = 0;			\
647 		}						\
648 	} while (/* CONSTCOND */ 0)
649 
650 #define msec_delay(x)	DELAY(1000 * (x))
651 
652 typedef struct aq_mailbox_header {
653 	uint32_t version;
654 	uint32_t transaction_id;
655 	int32_t error;
656 } __packed aq_mailbox_header_t;
657 
658 typedef struct aq_hw_stats_s {
659 	uint32_t uprc;
660 	uint32_t mprc;
661 	uint32_t bprc;
662 	uint32_t erpt;
663 	uint32_t uptc;
664 	uint32_t mptc;
665 	uint32_t bptc;
666 	uint32_t erpr;
667 	uint32_t mbtc;
668 	uint32_t bbtc;
669 	uint32_t mbrc;
670 	uint32_t bbrc;
671 	uint32_t ubrc;
672 	uint32_t ubtc;
673 	uint32_t ptc;
674 	uint32_t prc;
675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678 
679 typedef struct fw1x_mailbox {
680 	aq_mailbox_header_t header;
681 	aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683 
684 typedef struct fw2x_msm_statistics {
685 	uint32_t uprc;
686 	uint32_t mprc;
687 	uint32_t bprc;
688 	uint32_t erpt;
689 	uint32_t uptc;
690 	uint32_t mptc;
691 	uint32_t bptc;
692 	uint32_t erpr;
693 	uint32_t mbtc;
694 	uint32_t bbtc;
695 	uint32_t mbrc;
696 	uint32_t bbrc;
697 	uint32_t ubrc;
698 	uint32_t ubtc;
699 	uint32_t ptc;
700 	uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702 
703 typedef struct fw2x_phy_cable_diag_data {
704 	uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706 
707 typedef struct fw2x_capabilities {
708 	uint32_t caps_lo;
709 	uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711 
712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
713 	aq_mailbox_header_t header;
714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
715 
716 	uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
719 	uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
722 
723 	fw2x_phy_cable_diag_data_t diag_data;
724 	uint32_t reserved[8];
725 
726 	fw2x_capabilities_t caps;
727 
728 	/* ... */
729 } __packed fw2x_mailbox_t;
730 
731 typedef enum aq_link_speed {
732 	AQ_LINK_NONE	= 0,
733 	AQ_LINK_100M	= (1 << 0),
734 	AQ_LINK_1G	= (1 << 1),
735 	AQ_LINK_2G5	= (1 << 2),
736 	AQ_LINK_5G	= (1 << 3),
737 	AQ_LINK_10G	= (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 			 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO	AQ_LINK_ALL
742 
743 typedef enum aq_link_fc {
744 	AQ_FC_NONE = 0,
745 	AQ_FC_RX = __BIT(0),
746 	AQ_FC_TX = __BIT(1),
747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749 
750 typedef enum aq_link_eee {
751 	AQ_EEE_DISABLE = 0,
752 	AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754 
755 typedef enum aq_hw_fw_mpi_state {
756 	MPI_DEINIT	= 0,
757 	MPI_RESET	= 1,
758 	MPI_INIT	= 2,
759 	MPI_POWER	= 4
760 } aq_hw_fw_mpi_state_t;
761 
762 enum aq_media_type {
763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
764 	AQ_MEDIA_TYPE_FIBRE,
765 	AQ_MEDIA_TYPE_TP
766 };
767 
768 struct aq_rx_desc_read {
769 	uint64_t buf_addr;
770 	uint64_t hdr_addr;
771 } __packed;
772 
773 struct aq_rx_desc_wb {
774 	uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
800 #define RXDESC_TYPE_SPH			__BIT(21)
801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
802 	uint32_t rss_hash;
803 	uint16_t status;
804 #define RXDESC_STATUS_DD		__BIT(0)
805 #define RXDESC_STATUS_EOP		__BIT(1)
806 #define RXDESC_STATUS_MACERR		__BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
810 
811 #define RXDESC_STATUS_STAT		__BITS(2,5)
812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
814 	uint16_t pkt_len;
815 	uint16_t next_desc_ptr;
816 	uint16_t vlan;
817 } __packed;
818 
819 typedef union aq_rx_desc {
820 	struct aq_rx_desc_read read;
821 	struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823 
824 typedef struct aq_tx_desc {
825 	uint64_t buf_addr;
826 	uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
843 	uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
847 } __packed aq_tx_desc_t;
848 
849 struct aq_txring {
850 	struct aq_softc *txr_sc;
851 	int txr_index;
852 	kmutex_t txr_mutex;
853 	bool txr_active;
854 
855 	pcq_t *txr_pcq;
856 	void *txr_softint;
857 
858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
859 	bus_dmamap_t txr_txdesc_dmamap;
860 	bus_dma_segment_t txr_txdesc_seg[1];
861 	bus_size_t txr_txdesc_size;
862 
863 	struct {
864 		struct mbuf *m;
865 		bus_dmamap_t dmamap;
866 	} txr_mbufs[AQ_TXD_NUM];
867 	unsigned int txr_prodidx;
868 	unsigned int txr_considx;
869 	int txr_nfree;
870 };
871 
872 struct aq_rxring {
873 	struct aq_softc *rxr_sc;
874 	int rxr_index;
875 	kmutex_t rxr_mutex;
876 	bool rxr_active;
877 
878 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
879 	bus_dmamap_t rxr_rxdesc_dmamap;
880 	bus_dma_segment_t rxr_rxdesc_seg[1];
881 	bus_size_t rxr_rxdesc_size;
882 	struct {
883 		struct mbuf *m;
884 		bus_dmamap_t dmamap;
885 	} rxr_mbufs[AQ_RXD_NUM];
886 	unsigned int rxr_readidx;
887 };
888 
889 struct aq_queue {
890 	struct aq_softc *sc;
891 	struct aq_txring txring;
892 	struct aq_rxring rxring;
893 };
894 
895 struct aq_softc;
896 struct aq_firmware_ops {
897 	int (*reset)(struct aq_softc *);
898 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 	int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907 
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name)						\
910 	char sc_evcount_##name##_name[32];				\
911 	struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
913 	do {								\
914 		snprintf((sc)->sc_evcount_##name##_name,		\
915 		    sizeof((sc)->sc_evcount_##name##_name),		\
916 		    "%s", desc);					\
917 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
918 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
919 		    (sc)->sc_evcount_##name##_name);			\
920 	} while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
922 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name)					\
924 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val)					\
926 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928 
929 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
931 
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
935 
936 
937 struct aq_softc {
938 	device_t sc_dev;
939 
940 	bus_space_tag_t sc_iot;
941 	bus_space_handle_t sc_ioh;
942 	bus_size_t sc_iosize;
943 	bus_dma_tag_t sc_dmat;;
944 
945 	void *sc_ihs[AQ_NINTR_MAX];
946 	pci_intr_handle_t *sc_intrs;
947 
948 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 	int sc_linkstat_irq;
951 	bool sc_use_txrx_independent_intr;
952 	bool sc_poll_linkstat;
953 	bool sc_detect_linkstat;
954 
955 #if NSYSMON_ENVSYS > 0
956 	struct sysmon_envsys *sc_sme;
957 	envsys_data_t sc_sensor_temp;
958 #endif
959 
960 	callout_t sc_tick_ch;
961 
962 	int sc_nintrs;
963 	bool sc_msix;
964 
965 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 	int sc_nqueues;
967 
968 	pci_chipset_tag_t sc_pc;
969 	pcitag_t sc_pcitag;
970 	uint16_t sc_product;
971 	uint16_t sc_revision;
972 
973 	kmutex_t sc_mutex;
974 	kmutex_t sc_mpi_mutex;
975 
976 	const struct aq_firmware_ops *sc_fw_ops;
977 	uint64_t sc_fw_caps;
978 	enum aq_media_type sc_media_type;
979 	aq_link_speed_t sc_available_rates;
980 
981 	aq_link_speed_t sc_link_rate;
982 	aq_link_fc_t sc_link_fc;
983 	aq_link_eee_t sc_link_eee;
984 
985 	uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
989 	uint32_t sc_features;
990 #define FEATURES_MIPS		0x00000001
991 #define FEATURES_TPO2		0x00000002
992 #define FEATURES_RPF2		0x00000004
993 #define FEATURES_MPI_AQ		0x00000008
994 #define FEATURES_REV_A0		0x10000000
995 #define FEATURES_REV_A		(FEATURES_REV_A0)
996 #define FEATURES_REV_B0		0x20000000
997 #define FEATURES_REV_B1		0x40000000
998 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
999 	uint32_t sc_mbox_addr;
1000 
1001 	bool sc_rbl_enabled;
1002 	bool sc_fast_start_enabled;
1003 	bool sc_flash_present;
1004 
1005 	bool sc_intr_moderation_enable;
1006 	bool sc_rss_enable;
1007 
1008 	struct ethercom sc_ethercom;
1009 	struct ether_addr sc_enaddr;
1010 	struct ifmedia sc_media;
1011 	int sc_ec_capenable;		/* last ec_capenable */
1012 	unsigned short sc_if_flags;	/* last if_flags */
1013 
1014 #ifdef AQ_EVENT_COUNTERS
1015 	aq_hw_stats_s_t sc_statistics[2];
1016 	int sc_statistics_idx;
1017 	bool sc_poll_statistics;
1018 
1019 	AQ_EVCNT_DECL(uprc);
1020 	AQ_EVCNT_DECL(mprc);
1021 	AQ_EVCNT_DECL(bprc);
1022 	AQ_EVCNT_DECL(erpt);
1023 	AQ_EVCNT_DECL(uptc);
1024 	AQ_EVCNT_DECL(mptc);
1025 	AQ_EVCNT_DECL(bptc);
1026 	AQ_EVCNT_DECL(erpr);
1027 	AQ_EVCNT_DECL(mbtc);
1028 	AQ_EVCNT_DECL(bbtc);
1029 	AQ_EVCNT_DECL(mbrc);
1030 	AQ_EVCNT_DECL(bbrc);
1031 	AQ_EVCNT_DECL(ubrc);
1032 	AQ_EVCNT_DECL(ubtc);
1033 	AQ_EVCNT_DECL(ptc);
1034 	AQ_EVCNT_DECL(prc);
1035 	AQ_EVCNT_DECL(dpc);
1036 	AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039 
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043 
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045     bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047     pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049 
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056     struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063 
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068 
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071 
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081 
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083     aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085     aq_link_eee_t *);
1086 
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093     uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097 
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104 
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114 
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 	.reset = fw1x_reset,
1117 	.set_mode = fw1x_set_mode,
1118 	.get_mode = fw1x_get_mode,
1119 	.get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 	.get_temperature = NULL
1122 #endif
1123 };
1124 
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 	.reset = fw2x_reset,
1127 	.set_mode = fw2x_set_mode,
1128 	.get_mode = fw2x_get_mode,
1129 	.get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 	.get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134 
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137 
1138 static const struct aq_product {
1139 	pci_vendor_id_t aq_vendor;
1140 	pci_product_id_t aq_product;
1141 	const char *aq_name;
1142 	enum aq_media_type aq_media_type;
1143 	aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1146 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1147 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1148 	},
1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1150 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1151 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1152 	},
1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1154 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1156 	},
1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1158 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1160 	},
1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1162 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1164 	},
1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1166 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1168 	},
1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1170 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1171 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1172 	},
1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1174 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1175 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1176 	},
1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1178 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 	},
1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1182 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 	},
1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1186 	  "Aquantia D107 10 Gigabit Network Adapter",
1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1188 	},
1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1190 	  "Aquantia D108 5 Gigabit Network Adapter",
1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1192 	},
1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1194 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1195 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1196 	}
1197 };
1198 
1199 static const struct aq_product *
1200 aq_lookup(const struct pci_attach_args *pa)
1201 {
1202 	unsigned int i;
1203 
1204 	for (i = 0; i < __arraycount(aq_products); i++) {
1205 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1206 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1207 			return &aq_products[i];
1208 	}
1209 	return NULL;
1210 }
1211 
1212 static int
1213 aq_match(device_t parent, cfdata_t cf, void *aux)
1214 {
1215 	struct pci_attach_args *pa = aux;
1216 
1217 	if (aq_lookup(pa) != NULL)
1218 		return 1;
1219 
1220 	return 0;
1221 }
1222 
1223 static void
1224 aq_attach(device_t parent, device_t self, void *aux)
1225 {
1226 	struct aq_softc *sc = device_private(self);
1227 	struct pci_attach_args *pa = aux;
1228 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1229 	pci_chipset_tag_t pc;
1230 	pcitag_t tag;
1231 	pcireg_t command, memtype, bar;
1232 	const struct aq_product *aqp;
1233 	int error;
1234 
1235 	sc->sc_dev = self;
1236 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1237 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1238 
1239 	sc->sc_pc = pc = pa->pa_pc;
1240 	sc->sc_pcitag = tag = pa->pa_tag;
1241 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1242 
1243 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1244 	command |= PCI_COMMAND_MASTER_ENABLE;
1245 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1246 
1247 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1248 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1249 
1250 	aqp = aq_lookup(pa);
1251 	KASSERT(aqp != NULL);
1252 
1253 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1254 
1255 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1256 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1257 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1258 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1259 		return;
1260 	}
1261 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1262 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1263 	    NULL, &sc->sc_iosize) != 0) {
1264 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1265 		return;
1266 	}
1267 
1268 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1269 
1270 	/* max queue num is 8, and must be 2^n */
1271 	if (ncpu >= 8)
1272 		sc->sc_nqueues = 8;
1273 	else if (ncpu >= 4)
1274 		sc->sc_nqueues = 4;
1275 	else if (ncpu >= 2)
1276 		sc->sc_nqueues = 2;
1277 	else
1278 		sc->sc_nqueues = 1;
1279 
1280 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1281 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1282 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1283 		/* TX intrs + RX intrs + LINKSTAT intrs */
1284 		sc->sc_use_txrx_independent_intr = true;
1285 		sc->sc_poll_linkstat = false;
1286 		sc->sc_msix = true;
1287 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1288 		/* TX intrs + RX intrs */
1289 		sc->sc_use_txrx_independent_intr = true;
1290 		sc->sc_poll_linkstat = true;
1291 		sc->sc_msix = true;
1292 	} else
1293 #endif
1294 	if (msixcount >= (sc->sc_nqueues + 1)) {
1295 		/* TX/RX intrs LINKSTAT intrs */
1296 		sc->sc_use_txrx_independent_intr = false;
1297 		sc->sc_poll_linkstat = false;
1298 		sc->sc_msix = true;
1299 	} else if (msixcount >= sc->sc_nqueues) {
1300 		/* TX/RX intrs */
1301 		sc->sc_use_txrx_independent_intr = false;
1302 		sc->sc_poll_linkstat = true;
1303 		sc->sc_msix = true;
1304 	} else {
1305 		/* giving up using MSI-X */
1306 		sc->sc_msix = false;
1307 	}
1308 
1309 	aprint_debug_dev(sc->sc_dev,
1310 	    "ncpu=%d, pci_msix_count=%d."
