1 /* $NetBSD: if_aq.c,v 1.35 2022/09/22 06:04:26 skrll Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.35 2022/09/22 06:04:26 skrll Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 #define AQ_JUMBO_MTU_REV_A 9000 120 #define AQ_JUMBO_MTU_REV_B 16338 121 122 /* 123 * TERMINOLOGY 124 * MPI = MAC PHY INTERFACE? 125 * RPO = RX Protocol Offloading 126 * TPO = TX Protocol Offloading 127 * RPF = RX Packet Filter 128 * TPB = TX Packet buffer 129 * RPB = RX Packet buffer 130 */ 131 132 /* registers */ 133 #define AQ_FW_SOFTRESET_REG 0x0000 134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 136 137 #define AQ_FW_VERSION_REG 0x0018 138 #define AQ_HW_REVISION_REG 0x001c 139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 140 141 #define AQ_FW_MBOX_CMD_REG 0x0200 142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 144 #define AQ_FW_MBOX_ADDR_REG 0x0208 145 #define AQ_FW_MBOX_VAL_REG 0x020c 146 147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 148 #define FW2X_LED_REG 0x031c 149 #define FW2X_LED_DEFAULT 0x00000000 150 #define FW2X_LED_NONE 0x0000003f 151 #define FW2X_LINKLED __BITS(0,1) 152 #define FW2X_LINKLED_ACTIVE 0 153 #define FW2X_LINKLED_ON 1 154 #define FW2X_LINKLED_BLINK 2 155 #define FW2X_LINKLED_OFF 3 156 #define FW2X_STATUSLED __BITS(2,5) 157 #define FW2X_STATUSLED_ORANGE 0 158 #define FW2X_STATUSLED_ORANGE_BLINK 2 159 #define FW2X_STATUSLED_OFF 3 160 #define FW2X_STATUSLED_GREEN 4 161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 162 #define FW2X_STATUSLED_GREEN_BLINK 10 163 164 #define FW_MPI_MBOX_ADDR_REG 0x0360 165 #define FW1X_MPI_INIT1_REG 0x0364 166 #define FW1X_MPI_CONTROL_REG 0x0368 167 #define FW1X_MPI_STATE_REG 0x036c 168 #define FW1X_MPI_STATE_MODE __BITS(7,0) 169 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 172 #define FW1X_MPI_INIT2_REG 0x0370 173 #define FW1X_MPI_EFUSEADDR_REG 0x0374 174 175 #define FW2X_MPI_EFUSEADDR_REG 0x0364 176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 178 #define FW_BOOT_EXIT_CODE_REG 0x0388 179 #define RBL_STATUS_DEAD 0x0000dead 180 #define RBL_STATUS_SUCCESS 0x0000abba 181 #define RBL_STATUS_FAILURE 0x00000bad 182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 183 184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 186 187 #define AQ_FW_GLB_CTL2_REG 0x0404 188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 189 190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 192 193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 194 195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 196 197 // msix bitmap */ 198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 202 #define AQ_INTR_AUTOMASK_REG 0x2090 203 204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 212 213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 215 #define AQ_B0_ERR_INT 8U 216 217 #define AQ_INTR_CTRL_REG 0x2300 218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 220 #define AQ_INTR_CTRL_IRQMODE_MSI 1 221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 227 228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 229 230 #define FW_MPI_RESETCTRL_REG 0x4000 231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 232 233 #define RX_SYSCONTROL_REG 0x5000 234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 236 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 237 238 #define RX_TCP_RSS_HASH_REG 0x5040 239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 241 242 /* for RPF_*_REG.ACTION */ 243 #define RPF_ACTION_DISCARD 0 244 #define RPF_ACTION_HOST 1 245 #define RPF_ACTION_MANAGEMENT 2 246 #define RPF_ACTION_HOST_MANAGEMENT 3 247 #define RPF_ACTION_WOL 4 248 249 #define RPF_L2BC_REG 0x5100 250 #define RPF_L2BC_EN __BIT(0) 251 #define RPF_L2BC_PROMISC __BIT(3) 252 #define RPF_L2BC_ACTION __BITS(12,14) 253 #define RPF_L2BC_THRESHOLD __BITS(31,16) 254 255 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 259 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 260 #define RPF_L2UC_MSW_EN __BIT(31) 261 #define AQ_HW_MAC_OWN 0 /* index of own address */ 262 #define AQ_HW_MAC_NUM 34 263 264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 266 #define RPF_MCAST_FILTER_EN __BIT(31) 267 #define RPF_MCAST_FILTER_MASK_REG 0x5270 268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 269 270 #define RPF_VLAN_MODE_REG 0x5280 271 #define RPF_VLAN_MODE_PROMISC __BIT(1) 272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 274 275 #define RPF_VLAN_TPID_REG 0x5284 276 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 277 #define RPF_VLAN_TPID_INNER __BITS(15,0) 278 279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 280 #define RPF_VLAN_MAX_FILTERS 16 281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 282 #define RPF_VLAN_FILTER_EN __BIT(31) 283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 286 #define RPF_VLAN_FILTER_ID __BITS(11,0) 287 288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 298 299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 301 #define RPF_L3_FILTER_L4_EN __BIT(31) 302 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 308 #define RPF_L3_FILTER_ARP_EN __BIT(24) 309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 314 #define RPF_L3_FILTER_L4_PROTO_TCP 0 315 #define RPF_L3_FILTER_L4_PROTO_UDP 1 316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 318 /* parameters of RPF_L3_FILTER_REG[8] */ 319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 323 324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 326 327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 329 330 #define RPF_RSS_KEY_ADDR_REG 0x54d0 331 #define RPF_RSS_KEY_ADDR __BITS(4,0) 332 #define RPF_RSS_KEY_WR_EN __BIT(5) 333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 335 336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 337 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 338 #define RPF_RSS_REDIR_WR_EN __BIT(4) 339 340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 342 343 #define RPO_HWCSUM_REG 0x5580 344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 346 347 #define RPO_LRO_ENABLE_REG 0x5590 348 349 #define RPO_LRO_CONF_REG 0x5594 350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 354 #define RPO_LRO_RSC_MAX_REG 0x5598 355 356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 359 #define RPO_LRO_TB_DIV_REG 0x5620 360 #define RPO_LRO_TB_DIV __BITS(20,31) 361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 365 366 #define RPB_RPF_RX_REG 0x5700 367 #define RPB_RPF_RX_TC_MODE __BIT(8) 368 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 369 #define RPB_RPF_RX_BUF_EN __BIT(0) 370 371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 373 #define RPB_RXB_BUFSIZE __BITS(8,0) 374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 375 #define RPB_RXB_XOFF_EN __BIT(31) 376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 378 379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 380 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 381 382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 385 386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 388 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 391 392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 397 #define RX_DMA_DESC_RESET __BIT(25) 398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 400 #define RX_DMA_DESC_EN __BIT(31) 401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 407 408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 410 #define RX_DMA_DCAD_CPUID __BITS(7,0) 411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 412 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 413 #define RX_DMA_DCAD_DESC_EN __BIT(31) 414 415 #define RX_DMA_DCA_REG 0x6180 416 #define RX_DMA_DCA_EN __BIT(31) 417 #define RX_DMA_DCA_MODE __BITS(3,0) 418 419 /* counters */ 420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 424 425 #define TX_SYSCONTROL_REG 0x7000 426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 428 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 429 430 #define TX_TPO2_REG 0x7040 431 #define TX_TPO2_EN __BIT(16) 432 433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 434 #define TPS_DESC_VM_ARB_MODE __BIT(0) 435 #define TPS_DESC_RATE_REG 0x7310 436 #define TPS_DESC_RATE_TA_RST __BIT(31) 437 #define TPS_DESC_RATE_LIM __BITS(10,0) 438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 441 #define TPS_DATA_TC_ARB_MODE __BIT(0) 442 443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 451 452 #define AQ_HW_TXBUF_MAX 160 453 #define AQ_HW_RXBUF_MAX 320 454 455 #define TPO_HWCSUM_REG 0x7800 456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 458 459 #define TDM_LSO_EN_REG 0x7810 460 461 #define THM_LSO_TCP_FLAG1_REG 0x7820 462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 464 #define THM_LSO_TCP_FLAG2_REG 0x7824 465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 466 467 #define TPB_TX_BUF_REG 0x7900 468 #define TPB_TX_BUF_EN __BIT(0) 469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 471 472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 474 #define TPB_TXB_BUFSIZE __BITS(7,0) 475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 476 #define TPB_TXB_THRESH_HI __BITS(16,28) 477 #define TPB_TXB_THRESH_LO __BITS(12,0) 478 479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 483 484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 489 #define TX_DMA_DESC_EN __BIT(31) 490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 495 496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 498 #define TDM_DCAD_CPUID __BITS(7,0) 499 #define TDM_DCAD_CPUID_EN __BIT(31) 500 501 #define TDM_DCA_REG 0x8480 502 #define TDM_DCA_EN __BIT(31) 503 #define TDM_DCA_MODE __BITS(3,0) 504 505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 507 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 510 511 #define FW1X_CTRL_10G __BIT(0) 512 #define FW1X_CTRL_5G __BIT(1) 513 #define FW1X_CTRL_5GSR __BIT(2) 514 #define FW1X_CTRL_2G5 __BIT(3) 515 #define FW1X_CTRL_1G __BIT(4) 516 #define FW1X_CTRL_100M __BIT(5) 517 518 #define FW2X_CTRL_10BASET_HD __BIT(0) 519 #define FW2X_CTRL_10BASET_FD __BIT(1) 520 #define FW2X_CTRL_100BASETX_HD __BIT(2) 521 #define FW2X_CTRL_100BASET4_HD __BIT(3) 522 #define FW2X_CTRL_100BASET2_HD __BIT(4) 523 #define FW2X_CTRL_100BASETX_FD __BIT(5) 524 #define FW2X_CTRL_100BASET2_FD __BIT(6) 525 #define FW2X_CTRL_1000BASET_HD __BIT(7) 526 #define FW2X_CTRL_1000BASET_FD __BIT(8) 527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 528 #define FW2X_CTRL_5GBASET_FD __BIT(10) 529 #define FW2X_CTRL_10GBASET_FD __BIT(11) 530 #define FW2X_CTRL_RESERVED1 __BIT(32) 531 #define FW2X_CTRL_10BASET_EEE __BIT(33) 532 #define FW2X_CTRL_RESERVED2 __BIT(34) 533 #define FW2X_CTRL_PAUSE __BIT(35) 534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 535 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 536 #define FW2X_CTRL_RESERVED3 __BIT(38) 537 #define FW2X_CTRL_RESERVED4 __BIT(39) 538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 542 #define FW2X_CTRL_RESERVED5 __BIT(44) 543 #define FW2X_CTRL_RESERVED6 __BIT(45) 544 #define FW2X_CTRL_RESERVED7 __BIT(46) 545 #define FW2X_CTRL_RESERVED8 __BIT(47) 546 #define FW2X_CTRL_RESERVED9 __BIT(48) 547 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 548 #define FW2X_CTRL_TEMPERATURE __BIT(50) 549 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 552 #define FW2X_CTRL_LINK_DROP __BIT(54) 553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 554 #define FW2X_CTRL_WOL __BIT(56) 555 #define FW2X_CTRL_MAC_STOP __BIT(57) 556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 559 #define FW2X_CTRL_WOL_TIMER __BIT(61) 560 #define FW2X_CTRL_STATISTICS __BIT(62) 561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 562 563 #define FW2X_SNPRINTB \ 564 "\177\020" \ 565 "b\x23" "PAUSE\0" \ 566 "b\x24" "ASYMMETRIC-PAUSE\0" \ 567 "b\x31" "CABLE-DIAG\0" \ 568 "b\x32" "TEMPERATURE\0" \ 569 "b\x33" "DOWNSHIFT\0" \ 570 "b\x34" "PTP-AVB\0" \ 571 "b\x35" "MEDIA-DETECT\0" \ 572 "b\x36" "LINK-DROP\0" \ 573 "b\x37" "SLEEP-PROXY\0" \ 574 "b\x38" "WOL\0" \ 575 "b\x39" "MAC-STOP\0" \ 576 "b\x3a" "EXT-LOOPBACK\0" \ 577 "b\x3b" "INT-LOOPBACK\0" \ 578 "b\x3c" "EFUSE-AGENT\0" \ 579 "b\x3d" "WOL-TIMER\0" \ 580 "b\x3e" "STATISTICS\0" \ 581 "b\x3f" "TRANSACTION-ID\0" \ 582 "\0" 583 584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 589 #define FW2X_CTRL_RATE_MASK \ 590 (FW2X_CTRL_RATE_100M | \ 591 FW2X_CTRL_RATE_1G | \ 592 FW2X_CTRL_RATE_2G5 | \ 593 FW2X_CTRL_RATE_5G | \ 594 FW2X_CTRL_RATE_10G) 595 #define FW2X_CTRL_EEE_MASK \ 596 (FW2X_CTRL_10BASET_EEE | \ 597 FW2X_CTRL_100BASETX_EEE | \ 598 FW2X_CTRL_1000BASET_FD_EEE | \ 599 FW2X_CTRL_2P5GBASET_FD_EEE | \ 600 FW2X_CTRL_5GBASET_FD_EEE | \ 601 FW2X_CTRL_10GBASET_FD_EEE) 602 603 typedef enum aq_fw_bootloader_mode { 604 FW_BOOT_MODE_UNKNOWN = 0, 605 FW_BOOT_MODE_FLB, 606 FW_BOOT_MODE_RBL_FLASH, 607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 608 } aq_fw_bootloader_mode_t; 609 610 #define AQ_WRITE_REG(sc, reg, val) \ 611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 612 613 #define AQ_READ_REG(sc, reg) \ 614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 615 616 #define AQ_READ64_REG(sc, reg) \ 617 ((uint64_t)AQ_READ_REG(sc, reg) | \ 618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 619 620 #define AQ_WRITE64_REG(sc, reg, val) \ 621 do { \ 622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 624 } while (/* CONSTCOND */0) 625 626 #define AQ_READ_REG_BIT(sc, reg, mask) \ 627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 628 629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 630 do { \ 631 uint32_t _v; \ 632 _v = AQ_READ_REG((sc), (reg)); \ 633 _v &= ~(mask); \ 634 if ((val) != 0) \ 635 _v |= __SHIFTIN((val), (mask)); \ 636 AQ_WRITE_REG((sc), (reg), _v); \ 637 } while (/* CONSTCOND */ 0) 638 639 #define WAIT_FOR(expr, us, n, errp) \ 640 do { \ 641 unsigned int _n; \ 642 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 643 delay((us)); \ 644 } \ 645 if ((errp != NULL)) { \ 646 if (_n == 0) \ 647 *(errp) = ETIMEDOUT; \ 648 else \ 649 *(errp) = 0; \ 650 } \ 651 } while (/* CONSTCOND */ 0) 652 653 #define msec_delay(x) DELAY(1000 * (x)) 654 655 typedef struct aq_mailbox_header { 656 uint32_t version; 657 uint32_t transaction_id; 658 int32_t error; 659 } __packed __aligned(4) aq_mailbox_header_t; 660 661 typedef struct aq_hw_stats_s { 662 uint32_t uprc; 663 uint32_t mprc; 664 uint32_t bprc; 665 uint32_t erpt; 666 uint32_t uptc; 667 uint32_t mptc; 668 uint32_t bptc; 669 uint32_t erpr; 670 uint32_t mbtc; 671 uint32_t bbtc; 672 uint32_t mbrc; 673 uint32_t bbrc; 674 uint32_t ubrc; 675 uint32_t ubtc; 676 uint32_t ptc; 677 uint32_t prc; 678 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 679 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 680 } __packed __aligned(4) aq_hw_stats_s_t; 681 682 typedef struct fw1x_mailbox { 683 aq_mailbox_header_t header; 684 aq_hw_stats_s_t msm; 685 } __packed __aligned(4) fw1x_mailbox_t; 686 687 typedef struct fw2x_msm_statistics { 688 uint32_t uprc; 689 uint32_t mprc; 690 uint32_t bprc; 691 uint32_t erpt; 692 uint32_t uptc; 693 uint32_t mptc; 694 uint32_t bptc; 695 uint32_t erpr; 696 uint32_t mbtc; 697 uint32_t bbtc; 698 uint32_t mbrc; 699 uint32_t bbrc; 700 uint32_t ubrc; 701 uint32_t ubtc; 702 uint32_t ptc; 703 uint32_t prc; 704 } __packed __aligned(4) fw2x_msm_statistics_t; 705 706 typedef struct fw2x_phy_cable_diag_data { 707 uint32_t lane_data[4]; 708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 709 710 typedef struct fw2x_capabilities { 711 uint32_t caps_lo; 712 uint32_t caps_hi; 713 } __packed __aligned(4) fw2x_capabilities_t; 714 715 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 716 aq_mailbox_header_t header; 717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 718 719 uint32_t phy_info1; 720 #define PHYINFO1_FAULT_CODE __BITS(31,16) 721 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 722 uint32_t phy_info2; 723 #define PHYINFO2_TEMPERATURE __BITS(15,0) 724 #define PHYINFO2_CABLE_LEN __BITS(23,16) 725 726 fw2x_phy_cable_diag_data_t diag_data; 727 uint32_t reserved[8]; 728 729 fw2x_capabilities_t caps; 730 731 /* ... */ 732 } __packed __aligned(4) fw2x_mailbox_t; 733 734 typedef enum aq_link_speed { 735 AQ_LINK_NONE = 0, 736 AQ_LINK_100M = (1 << 0), 737 AQ_LINK_1G = (1 << 1), 738 AQ_LINK_2G5 = (1 << 2), 739 AQ_LINK_5G = (1 << 3), 740 AQ_LINK_10G = (1 << 4) 741 } aq_link_speed_t; 742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 743 AQ_LINK_5G | AQ_LINK_10G ) 744 #define AQ_LINK_AUTO AQ_LINK_ALL 745 746 typedef enum aq_link_fc { 747 AQ_FC_NONE = 0, 748 AQ_FC_RX = __BIT(0), 749 AQ_FC_TX = __BIT(1), 750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 751 } aq_link_fc_t; 752 753 typedef enum aq_link_eee { 754 AQ_EEE_DISABLE = 0, 755 AQ_EEE_ENABLE = 1 756 } aq_link_eee_t; 757 758 typedef enum aq_hw_fw_mpi_state { 759 MPI_DEINIT = 0, 760 MPI_RESET = 1, 761 MPI_INIT = 2, 762 MPI_POWER = 4 763 } aq_hw_fw_mpi_state_t; 764 765 enum aq_media_type { 766 AQ_MEDIA_TYPE_UNKNOWN = 0, 767 AQ_MEDIA_TYPE_FIBRE, 768 AQ_MEDIA_TYPE_TP 769 }; 770 771 struct aq_rx_desc_read { 772 uint64_t buf_addr; 773 uint64_t hdr_addr; 774 } __packed __aligned(8); 775 776 struct aq_rx_desc_wb { 777 uint32_t type; 778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 779 #define RXDESC_TYPE_RSSTYPE_NONE 0 780 #define RXDESC_TYPE_RSSTYPE_IPV4 2 781 #define RXDESC_TYPE_RSSTYPE_IPV6 3 782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 800 #define RXDESC_TYPE_RESERVED __BITS(18,13) 801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 803 #define