xref: /netbsd-src/sys/dev/pci/if_aq.c (revision aef5eb5f59cdfe8314f1b5f78ac04eb144e44010)
1 /*	$NetBSD: if_aq.c,v 1.35 2022/09/22 06:04:26 skrll Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.35 2022/09/22 06:04:26 skrll Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 #define AQ_JUMBO_MTU_REV_A		9000
120 #define AQ_JUMBO_MTU_REV_B		16338
121 
122 /*
123  * TERMINOLOGY
124  *	MPI = MAC PHY INTERFACE?
125  *	RPO = RX Protocol Offloading
126  *	TPO = TX Protocol Offloading
127  *	RPF = RX Packet Filter
128  *	TPB = TX Packet buffer
129  *	RPB = RX Packet buffer
130  */
131 
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG			0x0000
134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
136 
137 #define AQ_FW_VERSION_REG			0x0018
138 #define AQ_HW_REVISION_REG			0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
140 
141 #define AQ_FW_MBOX_CMD_REG			0x0200
142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
144 #define AQ_FW_MBOX_ADDR_REG			0x0208
145 #define AQ_FW_MBOX_VAL_REG			0x020c
146 
147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
148 #define FW2X_LED_REG				0x031c
149 #define  FW2X_LED_DEFAULT			0x00000000
150 #define  FW2X_LED_NONE				0x0000003f
151 #define  FW2X_LINKLED				__BITS(0,1)
152 #define   FW2X_LINKLED_ACTIVE			0
153 #define   FW2X_LINKLED_ON			1
154 #define   FW2X_LINKLED_BLINK			2
155 #define   FW2X_LINKLED_OFF			3
156 #define  FW2X_STATUSLED				__BITS(2,5)
157 #define   FW2X_STATUSLED_ORANGE			0
158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
159 #define   FW2X_STATUSLED_OFF			3
160 #define   FW2X_STATUSLED_GREEN			4
161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
162 #define   FW2X_STATUSLED_GREEN_BLINK		10
163 
164 #define FW_MPI_MBOX_ADDR_REG			0x0360
165 #define FW1X_MPI_INIT1_REG			0x0364
166 #define FW1X_MPI_CONTROL_REG			0x0368
167 #define FW1X_MPI_STATE_REG			0x036c
168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
172 #define FW1X_MPI_INIT2_REG			0x0370
173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
174 
175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG			0x0388
179 #define  RBL_STATUS_DEAD			0x0000dead
180 #define  RBL_STATUS_SUCCESS			0x0000abba
181 #define  RBL_STATUS_FAILURE			0x00000bad
182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
183 
184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
186 
187 #define AQ_FW_GLB_CTL2_REG			0x0404
188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
189 
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
192 
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
194 
195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
196 
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG			0x2090
203 
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
212 
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
215 #define  AQ_B0_ERR_INT				8U
216 
217 #define AQ_INTR_CTRL_REG			0x2300
218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
227 
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
229 
230 #define FW_MPI_RESETCTRL_REG			0x4000
231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
232 
233 #define RX_SYSCONTROL_REG			0x5000
234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
237 
238 #define RX_TCP_RSS_HASH_REG			0x5040
239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
241 
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD			0
244 #define RPF_ACTION_HOST				1
245 #define RPF_ACTION_MANAGEMENT			2
246 #define RPF_ACTION_HOST_MANAGEMENT		3
247 #define RPF_ACTION_WOL				4
248 
249 #define RPF_L2BC_REG				0x5100
250 #define  RPF_L2BC_EN				__BIT(0)
251 #define  RPF_L2BC_PROMISC			__BIT(3)
252 #define  RPF_L2BC_ACTION			__BITS(12,14)
253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
254 
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
260 #define  RPF_L2UC_MSW_EN			__BIT(31)
261 #define AQ_HW_MAC_OWN			0	/* index of own address */
262 #define AQ_HW_MAC_NUM			34
263 
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
269 
270 #define RPF_VLAN_MODE_REG			0x5280
271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
274 
275 #define RPF_VLAN_TPID_REG			0x5284
276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
278 
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS			16
281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
287 
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
298 
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
323 
324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
326 
327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
329 
330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
335 
336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
339 
340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
342 
343 #define RPO_HWCSUM_REG				0x5580
344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
346 
347 #define RPO_LRO_ENABLE_REG			0x5590
348 
349 #define RPO_LRO_CONF_REG			0x5594
350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG			0x5598
355 
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG			0x5620
360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
365 
366 #define RPB_RPF_RX_REG				0x5700
367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
370 
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
375 #define  RPB_RXB_XOFF_EN			__BIT(31)
376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
378 
379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
381 
382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
385 
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
391 
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
397 #define  RX_DMA_DESC_RESET			__BIT(25)
398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
400 #define  RX_DMA_DESC_EN				__BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
407 
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
414 
415 #define RX_DMA_DCA_REG				0x6180
416 #define  RX_DMA_DCA_EN				__BIT(31)
417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
418 
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
424 
425 #define TX_SYSCONTROL_REG			0x7000
426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
429 
430 #define TX_TPO2_REG				0x7040
431 #define  TX_TPO2_EN				__BIT(16)
432 
433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
435 #define TPS_DESC_RATE_REG			0x7310
436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
442 
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
451 
452 #define AQ_HW_TXBUF_MAX		160
453 #define AQ_HW_RXBUF_MAX		320
454 
455 #define TPO_HWCSUM_REG				0x7800
456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
458 
459 #define TDM_LSO_EN_REG				0x7810
460 
461 #define THM_LSO_TCP_FLAG1_REG			0x7820
462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG			0x7824
465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
466 
467 #define TPB_TX_BUF_REG				0x7900
468 #define  TPB_TX_BUF_EN				__BIT(0)
469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
471 
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
478 
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
483 
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
489 #define  TX_DMA_DESC_EN				__BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
495 
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
498 #define  TDM_DCAD_CPUID				__BITS(7,0)
499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
500 
501 #define TDM_DCA_REG				0x8480
502 #define  TDM_DCA_EN				__BIT(31)
503 #define  TDM_DCA_MODE				__BITS(3,0)
504 
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
510 
511 #define FW1X_CTRL_10G				__BIT(0)
512 #define FW1X_CTRL_5G				__BIT(1)
513 #define FW1X_CTRL_5GSR				__BIT(2)
514 #define FW1X_CTRL_2G5				__BIT(3)
515 #define FW1X_CTRL_1G				__BIT(4)
516 #define FW1X_CTRL_100M				__BIT(5)
517 
518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
530 #define FW2X_CTRL_RESERVED1			__BIT(32)
531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
532 #define FW2X_CTRL_RESERVED2			__BIT(34)
533 #define FW2X_CTRL_PAUSE				__BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
536 #define FW2X_CTRL_RESERVED3			__BIT(38)
537 #define FW2X_CTRL_RESERVED4			__BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
542 #define FW2X_CTRL_RESERVED5			__BIT(44)
543 #define FW2X_CTRL_RESERVED6			__BIT(45)
544 #define FW2X_CTRL_RESERVED7			__BIT(46)
545 #define FW2X_CTRL_RESERVED8			__BIT(47)
546 #define FW2X_CTRL_RESERVED9			__BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
554 #define FW2X_CTRL_WOL				__BIT(56)
555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
560 #define FW2X_CTRL_STATISTICS			__BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
562 
563 #define FW2X_SNPRINTB			\
564 	"\177\020"			\
565 	"b\x23" "PAUSE\0"		\
566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
567 	"b\x31" "CABLE-DIAG\0"		\
568 	"b\x32" "TEMPERATURE\0"		\
569 	"b\x33" "DOWNSHIFT\0"		\
570 	"b\x34" "PTP-AVB\0"		\
571 	"b\x35" "MEDIA-DETECT\0"	\
572 	"b\x36" "LINK-DROP\0"		\
573 	"b\x37" "SLEEP-PROXY\0"		\
574 	"b\x38" "WOL\0"			\
575 	"b\x39" "MAC-STOP\0"		\
576 	"b\x3a" "EXT-LOOPBACK\0"	\
577 	"b\x3b" "INT-LOOPBACK\0"	\
578 	"b\x3c" "EFUSE-AGENT\0"		\
579 	"b\x3d" "WOL-TIMER\0"		\
580 	"b\x3e" "STATISTICS\0"		\
581 	"b\x3f" "TRANSACTION-ID\0"	\
582 	"\0"
583 
584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK		\
590 	(FW2X_CTRL_RATE_100M |		\
591 	 FW2X_CTRL_RATE_1G |		\
592 	 FW2X_CTRL_RATE_2G5 |		\
593 	 FW2X_CTRL_RATE_5G |		\
594 	 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK		\
596 	(FW2X_CTRL_10BASET_EEE |	\
597 	 FW2X_CTRL_100BASETX_EEE |	\
598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
601 	 FW2X_CTRL_10GBASET_FD_EEE)
602 
603 typedef enum aq_fw_bootloader_mode {
604 	FW_BOOT_MODE_UNKNOWN = 0,
605 	FW_BOOT_MODE_FLB,
606 	FW_BOOT_MODE_RBL_FLASH,
607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609 
610 #define AQ_WRITE_REG(sc, reg, val)				\
611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612 
613 #define AQ_READ_REG(sc, reg)					\
614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615 
616 #define AQ_READ64_REG(sc, reg)					\
617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619 
620 #define AQ_WRITE64_REG(sc, reg, val)				\
621 	do {							\
622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 	} while (/* CONSTCOND */0)
625 
626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628 
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
630 	do {							\
631 		uint32_t _v;					\
632 		_v = AQ_READ_REG((sc), (reg));			\
633 		_v &= ~(mask);					\
634 		if ((val) != 0)					\
635 			_v |= __SHIFTIN((val), (mask));		\
636 		AQ_WRITE_REG((sc), (reg), _v);			\
637 	} while (/* CONSTCOND */ 0)
638 
639 #define WAIT_FOR(expr, us, n, errp)				\
640 	do {							\
641 		unsigned int _n;				\
642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
643 			delay((us));				\
644 		}						\
645 		if ((errp != NULL)) {				\
646 			if (_n == 0)				\
647 				*(errp) = ETIMEDOUT;		\
648 			else					\
649 				*(errp) = 0;			\
650 		}						\
651 	} while (/* CONSTCOND */ 0)
652 
653 #define msec_delay(x)	DELAY(1000 * (x))
654 
655 typedef struct aq_mailbox_header {
656 	uint32_t version;
657 	uint32_t transaction_id;
658 	int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660 
661 typedef struct aq_hw_stats_s {
662 	uint32_t uprc;
663 	uint32_t mprc;
664 	uint32_t bprc;
665 	uint32_t erpt;
666 	uint32_t uptc;
667 	uint32_t mptc;
668 	uint32_t bptc;
669 	uint32_t erpr;
670 	uint32_t mbtc;
671 	uint32_t bbtc;
672 	uint32_t mbrc;
673 	uint32_t bbrc;
674 	uint32_t ubrc;
675 	uint32_t ubtc;
676 	uint32_t ptc;
677 	uint32_t prc;
678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681 
682 typedef struct fw1x_mailbox {
683 	aq_mailbox_header_t header;
684 	aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686 
687 typedef struct fw2x_msm_statistics {
688 	uint32_t uprc;
689 	uint32_t mprc;
690 	uint32_t bprc;
691 	uint32_t erpt;
692 	uint32_t uptc;
693 	uint32_t mptc;
694 	uint32_t bptc;
695 	uint32_t erpr;
696 	uint32_t mbtc;
697 	uint32_t bbtc;
698 	uint32_t mbrc;
699 	uint32_t bbrc;
700 	uint32_t ubrc;
701 	uint32_t ubtc;
702 	uint32_t ptc;
703 	uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705 
706 typedef struct fw2x_phy_cable_diag_data {
707 	uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709 
710 typedef struct fw2x_capabilities {
711 	uint32_t caps_lo;
712 	uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714 
715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
716 	aq_mailbox_header_t header;
717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
718 
719 	uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
722 	uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
725 
726 	fw2x_phy_cable_diag_data_t diag_data;
727 	uint32_t reserved[8];
728 
729 	fw2x_capabilities_t caps;
730 
731 	/* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733 
734 typedef enum aq_link_speed {
735 	AQ_LINK_NONE	= 0,
736 	AQ_LINK_100M	= (1 << 0),
737 	AQ_LINK_1G	= (1 << 1),
738 	AQ_LINK_2G5	= (1 << 2),
739 	AQ_LINK_5G	= (1 << 3),
740 	AQ_LINK_10G	= (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 			 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO	AQ_LINK_ALL
745 
746 typedef enum aq_link_fc {
747 	AQ_FC_NONE = 0,
748 	AQ_FC_RX = __BIT(0),
749 	AQ_FC_TX = __BIT(1),
750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752 
753 typedef enum aq_link_eee {
754 	AQ_EEE_DISABLE = 0,
755 	AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757 
758 typedef enum aq_hw_fw_mpi_state {
759 	MPI_DEINIT	= 0,
760 	MPI_RESET	= 1,
761 	MPI_INIT	= 2,
762 	MPI_POWER	= 4
763 } aq_hw_fw_mpi_state_t;
764 
765 enum aq_media_type {
766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
767 	AQ_MEDIA_TYPE_FIBRE,
768 	AQ_MEDIA_TYPE_TP
769 };
770 
771 struct aq_rx_desc_read {
772 	uint64_t buf_addr;
773 	uint64_t hdr_addr;
774 } __packed __aligned(8);
775 
776 struct aq_rx_desc_wb {
777 	uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
803 #define RXDESC_TYPE_SPH			__BIT(21)
804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
805 	uint32_t rss_hash;
806 	uint16_t status;
807 #define RXDESC_STATUS_DD		__BIT(0)
808 #define RXDESC_STATUS_EOP		__BIT(1)
809 #define RXDESC_STATUS_MACERR		__BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
813 
814 #define RXDESC_STATUS_STAT		__BITS(2,5)
815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
817 	uint16_t pkt_len;
818 	uint16_t next_desc_ptr;
819 	uint16_t vlan;
820 } __packed __aligned(4);
821 
822 typedef union aq_rx_desc {
823 	struct aq_rx_desc_read read;
824 	struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826 
827 typedef struct aq_tx_desc {
828 	uint64_t buf_addr;
829 	uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
846 	uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851 
852 struct aq_txring {
853 	struct aq_softc *txr_sc;
854 	int txr_index;
855 	kmutex_t txr_mutex;
856 	bool txr_active;
857 	bool txr_stopping;
858 	bool txr_sending;
859 	time_t txr_lastsent;
860 
861 	pcq_t *txr_pcq;
862 	void *txr_softint;
863 
864 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
865 	bus_dmamap_t txr_txdesc_dmamap;
866 	bus_dma_segment_t txr_txdesc_seg[1];
867 	bus_size_t txr_txdesc_size;
868 
869 	struct {
870 		struct mbuf *m;
871 		bus_dmamap_t dmamap;
872 	} txr_mbufs[AQ_TXD_NUM];
873 	unsigned int txr_prodidx;
874 	unsigned int txr_considx;
875 	int txr_nfree;
876 };
877 
878 struct aq_rxring {
879 	struct aq_softc *rxr_sc;
880 	int rxr_index;
881 	kmutex_t rxr_mutex;
882 	bool rxr_active;
883 	bool rxr_discarding;
884 	bool rxr_stopping;
885 	struct mbuf *rxr_receiving_m;		/* receiving jumboframe */
886 	struct mbuf *rxr_receiving_m_last;	/* last mbuf of jumboframe */
887 
888 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
889 	bus_dmamap_t rxr_rxdesc_dmamap;
890 	bus_dma_segment_t rxr_rxdesc_seg[1];
891 	bus_size_t rxr_rxdesc_size;
892 	struct {
893 		struct mbuf *m;
894 		bus_dmamap_t dmamap;
895 	} rxr_mbufs[AQ_RXD_NUM];
896 	unsigned int rxr_readidx;
897 };
898 
899 struct aq_queue {
900 	struct aq_softc *sc;
901 	struct aq_txring txring;
902 	struct aq_rxring rxring;
903 };
904 
905 struct aq_softc;
906 struct aq_firmware_ops {
907 	int (*reset)(struct aq_softc *);
908 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
909 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
910 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
911 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
912 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
913 #if NSYSMON_ENVSYS > 0
914 	int (*get_temperature)(struct aq_softc *, uint32_t *);
915 #endif
916 };
917 
918 #ifdef AQ_EVENT_COUNTERS
919 #define AQ_EVCNT_DECL(name)						\
920 	char sc_evcount_##name##_name[32];				\
921 	struct evcnt sc_evcount_##name##_ev;
922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
923 	do {								\
924 		snprintf((sc)->sc_evcount_##name##_name,		\
925 		    sizeof((sc)->sc_evcount_##name##_name),		\
926 		    "%s", desc);					\
927 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
928 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
929 		    (sc)->sc_evcount_##name##_name);			\
930 	} while (/*CONSTCOND*/0)
931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
932 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
933 #define AQ_EVCNT_DETACH(sc, name)					\
934 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
935 #define AQ_EVCNT_ADD(sc, name, val)					\
936 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
937 #endif /* AQ_EVENT_COUNTERS */
938 
939 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
940 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
941 #define AQ_LOCKED(sc)		KASSERT(mutex_owned(&(sc)->sc_mutex));
942 
943 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
944 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
945 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
946 #define AQ_MPI_LOCKED(sc)	KASSERT(mutex_owned(&(sc)->sc_mpi_mutex));
947 
948 
949 struct aq_softc {
950 	device_t sc_dev;
951 
952 	bus_space_tag_t sc_iot;
953 	bus_space_handle_t sc_ioh;
954 	bus_size_t sc_iosize;
955 	bus_dma_tag_t sc_dmat;
956 
957 	void *sc_ihs[AQ_NINTR_MAX];
958 	pci_intr_handle_t *sc_intrs;
959 
960 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
961 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
962 	int sc_linkstat_irq;
963 	bool sc_use_txrx_independent_intr;
964 	bool sc_poll_linkstat;
965 	bool sc_detect_linkstat;
966 
967 #if NSYSMON_ENVSYS > 0
968 	struct sysmon_envsys *sc_sme;
969 	envsys_data_t sc_sensor_temp;
970 #endif
971 
972 	callout_t sc_tick_ch;
973 
974 	int sc_nintrs;
975 	bool sc_msix;
976 
977 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
978 	int sc_nqueues;
979 
980 	pci_chipset_tag_t sc_pc;
981 	pcitag_t sc_pcitag;
982 	uint16_t sc_product;
983 	uint16_t sc_revision;
984 
985 	kmutex_t sc_mutex;
986 	kmutex_t sc_mpi_mutex;
987 
988 	const struct aq_firmware_ops *sc_fw_ops;
989 	uint64_t sc_fw_caps;
990 	enum aq_media_type sc_media_type;
991 	aq_link_speed_t sc_available_rates;
992 
993 	aq_link_speed_t sc_link_rate;