1311 	    " allocate %d interrupts for %d%s queues%s\n",
1312 	    ncpu, msixcount,
1313 	    (sc->sc_use_txrx_independent_intr ?
1314 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1315 	    (sc->sc_poll_linkstat ? 0 : 1),
1316 	    sc->sc_nqueues,
1317 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1318 	    sc->sc_poll_linkstat ? "" : ", and link status");
1319 
1320 	if (sc->sc_msix)
1321 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1322 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1323 	else
1324 		error = ENODEV;
1325 
1326 	if (error != 0) {
1327 		/* if MSI-X failed, fallback to MSI with single queue */
1328 		sc->sc_use_txrx_independent_intr = false;
1329 		sc->sc_poll_linkstat = false;
1330 		sc->sc_msix = false;
1331 		sc->sc_nqueues = 1;
1332 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1333 	}
1334 	if (error != 0) {
1335 		/* if MSI failed, fallback to INTx */
1336 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1337 	}
1338 	if (error != 0)
1339 		return;
1340 
1341 	callout_init(&sc->sc_tick_ch, 0);
1342 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1343 
1344 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1345 
1346 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1347 		sc->sc_rss_enable = true;
1348 	else
1349 		sc->sc_rss_enable = false;
1350 
1351 	error = aq_txrx_rings_alloc(sc);
1352 	if (error != 0)
1353 		goto attach_failure;
1354 
1355 	error = aq_fw_reset(sc);
1356 	if (error != 0)
1357 		goto attach_failure;
1358 
1359 	error = aq_fw_version_init(sc);
1360 	if (error != 0)
1361 		goto attach_failure;
1362 
1363 	error = aq_hw_init_ucp(sc);
1364 	if (error < 0)
1365 		goto attach_failure;
1366 
1367 	KASSERT(sc->sc_mbox_addr != 0);
1368 	error = aq_hw_reset(sc);
1369 	if (error != 0)
1370 		goto attach_failure;
1371 
1372 	aq_get_mac_addr(sc);
1373 	aq_init_rss(sc);
1374 
1375 	error = aq_hw_init(sc);	/* initialize and interrupts */
1376 	if (error != 0)
1377 		goto attach_failure;
1378 
1379 	sc->sc_media_type = aqp->aq_media_type;
1380 	sc->sc_available_rates = aqp->aq_available_rates;
1381 
1382 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1383 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1384 	    aq_ifmedia_change, aq_ifmedia_status);
1385 	aq_initmedia(sc);
1386 
1387 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1388 	ifp->if_softc = sc;
1389 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1390 	ifp->if_baudrate = IF_Gbps(10);
1391 	ifp->if_init = aq_init;
1392 	ifp->if_ioctl = aq_ioctl;
1393 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1394 		ifp->if_transmit = aq_transmit;
1395 	ifp->if_start = aq_start;
1396 	ifp->if_stop = aq_stop;
1397 	ifp->if_watchdog = aq_watchdog;
1398 	IFQ_SET_READY(&ifp->if_snd);
1399 
1400 	/* initialize capabilities */
1401 	sc->sc_ethercom.ec_capabilities = 0;
1402 	sc->sc_ethercom.ec_capenable = 0;
1403 #if notyet
1404 	/* TODO */
1405 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1406 #endif
1407 	sc->sc_ethercom.ec_capabilities |=
1408 	    ETHERCAP_JUMBO_MTU |
1409 	    ETHERCAP_VLAN_MTU |
1410 	    ETHERCAP_VLAN_HWTAGGING |
1411 	    ETHERCAP_VLAN_HWFILTER;
1412 	sc->sc_ethercom.ec_capenable |=
1413 	    ETHERCAP_VLAN_HWTAGGING |
1414 	    ETHERCAP_VLAN_HWFILTER;
1415 
1416 	ifp->if_capabilities = 0;
1417 	ifp->if_capenable = 0;
1418 #ifdef CONFIG_LRO_SUPPORT
1419 	ifp->if_capabilities |= IFCAP_LRO;
1420 	ifp->if_capenable |= IFCAP_LRO;
1421 #endif
1422 #if notyet
1423 	/* TSO */
1424 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1425 #endif
1426 
1427 #if notyet
1428 	/*
1429 	 * XXX:
1430 	 *   Rx L4 CSUM doesn't work well for fragment packet.
1431 	 *   aq marks 'CHEDKED' and 'BAD' for them.
1432 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
1433 	 *
1434 	 *   TODO: test with LRO enabled
1435 	 */
1436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1437 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1438 #endif
1439 	/* TX hardware checksum offloadding */
1440 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1441 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1443 	/* RX hardware checksum offloadding */
1444 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1445 
1446 	if_attach(ifp);
1447 	if_deferred_start_init(ifp, NULL);
1448 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1449 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1450 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1451 
1452 	aq_enable_intr(sc, true, false);	/* only intr about link */
1453 
1454 	/* update media */
1455 	aq_ifmedia_change(ifp);
1456 
1457 #if NSYSMON_ENVSYS > 0
1458 	/* temperature monitoring */
1459 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1460 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1461 
1462 		sc->sc_sme = sysmon_envsys_create();
1463 		sc->sc_sme->sme_name = device_xname(self);
1464 		sc->sc_sme->sme_cookie = sc;
1465 		sc->sc_sme->sme_flags = 0;
1466 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1467 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1468 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1469 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1470 
1471 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1472 		sysmon_envsys_register(sc->sc_sme);
1473 
1474 		/*
1475 		 * for unknown reasons, the first call of fw2x_get_temperature()
1476 		 * will always fail (firmware matter?), so run once now.
1477 		 */
1478 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1479 	}
1480 #endif
1481 
1482 #ifdef AQ_EVENT_COUNTERS
1483 	/* get starting statistics values */
1484 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1485 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1486 		sc->sc_poll_statistics = true;
1487 	}
1488 
1489 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1490 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1491 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1492 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1493 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1494 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1495 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1496 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1497 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1498 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1499 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1500 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1501 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1502 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1503 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1504 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1505 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1506 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1507 #endif
1508 
1509 	return;
1510 
1511  attach_failure:
1512 	aq_detach(self, 0);
1513 }
1514 
1515 static int
1516 aq_detach(device_t self, int flags __unused)
1517 {
1518 	struct aq_softc *sc = device_private(self);
1519 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1520 	int i, s;
1521 
1522 	if (sc->sc_iosize != 0) {
1523 		if (ifp->if_softc != NULL) {
1524 			s = splnet();
1525 			aq_stop(ifp, 0);
1526 			splx(s);
1527 		}
1528 
1529 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1530 			if (sc->sc_ihs[i] != NULL) {
1531 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1532 				sc->sc_ihs[i] = NULL;
1533 			}
1534 		}
1535 		if (sc->sc_nintrs > 0) {
1536 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1537 			    sc->sc_nintrs);
1538 			sc->sc_intrs = NULL;
1539 			sc->sc_nintrs = 0;
1540 		}
1541 
1542 		aq_txrx_rings_free(sc);
1543 
1544 		if (ifp->if_softc != NULL) {
1545 			ether_ifdetach(ifp);
1546 			if_detach(ifp);
1547 		}
1548 
1549 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1550 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1551 		sc->sc_iosize = 0;
1552 	}
1553 
1554 	callout_stop(&sc->sc_tick_ch);
1555 
1556 #if NSYSMON_ENVSYS > 0
1557 	if (sc->sc_sme != NULL) {
1558 		/* all sensors associated with this will also be detached */
1559 		sysmon_envsys_unregister(sc->sc_sme);
1560 		sc->sc_sme = NULL;
1561 	}
1562 #endif
1563 
1564 #ifdef AQ_EVENT_COUNTERS
1565 	AQ_EVCNT_DETACH(sc, uprc);
1566 	AQ_EVCNT_DETACH(sc, mprc);
1567 	AQ_EVCNT_DETACH(sc, bprc);
1568 	AQ_EVCNT_DETACH(sc, erpt);
1569 	AQ_EVCNT_DETACH(sc, uptc);
1570 	AQ_EVCNT_DETACH(sc, mptc);
1571 	AQ_EVCNT_DETACH(sc, bptc);
1572 	AQ_EVCNT_DETACH(sc, erpr);
1573 	AQ_EVCNT_DETACH(sc, mbtc);
1574 	AQ_EVCNT_DETACH(sc, bbtc);
1575 	AQ_EVCNT_DETACH(sc, mbrc);
1576 	AQ_EVCNT_DETACH(sc, bbrc);
1577 	AQ_EVCNT_DETACH(sc, ubrc);
1578 	AQ_EVCNT_DETACH(sc, ubtc);
1579 	AQ_EVCNT_DETACH(sc, ptc);
1580 	AQ_EVCNT_DETACH(sc, prc);
1581 	AQ_EVCNT_DETACH(sc, dpc);
1582 	AQ_EVCNT_DETACH(sc, cprc);
1583 #endif
1584 
1585 	ifmedia_fini(&sc->sc_media);
1586 
1587 	mutex_destroy(&sc->sc_mpi_mutex);
1588 	mutex_destroy(&sc->sc_mutex);
1589 
1590 	return 0;
1591 }
1592 
1593 static int
1594 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1595     int (*func)(void *), void *arg, const char *xname)
1596 {
1597 	char intrbuf[PCI_INTRSTR_LEN];
1598 	pci_chipset_tag_t pc = sc->sc_pc;
1599 	void *vih;
1600 	const char *intrstr = NULL;
1601 
1602 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1603 	    sizeof(intrbuf));
1604 
1605 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1606 
1607 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1608 	    IPL_NET, func, arg, xname);
1609 	if (vih == NULL) {
1610 		aprint_error_dev(sc->sc_dev,
1611 		    "unable to establish MSI-X%s%s for %s\n",
1612 		    intrstr ? " at " : "",
1613 		    intrstr ? intrstr : "", xname);
1614 		return EIO;
1615 	}
1616 	sc->sc_ihs[intno] = vih;
1617 
1618 	if (affinity != NULL) {
1619 		/* Round-robin affinity */
1620 		kcpuset_zero(affinity);
1621 		kcpuset_set(affinity, intno % ncpu);
1622 		interrupt_distribute(vih, affinity, NULL);
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int
1629 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1630     bool linkintr)
1631 {
1632 	kcpuset_t *affinity;
1633 	int error, intno, i;
1634 	char intr_xname[INTRDEVNAMEBUF];
1635 
1636 	kcpuset_create(&affinity, false);
1637 
1638 	intno = 0;
1639 
1640 	if (txrx_independent) {
1641 		for (i = 0; i < sc->sc_nqueues; i++) {
1642 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1643 			    device_xname(sc->sc_dev), i);
1644 			sc->sc_rx_irq[i] = intno;
1645 			error = aq_establish_intr(sc, intno++, affinity,
1646 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1647 			if (error != 0)
1648 				goto fail;
1649 		}
1650 		for (i = 0; i < sc->sc_nqueues; i++) {
1651 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1652 			    device_xname(sc->sc_dev), i);
1653 			sc->sc_tx_irq[i] = intno;
1654 			error = aq_establish_intr(sc, intno++, affinity,
1655 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1656 			if (error != 0)
1657 				goto fail;
1658 		}
1659 	} else {
1660 		for (i = 0; i < sc->sc_nqueues; i++) {
1661 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1662 			    device_xname(sc->sc_dev), i);
1663 			sc->sc_rx_irq[i] = intno;
1664 			sc->sc_tx_irq[i] = intno;
1665 			error = aq_establish_intr(sc, intno++, affinity,
1666 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1667 			if (error != 0)
1668 				goto fail;
1669 		}
1670 	}
1671 
1672 	if (linkintr) {
1673 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1674 		    device_xname(sc->sc_dev));
1675 		sc->sc_linkstat_irq = intno;
1676 		error = aq_establish_intr(sc, intno++, affinity,
1677 		    aq_link_intr, sc, intr_xname);
1678 		if (error != 0)
1679 			goto fail;
1680 	}
1681 
1682 	kcpuset_destroy(affinity);
1683 	return 0;
1684 
1685  fail:
1686 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1687 		if (sc->sc_ihs[i] != NULL) {
1688 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1689 			sc->sc_ihs[i] = NULL;
1690 		}
1691 	}
1692 
1693 	kcpuset_destroy(affinity);
1694 	return ENOMEM;
1695 }
1696 
1697 static int
1698 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1699     bool txrx_independent, bool linkintr)
1700 {
1701 	int error, nintr;
1702 
1703 	if (txrx_independent)
1704 		nintr = nqueue * 2;
1705 	else
1706 		nintr = nqueue;
1707 
1708 	if (linkintr)
1709 		nintr++;
1710 
1711 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1712 	if (error != 0) {
1713 		aprint_error_dev(sc->sc_dev,
1714 		    "failed to allocate MSI-X interrupts\n");
1715 		goto fail;
1716 	}
1717 
1718 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1719 	if (error == 0) {
1720 		sc->sc_nintrs = nintr;
1721 	} else {
1722 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1723 		sc->sc_nintrs = 0;
1724 	}
1725  fail:
1726 	return error;
1727 
1728 }
1729 
1730 static int
1731 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1732     pci_intr_type_t inttype)
1733 {
1734 	int counts[PCI_INTR_TYPE_SIZE];
1735 	int error, nintr;
1736 
1737 	nintr = 1;
1738 
1739 	memset(counts, 0, sizeof(counts));
1740 	counts[inttype] = nintr;
1741 
1742 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1743 	if (error != 0) {
1744 		aprint_error_dev(sc->sc_dev,
1745 		    "failed to allocate%s interrupts\n",
1746 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1747 		return error;
1748 	}
1749 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1750 	    device_xname(sc->sc_dev));
1751 	if (error == 0) {
1752 		sc->sc_nintrs = nintr;
1753 	} else {
1754 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1755 		sc->sc_nintrs = 0;
1756 	}
1757 	return error;
1758 }
1759 
1760 static void
1761 global_software_reset(struct aq_softc *sc)
1762 {
1763 	uint32_t v;
1764 
1765 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1766 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1767 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1768 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1769 
1770 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1771 	v &= ~AQ_FW_SOFTRESET_DIS;
1772 	v |= AQ_FW_SOFTRESET_RESET;
1773 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1774 }
1775 
1776 static int
1777 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1778 {
1779 	int timo;
1780 
1781 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1782 
1783 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1784 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1785 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1786 
1787 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1788 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1789 
1790 	global_software_reset(sc);
1791 
1792 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1793 
1794 	/* Wait for RBL to finish boot process. */
1795 #define RBL_TIMEOUT_MS	10000
1796 	uint16_t rbl_status;
1797 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1798 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1799 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1800 			break;
1801 		msec_delay(1);
1802 	}
1803 	if (timo <= 0) {
1804 		aprint_error_dev(sc->sc_dev,
1805 		    "RBL> RBL restart failed: timeout\n");
1806 		return EBUSY;
1807 	}
1808 	switch (rbl_status) {
1809 	case RBL_STATUS_SUCCESS:
1810 		if (mode != NULL)
1811 			*mode = FW_BOOT_MODE_RBL_FLASH;
1812 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1813 		break;
1814 	case RBL_STATUS_HOST_BOOT:
1815 		if (mode != NULL)
1816 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1817 		aprint_debug_dev(sc->sc_dev,
1818 		    "RBL> reset complete! [Host Bootload]\n");
1819 		break;
1820 	case RBL_STATUS_FAILURE:
1821 	default:
1822 		aprint_error_dev(sc->sc_dev,
1823 		    "unknown RBL status 0x%x\n", rbl_status);
1824 		return EBUSY;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static int
1831 mac_soft_reset_flb(struct aq_softc *sc)
1832 {
1833 	uint32_t v;
1834 	int timo;
1835 
1836 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1837 	/*
1838 	 * Let Felicity hardware to complete SMBUS transaction before
1839 	 * Global software reset.