RXDESC_TYPE_SPH __BIT(21) 804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 805 uint32_t rss_hash; 806 uint16_t status; 807 #define RXDESC_STATUS_DD __BIT(0) 808 #define RXDESC_STATUS_EOP __BIT(1) 809 #define RXDESC_STATUS_MACERR __BIT(2) 810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 813 814 #define RXDESC_STATUS_STAT __BITS(2,5) 815 #define RXDESC_STATUS_ESTAT __BITS(6,11) 816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 817 uint16_t pkt_len; 818 uint16_t next_desc_ptr; 819 uint16_t vlan; 820 } __packed __aligned(4); 821 822 typedef union aq_rx_desc { 823 struct aq_rx_desc_read read; 824 struct aq_rx_desc_wb wb; 825 } __packed __aligned(8) aq_rx_desc_t; 826 827 typedef struct aq_tx_desc { 828 uint64_t buf_addr; 829 uint32_t ctl1; 830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 846 uint32_t ctl2; 847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 850 } __packed __aligned(8) aq_tx_desc_t; 851 852 struct aq_txring { 853 struct aq_softc *txr_sc; 854 int txr_index; 855 kmutex_t txr_mutex; 856 bool txr_active; 857 bool txr_stopping; 858 bool txr_sending; 859 time_t txr_lastsent; 860 861 pcq_t *txr_pcq; 862 void *txr_softint; 863 864 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 865 bus_dmamap_t txr_txdesc_dmamap; 866 bus_dma_segment_t txr_txdesc_seg[1]; 867 bus_size_t txr_txdesc_size; 868 869 struct { 870 struct mbuf *m; 871 bus_dmamap_t dmamap; 872 } txr_mbufs[AQ_TXD_NUM]; 873 unsigned int txr_prodidx; 874 unsigned int txr_considx; 875 int txr_nfree; 876 }; 877 878 struct aq_rxring { 879 struct aq_softc *rxr_sc; 880 int rxr_index; 881 kmutex_t rxr_mutex; 882 bool rxr_active; 883 bool rxr_discarding; 884 bool rxr_stopping; 885 struct mbuf *rxr_receiving_m; /* receiving jumboframe */ 886 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */ 887 888 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 889 bus_dmamap_t rxr_rxdesc_dmamap; 890 bus_dma_segment_t rxr_rxdesc_seg[1]; 891 bus_size_t rxr_rxdesc_size; 892 struct { 893 struct mbuf *m; 894 bus_dmamap_t dmamap; 895 } rxr_mbufs[AQ_RXD_NUM]; 896 unsigned int rxr_readidx; 897 }; 898 899 struct aq_queue { 900 struct aq_softc *sc; 901 struct aq_txring txring; 902 struct aq_rxring rxring; 903 }; 904 905 struct aq_softc; 906 struct aq_firmware_ops { 907 int (*reset)(struct aq_softc *); 908 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 909 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 910 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 911 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 912 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 913 #if NSYSMON_ENVSYS > 0 914 int (*get_temperature)(struct aq_softc *, uint32_t *); 915 #endif 916 }; 917 918 #ifdef AQ_EVENT_COUNTERS 919 #define AQ_EVCNT_DECL(name) \ 920 char sc_evcount_##name##_name[32]; \ 921 struct evcnt sc_evcount_##name##_ev; 922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 923 do { \ 924 snprintf((sc)->sc_evcount_##name##_name, \ 925 sizeof((sc)->sc_evcount_##name##_name), \ 926 "%s", desc); \ 927 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 928 (evtype), NULL, device_xname((sc)->sc_dev), \ 929 (sc)->sc_evcount_##name##_name); \ 930 } while (/*CONSTCOND*/0) 931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 932 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 933 #define AQ_EVCNT_DETACH(sc, name) \ 934 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 935 #define AQ_EVCNT_ADD(sc, name, val) \ 936 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 937 #endif /* AQ_EVENT_COUNTERS */ 938 939 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 940 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 941 #define AQ_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mutex)); 942 943 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 944 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 945 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 946 #define AQ_MPI_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mpi_mutex)); 947 948 949 struct aq_softc { 950 device_t sc_dev; 951 952 bus_space_tag_t sc_iot; 953 bus_space_handle_t sc_ioh; 954 bus_size_t sc_iosize; 955 bus_dma_tag_t sc_dmat; 956 957 void *sc_ihs[AQ_NINTR_MAX]; 958 pci_intr_handle_t *sc_intrs; 959 960 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 961 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 962 int sc_linkstat_irq; 963 bool sc_use_txrx_independent_intr; 964 bool sc_poll_linkstat; 965 bool sc_detect_linkstat; 966 967 #if NSYSMON_ENVSYS > 0 968 struct sysmon_envsys *sc_sme; 969 envsys_data_t sc_sensor_temp; 970 #endif 971 972 callout_t sc_tick_ch; 973 974 int sc_nintrs; 975 bool sc_msix; 976 977 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 978 int sc_nqueues; 979 980 pci_chipset_tag_t sc_pc; 981 pcitag_t sc_pcitag; 982 uint16_t sc_product; 983 uint16_t sc_revision; 984 985 kmutex_t sc_mutex; 986 kmutex_t sc_mpi_mutex; 987 988 const struct aq_firmware_ops *sc_fw_ops; 989 uint64_t sc_fw_caps; 990 enum aq_media_type sc_media_type; 991 aq_link_speed_t sc_available_rates; 992 993 aq_link_speed_t sc_link_rate; 994 aq_link_fc_t sc_link_fc; 995 aq_link_eee_t sc_link_eee; 996 997 uint32_t sc_fw_version; 998 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 999 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 1000 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 1001 uint32_t sc_features; 1002 #define FEATURES_MIPS 0x00000001 1003 #define FEATURES_TPO2 0x00000002 1004 #define FEATURES_RPF2 0x00000004 1005 #define FEATURES_MPI_AQ 0x00000008 1006 #define FEATURES_REV_A0 0x10000000 1007 #define FEATURES_REV_A (FEATURES_REV_A0) 1008 #define FEATURES_REV_B0 0x20000000 1009 #define FEATURES_REV_B1 0x40000000 1010 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 1011 uint32_t sc_max_mtu; 1012 uint32_t sc_mbox_addr; 1013 1014 bool sc_rbl_enabled; 1015 bool sc_fast_start_enabled; 1016 bool sc_flash_present; 1017 1018 bool sc_intr_moderation_enable; 1019 bool sc_rss_enable; 1020 1021 struct ethercom sc_ethercom; 1022 struct ether_addr sc_enaddr; 1023 struct ifmedia sc_media; 1024 int sc_ec_capenable; /* last ec_capenable */ 1025 unsigned short sc_if_flags; /* last if_flags */ 1026 1027 bool sc_tx_sending; 1028 bool sc_stopping; 1029 1030 struct workqueue *sc_reset_wq; 1031 struct work sc_reset_work; 1032 volatile unsigned sc_reset_pending; 1033 1034 bool sc_trigger_reset; 1035 1036 #ifdef AQ_EVENT_COUNTERS 1037 aq_hw_stats_s_t sc_statistics[2]; 1038 int sc_statistics_idx; 1039 bool sc_poll_statistics; 1040 1041 AQ_EVCNT_DECL(uprc); 1042 AQ_EVCNT_DECL(mprc); 1043 AQ_EVCNT_DECL(bprc); 1044 AQ_EVCNT_DECL(erpt); 1045 AQ_EVCNT_DECL(uptc); 1046 AQ_EVCNT_DECL(mptc); 1047 AQ_EVCNT_DECL(bptc); 1048 AQ_EVCNT_DECL(erpr); 1049 AQ_EVCNT_DECL(mbtc); 1050 AQ_EVCNT_DECL(bbtc); 1051 AQ_EVCNT_DECL(mbrc); 1052 AQ_EVCNT_DECL(bbrc); 1053 AQ_EVCNT_DECL(ubrc); 1054 AQ_EVCNT_DECL(ubtc); 1055 AQ_EVCNT_DECL(ptc); 1056 AQ_EVCNT_DECL(prc); 1057 AQ_EVCNT_DECL(dpc); 1058 AQ_EVCNT_DECL(cprc); 1059 #endif 1060 }; 1061 1062 static int aq_match(device_t, cfdata_t, void *); 1063 static void aq_attach(device_t, device_t, void *); 1064 static int aq_detach(device_t, int); 1065 1066 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1067 bool, bool); 1068 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1069 pci_intr_type_t); 1070 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1071 1072 static int aq_ifmedia_change(struct ifnet * const); 1073 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1074 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1075 static int aq_ifflags_cb(struct ethercom *); 1076 static int aq_init(struct ifnet *); 1077 static int aq_init_locked(struct ifnet *); 1078 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1079 struct aq_txring *, bool); 1080 static int aq_transmit(struct ifnet *, struct mbuf *); 1081 static void aq_deferred_transmit(void *); 1082 static void aq_start(struct ifnet *); 1083 static void aq_stop(struct ifnet *, int); 1084 static void aq_stop_locked(struct ifnet *, bool); 1085 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1086 1087 static int aq_txrx_rings_alloc(struct aq_softc *); 1088 static void aq_txrx_rings_free(struct aq_softc *); 1089 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1090 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1091 1092 static void aq_initmedia(struct aq_softc *); 1093 static void aq_enable_intr(struct aq_softc *, bool, bool); 1094 1095 static void aq_handle_reset_work(struct work *, void *); 1096 static void aq_unset_stopping_flags(struct aq_softc *); 1097 static void aq_set_stopping_flags(struct aq_softc *); 1098 1099 #if NSYSMON_ENVSYS > 0 1100 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1101 #endif 1102 static void aq_tick(void *); 1103 static int aq_legacy_intr(void *); 1104 static int aq_link_intr(void *); 1105 static int aq_txrx_intr(void *); 1106 static int aq_tx_intr(void *); 1107 static int aq_rx_intr(void *); 1108 1109 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1110 aq_link_eee_t); 1111 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1112 aq_link_eee_t *); 1113 1114 static int aq_fw_reset(struct aq_softc *); 1115 static int aq_fw_version_init(struct aq_softc *); 1116 static int aq_hw_init(struct aq_softc *); 1117 static int aq_hw_init_ucp(struct aq_softc *); 1118 static int aq_hw_reset(struct aq_softc *); 1119 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1120 uint32_t); 1121 static int aq_get_mac_addr(struct aq_softc *); 1122 static int aq_init_rss(struct aq_softc *); 1123 static int aq_set_capability(struct aq_softc *); 1124 1125 static int fw1x_reset(struct aq_softc *); 1126 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1127 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1128 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1129 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1130 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1131 1132 static int fw2x_reset(struct aq_softc *); 1133 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1134 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1135 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1136 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1137 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1138 #if NSYSMON_ENVSYS > 0 1139 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1140 #endif 1141 1142 #ifndef AQ_WATCHDOG_TIMEOUT 1143 #define AQ_WATCHDOG_TIMEOUT 5 1144 #endif 1145 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT; 1146 1147 1148 static const struct aq_firmware_ops aq_fw1x_ops = { 1149 .reset = fw1x_reset, 1150 .set_mode = fw1x_set_mode, 1151 .get_mode = fw1x_get_mode, 1152 .get_stats = fw1x_get_stats, 1153 #if NSYSMON_ENVSYS > 0 1154 .get_temperature = NULL 1155 #endif 1156 }; 1157 1158 static const struct aq_firmware_ops aq_fw2x_ops = { 1159 .reset = fw2x_reset, 1160 .set_mode = fw2x_set_mode, 1161 .get_mode = fw2x_get_mode, 1162 .get_stats = fw2x_get_stats, 1163 #if NSYSMON_ENVSYS > 0 1164 .get_temperature = fw2x_get_temperature 1165 #endif 1166 }; 1167 1168 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1169 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1170 1171 static const struct aq_product { 1172 pci_vendor_id_t aq_vendor; 1173 pci_product_id_t aq_product; 1174 const char *aq_name; 1175 enum aq_media_type aq_media_type; 1176 aq_link_speed_t aq_available_rates; 1177 } aq_products[] = { 1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1179 "Aquantia AQC100 10 Gigabit Network Adapter", 1180 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1181 }, 1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1183 "Aquantia AQC107 10 Gigabit Network Adapter", 1184 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1185 }, 1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1187 "Aquantia AQC108 5 Gigabit Network Adapter", 1188 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1189 }, 1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1191 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1193 }, 1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1195 "Aquantia AQC111 5 Gigabit Network Adapter", 1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1197 }, 1198 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1199 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1200 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1201 }, 1202 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1203 "Aquantia AQC100S 10 Gigabit Network Adapter", 1204 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1205 }, 1206 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1207 "Aquantia AQC107S 10 Gigabit Network Adapter", 1208 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1209 }, 1210 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1211 "Aquantia AQC108S 5 Gigabit Network Adapter", 1212 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1213 }, 1214 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1215 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1216 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1217 }, 1218 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1219 "Aquantia AQC111S 5 Gigabit Network Adapter", 1220 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1221 }, 1222 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1223 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1224 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1225 }, 1226 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1227 "Aquantia D100 10 Gigabit Network Adapter", 1228 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1229 }, 1230 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1231 "Aquantia D107 10 Gigabit Network Adapter", 1232 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1233 }, 1234 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1235 "Aquantia D108 5 Gigabit Network Adapter", 1236 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1237 }, 1238 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1239 "Aquantia D109 2.5 Gigabit Network Adapter", 1240 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1241 } 1242 }; 1243 1244 static const struct aq_product * 1245 aq_lookup(const struct pci_attach_args *pa) 1246 { 1247 unsigned int i; 1248 1249 for (i = 0; i < __arraycount(aq_products); i++) { 1250 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1251 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1252 return &aq_products[i]; 1253 } 1254 return NULL; 1255 } 1256 1257 static int 1258 aq_match(device_t parent, cfdata_t cf, void *aux) 1259 { 1260 struct pci_attach_args * const pa = aux; 1261 1262 if (aq_lookup(pa) != NULL) 1263 return 1; 1264 1265 return 0; 1266 } 1267 1268 static void 1269 aq_attach(device_t parent, device_t self, void *aux) 1270 { 1271 struct aq_softc * const sc = device_private(self); 1272 struct pci_attach_args * const pa = aux; 1273 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 1274 pci_chipset_tag_t pc; 1275 pcitag_t tag; 1276 pcireg_t command, memtype, bar; 1277 const struct aq_product *aqp; 1278 int error; 1279 1280 sc->sc_dev = self; 1281 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1282 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1283 1284 sc->sc_pc = pc = pa->pa_pc; 1285 sc->sc_pcitag = tag = pa->pa_tag; 1286 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1287 1288 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1289 command |= PCI_COMMAND_MASTER_ENABLE; 1290 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1291 1292 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1293 sc->sc_revision = PCI_REVISION(pa->pa_class); 1294 1295 aqp = aq_lookup(pa); 1296 KASSERT(aqp != NULL); 1297 1298 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1299 1300 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1301 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1302 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1303 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1304 return; 1305 } 1306 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1307 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1308 NULL, &sc->sc_iosize) != 0) { 1309 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1310 return; 1311 } 1312 1313 error = aq_fw_reset(sc); 1314 if (error != 0) 1315 goto attach_failure; 1316 1317 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1318 1319 /* max queue num is 8, and must be 2^n */ 1320 if (ncpu >= 8) 1321 sc->sc_nqueues = 8; 1322 else if (ncpu >= 4) 1323 sc->sc_nqueues = 4; 1324 else if (ncpu >= 2) 1325 sc->sc_nqueues = 2; 1326 else 1327 sc->sc_nqueues = 1; 1328 1329 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1330 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1331 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1332 /* TX intrs + RX intrs + LINKSTAT intrs */ 1333 sc->sc_use_txrx_independent_intr = true; 1334 sc->sc_poll_linkstat = false; 1335 sc->sc_msix = true; 1336 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1337 /* TX intrs + RX intrs */ 1338 sc->sc_use_txrx_independent_intr = true; 1339 sc->sc_poll_linkstat = true; 1340 sc->sc_msix = true; 1341 } else 1342 #endif 1343 if (msixcount >= (sc->sc_nqueues + 1)) { 1344 /* TX/RX intrs LINKSTAT intrs */ 1345 sc->sc_use_txrx_independent_intr = false; 1346 sc->sc_poll_linkstat = false; 1347 sc->sc_msix = true; 1348 } else if (msixcount >= sc->sc_nqueues) { 1349 /* TX/RX intrs */ 1350 sc->sc_use_txrx_independent_intr = false; 1351 sc->sc_poll_linkstat = true; 1352 sc->sc_msix = true; 1353 } else { 1354 /* giving up using MSI-X */ 1355 sc->sc_msix = false; 1356 } 1357 1358 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */ 1359 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE || 1360 FW_VERSION_MAJOR(sc) == 1) 1361 sc->sc_poll_linkstat = true; 1362 1363 #ifdef AQ_FORCE_POLL_LINKSTAT 1364 sc->sc_poll_linkstat = true; 1365 #endif 1366 1367 aprint_debug_dev(sc->sc_dev, 1368 "ncpu=%d, pci_msix_count=%d." 1369 " allocate %d interrupts for %d%s queues%s\n", 1370 ncpu, msixcount, 1371 (sc->sc_use_txrx_independent_intr ? 