994 	aq_link_fc_t sc_link_fc;
995 	aq_link_eee_t sc_link_eee;
996 
997 	uint32_t sc_fw_version;
998 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
999 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
1000 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
1001 	uint32_t sc_features;
1002 #define FEATURES_MIPS		0x00000001
1003 #define FEATURES_TPO2		0x00000002
1004 #define FEATURES_RPF2		0x00000004
1005 #define FEATURES_MPI_AQ		0x00000008
1006 #define FEATURES_REV_A0		0x10000000
1007 #define FEATURES_REV_A		(FEATURES_REV_A0)
1008 #define FEATURES_REV_B0		0x20000000
1009 #define FEATURES_REV_B1		0x40000000
1010 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
1011 	uint32_t sc_max_mtu;
1012 	uint32_t sc_mbox_addr;
1013 
1014 	bool sc_rbl_enabled;
1015 	bool sc_fast_start_enabled;
1016 	bool sc_flash_present;
1017 
1018 	bool sc_intr_moderation_enable;
1019 	bool sc_rss_enable;
1020 
1021 	struct ethercom sc_ethercom;
1022 	struct ether_addr sc_enaddr;
1023 	struct ifmedia sc_media;
1024 	int sc_ec_capenable;		/* last ec_capenable */
1025 	unsigned short sc_if_flags;	/* last if_flags */
1026 
1027 	bool sc_tx_sending;
1028 	bool sc_stopping;
1029 
1030 	struct workqueue *sc_reset_wq;
1031 	struct work sc_reset_work;
1032 	volatile unsigned sc_reset_pending;
1033 
1034 	bool sc_trigger_reset;
1035 
1036 #ifdef AQ_EVENT_COUNTERS
1037 	aq_hw_stats_s_t sc_statistics[2];
1038 	int sc_statistics_idx;
1039 	bool sc_poll_statistics;
1040 
1041 	AQ_EVCNT_DECL(uprc);
1042 	AQ_EVCNT_DECL(mprc);
1043 	AQ_EVCNT_DECL(bprc);
1044 	AQ_EVCNT_DECL(erpt);
1045 	AQ_EVCNT_DECL(uptc);
1046 	AQ_EVCNT_DECL(mptc);
1047 	AQ_EVCNT_DECL(bptc);
1048 	AQ_EVCNT_DECL(erpr);
1049 	AQ_EVCNT_DECL(mbtc);
1050 	AQ_EVCNT_DECL(bbtc);
1051 	AQ_EVCNT_DECL(mbrc);
1052 	AQ_EVCNT_DECL(bbrc);
1053 	AQ_EVCNT_DECL(ubrc);
1054 	AQ_EVCNT_DECL(ubtc);
1055 	AQ_EVCNT_DECL(ptc);
1056 	AQ_EVCNT_DECL(prc);
1057 	AQ_EVCNT_DECL(dpc);
1058 	AQ_EVCNT_DECL(cprc);
1059 #endif
1060 };
1061 
1062 static int aq_match(device_t, cfdata_t, void *);
1063 static void aq_attach(device_t, device_t, void *);
1064 static int aq_detach(device_t, int);
1065 
1066 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1067     bool, bool);
1068 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1069     pci_intr_type_t);
1070 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1071 
1072 static int aq_ifmedia_change(struct ifnet * const);
1073 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1074 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1075 static int aq_ifflags_cb(struct ethercom *);
1076 static int aq_init(struct ifnet *);
1077 static int aq_init_locked(struct ifnet *);
1078 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1079     struct aq_txring *, bool);
1080 static int aq_transmit(struct ifnet *, struct mbuf *);
1081 static void aq_deferred_transmit(void *);
1082 static void aq_start(struct ifnet *);
1083 static void aq_stop(struct ifnet *, int);
1084 static void aq_stop_locked(struct ifnet *, bool);
1085 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1086 
1087 static int aq_txrx_rings_alloc(struct aq_softc *);
1088 static void aq_txrx_rings_free(struct aq_softc *);
1089 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1090 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1091 
1092 static void aq_initmedia(struct aq_softc *);
1093 static void aq_enable_intr(struct aq_softc *, bool, bool);
1094 
1095 static void aq_handle_reset_work(struct work *, void *);
1096 static void aq_unset_stopping_flags(struct aq_softc *);
1097 static void aq_set_stopping_flags(struct aq_softc *);
1098 
1099 #if NSYSMON_ENVSYS > 0
1100 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1101 #endif
1102 static void aq_tick(void *);
1103 static int aq_legacy_intr(void *);
1104 static int aq_link_intr(void *);
1105 static int aq_txrx_intr(void *);
1106 static int aq_tx_intr(void *);
1107 static int aq_rx_intr(void *);
1108 
1109 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1110     aq_link_eee_t);
1111 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1112     aq_link_eee_t *);
1113 
1114 static int aq_fw_reset(struct aq_softc *);
1115 static int aq_fw_version_init(struct aq_softc *);
1116 static int aq_hw_init(struct aq_softc *);
1117 static int aq_hw_init_ucp(struct aq_softc *);
1118 static int aq_hw_reset(struct aq_softc *);
1119 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1120     uint32_t);
1121 static int aq_get_mac_addr(struct aq_softc *);
1122 static int aq_init_rss(struct aq_softc *);
1123 static int aq_set_capability(struct aq_softc *);
1124 
1125 static int fw1x_reset(struct aq_softc *);
1126 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1127     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1128 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1129     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1130 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1131 
1132 static int fw2x_reset(struct aq_softc *);
1133 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1134     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1135 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1136     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1137 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1138 #if NSYSMON_ENVSYS > 0
1139 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1140 #endif
1141 
1142 #ifndef AQ_WATCHDOG_TIMEOUT
1143 #define AQ_WATCHDOG_TIMEOUT 5
1144 #endif
1145 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT;
1146 
1147 
1148 static const struct aq_firmware_ops aq_fw1x_ops = {
1149 	.reset = fw1x_reset,
1150 	.set_mode = fw1x_set_mode,
1151 	.get_mode = fw1x_get_mode,
1152 	.get_stats = fw1x_get_stats,
1153 #if NSYSMON_ENVSYS > 0
1154 	.get_temperature = NULL
1155 #endif
1156 };
1157 
1158 static const struct aq_firmware_ops aq_fw2x_ops = {
1159 	.reset = fw2x_reset,
1160 	.set_mode = fw2x_set_mode,
1161 	.get_mode = fw2x_get_mode,
1162 	.get_stats = fw2x_get_stats,
1163 #if NSYSMON_ENVSYS > 0
1164 	.get_temperature = fw2x_get_temperature
1165 #endif
1166 };
1167 
1168 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1169     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1170 
1171 static const struct aq_product {
1172 	pci_vendor_id_t aq_vendor;
1173 	pci_product_id_t aq_product;
1174 	const char *aq_name;
1175 	enum aq_media_type aq_media_type;
1176 	aq_link_speed_t aq_available_rates;
1177 } aq_products[] = {
1178 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1179 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1180 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1181 	},
1182 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1183 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1184 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1185 	},
1186 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1187 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1188 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1189 	},
1190 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1191 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1192 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1193 	},
1194 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1195 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1196 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1197 	},
1198 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1199 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1200 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1201 	},
1202 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1203 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1204 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1205 	},
1206 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1207 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1208 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1209 	},
1210 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1211 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1212 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1213 	},
1214 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1215 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1216 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1217 	},
1218 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1219 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1220 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1221 	},
1222 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1223 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1224 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1225 	},
1226 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1227 	  "Aquantia D100 10 Gigabit Network Adapter",
1228 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1229 	},
1230 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1231 	  "Aquantia D107 10 Gigabit Network Adapter",
1232 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1233 	},
1234 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1235 	  "Aquantia D108 5 Gigabit Network Adapter",
1236 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1237 	},
1238 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1239 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1240 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1241 	}
1242 };
1243 
1244 static const struct aq_product *
1245 aq_lookup(const struct pci_attach_args *pa)
1246 {
1247 	unsigned int i;
1248 
1249 	for (i = 0; i < __arraycount(aq_products); i++) {
1250 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1251 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1252 			return &aq_products[i];
1253 	}
1254 	return NULL;
1255 }
1256 
1257 static int
1258 aq_match(device_t parent, cfdata_t cf, void *aux)
1259 {
1260 	struct pci_attach_args * const pa = aux;
1261 
1262 	if (aq_lookup(pa) != NULL)
1263 		return 1;
1264 
1265 	return 0;
1266 }
1267 
1268 static void
1269 aq_attach(device_t parent, device_t self, void *aux)
1270 {
1271 	struct aq_softc * const sc = device_private(self);
1272 	struct pci_attach_args * const pa = aux;
1273 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1274 	pci_chipset_tag_t pc;
1275 	pcitag_t tag;
1276 	pcireg_t command, memtype, bar;
1277 	const struct aq_product *aqp;
1278 	int error;
1279 
1280 	sc->sc_dev = self;
1281 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1282 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1283 
1284 	sc->sc_pc = pc = pa->pa_pc;
1285 	sc->sc_pcitag = tag = pa->pa_tag;
1286 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1287 
1288 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1289 	command |= PCI_COMMAND_MASTER_ENABLE;
1290 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1291 
1292 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1293 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1294 
1295 	aqp = aq_lookup(pa);
1296 	KASSERT(aqp != NULL);
1297 
1298 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1299 
1300 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1301 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1302 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1303 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1304 		return;
1305 	}
1306 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1307 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1308 	    NULL, &sc->sc_iosize) != 0) {
1309 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1310 		return;
1311 	}
1312 
1313 	error = aq_fw_reset(sc);
1314 	if (error != 0)
1315 		goto attach_failure;
1316 
1317 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1318 
1319 	/* max queue num is 8, and must be 2^n */
1320 	if (ncpu >= 8)
1321 		sc->sc_nqueues = 8;
1322 	else if (ncpu >= 4)
1323 		sc->sc_nqueues = 4;
1324 	else if (ncpu >= 2)
1325 		sc->sc_nqueues = 2;
1326 	else
1327 		sc->sc_nqueues = 1;
1328 
1329 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1330 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1331 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1332 		/* TX intrs + RX intrs + LINKSTAT intrs */
1333 		sc->sc_use_txrx_independent_intr = true;
1334 		sc->sc_poll_linkstat = false;
1335 		sc->sc_msix = true;
1336 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1337 		/* TX intrs + RX intrs */
1338 		sc->sc_use_txrx_independent_intr = true;
1339 		sc->sc_poll_linkstat = true;
1340 		sc->sc_msix = true;
1341 	} else
1342 #endif
1343 	if (msixcount >= (sc->sc_nqueues + 1)) {
1344 		/* TX/RX intrs LINKSTAT intrs */
1345 		sc->sc_use_txrx_independent_intr = false;
1346 		sc->sc_poll_linkstat = false;
1347 		sc->sc_msix = true;
1348 	} else if (msixcount >= sc->sc_nqueues) {
1349 		/* TX/RX intrs */
1350 		sc->sc_use_txrx_independent_intr = false;
1351 		sc->sc_poll_linkstat = true;
1352 		sc->sc_msix = true;
1353 	} else {
1354 		/* giving up using MSI-X */
1355 		sc->sc_msix = false;
1356 	}
1357 
1358 	/* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1359 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1360 	    FW_VERSION_MAJOR(sc) == 1)
1361 		sc->sc_poll_linkstat = true;
1362 
1363 #ifdef AQ_FORCE_POLL_LINKSTAT
1364 	sc->sc_poll_linkstat = true;
1365 #endif
1366 
1367 	aprint_debug_dev(sc->sc_dev,
1368 	    "ncpu=%d, pci_msix_count=%d."
1369 	    " allocate %d interrupts for %d%s queues%s\n",
1370 	    ncpu, msixcount,
1371 	    (sc->sc_use_txrx_independent_intr ?
1372 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1373 	    (sc->sc_poll_linkstat ? 0 : 1),
1374 	    sc->sc_nqueues,
1375 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1376 	    sc->sc_poll_linkstat ? "" : ", and link status");
1377 
1378 	if (sc->sc_msix)
1379 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1380 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1381 	else
1382 		error = ENODEV;
1383 
1384 	if (error != 0) {
1385 		/* if MSI-X failed, fallback to MSI with single queue */
1386 		sc->sc_use_txrx_independent_intr = false;
1387 		sc->sc_poll_linkstat = false;
1388 		sc->sc_msix = false;
1389 		sc->sc_nqueues = 1;
1390 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1391 	}
1392 	if (error != 0) {
1393 		/* if MSI failed, fallback to INTx */
1394 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1395 	}
1396 	if (error != 0)
1397 		goto attach_failure;
1398 
1399 	callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE);
1400 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1401 
1402 	char wqname[MAXCOMLEN];
1403 	snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
1404 	error = workqueue_create(&sc->sc_reset_wq, wqname,
1405 	    aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK,
1406 	    WQ_MPSAFE);
1407 	if (error) {
1408 		aprint_error_dev(sc->sc_dev,
1409 		    "unable to create reset workqueue\n");
1410 		goto attach_failure;
1411 	}
1412 
1413 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1414 
1415 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1416 		sc->sc_rss_enable = true;
1417 	else
1418 		sc->sc_rss_enable = false;
1419 
1420 	error = aq_txrx_rings_alloc(sc);
1421 	if (error != 0)
1422 		goto attach_failure;
1423 
1424 	error = aq_fw_version_init(sc);
1425 	if (error != 0)
1426 		goto attach_failure;
1427 
1428 	error = aq_hw_init_ucp(sc);
1429 	if (error < 0)
1430 		goto attach_failure;
1431 
1432 	KASSERT(sc->sc_mbox_addr != 0);
1433 	error = aq_hw_reset(sc);
1434 	if (error != 0)
1435 		goto attach_failure;
1436 
1437 	aq_get_mac_addr(sc);
1438 	aq_init_rss(sc);
1439 
1440 	error = aq_hw_init(sc);	/* initialize and interrupts */
1441 	if (error != 0)
1442 		goto attach_failure;
1443 
1444 	sc->sc_media_type = aqp->aq_media_type;
1445 	sc->sc_available_rates = aqp->aq_available_rates;
1446 
1447 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1448 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1449 	    aq_ifmedia_change, aq_ifmedia_status);
1450 	aq_initmedia(sc);
1451 
1452 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1453 	ifp->if_softc = sc;
1454 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1455 	ifp->if_extflags = IFEF_MPSAFE;
1456 	ifp->if_baudrate = IF_Gbps(10);
1457 	ifp->if_init = aq_init;
1458 	ifp->if_ioctl = aq_ioctl;
1459 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1460 		ifp->if_transmit = aq_transmit;
1461 	ifp->if_start = aq_start;
1462 	ifp->if_stop = aq_stop;
1463 	ifp->if_watchdog = NULL;
1464 	IFQ_SET_READY(&ifp->if_snd);
1465 
1466 	/* initialize capabilities */
1467 	sc->sc_ethercom.ec_capabilities = 0;
1468 	sc->sc_ethercom.ec_capenable = 0;
1469 #if notyet
1470 	/* TODO */
1471 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1472 #endif
1473 	sc->sc_ethercom.ec_capabilities |=
1474 	    ETHERCAP_JUMBO_MTU |
1475 	    ETHERCAP_VLAN_MTU |
1476 	    ETHERCAP_VLAN_HWTAGGING |
1477 	    ETHERCAP_VLAN_HWFILTER;
1478 	sc->sc_ethercom.ec_capenable |=
1479 	    ETHERCAP_VLAN_HWTAGGING |
1480 	    ETHERCAP_VLAN_HWFILTER;
1481 
1482 	ifp->if_capabilities = 0;
1483 	ifp->if_capenable = 0;
1484 #ifdef CONFIG_LRO_SUPPORT
1485 	ifp->if_capabilities |= IFCAP_LRO;
1486 	ifp->if_capenable |= IFCAP_LRO;
1487 #endif
1488 #if notyet
1489 	/* TSO */
1490 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1491 #endif
1492 
1493 	/* TX hardware checksum offloading */
1494 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1495 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1496 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1497 	/* RX hardware checksum offloading */
1498 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1499 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1500 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1501 
1502 	if_initialize(ifp);
1503 	ifp->if_percpuq = if_percpuq_create(ifp);
1504 	if_deferred_start_init(ifp, NULL);
1505 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1506 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1507 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1508 	if_register(ifp);
1509 
1510 	aq_enable_intr(sc, true, false);	/* only intr about link */
1511 
1512 	/* update media */
1513 	aq_ifmedia_change(ifp);
1514 
1515 #if NSYSMON_ENVSYS > 0
1516 	/* temperature monitoring */
1517 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1518 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1519 
1520 		sc->sc_sme = sysmon_envsys_create();
1521 		sc->sc_sme->sme_name = device_xname(self);
1522 		sc->sc_sme->sme_cookie = sc;
1523 		sc->sc_sme->sme_flags = 0;
1524 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1525 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1526 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1527 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1528 
1529 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1530 		if (sysmon_envsys_register(sc->sc_sme)) {
1531 			sysmon_envsys_destroy(sc->sc_sme);
1532 			sc->sc_sme = NULL;
1533 			goto attach_failure;
1534 		}
1535 
1536 		/*
1537 		 * for unknown reasons, the first call of fw2x_get_temperature()
1538 		 * will always fail (firmware matter?), so run once now.