1840 	 */
1841 	msec_delay(50);
1842 
1843 	/*
1844 	 * If SPI burst transaction was interrupted(before running the script),
1845 	 * global software reset may not clear SPI interface.
1846 	 * Clean it up manually before global reset.
1847 	 */
1848 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1849 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1850 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1851 	msec_delay(50);
1852 
1853 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1854 	v &= ~AQ_FW_SOFTRESET_DIS;
1855 	v |= AQ_FW_SOFTRESET_RESET;
1856 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1857 
1858 	/* Kickstart. */
1859 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1860 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1861 	if (!sc->sc_fast_start_enabled)
1862 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1863 
1864 	/*
1865 	 * For the case SPI burst transaction was interrupted (by MCP reset
1866 	 * above), wait until it is completed by hardware.
1867 	 */
1868 	msec_delay(50);
1869 
1870 	/* MAC Kickstart */
1871 	if (!sc->sc_fast_start_enabled) {
1872 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1873 
1874 		uint32_t flb_status;
1875 		for (timo = 0; timo < 1000; timo++) {
1876 			flb_status = AQ_READ_REG(sc,
1877 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1878 			if (flb_status != 0)
1879 				break;
1880 			msec_delay(1);
1881 		}
1882 		if (flb_status == 0) {
1883 			aprint_error_dev(sc->sc_dev,
1884 			    "FLB> MAC kickstart failed: timed out\n");
1885 			return ETIMEDOUT;
1886 		}
1887 		aprint_debug_dev(sc->sc_dev,
1888 		    "FLB> MAC kickstart done, %d ms\n", timo);
1889 		/* FW reset */
1890 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1891 		/*
1892 		 * Let Felicity hardware complete SMBUS transaction before
1893 		 * Global software reset.
1894 		 */
1895 		msec_delay(50);
1896 		sc->sc_fast_start_enabled = true;
1897 	}
1898 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1899 
1900 	/* PHY Kickstart: #undone */
1901 	global_software_reset(sc);
1902 
1903 	for (timo = 0; timo < 1000; timo++) {
1904 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1905 			break;
1906 		msec_delay(10);
1907 	}
1908 	if (timo >= 1000) {
1909 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1910 		return ETIMEDOUT;
1911 	}
1912 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1913 	return 0;
1914 
1915 }
1916 
1917 static int
1918 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1919 {
1920 	if (sc->sc_rbl_enabled)
1921 		return mac_soft_reset_rbl(sc, mode);
1922 
1923 	if (mode != NULL)
1924 		*mode = FW_BOOT_MODE_FLB;
1925 	return mac_soft_reset_flb(sc);
1926 }
1927 
1928 static int
1929 aq_fw_read_version(struct aq_softc *sc)
1930 {
1931 	int i, error = EBUSY;
1932 #define MAC_FW_START_TIMEOUT_MS	10000
1933 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1934 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1935 		if (sc->sc_fw_version != 0) {
1936 			error = 0;
1937 			break;
1938 		}
1939 		delay(1000);
1940 	}
1941 	return error;
1942 }
1943 
1944 static int
1945 aq_fw_reset(struct aq_softc *sc)
1946 {
1947 	uint32_t ver, v, bootExitCode;
1948 	int i, error;
1949 
1950 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1951 
1952 	for (i = 1000; i > 0; i--) {
1953 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1954 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1955 		if (v != 0x06000000 || bootExitCode != 0)
1956 			break;
1957 	}
1958 	if (i <= 0) {
1959 		aprint_error_dev(sc->sc_dev,
1960 		    "F/W reset failed. Neither RBL nor FLB started\n");
1961 		return ETIMEDOUT;
1962 	}
1963 	sc->sc_rbl_enabled = (bootExitCode != 0);
1964 
1965 	/*
1966 	 * Having FW version 0 is an indicator that cold start
1967 	 * is in progress. This means two things:
1968 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1969 	 * 2) Driver may skip reset sequence and save time.
1970 	 */
1971 	if (sc->sc_fast_start_enabled && (ver != 0)) {
1972 		error = aq_fw_read_version(sc);
1973 		/* Skip reset as it just completed */
1974 		if (error == 0)
1975 			return 0;
1976 	}
1977 
1978 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1979 	error = mac_soft_reset(sc, &mode);
1980 	if (error != 0) {
1981 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
1982 		return error;
1983 	}
1984 
1985 	switch (mode) {
1986 	case FW_BOOT_MODE_FLB:
1987 		aprint_debug_dev(sc->sc_dev,
1988 		    "FLB> F/W successfully loaded from flash.\n");
1989 		sc->sc_flash_present = true;
1990 		return aq_fw_read_version(sc);
1991 	case FW_BOOT_MODE_RBL_FLASH:
1992 		aprint_debug_dev(sc->sc_dev,
1993 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
1994 		sc->sc_flash_present = true;
1995 		return aq_fw_read_version(sc);
1996 	case FW_BOOT_MODE_UNKNOWN:
1997 		aprint_error_dev(sc->sc_dev,
1998 		    "F/W bootload error: unknown bootloader type\n");
1999 		return ENOTSUP;
2000 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2001 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2002 		break;
2003 	}
2004 
2005 	/*
2006 	 * XXX: TODO: add support Host Boot
2007 	 */
2008 	aprint_error_dev(sc->sc_dev,
2009 	    "RBL> F/W Host Bootload not implemented\n");
2010 	return ENOTSUP;
2011 }
2012 
2013 static int
2014 aq_hw_reset(struct aq_softc *sc)
2015 {
2016 	int error;
2017 
2018 	/* disable irq */
2019 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2020 
2021 	/* apply */
2022 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2023 
2024 	/* wait ack 10 times by 1ms */
2025 	WAIT_FOR(
2026 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2027 	    1000, 10, &error);
2028 	if (error != 0) {
2029 		aprint_error_dev(sc->sc_dev,
2030 		    "atlantic: IRQ reset failed: %d\n", error);
2031 		return error;
2032 	}
2033 
2034 	return sc->sc_fw_ops->reset(sc);
2035 }
2036 
2037 static int
2038 aq_hw_init_ucp(struct aq_softc *sc)
2039 {
2040 	int timo;
2041 
2042 	if (FW_VERSION_MAJOR(sc) == 1) {
2043 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2044 			uint32_t data;
2045 			cprng_fast(&data, sizeof(data));
2046 			data &= 0xfefefefe;
2047 			data |= 0x02020202;
2048 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2049 		}
2050 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2051 	}
2052 
2053 	for (timo = 100; timo > 0; timo--) {
2054 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2055 		if (sc->sc_mbox_addr != 0)
2056 			break;
2057 		delay(1000);
2058 	}
2059 
2060 #define AQ_FW_MIN_VERSION	0x01050006
2061 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2062 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2063 		aprint_error_dev(sc->sc_dev,
2064 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2065 		    " or later required, this is %d.%d.%d\n",
2066 		    FW_VERSION_MAJOR(sc),
2067 		    FW_VERSION_MINOR(sc),
2068 		    FW_VERSION_BUILD(sc));
2069 		return ENOTSUP;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 static int
2076 aq_fw_version_init(struct aq_softc *sc)
2077 {
2078 	int error = 0;
2079 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2080 
2081 	if (FW_VERSION_MAJOR(sc) == 1) {
2082 		sc->sc_fw_ops = &aq_fw1x_ops;
2083 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2084 		sc->sc_fw_ops = &aq_fw2x_ops;
2085 	} else {
2086 		aprint_error_dev(sc->sc_dev,
2087 		    "Unsupported F/W version %d.%d.%d\n",
2088 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2089 		    FW_VERSION_BUILD(sc));
2090 		return ENOTSUP;
2091 	}
2092 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2093 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2094 
2095 	/* detect revision */
2096 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2097 	switch (hwrev & 0x0000000f) {
2098 	case 0x01:
2099 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2100 		    fw_vers);
2101 		sc->sc_features |= FEATURES_REV_A0 |
2102 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2103 		break;
2104 	case 0x02:
2105 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2106 		    fw_vers);
2107 		sc->sc_features |= FEATURES_REV_B0 |
2108 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2109 		    FEATURES_TPO2 | FEATURES_RPF2;
2110 		break;
2111 	case 0x0A:
2112 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2113 		    fw_vers);
2114 		sc->sc_features |= FEATURES_REV_B1 |
2115 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2116 		    FEATURES_TPO2 | FEATURES_RPF2;
2117 		break;
2118 	default:
2119 		aprint_error_dev(sc->sc_dev,
2120 		    "Unknown revision (0x%08x)\n", hwrev);
2121 		error = ENOTSUP;
2122 		break;
2123 	}
2124 	return error;
2125 }
2126 
2127 static int
2128 fw1x_reset(struct aq_softc *sc)
2129 {
2130 	struct aq_mailbox_header mbox;
2131 	const int retryCount = 1000;
2132 	uint32_t tid0;
2133 	int i;
2134 
2135 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2136 
2137 	for (i = 0; i < retryCount; ++i) {
2138 		/*
2139 		 * Read the beginning of Statistics structure to capture
2140 		 * the Transaction ID.
2141 		 */
2142 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2143 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2144 
2145 		/* Successfully read the stats. */
2146 		if (tid0 == ~0U) {
2147 			/* We have read the initial value. */
2148 			tid0 = mbox.transaction_id;
2149 			continue;
2150 		} else if (mbox.transaction_id != tid0) {
2151 			/*
2152 			 * Compare transaction ID to initial value.
2153 			 * If it's different means f/w is alive.
2154 			 * We're done.
2155 			 */
2156 			return 0;
2157 		}
2158 
2159 		/*
2160 		 * Transaction ID value haven't changed since last time.
2161 		 * Try reading the stats again.