1372 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1373 (sc->sc_poll_linkstat ? 0 : 1), 1374 sc->sc_nqueues, 1375 sc->sc_use_txrx_independent_intr ? "*2" : "", 1376 sc->sc_poll_linkstat ? "" : ", and link status"); 1377 1378 if (sc->sc_msix) 1379 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1380 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1381 else 1382 error = ENODEV; 1383 1384 if (error != 0) { 1385 /* if MSI-X failed, fallback to MSI with single queue */ 1386 sc->sc_use_txrx_independent_intr = false; 1387 sc->sc_poll_linkstat = false; 1388 sc->sc_msix = false; 1389 sc->sc_nqueues = 1; 1390 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1391 } 1392 if (error != 0) { 1393 /* if MSI failed, fallback to INTx */ 1394 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1395 } 1396 if (error != 0) 1397 goto attach_failure; 1398 1399 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE); 1400 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1401 1402 char wqname[MAXCOMLEN]; 1403 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev)); 1404 error = workqueue_create(&sc->sc_reset_wq, wqname, 1405 aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK, 1406 WQ_MPSAFE); 1407 if (error) { 1408 aprint_error_dev(sc->sc_dev, 1409 "unable to create reset workqueue\n"); 1410 goto attach_failure; 1411 } 1412 1413 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1414 1415 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1416 sc->sc_rss_enable = true; 1417 else 1418 sc->sc_rss_enable = false; 1419 1420 error = aq_txrx_rings_alloc(sc); 1421 if (error != 0) 1422 goto attach_failure; 1423 1424 error = aq_fw_version_init(sc); 1425 if (error != 0) 1426 goto attach_failure; 1427 1428 error = aq_hw_init_ucp(sc); 1429 if (error < 0) 1430 goto attach_failure; 1431 1432 KASSERT(sc->sc_mbox_addr != 0); 1433 error = aq_hw_reset(sc); 1434 if (error != 0) 1435 goto attach_failure; 1436 1437 aq_get_mac_addr(sc); 1438 aq_init_rss(sc); 1439 1440 error = aq_hw_init(sc); /* initialize and interrupts */ 1441 if (error != 0) 1442 goto attach_failure; 1443 1444 sc->sc_media_type = aqp->aq_media_type; 1445 sc->sc_available_rates = aqp->aq_available_rates; 1446 1447 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1448 ifmedia_init(&sc->sc_media, IFM_IMASK, 1449 aq_ifmedia_change, aq_ifmedia_status); 1450 aq_initmedia(sc); 1451 1452 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1453 ifp->if_softc = sc; 1454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1455 ifp->if_extflags = IFEF_MPSAFE; 1456 ifp->if_baudrate = IF_Gbps(10); 1457 ifp->if_init = aq_init; 1458 ifp->if_ioctl = aq_ioctl; 1459 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1460 ifp->if_transmit = aq_transmit; 1461 ifp->if_start = aq_start; 1462 ifp->if_stop = aq_stop; 1463 ifp->if_watchdog = NULL; 1464 IFQ_SET_READY(&ifp->if_snd); 1465 1466 /* initialize capabilities */ 1467 sc->sc_ethercom.ec_capabilities = 0; 1468 sc->sc_ethercom.ec_capenable = 0; 1469 #if notyet 1470 /* TODO */ 1471 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1472 #endif 1473 sc->sc_ethercom.ec_capabilities |= 1474 ETHERCAP_JUMBO_MTU | 1475 ETHERCAP_VLAN_MTU | 1476 ETHERCAP_VLAN_HWTAGGING | 1477 ETHERCAP_VLAN_HWFILTER; 1478 sc->sc_ethercom.ec_capenable |= 1479 ETHERCAP_VLAN_HWTAGGING | 1480 ETHERCAP_VLAN_HWFILTER; 1481 1482 ifp->if_capabilities = 0; 1483 ifp->if_capenable = 0; 1484 #ifdef CONFIG_LRO_SUPPORT 1485 ifp->if_capabilities |= IFCAP_LRO; 1486 ifp->if_capenable |= IFCAP_LRO; 1487 #endif 1488 #if notyet 1489 /* TSO */ 1490 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1491 #endif 1492 1493 /* TX hardware checksum offloading */ 1494 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1495 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1496 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1497 /* RX hardware checksum offloading */ 1498 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1499 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1500 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1501 1502 if_initialize(ifp); 1503 ifp->if_percpuq = if_percpuq_create(ifp); 1504 if_deferred_start_init(ifp, NULL); 1505 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1506 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1507 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1508 if_register(ifp); 1509 1510 aq_enable_intr(sc, true, false); /* only intr about link */ 1511 1512 /* update media */ 1513 aq_ifmedia_change(ifp); 1514 1515 #if NSYSMON_ENVSYS > 0 1516 /* temperature monitoring */ 1517 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1518 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1519 1520 sc->sc_sme = sysmon_envsys_create(); 1521 sc->sc_sme->sme_name = device_xname(self); 1522 sc->sc_sme->sme_cookie = sc; 1523 sc->sc_sme->sme_flags = 0; 1524 sc->sc_sme->sme_refresh = aq_temp_refresh; 1525 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1526 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1527 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1528 1529 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1530 if (sysmon_envsys_register(sc->sc_sme)) { 1531 sysmon_envsys_destroy(sc->sc_sme); 1532 sc->sc_sme = NULL; 1533 goto attach_failure; 1534 } 1535 1536 /* 1537 * for unknown reasons, the first call of fw2x_get_temperature() 1538 * will always fail (firmware matter?), so run once now. 1539 */ 1540 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1541 } 1542 #endif 1543 1544 #ifdef AQ_EVENT_COUNTERS 1545 /* get starting statistics values */ 1546 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1547 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1548 sc->sc_poll_statistics = true; 1549 } 1550 1551 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1552 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1553 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1554 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1555 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1556 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1557 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1558 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1559 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1560 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1561 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1562 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1563 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1564 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1565 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1566 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1567 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1568 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1569 #endif 1570 1571 if (pmf_device_register(self, NULL, NULL)) 1572 pmf_class_network_register(self, ifp); 1573 else 1574 aprint_error_dev(self, "couldn't establish power handler\n"); 1575 1576 return; 1577 1578 attach_failure: 1579 aq_detach(self, 0); 1580 } 1581 1582 static int 1583 aq_detach(device_t self, int flags __unused) 1584 { 1585 struct aq_softc * const sc = device_private(self); 1586 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 1587 int i; 1588 1589 if (sc->sc_iosize != 0) { 1590 if (ifp->if_softc != NULL) { 1591 IFNET_LOCK(ifp); 1592 aq_stop(ifp, 1); 1593 IFNET_UNLOCK(ifp); 1594 } 1595 1596 for (i = 0; i < AQ_NINTR_MAX; i++) { 1597 if (sc->sc_ihs[i] != NULL) { 1598 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1599 sc->sc_ihs[i] = NULL; 1600 } 1601 } 1602 if (sc->sc_nintrs > 0) { 1603 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1604 sc->sc_nintrs); 1605 sc->sc_intrs = NULL; 1606 sc->sc_nintrs = 0; 1607 } 1608 1609 aq_txrx_rings_free(sc); 1610 1611 if (ifp->if_softc != NULL) { 1612 ether_ifdetach(ifp); 1613 if_detach(ifp); 1614 } 1615 1616 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1617 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1618 sc->sc_iosize = 0; 1619 } 1620 1621 #if NSYSMON_ENVSYS > 0 1622 if (sc->sc_sme != NULL) { 1623 /* all sensors associated with this will also be detached */ 1624 sysmon_envsys_unregister(sc->sc_sme); 1625 } 1626 #endif 1627 1628 #ifdef AQ_EVENT_COUNTERS 1629 AQ_EVCNT_DETACH(sc, uprc); 1630 AQ_EVCNT_DETACH(sc, mprc); 1631 AQ_EVCNT_DETACH(sc, bprc); 1632 AQ_EVCNT_DETACH(sc, erpt); 1633 AQ_EVCNT_DETACH(sc, uptc); 1634 AQ_EVCNT_DETACH(sc, mptc); 1635 AQ_EVCNT_DETACH(sc, bptc); 1636 AQ_EVCNT_DETACH(sc, erpr); 1637 AQ_EVCNT_DETACH(sc, mbtc); 1638 AQ_EVCNT_DETACH(sc, bbtc); 1639 AQ_EVCNT_DETACH(sc, mbrc); 1640 AQ_EVCNT_DETACH(sc, bbrc); 1641 AQ_EVCNT_DETACH(sc, ubrc); 1642 AQ_EVCNT_DETACH(sc, ubtc); 1643 AQ_EVCNT_DETACH(sc, ptc); 1644 AQ_EVCNT_DETACH(sc, prc); 1645 AQ_EVCNT_DETACH(sc, dpc); 1646 AQ_EVCNT_DETACH(sc, cprc); 1647 #endif 1648 1649 ifmedia_fini(&sc->sc_media); 1650 1651 mutex_destroy(&sc->sc_mpi_mutex); 1652 mutex_destroy(&sc->sc_mutex); 1653 1654 return 0; 1655 } 1656 1657 static int 1658 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1659 int (*func)(void *), void *arg, const char *xname) 1660 { 1661 char intrbuf[PCI_INTRSTR_LEN]; 1662 pci_chipset_tag_t pc = sc->sc_pc; 1663 void *vih; 1664 const char *intrstr = NULL; 1665 1666 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1667 sizeof(intrbuf)); 1668 1669 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1670 1671 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1672 IPL_NET, func, arg, xname); 1673 if (vih == NULL) { 1674 aprint_error_dev(sc->sc_dev, 1675 "unable to establish MSI-X%s%s for %s\n", 1676 intrstr ? " at " : "", 1677 intrstr ? intrstr : "", xname); 1678 return EIO; 1679 } 1680 sc->sc_ihs[intno] = vih; 1681 1682 if (affinity != NULL) { 1683 /* Round-robin affinity */ 1684 kcpuset_zero(affinity); 1685 kcpuset_set(affinity, intno % ncpu); 1686 interrupt_distribute(vih, affinity, NULL); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static int 1693 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1694 bool linkintr) 1695 { 1696 kcpuset_t *affinity; 1697 int error, intno, i; 1698 char intr_xname[INTRDEVNAMEBUF]; 1699 1700 kcpuset_create(&affinity, false); 1701 1702 intno = 0; 1703 1704 if (txrx_independent) { 1705 for (i = 0; i < sc->sc_nqueues; i++) { 1706 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1707 device_xname(sc->sc_dev), i); 1708 sc->sc_rx_irq[i] = intno; 1709 error = aq_establish_intr(sc, intno++, affinity, 1710 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1711 if (error != 0) 1712 goto fail; 1713 } 1714 for (i = 0; i < sc->sc_nqueues; i++) { 1715 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1716 device_xname(sc->sc_dev), i); 1717 sc->sc_tx_irq[i] = intno; 1718 error = aq_establish_intr(sc, intno++, affinity, 1719 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1720 if (error != 0) 1721 goto fail; 1722 } 1723 } else { 1724 for (i = 0; i < sc->sc_nqueues; i++) { 1725 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1726 device_xname(sc->sc_dev), i); 1727 sc->sc_rx_irq[i] = intno; 1728 sc->sc_tx_irq[i] = intno; 1729 error = aq_establish_intr(sc, intno++, affinity, 1730 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1731 if (error != 0) 1732 goto fail; 1733 } 1734 } 1735 1736 if (linkintr) { 1737 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1738 device_xname(sc->sc_dev)); 1739 sc->sc_linkstat_irq = intno; 1740 error = aq_establish_intr(sc, intno++, affinity, 1741 aq_link_intr, sc, intr_xname); 1742 if (error != 0) 1743 goto fail; 1744 } 1745 1746 kcpuset_destroy(affinity); 1747 return 0; 1748 1749 fail: 1750 for (i = 0; i < AQ_NINTR_MAX; i++) { 1751 if (sc->sc_ihs[i] != NULL) { 1752 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1753 sc->sc_ihs[i] = NULL; 1754 } 1755 } 1756 1757 kcpuset_destroy(affinity); 1758 return ENOMEM; 1759 } 1760 1761 static int 1762 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1763 bool txrx_independent, bool linkintr) 1764 { 1765 int error, nintr; 1766 1767 if (txrx_independent) 1768 nintr = nqueue * 2; 1769 else 1770 nintr = nqueue; 1771 1772 if (linkintr) 1773 nintr++; 1774 1775 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1776 if (error != 0) { 1777 aprint_error_dev(sc->sc_dev, 1778 "failed to allocate MSI-X interrupts\n"); 1779 goto fail; 1780 } 1781 1782 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1783 if (error == 0) { 1784 sc->sc_nintrs = nintr; 1785 } else { 1786 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1787 sc->sc_nintrs = 0; 1788 } 1789 fail: 1790 return error; 1791 1792 } 1793 1794 static int 1795 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1796 pci_intr_type_t inttype) 1797 { 1798 int counts[PCI_INTR_TYPE_SIZE]; 1799 int error, nintr; 1800 1801 nintr = 1; 1802 1803 memset(counts, 0, sizeof(counts)); 1804 counts[inttype] = nintr; 1805 1806 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1807 if (error != 0) { 1808 aprint_error_dev(sc->sc_dev, 1809 "failed to allocate%s interrupts\n", 1810 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1811 return error; 1812 } 1813 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1814 device_xname(sc->sc_dev)); 1815 if (error == 0) { 1816 sc->sc_nintrs = nintr; 1817 } else { 1818 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1819 sc->sc_nintrs = 0; 1820 } 1821 return error; 1822 } 1823 1824 static void 1825 global_software_reset(struct aq_softc *sc) 1826 { 1827 uint32_t v; 1828 1829 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1830 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1831 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1832 FW_MPI_RESETCTRL_RESET_DIS, 0); 1833 1834 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1835 v &= ~AQ_FW_SOFTRESET_DIS; 1836 v |= AQ_FW_SOFTRESET_RESET; 1837 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1838 } 1839 1840 static int 1841 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1842 { 1843 int timo; 1844 1845 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1846 1847 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1848 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1849 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1850 1851 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1852 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1853 1854 global_software_reset(sc); 1855 1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1857 1858 /* Wait for RBL to finish boot process. */ 1859 #define RBL_TIMEOUT_MS 10000 1860 uint16_t rbl_status; 1861 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1862 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1863 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1864 break; 1865 msec_delay(1); 1866 } 1867 if (timo <= 0) { 1868 aprint_error_dev(sc->sc_dev, 1869 "RBL> RBL restart failed: timeout\n"); 1870 return EBUSY; 1871 } 1872 switch (rbl_status) { 1873 case RBL_STATUS_SUCCESS: 1874 if (mode != NULL) 1875 *mode = FW_BOOT_MODE_RBL_FLASH; 1876 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1877 break; 1878 case RBL_STATUS_HOST_BOOT: 1879 if (mode != NULL) 1880 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1881 aprint_debug_dev(sc->sc_dev, 1882 "RBL> reset complete! [Host Bootload]\n"); 1883 break; 1884 case RBL_STATUS_FAILURE: 1885 default: 1886 aprint_error_dev(sc->sc_dev, 1887 "unknown RBL status 0x%x\n", rbl_status); 1888 return EBUSY; 1889 } 1890 1891 return 0; 1892 } 1893 1894 static int 1895 mac_soft_reset_flb(struct aq_softc *sc) 1896 { 1897 uint32_t v; 1898 int timo; 1899 1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1901 /* 1902 * Let Felicity hardware to complete SMBUS transaction before 1903 * Global software reset. 1904 */ 1905 msec_delay(50); 1906 1907 /* 1908 * If SPI burst transaction was interrupted(before running the script), 1909 * global software reset may not clear SPI interface. 1910 * Clean it up manually before global reset. 1911 */ 1912 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1913 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1914 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1915 msec_delay(50); 1916 1917 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1918 v &= ~AQ_FW_SOFTRESET_DIS; 1919 v |= AQ_FW_SOFTRESET_RESET; 1920 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1921 1922 /* Kickstart. */ 1923 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1924 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1925 if (!sc->sc_fast_start_enabled) 1926 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1927 1928 /* 1929 * For the case SPI burst transaction was interrupted (by MCP reset 1930 * above), wait until it is completed by hardware. 