1539 		 */
1540 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1541 	}
1542 #endif
1543 
1544 #ifdef AQ_EVENT_COUNTERS
1545 	/* get starting statistics values */
1546 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1547 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1548 		sc->sc_poll_statistics = true;
1549 	}
1550 
1551 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1552 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1553 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1554 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1555 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1556 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1557 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1558 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1559 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1560 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1561 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1562 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1563 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1564 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1565 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1566 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1567 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1568 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1569 #endif
1570 
1571 	if (pmf_device_register(self, NULL, NULL))
1572 		pmf_class_network_register(self, ifp);
1573 	else
1574 		aprint_error_dev(self, "couldn't establish power handler\n");
1575 
1576 	return;
1577 
1578  attach_failure:
1579 	aq_detach(self, 0);
1580 }
1581 
1582 static int
1583 aq_detach(device_t self, int flags __unused)
1584 {
1585 	struct aq_softc * const sc = device_private(self);
1586 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1587 	int i;
1588 
1589 	if (sc->sc_iosize != 0) {
1590 		if (ifp->if_softc != NULL) {
1591 			IFNET_LOCK(ifp);
1592 			aq_stop(ifp, 1);
1593 			IFNET_UNLOCK(ifp);
1594 		}
1595 
1596 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1597 			if (sc->sc_ihs[i] != NULL) {
1598 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1599 				sc->sc_ihs[i] = NULL;
1600 			}
1601 		}
1602 		if (sc->sc_nintrs > 0) {
1603 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1604 			    sc->sc_nintrs);
1605 			sc->sc_intrs = NULL;
1606 			sc->sc_nintrs = 0;
1607 		}
1608 
1609 		aq_txrx_rings_free(sc);
1610 
1611 		if (ifp->if_softc != NULL) {
1612 			ether_ifdetach(ifp);
1613 			if_detach(ifp);
1614 		}
1615 
1616 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1617 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1618 		sc->sc_iosize = 0;
1619 	}
1620 
1621 #if NSYSMON_ENVSYS > 0
1622 	if (sc->sc_sme != NULL) {
1623 		/* all sensors associated with this will also be detached */
1624 		sysmon_envsys_unregister(sc->sc_sme);
1625 	}
1626 #endif
1627 
1628 #ifdef AQ_EVENT_COUNTERS
1629 	AQ_EVCNT_DETACH(sc, uprc);
1630 	AQ_EVCNT_DETACH(sc, mprc);
1631 	AQ_EVCNT_DETACH(sc, bprc);
1632 	AQ_EVCNT_DETACH(sc, erpt);
1633 	AQ_EVCNT_DETACH(sc, uptc);
1634 	AQ_EVCNT_DETACH(sc, mptc);
1635 	AQ_EVCNT_DETACH(sc, bptc);
1636 	AQ_EVCNT_DETACH(sc, erpr);
1637 	AQ_EVCNT_DETACH(sc, mbtc);
1638 	AQ_EVCNT_DETACH(sc, bbtc);
1639 	AQ_EVCNT_DETACH(sc, mbrc);
1640 	AQ_EVCNT_DETACH(sc, bbrc);
1641 	AQ_EVCNT_DETACH(sc, ubrc);
1642 	AQ_EVCNT_DETACH(sc, ubtc);
1643 	AQ_EVCNT_DETACH(sc, ptc);
1644 	AQ_EVCNT_DETACH(sc, prc);
1645 	AQ_EVCNT_DETACH(sc, dpc);
1646 	AQ_EVCNT_DETACH(sc, cprc);
1647 #endif
1648 
1649 	ifmedia_fini(&sc->sc_media);
1650 
1651 	mutex_destroy(&sc->sc_mpi_mutex);
1652 	mutex_destroy(&sc->sc_mutex);
1653 
1654 	return 0;
1655 }
1656 
1657 static int
1658 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1659     int (*func)(void *), void *arg, const char *xname)
1660 {
1661 	char intrbuf[PCI_INTRSTR_LEN];
1662 	pci_chipset_tag_t pc = sc->sc_pc;
1663 	void *vih;
1664 	const char *intrstr = NULL;
1665 
1666 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1667 	    sizeof(intrbuf));
1668 
1669 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1670 
1671 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1672 	    IPL_NET, func, arg, xname);
1673 	if (vih == NULL) {
1674 		aprint_error_dev(sc->sc_dev,
1675 		    "unable to establish MSI-X%s%s for %s\n",
1676 		    intrstr ? " at " : "",
1677 		    intrstr ? intrstr : "", xname);
1678 		return EIO;
1679 	}
1680 	sc->sc_ihs[intno] = vih;
1681 
1682 	if (affinity != NULL) {
1683 		/* Round-robin affinity */
1684 		kcpuset_zero(affinity);
1685 		kcpuset_set(affinity, intno % ncpu);
1686 		interrupt_distribute(vih, affinity, NULL);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static int
1693 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1694     bool linkintr)
1695 {
1696 	kcpuset_t *affinity;
1697 	int error, intno, i;
1698 	char intr_xname[INTRDEVNAMEBUF];
1699 
1700 	kcpuset_create(&affinity, false);
1701 
1702 	intno = 0;
1703 
1704 	if (txrx_independent) {
1705 		for (i = 0; i < sc->sc_nqueues; i++) {
1706 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1707 			    device_xname(sc->sc_dev), i);
1708 			sc->sc_rx_irq[i] = intno;
1709 			error = aq_establish_intr(sc, intno++, affinity,
1710 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1711 			if (error != 0)
1712 				goto fail;
1713 		}
1714 		for (i = 0; i < sc->sc_nqueues; i++) {
1715 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1716 			    device_xname(sc->sc_dev), i);
1717 			sc->sc_tx_irq[i] = intno;
1718 			error = aq_establish_intr(sc, intno++, affinity,
1719 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1720 			if (error != 0)
1721 				goto fail;
1722 		}
1723 	} else {
1724 		for (i = 0; i < sc->sc_nqueues; i++) {
1725 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1726 			    device_xname(sc->sc_dev), i);
1727 			sc->sc_rx_irq[i] = intno;
1728 			sc->sc_tx_irq[i] = intno;
1729 			error = aq_establish_intr(sc, intno++, affinity,
1730 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1731 			if (error != 0)
1732 				goto fail;
1733 		}
1734 	}
1735 
1736 	if (linkintr) {
1737 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1738 		    device_xname(sc->sc_dev));
1739 		sc->sc_linkstat_irq = intno;
1740 		error = aq_establish_intr(sc, intno++, affinity,
1741 		    aq_link_intr, sc, intr_xname);
1742 		if (error != 0)
1743 			goto fail;
1744 	}
1745 
1746 	kcpuset_destroy(affinity);
1747 	return 0;
1748 
1749  fail:
1750 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1751 		if (sc->sc_ihs[i] != NULL) {
1752 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1753 			sc->sc_ihs[i] = NULL;
1754 		}
1755 	}
1756 
1757 	kcpuset_destroy(affinity);
1758 	return ENOMEM;
1759 }
1760 
1761 static int
1762 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1763     bool txrx_independent, bool linkintr)
1764 {
1765 	int error, nintr;
1766 
1767 	if (txrx_independent)
1768 		nintr = nqueue * 2;
1769 	else
1770 		nintr = nqueue;
1771 
1772 	if (linkintr)
1773 		nintr++;
1774 
1775 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1776 	if (error != 0) {
1777 		aprint_error_dev(sc->sc_dev,
1778 		    "failed to allocate MSI-X interrupts\n");
1779 		goto fail;
1780 	}
1781 
1782 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1783 	if (error == 0) {
1784 		sc->sc_nintrs = nintr;
1785 	} else {
1786 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1787 		sc->sc_nintrs = 0;
1788 	}
1789  fail:
1790 	return error;
1791 
1792 }
1793 
1794 static int
1795 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1796     pci_intr_type_t inttype)
1797 {
1798 	int counts[PCI_INTR_TYPE_SIZE];
1799 	int error, nintr;
1800 
1801 	nintr = 1;
1802 
1803 	memset(counts, 0, sizeof(counts));
1804 	counts[inttype] = nintr;
1805 
1806 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1807 	if (error != 0) {
1808 		aprint_error_dev(sc->sc_dev,
1809 		    "failed to allocate%s interrupts\n",
1810 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1811 		return error;
1812 	}
1813 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1814 	    device_xname(sc->sc_dev));
1815 	if (error == 0) {
1816 		sc->sc_nintrs = nintr;
1817 	} else {
1818 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1819 		sc->sc_nintrs = 0;
1820 	}
1821 	return error;
1822 }
1823 
1824 static void
1825 global_software_reset(struct aq_softc *sc)
1826 {
1827 	uint32_t v;
1828 
1829 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1830 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1831 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1832 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1833 
1834 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1835 	v &= ~AQ_FW_SOFTRESET_DIS;
1836 	v |= AQ_FW_SOFTRESET_RESET;
1837 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1838 }
1839 
1840 static int
1841 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1842 {
1843 	int timo;
1844 
1845 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1846 
1847 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1848 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1849 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1850 
1851 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1852 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1853 
1854 	global_software_reset(sc);
1855 
1856 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1857 
1858 	/* Wait for RBL to finish boot process. */
1859 #define RBL_TIMEOUT_MS	10000
1860 	uint16_t rbl_status;
1861 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1862 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1863 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1864 			break;
1865 		msec_delay(1);
1866 	}
1867 	if (timo <= 0) {
1868 		aprint_error_dev(sc->sc_dev,
1869 		    "RBL> RBL restart failed: timeout\n");
1870 		return EBUSY;
1871 	}
1872 	switch (rbl_status) {
1873 	case RBL_STATUS_SUCCESS:
1874 		if (mode != NULL)
1875 			*mode = FW_BOOT_MODE_RBL_FLASH;
1876 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1877 		break;
1878 	case RBL_STATUS_HOST_BOOT:
1879 		if (mode != NULL)
1880 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1881 		aprint_debug_dev(sc->sc_dev,
1882 		    "RBL> reset complete! [Host Bootload]\n");
1883 		break;
1884 	case RBL_STATUS_FAILURE:
1885 	default:
1886 		aprint_error_dev(sc->sc_dev,
1887 		    "unknown RBL status 0x%x\n", rbl_status);
1888 		return EBUSY;
1889 	}
1890 
1891 	return 0;
1892 }
1893 
1894 static int
1895 mac_soft_reset_flb(struct aq_softc *sc)
1896 {
1897 	uint32_t v;
1898 	int timo;
1899 
1900 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1901 	/*
1902 	 * Let Felicity hardware to complete SMBUS transaction before
1903 	 * Global software reset.
1904 	 */
1905 	msec_delay(50);
1906 
1907 	/*
1908 	 * If SPI burst transaction was interrupted(before running the script),
1909 	 * global software reset may not clear SPI interface.
1910 	 * Clean it up manually before global reset.
1911 	 */
1912 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1913 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1914 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1915 	msec_delay(50);
1916 
1917 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1918 	v &= ~AQ_FW_SOFTRESET_DIS;
1919 	v |= AQ_FW_SOFTRESET_RESET;
1920 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1921 
1922 	/* Kickstart. */
1923 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1924 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1925 	if (!sc->sc_fast_start_enabled)
1926 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1927 
1928 	/*
1929 	 * For the case SPI burst transaction was interrupted (by MCP reset
1930 	 * above), wait until it is completed by hardware.
1931 	 */
1932 	msec_delay(50);
1933 
1934 	/* MAC Kickstart */
1935 	if (!sc->sc_fast_start_enabled) {
1936 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1937 
1938 		uint32_t flb_status;
1939 		for (timo = 0; timo < 1000; timo++) {
1940 			flb_status = AQ_READ_REG(sc,
1941 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1942 			if (flb_status != 0)
1943 				break;
1944 			msec_delay(1);
1945 		}
1946 		if (flb_status == 0) {
1947 			aprint_error_dev(sc->sc_dev,
1948 			    "FLB> MAC kickstart failed: timed out\n");
1949 			return ETIMEDOUT;
1950 		}
1951 		aprint_debug_dev(sc->sc_dev,
1952 		    "FLB> MAC kickstart done, %d ms\n", timo);
1953 		/* FW reset */
1954 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1955 		/*
1956 		 * Let Felicity hardware complete SMBUS transaction before
1957 		 * Global software reset.
1958 		 */
1959 		msec_delay(50);
1960 		sc->sc_fast_start_enabled = true;
1961 	}
1962 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1963 
1964 	/* PHY Kickstart: #undone */
1965 	global_software_reset(sc);
1966 
1967 	for (timo = 0; timo < 1000; timo++) {
1968 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1969 			break;
1970 		msec_delay(10);
1971 	}
1972 	if (timo >= 1000) {
1973 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1974 		return ETIMEDOUT;
1975 	}
1976 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1977 	return 0;
1978 
1979 }
1980 
1981 static int
1982 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1983 {
1984 	if (sc->sc_rbl_enabled)
1985 		return mac_soft_reset_rbl(sc, mode);
1986 
1987 	if (mode != NULL)
1988 		*mode = FW_BOOT_MODE_FLB;
1989 	return mac_soft_reset_flb(sc);
1990 }
1991 
1992 static int
1993 aq_fw_read_version(struct aq_softc *sc)
1994 {
1995 	int i, error = EBUSY;
1996 #define MAC_FW_START_TIMEOUT_MS	10000
1997 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1998 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1999 		if (sc->sc_fw_version != 0) {
2000 			error = 0;
2001 			break;
2002 		}
2003 		delay(1000);
2004 	}
2005 	return error;
2006 }
2007 
2008 static int
2009 aq_fw_reset(struct aq_softc *sc)
2010 {
2011 	uint32_t ver, v, bootExitCode;
2012 	int i, error;
2013 
2014 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
2015 
2016 	for (i = 1000; i > 0; i--) {
2017 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
2018 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
2019 		if (v != 0x06000000 || bootExitCode != 0)
2020 			break;
2021 	}
2022 	if (i <= 0) {
2023 		aprint_error_dev(sc->sc_dev,
2024 		    "F/W reset failed. Neither RBL nor FLB started\n");
2025 		return ETIMEDOUT;
2026 	}
2027 	sc->sc_rbl_enabled = (bootExitCode != 0);
2028 
2029 	/*
2030 	 * Having FW version 0 is an indicator that cold start
2031 	 * is in progress. This means two things:
2032 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
2033 	 * 2) Driver may skip reset sequence and save time.