2162 		 */
2163 		delay(10);
2164 	}
2165 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2166 	return EBUSY;
2167 }
2168 
2169 static int
2170 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2171     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2172 {
2173 	uint32_t mpictrl = 0;
2174 	uint32_t mpispeed = 0;
2175 
2176 	if (speed & AQ_LINK_10G)
2177 		mpispeed |= FW1X_CTRL_10G;
2178 	if (speed & AQ_LINK_5G)
2179 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2180 	if (speed & AQ_LINK_2G5)
2181 		mpispeed |= FW1X_CTRL_2G5;
2182 	if (speed & AQ_LINK_1G)
2183 		mpispeed |= FW1X_CTRL_1G;
2184 	if (speed & AQ_LINK_100M)
2185 		mpispeed |= FW1X_CTRL_100M;
2186 
2187 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2188 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2189 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2190 	return 0;
2191 }
2192 
2193 static int
2194 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2195     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2196 {
2197 	uint32_t mpistate, mpi_speed;
2198 	aq_link_speed_t speed = AQ_LINK_NONE;
2199 
2200 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2201 
2202 	if (modep != NULL)
2203 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2204 
2205 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2206 	if (mpi_speed & FW1X_CTRL_10G)
2207 		speed = AQ_LINK_10G;
2208 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2209 		speed = AQ_LINK_5G;
2210 	else if (mpi_speed & FW1X_CTRL_2G5)
2211 		speed = AQ_LINK_2G5;
2212 	else if (mpi_speed & FW1X_CTRL_1G)
2213 		speed = AQ_LINK_1G;
2214 	else if (mpi_speed & FW1X_CTRL_100M)
2215 		speed = AQ_LINK_100M;
2216 
2217 	if (speedp != NULL)
2218 		*speedp = speed;
2219 
2220 	if (fcp != NULL)
2221 		*fcp = AQ_FC_NONE;
2222 
2223 	if (eeep != NULL)
2224 		*eeep = AQ_EEE_DISABLE;
2225 
2226 	return 0;
2227 }
2228 
2229 static int
2230 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2231 {
2232 	int error;
2233 
2234 	error = aq_fw_downld_dwords(sc,
2235 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2236 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2237 	if (error < 0) {
2238 		device_printf(sc->sc_dev,
2239 		    "fw1x> download statistics data FAILED, error %d", error);
2240 		return error;
2241 	}
2242 
2243 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2244 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2245 	return 0;
2246 }
2247 
2248 static int
2249 fw2x_reset(struct aq_softc *sc)
2250 {
2251 	fw2x_capabilities_t caps = { 0 };
2252 	int error;
2253 
2254 	error = aq_fw_downld_dwords(sc,
2255 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2256 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2257 	if (error != 0) {
2258 		aprint_error_dev(sc->sc_dev,
2259 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2260 		    error);
2261 		return error;
2262 	}
2263 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2264 
2265 	char buf[256];
2266 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2267 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2268 
2269 	return 0;
2270 }
2271 
2272 static int
2273 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2274     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2275 {
2276 	uint64_t mpi_ctrl;
2277 	int error = 0;
2278 
2279 	AQ_MPI_LOCK(sc);
2280 
2281 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2282 
2283 	switch (mode) {
2284 	case MPI_INIT:
2285 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2286 		if (speed & AQ_LINK_10G)
2287 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2288 		if (speed & AQ_LINK_5G)
2289 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2290 		if (speed & AQ_LINK_2G5)
2291 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2292 		if (speed & AQ_LINK_1G)
2293 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2294 		if (speed & AQ_LINK_100M)
2295 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2296 
2297 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2298 
2299 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2300 		if (eee == AQ_EEE_ENABLE)
2301 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2302 
2303 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2304 		if (fc & AQ_FC_RX)
2305 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2306 		if (fc & AQ_FC_TX)
2307 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2308 		break;
2309 	case MPI_DEINIT:
2310 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2311 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2312 		break;
2313 	default:
2314 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2315 		error =  EINVAL;
2316 		goto failure;
2317 	}
2318 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2319 
2320  failure:
2321 	AQ_MPI_UNLOCK(sc);
2322 	return error;
2323 }
2324 
2325 static int
2326 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2327     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2328 {
2329 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2330 
2331 	if (modep != NULL) {
2332 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2333 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2334 			*modep = MPI_INIT;
2335 		else
2336 			*modep = MPI_DEINIT;
2337 	}
2338 
2339 	aq_link_speed_t speed = AQ_LINK_NONE;
2340 	if (mpi_state & FW2X_CTRL_RATE_10G)
2341 		speed = AQ_LINK_10G;
2342 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2343 		speed = AQ_LINK_5G;
2344 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2345 		speed = AQ_LINK_2G5;
2346 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2347 		speed = AQ_LINK_1G;
2348 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2349 		speed = AQ_LINK_100M;
2350 
2351 	if (speedp != NULL)
2352 		*speedp = speed;
2353 
2354 	aq_link_fc_t fc = AQ_FC_NONE;
2355 	if (mpi_state & FW2X_CTRL_PAUSE)
2356 		fc |= AQ_FC_RX;
2357 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2358 		fc |= AQ_FC_TX;
2359 	if (fcp != NULL)
2360 		*fcp = fc;
2361 
2362 	/* XXX: TODO: EEE */
2363 	if (eeep != NULL)
2364 		*eeep = AQ_EEE_DISABLE;
2365 
2366 	return 0;
2367 }
2368 
2369 static int
2370 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2371     uint32_t timeout_ms, uint32_t try_count)
2372 {
2373 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2374 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2375 	int error;
2376 
2377 	/* First, check that control and state values are consistent */
2378 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2379 		device_printf(sc->sc_dev,
2380 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2381 		    " are not consistent for mask %#llx!\n",
2382 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2383 		    (unsigned long long)mask);
2384 		return EINVAL;
2385 	}
2386 
2387 	/* Invert bits (toggle) in control register */
2388 	mpi_ctrl ^= mask;
2389 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2390 
2391 	/* Clear all bits except masked */
2392 	mpi_ctrl &= mask;
2393 
2394 	/* Wait for FW reflecting change in state register */
2395 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2396 	    1000 * timeout_ms, try_count, &error);
2397 	if (error != 0) {
2398 		device_printf(sc->sc_dev,
2399 		    "f/w2x> timeout while waiting for response"
2400 		    " in state register for bit %#llx!",
2401 		    (unsigned long long)mask);
2402 		return error;
2403 	}
2404 	return 0;
2405 }
2406 
2407 static int
2408 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2409 {
2410 	int error;
2411 
2412 	AQ_MPI_LOCK(sc);
2413 	/* Say to F/W to update the statistics */
2414 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2415 	if (error != 0) {
2416 		device_printf(sc->sc_dev,
2417 		    "fw2x> statistics update error %d\n", error);
2418 		goto failure;
2419 	}
2420 
2421 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2422 	error = aq_fw_downld_dwords(sc,
2423 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2424 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2425 	if (error != 0) {
2426 		device_printf(sc->sc_dev,
2427 		    "fw2x> download statistics data FAILED, error %d", error);
2428 		goto failure;
2429 	}
2430 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2431 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2432 
2433  failure:
2434 	AQ_MPI_UNLOCK(sc);
2435 	return error;
2436 }
2437 
2438 #if NSYSMON_ENVSYS > 0
2439 static int
2440 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2441 {
2442 	int error;
2443 	uint32_t value, celsius;
2444 
2445 	AQ_MPI_LOCK(sc);
2446 
2447 	/* Say to F/W to update the temperature */
2448 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2449 	if (error != 0)
2450 		goto failure;
2451 
2452 	error = aq_fw_downld_dwords(sc,
2453 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2454 	    &value, sizeof(value) / sizeof(uint32_t));
2455 	if (error != 0)
2456 		goto failure;
2457 
2458 	/* 1/256 decrees C to microkelvin */
2459 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2460 	if (celsius == 0) {
2461 		error = EIO;
2462 		goto failure;
2463 	}
2464 	*temp = celsius * (1000000 / 256) + 273150000;
2465 
2466  failure:
2467 	AQ_MPI_UNLOCK(sc);
2468 	return 0;
2469 }
2470 #endif
2471 
2472 static int
2473 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2474     uint32_t cnt)
2475 {
2476 	uint32_t v;
2477 	int error = 0;
2478 
2479 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2480 	if (error != 0) {
2481 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2482 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2483 		if (v == 0) {
2484 			device_printf(sc->sc_dev,
2485 			    "%s:%d: timeout\n", __func__, __LINE__);
2486 			return ETIMEDOUT;
2487 		}
2488 	}
2489 
2490 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2491 
2492 	error = 0;
2493 	for (; cnt > 0 && error == 0; cnt--) {
2494 		/* execute mailbox interface */
2495 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2496 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2497 		if (sc->sc_features & FEATURES_REV_B1) {
2498 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2499 			    1, 1000, &error);
2500 		} else {
2501 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2502 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2503 			    1, 1000, &error);
2504 		}
2505 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2506 		addr += sizeof(uint32_t);
2507 	}
2508 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2509 
2510 	if (error != 0)
2511 		device_printf(sc->sc_dev,
2512 		    "%s:%d: timeout\n", __func__, __LINE__);
2513 
2514 	return error;
2515 }
2516 
2517 /* read my mac address */
2518 static int
2519 aq_get_mac_addr(struct aq_softc *sc)
2520 {
2521 	uint32_t mac_addr[2];
2522 	uint32_t efuse_shadow_addr;
2523 	int err;
2524 
2525 	efuse_shadow_addr = 0;
2526 	if (FW_VERSION_MAJOR(sc) >= 2)
2527 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2528 	else
2529 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2530 
2531 	if (efuse_shadow_addr == 0) {
2532 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2533 		return ENXIO;
2534 	}
2535 
2536 	memset(mac_addr, 0, sizeof(mac_addr));
2537 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2538 	    mac_addr, __arraycount(mac_addr));
2539 	if (err < 0)
2540 		return err;
2541 
2542 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2543 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2544 		return ENXIO;
2545 	}
2546 
2547 	mac_addr[0] = bswap32(mac_addr[0]);
2548 	mac_addr[1] = bswap32(mac_addr[1]);
2549 
2550 	memcpy(sc->sc_enaddr.ether_addr_octet,
2551 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2552 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2553 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2554 
2555 	return 0;
2556 }
2557 
2558 /* set multicast filter. index 0 for own address */
2559 static int
2560 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2561 {
2562 	uint32_t h, l;
2563 
2564 	if (index >= AQ_HW_MAC_NUM)
2565 		return EINVAL;
2566 
2567 	if (enaddr == NULL) {
2568 		/* disable */
2569 		AQ_WRITE_REG_BIT(sc,
2570 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2571 		return 0;
2572 	}
2573 
2574 	h = (enaddr[0] <<  8) | (enaddr[1]);
2575 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2576 	    (enaddr[4] <<  8) | (enaddr[5]);
2577 
2578 	/* disable, set, and enable */
2579 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2580 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2581 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2582 	    RPF_L2UC_MSW_MACADDR_HI, h);
2583 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2584 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2585 
2586 	return 0;
2587 }
2588 
2589 static int
2590 aq_set_capability(struct aq_softc *sc)
2591 {
2592 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2593 	int ip4csum_tx =
2594 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2595 	int ip4csum_rx =
2596 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2597 	int l4csum_tx = ((ifp->if_capenable &
2598 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2599 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2600 	int l4csum_rx =
2601 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2602 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2603 	uint32_t lso =
2604 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2605 	   0 : 0xffffffff;
2606 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2607 	    0 : 0xffffffff;
2608 	uint32_t i, v;
2609 
2610 	/* TX checksums offloads*/
2611 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2612 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2613 
2614 	/* RX checksums offloads*/
2615 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2616 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2617 
2618 	/* LSO offloads*/
2619 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2620 
2621 #define AQ_B0_LRO_RXD_MAX	16
2622 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2623 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2624 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2625 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2626 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2627 		    RPO_LRO_LDES_MAX_MASK(i), v);
2628 	}
2629 
2630 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2631 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2632 	    RPO_LRO_INACTIVE_IVAL, 0);
2633 	/*
2634 	 * the LRO timebase divider is 5 uS (0x61a),
2635 	 * to get a maximum coalescing interval of 250 uS,
2636 	 * we need to multiply by 50(0x32) to get
2637 	 * the default value 250 uS
2638 	 */
2639 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2640 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2641 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2642 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2643 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2644 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2645 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2646 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2647 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2648 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2649 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2650 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2651 
2652 	return 0;
2653 }
2654 
2655 static int
2656 aq_set_filter(struct aq_softc *sc)
2657 {
2658 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2659 	struct ethercom *ec = &sc->sc_ethercom;
2660 	struct ether_multi *enm;
2661 	struct ether_multistep step;
2662 	int idx, error = 0;
2663 
2664 	if (ifp->if_flags & IFF_PROMISC) {
2665 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2666 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2667 		ec->ec_flags |= ETHER_F_ALLMULTI;
2668 		goto done;
2669 	}
2670 
2671 	/* clear all table */
2672 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2673 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2674 			continue;
2675 		aq_set_mac_addr(sc, idx, NULL);
2676 	}
2677 
2678 	/* don't accept all multicast */
2679 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2680 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2681 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2682 	    RPF_MCAST_FILTER_EN, 0);
2683 
2684 	idx = 0;
2685 	ETHER_LOCK(ec);
2686 	ETHER_FIRST_MULTI(step, ec, enm);
2687 	while (enm != NULL) {
2688 		if (idx == AQ_HW_MAC_OWN)
2689 			idx++;
2690 
2691 		if ((idx >= AQ_HW_MAC_NUM) ||
2692 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2693 			/*
2694 			 * too many filters.
2695 			 * fallback to accept all multicast addresses.