1931 */ 1932 msec_delay(50); 1933 1934 /* MAC Kickstart */ 1935 if (!sc->sc_fast_start_enabled) { 1936 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1937 1938 uint32_t flb_status; 1939 for (timo = 0; timo < 1000; timo++) { 1940 flb_status = AQ_READ_REG(sc, 1941 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1942 if (flb_status != 0) 1943 break; 1944 msec_delay(1); 1945 } 1946 if (flb_status == 0) { 1947 aprint_error_dev(sc->sc_dev, 1948 "FLB> MAC kickstart failed: timed out\n"); 1949 return ETIMEDOUT; 1950 } 1951 aprint_debug_dev(sc->sc_dev, 1952 "FLB> MAC kickstart done, %d ms\n", timo); 1953 /* FW reset */ 1954 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1955 /* 1956 * Let Felicity hardware complete SMBUS transaction before 1957 * Global software reset. 1958 */ 1959 msec_delay(50); 1960 sc->sc_fast_start_enabled = true; 1961 } 1962 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1963 1964 /* PHY Kickstart: #undone */ 1965 global_software_reset(sc); 1966 1967 for (timo = 0; timo < 1000; timo++) { 1968 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1969 break; 1970 msec_delay(10); 1971 } 1972 if (timo >= 1000) { 1973 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1974 return ETIMEDOUT; 1975 } 1976 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1977 return 0; 1978 1979 } 1980 1981 static int 1982 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1983 { 1984 if (sc->sc_rbl_enabled) 1985 return mac_soft_reset_rbl(sc, mode); 1986 1987 if (mode != NULL) 1988 *mode = FW_BOOT_MODE_FLB; 1989 return mac_soft_reset_flb(sc); 1990 } 1991 1992 static int 1993 aq_fw_read_version(struct aq_softc *sc) 1994 { 1995 int i, error = EBUSY; 1996 #define MAC_FW_START_TIMEOUT_MS 10000 1997 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1998 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1999 if (sc->sc_fw_version != 0) { 2000 error = 0; 2001 break; 2002 } 2003 delay(1000); 2004 } 2005 return error; 2006 } 2007 2008 static int 2009 aq_fw_reset(struct aq_softc *sc) 2010 { 2011 uint32_t ver, v, bootExitCode; 2012 int i, error; 2013 2014 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 2015 2016 for (i = 1000; i > 0; i--) { 2017 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 2018 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 2019 if (v != 0x06000000 || bootExitCode != 0) 2020 break; 2021 } 2022 if (i <= 0) { 2023 aprint_error_dev(sc->sc_dev, 2024 "F/W reset failed. Neither RBL nor FLB started\n"); 2025 return ETIMEDOUT; 2026 } 2027 sc->sc_rbl_enabled = (bootExitCode != 0); 2028 2029 /* 2030 * Having FW version 0 is an indicator that cold start 2031 * is in progress. This means two things: 2032 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 2033 * 2) Driver may skip reset sequence and save time. 2034 */ 2035 if (sc->sc_fast_start_enabled && (ver != 0)) { 2036 error = aq_fw_read_version(sc); 2037 /* Skip reset as it just completed */ 2038 if (error == 0) 2039 return 0; 2040 } 2041 2042 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2043 error = mac_soft_reset(sc, &mode); 2044 if (error != 0) { 2045 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2046 return error; 2047 } 2048 2049 switch (mode) { 2050 case FW_BOOT_MODE_FLB: 2051 aprint_debug_dev(sc->sc_dev, 2052 "FLB> F/W successfully loaded from flash.\n"); 2053 sc->sc_flash_present = true; 2054 return aq_fw_read_version(sc); 2055 case FW_BOOT_MODE_RBL_FLASH: 2056 aprint_debug_dev(sc->sc_dev, 2057 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2058 sc->sc_flash_present = true; 2059 return aq_fw_read_version(sc); 2060 case FW_BOOT_MODE_UNKNOWN: 2061 aprint_error_dev(sc->sc_dev, 2062 "F/W bootload error: unknown bootloader type\n"); 2063 return ENOTSUP; 2064 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2065 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2066 break; 2067 } 2068 2069 /* 2070 * XXX: TODO: add support Host Boot 2071 */ 2072 aprint_error_dev(sc->sc_dev, 2073 "RBL> F/W Host Bootload not implemented\n"); 2074 return ENOTSUP; 2075 } 2076 2077 static int 2078 aq_hw_reset(struct aq_softc *sc) 2079 { 2080 int error; 2081 2082 /* disable irq */ 2083 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2084 2085 /* apply */ 2086 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2087 2088 /* wait ack 10 times by 1ms */ 2089 WAIT_FOR( 2090 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2091 1000, 10, &error); 2092 if (error != 0) { 2093 aprint_error_dev(sc->sc_dev, 2094 "atlantic: IRQ reset failed: %d\n", error); 2095 return error; 2096 } 2097 2098 return sc->sc_fw_ops->reset(sc); 2099 } 2100 2101 static int 2102 aq_hw_init_ucp(struct aq_softc *sc) 2103 { 2104 int timo; 2105 2106 if (FW_VERSION_MAJOR(sc) == 1) { 2107 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) 2108 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe); 2109 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2110 } 2111 2112 /* Wait a maximum of 10sec. It usually takes about 5sec. */ 2113 for (timo = 10000; timo > 0; timo--) { 2114 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2115 if (sc->sc_mbox_addr != 0) 2116 break; 2117 delay(1000); 2118 } 2119 if (sc->sc_mbox_addr == 0) { 2120 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n"); 2121 return ETIMEDOUT; 2122 } 2123 2124 #define AQ_FW_MIN_VERSION 0x01050006 2125 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2126 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2127 aprint_error_dev(sc->sc_dev, 2128 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2129 " or later required, this is %d.%d.%d\n", 2130 FW_VERSION_MAJOR(sc), 2131 FW_VERSION_MINOR(sc), 2132 FW_VERSION_BUILD(sc)); 2133 return ENOTSUP; 2134 } 2135 2136 return 0; 2137 } 2138 2139 static int 2140 aq_fw_version_init(struct aq_softc *sc) 2141 { 2142 int error = 0; 2143 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2144 2145 if (FW_VERSION_MAJOR(sc) == 1) { 2146 sc->sc_fw_ops = &aq_fw1x_ops; 2147 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2148 sc->sc_fw_ops = &aq_fw2x_ops; 2149 } else { 2150 aprint_error_dev(sc->sc_dev, 2151 "Unsupported F/W version %d.%d.%d\n", 2152 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2153 FW_VERSION_BUILD(sc)); 2154 return ENOTSUP; 2155 } 2156 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2157 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2158 2159 /* detect revision */ 2160 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2161 switch (hwrev & 0x0000000f) { 2162 case 0x01: 2163 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2164 fw_vers); 2165 sc->sc_features |= FEATURES_REV_A0 | 2166 FEATURES_MPI_AQ | FEATURES_MIPS; 2167 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A; 2168 break; 2169 case 0x02: 2170 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2171 fw_vers); 2172 sc->sc_features |= FEATURES_REV_B0 | 2173 FEATURES_MPI_AQ | FEATURES_MIPS | 2174 FEATURES_TPO2 | FEATURES_RPF2; 2175 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2176 break; 2177 case 0x0A: 2178 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2179 fw_vers); 2180 sc->sc_features |= FEATURES_REV_B1 | 2181 FEATURES_MPI_AQ | FEATURES_MIPS | 2182 FEATURES_TPO2 | FEATURES_RPF2; 2183 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2184 break; 2185 default: 2186 aprint_error_dev(sc->sc_dev, 2187 "Unknown revision (0x%08x)\n", hwrev); 2188 sc->sc_features = 0; 2189 sc->sc_max_mtu = ETHERMTU; 2190 error = ENOTSUP; 2191 break; 2192 } 2193 return error; 2194 } 2195 2196 static int 2197 fw1x_reset(struct aq_softc *sc) 2198 { 2199 struct aq_mailbox_header mbox; 2200 const int retryCount = 1000; 2201 uint32_t tid0; 2202 int i; 2203 2204 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2205 2206 for (i = 0; i < retryCount; ++i) { 2207 /* 2208 * Read the beginning of Statistics structure to capture 2209 * the Transaction ID. 2210 */ 2211 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2212 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2213 2214 /* Successfully read the stats. */ 2215 if (tid0 == ~0U) { 2216 /* We have read the initial value. */ 2217 tid0 = mbox.transaction_id; 2218 continue; 2219 } else if (mbox.transaction_id != tid0) { 2220 /* 2221 * Compare transaction ID to initial value. 2222 * If it's different means f/w is alive. 2223 * We're done. 2224 */ 2225 return 0; 2226 } 2227 2228 /* 2229 * Transaction ID value haven't changed since last time. 2230 * Try reading the stats again. 2231 */ 2232 delay(10); 2233 } 2234 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2235 return EBUSY; 2236 } 2237 2238 static int 2239 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2240 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2241 { 2242 uint32_t mpictrl = 0; 2243 uint32_t mpispeed = 0; 2244 2245 if (speed & AQ_LINK_10G) 2246 mpispeed |= FW1X_CTRL_10G; 2247 if (speed & AQ_LINK_5G) 2248 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2249 if (speed & AQ_LINK_2G5) 2250 mpispeed |= FW1X_CTRL_2G5; 2251 if (speed & AQ_LINK_1G) 2252 mpispeed |= FW1X_CTRL_1G; 2253 if (speed & AQ_LINK_100M) 2254 mpispeed |= FW1X_CTRL_100M; 2255 2256 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2257 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2258 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2259 return 0; 2260 } 2261 2262 static int 2263 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2264 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2265 { 2266 uint32_t mpistate, mpi_speed; 2267 aq_link_speed_t speed = AQ_LINK_NONE; 2268 2269 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2270 2271 if (modep != NULL) 2272 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2273 2274 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2275 if (mpi_speed & FW1X_CTRL_10G) 2276 speed = AQ_LINK_10G; 2277 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2278 speed = AQ_LINK_5G; 2279 else if (mpi_speed & FW1X_CTRL_2G5) 2280 speed = AQ_LINK_2G5; 2281 else if (mpi_speed & FW1X_CTRL_1G) 2282 speed = AQ_LINK_1G; 2283 else if (mpi_speed & FW1X_CTRL_100M) 2284 speed = AQ_LINK_100M; 2285 2286 if (speedp != NULL) 2287 *speedp = speed; 2288 2289 if (fcp != NULL) 2290 *fcp = AQ_FC_NONE; 2291 2292 if (eeep != NULL) 2293 *eeep = AQ_EEE_DISABLE; 2294 2295 return 0; 2296 } 2297 2298 static int 2299 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2300 { 2301 int error; 2302 2303 error = aq_fw_downld_dwords(sc, 2304 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2305 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2306 if (error < 0) { 2307 device_printf(sc->sc_dev, 2308 "fw1x> download statistics data FAILED, error %d", error); 2309 return error; 2310 } 2311 2312 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2313 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2314 return 0; 2315 } 2316 2317 static int 2318 fw2x_reset(struct aq_softc *sc) 2319 { 2320 fw2x_capabilities_t caps = { 0 }; 2321 int error; 2322 2323 error = aq_fw_downld_dwords(sc, 2324 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2325 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2326 if (error != 0) { 2327 aprint_error_dev(sc->sc_dev, 2328 "fw2x> can't get F/W capabilities mask, error %d\n", 2329 error); 2330 return error; 2331 } 2332 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2333 2334 char buf[256]; 2335 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2336 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2337 2338 return 0; 2339 } 2340 2341 static int 2342 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2343 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2344 { 2345 uint64_t mpi_ctrl; 2346 int error = 0; 2347 2348 AQ_MPI_LOCK(sc); 2349 2350 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2351 2352 switch (mode) { 2353 case MPI_INIT: 2354 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2355 if (speed & AQ_LINK_10G) 2356 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2357 if (speed & AQ_LINK_5G) 2358 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2359 if (speed & AQ_LINK_2G5) 2360 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2361 if (speed & AQ_LINK_1G) 2362 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2363 if (speed & AQ_LINK_100M) 2364 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2365 2366 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2367 2368 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2369 if (eee == AQ_EEE_ENABLE) 2370 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2371 2372 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2373 if (fc & AQ_FC_RX) 2374 mpi_ctrl |= FW2X_CTRL_PAUSE; 2375 if (fc & AQ_FC_TX) 2376 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2377 break; 2378 case MPI_DEINIT: 2379 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2380 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2381 break; 2382 default: 2383 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2384 error = EINVAL; 2385 goto failure; 2386 } 2387 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2388 2389 failure: 2390 AQ_MPI_UNLOCK(sc); 2391 return error; 2392 } 2393 2394 static int 2395 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2396 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2397 { 2398 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2399 2400 if (modep != NULL) { 2401 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2402 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2403 *modep = MPI_INIT; 2404 else 2405 *modep = MPI_DEINIT; 2406 } 2407 2408 aq_link_speed_t speed = AQ_LINK_NONE; 2409 if (mpi_state & FW2X_CTRL_RATE_10G) 2410 speed = AQ_LINK_10G; 2411 else if (mpi_state & FW2X_CTRL_RATE_5G) 2412 speed = AQ_LINK_5G; 2413 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2414 speed = AQ_LINK_2G5; 2415 else if (mpi_state & FW2X_CTRL_RATE_1G) 2416 speed = AQ_LINK_1G; 2417 else if (mpi_state & FW2X_CTRL_RATE_100M) 2418 speed = AQ_LINK_100M; 2419 2420 if (speedp != NULL) 2421 *speedp = speed; 2422 2423 aq_link_fc_t fc = AQ_FC_NONE; 2424 if (mpi_state & FW2X_CTRL_PAUSE) 2425 fc |= AQ_FC_RX; 2426 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2427 fc |= AQ_FC_TX; 2428 if (fcp != NULL) 2429 *fcp = fc; 2430 2431 /* XXX: TODO: EEE */ 2432 if (eeep != NULL) 2433 *eeep = AQ_EEE_DISABLE; 2434 2435 return 0; 2436 } 2437 2438 static int 2439 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2440 uint32_t timeout_ms, uint32_t try_count) 2441 { 2442 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2443 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2444 int error; 2445 2446 /* First, check that control and state values are consistent */ 2447 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2448 device_printf(sc->sc_dev, 2449 "fw2x> MPI control (%#llx) and state (%#llx)" 2450 " are not consistent for mask %#llx!\n", 2451 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2452 (unsigned long long)mask); 2453 return EINVAL; 2454 } 2455 2456 /* Invert bits (toggle) in control register */ 2457 mpi_ctrl ^= mask; 2458 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2459 2460 /* Clear all bits except masked */ 2461 mpi_ctrl &= mask; 2462 2463 /* Wait for FW reflecting change in state register */ 2464 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2465 1000 * timeout_ms, try_count, &error); 2466 if (error != 0) { 2467 device_printf(sc->sc_dev, 2468 "f/w2x> timeout while waiting for response" 2469 " in state register for bit %#llx!", 2470 (unsigned long long)mask); 2471 return error; 2472 } 2473 return 0; 2474 } 2475 2476 static int 2477 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2478 { 2479 int error; 2480 2481 AQ_MPI_LOCK(sc); 2482 /* Say to F/W to update the statistics */ 2483 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2484 if (error != 0) { 2485 device_printf(sc->sc_dev, 2486 "fw2x> statistics update error %d\n", error); 2487 goto failure; 2488 } 2489 2490 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2491 error = aq_fw_downld_dwords(sc, 2492 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2493 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2494 if (error != 0) { 2495 device_printf(sc->sc_dev, 2496 "fw2x> download statistics data FAILED, error %d", error); 2497 goto failure; 2498 } 2499 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2500 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2501 2502 failure: 2503 AQ_MPI_UNLOCK(sc); 2504 return error; 2505 } 2506 2507 #if NSYSMON_ENVSYS > 0 2508 static int 2509 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2510 { 2511 int error; 2512 uint32_t value, celsius; 2513 2514 AQ_MPI_LOCK(sc); 2515 2516 /* Say to F/W to update the temperature */ 2517 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2518 if (error != 0) 2519 goto failure; 2520 2521 error = aq_fw_downld_dwords(sc, 2522 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2523 &value, sizeof(value) / sizeof(uint32_t)); 2524 if (error != 0) 2525 goto failure; 2526 2527 /* 1/256 decrees C to microkelvin */ 2528 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2529 if (celsius == 0) { 2530 error = EIO; 2531 goto failure; 2532 } 2533 *temp = celsius * (1000000 / 256) + 273150000; 2534 2535 failure: 2536 AQ_MPI_UNLOCK(sc); 2537 return 0; 2538 } 2539 #endif 2540 2541 static int 2542 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2543 uint32_t cnt) 2544 { 2545 uint32_t v; 2546 int error = 0; 2547 2548 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2549 if (error != 0) { 2550 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2551 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2552 if (v == 0) { 2553 device_printf(sc->sc_dev, 2554 "%s:%d: timeout\n", __func__, __LINE__); 2555 return ETIMEDOUT; 2556 } 2557 } 2558 2559 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2560 2561 error = 0; 2562 for (; cnt > 0 && error == 0; cnt--) { 2563 /* execute mailbox interface */ 2564 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2565 AQ_FW_MBOX_CMD_EXECUTE, 1); 2566 if (sc->sc_features & FEATURES_REV_B1) { 2567 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2568 1, 1000, &error); 2569 } else { 2570 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2571 AQ_FW_MBOX_CMD_BUSY) == 0, 2572 1, 1000, &error); 2573 } 2574 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2575 addr += sizeof(uint32_t); 2576 } 2577 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2578 2579 if (error != 0) 2580 device_printf(sc->sc_dev, 2581 "%s:%d: timeout\n", __func__, __LINE__); 2582 2583 return error; 2584 } 2585 2586 /* read my mac address */ 2587 static int 2588 aq_get_mac_addr(struct aq_softc *sc) 2589 { 2590 uint32_t mac_addr[2]; 2591 uint32_t efuse_shadow_addr; 2592 int err; 2593 2594 efuse_shadow_addr = 0; 2595 if (FW_VERSION_MAJOR(sc) >= 2) 2596 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2597 else 2598 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2599 2600 if (efuse_shadow_addr == 0) { 2601 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2602 return ENXIO; 2603 } 2604 2605 memset(mac_addr, 0, sizeof(mac_addr)); 2606 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2607 mac_addr, __arraycount(mac_addr)); 2608 if (err < 0) 2609 return err; 2610 2611 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2612 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2613 return ENXIO; 2614 } 2615 2616 mac_addr[0] = htobe32(mac_addr[0]); 2617 mac_addr[1] = htobe32(mac_addr[1]); 2618 2619 memcpy(sc->sc_enaddr.ether_addr_octet, 2620 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2621 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2622 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2623 2624 return 0; 2625 } 2626 2627 /* set multicast filter. index 0 for own address */ 2628 static int 2629 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2630 { 2631 uint32_t h, l; 2632 2633 if (index >= AQ_HW_MAC_NUM) 2634 return EINVAL; 2635 2636 if (enaddr == NULL) { 2637 /* disable */ 2638 AQ_WRITE_REG_BIT(sc, 2639 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2640 return 0; 2641 } 2642 2643 h = (enaddr[0] << 8) | (enaddr[1]); 2644 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2645 (enaddr[4] << 8) | (enaddr[5]); 2646 2647 /* disable, set, and enable */ 2648 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2649 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2650 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2651 RPF_L2UC_MSW_MACADDR_HI, h); 2652 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2653 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2654 2655 return 0; 2656 } 2657 2658 static int 2659 aq_set_capability(struct aq_softc *sc) 2660 { 2661 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 2662 int ip4csum_tx = 2663 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2664 int ip4csum_rx = 2665 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2666 int l4csum_tx = ((ifp->if_capenable & 2667 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2668 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2669 int l4csum_rx = 2670 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2671 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2672 uint32_t lso = 2673 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2674 0 : 0xffffffff; 2675 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2676 0 : 0xffffffff; 2677 uint32_t i, v; 2678 2679 /* TX checksums offloads*/ 2680 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2681 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2682 2683 /* RX checksums offloads*/ 2684 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2685 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2686 2687 /* LSO offloads*/ 2688 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2689 2690 #define AQ_B0_LRO_RXD_MAX 16 2691 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2692 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2693 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2694 for (i = 0; i < AQ_RINGS_NUM; i++) { 2695 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2696 RPO_LRO_LDES_MAX_MASK(i), v); 2697 } 2698 2699 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2700 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2701 RPO_LRO_INACTIVE_IVAL, 0); 2702 /* 2703 * the LRO timebase divider is 5 uS (0x61a), 2704 * to get a maximum coalescing interval of 250 uS, 2705 * we need to multiply by 50(0x32) to get 2706 * the default value 250 uS 2707 */ 2708 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2709 RPO_LRO_MAX_COALESCING_IVAL, 50); 2710 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2711 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2712 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2713 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2714 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2715 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2716 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2717 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2718 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2719 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2720 2721 return 0; 2722 } 2723 2724 static int 2725 aq_set_filter(struct aq_softc *sc) 2726 { 2727 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 2728 struct ethercom * const ec = &sc->sc_ethercom; 2729 struct ether_multi *enm; 2730 struct ether_multistep step; 2731 int idx, error = 0; 2732 2733 if (ifp->if_flags & IFF_PROMISC) { 2734 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2735 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2736 ec->ec_flags |= ETHER_F_ALLMULTI; 2737 goto done; 2738 } 2739 2740 /* clear all table */ 2741 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2742 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2743 continue; 2744 aq_set_mac_addr(sc, idx, NULL); 2745 } 2746 2747 /* don't accept all multicast */ 2748 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2749 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2750 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2751 RPF_MCAST_FILTER_EN, 0); 2752 2753 idx = 0; 2754 ETHER_LOCK(ec); 2755 ETHER_FIRST_MULTI(step, ec, enm); 2756 while (enm != NULL) { 2757 if (idx == AQ_HW_MAC_OWN) 2758 idx++; 2759 2760 if ((idx >= AQ_HW_MAC_NUM) || 2761 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2762 /* 2763 * too many filters. 2764 * fallback to accept all multicast addresses. 2765 */ 2766 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2767 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2768 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2769 RPF_MCAST_FILTER_EN, 1); 2770 ec->ec_flags |= ETHER_F_ALLMULTI; 2771 ETHER_UNLOCK(ec); 2772 goto done; 2773 } 2774 2775 /* add a filter */ 2776 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2777 2778 ETHER_NEXT_MULTI(step, enm); 2779 } 2780 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2781 ETHER_UNLOCK(ec); 2782 2783 done: 2784 return error; 2785 } 2786 2787 static int 2788 aq_ifmedia_change(struct ifnet * const ifp) 2789 { 2790 struct aq_softc * const sc = ifp->if_softc; 2791 2792 aq_link_speed_t rate = AQ_LINK_NONE; 2793 aq_link_fc_t fc = AQ_FC_NONE; 2794 aq_link_eee_t eee = AQ_EEE_DISABLE; 2795 2796 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2797 return EINVAL; 2798 2799 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2800 case IFM_AUTO: 2801 rate = AQ_LINK_AUTO; 2802 break; 2803 case IFM_NONE: 2804 rate = AQ_LINK_NONE; 2805 break; 2806 case IFM_100_TX: 2807 rate = AQ_LINK_100M; 2808 break; 2809 case IFM_1000_T: 2810 rate = AQ_LINK_1G; 2811 break; 2812 case IFM_2500_T: 2813 rate = AQ_LINK_2G5; 2814 break; 2815 case IFM_5000_T: 2816 rate = AQ_LINK_5G; 2817 break; 2818 case IFM_10G_T: 2819 rate = AQ_LINK_10G; 2820 break; 2821 default: 2822 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2823 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2824 return ENODEV; 2825 } 2826 2827 if (sc->sc_media.ifm_media & IFM_FLOW) 2828 fc = AQ_FC_ALL; 2829 2830 /* XXX: todo EEE */ 2831 2832 /* re-initialize hardware with new parameters */ 2833 aq_set_linkmode(sc, rate, fc, eee); 2834 2835 return 0; 2836 } 2837 2838 static void 2839 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2840 { 2841 struct aq_softc * const sc = ifp->if_softc; 2842 2843 /* update ifm_active */ 2844 ifmr->ifm_active = IFM_ETHER; 2845 if (sc->sc_link_fc & AQ_FC_RX) 2846 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2847 if (sc->sc_link_fc & AQ_FC_TX) 2848 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2849 2850 switch (sc->sc_link_rate) { 2851 case AQ_LINK_100M: 2852 /* XXX: need to detect fulldup or halfdup */ 2853 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2854 break; 2855 case AQ_LINK_1G: 2856 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2857 break; 2858 case AQ_LINK_2G5: 2859 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2860 break; 2861 case AQ_LINK_5G: 2862 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2863 break; 2864 case AQ_LINK_10G: 2865 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2866 break; 2867 default: 2868 ifmr->ifm_active |= IFM_NONE; 2869 break; 2870 } 2871 2872 /* update ifm_status */ 2873 ifmr->ifm_status = IFM_AVALID; 2874 if (sc->sc_link_rate != AQ_LINK_NONE) 2875 ifmr->ifm_status |= IFM_ACTIVE; 2876 } 2877 2878 static void 2879 aq_initmedia(struct aq_softc *sc) 2880 { 2881 #define IFMEDIA_ETHER_ADD(sc, media) \ 2882 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2883 2884 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2885 if (sc->sc_available_rates & AQ_LINK_100M) { 2886 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2887 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2888 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2889 } 2890 if (sc->sc_available_rates & AQ_LINK_1G) { 2891 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2892 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2893 } 2894 if (sc->sc_available_rates & AQ_LINK_2G5) { 2895 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2896 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2897 } 2898 if (sc->sc_available_rates & AQ_LINK_5G) { 2899 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2900 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2901 } 2902 if (sc->sc_available_rates & AQ_LINK_10G) { 2903 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2904 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2905 } 2906 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2907 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2908 2909 /* default: auto without flowcontrol */ 2910 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2911 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2912 } 2913 2914 static int 2915 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2916 aq_link_eee_t eee) 2917 { 2918 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2919 } 2920 2921 static int 2922 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2923 aq_link_eee_t *eee) 2924 { 2925 aq_hw_fw_mpi_state_t mode; 2926 int error; 2927 2928 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2929 if (error != 0) 2930 return error; 2931 if (mode != MPI_INIT) 2932 return ENXIO; 2933 2934 return 0; 2935 } 2936 2937 static void 2938 aq_hw_init_tx_path(struct aq_softc *sc) 2939 { 2940 /* Tx TC/RSS number config */ 2941 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2942 2943 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2944 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2945 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2946 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2947 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2948 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2949 2950 /* misc */ 2951 AQ_WRITE_REG(sc, TX_TPO2_REG, 2952 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2953 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2954 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2955 2956 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2957 } 2958 2959 static void 2960 aq_hw_init_rx_path(struct aq_softc *sc) 2961 { 2962 int i; 2963 2964 /* clear setting */ 2965 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2966 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2967 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2968 for (i = 0; i < 32; i++) { 2969 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2970 RPF_ETHERTYPE_FILTER_EN, 0); 2971 } 2972 2973 if (sc->sc_rss_enable) { 2974 /* Rx TC/RSS number config */ 2975 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2976 2977 /* Rx flow control */ 2978 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2979 2980 /* RSS Ring selection */ 2981 switch (sc->sc_nqueues) { 2982 case 2: 2983 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2984 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2985 break; 2986 case 4: 2987 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2988 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2989 break; 2990 case 8: 2991 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2992 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2993 break; 2994 } 2995 } 2996 2997 /* L2 and Multicast filters */ 2998 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2999 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 3000 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 3001 RPF_ACTION_HOST); 3002 } 3003 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 3004 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 3005 3006 /* Vlan filters */ 3007 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 3008 ETHERTYPE_QINQ); 3009 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 3010 ETHERTYPE_VLAN); 3011 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3012 3013 if (sc->sc_features & FEATURES_REV_B) { 3014 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3015 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 3016 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3017 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 3018 } 3019 3020 /* misc */ 3021 if (sc->sc_features & FEATURES_RPF2) 3022 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 3023 else 3024 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 3025 3026 /* 3027 * XXX: RX_TCP_RSS_HASH_REG: 3028 * linux set 0x000f0000 3029 * freebsd set 0x000f001e 3030 */ 3031 /* RSS hash type set for IP/TCP */ 3032 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 3033 RX_TCP_RSS_HASH_TYPE, 0x001e); 3034 3035 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 3036 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 3037 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 3038 3039 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 3040 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 3041 } 3042 3043 static void 3044 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3045 { 3046 int i; 3047 3048 if (sc->sc_intr_moderation_enable) { 3049 unsigned int tx_min, rx_min; /* 0-255 */ 3050 unsigned int tx_max, rx_max; /* 0-511? */ 3051 3052 switch (sc->sc_link_rate) { 3053 case AQ_LINK_100M: 3054 tx_min = 0x4f; 3055 tx_max = 0xff; 3056 rx_min = 0x04; 3057 rx_max = 0x50; 3058 break; 3059 case AQ_LINK_1G: 3060 default: 3061 tx_min = 0x4f; 3062 tx_max = 0xff; 3063 rx_min = 0x30; 3064 rx_max = 0x80; 3065 break; 3066 case AQ_LINK_2G5: 3067 tx_min = 0x4f; 3068 tx_max = 0xff; 3069 rx_min = 0x18; 3070 rx_max = 0xe0; 3071 break; 3072 case AQ_LINK_5G: 3073 tx_min = 0x4f; 3074 tx_max = 0xff; 3075 rx_min = 0x0c; 3076 rx_max = 0x70; 3077 break; 3078 case AQ_LINK_10G: 3079 tx_min = 0x4f; 3080 tx_max = 0x1ff; 3081 rx_min = 0x06; /* freebsd use 80 */ 3082 rx_max = 0x38; /* freebsd use 120 */ 3083 break; 3084 } 3085 3086 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3087 TX_DMA_INT_DESC_WRWB_EN, 0); 3088 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3089 TX_DMA_INT_DESC_MODERATE_EN, 1); 3090 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3091 RX_DMA_INT_DESC_WRWB_EN, 0); 3092 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3093 RX_DMA_INT_DESC_MODERATE_EN, 1); 3094 3095 for (i = 0; i < AQ_RINGS_NUM; i++) { 3096 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3097 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3098 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3099 TX_INTR_MODERATION_CTL_EN); 3100 } 3101 for (i = 0; i < AQ_RINGS_NUM; i++) { 3102 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3103 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3104 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3105 RX_INTR_MODERATION_CTL_EN); 3106 } 3107 3108 } else { 3109 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3110 TX_DMA_INT_DESC_WRWB_EN, 1); 3111 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3112 TX_DMA_INT_DESC_MODERATE_EN, 0); 3113 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3114 RX_DMA_INT_DESC_WRWB_EN, 1); 3115 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3116 RX_DMA_INT_DESC_MODERATE_EN, 0); 3117 3118 for (i = 0; i < AQ_RINGS_NUM; i++) { 3119 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3120 } 3121 for (i = 0; i < AQ_RINGS_NUM; i++) { 3122 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3123 } 3124 } 3125 } 3126 3127 static