2034 	 */
2035 	if (sc->sc_fast_start_enabled && (ver != 0)) {
2036 		error = aq_fw_read_version(sc);
2037 		/* Skip reset as it just completed */
2038 		if (error == 0)
2039 			return 0;
2040 	}
2041 
2042 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2043 	error = mac_soft_reset(sc, &mode);
2044 	if (error != 0) {
2045 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2046 		return error;
2047 	}
2048 
2049 	switch (mode) {
2050 	case FW_BOOT_MODE_FLB:
2051 		aprint_debug_dev(sc->sc_dev,
2052 		    "FLB> F/W successfully loaded from flash.\n");
2053 		sc->sc_flash_present = true;
2054 		return aq_fw_read_version(sc);
2055 	case FW_BOOT_MODE_RBL_FLASH:
2056 		aprint_debug_dev(sc->sc_dev,
2057 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2058 		sc->sc_flash_present = true;
2059 		return aq_fw_read_version(sc);
2060 	case FW_BOOT_MODE_UNKNOWN:
2061 		aprint_error_dev(sc->sc_dev,
2062 		    "F/W bootload error: unknown bootloader type\n");
2063 		return ENOTSUP;
2064 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2065 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2066 		break;
2067 	}
2068 
2069 	/*
2070 	 * XXX: TODO: add support Host Boot
2071 	 */
2072 	aprint_error_dev(sc->sc_dev,
2073 	    "RBL> F/W Host Bootload not implemented\n");
2074 	return ENOTSUP;
2075 }
2076 
2077 static int
2078 aq_hw_reset(struct aq_softc *sc)
2079 {
2080 	int error;
2081 
2082 	/* disable irq */
2083 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2084 
2085 	/* apply */
2086 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2087 
2088 	/* wait ack 10 times by 1ms */
2089 	WAIT_FOR(
2090 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2091 	    1000, 10, &error);
2092 	if (error != 0) {
2093 		aprint_error_dev(sc->sc_dev,
2094 		    "atlantic: IRQ reset failed: %d\n", error);
2095 		return error;
2096 	}
2097 
2098 	return sc->sc_fw_ops->reset(sc);
2099 }
2100 
2101 static int
2102 aq_hw_init_ucp(struct aq_softc *sc)
2103 {
2104 	int timo;
2105 
2106 	if (FW_VERSION_MAJOR(sc) == 1) {
2107 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2108 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2109 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2110 	}
2111 
2112 	/* Wait a maximum of 10sec. It usually takes about 5sec. */
2113 	for (timo = 10000; timo > 0; timo--) {
2114 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2115 		if (sc->sc_mbox_addr != 0)
2116 			break;
2117 		delay(1000);
2118 	}
2119 	if (sc->sc_mbox_addr == 0) {
2120 		aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2121 		return ETIMEDOUT;
2122 	}
2123 
2124 #define AQ_FW_MIN_VERSION	0x01050006
2125 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2126 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2127 		aprint_error_dev(sc->sc_dev,
2128 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2129 		    " or later required, this is %d.%d.%d\n",
2130 		    FW_VERSION_MAJOR(sc),
2131 		    FW_VERSION_MINOR(sc),
2132 		    FW_VERSION_BUILD(sc));
2133 		return ENOTSUP;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int
2140 aq_fw_version_init(struct aq_softc *sc)
2141 {
2142 	int error = 0;
2143 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2144 
2145 	if (FW_VERSION_MAJOR(sc) == 1) {
2146 		sc->sc_fw_ops = &aq_fw1x_ops;
2147 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2148 		sc->sc_fw_ops = &aq_fw2x_ops;
2149 	} else {
2150 		aprint_error_dev(sc->sc_dev,
2151 		    "Unsupported F/W version %d.%d.%d\n",
2152 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2153 		    FW_VERSION_BUILD(sc));
2154 		return ENOTSUP;
2155 	}
2156 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2157 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2158 
2159 	/* detect revision */
2160 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2161 	switch (hwrev & 0x0000000f) {
2162 	case 0x01:
2163 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2164 		    fw_vers);
2165 		sc->sc_features |= FEATURES_REV_A0 |
2166 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2167 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2168 		break;
2169 	case 0x02:
2170 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2171 		    fw_vers);
2172 		sc->sc_features |= FEATURES_REV_B0 |
2173 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2174 		    FEATURES_TPO2 | FEATURES_RPF2;
2175 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2176 		break;
2177 	case 0x0A:
2178 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2179 		    fw_vers);
2180 		sc->sc_features |= FEATURES_REV_B1 |
2181 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2182 		    FEATURES_TPO2 | FEATURES_RPF2;
2183 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2184 		break;
2185 	default:
2186 		aprint_error_dev(sc->sc_dev,
2187 		    "Unknown revision (0x%08x)\n", hwrev);
2188 		sc->sc_features = 0;
2189 		sc->sc_max_mtu = ETHERMTU;
2190 		error = ENOTSUP;
2191 		break;
2192 	}
2193 	return error;
2194 }
2195 
2196 static int
2197 fw1x_reset(struct aq_softc *sc)
2198 {
2199 	struct aq_mailbox_header mbox;
2200 	const int retryCount = 1000;
2201 	uint32_t tid0;
2202 	int i;
2203 
2204 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2205 
2206 	for (i = 0; i < retryCount; ++i) {
2207 		/*
2208 		 * Read the beginning of Statistics structure to capture
2209 		 * the Transaction ID.
2210 		 */
2211 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2212 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2213 
2214 		/* Successfully read the stats. */
2215 		if (tid0 == ~0U) {
2216 			/* We have read the initial value. */
2217 			tid0 = mbox.transaction_id;
2218 			continue;
2219 		} else if (mbox.transaction_id != tid0) {
2220 			/*
2221 			 * Compare transaction ID to initial value.
2222 			 * If it's different means f/w is alive.
2223 			 * We're done.
2224 			 */
2225 			return 0;
2226 		}
2227 
2228 		/*
2229 		 * Transaction ID value haven't changed since last time.
2230 		 * Try reading the stats again.
2231 		 */
2232 		delay(10);
2233 	}
2234 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2235 	return EBUSY;
2236 }
2237 
2238 static int
2239 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2240     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2241 {
2242 	uint32_t mpictrl = 0;
2243 	uint32_t mpispeed = 0;
2244 
2245 	if (speed & AQ_LINK_10G)
2246 		mpispeed |= FW1X_CTRL_10G;
2247 	if (speed & AQ_LINK_5G)
2248 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2249 	if (speed & AQ_LINK_2G5)
2250 		mpispeed |= FW1X_CTRL_2G5;
2251 	if (speed & AQ_LINK_1G)
2252 		mpispeed |= FW1X_CTRL_1G;
2253 	if (speed & AQ_LINK_100M)
2254 		mpispeed |= FW1X_CTRL_100M;
2255 
2256 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2257 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2258 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2259 	return 0;
2260 }
2261 
2262 static int
2263 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2264     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2265 {
2266 	uint32_t mpistate, mpi_speed;
2267 	aq_link_speed_t speed = AQ_LINK_NONE;
2268 
2269 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2270 
2271 	if (modep != NULL)
2272 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2273 
2274 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2275 	if (mpi_speed & FW1X_CTRL_10G)
2276 		speed = AQ_LINK_10G;
2277 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2278 		speed = AQ_LINK_5G;
2279 	else if (mpi_speed & FW1X_CTRL_2G5)
2280 		speed = AQ_LINK_2G5;
2281 	else if (mpi_speed & FW1X_CTRL_1G)
2282 		speed = AQ_LINK_1G;
2283 	else if (mpi_speed & FW1X_CTRL_100M)
2284 		speed = AQ_LINK_100M;
2285 
2286 	if (speedp != NULL)
2287 		*speedp = speed;
2288 
2289 	if (fcp != NULL)
2290 		*fcp = AQ_FC_NONE;
2291 
2292 	if (eeep != NULL)
2293 		*eeep = AQ_EEE_DISABLE;
2294 
2295 	return 0;
2296 }
2297 
2298 static int
2299 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2300 {
2301 	int error;
2302 
2303 	error = aq_fw_downld_dwords(sc,
2304 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2305 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2306 	if (error < 0) {
2307 		device_printf(sc->sc_dev,
2308 		    "fw1x> download statistics data FAILED, error %d", error);
2309 		return error;
2310 	}
2311 
2312 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2313 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2314 	return 0;
2315 }
2316 
2317 static int
2318 fw2x_reset(struct aq_softc *sc)
2319 {
2320 	fw2x_capabilities_t caps = { 0 };
2321 	int error;
2322 
2323 	error = aq_fw_downld_dwords(sc,
2324 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2325 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2326 	if (error != 0) {
2327 		aprint_error_dev(sc->sc_dev,
2328 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2329 		    error);
2330 		return error;
2331 	}
2332 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2333 
2334 	char buf[256];
2335 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2336 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2337 
2338 	return 0;
2339 }
2340 
2341 static int
2342 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2343     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2344 {
2345 	uint64_t mpi_ctrl;
2346 	int error = 0;
2347 
2348 	AQ_MPI_LOCK(sc);
2349 
2350 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2351 
2352 	switch (mode) {
2353 	case MPI_INIT:
2354 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2355 		if (speed & AQ_LINK_10G)
2356 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2357 		if (speed & AQ_LINK_5G)
2358 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2359 		if (speed & AQ_LINK_2G5)
2360 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2361 		if (speed & AQ_LINK_1G)
2362 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2363 		if (speed & AQ_LINK_100M)
2364 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2365 
2366 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2367 
2368 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2369 		if (eee == AQ_EEE_ENABLE)
2370 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2371 
2372 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2373 		if (fc & AQ_FC_RX)
2374 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2375 		if (fc & AQ_FC_TX)
2376 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2377 		break;
2378 	case MPI_DEINIT:
2379 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2380 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2381 		break;
2382 	default:
2383 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2384 		error =  EINVAL;
2385 		goto failure;
2386 	}
2387 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2388 
2389  failure:
2390 	AQ_MPI_UNLOCK(sc);
2391 	return error;
2392 }
2393 
2394 static int
2395 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2396     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2397 {
2398 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2399 
2400 	if (modep != NULL) {
2401 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2402 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2403 			*modep = MPI_INIT;
2404 		else
2405 			*modep = MPI_DEINIT;
2406 	}
2407 
2408 	aq_link_speed_t speed = AQ_LINK_NONE;
2409 	if (mpi_state & FW2X_CTRL_RATE_10G)
2410 		speed = AQ_LINK_10G;
2411 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2412 		speed = AQ_LINK_5G;
2413 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2414 		speed = AQ_LINK_2G5;
2415 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2416 		speed = AQ_LINK_1G;
2417 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2418 		speed = AQ_LINK_100M;
2419 
2420 	if (speedp != NULL)
2421 		*speedp = speed;
2422 
2423 	aq_link_fc_t fc = AQ_FC_NONE;
2424 	if (mpi_state & FW2X_CTRL_PAUSE)
2425 		fc |= AQ_FC_RX;
2426 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2427 		fc |= AQ_FC_TX;
2428 	if (fcp != NULL)
2429 		*fcp = fc;
2430 
2431 	/* XXX: TODO: EEE */
2432 	if (eeep != NULL)
2433 		*eeep = AQ_EEE_DISABLE;
2434 
2435 	return 0;
2436 }
2437 
2438 static int
2439 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2440     uint32_t timeout_ms, uint32_t try_count)
2441 {
2442 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2443 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2444 	int error;
2445 
2446 	/* First, check that control and state values are consistent */
2447 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2448 		device_printf(sc->sc_dev,
2449 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2450 		    " are not consistent for mask %#llx!\n",
2451 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2452 		    (unsigned long long)mask);
2453 		return EINVAL;
2454 	}
2455 
2456 	/* Invert bits (toggle) in control register */
2457 	mpi_ctrl ^= mask;
2458 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2459 
2460 	/* Clear all bits except masked */
2461 	mpi_ctrl &= mask;
2462 
2463 	/* Wait for FW reflecting change in state register */
2464 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2465 	    1000 * timeout_ms, try_count, &error);
2466 	if (error != 0) {
2467 		device_printf(sc->sc_dev,
2468 		    "f/w2x> timeout while waiting for response"
2469 		    " in state register for bit %#llx!",
2470 		    (unsigned long long)mask);
2471 		return error;
2472 	}
2473 	return 0;
2474 }
2475 
2476 static int
2477 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2478 {
2479 	int error;
2480 
2481 	AQ_MPI_LOCK(sc);
2482 	/* Say to F/W to update the statistics */
2483 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2484 	if (error != 0) {
2485 		device_printf(sc->sc_dev,
2486 		    "fw2x> statistics update error %d\n", error);
2487 		goto failure;
2488 	}
2489 
2490 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2491 	error = aq_fw_downld_dwords(sc,
2492 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2493 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2494 	if (error != 0) {
2495 		device_printf(sc->sc_dev,
2496 		    "fw2x> download statistics data FAILED, error %d", error);
2497 		goto failure;
2498 	}
2499 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2500 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2501 
2502  failure:
2503 	AQ_MPI_UNLOCK(sc);
2504 	return error;
2505 }
2506 
2507 #if NSYSMON_ENVSYS > 0
2508 static int
2509 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2510 {
2511 	int error;
2512 	uint32_t value, celsius;
2513 
2514 	AQ_MPI_LOCK(sc);
2515 
2516 	/* Say to F/W to update the temperature */
2517 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2518 	if (error != 0)
2519 		goto failure;
2520 
2521 	error = aq_fw_downld_dwords(sc,
2522 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2523 	    &value, sizeof(value) / sizeof(uint32_t));
2524 	if (error != 0)
2525 		goto failure;
2526 
2527 	/* 1/256 decrees C to microkelvin */
2528 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2529 	if (celsius == 0) {
2530 		error = EIO;
2531 		goto failure;
2532 	}
2533 	*temp = celsius * (1000000 / 256) + 273150000;
2534 
2535  failure:
2536 	AQ_MPI_UNLOCK(sc);
2537 	return 0;
2538 }
2539 #endif
2540 
2541 static int
2542 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2543     uint32_t cnt)
2544 {
2545 	uint32_t v;
2546 	int error = 0;
2547 
2548 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2549 	if (error != 0) {
2550 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2551 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2552 		if (v == 0) {
2553 			device_printf(sc->sc_dev,
2554 			    "%s:%d: timeout\n", __func__, __LINE__);
2555 			return ETIMEDOUT;
2556 		}
2557 	}
2558 
2559 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2560 
2561 	error = 0;
2562 	for (; cnt > 0 && error == 0; cnt--) {
2563 		/* execute mailbox interface */
2564 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2565 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2566 		if (sc->sc_features & FEATURES_REV_B1) {
2567 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2568 			    1, 1000, &error);
2569 		} else {
2570 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2571 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2572 			    1, 1000, &error);
2573 		}
2574 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2575 		addr += sizeof(uint32_t);
2576 	}
2577 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2578 
2579 	if (error != 0)
2580 		device_printf(sc->sc_dev,
2581 		    "%s:%d: timeout\n", __func__, __LINE__);
2582 
2583 	return error;
2584 }
2585 
2586 /* read my mac address */
2587 static int
2588 aq_get_mac_addr(struct aq_softc *sc)
2589 {
2590 	uint32_t mac_addr[2];
2591 	uint32_t efuse_shadow_addr;
2592 	int err;
2593 
2594 	efuse_shadow_addr = 0;
2595 	if (FW_VERSION_MAJOR(sc) >= 2)
2596 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2597 	else
2598 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2599 
2600 	if (efuse_shadow_addr == 0) {
2601 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2602 		return ENXIO;
2603 	}
2604 
2605 	memset(mac_addr, 0, sizeof(mac_addr));
2606 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2607 	    mac_addr, __arraycount(mac_addr));
2608 	if (err < 0)
2609 		return err;
2610 
2611 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2612 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2613 		return ENXIO;
2614 	}
2615 
2616 	mac_addr[0] = htobe32(mac_addr[0]);
2617 	mac_addr[1] = htobe32(mac_addr[1]);
2618 
2619 	memcpy(sc->sc_enaddr.ether_addr_octet,
2620 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2621 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2622 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2623 
2624 	return 0;
2625 }
2626 
2627 /* set multicast filter. index 0 for own address */
2628 static int
2629 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2630 {
2631 	uint32_t h, l;
2632 
2633 	if (index >= AQ_HW_MAC_NUM)
2634 		return EINVAL;
2635 
2636 	if (enaddr == NULL) {
2637 		/* disable */
2638 		AQ_WRITE_REG_BIT(sc,
2639 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2640 		return 0;
2641 	}
2642 
2643 	h = (enaddr[0] <<  8) | (enaddr[1]);
2644 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2645 	    (enaddr[4] <<  8) | (enaddr[5]);
2646 
2647 	/* disable, set, and enable */
2648 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2649 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2650 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2651 	    RPF_L2UC_MSW_MACADDR_HI, h);
2652 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2653 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2654 
2655 	return 0;
2656 }
2657 
2658 static int
2659 aq_set_capability(struct aq_softc *sc)
2660 {
2661 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2662 	int ip4csum_tx =
2663 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2664 	int ip4csum_rx =
2665 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2666 	int l4csum_tx = ((ifp->if_capenable &
2667 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2668 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2669 	int l4csum_rx =
2670 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2671 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2672 	uint32_t lso =
2673 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2674 	   0 : 0xffffffff;
2675 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2676 	    0 : 0xffffffff;
2677 	uint32_t i, v;
2678 
2679 	/* TX checksums offloads*/
2680 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2681 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2682 
2683 	/* RX checksums offloads*/
2684 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2685 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2686 
2687 	/* LSO offloads*/
2688 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2689 
2690 #define AQ_B0_LRO_RXD_MAX	16
2691 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2692 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2693 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2694 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2695 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2696 		    RPO_LRO_LDES_MAX_MASK(i), v);
2697 	}
2698 
2699 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2700 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2701 	    RPO_LRO_INACTIVE_IVAL, 0);
2702 	/*
2703 	 * the LRO timebase divider is 5 uS (0x61a),
2704 	 * to get a maximum coalescing interval of 250 uS,
2705 	 * we need to multiply by 50(0x32) to get
2706 	 * the default value 250 uS
2707 	 */
2708 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2709 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2710 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2711 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2712 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2713 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2714 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2715 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2716 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2717 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2718 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2719 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2720 
2721 	return 0;
2722 }
2723 
2724 static int
2725 aq_set_filter(struct aq_softc *sc)
2726 {
2727 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2728 	struct ethercom * const ec = &sc->sc_ethercom;
2729 	struct ether_multi *enm;
2730 	struct ether_multistep step;
2731 	int idx, error = 0;
2732 
2733 	if (ifp->if_flags & IFF_PROMISC) {
2734 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2735 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2736 		ec->ec_flags |= ETHER_F_ALLMULTI;
2737 		goto done;
2738 	}
2739 
2740 	/* clear all table */
2741 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2742 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2743 			continue;
2744 		aq_set_mac_addr(sc, idx, NULL);
2745 	}
2746 
2747 	/* don't accept all multicast */
2748 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2749 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2750 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2751 	    RPF_MCAST_FILTER_EN, 0);
2752 
2753 	idx = 0;
2754 	ETHER_LOCK(ec);
2755 	ETHER_FIRST_MULTI(step, ec, enm);
2756 	while (enm != NULL) {
2757 		if (idx == AQ_HW_MAC_OWN)
2758 			idx++;
2759 
2760 		if ((idx >= AQ_HW_MAC_NUM) ||
2761 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2762 			/*
2763 			 * too many filters.