2696 			 */
2697 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2698 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2699 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2700 			    RPF_MCAST_FILTER_EN, 1);
2701 			ec->ec_flags |= ETHER_F_ALLMULTI;
2702 			ETHER_UNLOCK(ec);
2703 			goto done;
2704 		}
2705 
2706 		/* add a filter */
2707 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2708 
2709 		ETHER_NEXT_MULTI(step, enm);
2710 	}
2711 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2712 	ETHER_UNLOCK(ec);
2713 
2714  done:
2715 	return error;
2716 }
2717 
2718 static int
2719 aq_ifmedia_change(struct ifnet * const ifp)
2720 {
2721 	struct aq_softc *sc = ifp->if_softc;
2722 	aq_link_speed_t rate = AQ_LINK_NONE;
2723 	aq_link_fc_t fc = AQ_FC_NONE;
2724 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2725 
2726 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2727 		return EINVAL;
2728 
2729 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2730 	case IFM_AUTO:
2731 		rate = AQ_LINK_AUTO;
2732 		break;
2733 	case IFM_NONE:
2734 		rate = AQ_LINK_NONE;
2735 		break;
2736 	case IFM_100_TX:
2737 		rate = AQ_LINK_100M;
2738 		break;
2739 	case IFM_1000_T:
2740 		rate = AQ_LINK_1G;
2741 		break;
2742 	case IFM_2500_T:
2743 		rate = AQ_LINK_2G5;
2744 		break;
2745 	case IFM_5000_T:
2746 		rate = AQ_LINK_5G;
2747 		break;
2748 	case IFM_10G_T:
2749 		rate = AQ_LINK_10G;
2750 		break;
2751 	default:
2752 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2753 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2754 		return ENODEV;
2755 	}
2756 
2757 	if (sc->sc_media.ifm_media & IFM_FLOW)
2758 		fc = AQ_FC_ALL;
2759 
2760 	/* XXX: todo EEE */
2761 
2762 	/* re-initialize hardware with new parameters */
2763 	aq_set_linkmode(sc, rate, fc, eee);
2764 
2765 	return 0;
2766 }
2767 
2768 static void
2769 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2770 {
2771 	struct aq_softc *sc = ifp->if_softc;
2772 
2773 	/* update ifm_active */
2774 	ifmr->ifm_active = IFM_ETHER;
2775 	if (sc->sc_link_fc & AQ_FC_RX)
2776 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2777 	if (sc->sc_link_fc & AQ_FC_TX)
2778 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2779 
2780 	switch (sc->sc_link_rate) {
2781 	case AQ_LINK_100M:
2782 		/* XXX: need to detect fulldup or halfdup */
2783 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2784 		break;
2785 	case AQ_LINK_1G:
2786 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2787 		break;
2788 	case AQ_LINK_2G5:
2789 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2790 		break;
2791 	case AQ_LINK_5G:
2792 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2793 		break;
2794 	case AQ_LINK_10G:
2795 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2796 		break;
2797 	default:
2798 		ifmr->ifm_active |= IFM_NONE;
2799 		break;
2800 	}
2801 
2802 	/* update ifm_status */
2803 	ifmr->ifm_status = IFM_AVALID;
2804 	if (sc->sc_link_rate != AQ_LINK_NONE)
2805 		ifmr->ifm_status |= IFM_ACTIVE;
2806 }
2807 
2808 static void
2809 aq_initmedia(struct aq_softc *sc)
2810 {
2811 #define IFMEDIA_ETHER_ADD(sc, media)	\
2812 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2813 
2814 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2815 	if (sc->sc_available_rates & AQ_LINK_100M) {
2816 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2817 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2818 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2819 	}
2820 	if (sc->sc_available_rates & AQ_LINK_1G) {
2821 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2822 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2823 	}
2824 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2825 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2826 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2827 	}
2828 	if (sc->sc_available_rates & AQ_LINK_5G) {
2829 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2830 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2831 	}
2832 	if (sc->sc_available_rates & AQ_LINK_10G) {
2833 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2834 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2835 	}
2836 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2837 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2838 
2839 	/* default: auto without flowcontrol */
2840 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2841 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2842 }
2843 
2844 static int
2845 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2846     aq_link_eee_t eee)
2847 {
2848 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2849 }
2850 
2851 static int
2852 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2853    aq_link_eee_t *eee)
2854 {
2855 	aq_hw_fw_mpi_state_t mode;
2856 	int error;
2857 
2858 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2859 	if (error != 0)
2860 		return error;
2861 	if (mode != MPI_INIT)
2862 		return ENXIO;
2863 
2864 	return 0;
2865 }
2866 
2867 static void
2868 aq_hw_init_tx_path(struct aq_softc *sc)
2869 {
2870 	/* Tx TC/RSS number config */
2871 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2872 
2873 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2874 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2875 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2876 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2877 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2878 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2879 
2880 	/* misc */
2881 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2882 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2883 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2884 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2885 
2886 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2887 }
2888 
2889 static void
2890 aq_hw_init_rx_path(struct aq_softc *sc)
2891 {
2892 	int i;
2893 
2894 	/* clear setting */
2895 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2896 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2897 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2898 	for (i = 0; i < 32; i++) {
2899 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2900 		   RPF_ETHERTYPE_FILTER_EN, 0);
2901 	}
2902 
2903 	if (sc->sc_rss_enable) {
2904 		/* Rx TC/RSS number config */
2905 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2906 
2907 		/* Rx flow control */
2908 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2909 
2910 		/* RSS Ring selection */
2911 		switch (sc->sc_nqueues) {
2912 		case 2:
2913 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2914 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2915 			break;
2916 		case 4:
2917 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2918 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2919 			break;
2920 		case 8:
2921 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2922 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2923 			break;
2924 		}
2925 	}
2926 
2927 	/* L2 and Multicast filters */
2928 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2929 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2930 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2931 		    RPF_ACTION_HOST);
2932 	}
2933 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2934 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2935 
2936 	/* Vlan filters */
2937 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2938 	    ETHERTYPE_QINQ);
2939 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2940 	    ETHERTYPE_VLAN);
2941 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2942 
2943 	if (sc->sc_features & FEATURES_REV_B) {
2944 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2945 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2946 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2947 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2948 	}
2949 
2950 	/* misc */
2951 	if (sc->sc_features & FEATURES_RPF2)
2952 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2953 	else
2954 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2955 
2956 	/*
2957 	 * XXX: RX_TCP_RSS_HASH_REG:
2958 	 *  linux   set 0x000f0000
2959 	 *  freebsd set 0x000f001e
2960 	 */
2961 	/* RSS hash type set for IP/TCP */
2962 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2963 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2964 
2965 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2966 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2967 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2968 
2969 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2970 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2971 }
2972 
2973 static void
2974 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2975 {
2976 	int i;
2977 
2978 	if (sc->sc_intr_moderation_enable) {
2979 		unsigned int tx_min, rx_min;	/* 0-255 */
2980 		unsigned int tx_max, rx_max;	/* 0-511? */
2981 
2982 		switch (sc->sc_link_rate) {
2983 		case AQ_LINK_100M:
2984 			tx_min = 0x4f;
2985 			tx_max = 0xff;
2986 			rx_min = 0x04;
2987 			rx_max = 0x50;
2988 			break;
2989 		case AQ_LINK_1G:
2990 		default:
2991 			tx_min = 0x4f;
2992 			tx_max = 0xff;
2993 			rx_min = 0x30;
2994 			rx_max = 0x80;
2995 			break;
2996 		case AQ_LINK_2G5:
2997 			tx_min = 0x4f;
2998 			tx_max = 0xff;
2999 			rx_min = 0x18;
3000 			rx_max = 0xe0;
3001 			break;
3002 		case AQ_LINK_5G:
3003 			tx_min = 0x4f;
3004 			tx_max = 0xff;
3005 			rx_min = 0x0c;
3006 			rx_max = 0x70;
3007 			break;
3008 		case AQ_LINK_10G:
3009 			tx_min = 0x4f;
3010 			tx_max = 0x1ff;
3011 			rx_min = 0x06;	/* freebsd use 80 */
3012 			rx_max = 0x38;	/* freebsd use 120 */
3013 			break;
3014 		}
3015 
3016 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3017 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3018 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3019 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3020 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3021 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3022 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3023 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3024 
3025 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3026 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3027 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3028 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3029 			    TX_INTR_MODERATION_CTL_EN);
3030 		}
3031 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3032 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3033 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3034 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3035 			    RX_INTR_MODERATION_CTL_EN);
3036 		}
3037 
3038 	} else {
3039 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3040 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3041 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3042 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3043 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3044 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3045 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3046 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3047 
3048 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3049 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3050 		}
3051 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3052 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3053 		}
3054 	}
3055 }
3056 
3057 static void
3058 aq_hw_qos_set(struct aq_softc *sc)
3059 {
3060 	uint32_t tc = 0;
3061 	uint32_t buff_size;
3062 
3063 	/* TPS Descriptor rate init */
3064 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3065 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3066 
3067 	/* TPS VM init */
3068 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3069 
3070 	/* TPS TC credits init */
3071 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3072 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3073 
3074 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3075 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3076 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3077 	    TPS_DATA_TCT_WEIGHT, 0x64);
3078 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3079 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3080 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3081 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3082 
3083 	/* Tx buf size */
3084 	tc = 0;
3085 	buff_size = AQ_HW_TXBUF_MAX;
3086 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3087 	    buff_size);
3088 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3089 	    (buff_size * (1024 / 32) * 66) / 100);
3090 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3091 	    (buff_size * (1024 / 32) * 50) / 100);
3092 
3093 	/* QoS Rx buf size per TC */
3094 	tc = 0;
3095 	buff_size = AQ_HW_RXBUF_MAX;
3096 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3097 	    buff_size);
3098 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3099 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3100 	    (buff_size * (1024 / 32) * 66) / 100);
3101 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3102 	    (buff_size * (1024 / 32) * 50) / 100);
3103 
3104 	/* QoS 802.1p priority -> TC mapping */
3105 	int i_priority;
3106 	for (i_priority = 0; i_priority < 8; i_priority++) {
3107 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3108 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3109 	}
3110 }
3111 
3112 /* called once from aq_attach */
3113 static int
3114 aq_init_rss(struct aq_softc *sc)
3115 {
3116 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3117 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3118 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3119 	unsigned int i;
3120 	int error;
3121 
3122 	/* initialize rss key */
3123 	rss_getkey((uint8_t *)rss_key);
3124 
3125 	/* hash to ring table */
3126 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3127 		rss_table[i] = i % sc->sc_nqueues;
3128 	}
3129 
3130 	/*
3131 	 * set rss key
3132 	 */
3133 	for (i = 0; i < __arraycount(rss_key); i++) {
3134 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3135 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3136 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3137 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3138 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3139 		    RPF_RSS_KEY_WR_EN, 1);
3140 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3141 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3142 		if (error != 0) {
3143 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3144 			    __func__);
3145 			goto rss_set_timeout;
3146 		}
3147 	}
3148 
3149 	/*
3150 	 * set rss indirection table
3151 	 *
3152 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3153 	 * we'll make it by __BITMAP(3) macros.
3154 	 */
3155 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3156 	__BITMAP_ZERO(&bit3x64);
3157 
3158 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3159 	do {							\
3160 		if (val & 1) {					\
3161 			__BITMAP_SET((idx) * 3, (bitmap));	\
3162 		} else {					\
3163 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3164 		}						\
3165 		if (val & 2) {					\
3166 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3167 		} else {					\
3168 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3169 		}						\
3170 		if (val & 4) {					\
3171 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3172 		} else {					\
3173 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3174 		}						\
3175 	} while (0 /* CONSTCOND */)
3176 
3177 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3178 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3179 	}
3180 
3181 	/* write 192bit data in steps of 16bit */
3182 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3183 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3184 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3185 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3186 		    RPF_RSS_REDIR_ADDR, i);
3187 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3188 		    RPF_RSS_REDIR_WR_EN, 1);
3189 
3190 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3191 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3192 		if (error != 0)
3193 			break;
3194 	}
3195 
3196  rss_set_timeout:
3197 	return error;
3198 }
3199 
3200 static void
3201 aq_hw_l3_filter_set(struct aq_softc *sc)
3202 {
3203 	int i;
3204 
3205 	/* clear all filter */
3206 	for (i = 0; i < 8; i++) {
3207 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3208 		    RPF_L3_FILTER_L4_EN, 0);
3209 	}
3210 }
3211 
3212 static void
3213 aq_set_vlan_filters(struct aq_softc *sc)
3214 {
3215 	struct ethercom *ec = &sc->sc_ethercom;
3216 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3217 	struct vlanid_list *vlanidp;
3218 	int i;
3219 
3220 	ETHER_LOCK(ec);
3221 
3222 	/* disable all vlan filters */
3223 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3224 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3225 
3226 	/* count VID */
3227 	i = 0;
3228 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3229 		i++;
3230 
3231 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3232 	    (ifp->if_flags & IFF_PROMISC) ||
3233 	    (i > RPF_VLAN_MAX_FILTERS)) {
3234 		/*
3235 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3236 		 * must receive all VID
3237 		 */
3238 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3239 		    RPF_VLAN_MODE_PROMISC, 1);
3240 		goto done;
3241 	}
3242 
3243 	/* receive only selected VID */
3244 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3245 	i = 0;
3246 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3247 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3248 		    RPF_VLAN_FILTER_EN, 1);
3249 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3250 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3251 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3252 		    RPF_VLAN_FILTER_RXQ, 0);
3253 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3254 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3255 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3256 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3257 		i++;
3258 	}
3259 
3260  done:
3261 	ETHER_UNLOCK(ec);
3262 }
3263 
3264 static int
3265 aq_hw_init(struct aq_softc *sc)
3266 {
3267 	uint32_t v;
3268 
3269 	/* Force limit MRRS on RDM/TDM to 2K */
3270 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3271 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3272 
3273 	/*
3274 	 * TX DMA total request limit. B0 hardware is not capable to
3275 	 * handle more than (8K-MRRS) incoming DMA data.