void 3128 aq_hw_qos_set(struct aq_softc *sc) 3129 { 3130 uint32_t tc = 0; 3131 uint32_t buff_size; 3132 3133 /* TPS Descriptor rate init */ 3134 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3135 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3136 3137 /* TPS VM init */ 3138 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3139 3140 /* TPS TC credits init */ 3141 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3142 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3143 3144 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3145 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3146 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3147 TPS_DATA_TCT_WEIGHT, 0x64); 3148 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3149 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3150 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3151 TPS_DESC_TCT_WEIGHT, 0x1e); 3152 3153 /* Tx buf size */ 3154 tc = 0; 3155 buff_size = AQ_HW_TXBUF_MAX; 3156 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3157 buff_size); 3158 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3159 (buff_size * (1024 / 32) * 66) / 100); 3160 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3161 (buff_size * (1024 / 32) * 50) / 100); 3162 3163 /* QoS Rx buf size per TC */ 3164 tc = 0; 3165 buff_size = AQ_HW_RXBUF_MAX; 3166 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3167 buff_size); 3168 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3169 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3170 (buff_size * (1024 / 32) * 66) / 100); 3171 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3172 (buff_size * (1024 / 32) * 50) / 100); 3173 3174 /* QoS 802.1p priority -> TC mapping */ 3175 int i_priority; 3176 for (i_priority = 0; i_priority < 8; i_priority++) { 3177 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3178 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3179 } 3180 } 3181 3182 /* called once from aq_attach */ 3183 static int 3184 aq_init_rss(struct aq_softc *sc) 3185 { 3186 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3187 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3188 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3189 unsigned int i; 3190 int error; 3191 3192 /* initialize rss key */ 3193 rss_getkey((uint8_t *)rss_key); 3194 3195 /* hash to ring table */ 3196 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3197 rss_table[i] = i % sc->sc_nqueues; 3198 } 3199 3200 /* 3201 * set rss key 3202 */ 3203 for (i = 0; i < __arraycount(rss_key); i++) { 3204 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3205 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3206 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3207 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3208 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3209 RPF_RSS_KEY_WR_EN, 1); 3210 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3211 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3212 if (error != 0) { 3213 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3214 __func__); 3215 goto rss_set_timeout; 3216 } 3217 } 3218 3219 /* 3220 * set rss indirection table 3221 * 3222 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3223 * we'll make it by __BITMAP(3) macros. 3224 */ 3225 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3226 __BITMAP_ZERO(&bit3x64); 3227 3228 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3229 do { \ 3230 if (val & 1) { \ 3231 __BITMAP_SET((idx) * 3, (bitmap)); \ 3232 } else { \ 3233 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3234 } \ 3235 if (val & 2) { \ 3236 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3237 } else { \ 3238 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3239 } \ 3240 if (val & 4) { \ 3241 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3242 } else { \ 3243 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3244 } \ 3245 } while (0 /* CONSTCOND */) 3246 3247 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3248 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3249 } 3250 3251 /* write 192bit data in steps of 16bit */ 3252 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3253 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3254 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3255 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3256 RPF_RSS_REDIR_ADDR, i); 3257 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3258 RPF_RSS_REDIR_WR_EN, 1); 3259 3260 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3261 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3262 if (error != 0) 3263 break; 3264 } 3265 3266 rss_set_timeout: 3267 return error; 3268 } 3269 3270 static void 3271 aq_hw_l3_filter_set(struct aq_softc *sc) 3272 { 3273 int i; 3274 3275 /* clear all filter */ 3276 for (i = 0; i < 8; i++) { 3277 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3278 RPF_L3_FILTER_L4_EN, 0); 3279 } 3280 } 3281 3282 static void 3283 aq_set_vlan_filters(struct aq_softc *sc) 3284 { 3285 struct ethercom * const ec = &sc->sc_ethercom; 3286 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3287 struct vlanid_list *vlanidp; 3288 int i; 3289 3290 ETHER_LOCK(ec); 3291 3292 /* disable all vlan filters */ 3293 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3294 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3295 3296 /* count VID */ 3297 i = 0; 3298 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3299 i++; 3300 3301 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3302 (ifp->if_flags & IFF_PROMISC) || 3303 (i > RPF_VLAN_MAX_FILTERS)) { 3304 /* 3305 * no vlan hwfilter, in promiscuous mode, or too many VID? 3306 * must receive all VID 3307 */ 3308 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3309 RPF_VLAN_MODE_PROMISC, 1); 3310 goto done; 3311 } 3312 3313 /* receive only selected VID */ 3314 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3315 i = 0; 3316 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3317 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3318 RPF_VLAN_FILTER_EN, 1); 3319 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3320 RPF_VLAN_FILTER_RXQ_EN, 0); 3321 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3322 RPF_VLAN_FILTER_RXQ, 0); 3323 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3324 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3325 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3326 RPF_VLAN_FILTER_ID, vlanidp->vid); 3327 i++; 3328 } 3329 3330 done: 3331 ETHER_UNLOCK(ec); 3332 } 3333 3334 static int 3335 aq_hw_init(struct aq_softc *sc) 3336 { 3337 uint32_t v; 3338 3339 /* Force limit MRRS on RDM/TDM to 2K */ 3340 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3341 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3342 3343 /* 3344 * TX DMA total request limit. B0 hardware is not capable to 3345 * handle more than (8K-MRRS) incoming DMA data. 3346 * Value 24 in 256byte units 3347 */ 3348 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3349 3350 aq_hw_init_tx_path(sc); 3351 aq_hw_init_rx_path(sc); 3352 3353 aq_hw_interrupt_moderation_set(sc); 3354 3355 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3356 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3357 3358 aq_hw_qos_set(sc); 3359 3360 /* Enable interrupt */ 3361 int irqmode; 3362 if (sc->sc_msix) 3363 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3364 else 3365 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3366 3367 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3368 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3369 sc->sc_msix ? 1 : 0); 3370 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3371 3372 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3373 3374 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3375 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3376 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3377 ); 3378 3379 /* link interrupt */ 3380 if (!sc->sc_msix) 3381 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3382 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3383 __BIT(7) | sc->sc_linkstat_irq); 3384 3385 return 0; 3386 } 3387 3388 static int 3389 aq_update_link_status(struct aq_softc *sc) 3390 { 3391 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3392 aq_link_speed_t rate = AQ_LINK_NONE; 3393 aq_link_fc_t fc = AQ_FC_NONE; 3394 aq_link_eee_t eee = AQ_EEE_DISABLE; 3395 unsigned int speed; 3396 int changed = 0; 3397 3398 aq_get_linkmode(sc, &rate, &fc, &eee); 3399 3400 if (sc->sc_link_rate != rate) 3401 changed = 1; 3402 if (sc->sc_link_fc != fc) 3403 changed = 1; 3404 if (sc->sc_link_eee != eee) 3405 changed = 1; 3406 3407 if (changed) { 3408 switch (rate) { 3409 case AQ_LINK_100M: 3410 speed = 100; 3411 break; 3412 case AQ_LINK_1G: 3413 speed = 1000; 3414 break; 3415 case AQ_LINK_2G5: 3416 speed = 2500; 3417 break; 3418 case AQ_LINK_5G: 3419 speed = 5000; 3420 break; 3421 case AQ_LINK_10G: 3422 speed = 10000; 3423 break; 3424 case AQ_LINK_NONE: 3425 default: 3426 speed = 0; 3427 break; 3428 } 3429 3430 if (sc->sc_link_rate == AQ_LINK_NONE) { 3431 /* link DOWN -> UP */ 3432 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3433 speed); 3434 if_link_state_change(ifp, LINK_STATE_UP); 3435 } else if (rate == AQ_LINK_NONE) { 3436 /* link UP -> DOWN */ 3437 device_printf(sc->sc_dev, "link is DOWN\n"); 3438 if_link_state_change(ifp, LINK_STATE_DOWN); 3439 } else { 3440 device_printf(sc->sc_dev, 3441 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3442 speed, fc, eee); 3443 } 3444 3445 sc->sc_link_rate = rate; 3446 sc->sc_link_fc = fc; 3447 sc->sc_link_eee = eee; 3448 3449 /* update interrupt timing according to new link speed */ 3450 aq_hw_interrupt_moderation_set(sc); 3451 } 3452 3453 return changed; 3454 } 3455 3456 #ifdef AQ_EVENT_COUNTERS 3457 static void 3458 aq_update_statistics(struct aq_softc *sc) 3459 { 3460 int prev = sc->sc_statistics_idx; 3461 int cur = prev ^ 1; 3462 3463 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3464 3465 /* 3466 * aq's internal statistics counter is 32bit. 3467 * cauculate delta, and add to evcount 3468 */ 3469 #define ADD_DELTA(cur, prev, name) \ 3470 do { \ 3471 uint32_t n; \ 3472 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3473 sc->sc_statistics[prev].name); \ 3474 if (n != 0) { \ 3475 AQ_EVCNT_ADD(sc, name, n); \ 3476 } \ 3477 } while (/*CONSTCOND*/0); 3478 3479 ADD_DELTA(cur, prev, uprc); 3480 ADD_DELTA(cur, prev, mprc); 3481 ADD_DELTA(cur, prev, bprc); 3482 ADD_DELTA(cur, prev, prc); 3483 ADD_DELTA(cur, prev, erpr); 3484 ADD_DELTA(cur, prev, uptc); 3485 ADD_DELTA(cur, prev, mptc); 3486 ADD_DELTA(cur, prev, bptc); 3487 ADD_DELTA(cur, prev, ptc); 3488 ADD_DELTA(cur, prev, erpt); 3489 ADD_DELTA(cur, prev, mbtc); 3490 ADD_DELTA(cur, prev, bbtc); 3491 ADD_DELTA(cur, prev, mbrc); 3492 ADD_DELTA(cur, prev, bbrc); 3493 ADD_DELTA(cur, prev, ubrc); 3494 ADD_DELTA(cur, prev, ubtc); 3495 ADD_DELTA(cur, prev, dpc); 3496 ADD_DELTA(cur, prev, cprc); 3497 3498 sc->sc_statistics_idx = cur; 3499 } 3500 #endif /* AQ_EVENT_COUNTERS */ 3501 3502 /* allocate and map one DMA block */ 3503 static int 3504 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3505 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3506 { 3507 int nsegs, error; 3508 3509 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3510 1, &nsegs, 0)) != 0) { 3511 aprint_error_dev(sc->sc_dev, 3512 "unable to allocate DMA buffer, error=%d\n", error); 3513 goto fail_alloc; 3514 } 3515 3516 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3517 BUS_DMA_COHERENT)) != 0) { 3518 aprint_error_dev(sc->sc_dev, 3519 "unable to map DMA buffer, error=%d\n", error); 3520 goto fail_map; 3521 } 3522 3523 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3524 0, mapp)) != 0) { 3525 aprint_error_dev(sc->sc_dev, 3526 "unable to create DMA map, error=%d\n", error); 3527 goto fail_create; 3528 } 3529 3530 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3531 0)) != 0) { 3532 aprint_error_dev(sc->sc_dev, 3533 "unable to load DMA map, error=%d\n", error); 3534 goto fail_load; 3535 } 3536 3537 *sizep = size; 3538 return 0; 3539 3540 fail_load: 3541 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3542 *mapp = NULL; 3543 fail_create: 3544 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3545 *addrp = NULL; 3546 fail_map: 3547 bus_dmamem_free(sc->sc_dmat, seg, 1); 3548 memset(seg, 0, sizeof(*seg)); 3549 fail_alloc: 3550 *sizep = 0; 3551 return error; 3552 } 3553 3554 static void 3555 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3556 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3557 { 3558 if (*mapp != NULL) { 3559 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3560 *mapp = NULL; 3561 } 3562 if (*addrp != NULL) { 3563 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3564 *addrp = NULL; 3565 } 3566 if (*sizep != 0) { 3567 bus_dmamem_free(sc->sc_dmat, seg, 1); 3568 memset(seg, 0, sizeof(*seg)); 3569 *sizep = 0; 3570 } 3571 } 3572 3573 static int 3574 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3575 { 3576 int i, error; 3577 3578 /* allocate tx descriptors */ 3579 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3580 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3581 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3582 if (error != 0) 3583 return error; 3584 3585 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3586 3587 /* fill tx ring with dmamap */ 3588 for (i = 0; i < AQ_TXD_NUM; i++) { 3589 #define AQ_MAXDMASIZE (16 * 1024) 3590 #define AQ_NTXSEGS 32 3591 /* XXX: TODO: error check */ 3592 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3593 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3594 } 3595 return 0; 3596 } 3597 3598 static void 3599 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3600 { 3601 int i; 3602 3603 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3604 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3605 3606 for (i = 0; i < AQ_TXD_NUM; i++) { 3607 if (txring->txr_mbufs[i].dmamap != NULL) { 3608 if (txring->txr_mbufs[i].m != NULL) { 3609 bus_dmamap_unload(sc->sc_dmat, 3610 txring->txr_mbufs[i].dmamap); 3611 m_freem(txring->txr_mbufs[i].m); 3612 txring->txr_mbufs[i].m = NULL; 3613 } 3614 bus_dmamap_destroy(sc->sc_dmat, 3615 txring->txr_mbufs[i].dmamap); 3616 txring->txr_mbufs[i].dmamap = NULL; 3617 } 3618 } 3619 } 3620 3621 static int 3622 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3623 { 3624 int i, error; 3625 3626 /* allocate rx descriptors */ 3627 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3628 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3629 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3630 if (error != 0) 3631 return error; 3632 3633 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3634 3635 /* fill rxring with dmamaps */ 3636 for (i = 0; i < AQ_RXD_NUM; i++) { 3637 rxring->rxr_mbufs[i].m = NULL; 3638 /* XXX: TODO: error check */ 3639 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3640 &rxring->rxr_mbufs[i].dmamap); 3641 } 3642 return 0; 3643 } 3644 3645 static void 3646 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3647 { 3648 int i; 3649 3650 /* free all mbufs allocated for RX */ 3651 for (i = 0; i < AQ_RXD_NUM; i++) { 3652 if (rxring->rxr_mbufs[i].m != NULL) { 3653 bus_dmamap_unload(sc->sc_dmat, 3654 rxring->rxr_mbufs[i].dmamap); 3655 m_freem(rxring->rxr_mbufs[i].m); 3656 rxring->rxr_mbufs[i].m = NULL; 3657 } 3658 } 3659 } 3660 3661 static void 3662 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3663 { 3664 int i; 3665 3666 /* free all mbufs and dmamaps */ 3667 aq_rxdrain(sc, rxring); 3668 for (i = 0; i < AQ_RXD_NUM; i++) { 3669 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3670 bus_dmamap_destroy(sc->sc_dmat, 3671 rxring->rxr_mbufs[i].dmamap); 3672 rxring->rxr_mbufs[i].dmamap = NULL; 3673 } 3674 } 3675 3676 /* free RX descriptor */ 3677 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3678 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3679 } 3680 3681 static void 3682 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3683 struct mbuf *m) 3684 { 3685 int error; 3686 3687 /* if mbuf already exists, unload and free */ 3688 if (rxring->rxr_mbufs[idx].m != NULL) { 3689 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3690 m_freem(rxring->rxr_mbufs[idx].m); 3691 rxring->rxr_mbufs[idx].m = NULL; 3692 } 3693 3694 rxring->rxr_mbufs[idx].m = m; 3695 3696 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3697 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3698 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3699 if (error) { 3700 device_printf(sc->sc_dev, 3701 "unable to load rx DMA map %d, error = %d\n", idx, error); 3702 panic("%s: unable to load rx DMA map. error=%d", 3703 __func__, error); 3704 } 3705 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3706 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3707 } 3708 3709 static inline void 3710 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3711 { 3712 /* refill rxdesc, and sync */ 3713 rxring->rxr_rxdesc[idx].read.buf_addr = 3714 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3715 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3716 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3717 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3718 BUS_DMASYNC_PREWRITE); 3719 } 3720 3721 static struct mbuf * 3722 aq_alloc_mbuf(void) 3723 { 3724 struct mbuf *m; 3725 3726 MGETHDR(m, M_DONTWAIT, MT_DATA); 3727 if (m == NULL) 3728 return NULL; 3729 3730 MCLGET(m, M_DONTWAIT); 3731 if ((m->m_flags & M_EXT) == 0) { 3732 m_freem(m); 3733 return NULL; 3734 } 3735 3736 return m; 3737 } 3738 3739 /* allocate mbuf and unload dmamap */ 3740 static int 3741 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3742 { 3743 struct mbuf *m; 3744 3745 m = aq_alloc_mbuf(); 3746 if (m == NULL) 3747 return ENOBUFS; 3748 3749 aq_rxring_setmbuf(sc, rxring, idx, m); 3750 return 0; 3751 } 3752 3753 static int 3754 aq_txrx_rings_alloc(struct aq_softc *sc) 3755 { 3756 int n, error; 3757 3758 for (n = 0; n < sc->sc_nqueues; n++) { 3759 sc->sc_queue[n].sc = sc; 3760 sc->sc_queue[n].txring.txr_sc = sc; 3761 sc->sc_queue[n].txring.txr_index = n; 3762 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3763 IPL_NET); 3764 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3765 if (error != 0) 3766 goto failure; 3767 3768 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3769 if (error != 0) 3770 goto failure; 3771 3772 sc->sc_queue[n].rxring.rxr_sc = sc; 3773 sc->sc_queue[n].rxring.rxr_index = n; 3774 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3775 IPL_NET); 3776 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3777 if (error != 0) 3778 break; 3779 } 3780 3781 failure: 3782 return error; 3783 } 3784 3785 static void 3786 aq_txrx_rings_free(struct aq_softc *sc) 3787 { 3788 int n; 3789 3790 for (n = 0; n < sc->sc_nqueues; n++) { 3791 aq_txring_free(sc, &sc->sc_queue[n].txring); 3792 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3793 3794 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3795 3796 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3797 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3798 } 3799 } 3800 3801 static int 3802 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3803 { 3804 int error = 0; 3805 txring->txr_softint = NULL; 3806 3807 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3808 if (txring->txr_pcq == NULL) { 3809 aprint_error_dev(sc->sc_dev, 3810 "unable to allocate pcq for TXring[%d]\n", 3811 txring->txr_index); 3812 error = ENOMEM; 3813 goto done; 3814 } 3815 3816 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3817 aq_deferred_transmit, txring); 3818 if (txring->txr_softint == NULL) { 3819 aprint_error_dev(sc->sc_dev, 3820 "unable to establish softint for TXring[%d]\n", 3821 txring->txr_index); 3822 error = ENOENT; 3823 } 3824 3825 done: 3826 return error; 3827 } 3828 3829 static void 3830 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3831 { 3832 struct mbuf *m; 3833 3834 if (txring->txr_softint != NULL) { 3835 softint_disestablish(txring->txr_softint); 3836 txring->txr_softint = NULL; 3837 } 3838 3839 if (txring->txr_pcq != NULL) { 3840 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3841 m_freem(m); 3842 pcq_destroy(txring->txr_pcq); 3843 txring->txr_pcq = NULL; 3844 } 3845 } 3846 3847 #if NSYSMON_ENVSYS > 0 3848 static void 3849 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3850 { 3851 struct aq_softc *sc; 3852 uint32_t temp; 3853 int error; 3854 3855 sc = sme->sme_cookie; 3856 3857 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3858 if (error == 0) { 3859 edata->value_cur = temp; 3860 edata->state = ENVSYS_SVALID; 3861 } else { 3862 edata->state = ENVSYS_SINVALID; 3863 } 3864 } 3865 #endif 3866 3867 3868 3869 static bool 3870 aq_watchdog_check(struct aq_softc * const sc) 3871 { 3872 3873 AQ_LOCKED(sc); 3874 3875 bool ok = true; 3876 for (u_int n = 0; n < sc->sc_nqueues; n++) { 3877 struct aq_txring *txring = &sc->sc_queue[n].txring; 3878 3879 mutex_enter(&txring->txr_mutex); 3880 if (txring->txr_sending && 3881 time_uptime - txring->txr_lastsent > aq_watchdog_timeout) 3882 ok = false; 3883 3884 mutex_exit(&txring->txr_mutex); 3885 3886 if (!ok) 3887 return false; 3888 } 3889 3890 if (sc->sc_trigger_reset) { 3891 /* debug operation, no need for atomicity or reliability */ 3892 sc->sc_trigger_reset = 0; 3893 return false; 3894 } 3895 3896 return true; 3897 } 3898 3899 3900 3901 static bool 3902 aq_watchdog_tick(struct ifnet *ifp) 3903 { 3904 struct aq_softc * const sc = ifp->if_softc; 3905 3906 AQ_LOCKED(sc); 3907 3908 if (!sc->sc_trigger_reset && aq_watchdog_check(sc)) 3909 return true; 3910 3911 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) { 3912 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); 3913 } 3914 3915 return false; 3916 } 3917 3918 static void 3919 aq_tick(void *arg) 3920 { 3921 struct aq_softc * const sc = arg; 3922 3923 AQ_LOCK(sc); 3924 if (sc->sc_stopping) { 3925 AQ_UNLOCK(sc); 3926 return; 3927 } 3928 3929 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3930 sc->sc_detect_linkstat = false; 3931 aq_update_link_status(sc); 3932 } 3933 3934 #ifdef AQ_EVENT_COUNTERS 3935 if (sc->sc_poll_statistics) 3936 aq_update_statistics(sc); 3937 #endif 3938 3939 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3940 const bool ok = aq_watchdog_tick(ifp); 3941 if (ok) 3942 callout_schedule(&sc->sc_tick_ch, hz); 3943 3944 AQ_UNLOCK(sc); 3945 } 3946 3947 /* interrupt enable/disable */ 3948 static void 3949 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3950 { 3951 uint32_t imask = 0; 3952 int i; 3953 3954 if (txrx) { 3955 for (i = 0; i < sc->sc_nqueues; i++) { 3956 imask |= __BIT(sc->sc_tx_irq[i]); 3957 imask |= __BIT(sc->sc_rx_irq[i]); 3958 } 3959 } 3960 3961 if (link) 3962 imask |= __BIT(sc->sc_linkstat_irq); 3963 3964 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3965 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3966 } 3967 3968 static int 3969 aq_legacy_intr(void *arg) 3970 { 3971 struct aq_softc *sc = arg; 3972 uint32_t status; 3973 int nintr = 0; 3974 3975 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3976 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3977 3978 if (status & __BIT(sc->sc_linkstat_irq)) { 3979 AQ_LOCK(sc); 3980 sc->sc_detect_linkstat = true; 3981 if (!sc->sc_stopping) 3982 callout_schedule(&sc->sc_tick_ch, 0); 3983 AQ_UNLOCK(sc); 3984 nintr++; 3985 } 3986 3987 if (status & __BIT(sc->sc_rx_irq[0])) { 3988 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3989 } 3990 3991 if (status & __BIT(sc->sc_tx_irq[0])) { 3992 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3993 } 3994 3995 return nintr; 3996 } 3997 3998 static int 3999 aq_txrx_intr(void *arg) 4000 { 4001 struct aq_queue *queue = arg; 4002 struct aq_softc *sc = queue->sc; 4003 struct aq_txring *txring = &queue->txring; 4004 struct aq_rxring *rxring = &queue->rxring; 4005 uint32_t status; 4006 int nintr = 0; 4007 int txringidx, rxringidx, txirq, rxirq; 4008 4009 txringidx = txring->txr_index; 4010 rxringidx = rxring->rxr_index; 4011 txirq = sc->sc_tx_irq[txringidx]; 4012 rxirq = sc->sc_rx_irq[rxringidx]; 4013 4014 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 4015 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 4016 /* stray interrupt? */ 4017 return 0; 4018 } 4019 4020 nintr += aq_rx_intr(rxring); 4021 nintr += aq_tx_intr(txring); 4022 4023 return nintr; 4024 } 4025 4026 static int 4027 aq_link_intr(void *arg) 4028 { 4029 struct aq_softc * const sc = arg; 4030 uint32_t status; 4031 int nintr = 0; 4032 4033 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 4034 if (status & __BIT(sc->sc_linkstat_irq)) { 4035 AQ_LOCK(sc); 4036 sc->sc_detect_linkstat = true; 4037 if (!sc->sc_stopping) 4038 callout_schedule(&sc->sc_tick_ch, 0); 4039 AQ_UNLOCK(sc); 4040 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 4041 __BIT(sc->sc_linkstat_irq)); 4042 nintr++; 4043 } 4044 4045 return nintr; 4046 } 4047 4048 static void 4049 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 4050 { 4051 const int ringidx = txring->txr_index; 4052 int i; 4053 4054 mutex_enter(&txring->txr_mutex); 4055 4056 txring->txr_prodidx = 0; 4057 txring->txr_considx = 0; 4058 txring->txr_nfree = AQ_TXD_NUM; 4059 txring->txr_active = false; 4060 4061 /* free mbufs untransmitted */ 4062 for (i = 0; i < AQ_TXD_NUM; i++) { 4063 if (txring->txr_mbufs[i].m != NULL) { 4064 m_freem(txring->txr_mbufs[i].m); 4065 txring->txr_mbufs[i].m = NULL; 4066 } 4067 } 4068 4069 /* disable DMA */ 4070 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 4071 4072 if (start) { 4073 /* TX descriptor physical address */ 4074 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 4075 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4076 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4077 (uint32_t)((uint64_t)paddr >> 32)); 4078 4079 /* TX descriptor size */ 4080 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 4081 AQ_TXD_NUM / 8); 4082 4083 /* reload TAIL pointer */ 4084 txring->txr_prodidx = txring->txr_considx = 4085 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 4086 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 4087 4088 /* Mapping interrupt vector */ 4089 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 4090 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 4091 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 4092 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 4093 4094 /* enable DMA */ 4095 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 4096 TX_DMA_DESC_EN, 1); 4097 4098 const int cpuid = 0; /* XXX? */ 4099 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4100 TDM_DCAD_CPUID, cpuid); 4101 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4102 TDM_DCAD_CPUID_EN, 0); 4103 4104 txring->txr_active = true; 4105 } 4106 4107 mutex_exit(&txring->txr_mutex); 4108 } 4109 4110 static int 4111 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4112 { 4113 const int ringidx = rxring->rxr_index; 4114 int i; 4115 int error = 0; 4116 4117 mutex_enter(&rxring->rxr_mutex); 4118 rxring->rxr_active = false; 4119 rxring->rxr_discarding = false; 4120 if (rxring->rxr_receiving_m != NULL) { 4121 m_freem(rxring->rxr_receiving_m); 4122 rxring->rxr_receiving_m = NULL; 4123 rxring->rxr_receiving_m_last = NULL; 4124 } 4125 4126 /* disable DMA */ 4127 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4128 4129 /* free all RX mbufs */ 4130 aq_rxdrain(sc, rxring); 4131 4132 if (start) { 4133 for (i = 0; i < AQ_RXD_NUM; i++) { 4134 error = aq_rxring_add(sc, rxring, i); 4135 if (error != 0) { 4136 aq_rxdrain(sc, rxring); 4137 return error; 4138 } 4139 aq_rxring_reset_desc(sc, rxring, i); 4140 } 4141 4142 /* RX descriptor physical address */ 4143 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4144 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4145 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4146 (uint32_t)((uint64_t)paddr >> 32)); 4147 4148 /* RX descriptor size */ 4149 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4150 AQ_RXD_NUM / 8); 4151 4152 /* maximum receive frame size */ 4153 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4154 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4155 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4156 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4157 4158 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4159 RX_DMA_DESC_HEADER_SPLIT, 0); 4160 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4161 RX_DMA_DESC_VLAN_STRIP, 4162 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4163 1 : 0); 4164 4165 /* 4166 * reload TAIL pointer, and update readidx 4167 * (HEAD pointer cannot write) 4168 */ 4169 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4170 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4171 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4172 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4173 4174 /* Rx ring set mode */ 4175 4176 /* Mapping interrupt vector */ 4177 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4178 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4179 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4180 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4181 4182 const int cpuid = 0; /* XXX? */ 4183 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4184 RX_DMA_DCAD_CPUID, cpuid); 4185 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4186 RX_DMA_DCAD_DESC_EN, 0); 4187 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4188 RX_DMA_DCAD_HEADER_EN, 0); 4189 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4190 RX_DMA_DCAD_PAYLOAD_EN, 0); 4191 4192 /* enable DMA. start receiving */ 4193 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4194 RX_DMA_DESC_EN, 1); 4195 4196 rxring->rxr_active = true; 4197 } 4198 4199 mutex_exit(&rxring->rxr_mutex); 4200 return error; 4201 } 4202 4203 #define TXRING_NEXTIDX(idx) \ 4204 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4205 #define RXRING_NEXTIDX(idx) \ 4206 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4207 4208 static int 4209 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4210 { 4211 bus_dmamap_t map; 4212 struct mbuf *m = *mp; 4213 uint32_t ctl1, ctl1_ctx, ctl2; 4214 int idx, i, error; 4215 4216 idx = txring->txr_prodidx; 4217 map = txring->txr_mbufs[idx].dmamap; 4218 4219 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4220 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4221 if (error == EFBIG) { 4222 struct mbuf *n; 4223 n = m_defrag(m, M_DONTWAIT); 4224 if (n == NULL) 4225 return EFBIG; 4226 /* m_defrag() preserve m */ 4227 KASSERT(n == m); 4228 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4229 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4230 } 4231 if (error != 0) 4232 return error; 4233 4234 /* 4235 * check spaces of free descriptors. 4236 * +1 is additional descriptor for context (vlan, etc,.) 4237 */ 4238 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4239 device_printf(sc->sc_dev, 4240 "TX: not enough descriptors left %d for %d segs\n", 4241 txring->txr_nfree, map->dm_nsegs + 1); 4242 bus_dmamap_unload(sc->sc_dmat, map); 4243 return ENOBUFS; 4244 } 4245 4246 /* sync dma for mbuf */ 4247 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4248 BUS_DMASYNC_PREWRITE); 4249 4250 ctl1_ctx = 0; 4251 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4252 4253 if (vlan_has_tag(m)) { 4254 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4255 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4256 4257 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4258 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4259 4260 /* fill context descriptor and forward index */ 4261 txring->txr_txdesc[idx].buf_addr = 0; 4262 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4263 txring->txr_txdesc[idx].ctl2 = 0; 4264 4265 idx = TXRING_NEXTIDX(idx); 4266 txring->txr_nfree--; 4267 } 4268 4269 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4270 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4271 if (m->m_pkthdr.csum_flags & 4272 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4273 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4274 } 4275 4276 /* fill descriptor(s) */ 4277 for (i = 0; i < map->dm_nsegs; i++) { 4278 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4279 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4280 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4281 4282 if (i == 0) { 4283 /* remember mbuf of these descriptors */ 4284 txring->txr_mbufs[idx].m = m; 4285 } else { 4286 txring->txr_mbufs[idx].m = NULL; 4287 } 4288 4289 if (i == map->dm_nsegs - 1) { 4290 /* last segment, mark an EndOfPacket, and cause intr */ 4291 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4292 } 4293 4294 txring->txr_txdesc[idx].buf_addr = 4295 htole64(map->dm_segs[i].ds_addr); 4296 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4297 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4298 4299 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4300 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4301 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4302 4303 idx = TXRING_NEXTIDX(idx); 4304 txring->txr_nfree--; 4305 } 4306 4307 txring->txr_prodidx = idx; 4308 4309 return 0; 4310 } 4311 4312 static int 4313 aq_tx_intr(void *arg) 4314 { 4315 struct aq_txring * const txring = arg; 4316 struct aq_softc * const sc = txring->txr_sc; 4317 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4318 struct mbuf *m; 4319 const int ringidx = txring->txr_index; 4320 unsigned int idx, hw_head, n = 0; 4321 4322 mutex_enter(&txring->txr_mutex); 4323 4324 if (!txring->txr_active) 4325 goto tx_intr_done; 4326 4327 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4328 TX_DMA_DESC_HEAD_PTR); 4329 if (hw_head == txring->txr_considx) { 4330 txring->txr_sending = false; 4331 goto tx_intr_done; 4332 } 4333 4334 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4335 4336 for (idx = txring->txr_considx; idx != hw_head; 4337 idx = TXRING_NEXTIDX(idx), n++) { 4338 4339 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4340 bus_dmamap_unload(sc->sc_dmat, 4341 txring->txr_mbufs[idx].dmamap); 4342 4343 if_statinc_ref(nsr, if_opackets); 4344 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4345 if (m->m_flags & M_MCAST) 4346 if_statinc_ref(nsr, if_omcasts); 4347 4348 m_freem(m); 4349 txring->txr_mbufs[idx].m = NULL; 4350 } 4351 4352 txring->txr_nfree++; 4353 } 4354 txring->txr_considx = idx; 4355 4356 IF_STAT_PUTREF(ifp); 4357 4358 /* no more pending TX packet, cancel watchdog */ 4359 if (txring->txr_nfree >= AQ_TXD_NUM) 4360 txring->txr_sending = false; 4361 4362 tx_intr_done: 4363 mutex_exit(&txring->txr_mutex); 4364 4365 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4366 return n; 4367 } 4368 4369 static int 4370 aq_rx_intr(void *arg) 4371 { 4372 struct aq_rxring * const rxring = arg; 4373 struct aq_softc * const sc = rxring->rxr_sc; 4374 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4375 const int ringidx = rxring->rxr_index; 4376 aq_rx_desc_t *rxd; 4377 struct mbuf *m, *m0, *mprev, *new_m; 4378 uint32_t rxd_type, rxd_hash __unused; 4379 uint16_t rxd_status, rxd_pktlen; 4380 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4381 unsigned int idx, n = 0; 4382 bool discarding; 4383 4384 mutex_enter(&rxring->rxr_mutex); 4385 4386 if (!rxring->rxr_active) 4387 goto rx_intr_done; 4388 4389 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4390 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4391 goto rx_intr_done; 4392 } 4393 4394 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4395 4396 /* restore ring context */ 4397 discarding = rxring->rxr_discarding; 4398 m0 = rxring->rxr_receiving_m; 4399 mprev = rxring->rxr_receiving_m_last; 4400 4401 for (idx = rxring->rxr_readidx; 4402 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4403 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4404 4405 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4406 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4407 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4408 4409 rxd = &rxring->rxr_rxdesc[idx]; 4410 rxd_status = le16toh(rxd->wb.status); 4411 4412 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4413 break; /* not yet done */ 4414 4415 rxd_type = le32toh(rxd->wb.type); 4416 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4417 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4418 rxd_hash = le32toh(rxd->wb.rss_hash); 4419 rxd_vlan = le16toh(rxd->wb.vlan); 4420 4421 /* 4422 * Some segments are being dropped while receiving jumboframe. 