2764 			 * fallback to accept all multicast addresses.
2765 			 */
2766 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2767 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2768 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2769 			    RPF_MCAST_FILTER_EN, 1);
2770 			ec->ec_flags |= ETHER_F_ALLMULTI;
2771 			ETHER_UNLOCK(ec);
2772 			goto done;
2773 		}
2774 
2775 		/* add a filter */
2776 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2777 
2778 		ETHER_NEXT_MULTI(step, enm);
2779 	}
2780 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2781 	ETHER_UNLOCK(ec);
2782 
2783  done:
2784 	return error;
2785 }
2786 
2787 static int
2788 aq_ifmedia_change(struct ifnet * const ifp)
2789 {
2790 	struct aq_softc * const sc = ifp->if_softc;
2791 
2792 	aq_link_speed_t rate = AQ_LINK_NONE;
2793 	aq_link_fc_t fc = AQ_FC_NONE;
2794 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2795 
2796 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2797 		return EINVAL;
2798 
2799 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2800 	case IFM_AUTO:
2801 		rate = AQ_LINK_AUTO;
2802 		break;
2803 	case IFM_NONE:
2804 		rate = AQ_LINK_NONE;
2805 		break;
2806 	case IFM_100_TX:
2807 		rate = AQ_LINK_100M;
2808 		break;
2809 	case IFM_1000_T:
2810 		rate = AQ_LINK_1G;
2811 		break;
2812 	case IFM_2500_T:
2813 		rate = AQ_LINK_2G5;
2814 		break;
2815 	case IFM_5000_T:
2816 		rate = AQ_LINK_5G;
2817 		break;
2818 	case IFM_10G_T:
2819 		rate = AQ_LINK_10G;
2820 		break;
2821 	default:
2822 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2823 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2824 		return ENODEV;
2825 	}
2826 
2827 	if (sc->sc_media.ifm_media & IFM_FLOW)
2828 		fc = AQ_FC_ALL;
2829 
2830 	/* XXX: todo EEE */
2831 
2832 	/* re-initialize hardware with new parameters */
2833 	aq_set_linkmode(sc, rate, fc, eee);
2834 
2835 	return 0;
2836 }
2837 
2838 static void
2839 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2840 {
2841 	struct aq_softc * const sc = ifp->if_softc;
2842 
2843 	/* update ifm_active */
2844 	ifmr->ifm_active = IFM_ETHER;
2845 	if (sc->sc_link_fc & AQ_FC_RX)
2846 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2847 	if (sc->sc_link_fc & AQ_FC_TX)
2848 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2849 
2850 	switch (sc->sc_link_rate) {
2851 	case AQ_LINK_100M:
2852 		/* XXX: need to detect fulldup or halfdup */
2853 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2854 		break;
2855 	case AQ_LINK_1G:
2856 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2857 		break;
2858 	case AQ_LINK_2G5:
2859 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2860 		break;
2861 	case AQ_LINK_5G:
2862 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2863 		break;
2864 	case AQ_LINK_10G:
2865 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2866 		break;
2867 	default:
2868 		ifmr->ifm_active |= IFM_NONE;
2869 		break;
2870 	}
2871 
2872 	/* update ifm_status */
2873 	ifmr->ifm_status = IFM_AVALID;
2874 	if (sc->sc_link_rate != AQ_LINK_NONE)
2875 		ifmr->ifm_status |= IFM_ACTIVE;
2876 }
2877 
2878 static void
2879 aq_initmedia(struct aq_softc *sc)
2880 {
2881 #define IFMEDIA_ETHER_ADD(sc, media)	\
2882 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2883 
2884 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2885 	if (sc->sc_available_rates & AQ_LINK_100M) {
2886 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2887 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2888 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2889 	}
2890 	if (sc->sc_available_rates & AQ_LINK_1G) {
2891 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2892 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2893 	}
2894 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2895 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2896 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2897 	}
2898 	if (sc->sc_available_rates & AQ_LINK_5G) {
2899 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2900 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2901 	}
2902 	if (sc->sc_available_rates & AQ_LINK_10G) {
2903 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2904 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2905 	}
2906 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2907 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2908 
2909 	/* default: auto without flowcontrol */
2910 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2911 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2912 }
2913 
2914 static int
2915 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2916     aq_link_eee_t eee)
2917 {
2918 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2919 }
2920 
2921 static int
2922 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2923    aq_link_eee_t *eee)
2924 {
2925 	aq_hw_fw_mpi_state_t mode;
2926 	int error;
2927 
2928 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2929 	if (error != 0)
2930 		return error;
2931 	if (mode != MPI_INIT)
2932 		return ENXIO;
2933 
2934 	return 0;
2935 }
2936 
2937 static void
2938 aq_hw_init_tx_path(struct aq_softc *sc)
2939 {
2940 	/* Tx TC/RSS number config */
2941 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2942 
2943 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2944 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2945 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2946 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2947 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2948 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2949 
2950 	/* misc */
2951 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2952 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2953 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2954 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2955 
2956 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2957 }
2958 
2959 static void
2960 aq_hw_init_rx_path(struct aq_softc *sc)
2961 {
2962 	int i;
2963 
2964 	/* clear setting */
2965 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2966 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2967 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2968 	for (i = 0; i < 32; i++) {
2969 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2970 		   RPF_ETHERTYPE_FILTER_EN, 0);
2971 	}
2972 
2973 	if (sc->sc_rss_enable) {
2974 		/* Rx TC/RSS number config */
2975 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2976 
2977 		/* Rx flow control */
2978 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2979 
2980 		/* RSS Ring selection */
2981 		switch (sc->sc_nqueues) {
2982 		case 2:
2983 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2984 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2985 			break;
2986 		case 4:
2987 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2988 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2989 			break;
2990 		case 8:
2991 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2992 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2993 			break;
2994 		}
2995 	}
2996 
2997 	/* L2 and Multicast filters */
2998 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2999 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
3000 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
3001 		    RPF_ACTION_HOST);
3002 	}
3003 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
3004 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
3005 
3006 	/* Vlan filters */
3007 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
3008 	    ETHERTYPE_QINQ);
3009 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
3010 	    ETHERTYPE_VLAN);
3011 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3012 
3013 	if (sc->sc_features & FEATURES_REV_B) {
3014 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3015 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
3016 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3017 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
3018 	}
3019 
3020 	/* misc */
3021 	if (sc->sc_features & FEATURES_RPF2)
3022 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
3023 	else
3024 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
3025 
3026 	/*
3027 	 * XXX: RX_TCP_RSS_HASH_REG:
3028 	 *  linux   set 0x000f0000
3029 	 *  freebsd set 0x000f001e
3030 	 */
3031 	/* RSS hash type set for IP/TCP */
3032 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
3033 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
3034 
3035 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3036 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3037 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3038 
3039 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3040 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3041 }
3042 
3043 static void
3044 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3045 {
3046 	int i;
3047 
3048 	if (sc->sc_intr_moderation_enable) {
3049 		unsigned int tx_min, rx_min;	/* 0-255 */
3050 		unsigned int tx_max, rx_max;	/* 0-511? */
3051 
3052 		switch (sc->sc_link_rate) {
3053 		case AQ_LINK_100M:
3054 			tx_min = 0x4f;
3055 			tx_max = 0xff;
3056 			rx_min = 0x04;
3057 			rx_max = 0x50;
3058 			break;
3059 		case AQ_LINK_1G:
3060 		default:
3061 			tx_min = 0x4f;
3062 			tx_max = 0xff;
3063 			rx_min = 0x30;
3064 			rx_max = 0x80;
3065 			break;
3066 		case AQ_LINK_2G5:
3067 			tx_min = 0x4f;
3068 			tx_max = 0xff;
3069 			rx_min = 0x18;
3070 			rx_max = 0xe0;
3071 			break;
3072 		case AQ_LINK_5G:
3073 			tx_min = 0x4f;
3074 			tx_max = 0xff;
3075 			rx_min = 0x0c;
3076 			rx_max = 0x70;
3077 			break;
3078 		case AQ_LINK_10G:
3079 			tx_min = 0x4f;
3080 			tx_max = 0x1ff;
3081 			rx_min = 0x06;	/* freebsd use 80 */
3082 			rx_max = 0x38;	/* freebsd use 120 */
3083 			break;
3084 		}
3085 
3086 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3087 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3088 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3089 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3090 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3091 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3092 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3093 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3094 
3095 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3096 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3097 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3098 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3099 			    TX_INTR_MODERATION_CTL_EN);
3100 		}
3101 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3102 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3103 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3104 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3105 			    RX_INTR_MODERATION_CTL_EN);
3106 		}
3107 
3108 	} else {
3109 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3110 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3111 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3112 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3113 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3114 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3115 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3116 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3117 
3118 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3119 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3120 		}
3121 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3122 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3123 		}
3124 	}
3125 }
3126 
3127 static void
3128 aq_hw_qos_set(struct aq_softc *sc)
3129 {
3130 	uint32_t tc = 0;
3131 	uint32_t buff_size;
3132 
3133 	/* TPS Descriptor rate init */
3134 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3135 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3136 
3137 	/* TPS VM init */
3138 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3139 
3140 	/* TPS TC credits init */
3141 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3142 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3143 
3144 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3145 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3146 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3147 	    TPS_DATA_TCT_WEIGHT, 0x64);
3148 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3149 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3150 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3151 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3152 
3153 	/* Tx buf size */
3154 	tc = 0;
3155 	buff_size = AQ_HW_TXBUF_MAX;
3156 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3157 	    buff_size);
3158 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3159 	    (buff_size * (1024 / 32) * 66) / 100);
3160 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3161 	    (buff_size * (1024 / 32) * 50) / 100);
3162 
3163 	/* QoS Rx buf size per TC */
3164 	tc = 0;
3165 	buff_size = AQ_HW_RXBUF_MAX;
3166 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3167 	    buff_size);
3168 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3169 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3170 	    (buff_size * (1024 / 32) * 66) / 100);
3171 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3172 	    (buff_size * (1024 / 32) * 50) / 100);
3173 
3174 	/* QoS 802.1p priority -> TC mapping */
3175 	int i_priority;
3176 	for (i_priority = 0; i_priority < 8; i_priority++) {
3177 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3178 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3179 	}
3180 }
3181 
3182 /* called once from aq_attach */
3183 static int
3184 aq_init_rss(struct aq_softc *sc)
3185 {
3186 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3187 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3188 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3189 	unsigned int i;
3190 	int error;
3191 
3192 	/* initialize rss key */
3193 	rss_getkey((uint8_t *)rss_key);
3194 
3195 	/* hash to ring table */
3196 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3197 		rss_table[i] = i % sc->sc_nqueues;
3198 	}
3199 
3200 	/*
3201 	 * set rss key
3202 	 */
3203 	for (i = 0; i < __arraycount(rss_key); i++) {
3204 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3205 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3206 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3207 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3208 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3209 		    RPF_RSS_KEY_WR_EN, 1);
3210 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3211 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3212 		if (error != 0) {
3213 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3214 			    __func__);
3215 			goto rss_set_timeout;
3216 		}
3217 	}
3218 
3219 	/*
3220 	 * set rss indirection table
3221 	 *
3222 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3223 	 * we'll make it by __BITMAP(3) macros.
3224 	 */
3225 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3226 	__BITMAP_ZERO(&bit3x64);
3227 
3228 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3229 	do {							\
3230 		if (val & 1) {					\
3231 			__BITMAP_SET((idx) * 3, (bitmap));	\
3232 		} else {					\
3233 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3234 		}						\
3235 		if (val & 2) {					\
3236 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3237 		} else {					\
3238 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3239 		}						\
3240 		if (val & 4) {					\
3241 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3242 		} else {					\
3243 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3244 		}						\
3245 	} while (0 /* CONSTCOND */)
3246 
3247 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3248 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3249 	}
3250 
3251 	/* write 192bit data in steps of 16bit */
3252 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3253 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3254 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3255 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3256 		    RPF_RSS_REDIR_ADDR, i);
3257 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3258 		    RPF_RSS_REDIR_WR_EN, 1);
3259 
3260 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3261 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3262 		if (error != 0)
3263 			break;
3264 	}
3265 
3266  rss_set_timeout:
3267 	return error;
3268 }
3269 
3270 static void
3271 aq_hw_l3_filter_set(struct aq_softc *sc)
3272 {
3273 	int i;
3274 
3275 	/* clear all filter */
3276 	for (i = 0; i < 8; i++) {
3277 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3278 		    RPF_L3_FILTER_L4_EN, 0);
3279 	}
3280 }
3281 
3282 static void
3283 aq_set_vlan_filters(struct aq_softc *sc)
3284 {
3285 	struct ethercom * const ec = &sc->sc_ethercom;
3286 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3287 	struct vlanid_list *vlanidp;
3288 	int i;
3289 
3290 	ETHER_LOCK(ec);
3291 
3292 	/* disable all vlan filters */
3293 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3294 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3295 
3296 	/* count VID */
3297 	i = 0;
3298 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3299 		i++;
3300 
3301 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3302 	    (ifp->if_flags & IFF_PROMISC) ||
3303 	    (i > RPF_VLAN_MAX_FILTERS)) {
3304 		/*
3305 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3306 		 * must receive all VID
3307 		 */
3308 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3309 		    RPF_VLAN_MODE_PROMISC, 1);
3310 		goto done;
3311 	}
3312 
3313 	/* receive only selected VID */
3314 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3315 	i = 0;
3316 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3317 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3318 		    RPF_VLAN_FILTER_EN, 1);
3319 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3320 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3321 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3322 		    RPF_VLAN_FILTER_RXQ, 0);
3323 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3324 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3325 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3326 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3327 		i++;
3328 	}
3329 
3330  done:
3331 	ETHER_UNLOCK(ec);
3332 }
3333 
3334 static int
3335 aq_hw_init(struct aq_softc *sc)
3336 {
3337 	uint32_t v;
3338 
3339 	/* Force limit MRRS on RDM/TDM to 2K */
3340 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3341 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3342 
3343 	/*
3344 	 * TX DMA total request limit. B0 hardware is not capable to
3345 	 * handle more than (8K-MRRS) incoming DMA data.