3276 	 * Value 24 in 256byte units
3277 	 */
3278 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3279 
3280 	aq_hw_init_tx_path(sc);
3281 	aq_hw_init_rx_path(sc);
3282 
3283 	aq_hw_interrupt_moderation_set(sc);
3284 
3285 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3286 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3287 
3288 	aq_hw_qos_set(sc);
3289 
3290 	/* Enable interrupt */
3291 	int irqmode;
3292 	if (sc->sc_msix)
3293 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3294 	else
3295 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3296 
3297 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3298 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3299 	    sc->sc_msix ? 1 : 0);
3300 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3301 
3302 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3303 
3304 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3305 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3306 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3307 	);
3308 
3309 	/* link interrupt */
3310 	if (!sc->sc_msix)
3311 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3312 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3313 	    __BIT(7) | sc->sc_linkstat_irq);
3314 
3315 	return 0;
3316 }
3317 
3318 static int
3319 aq_update_link_status(struct aq_softc *sc)
3320 {
3321 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3322 	aq_link_speed_t rate = AQ_LINK_NONE;
3323 	aq_link_fc_t fc = AQ_FC_NONE;
3324 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3325 	unsigned int speed;
3326 	int changed = 0;
3327 
3328 	aq_get_linkmode(sc, &rate, &fc, &eee);
3329 
3330 	if (sc->sc_link_rate != rate)
3331 		changed = 1;
3332 	if (sc->sc_link_fc != fc)
3333 		changed = 1;
3334 	if (sc->sc_link_eee != eee)
3335 		changed = 1;
3336 
3337 	if (changed) {
3338 		switch (rate) {
3339 		case AQ_LINK_100M:
3340 			speed = 100;
3341 			break;
3342 		case AQ_LINK_1G:
3343 			speed = 1000;
3344 			break;
3345 		case AQ_LINK_2G5:
3346 			speed = 2500;
3347 			break;
3348 		case AQ_LINK_5G:
3349 			speed = 5000;
3350 			break;
3351 		case AQ_LINK_10G:
3352 			speed = 10000;
3353 			break;
3354 		case AQ_LINK_NONE:
3355 		default:
3356 			speed = 0;
3357 			break;
3358 		}
3359 
3360 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3361 			/* link DOWN -> UP */
3362 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3363 			    speed);
3364 			if_link_state_change(ifp, LINK_STATE_UP);
3365 		} else if (rate == AQ_LINK_NONE) {
3366 			/* link UP -> DOWN */
3367 			device_printf(sc->sc_dev, "link is DOWN\n");
3368 			if_link_state_change(ifp, LINK_STATE_DOWN);
3369 		} else {
3370 			device_printf(sc->sc_dev,
3371 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3372 			    speed, fc, eee);
3373 		}
3374 
3375 		sc->sc_link_rate = rate;
3376 		sc->sc_link_fc = fc;
3377 		sc->sc_link_eee = eee;
3378 
3379 		/* update interrupt timing according to new link speed */
3380 		aq_hw_interrupt_moderation_set(sc);
3381 	}
3382 
3383 	return changed;
3384 }
3385 
3386 #ifdef AQ_EVENT_COUNTERS
3387 static void
3388 aq_update_statistics(struct aq_softc *sc)
3389 {
3390 	int prev = sc->sc_statistics_idx;
3391 	int cur = prev ^ 1;
3392 
3393 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3394 
3395 	/*
3396 	 * aq's internal statistics counter is 32bit.
3397 	 * cauculate delta, and add to evcount
3398 	 */
3399 #define ADD_DELTA(cur, prev, name)				\
3400 	do {							\
3401 		uint32_t n;					\
3402 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3403 		    sc->sc_statistics[prev].name);		\
3404 		if (n != 0) {					\
3405 			AQ_EVCNT_ADD(sc, name, n);		\
3406 		}						\
3407 	} while (/*CONSTCOND*/0);
3408 
3409 	ADD_DELTA(cur, prev, uprc);
3410 	ADD_DELTA(cur, prev, mprc);
3411 	ADD_DELTA(cur, prev, bprc);
3412 	ADD_DELTA(cur, prev, prc);
3413 	ADD_DELTA(cur, prev, erpr);
3414 	ADD_DELTA(cur, prev, uptc);
3415 	ADD_DELTA(cur, prev, mptc);
3416 	ADD_DELTA(cur, prev, bptc);
3417 	ADD_DELTA(cur, prev, ptc);
3418 	ADD_DELTA(cur, prev, erpt);
3419 	ADD_DELTA(cur, prev, mbtc);
3420 	ADD_DELTA(cur, prev, bbtc);
3421 	ADD_DELTA(cur, prev, mbrc);
3422 	ADD_DELTA(cur, prev, bbrc);
3423 	ADD_DELTA(cur, prev, ubrc);
3424 	ADD_DELTA(cur, prev, ubtc);
3425 	ADD_DELTA(cur, prev, dpc);
3426 	ADD_DELTA(cur, prev, cprc);
3427 
3428 	sc->sc_statistics_idx = cur;
3429 }
3430 #endif /* AQ_EVENT_COUNTERS */
3431 
3432 /* allocate and map one DMA block */
3433 static int
3434 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3435     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3436 {
3437 	int nsegs, error;
3438 
3439 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3440 	    1, &nsegs, 0)) != 0) {
3441 		aprint_error_dev(sc->sc_dev,
3442 		    "unable to allocate DMA buffer, error=%d\n", error);
3443 		goto fail_alloc;
3444 	}
3445 
3446 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3447 	    BUS_DMA_COHERENT)) != 0) {
3448 		aprint_error_dev(sc->sc_dev,
3449 		    "unable to map DMA buffer, error=%d\n", error);
3450 		goto fail_map;
3451 	}
3452 
3453 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3454 	    0, mapp)) != 0) {
3455 		aprint_error_dev(sc->sc_dev,
3456 		    "unable to create DMA map, error=%d\n", error);
3457 		goto fail_create;
3458 	}
3459 
3460 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3461 	    0)) != 0) {
3462 		aprint_error_dev(sc->sc_dev,
3463 		    "unable to load DMA map, error=%d\n", error);
3464 		goto fail_load;
3465 	}
3466 
3467 	*sizep = size;
3468 	return 0;
3469 
3470  fail_load:
3471 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3472 	*mapp = NULL;
3473  fail_create:
3474 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3475 	*addrp = NULL;
3476  fail_map:
3477 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3478 	memset(seg, 0, sizeof(*seg));
3479  fail_alloc:
3480 	*sizep = 0;
3481 	return error;
3482 }
3483 
3484 static void
3485 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3486     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3487 {
3488 	if (*mapp != NULL) {
3489 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3490 		*mapp = NULL;
3491 	}
3492 	if (*addrp != NULL) {
3493 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3494 		*addrp = NULL;
3495 	}
3496 	if (*sizep != 0) {
3497 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3498 		memset(seg, 0, sizeof(*seg));
3499 		*sizep = 0;
3500 	}
3501 }
3502 
3503 static int
3504 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3505 {
3506 	int i, error;
3507 
3508 	/* allocate tx descriptors */
3509 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3510 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3511 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3512 	if (error != 0)
3513 		return error;
3514 
3515 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3516 
3517 	/* fill tx ring with dmamap */
3518 	for (i = 0; i < AQ_TXD_NUM; i++) {
3519 #define AQ_MAXDMASIZE	(16 * 1024)
3520 #define AQ_NTXSEGS	32
3521 		/* XXX: TODO: error check */
3522 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3523 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3524 	}
3525 	return 0;
3526 }
3527 
3528 static void
3529 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3530 {
3531 	int i;
3532 
3533 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3534 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3535 
3536 	for (i = 0; i < AQ_TXD_NUM; i++) {
3537 		if (txring->txr_mbufs[i].dmamap != NULL) {
3538 			if (txring->txr_mbufs[i].m != NULL) {
3539 				bus_dmamap_unload(sc->sc_dmat,
3540 				    txring->txr_mbufs[i].dmamap);
3541 				m_freem(txring->txr_mbufs[i].m);
3542 				txring->txr_mbufs[i].m = NULL;
3543 			}
3544 			bus_dmamap_destroy(sc->sc_dmat,
3545 			    txring->txr_mbufs[i].dmamap);
3546 			txring->txr_mbufs[i].dmamap = NULL;
3547 		}
3548 	}
3549 }
3550 
3551 static int
3552 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3553 {
3554 	int i, error;
3555 
3556 	/* allocate rx descriptors */
3557 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3558 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3559 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3560 	if (error != 0)
3561 		return error;
3562 
3563 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3564 
3565 	/* fill rxring with dmamaps */
3566 	for (i = 0; i < AQ_RXD_NUM; i++) {
3567 		rxring->rxr_mbufs[i].m = NULL;
3568 		/* XXX: TODO: error check */
3569 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3570 		    &rxring->rxr_mbufs[i].dmamap);
3571 	}
3572 	return 0;
3573 }
3574 
3575 static void
3576 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3577 {
3578 	int i;
3579 
3580 	/* free all mbufs allocated for RX */
3581 	for (i = 0; i < AQ_RXD_NUM; i++) {
3582 		if (rxring->rxr_mbufs[i].m != NULL) {
3583 			bus_dmamap_unload(sc->sc_dmat,
3584 			    rxring->rxr_mbufs[i].dmamap);
3585 			m_freem(rxring->rxr_mbufs[i].m);
3586 			rxring->rxr_mbufs[i].m = NULL;
3587 		}
3588 	}
3589 }
3590 
3591 static void
3592 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3593 {
3594 	int i;
3595 
3596 	/* free all mbufs and dmamaps */
3597 	aq_rxdrain(sc, rxring);
3598 	for (i = 0; i < AQ_RXD_NUM; i++) {
3599 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3600 			bus_dmamap_destroy(sc->sc_dmat,
3601 			    rxring->rxr_mbufs[i].dmamap);
3602 			rxring->rxr_mbufs[i].dmamap = NULL;
3603 		}
3604 	}
3605 
3606 	/* free RX descriptor */
3607 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3608 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3609 }
3610 
3611 static void
3612 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3613     struct mbuf *m)
3614 {
3615 	int error;
3616 
3617 	/* if mbuf already exists, unload and free */
3618 	if (rxring->rxr_mbufs[idx].m != NULL) {
3619 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3620 		m_freem(rxring->rxr_mbufs[idx].m);
3621 		rxring->rxr_mbufs[idx].m = NULL;
3622 	}
3623 
3624 	rxring->rxr_mbufs[idx].m = m;
3625 
3626 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3627 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3628 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3629 	if (error) {
3630 		device_printf(sc->sc_dev,
3631 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3632 		panic("%s: unable to load rx DMA map. error=%d",
3633 		    __func__, error);
3634 	}
3635 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3636 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3637 }
3638 
3639 static inline void
3640 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3641 {
3642 	/* refill rxdesc, and sync */
3643 	rxring->rxr_rxdesc[idx].read.buf_addr =
3644 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3645 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3646 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3647 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3648 	    BUS_DMASYNC_PREWRITE);
3649 }
3650 
3651 static struct mbuf *
3652 aq_alloc_mbuf(void)
3653 {
3654 	struct mbuf *m;
3655 
3656 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3657 	if (m == NULL)
3658 		return NULL;
3659 
3660 	MCLGET(m, M_DONTWAIT);
3661 	if ((m->m_flags & M_EXT) == 0) {
3662 		m_freem(m);
3663 		return NULL;
3664 	}
3665 
3666 	return m;
3667 }
3668 
3669 /* allocate mbuf and unload dmamap */
3670 static int
3671 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3672 {
3673 	struct mbuf *m;
3674 
3675 	m = aq_alloc_mbuf();
3676 	if (m == NULL)
3677 		return ENOBUFS;
3678 
3679 	aq_rxring_setmbuf(sc, rxring, idx, m);
3680 	return 0;
3681 }
3682 
3683 static int
3684 aq_txrx_rings_alloc(struct aq_softc *sc)
3685 {
3686 	int n, error;
3687 
3688 	for (n = 0; n < sc->sc_nqueues; n++) {
3689 		sc->sc_queue[n].sc = sc;
3690 		sc->sc_queue[n].txring.txr_sc = sc;
3691 		sc->sc_queue[n].txring.txr_index = n;
3692 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3693 		    IPL_NET);
3694 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3695 		if (error != 0)
3696 			goto failure;
3697 
3698 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3699 		if (error != 0)
3700 			goto failure;
3701 
3702 		sc->sc_queue[n].rxring.rxr_sc = sc;
3703 		sc->sc_queue[n].rxring.rxr_index = n;
3704 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3705 		   IPL_NET);
3706 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3707 		if (error != 0)
3708 			break;
3709 	}
3710 
3711  failure:
3712 	return error;
3713 }
3714 
3715 static void
3716 aq_txrx_rings_free(struct aq_softc *sc)
3717 {
3718 	int n;
3719 
3720 	for (n = 0; n < sc->sc_nqueues; n++) {
3721 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3722 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3723 
3724 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3725 
3726 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3727 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3728 	}
3729 }
3730 
3731 static int
3732 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3733 {
3734 	int error = 0;
3735 	txring->txr_softint = NULL;
3736 
3737 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3738 	if (txring->txr_pcq == NULL) {
3739 		aprint_error_dev(sc->sc_dev,
3740 		    "unable to allocate pcq for TXring[%d]\n",
3741 		    txring->txr_index);
3742 		error = ENOMEM;
3743 		goto done;
3744 	}
3745 
3746 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3747 	    aq_deferred_transmit, txring);
3748 	if (txring->txr_softint == NULL) {
3749 		aprint_error_dev(sc->sc_dev,
3750 		    "unable to establish softint for TXring[%d]\n",
3751 		    txring->txr_index);
3752 		error = ENOENT;
3753 	}
3754 
3755  done:
3756 	return error;
3757 }
3758 
3759 static void
3760 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3761 {
3762 	struct mbuf *m;
3763 
3764 	if (txring->txr_softint != NULL) {
3765 		softint_disestablish(txring->txr_softint);
3766 		txring->txr_softint = NULL;
3767 	}
3768 
3769 	if (txring->txr_pcq != NULL) {
3770 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3771 			m_freem(m);
3772 		pcq_destroy(txring->txr_pcq);
3773 		txring->txr_pcq = NULL;
3774 	}
3775 }
3776 
3777 #if NSYSMON_ENVSYS > 0
3778 static void
3779 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3780 {
3781 	struct aq_softc *sc;
3782 	uint32_t temp;
3783 	int error;
3784 
3785 	sc = sme->sme_cookie;
3786 
3787 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3788 	if (error == 0) {
3789 		edata->value_cur = temp;
3790 		edata->state = ENVSYS_SVALID;
3791 	} else {
3792 		edata->state = ENVSYS_SINVALID;
3793 	}
3794 }
3795 #endif
3796 
3797 static void
3798 aq_tick(void *arg)
3799 {
3800 	struct aq_softc *sc = arg;
3801 
3802 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3803 		sc->sc_detect_linkstat = false;
3804 		aq_update_link_status(sc);
3805 	}
3806 
3807 #ifdef AQ_EVENT_COUNTERS
3808 	if (sc->sc_poll_statistics)
3809 		aq_update_statistics(sc);