4423 * Discard until EOP. 4424 */ 4425 if (discarding) 4426 goto rx_next; 4427 4428 if ((rxd_status & RXDESC_STATUS_MACERR) || 4429 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4430 if_statinc_ref(nsr, if_ierrors); 4431 if (m0 != NULL) { 4432 m_freem(m0); 4433 m0 = mprev = NULL; 4434 } 4435 discarding = true; 4436 goto rx_next; 4437 } 4438 4439 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4440 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4441 BUS_DMASYNC_POSTREAD); 4442 m = rxring->rxr_mbufs[idx].m; 4443 4444 new_m = aq_alloc_mbuf(); 4445 if (new_m == NULL) { 4446 /* 4447 * cannot allocate new mbuf. 4448 * discard this packet, and reuse mbuf for next. 4449 */ 4450 if_statinc_ref(nsr, if_iqdrops); 4451 if (m0 != NULL) { 4452 m_freem(m0); 4453 m0 = mprev = NULL; 4454 } 4455 discarding = true; 4456 goto rx_next; 4457 } 4458 rxring->rxr_mbufs[idx].m = NULL; 4459 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4460 4461 if (m0 == NULL) { 4462 m0 = m; 4463 } else { 4464 if (m->m_flags & M_PKTHDR) 4465 m_remove_pkthdr(m); 4466 mprev->m_next = m; 4467 } 4468 mprev = m; 4469 4470 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4471 /* to be continued in the next segment */ 4472 m->m_len = MCLBYTES; 4473 } else { 4474 /* the last segment */ 4475 int mlen = rxd_pktlen % MCLBYTES; 4476 if (mlen == 0) 4477 mlen = MCLBYTES; 4478 m->m_len = mlen; 4479 m0->m_pkthdr.len = rxd_pktlen; 4480 /* VLAN offloading */ 4481 if ((sc->sc_ethercom.ec_capenable & 4482 ETHERCAP_VLAN_HWTAGGING) && 4483 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4484 __SHIFTOUT(rxd_type, 4485 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4486 vlan_set_tag(m0, rxd_vlan); 4487 } 4488 4489 /* Checksum offloading */ 4490 unsigned int pkttype_eth = 4491 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4492 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4493 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4494 __SHIFTOUT(rxd_type, 4495 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4496 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4497 if (__SHIFTOUT(rxd_status, 4498 RXDESC_STATUS_IPV4_CSUM_NG)) 4499 m0->m_pkthdr.csum_flags |= 4500 M_CSUM_IPv4_BAD; 4501 } 4502 4503 /* 4504 * aq will always mark BAD for fragment packets, 4505 * but this is not a problem because the IP stack 4506 * ignores the CSUM flag in fragment packets. 4507 */ 4508 if (__SHIFTOUT(rxd_type, 4509 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4510 bool checked = false; 4511 unsigned int pkttype_proto = 4512 __SHIFTOUT(rxd_type, 4513 RXDESC_TYPE_PKTTYPE_PROTO); 4514 4515 if (pkttype_proto == 4516 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4517 if ((pkttype_eth == 4518 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4519 (ifp->if_capabilities & 4520 IFCAP_CSUM_TCPv4_Rx)) { 4521 m0->m_pkthdr.csum_flags |= 4522 M_CSUM_TCPv4; 4523 checked = true; 4524 } else if ((pkttype_eth == 4525 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4526 (ifp->if_capabilities & 4527 IFCAP_CSUM_TCPv6_Rx)) { 4528 m0->m_pkthdr.csum_flags |= 4529 M_CSUM_TCPv6; 4530 checked = true; 4531 } 4532 } else if (pkttype_proto == 4533 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4534 if ((pkttype_eth == 4535 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4536 (ifp->if_capabilities & 4537 IFCAP_CSUM_UDPv4_Rx)) { 4538 m0->m_pkthdr.csum_flags |= 4539 M_CSUM_UDPv4; 4540 checked = true; 4541 } else if ((pkttype_eth == 4542 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4543 (ifp->if_capabilities & 4544 IFCAP_CSUM_UDPv6_Rx)) { 4545 m0->m_pkthdr.csum_flags |= 4546 M_CSUM_UDPv6; 4547 checked = true; 4548 } 4549 } 4550 if (checked && 4551 (__SHIFTOUT(rxd_status, 4552 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4553 !__SHIFTOUT(rxd_status, 4554 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4555 m0->m_pkthdr.csum_flags |= 4556 M_CSUM_TCP_UDP_BAD; 4557 } 4558 } 4559 4560 m_set_rcvif(m0, ifp); 4561 if_statinc_ref(nsr, if_ipackets); 4562 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4563 if_percpuq_enqueue(ifp->if_percpuq, m0); 4564 m0 = mprev = NULL; 4565 } 4566 4567 rx_next: 4568 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0) 4569 discarding = false; 4570 4571 aq_rxring_reset_desc(sc, rxring, idx); 4572 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4573 } 4574 /* save ring context */ 4575 rxring->rxr_readidx = idx; 4576 rxring->rxr_discarding = discarding; 4577 rxring->rxr_receiving_m = m0; 4578 rxring->rxr_receiving_m_last = mprev; 4579 4580 IF_STAT_PUTREF(ifp); 4581 4582 rx_intr_done: 4583 mutex_exit(&rxring->rxr_mutex); 4584 4585 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4586 return n; 4587 } 4588 4589 static int 4590 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4591 { 4592 struct ifnet *ifp = &ec->ec_if; 4593 struct aq_softc * const sc = ifp->if_softc; 4594 4595 aq_set_vlan_filters(sc); 4596 return 0; 4597 } 4598 4599 static int 4600 aq_ifflags_cb(struct ethercom *ec) 4601 { 4602 struct ifnet * const ifp = &ec->ec_if; 4603 struct aq_softc * const sc = ifp->if_softc; 4604 int i, ecchange, error = 0; 4605 unsigned short iffchange; 4606 4607 AQ_LOCK(sc); 4608 4609 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4610 if ((iffchange & IFF_PROMISC) != 0) 4611 error = aq_set_filter(sc); 4612 4613 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4614 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4615 for (i = 0; i < AQ_RINGS_NUM; i++) { 4616 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4617 RX_DMA_DESC_VLAN_STRIP, 4618 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4619 1 : 0); 4620 } 4621 } 4622 4623 /* vlan configuration depends on also interface promiscuous mode */ 4624 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4625 aq_set_vlan_filters(sc); 4626 4627 sc->sc_ec_capenable = ec->ec_capenable; 4628 sc->sc_if_flags = ifp->if_flags; 4629 4630 AQ_UNLOCK(sc); 4631 4632 return error; 4633 } 4634 4635 4636 static int 4637 aq_init(struct ifnet *ifp) 4638 { 4639 struct aq_softc * const sc = ifp->if_softc; 4640 4641 AQ_LOCK(sc); 4642 4643 int ret = aq_init_locked(ifp); 4644 4645 AQ_UNLOCK(sc); 4646 4647 return ret; 4648 } 4649 4650 static int 4651 aq_init_locked(struct ifnet *ifp) 4652 { 4653 struct aq_softc * const sc = ifp->if_softc; 4654 int i, error = 0; 4655 4656 KASSERT(IFNET_LOCKED(ifp)); 4657 AQ_LOCKED(sc); 4658 4659 aq_stop_locked(ifp, false); 4660 4661 aq_set_vlan_filters(sc); 4662 aq_set_capability(sc); 4663 4664 for (i = 0; i < sc->sc_nqueues; i++) { 4665 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4666 } 4667 4668 /* invalidate RX descriptor cache */ 4669 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4670 AQ_READ_REG_BIT(sc, 4671 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4672 4673 /* start RX */ 4674 for (i = 0; i < sc->sc_nqueues; i++) { 4675 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4676 if (error != 0) { 4677 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4678 __func__); 4679 goto aq_init_failure; 4680 } 4681 } 4682 aq_init_rss(sc); 4683 aq_hw_l3_filter_set(sc); 4684 4685 /* ring reset? */ 4686 aq_unset_stopping_flags(sc); 4687 4688 callout_schedule(&sc->sc_tick_ch, hz); 4689 4690 /* ready */ 4691 ifp->if_flags |= IFF_RUNNING; 4692 4693 /* start TX and RX */ 4694 aq_enable_intr(sc, true, true); 4695 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4696 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4697 4698 aq_init_failure: 4699 sc->sc_if_flags = ifp->if_flags; 4700 4701 return error; 4702 } 4703 4704 static void 4705 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4706 struct aq_txring *txring, bool is_transmit) 4707 { 4708 struct mbuf *m; 4709 int npkt, error; 4710 4711 if (txring->txr_nfree < AQ_TXD_MIN) 4712 return; 4713 4714 for (npkt = 0; ; npkt++) { 4715 if (is_transmit) 4716 m = pcq_peek(txring->txr_pcq); 4717 else 4718 IFQ_POLL(&ifp->if_snd, m); 4719 4720 if (m == NULL) 4721 break; 4722 4723 if (is_transmit) 4724 pcq_get(txring->txr_pcq); 4725 else 4726 IFQ_DEQUEUE(&ifp->if_snd, m); 4727 4728 error = aq_encap_txring(sc, txring, &m); 4729 if (error != 0) { 4730 /* too many mbuf chains? or not enough descriptors? */ 4731 m_freem(m); 4732 if_statinc(ifp, if_oerrors); 4733 break; 4734 } 4735 4736 /* update tail ptr */ 4737 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4738 txring->txr_prodidx); 4739 4740 /* Pass the packet to any BPF listeners */ 4741 bpf_mtap(ifp, m, BPF_D_OUT); 4742 } 4743 4744 if (npkt) { 4745 /* Set a watchdog timer in case the chip flakes out. */ 4746 txring->txr_lastsent = time_uptime; 4747 txring->txr_sending = true; 4748 } 4749 } 4750 4751 static void 4752 aq_start(struct ifnet *ifp) 4753 { 4754 struct aq_softc * const sc = ifp->if_softc; 4755 /* aq_start() always use TX ring[0] */ 4756 struct aq_txring * const txring = &sc->sc_queue[0].txring; 4757 4758 mutex_enter(&txring->txr_mutex); 4759 if (txring->txr_active && !txring->txr_stopping) 4760 aq_send_common_locked(ifp, sc, txring, false); 4761 mutex_exit(&txring->txr_mutex); 4762 } 4763 4764 static inline unsigned int 4765 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4766 { 4767 return (cpu_index(curcpu()) % sc->sc_nqueues); 4768 } 4769 4770 static int 4771 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4772 { 4773 struct aq_softc * const sc = ifp->if_softc; 4774 const int ringidx = aq_select_txqueue(sc, m); 4775 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring; 4776 4777 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4778 m_freem(m); 4779 return ENOBUFS; 4780 } 4781 4782 if (mutex_tryenter(&txring->txr_mutex)) { 4783 aq_send_common_locked(ifp, sc, txring, true); 4784 mutex_exit(&txring->txr_mutex); 4785 } else { 4786 softint_schedule(txring->txr_softint); 4787 } 4788 return 0; 4789 } 4790 4791 static void 4792 aq_deferred_transmit(void *arg) 4793 { 4794 struct aq_txring * const txring = arg; 4795 struct aq_softc * const sc = txring->txr_sc; 4796 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4797 4798 mutex_enter(&txring->txr_mutex); 4799 if (pcq_peek(txring->txr_pcq) != NULL) 4800 aq_send_common_locked(ifp, sc, txring, true); 4801 mutex_exit(&txring->txr_mutex); 4802 } 4803 4804 4805 static void 4806 aq_unset_stopping_flags(struct aq_softc *sc) 4807 { 4808 4809 AQ_LOCKED(sc); 4810 4811 /* Must unset stopping flags in ascending order. */ 4812 for (unsigned i = 0; i < sc->sc_nqueues; i++) { 4813 struct aq_txring *txr = &sc->sc_queue[i].txring; 4814 struct aq_rxring *rxr = &sc->sc_queue[i].rxring; 4815 4816 mutex_enter(&txr->txr_mutex); 4817 txr->txr_stopping = false; 4818 mutex_exit(&txr->txr_mutex); 4819 4820 mutex_enter(&rxr->rxr_mutex); 4821 rxr->rxr_stopping = false; 4822 mutex_exit(&rxr->rxr_mutex); 4823 } 4824 4825 sc->sc_stopping = false; 4826 } 4827 4828 static void 4829 aq_set_stopping_flags(struct aq_softc *sc) 4830 { 4831 4832 AQ_LOCKED(sc); 4833 4834 /* Must unset stopping flags in ascending order. */ 4835 for (unsigned i = 0; i < sc->sc_nqueues; i++) { 4836 struct aq_txring *txr = &sc->sc_queue[i].txring; 4837 struct aq_rxring *rxr = &sc->sc_queue[i].rxring; 4838 4839 mutex_enter(&txr->txr_mutex); 4840 txr->txr_stopping = true; 4841 mutex_exit(&txr->txr_mutex); 4842 4843 mutex_enter(&rxr->rxr_mutex); 4844 rxr->rxr_stopping = true; 4845 mutex_exit(&rxr->rxr_mutex); 4846 } 4847 4848 sc->sc_stopping = true; 4849 } 4850 4851 4852 static void 4853 aq_stop(struct ifnet *ifp, int disable) 4854 { 4855 struct aq_softc * const sc = ifp->if_softc; 4856 4857 ASSERT_SLEEPABLE(); 4858 KASSERT(IFNET_LOCKED(ifp)); 4859 4860 AQ_LOCK(sc); 4861 aq_stop_locked(ifp, disable ? true : false); 4862 AQ_UNLOCK(sc); 4863 } 4864 4865 4866 4867 static void 4868 aq_stop_locked(struct ifnet *ifp, bool disable) 4869 { 4870 struct aq_softc * const sc = ifp->if_softc; 4871 int i; 4872 4873 ASSERT_SLEEPABLE(); 4874 KASSERT(IFNET_LOCKED(ifp)); 4875 AQ_LOCKED(sc); 4876 4877 aq_set_stopping_flags(sc); 4878 4879 if ((ifp->if_flags & IFF_RUNNING) == 0) 4880 goto already_stopped; 4881 4882 /* disable tx/rx interrupts */ 4883 aq_enable_intr(sc, true, false); 4884 4885 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4886 for (i = 0; i < sc->sc_nqueues; i++) { 4887 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4888 } 4889 4890 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4891 for (i = 0; i < sc->sc_nqueues; i++) { 4892 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4893 } 4894 4895 /* invalidate RX descriptor cache */ 4896 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4897 AQ_READ_REG_BIT(sc, 4898 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4899 4900 already_stopped: 4901 if (!disable) { 4902 /* when pmf stop, disable link status intr and callout */ 4903 aq_enable_intr(sc, false, false); 4904 callout_halt(&sc->sc_tick_ch, &sc->sc_mutex); 4905 } 4906 4907 ifp->if_flags &= ~IFF_RUNNING; 4908 sc->sc_if_flags = ifp->if_flags; 4909 } 4910 4911 4912 static void 4913 aq_handle_reset_work(struct work *work, void *arg) 4914 { 4915 struct aq_softc * const sc = arg; 4916 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4917 4918 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname); 4919 4920 AQ_LOCK(sc); 4921 4922 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4923 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4924 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4925 4926 for (u_int n = 0; n < sc->sc_nqueues; n++) { 4927 struct aq_txring *txring = &sc->sc_queue[n].txring; 4928 u_int head = AQ_READ_REG_BIT(sc, 4929 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4930 TX_DMA_DESC_HEAD_PTR); 4931 u_int tail = AQ_READ_REG(sc, 4932 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4933 4934 device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n", 4935 __func__, txring->txr_index, head, tail); 4936 4937 aq_tx_intr(txring); 4938 } 4939 4940 AQ_UNLOCK(sc); 4941 4942 /* Don't want ioctl operations to happen */ 4943 IFNET_LOCK(ifp); 4944 4945 /* reset the interface. */ 4946 aq_init(ifp); 4947 4948 IFNET_UNLOCK(ifp); 4949 4950 atomic_store_relaxed(&sc->sc_reset_pending, 0); 4951 } 4952 4953 static int 4954 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4955 { 4956 struct aq_softc * const sc = ifp->if_softc; 4957 struct ifreq * const ifr = data; 4958 int error = 0; 4959 4960 switch (cmd) { 4961 case SIOCADDMULTI: 4962 case SIOCDELMULTI: 4963 break; 4964 default: 4965 KASSERT(IFNET_LOCKED(ifp)); 4966 } 4967 4968 const int s = splnet(); 4969 switch (cmd) { 4970 case SIOCSIFMTU: 4971 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) { 4972 error = EINVAL; 4973 } else { 4974 ifp->if_mtu = ifr->ifr_mtu; 4975 error = 0; /* no need to reset (no ENETRESET) */ 4976 } 4977 break; 4978 default: 4979 error = ether_ioctl(ifp, cmd, data); 4980 break; 4981 } 4982 splx(s); 4983 4984 if (error != ENETRESET) 4985 return error; 4986 4987 switch (cmd) { 4988 case SIOCSIFCAP: 4989 error = aq_set_capability(sc); 4990 break; 4991 case SIOCADDMULTI: 4992 case SIOCDELMULTI: 4993 AQ_LOCK(sc); 4994 if ((sc->sc_if_flags & IFF_RUNNING) != 0) { 4995 /* 4996 * Multicast list has changed; set the hardware filter 4997 * accordingly. 4998 */ 4999 error = aq_set_filter(sc); 5000 } 5001 AQ_UNLOCK(sc); 5002 break; 5003 } 5004 5005 return error; 5006 } 5007 5008 5009 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 5010 5011 #ifdef _MODULE 5012 #include "ioconf.c" 5013 #endif 5014 5015 static int 5016 if_aq_modcmd(modcmd_t cmd, void *opaque) 5017 { 5018 int error = 0; 5019 5020 switch (cmd) { 5021 case MODULE_CMD_INIT: 5022 #ifdef _MODULE 5023 error = config_init_component(cfdriver_ioconf_if_aq, 5024 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 5025 #endif 5026 return error; 5027 case MODULE_CMD_FINI: 5028 #ifdef _MODULE 5029 error = config_fini_component(cfdriver_ioconf_if_aq, 5030 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 5031 #endif 5032 return error; 5033 default: 5034 return ENOTTY; 5035 } 5036 } 5037