3346 	 * Value 24 in 256byte units
3347 	 */
3348 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3349 
3350 	aq_hw_init_tx_path(sc);
3351 	aq_hw_init_rx_path(sc);
3352 
3353 	aq_hw_interrupt_moderation_set(sc);
3354 
3355 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3356 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3357 
3358 	aq_hw_qos_set(sc);
3359 
3360 	/* Enable interrupt */
3361 	int irqmode;
3362 	if (sc->sc_msix)
3363 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3364 	else
3365 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3366 
3367 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3368 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3369 	    sc->sc_msix ? 1 : 0);
3370 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3371 
3372 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3373 
3374 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3375 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3376 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3377 	);
3378 
3379 	/* link interrupt */
3380 	if (!sc->sc_msix)
3381 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3382 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3383 	    __BIT(7) | sc->sc_linkstat_irq);
3384 
3385 	return 0;
3386 }
3387 
3388 static int
3389 aq_update_link_status(struct aq_softc *sc)
3390 {
3391 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3392 	aq_link_speed_t rate = AQ_LINK_NONE;
3393 	aq_link_fc_t fc = AQ_FC_NONE;
3394 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3395 	unsigned int speed;
3396 	int changed = 0;
3397 
3398 	aq_get_linkmode(sc, &rate, &fc, &eee);
3399 
3400 	if (sc->sc_link_rate != rate)
3401 		changed = 1;
3402 	if (sc->sc_link_fc != fc)
3403 		changed = 1;
3404 	if (sc->sc_link_eee != eee)
3405 		changed = 1;
3406 
3407 	if (changed) {
3408 		switch (rate) {
3409 		case AQ_LINK_100M:
3410 			speed = 100;
3411 			break;
3412 		case AQ_LINK_1G:
3413 			speed = 1000;
3414 			break;
3415 		case AQ_LINK_2G5:
3416 			speed = 2500;
3417 			break;
3418 		case AQ_LINK_5G:
3419 			speed = 5000;
3420 			break;
3421 		case AQ_LINK_10G:
3422 			speed = 10000;
3423 			break;
3424 		case AQ_LINK_NONE:
3425 		default:
3426 			speed = 0;
3427 			break;
3428 		}
3429 
3430 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3431 			/* link DOWN -> UP */
3432 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3433 			    speed);
3434 			if_link_state_change(ifp, LINK_STATE_UP);
3435 		} else if (rate == AQ_LINK_NONE) {
3436 			/* link UP -> DOWN */
3437 			device_printf(sc->sc_dev, "link is DOWN\n");
3438 			if_link_state_change(ifp, LINK_STATE_DOWN);
3439 		} else {
3440 			device_printf(sc->sc_dev,
3441 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3442 			    speed, fc, eee);
3443 		}
3444 
3445 		sc->sc_link_rate = rate;
3446 		sc->sc_link_fc = fc;
3447 		sc->sc_link_eee = eee;
3448 
3449 		/* update interrupt timing according to new link speed */
3450 		aq_hw_interrupt_moderation_set(sc);
3451 	}
3452 
3453 	return changed;
3454 }
3455 
3456 #ifdef AQ_EVENT_COUNTERS
3457 static void
3458 aq_update_statistics(struct aq_softc *sc)
3459 {
3460 	int prev = sc->sc_statistics_idx;
3461 	int cur = prev ^ 1;
3462 
3463 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3464 
3465 	/*
3466 	 * aq's internal statistics counter is 32bit.
3467 	 * cauculate delta, and add to evcount
3468 	 */
3469 #define ADD_DELTA(cur, prev, name)				\
3470 	do {							\
3471 		uint32_t n;					\
3472 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3473 		    sc->sc_statistics[prev].name);		\
3474 		if (n != 0) {					\
3475 			AQ_EVCNT_ADD(sc, name, n);		\
3476 		}						\
3477 	} while (/*CONSTCOND*/0);
3478 
3479 	ADD_DELTA(cur, prev, uprc);
3480 	ADD_DELTA(cur, prev, mprc);
3481 	ADD_DELTA(cur, prev, bprc);
3482 	ADD_DELTA(cur, prev, prc);
3483 	ADD_DELTA(cur, prev, erpr);
3484 	ADD_DELTA(cur, prev, uptc);
3485 	ADD_DELTA(cur, prev, mptc);
3486 	ADD_DELTA(cur, prev, bptc);
3487 	ADD_DELTA(cur, prev, ptc);
3488 	ADD_DELTA(cur, prev, erpt);
3489 	ADD_DELTA(cur, prev, mbtc);
3490 	ADD_DELTA(cur, prev, bbtc);
3491 	ADD_DELTA(cur, prev, mbrc);
3492 	ADD_DELTA(cur, prev, bbrc);
3493 	ADD_DELTA(cur, prev, ubrc);
3494 	ADD_DELTA(cur, prev, ubtc);
3495 	ADD_DELTA(cur, prev, dpc);
3496 	ADD_DELTA(cur, prev, cprc);
3497 
3498 	sc->sc_statistics_idx = cur;
3499 }
3500 #endif /* AQ_EVENT_COUNTERS */
3501 
3502 /* allocate and map one DMA block */
3503 static int
3504 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3505     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3506 {
3507 	int nsegs, error;
3508 
3509 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3510 	    1, &nsegs, 0)) != 0) {
3511 		aprint_error_dev(sc->sc_dev,
3512 		    "unable to allocate DMA buffer, error=%d\n", error);
3513 		goto fail_alloc;
3514 	}
3515 
3516 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3517 	    BUS_DMA_COHERENT)) != 0) {
3518 		aprint_error_dev(sc->sc_dev,
3519 		    "unable to map DMA buffer, error=%d\n", error);
3520 		goto fail_map;
3521 	}
3522 
3523 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3524 	    0, mapp)) != 0) {
3525 		aprint_error_dev(sc->sc_dev,
3526 		    "unable to create DMA map, error=%d\n", error);
3527 		goto fail_create;
3528 	}
3529 
3530 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3531 	    0)) != 0) {
3532 		aprint_error_dev(sc->sc_dev,
3533 		    "unable to load DMA map, error=%d\n", error);
3534 		goto fail_load;
3535 	}
3536 
3537 	*sizep = size;
3538 	return 0;
3539 
3540  fail_load:
3541 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3542 	*mapp = NULL;
3543  fail_create:
3544 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3545 	*addrp = NULL;
3546  fail_map:
3547 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3548 	memset(seg, 0, sizeof(*seg));
3549  fail_alloc:
3550 	*sizep = 0;
3551 	return error;
3552 }
3553 
3554 static void
3555 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3556     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3557 {
3558 	if (*mapp != NULL) {
3559 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3560 		*mapp = NULL;
3561 	}
3562 	if (*addrp != NULL) {
3563 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3564 		*addrp = NULL;
3565 	}
3566 	if (*sizep != 0) {
3567 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3568 		memset(seg, 0, sizeof(*seg));
3569 		*sizep = 0;
3570 	}
3571 }
3572 
3573 static int
3574 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3575 {
3576 	int i, error;
3577 
3578 	/* allocate tx descriptors */
3579 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3580 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3581 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3582 	if (error != 0)
3583 		return error;
3584 
3585 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3586 
3587 	/* fill tx ring with dmamap */
3588 	for (i = 0; i < AQ_TXD_NUM; i++) {
3589 #define AQ_MAXDMASIZE	(16 * 1024)
3590 #define AQ_NTXSEGS	32
3591 		/* XXX: TODO: error check */
3592 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3593 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3594 	}
3595 	return 0;
3596 }
3597 
3598 static void
3599 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3600 {
3601 	int i;
3602 
3603 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3604 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3605 
3606 	for (i = 0; i < AQ_TXD_NUM; i++) {
3607 		if (txring->txr_mbufs[i].dmamap != NULL) {
3608 			if (txring->txr_mbufs[i].m != NULL) {
3609 				bus_dmamap_unload(sc->sc_dmat,
3610 				    txring->txr_mbufs[i].dmamap);
3611 				m_freem(txring->txr_mbufs[i].m);
3612 				txring->txr_mbufs[i].m = NULL;
3613 			}
3614 			bus_dmamap_destroy(sc->sc_dmat,
3615 			    txring->txr_mbufs[i].dmamap);
3616 			txring->txr_mbufs[i].dmamap = NULL;
3617 		}
3618 	}
3619 }
3620 
3621 static int
3622 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3623 {
3624 	int i, error;
3625 
3626 	/* allocate rx descriptors */
3627 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3628 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3629 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3630 	if (error != 0)
3631 		return error;
3632 
3633 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3634 
3635 	/* fill rxring with dmamaps */
3636 	for (i = 0; i < AQ_RXD_NUM; i++) {
3637 		rxring->rxr_mbufs[i].m = NULL;
3638 		/* XXX: TODO: error check */
3639 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3640 		    &rxring->rxr_mbufs[i].dmamap);
3641 	}
3642 	return 0;
3643 }
3644 
3645 static void
3646 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3647 {
3648 	int i;
3649 
3650 	/* free all mbufs allocated for RX */
3651 	for (i = 0; i < AQ_RXD_NUM; i++) {
3652 		if (rxring->rxr_mbufs[i].m != NULL) {
3653 			bus_dmamap_unload(sc->sc_dmat,
3654 			    rxring->rxr_mbufs[i].dmamap);
3655 			m_freem(rxring->rxr_mbufs[i].m);
3656 			rxring->rxr_mbufs[i].m = NULL;
3657 		}
3658 	}
3659 }
3660 
3661 static void
3662 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3663 {
3664 	int i;
3665 
3666 	/* free all mbufs and dmamaps */
3667 	aq_rxdrain(sc, rxring);
3668 	for (i = 0; i < AQ_RXD_NUM; i++) {
3669 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3670 			bus_dmamap_destroy(sc->sc_dmat,
3671 			    rxring->rxr_mbufs[i].dmamap);
3672 			rxring->rxr_mbufs[i].dmamap = NULL;
3673 		}
3674 	}
3675 
3676 	/* free RX descriptor */
3677 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3678 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3679 }
3680 
3681 static void
3682 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3683     struct mbuf *m)
3684 {
3685 	int error;
3686 
3687 	/* if mbuf already exists, unload and free */
3688 	if (rxring->rxr_mbufs[idx].m != NULL) {
3689 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3690 		m_freem(rxring->rxr_mbufs[idx].m);
3691 		rxring->rxr_mbufs[idx].m = NULL;
3692 	}
3693 
3694 	rxring->rxr_mbufs[idx].m = m;
3695 
3696 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3697 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3698 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3699 	if (error) {
3700 		device_printf(sc->sc_dev,
3701 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3702 		panic("%s: unable to load rx DMA map. error=%d",
3703 		    __func__, error);
3704 	}
3705 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3706 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3707 }
3708 
3709 static inline void
3710 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3711 {
3712 	/* refill rxdesc, and sync */
3713 	rxring->rxr_rxdesc[idx].read.buf_addr =
3714 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3715 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3716 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3717 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3718 	    BUS_DMASYNC_PREWRITE);
3719 }
3720 
3721 static struct mbuf *
3722 aq_alloc_mbuf(void)
3723 {
3724 	struct mbuf *m;
3725 
3726 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3727 	if (m == NULL)
3728 		return NULL;
3729 
3730 	MCLGET(m, M_DONTWAIT);
3731 	if ((m->m_flags & M_EXT) == 0) {
3732 		m_freem(m);
3733 		return NULL;
3734 	}
3735 
3736 	return m;
3737 }
3738 
3739 /* allocate mbuf and unload dmamap */
3740 static int
3741 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3742 {
3743 	struct mbuf *m;
3744 
3745 	m = aq_alloc_mbuf();
3746 	if (m == NULL)
3747 		return ENOBUFS;
3748 
3749 	aq_rxring_setmbuf(sc, rxring, idx, m);
3750 	return 0;
3751 }
3752 
3753 static int
3754 aq_txrx_rings_alloc(struct aq_softc *sc)
3755 {
3756 	int n, error;
3757 
3758 	for (n = 0; n < sc->sc_nqueues; n++) {
3759 		sc->sc_queue[n].sc = sc;
3760 		sc->sc_queue[n].txring.txr_sc = sc;
3761 		sc->sc_queue[n].txring.txr_index = n;
3762 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3763 		    IPL_NET);
3764 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3765 		if (error != 0)
3766 			goto failure;
3767 
3768 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3769 		if (error != 0)
3770 			goto failure;
3771 
3772 		sc->sc_queue[n].rxring.rxr_sc = sc;
3773 		sc->sc_queue[n].rxring.rxr_index = n;
3774 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3775 		   IPL_NET);
3776 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3777 		if (error != 0)
3778 			break;
3779 	}
3780 
3781  failure:
3782 	return error;
3783 }
3784 
3785 static void
3786 aq_txrx_rings_free(struct aq_softc *sc)
3787 {
3788 	int n;
3789 
3790 	for (n = 0; n < sc->sc_nqueues; n++) {
3791 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3792 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3793 
3794 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3795 
3796 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3797 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3798 	}
3799 }
3800 
3801 static int
3802 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3803 {
3804 	int error = 0;
3805 	txring->txr_softint = NULL;
3806 
3807 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3808 	if (txring->txr_pcq == NULL) {
3809 		aprint_error_dev(sc->sc_dev,
3810 		    "unable to allocate pcq for TXring[%d]\n",
3811 		    txring->txr_index);
3812 		error = ENOMEM;
3813 		goto done;
3814 	}
3815 
3816 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3817 	    aq_deferred_transmit, txring);
3818 	if (txring->txr_softint == NULL) {
3819 		aprint_error_dev(sc->sc_dev,
3820 		    "unable to establish softint for TXring[%d]\n",
3821 		    txring->txr_index);
3822 		error = ENOENT;
3823 	}
3824 
3825  done:
3826 	return error;
3827 }
3828 
3829 static void
3830 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3831 {
3832 	struct mbuf *m;
3833 
3834 	if (txring->txr_softint != NULL) {
3835 		softint_disestablish(txring->txr_softint);
3836 		txring->txr_softint = NULL;
3837 	}
3838 
3839 	if (txring->txr_pcq != NULL) {
3840 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3841 			m_freem(m);
3842 		pcq_destroy(txring->txr_pcq);
3843 		txring->txr_pcq = NULL;
3844 	}
3845 }
3846 
3847 #if NSYSMON_ENVSYS > 0
3848 static void
3849 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3850 {
3851 	struct aq_softc *sc;
3852 	uint32_t temp;
3853 	int error;
3854 
3855 	sc = sme->sme_cookie;
3856 
3857 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3858 	if (error == 0) {
3859 		edata->value_cur = temp;
3860 		edata->state = ENVSYS_SVALID;
3861 	} else {
3862 		edata->state = ENVSYS_SINVALID;
3863 	}
3864 }
3865 #endif
3866 
3867 
3868 
3869 static bool
3870 aq_watchdog_check(struct aq_softc * const sc)
3871 {
3872 
3873 	AQ_LOCKED(sc);
3874 
3875 	bool ok = true;
3876 	for (u_int n = 0; n < sc->sc_nqueues; n++) {
3877 		struct aq_txring *txring = &sc->sc_queue[n].txring;
3878 
3879 		mutex_enter(&txring->txr_mutex);
3880 		if (txring->txr_sending &&
3881 		    time_uptime - txring->txr_lastsent > aq_watchdog_timeout)
3882 			ok = false;
3883 
3884 		mutex_exit(&txring->txr_mutex);
3885 
3886 		if (!ok)
3887 			return false;
3888 	}
3889 
3890 	if (sc->sc_trigger_reset) {
3891 		/* debug operation, no need for atomicity or reliability */
3892 		sc->sc_trigger_reset = 0;
3893 		return false;
3894 	}
3895 
3896 	return true;
3897 }
3898 
3899 
3900 
3901 static bool
3902 aq_watchdog_tick(struct ifnet *ifp)
3903 {
3904 	struct aq_softc * const sc = ifp->if_softc;
3905 
3906 	AQ_LOCKED(sc);
3907 
3908 	if (!sc->sc_trigger_reset && aq_watchdog_check(sc))
3909 		return true;
3910 
3911 	if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) {
3912 		workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
3913 	}
3914 
3915 	return false;
3916 }
3917 
3918 static void
3919 aq_tick(void *arg)
3920 {
3921 	struct aq_softc * const sc = arg;
3922 
3923 	AQ_LOCK(sc);
3924 	if (sc->sc_stopping) {
3925 		AQ_UNLOCK(sc);
3926 		return;
3927 	}
3928 
3929 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3930 		sc->sc_detect_linkstat = false;
3931 		aq_update_link_status(sc);
3932 	}
3933 
3934 #ifdef AQ_EVENT_COUNTERS
3935 	if (sc->sc_poll_statistics)
3936 		aq_update_statistics(sc);
3937 #endif
3938 
3939 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
3940 	const bool ok = aq_watchdog_tick(ifp);
3941 	if (ok)
3942 		callout_schedule(&sc->sc_tick_ch, hz);
3943 
3944 	AQ_UNLOCK(sc);
3945 }
3946 
3947 /* interrupt enable/disable */
3948 static void
3949 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3950 {
3951 	uint32_t imask = 0;
3952 	int i;
3953 
3954 	if (txrx) {
3955 		for (i = 0; i < sc->sc_nqueues; i++) {
3956 			imask |= __BIT(sc->sc_tx_irq[i]);
3957 			imask |= __BIT(sc->sc_rx_irq[i]);
3958 		}
3959 	}
3960 
3961 	if (link)
3962 		imask |= __BIT(sc->sc_linkstat_irq);
3963 
3964 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3965 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3966 }