3810 #endif
3811 
3812 	if (sc->sc_poll_linkstat
3813 #ifdef AQ_EVENT_COUNTERS
3814 	    || sc->sc_poll_statistics
3815 #endif
3816 	    ) {
3817 		callout_schedule(&sc->sc_tick_ch, hz);
3818 	}
3819 }
3820 
3821 /* interrupt enable/disable */
3822 static void
3823 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3824 {
3825 	uint32_t imask = 0;
3826 	int i;
3827 
3828 	if (txrx) {
3829 		for (i = 0; i < sc->sc_nqueues; i++) {
3830 			imask |= __BIT(sc->sc_tx_irq[i]);
3831 			imask |= __BIT(sc->sc_rx_irq[i]);
3832 		}
3833 	}
3834 
3835 	if (link)
3836 		imask |= __BIT(sc->sc_linkstat_irq);
3837 
3838 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3839 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3840 }
3841 
3842 static int
3843 aq_legacy_intr(void *arg)
3844 {
3845 	struct aq_softc *sc = arg;
3846 	uint32_t status;
3847 	int nintr = 0;
3848 
3849 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3850 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3851 
3852 	if (status & __BIT(sc->sc_linkstat_irq)) {
3853 		sc->sc_detect_linkstat = true;
3854 		callout_schedule(&sc->sc_tick_ch, 0);
3855 		nintr++;
3856 	}
3857 
3858 	if (status & __BIT(sc->sc_rx_irq[0])) {
3859 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3860 	}
3861 
3862 	if (status & __BIT(sc->sc_tx_irq[0])) {
3863 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3864 	}
3865 
3866 	return nintr;
3867 }
3868 
3869 static int
3870 aq_txrx_intr(void *arg)
3871 {
3872 	struct aq_queue *queue = arg;
3873 	struct aq_softc *sc = queue->sc;
3874 	struct aq_txring *txring = &queue->txring;
3875 	struct aq_rxring *rxring = &queue->rxring;
3876 	uint32_t status;
3877 	int nintr = 0;
3878 	int txringidx, rxringidx, txirq, rxirq;
3879 
3880 	txringidx = txring->txr_index;
3881 	rxringidx = rxring->rxr_index;
3882 	txirq = sc->sc_tx_irq[txringidx];
3883 	rxirq = sc->sc_rx_irq[rxringidx];
3884 
3885 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3886 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3887 		/* stray interrupt? */
3888 		return 0;
3889 	}
3890 
3891 	nintr += aq_rx_intr(rxring);
3892 	nintr += aq_tx_intr(txring);
3893 
3894 	return nintr;
3895 }
3896 
3897 static int
3898 aq_link_intr(void *arg)
3899 {
3900 	struct aq_softc *sc = arg;
3901 	uint32_t status;
3902 	int nintr = 0;
3903 
3904 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3905 	if (status & __BIT(sc->sc_linkstat_irq)) {
3906 		sc->sc_detect_linkstat = true;
3907 		callout_schedule(&sc->sc_tick_ch, 0);
3908 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3909 		    __BIT(sc->sc_linkstat_irq));
3910 		nintr++;
3911 	}
3912 
3913 	return nintr;
3914 }
3915 
3916 static void
3917 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3918 {
3919 	const int ringidx = txring->txr_index;
3920 	int i;
3921 
3922 	mutex_enter(&txring->txr_mutex);
3923 
3924 	txring->txr_prodidx = 0;
3925 	txring->txr_considx = 0;
3926 	txring->txr_nfree = AQ_TXD_NUM;
3927 	txring->txr_active = false;
3928 
3929 	/* free mbufs untransmitted */
3930 	for (i = 0; i < AQ_TXD_NUM; i++) {
3931 		if (txring->txr_mbufs[i].m != NULL) {
3932 			m_freem(txring->txr_mbufs[i].m);
3933 			txring->txr_mbufs[i].m = NULL;
3934 		}
3935 	}
3936 
3937 	/* disable DMA */
3938 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3939 
3940 	if (start) {
3941 		/* TX descriptor physical address */
3942 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3943 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3944 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3945 		    (uint32_t)((uint64_t)paddr >> 32));
3946 
3947 		/* TX descriptor size */
3948 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3949 		    AQ_TXD_NUM / 8);
3950 
3951 		/* reload TAIL pointer */
3952 		txring->txr_prodidx = txring->txr_considx =
3953 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3954 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3955 
3956 		/* Mapping interrupt vector */
3957 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3958 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3959 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3960 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3961 
3962 		/* enable DMA */
3963 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3964 		    TX_DMA_DESC_EN, 1);
3965 
3966 		const int cpuid = 0;	/* XXX? */
3967 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3968 		    TDM_DCAD_CPUID, cpuid);
3969 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3970 		    TDM_DCAD_CPUID_EN, 0);
3971 
3972 		txring->txr_active = true;
3973 	}
3974 
3975 	mutex_exit(&txring->txr_mutex);
3976 }
3977 
3978 static int
3979 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
3980 {
3981 	const int ringidx = rxring->rxr_index;
3982 	int i;
3983 	int error = 0;
3984 
3985 	mutex_enter(&rxring->rxr_mutex);
3986 	rxring->rxr_active = false;
3987 
3988 	/* disable DMA */
3989 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
3990 
3991 	/* free all RX mbufs */
3992 	aq_rxdrain(sc, rxring);
3993 
3994 	if (start) {
3995 		for (i = 0; i < AQ_RXD_NUM; i++) {
3996 			error = aq_rxring_add(sc, rxring, i);
3997 			if (error != 0) {
3998 				aq_rxdrain(sc, rxring);
3999 				return error;
4000 			}
4001 			aq_rxring_reset_desc(sc, rxring, i);
4002 		}
4003 
4004 		/* RX descriptor physical address */
4005 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4006 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4007 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4008 		    (uint32_t)((uint64_t)paddr >> 32));
4009 
4010 		/* RX descriptor size */
4011 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4012 		    AQ_RXD_NUM / 8);
4013 
4014 		/* maximum receive frame size */
4015 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4016 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4017 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4018 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4019 
4020 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4021 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4022 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4023 		    RX_DMA_DESC_VLAN_STRIP,
4024 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4025 		    1 : 0);
4026 
4027 		/*
4028 		 * reload TAIL pointer, and update readidx
4029 		 * (HEAD pointer cannot write)
4030 		 */
4031 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4032 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4033 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4034 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4035 
4036 		/* Rx ring set mode */
4037 
4038 		/* Mapping interrupt vector */
4039 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4040 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4041 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4042 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4043 
4044 		const int cpuid = 0;	/* XXX? */
4045 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4046 		    RX_DMA_DCAD_CPUID, cpuid);
4047 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4048 		    RX_DMA_DCAD_DESC_EN, 0);
4049 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4050 		    RX_DMA_DCAD_HEADER_EN, 0);
4051 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4052 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4053 
4054 		/* enable DMA. start receiving */
4055 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4056 		    RX_DMA_DESC_EN, 1);
4057 
4058 		rxring->rxr_active = true;
4059 	}
4060 
4061 	mutex_exit(&rxring->rxr_mutex);
4062 	return error;
4063 }
4064 
4065 #define TXRING_NEXTIDX(idx)	\
4066 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4067 #define RXRING_NEXTIDX(idx)	\
4068 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4069 
4070 static int
4071 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4072 {
4073 	bus_dmamap_t map;
4074 	struct mbuf *m = *mp;
4075 	uint32_t ctl1, ctl1_ctx, ctl2;
4076 	int idx, i, error;
4077 
4078 	idx = txring->txr_prodidx;
4079 	map = txring->txr_mbufs[idx].dmamap;
4080 
4081 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4082 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4083 	if (error == EFBIG) {
4084 		struct mbuf *n;
4085 		n = m_defrag(m, M_DONTWAIT);
4086 		if (n == NULL)
4087 			return EFBIG;
4088 		/* m_defrag() preserve m */
4089 		KASSERT(n == m);
4090 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4091 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4092 	}
4093 	if (error != 0)
4094 		return error;
4095 
4096 	/*
4097 	 * check spaces of free descriptors.
4098 	 * +1 is additional descriptor for context (vlan, etc,.)
4099 	 */
4100 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4101 		device_printf(sc->sc_dev,
4102 		    "TX: not enough descriptors left %d for %d segs\n",
4103 		    txring->txr_nfree, map->dm_nsegs + 1);
4104 		bus_dmamap_unload(sc->sc_dmat, map);
4105 		return ENOBUFS;
4106 	}
4107 
4108 	/* sync dma for mbuf */
4109 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4110 	    BUS_DMASYNC_PREWRITE);
4111 
4112 	ctl1_ctx = 0;
4113 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4114 
4115 	if (vlan_has_tag(m)) {
4116 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4117 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4118 
4119 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4120 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4121 
4122 		/* fill context descriptor and forward index */
4123 		txring->txr_txdesc[idx].buf_addr = 0;
4124 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4125 		txring->txr_txdesc[idx].ctl2 = 0;
4126 
4127 		idx = TXRING_NEXTIDX(idx);
4128 		txring->txr_nfree--;
4129 	}
4130 
4131 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4132 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4133 	if (m->m_pkthdr.csum_flags &
4134 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4135 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4136 	}
4137 
4138 	/* fill descriptor(s) */
4139 	for (i = 0; i < map->dm_nsegs; i++) {
4140 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4141 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4142 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4143 
4144 		if (i == 0) {
4145 			/* remember mbuf of these descriptors */
4146 			txring->txr_mbufs[idx].m = m;
4147 		} else {
4148 			txring->txr_mbufs[idx].m = NULL;
4149 		}
4150 
4151 		if (i == map->dm_nsegs - 1) {
4152 			/* last segment, mark an EndOfPacket, and cause intr */
4153 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4154 		}
4155 
4156 		txring->txr_txdesc[idx].buf_addr =
4157 		    htole64(map->dm_segs[i].ds_addr);
4158 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4159 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4160 
4161 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4162 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4163 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4164 
4165 		idx = TXRING_NEXTIDX(idx);
4166 		txring->txr_nfree--;
4167 	}
4168 
4169 	txring->txr_prodidx = idx;
4170 
4171 	return 0;
4172 }
4173 
4174 static int
4175 aq_tx_intr(void *arg)
4176 {
4177 	struct aq_txring *txring = arg;
4178 	struct aq_softc *sc = txring->txr_sc;
4179 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4180 	struct mbuf *m;
4181 	const int ringidx = txring->txr_index;
4182 	unsigned int idx, hw_head, n = 0;
4183 
4184 	mutex_enter(&txring->txr_mutex);
4185 
4186 	if (!txring->txr_active)
4187 		goto tx_intr_done;
4188 
4189 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4190 	    TX_DMA_DESC_HEAD_PTR);
4191 	if (hw_head == txring->txr_considx) {
4192 		goto tx_intr_done;
4193 	}
4194 
4195 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4196 
4197 	for (idx = txring->txr_considx; idx != hw_head;
4198 	    idx = TXRING_NEXTIDX(idx), n++) {
4199 
4200 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4201 			bus_dmamap_unload(sc->sc_dmat,
4202 			    txring->txr_mbufs[idx].dmamap);
4203 
4204 			if_statinc_ref(nsr, if_opackets);
4205 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4206 			if (m->m_flags & M_MCAST)
4207 				if_statinc_ref(nsr, if_omcasts);
4208 
4209 			m_freem(m);
4210 			txring->txr_mbufs[idx].m = NULL;
4211 		}
4212 
4213 		txring->txr_nfree++;
4214 	}
4215 	txring->txr_considx = idx;
4216 
4217 	IF_STAT_PUTREF(ifp);
4218 
4219 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4220 		ifp->if_flags &= ~IFF_OACTIVE;
4221 
4222 	/* no more pending TX packet, cancel watchdog */
4223 	if (txring->txr_nfree >= AQ_TXD_NUM)
4224 		ifp->if_timer = 0;
4225 
4226  tx_intr_done:
4227 	mutex_exit(&txring->txr_mutex);
4228 
4229 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4230 	return n;
4231 }
4232 
4233 static int
4234 aq_rx_intr(void *arg)
4235 {
4236 	struct aq_rxring *rxring = arg;
4237 	struct aq_softc *sc = rxring->rxr_sc;
4238 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4239 	const int ringidx = rxring->rxr_index;
4240 	aq_rx_desc_t *rxd;
4241 	struct mbuf *m, *m0, *mprev, *new_m;
4242 	uint32_t rxd_type, rxd_hash __unused;
4243 	uint16_t rxd_status, rxd_pktlen;
4244 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4245 	unsigned int idx, n = 0;
4246 
4247 	mutex_enter(&rxring->rxr_mutex);
4248 
4249 	if (!rxring->rxr_active)
4250 		goto rx_intr_done;
4251 
4252 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4253 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4254 		goto rx_intr_done;
4255 	}
4256 
4257 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4258 
4259 	m0 = mprev = NULL;
4260 	for (idx = rxring->rxr_readidx;
4261 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4262 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4263 
4264 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4265 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4266 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4267 
4268 		rxd = &rxring->rxr_rxdesc[idx];
4269 		rxd_status = le16toh(rxd->wb.status);
4270 
4271 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4272 			break;	/* not yet done */
4273 
4274 		rxd_type = le32toh(rxd->wb.type);
4275 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4276 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4277 		rxd_hash = le32toh(rxd->wb.rss_hash);
4278 		rxd_vlan = le16toh(rxd->wb.vlan);
4279 
4280 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4281 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4282 			if_statinc_ref(nsr, if_ierrors);
4283 			goto rx_next;
4284 		}
4285 
4286 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4287 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4288 		    BUS_DMASYNC_POSTREAD);
4289 		m = rxring->rxr_mbufs[idx].m;
4290 
4291 		new_m = aq_alloc_mbuf();
4292 		if (new_m == NULL) {
4293 			/*
4294 			 * cannot allocate new mbuf.
4295 			 * discard this packet, and reuse mbuf for next.