3967 
3968 static int
3969 aq_legacy_intr(void *arg)
3970 {
3971 	struct aq_softc *sc = arg;
3972 	uint32_t status;
3973 	int nintr = 0;
3974 
3975 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3976 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3977 
3978 	if (status & __BIT(sc->sc_linkstat_irq)) {
3979 		AQ_LOCK(sc);
3980 		sc->sc_detect_linkstat = true;
3981 		if (!sc->sc_stopping)
3982 			callout_schedule(&sc->sc_tick_ch, 0);
3983 		AQ_UNLOCK(sc);
3984 		nintr++;
3985 	}
3986 
3987 	if (status & __BIT(sc->sc_rx_irq[0])) {
3988 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3989 	}
3990 
3991 	if (status & __BIT(sc->sc_tx_irq[0])) {
3992 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3993 	}
3994 
3995 	return nintr;
3996 }
3997 
3998 static int
3999 aq_txrx_intr(void *arg)
4000 {
4001 	struct aq_queue *queue = arg;
4002 	struct aq_softc *sc = queue->sc;
4003 	struct aq_txring *txring = &queue->txring;
4004 	struct aq_rxring *rxring = &queue->rxring;
4005 	uint32_t status;
4006 	int nintr = 0;
4007 	int txringidx, rxringidx, txirq, rxirq;
4008 
4009 	txringidx = txring->txr_index;
4010 	rxringidx = rxring->rxr_index;
4011 	txirq = sc->sc_tx_irq[txringidx];
4012 	rxirq = sc->sc_rx_irq[rxringidx];
4013 
4014 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4015 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
4016 		/* stray interrupt? */
4017 		return 0;
4018 	}
4019 
4020 	nintr += aq_rx_intr(rxring);
4021 	nintr += aq_tx_intr(txring);
4022 
4023 	return nintr;
4024 }
4025 
4026 static int
4027 aq_link_intr(void *arg)
4028 {
4029 	struct aq_softc * const sc = arg;
4030 	uint32_t status;
4031 	int nintr = 0;
4032 
4033 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
4034 	if (status & __BIT(sc->sc_linkstat_irq)) {
4035 		AQ_LOCK(sc);
4036 		sc->sc_detect_linkstat = true;
4037 		if (!sc->sc_stopping)
4038 			callout_schedule(&sc->sc_tick_ch, 0);
4039 		AQ_UNLOCK(sc);
4040 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
4041 		    __BIT(sc->sc_linkstat_irq));
4042 		nintr++;
4043 	}
4044 
4045 	return nintr;
4046 }
4047 
4048 static void
4049 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
4050 {
4051 	const int ringidx = txring->txr_index;
4052 	int i;
4053 
4054 	mutex_enter(&txring->txr_mutex);
4055 
4056 	txring->txr_prodidx = 0;
4057 	txring->txr_considx = 0;
4058 	txring->txr_nfree = AQ_TXD_NUM;
4059 	txring->txr_active = false;
4060 
4061 	/* free mbufs untransmitted */
4062 	for (i = 0; i < AQ_TXD_NUM; i++) {
4063 		if (txring->txr_mbufs[i].m != NULL) {
4064 			m_freem(txring->txr_mbufs[i].m);
4065 			txring->txr_mbufs[i].m = NULL;
4066 		}
4067 	}
4068 
4069 	/* disable DMA */
4070 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
4071 
4072 	if (start) {
4073 		/* TX descriptor physical address */
4074 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
4075 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4076 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4077 		    (uint32_t)((uint64_t)paddr >> 32));
4078 
4079 		/* TX descriptor size */
4080 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
4081 		    AQ_TXD_NUM / 8);
4082 
4083 		/* reload TAIL pointer */
4084 		txring->txr_prodidx = txring->txr_considx =
4085 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
4086 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
4087 
4088 		/* Mapping interrupt vector */
4089 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4090 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
4091 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
4092 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
4093 
4094 		/* enable DMA */
4095 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
4096 		    TX_DMA_DESC_EN, 1);
4097 
4098 		const int cpuid = 0;	/* XXX? */
4099 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4100 		    TDM_DCAD_CPUID, cpuid);
4101 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4102 		    TDM_DCAD_CPUID_EN, 0);
4103 
4104 		txring->txr_active = true;
4105 	}
4106 
4107 	mutex_exit(&txring->txr_mutex);
4108 }
4109 
4110 static int
4111 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4112 {
4113 	const int ringidx = rxring->rxr_index;
4114 	int i;
4115 	int error = 0;
4116 
4117 	mutex_enter(&rxring->rxr_mutex);
4118 	rxring->rxr_active = false;
4119 	rxring->rxr_discarding = false;
4120 	if (rxring->rxr_receiving_m != NULL) {
4121 		m_freem(rxring->rxr_receiving_m);
4122 		rxring->rxr_receiving_m = NULL;
4123 		rxring->rxr_receiving_m_last = NULL;
4124 	}
4125 
4126 	/* disable DMA */
4127 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4128 
4129 	/* free all RX mbufs */
4130 	aq_rxdrain(sc, rxring);
4131 
4132 	if (start) {
4133 		for (i = 0; i < AQ_RXD_NUM; i++) {
4134 			error = aq_rxring_add(sc, rxring, i);
4135 			if (error != 0) {
4136 				aq_rxdrain(sc, rxring);
4137 				return error;
4138 			}
4139 			aq_rxring_reset_desc(sc, rxring, i);
4140 		}
4141 
4142 		/* RX descriptor physical address */
4143 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4144 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4145 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4146 		    (uint32_t)((uint64_t)paddr >> 32));
4147 
4148 		/* RX descriptor size */
4149 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4150 		    AQ_RXD_NUM / 8);
4151 
4152 		/* maximum receive frame size */
4153 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4154 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4155 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4156 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4157 
4158 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4159 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4160 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4161 		    RX_DMA_DESC_VLAN_STRIP,
4162 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4163 		    1 : 0);
4164 
4165 		/*
4166 		 * reload TAIL pointer, and update readidx
4167 		 * (HEAD pointer cannot write)
4168 		 */
4169 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4170 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4171 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4172 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4173 
4174 		/* Rx ring set mode */
4175 
4176 		/* Mapping interrupt vector */
4177 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4178 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4179 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4180 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4181 
4182 		const int cpuid = 0;	/* XXX? */
4183 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4184 		    RX_DMA_DCAD_CPUID, cpuid);
4185 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4186 		    RX_DMA_DCAD_DESC_EN, 0);
4187 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4188 		    RX_DMA_DCAD_HEADER_EN, 0);
4189 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4190 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4191 
4192 		/* enable DMA. start receiving */
4193 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4194 		    RX_DMA_DESC_EN, 1);
4195 
4196 		rxring->rxr_active = true;
4197 	}
4198 
4199 	mutex_exit(&rxring->rxr_mutex);
4200 	return error;
4201 }
4202 
4203 #define TXRING_NEXTIDX(idx)	\
4204 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4205 #define RXRING_NEXTIDX(idx)	\
4206 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4207 
4208 static int
4209 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4210 {
4211 	bus_dmamap_t map;
4212 	struct mbuf *m = *mp;
4213 	uint32_t ctl1, ctl1_ctx, ctl2;
4214 	int idx, i, error;
4215 
4216 	idx = txring->txr_prodidx;
4217 	map = txring->txr_mbufs[idx].dmamap;
4218 
4219 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4220 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4221 	if (error == EFBIG) {
4222 		struct mbuf *n;
4223 		n = m_defrag(m, M_DONTWAIT);
4224 		if (n == NULL)
4225 			return EFBIG;
4226 		/* m_defrag() preserve m */
4227 		KASSERT(n == m);
4228 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4229 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4230 	}
4231 	if (error != 0)
4232 		return error;
4233 
4234 	/*
4235 	 * check spaces of free descriptors.
4236 	 * +1 is additional descriptor for context (vlan, etc,.)
4237 	 */
4238 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4239 		device_printf(sc->sc_dev,
4240 		    "TX: not enough descriptors left %d for %d segs\n",
4241 		    txring->txr_nfree, map->dm_nsegs + 1);
4242 		bus_dmamap_unload(sc->sc_dmat, map);
4243 		return ENOBUFS;
4244 	}
4245 
4246 	/* sync dma for mbuf */
4247 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4248 	    BUS_DMASYNC_PREWRITE);
4249 
4250 	ctl1_ctx = 0;
4251 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4252 
4253 	if (vlan_has_tag(m)) {
4254 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4255 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4256 
4257 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4258 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4259 
4260 		/* fill context descriptor and forward index */
4261 		txring->txr_txdesc[idx].buf_addr = 0;
4262 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4263 		txring->txr_txdesc[idx].ctl2 = 0;
4264 
4265 		idx = TXRING_NEXTIDX(idx);
4266 		txring->txr_nfree--;
4267 	}
4268 
4269 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4270 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4271 	if (m->m_pkthdr.csum_flags &
4272 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4273 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4274 	}
4275 
4276 	/* fill descriptor(s) */
4277 	for (i = 0; i < map->dm_nsegs; i++) {
4278 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4279 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4280 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4281 
4282 		if (i == 0) {
4283 			/* remember mbuf of these descriptors */
4284 			txring->txr_mbufs[idx].m = m;
4285 		} else {
4286 			txring->txr_mbufs[idx].m = NULL;
4287 		}
4288 
4289 		if (i == map->dm_nsegs - 1) {
4290 			/* last segment, mark an EndOfPacket, and cause intr */
4291 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4292 		}
4293 
4294 		txring->txr_txdesc[idx].buf_addr =
4295 		    htole64(map->dm_segs[i].ds_addr);
4296 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4297 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4298 
4299 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4300 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4301 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4302 
4303 		idx = TXRING_NEXTIDX(idx);
4304 		txring->txr_nfree--;
4305 	}
4306 
4307 	txring->txr_prodidx = idx;
4308 
4309 	return 0;
4310 }
4311 
4312 static int
4313 aq_tx_intr(void *arg)
4314 {
4315 	struct aq_txring * const txring = arg;
4316 	struct aq_softc * const sc = txring->txr_sc;
4317 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4318 	struct mbuf *m;
4319 	const int ringidx = txring->txr_index;
4320 	unsigned int idx, hw_head, n = 0;
4321 
4322 	mutex_enter(&txring->txr_mutex);
4323 
4324 	if (!txring->txr_active)
4325 		goto tx_intr_done;
4326 
4327 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4328 	    TX_DMA_DESC_HEAD_PTR);
4329 	if (hw_head == txring->txr_considx) {
4330 		txring->txr_sending = false;
4331 		goto tx_intr_done;
4332 	}
4333 
4334 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4335 
4336 	for (idx = txring->txr_considx; idx != hw_head;
4337 	    idx = TXRING_NEXTIDX(idx), n++) {
4338 
4339 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4340 			bus_dmamap_unload(sc->sc_dmat,
4341 			    txring->txr_mbufs[idx].dmamap);
4342 
4343 			if_statinc_ref(nsr, if_opackets);
4344 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4345 			if (m->m_flags & M_MCAST)
4346 				if_statinc_ref(nsr, if_omcasts);
4347 
4348 			m_freem(m);
4349 			txring->txr_mbufs[idx].m = NULL;
4350 		}
4351 
4352 		txring->txr_nfree++;
4353 	}
4354 	txring->txr_considx = idx;
4355 
4356 	IF_STAT_PUTREF(ifp);
4357 
4358 	/* no more pending TX packet, cancel watchdog */
4359 	if (txring->txr_nfree >= AQ_TXD_NUM)
4360 		txring->txr_sending = false;
4361 
4362  tx_intr_done:
4363 	mutex_exit(&txring->txr_mutex);
4364 
4365 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4366 	return n;
4367 }
4368 
4369 static int
4370 aq_rx_intr(void *arg)
4371 {
4372 	struct aq_rxring * const rxring = arg;
4373 	struct aq_softc * const sc = rxring->rxr_sc;
4374 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4375 	const int ringidx = rxring->rxr_index;
4376 	aq_rx_desc_t *rxd;
4377 	struct mbuf *m, *m0, *mprev, *new_m;
4378 	uint32_t rxd_type, rxd_hash __unused;
4379 	uint16_t rxd_status, rxd_pktlen;
4380 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4381 	unsigned int idx, n = 0;
4382 	bool discarding;
4383 
4384 	mutex_enter(&rxring->rxr_mutex);
4385 
4386 	if (!rxring->rxr_active)
4387 		goto rx_intr_done;
4388 
4389 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4390 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4391 		goto rx_intr_done;
4392 	}
4393 
4394 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4395 
4396 	/* restore ring context */
4397 	discarding = rxring->rxr_discarding;
4398 	m0 = rxring->rxr_receiving_m;
4399 	mprev = rxring->rxr_receiving_m_last;
4400 
4401 	for (idx = rxring->rxr_readidx;
4402 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4403 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4404 
4405 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4406 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4407 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4408 
4409 		rxd = &rxring->rxr_rxdesc[idx];
4410 		rxd_status = le16toh(rxd->wb.status);
4411 
4412 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4413 			break;	/* not yet done */
4414 
4415 		rxd_type = le32toh(rxd->wb.type);
4416 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4417 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4418 		rxd_hash = le32toh(rxd->wb.rss_hash);
4419 		rxd_vlan = le16toh(rxd->wb.vlan);
4420 
4421 		/*
4422 		 * Some segments are being dropped while receiving jumboframe.
4423 		 * Discard until EOP.
4424 		 */
4425 		if (discarding)
4426 			goto rx_next;
4427 
4428 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4429 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4430 			if_statinc_ref(nsr, if_ierrors);
4431 			if (m0 != NULL) {
4432 				m_freem(m0);
4433 				m0 = mprev = NULL;
4434 			}
4435 			discarding = true;
4436 			goto rx_next;
4437 		}
4438 
4439 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4440 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4441 		    BUS_DMASYNC_POSTREAD);
4442 		m = rxring->rxr_mbufs[idx].m;
4443 
4444 		new_m = aq_alloc_mbuf();
4445 		if (new_m == NULL) {
4446 			/*
4447 			 * cannot allocate new mbuf.
4448 			 * discard this packet, and reuse mbuf for next.
4449 			 */
4450 			if_statinc_ref(nsr, if_iqdrops);
4451 			if (m0 != NULL) {
4452 				m_freem(m0);
4453 				m0 = mprev = NULL;
4454 			}
4455 			discarding = true;
4456 			goto rx_next;
4457 		}
4458 		rxring->rxr_mbufs[idx].m = NULL;
4459 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4460 
4461 		if (m0 == NULL) {
4462 			m0 = m;
4463 		} else {
4464 			if (m->m_flags & M_PKTHDR)
4465 				m_remove_pkthdr(m);
4466 			mprev->m_next = m;
4467 		}
4468 		mprev = m;
4469 
4470 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4471 			/* to be continued in the next segment */
4472 			m->m_len = MCLBYTES;
4473 		} else {
4474 			/* the last segment */
4475 			int mlen = rxd_pktlen % MCLBYTES;
4476 			if (mlen == 0)
4477 				mlen = MCLBYTES;
4478 			m->m_len = mlen;
4479 			m0->m_pkthdr.len = rxd_pktlen;
4480 			/* VLAN offloading */
4481 			if ((sc->sc_ethercom.ec_capenable &
4482 			    ETHERCAP_VLAN_HWTAGGING) &&
4483 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4484 			    __SHIFTOUT(rxd_type,
4485 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4486 				vlan_set_tag(m0, rxd_vlan);
4487 			}
4488 
4489 			/* Checksum offloading */
4490 			unsigned int pkttype_eth =
4491 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4492 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4493 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4494 			    __SHIFTOUT(rxd_type,
4495 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4496 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4497 				if (__SHIFTOUT(rxd_status,
4498 				    RXDESC_STATUS_IPV4_CSUM_NG))
4499 					m0->m_pkthdr.csum_flags |=
4500 					    M_CSUM_IPv4_BAD;
4501 			}
4502 
4503 			/*
4504 			 * aq will always mark BAD for fragment packets,
4505 			 * but this is not a problem because the IP stack
4506 			 * ignores the CSUM flag in fragment packets.
4507 			 */
4508 			if (__SHIFTOUT(rxd_type,
4509 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4510 				bool checked = false;
4511 				unsigned int pkttype_proto =
4512 				    __SHIFTOUT(rxd_type,
4513 				    RXDESC_TYPE_PKTTYPE_PROTO);
4514 
4515 				if (pkttype_proto ==
4516 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4517 					if ((pkttype_eth ==
4518 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4519 					    (ifp->if_capabilities &
4520 					    IFCAP_CSUM_TCPv4_Rx)) {
4521 						m0->m_pkthdr.csum_flags |=
4522 						    M_CSUM_TCPv4;
4523 						checked = true;
4524 					} else if ((pkttype_eth ==
4525 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4526 					    (ifp->if_capabilities &
4527 					    IFCAP_CSUM_TCPv6_Rx)) {
4528 						m0->m_pkthdr.csum_flags |=
4529 						    M_CSUM_TCPv6;
4530 						checked = true;
4531 					}
4532 				} else if (pkttype_proto ==
4533 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4534 					if ((pkttype_eth ==
4535 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4536 					    (ifp->if_capabilities &
4537 					    IFCAP_CSUM_UDPv4_Rx)) {
4538 						m0->m_pkthdr.csum_flags |=
4539 						    M_CSUM_UDPv4;
4540 						checked = true;
4541 					} else if ((pkttype_eth ==
4542 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4543 					    (ifp->if_capabilities &
4544 					    IFCAP_CSUM_UDPv6_Rx)) {
4545 						m0->m_pkthdr.csum_flags |=
4546 						    M_CSUM_UDPv6;
4547 						checked = true;
4548 					}
4549 				}
4550 				if (checked &&
4551 				    (__SHIFTOUT(rxd_status,
4552 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4553 				    !__SHIFTOUT(rxd_status,
4554 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4555 					m0->m_pkthdr.csum_flags |=
4556 					    M_CSUM_TCP_UDP_BAD;
4557 				}
4558 			}
4559 
4560 			m_set_rcvif(m0, ifp);
4561 			if_statinc_ref(nsr, if_ipackets);
4562 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4563 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4564 			m0 = mprev = NULL;
4565 		}
4566 
4567  rx_next:
4568 		if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4569 			discarding = false;
4570 
4571 		aq_rxring_reset_desc(sc, rxring, idx);
4572 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4573 	}
4574 	/* save ring context */
4575 	rxring->rxr_readidx = idx;
4576 	rxring->rxr_discarding = discarding;
4577 	rxring->rxr_receiving_m = m0;
4578 	rxring->rxr_receiving_m_last = mprev;
4579 
4580 	IF_STAT_PUTREF(ifp);
4581 
4582  rx_intr_done:
4583 	mutex_exit(&rxring->rxr_mutex);
4584 
4585 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4586 	return n;
4587 }
4588 
4589 static int
4590 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4591 {
4592 	struct ifnet *ifp = &ec->ec_if;
4593 	struct aq_softc * const sc = ifp->if_softc;
4594 
4595 	aq_set_vlan_filters(sc);
4596 	return 0;
4597 }
4598 
4599 static int
4600 aq_ifflags_cb(struct ethercom *ec)
4601 {
4602 	struct ifnet * const ifp = &ec->ec_if;
4603 	struct aq_softc * const sc = ifp->if_softc;
4604 	int i, ecchange, error = 0;
4605 	unsigned short iffchange;
4606 
4607 	AQ_LOCK(sc);
4608 
4609 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4610 	if ((iffchange & IFF_PROMISC) != 0)
4611 		error = aq_set_filter(sc);
4612 
4613 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4614 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4615 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4616 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4617 			    RX_DMA_DESC_VLAN_STRIP,
4618 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4619 			    1 : 0);
4620 		}
4621 	}
4622 
4623 	/* vlan configuration depends on also interface promiscuous mode */
4624 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4625 		aq_set_vlan_filters(sc);
4626 
4627 	sc->sc_ec_capenable = ec->ec_capenable;
4628 	sc->sc_if_flags = ifp->if_flags;
4629 
4630 	AQ_UNLOCK(sc);
4631 
4632 	return error;
4633 }
4634 
4635 
4636 static int
4637 aq_init(struct ifnet *ifp)
4638 {
4639 	struct aq_softc * const sc = ifp->if_softc;
4640 
4641 	AQ_LOCK(sc);
4642 
4643 	int ret = aq_init_locked(ifp);
4644 
4645 	AQ_UNLOCK(sc);
4646 
4647 	return ret;
4648 }
4649 
4650 static int
4651 aq_init_locked(struct ifnet *ifp)
4652 {
4653 	struct aq_softc * const sc = ifp->if_softc;
4654 	int i, error = 0;
4655 
4656 	KASSERT(IFNET_LOCKED(ifp));
4657 	AQ_LOCKED(sc);
4658 
4659 	aq_stop_locked(ifp, false);
4660 
4661 	aq_set_vlan_filters(sc);
4662 	aq_set_capability(sc);
4663 
4664 	for (i = 0; i < sc->sc_nqueues; i++) {
4665 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4666 	}
4667 
4668 	/* invalidate RX descriptor cache */
4669 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4670 	    AQ_READ_REG_BIT(sc,
4671 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4672 
4673 	/* start RX */
4674 	for (i = 0; i < sc->sc_nqueues; i++) {
4675 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4676 		if (error != 0) {
4677 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4678 			    __func__);
4679 			goto aq_init_failure;
4680 		}
4681 	}
4682 	aq_init_rss(sc);
4683 	aq_hw_l3_filter_set(sc);
4684 
4685 	/* ring reset? */
4686 	aq_unset_stopping_flags(sc);
4687 
4688 	callout_schedule(&sc->sc_tick_ch, hz);
4689 
4690 	/* ready */
4691 	ifp->if_flags |= IFF_RUNNING;
4692 
4693 	/* start TX and RX */
4694 	aq_enable_intr(sc, true, true);
4695 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4696 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4697 
4698  aq_init_failure:
4699 	sc->sc_if_flags = ifp->if_flags;
4700 
4701 	return error;
4702 }
4703 
4704 static void
4705 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4706     struct aq_txring *txring, bool is_transmit)
4707 {
4708 	struct mbuf *m;
4709 	int npkt, error;
4710 
4711 	if (txring->txr_nfree < AQ_TXD_MIN)
4712 		return;
4713 
4714 	for (npkt = 0; ; npkt++) {
4715 		if (is_transmit)
4716 			m = pcq_peek(txring->txr_pcq);
4717 		else
4718 			IFQ_POLL(&ifp->if_snd, m);
4719 
4720 		if (m == NULL)
4721 			break;
4722 
4723 		if (is_transmit)
4724 			pcq_get(txring->txr_pcq);
4725 		else
4726 			IFQ_DEQUEUE(&ifp->if_snd, m);
4727 
4728 		error = aq_encap_txring(sc, txring, &m);
4729 		if (error != 0) {
4730 			/* too many mbuf chains? or not enough descriptors? */
4731 			m_freem(m);
4732 			if_statinc(ifp, if_oerrors);
4733 			break;
4734 		}
4735 
4736 		/* update tail ptr */
4737 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4738 		    txring->txr_prodidx);
4739 
4740 		/* Pass the packet to any BPF listeners */
4741 		bpf_mtap(ifp, m, BPF_D_OUT);
4742 	}
4743 
4744 	if (npkt) {
4745 		/* Set a watchdog timer in case the chip flakes out. */
4746 		txring->txr_lastsent = time_uptime;
4747 		txring->txr_sending = true;
4748 	}
4749 }
4750 
4751 static void
4752 aq_start(struct ifnet *ifp)
4753 {
4754 	struct aq_softc * const sc = ifp->if_softc;
4755 	/* aq_start() always use TX ring[0] */
4756 	struct aq_txring * const txring = &sc->sc_queue[0].txring;
4757 
4758 	mutex_enter(&txring->txr_mutex);
4759 	if (txring->txr_active && !txring->txr_stopping)
4760 		aq_send_common_locked(ifp, sc, txring, false);
4761 	mutex_exit(&txring->txr_mutex);
4762 }
4763 
4764 static inline unsigned int
4765 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4766 {
4767 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4768 }
4769 
4770 static int
4771 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4772 {
4773 	struct aq_softc * const sc = ifp->if_softc;
4774 	const int ringidx = aq_select_txqueue(sc, m);
4775 	struct aq_txring * const txring = &sc->sc_queue[ringidx].txring;
4776 
4777 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4778 		m_freem(m);
4779 		return ENOBUFS;
4780 	}
4781 
4782 	if (mutex_tryenter(&txring->txr_mutex)) {
4783 		aq_send_common_locked(ifp, sc, txring, true);
4784 		mutex_exit(&txring->txr_mutex);
4785 	} else {
4786 		softint_schedule(txring->txr_softint);
4787 	}
4788 	return 0;
4789 }
4790 
4791 static void
4792 aq_deferred_transmit(void *arg)
4793 {
4794 	struct aq_txring * const txring = arg;
4795 	struct aq_softc * const sc = txring->txr_sc;
4796 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4797 
4798 	mutex_enter(&txring->txr_mutex);
4799 	if (pcq_peek(txring->txr_pcq) != NULL)
4800 		aq_send_common_locked(ifp, sc, txring, true);
4801 	mutex_exit(&txring->txr_mutex);
4802 }
4803 
4804 
4805 static void
4806 aq_unset_stopping_flags(struct aq_softc *sc)
4807 {
4808 
4809 	AQ_LOCKED(sc);
4810 
4811 	/* Must unset stopping flags in ascending order. */
4812 	for (unsigned i = 0; i < sc->sc_nqueues; i++) {
4813 		struct aq_txring *txr = &sc->sc_queue[i].txring;
4814 		struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4815 
4816 		mutex_enter(&txr->txr_mutex);
4817 		txr->txr_stopping = false;
4818 		mutex_exit(&txr->txr_mutex);
4819 
4820 		mutex_enter(&rxr->rxr_mutex);
4821 		rxr->rxr_stopping = false;
4822 		mutex_exit(&rxr->rxr_mutex);
4823 	}
4824 
4825 	sc->sc_stopping = false;
4826 }
4827 
4828 static void
4829 aq_set_stopping_flags(struct aq_softc *sc)
4830 {
4831 
4832 	AQ_LOCKED(sc);
4833 
4834 	/* Must unset stopping flags in ascending order. */
4835 	for (unsigned i = 0; i < sc->sc_nqueues; i++) {
4836 		struct aq_txring *txr = &sc->sc_queue[i].txring;
4837 		struct aq_rxring *rxr = &sc->sc_queue[i].rxring;
4838 
4839 		mutex_enter(&txr->txr_mutex);
4840 		txr->txr_stopping = true;
4841 		mutex_exit(&txr->txr_mutex);
4842 
4843 		mutex_enter(&rxr->rxr_mutex);
4844 		rxr->rxr_stopping = true;
4845 		mutex_exit(&rxr->rxr_mutex);
4846 	}
4847 
4848 	sc->sc_stopping = true;
4849 }
4850 
4851 
4852 static void
4853 aq_stop(struct ifnet *ifp, int disable)
4854 {
4855 	struct aq_softc * const sc = ifp->if_softc;
4856 
4857 	ASSERT_SLEEPABLE();
4858 	KASSERT(IFNET_LOCKED(ifp));
4859 
4860 	AQ_LOCK(sc);
4861 	aq_stop_locked(ifp, disable ? true : false);
4862 	AQ_UNLOCK(sc);
4863 }
4864 
4865 
4866 
4867 static void
4868 aq_stop_locked(struct ifnet *ifp, bool disable)
4869 {
4870 	struct aq_softc * const sc = ifp->if_softc;
4871 	int i;
4872 
4873 	ASSERT_SLEEPABLE();
4874 	KASSERT(IFNET_LOCKED(ifp));
4875 	AQ_LOCKED(sc);
4876 
4877 	aq_set_stopping_flags(sc);
4878 
4879 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4880 		goto already_stopped;
4881 
4882 	/* disable tx/rx interrupts */
4883 	aq_enable_intr(sc, true, false);
4884 
4885 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4886 	for (i = 0; i < sc->sc_nqueues; i++) {
4887 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4888 	}
4889 
4890 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4891 	for (i = 0; i < sc->sc_nqueues; i++) {
4892 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4893 	}
4894 
4895 	/* invalidate RX descriptor cache */
4896 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4897 	    AQ_READ_REG_BIT(sc,
4898 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4899 
4900  already_stopped:
4901 	if (!disable) {
4902 		/* when pmf stop, disable link status intr and callout */
4903 		aq_enable_intr(sc, false, false);
4904 		callout_halt(&sc->sc_tick_ch, &sc->sc_mutex);
4905 	}
4906 
4907 	ifp->if_flags &= ~IFF_RUNNING;
4908 	sc->sc_if_flags = ifp->if_flags;
4909 }
4910 
4911 
4912 static void
4913 aq_handle_reset_work(struct work *work, void *arg)
4914 {
4915 	struct aq_softc * const sc = arg;
4916 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
4917 
4918 	printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
4919 
4920 	AQ_LOCK(sc);
4921 
4922 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4923 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4924 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4925 
4926 	for (u_int n = 0; n < sc->sc_nqueues; n++) {
4927 		struct aq_txring *txring = &sc->sc_queue[n].txring;
4928 		u_int head = AQ_READ_REG_BIT(sc,
4929 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4930 		    TX_DMA_DESC_HEAD_PTR);
4931 		u_int tail = AQ_READ_REG(sc,
4932 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4933 
4934 		device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n",
4935 		    __func__, txring->txr_index, head, tail);
4936 
4937 		aq_tx_intr(txring);
4938 	}
4939 
4940 	AQ_UNLOCK(sc);
4941 
4942 	/* Don't want ioctl operations to happen */
4943 	IFNET_LOCK(ifp);
4944 
4945 	/* reset the interface. */
4946 	aq_init(ifp);
4947 
4948 	IFNET_UNLOCK(ifp);
4949 
4950 	atomic_store_relaxed(&sc->sc_reset_pending, 0);
4951 }
4952 
4953 static int
4954 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4955 {
4956 	struct aq_softc * const sc = ifp->if_softc;
4957 	struct ifreq * const ifr = data;
4958 	int error = 0;
4959 
4960 	switch (cmd) {
4961 	case SIOCADDMULTI:
4962 	case SIOCDELMULTI:
4963 		break;
4964 	default:
4965 		KASSERT(IFNET_LOCKED(ifp));
4966 	}
4967 
4968 	const int s = splnet();
4969 	switch (cmd) {
4970 	case SIOCSIFMTU:
4971 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4972 			error = EINVAL;
4973 		} else {
4974 			ifp->if_mtu = ifr->ifr_mtu;
4975 			error = 0;	/* no need to reset (no ENETRESET) */
4976 		}
4977 		break;
4978 	default:
4979 		error = ether_ioctl(ifp, cmd, data);
4980 		break;
4981 	}
4982 	splx(s);
4983 
4984 	if (error != ENETRESET)
4985 		return error;
4986 
4987 	switch (cmd) {
4988 	case SIOCSIFCAP:
4989 		error = aq_set_capability(sc);
4990 		break;
4991 	case SIOCADDMULTI:
4992 	case SIOCDELMULTI:
4993 		AQ_LOCK(sc);
4994 		if ((sc->sc_if_flags & IFF_RUNNING) != 0) {
4995 		       /*
4996 			* Multicast list has changed; set the hardware filter
4997 			* accordingly.
4998 			*/
4999 			error = aq_set_filter(sc);
5000 		}
5001 		AQ_UNLOCK(sc);
5002 		break;
5003 	}
5004 
5005 	return error;
5006 }
5007 
5008 
5009 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
5010 
5011 #ifdef _MODULE
5012 #include "ioconf.c"
5013 #endif
5014 
5015 static int
5016 if_aq_modcmd(modcmd_t cmd, void *opaque)
5017 {
5018 	int error = 0;
5019 
5020 	switch (cmd) {
5021 	case MODULE_CMD_INIT:
5022 #ifdef _MODULE
5023 		error = config_init_component(cfdriver_ioconf_if_aq,
5024 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5025 #endif
5026 		return error;
5027 	case MODULE_CMD_FINI:
5028 #ifdef _MODULE
5029 		error = config_fini_component(cfdriver_ioconf_if_aq,
5030 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
5031 #endif
5032 		return error;
5033 	default:
5034 		return ENOTTY;
5035 	}
5036 }
5037