4296 			 */
4297 			if_statinc_ref(nsr, if_iqdrops);
4298 			goto rx_next;
4299 		}
4300 		rxring->rxr_mbufs[idx].m = NULL;
4301 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4302 
4303 		if (m0 == NULL) {
4304 			m0 = m;
4305 		} else {
4306 			if (m->m_flags & M_PKTHDR)
4307 				m_remove_pkthdr(m);
4308 			mprev->m_next = m;
4309 		}
4310 		mprev = m;
4311 
4312 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4313 			m->m_len = MCLBYTES;
4314 		} else {
4315 			/* last buffer */
4316 			m->m_len = rxd_pktlen % MCLBYTES;
4317 			m0->m_pkthdr.len = rxd_pktlen;
4318 			/* VLAN offloading */
4319 			if ((sc->sc_ethercom.ec_capenable &
4320 			    ETHERCAP_VLAN_HWTAGGING) &&
4321 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4322 			    __SHIFTOUT(rxd_type,
4323 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4324 				vlan_set_tag(m0, rxd_vlan);
4325 			}
4326 
4327 			/* Checksum offloading */
4328 			unsigned int pkttype_eth =
4329 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4330 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4331 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4332 			    __SHIFTOUT(rxd_type,
4333 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4334 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4335 				if (__SHIFTOUT(rxd_status,
4336 				    RXDESC_STATUS_IPV4_CSUM_NG))
4337 					m0->m_pkthdr.csum_flags |=
4338 					    M_CSUM_IPv4_BAD;
4339 			}
4340 #if notyet
4341 			/*
4342 			 * XXX: aq always marks BAD for fragmented packet.
4343 			 * we should peek L3 header, and ignore cksum flags
4344 			 * if the packet is fragmented.
4345 			 */
4346 			if (__SHIFTOUT(rxd_type,
4347 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4348 				bool checked = false;
4349 				unsigned int pkttype_proto =
4350 				    __SHIFTOUT(rxd_type,
4351 				    RXDESC_TYPE_PKTTYPE_PROTO);
4352 
4353 				if (pkttype_proto ==
4354 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4355 					if ((pkttype_eth ==
4356 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4357 					    (ifp->if_capabilities &
4358 					    IFCAP_CSUM_TCPv4_Rx)) {
4359 						m0->m_pkthdr.csum_flags |=
4360 						    M_CSUM_TCPv4;
4361 						checked = true;
4362 					} else if ((pkttype_eth ==
4363 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4364 					    (ifp->if_capabilities &
4365 					    IFCAP_CSUM_TCPv6_Rx)) {
4366 						m0->m_pkthdr.csum_flags |=
4367 						    M_CSUM_TCPv6;
4368 						checked = true;
4369 					}
4370 				} else if (pkttype_proto ==
4371 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4372 					if ((pkttype_eth ==
4373 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4374 					    (ifp->if_capabilities &
4375 					    IFCAP_CSUM_UDPv4_Rx)) {
4376 						m0->m_pkthdr.csum_flags |=
4377 						    M_CSUM_UDPv4;
4378 						checked = true;
4379 					} else if ((pkttype_eth ==
4380 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4381 					    (ifp->if_capabilities &
4382 					    IFCAP_CSUM_UDPv6_Rx)) {
4383 						m0->m_pkthdr.csum_flags |=
4384 						    M_CSUM_UDPv6;
4385 						checked = true;
4386 					}
4387 				}
4388 				if (checked &&
4389 				    (__SHIFTOUT(rxd_status,
4390 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4391 				    !__SHIFTOUT(rxd_status,
4392 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4393 					m0->m_pkthdr.csum_flags |=
4394 					    M_CSUM_TCP_UDP_BAD;
4395 				}
4396 			}
4397 #endif
4398 			m_set_rcvif(m0, ifp);
4399 			if_statinc_ref(nsr, if_ipackets);
4400 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4401 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4402 			m0 = mprev = NULL;
4403 		}
4404 
4405  rx_next:
4406 		aq_rxring_reset_desc(sc, rxring, idx);
4407 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4408 	}
4409 	rxring->rxr_readidx = idx;
4410 
4411 	IF_STAT_PUTREF(ifp);
4412 
4413  rx_intr_done:
4414 	mutex_exit(&rxring->rxr_mutex);
4415 
4416 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4417 	return n;
4418 }
4419 
4420 static int
4421 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4422 {
4423 	struct ifnet *ifp = &ec->ec_if;
4424 	struct aq_softc *sc = ifp->if_softc;
4425 
4426 	aq_set_vlan_filters(sc);
4427 	return 0;
4428 }
4429 
4430 static int
4431 aq_ifflags_cb(struct ethercom *ec)
4432 {
4433 	struct ifnet *ifp = &ec->ec_if;
4434 	struct aq_softc *sc = ifp->if_softc;
4435 	int i, ecchange, error = 0;
4436 	unsigned short iffchange;
4437 
4438 	AQ_LOCK(sc);
4439 
4440 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4441 	if ((iffchange & IFF_PROMISC) != 0)
4442 		error = aq_set_filter(sc);
4443 
4444 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4445 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4446 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4447 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4448 			    RX_DMA_DESC_VLAN_STRIP,
4449 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4450 			    1 : 0);
4451 		}
4452 	}
4453 
4454 	/* vlan configuration depends on also interface promiscuous mode */
4455 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4456 		aq_set_vlan_filters(sc);
4457 
4458 	sc->sc_ec_capenable = ec->ec_capenable;
4459 	sc->sc_if_flags = ifp->if_flags;
4460 
4461 	AQ_UNLOCK(sc);
4462 
4463 	return error;
4464 }
4465 
4466 static int
4467 aq_init(struct ifnet *ifp)
4468 {
4469 	struct aq_softc *sc = ifp->if_softc;
4470 	int i, error = 0;
4471 
4472 	AQ_LOCK(sc);
4473 
4474 	aq_set_vlan_filters(sc);
4475 	aq_set_capability(sc);
4476 
4477 	for (i = 0; i < sc->sc_nqueues; i++) {
4478 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4479 	}
4480 
4481 	/* invalidate RX descriptor cache */
4482 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4483 	    AQ_READ_REG_BIT(sc,
4484 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4485 
4486 	/* start RX */
4487 	for (i = 0; i < sc->sc_nqueues; i++) {
4488 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4489 		if (error != 0) {
4490 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4491 			    __func__);
4492 			goto aq_init_failure;
4493 		}
4494 	}
4495 	aq_init_rss(sc);
4496 	aq_hw_l3_filter_set(sc);
4497 
4498 	/* need to start callout? */
4499 	if (sc->sc_poll_linkstat
4500 #ifdef AQ_EVENT_COUNTERS
4501 	    || sc->sc_poll_statistics
4502 #endif
4503 	    ) {
4504 		callout_schedule(&sc->sc_tick_ch, hz);
4505 	}
4506 
4507 	/* ready */
4508 	ifp->if_flags |= IFF_RUNNING;
4509 	ifp->if_flags &= ~IFF_OACTIVE;
4510 
4511 	/* start TX and RX */
4512 	aq_enable_intr(sc, true, true);
4513 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4514 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4515 
4516  aq_init_failure:
4517 	sc->sc_if_flags = ifp->if_flags;
4518 
4519 	AQ_UNLOCK(sc);
4520 
4521 	return error;
4522 }
4523 
4524 static void
4525 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4526     struct aq_txring *txring, bool is_transmit)
4527 {
4528 	struct mbuf *m;
4529 	int npkt, error;
4530 
4531 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4532 		return;
4533 
4534 	for (npkt = 0; ; npkt++) {
4535 		if (is_transmit)
4536 			m = pcq_peek(txring->txr_pcq);
4537 		else
4538 			IFQ_POLL(&ifp->if_snd, m);
4539 
4540 		if (m == NULL)
4541 			break;
4542 
4543 		if (txring->txr_nfree < AQ_TXD_MIN)
4544 			break;
4545 
4546 		if (is_transmit)
4547 			pcq_get(txring->txr_pcq);
4548 		else
4549 			IFQ_DEQUEUE(&ifp->if_snd, m);
4550 
4551 		error = aq_encap_txring(sc, txring, &m);
4552 		if (error != 0) {
4553 			/* too many mbuf chains? or not enough descriptors? */
4554 			m_freem(m);
4555 			if_statinc(ifp, if_oerrors);
4556 			if (txring->txr_index == 0 && error == ENOBUFS)
4557 				ifp->if_flags |= IFF_OACTIVE;
4558 			break;
4559 		}
4560 
4561 		/* update tail ptr */
4562 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4563 		    txring->txr_prodidx);
4564 
4565 		/* Pass the packet to any BPF listeners */
4566 		bpf_mtap(ifp, m, BPF_D_OUT);
4567 	}
4568 
4569 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4570 		ifp->if_flags |= IFF_OACTIVE;
4571 
4572 	if (npkt)
4573 		ifp->if_timer = 5;
4574 }
4575 
4576 static void
4577 aq_start(struct ifnet *ifp)
4578 {
4579 	struct aq_softc *sc;
4580 	struct aq_txring *txring;
4581 
4582 	sc = ifp->if_softc;
4583 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4584 
4585 	mutex_enter(&txring->txr_mutex);
4586 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4587 		aq_send_common_locked(ifp, sc, txring, false);
4588 	mutex_exit(&txring->txr_mutex);
4589 }
4590 
4591 static inline unsigned int
4592 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4593 {
4594 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4595 }
4596 
4597 static int
4598 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4599 {
4600 	struct aq_softc *sc = ifp->if_softc;
4601 	struct aq_txring *txring;
4602 	int ringidx;
4603 
4604 	ringidx = aq_select_txqueue(sc, m);
4605 	txring = &sc->sc_queue[ringidx].txring;
4606 
4607 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4608 		m_freem(m);
4609 		return ENOBUFS;
4610 	}
4611 
4612 	if (mutex_tryenter(&txring->txr_mutex)) {
4613 		aq_send_common_locked(ifp, sc, txring, true);
4614 		mutex_exit(&txring->txr_mutex);
4615 	} else {
4616 		softint_schedule(txring->txr_softint);
4617 	}
4618 	return 0;
4619 }
4620 
4621 static void
4622 aq_deferred_transmit(void *arg)
4623 {
4624 	struct aq_txring *txring = arg;
4625 	struct aq_softc *sc = txring->txr_sc;
4626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4627 
4628 	mutex_enter(&txring->txr_mutex);
4629 	if (pcq_peek(txring->txr_pcq) != NULL)
4630 		aq_send_common_locked(ifp, sc, txring, true);
4631 	mutex_exit(&txring->txr_mutex);
4632 }
4633 
4634 static void
4635 aq_stop(struct ifnet *ifp, int disable)
4636 {
4637 	struct aq_softc *sc = ifp->if_softc;
4638 	int i;
4639 
4640 	AQ_LOCK(sc);
4641 
4642 	ifp->if_timer = 0;
4643 
4644 	/* disable tx/rx interrupts */
4645 	aq_enable_intr(sc, true, false);
4646 
4647 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4648 	for (i = 0; i < sc->sc_nqueues; i++) {
4649 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4650 	}
4651 
4652 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4653 	for (i = 0; i < sc->sc_nqueues; i++) {
4654 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4655 	}
4656 
4657 	/* invalidate RX descriptor cache */
4658 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4659 	    AQ_READ_REG_BIT(sc,
4660 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4661 
4662 	ifp->if_timer = 0;
4663 
4664 	if (!disable) {
4665 		/* when pmf stop, disable link status intr and callout */
4666 		aq_enable_intr(sc, false, false);
4667 		callout_stop(&sc->sc_tick_ch);
4668 	}
4669 
4670 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4671 
4672 	AQ_UNLOCK(sc);
4673 }
4674 
4675 static void
4676 aq_watchdog(struct ifnet *ifp)
4677 {
4678 	struct aq_softc *sc = ifp->if_softc;
4679 	struct aq_txring *txring;
4680 	int n, head, tail;
4681 
4682 	AQ_LOCK(sc);
4683 
4684 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4685 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4686 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4687 
4688 	for (n = 0; n < sc->sc_nqueues; n++) {
4689 		txring = &sc->sc_queue[n].txring;
4690 		head = AQ_READ_REG_BIT(sc,
4691 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4692 		    TX_DMA_DESC_HEAD_PTR),
4693 		tail = AQ_READ_REG(sc,
4694 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4695 
4696 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4697 		    __func__, txring->txr_index, head, tail);
4698 
4699 		aq_tx_intr(txring);
4700 	}
4701 
4702 	AQ_UNLOCK(sc);
4703 
4704 	aq_init(ifp);
4705 }
4706 
4707 static int
4708 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4709 {
4710 	struct aq_softc *sc __unused;
4711 	struct ifreq *ifr __unused;
4712 	int error, s;
4713 
4714 	sc = (struct aq_softc *)ifp->if_softc;
4715 	ifr = (struct ifreq *)data;
4716 	error = 0;
4717 
4718 	s = splnet();
4719 	error = ether_ioctl(ifp, cmd, data);
4720 	splx(s);
4721 
4722 	if (error != ENETRESET)
4723 		return error;
4724 
4725 	switch (cmd) {
4726 	case SIOCSIFCAP:
4727 		error = aq_set_capability(sc);
4728 		break;
4729 	case SIOCADDMULTI:
4730 	case SIOCDELMULTI:
4731 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4732 			break;
4733 
4734 		/*
4735 		 * Multicast list has changed; set the hardware filter
4736 		 * accordingly.
4737 		 */
4738 		error = aq_set_filter(sc);
4739 		break;
4740 	}
4741 
4742 	return error;
4743 }
4744 
4745 
4746 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4747 
4748 #ifdef _MODULE
4749 #include "ioconf.c"
4750 #endif
4751 
4752 static int
4753 if_aq_modcmd(modcmd_t cmd, void *opaque)
4754 {
4755 	int error = 0;
4756 
4757 	switch (cmd) {
4758 	case MODULE_CMD_INIT:
4759 #ifdef _MODULE
4760 		error = config_init_component(cfdriver_ioconf_if_aq,
4761 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4762 #endif
4763 		return error;
4764 	case MODULE_CMD_FINI:
4765 #ifdef _MODULE
4766 		error = config_fini_component(cfdriver_ioconf_if_aq,
4767 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4768 #endif
4769 		return error;
4770 	default:
4771 		return ENOTTY;
4772 	}
4773 }
4774