1 /* $NetBSD: if_aq.c,v 1.39 2022/11/02 20:38:22 andvar Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.39 2022/11/02 20:38:22 andvar Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not supported */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 #define AQ_JUMBO_MTU_REV_A 9000 120 #define AQ_JUMBO_MTU_REV_B 16338 121 122 /* 123 * TERMINOLOGY 124 * MPI = MAC PHY INTERFACE? 125 * RPO = RX Protocol Offloading 126 * TPO = TX Protocol Offloading 127 * RPF = RX Packet Filter 128 * TPB = TX Packet buffer 129 * RPB = RX Packet buffer 130 */ 131 132 /* registers */ 133 #define AQ_FW_SOFTRESET_REG 0x0000 134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 136 137 #define AQ_FW_VERSION_REG 0x0018 138 #define AQ_HW_REVISION_REG 0x001c 139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 140 141 #define AQ_FW_MBOX_CMD_REG 0x0200 142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 144 #define AQ_FW_MBOX_ADDR_REG 0x0208 145 #define AQ_FW_MBOX_VAL_REG 0x020c 146 147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 148 #define FW2X_LED_REG 0x031c 149 #define FW2X_LED_DEFAULT 0x00000000 150 #define FW2X_LED_NONE 0x0000003f 151 #define FW2X_LINKLED __BITS(0,1) 152 #define FW2X_LINKLED_ACTIVE 0 153 #define FW2X_LINKLED_ON 1 154 #define FW2X_LINKLED_BLINK 2 155 #define FW2X_LINKLED_OFF 3 156 #define FW2X_STATUSLED __BITS(2,5) 157 #define FW2X_STATUSLED_ORANGE 0 158 #define FW2X_STATUSLED_ORANGE_BLINK 2 159 #define FW2X_STATUSLED_OFF 3 160 #define FW2X_STATUSLED_GREEN 4 161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 162 #define FW2X_STATUSLED_GREEN_BLINK 10 163 164 #define FW_MPI_MBOX_ADDR_REG 0x0360 165 #define FW1X_MPI_INIT1_REG 0x0364 166 #define FW1X_MPI_CONTROL_REG 0x0368 167 #define FW1X_MPI_STATE_REG 0x036c 168 #define FW1X_MPI_STATE_MODE __BITS(7,0) 169 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 172 #define FW1X_MPI_INIT2_REG 0x0370 173 #define FW1X_MPI_EFUSEADDR_REG 0x0374 174 175 #define FW2X_MPI_EFUSEADDR_REG 0x0364 176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 178 #define FW_BOOT_EXIT_CODE_REG 0x0388 179 #define RBL_STATUS_DEAD 0x0000dead 180 #define RBL_STATUS_SUCCESS 0x0000abba 181 #define RBL_STATUS_FAILURE 0x00000bad 182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 183 184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 186 187 #define AQ_FW_GLB_CTL2_REG 0x0404 188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 189 190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 192 193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 194 195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 196 197 // msix bitmap */ 198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 202 #define AQ_INTR_AUTOMASK_REG 0x2090 203 204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 212 213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 215 #define AQ_B0_ERR_INT 8U 216 217 #define AQ_INTR_CTRL_REG 0x2300 218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 220 #define AQ_INTR_CTRL_IRQMODE_MSI 1 221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 227 228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 229 230 #define FW_MPI_RESETCTRL_REG 0x4000 231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 232 233 #define RX_SYSCONTROL_REG 0x5000 234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 236 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 237 238 #define RX_TCP_RSS_HASH_REG 0x5040 239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 241 242 /* for RPF_*_REG.ACTION */ 243 #define RPF_ACTION_DISCARD 0 244 #define RPF_ACTION_HOST 1 245 #define RPF_ACTION_MANAGEMENT 2 246 #define RPF_ACTION_HOST_MANAGEMENT 3 247 #define RPF_ACTION_WOL 4 248 249 #define RPF_L2BC_REG 0x5100 250 #define RPF_L2BC_EN __BIT(0) 251 #define RPF_L2BC_PROMISC __BIT(3) 252 #define RPF_L2BC_ACTION __BITS(12,14) 253 #define RPF_L2BC_THRESHOLD __BITS(31,16) 254 255 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 259 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 260 #define RPF_L2UC_MSW_EN __BIT(31) 261 #define AQ_HW_MAC_OWN 0 /* index of own address */ 262 #define AQ_HW_MAC_NUM 34 263 264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 266 #define RPF_MCAST_FILTER_EN __BIT(31) 267 #define RPF_MCAST_FILTER_MASK_REG 0x5270 268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 269 270 #define RPF_VLAN_MODE_REG 0x5280 271 #define RPF_VLAN_MODE_PROMISC __BIT(1) 272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 274 275 #define RPF_VLAN_TPID_REG 0x5284 276 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 277 #define RPF_VLAN_TPID_INNER __BITS(15,0) 278 279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 280 #define RPF_VLAN_MAX_FILTERS 16 281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 282 #define RPF_VLAN_FILTER_EN __BIT(31) 283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 286 #define RPF_VLAN_FILTER_ID __BITS(11,0) 287 288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 298 299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 301 #define RPF_L3_FILTER_L4_EN __BIT(31) 302 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 308 #define RPF_L3_FILTER_ARP_EN __BIT(24) 309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 314 #define RPF_L3_FILTER_L4_PROTO_TCP 0 315 #define RPF_L3_FILTER_L4_PROTO_UDP 1 316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 318 /* parameters of RPF_L3_FILTER_REG[8] */ 319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 323 324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 326 327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 329 330 #define RPF_RSS_KEY_ADDR_REG 0x54d0 331 #define RPF_RSS_KEY_ADDR __BITS(4,0) 332 #define RPF_RSS_KEY_WR_EN __BIT(5) 333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 335 336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 337 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 338 #define RPF_RSS_REDIR_WR_EN __BIT(4) 339 340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 342 343 #define RPO_HWCSUM_REG 0x5580 344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 346 347 #define RPO_LRO_ENABLE_REG 0x5590 348 349 #define RPO_LRO_CONF_REG 0x5594 350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 354 #define RPO_LRO_RSC_MAX_REG 0x5598 355 356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 359 #define RPO_LRO_TB_DIV_REG 0x5620 360 #define RPO_LRO_TB_DIV __BITS(20,31) 361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 365 366 #define RPB_RPF_RX_REG 0x5700 367 #define RPB_RPF_RX_TC_MODE __BIT(8) 368 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 369 #define RPB_RPF_RX_BUF_EN __BIT(0) 370 371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 373 #define RPB_RXB_BUFSIZE __BITS(8,0) 374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 375 #define RPB_RXB_XOFF_EN __BIT(31) 376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 378 379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 380 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 381 382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 385 386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 388 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 391 392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 397 #define RX_DMA_DESC_RESET __BIT(25) 398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 400 #define RX_DMA_DESC_EN __BIT(31) 401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 407 408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 410 #define RX_DMA_DCAD_CPUID __BITS(7,0) 411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 412 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 413 #define RX_DMA_DCAD_DESC_EN __BIT(31) 414 415 #define RX_DMA_DCA_REG 0x6180 416 #define RX_DMA_DCA_EN __BIT(31) 417 #define RX_DMA_DCA_MODE __BITS(3,0) 418 419 /* counters */ 420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 424 425 #define TX_SYSCONTROL_REG 0x7000 426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 428 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 429 430 #define TX_TPO2_REG 0x7040 431 #define TX_TPO2_EN __BIT(16) 432 433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 434 #define TPS_DESC_VM_ARB_MODE __BIT(0) 435 #define TPS_DESC_RATE_REG 0x7310 436 #define TPS_DESC_RATE_TA_RST __BIT(31) 437 #define TPS_DESC_RATE_LIM __BITS(10,0) 438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 441 #define TPS_DATA_TC_ARB_MODE __BIT(0) 442 443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 451 452 #define AQ_HW_TXBUF_MAX 160 453 #define AQ_HW_RXBUF_MAX 320 454 455 #define TPO_HWCSUM_REG 0x7800 456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 458 459 #define TDM_LSO_EN_REG 0x7810 460 461 #define THM_LSO_TCP_FLAG1_REG 0x7820 462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 464 #define THM_LSO_TCP_FLAG2_REG 0x7824 465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 466 467 #define TPB_TX_BUF_REG 0x7900 468 #define TPB_TX_BUF_EN __BIT(0) 469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 471 472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 474 #define TPB_TXB_BUFSIZE __BITS(7,0) 475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 476 #define TPB_TXB_THRESH_HI __BITS(16,28) 477 #define TPB_TXB_THRESH_LO __BITS(12,0) 478 479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 483 484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 489 #define TX_DMA_DESC_EN __BIT(31) 490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 495 496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 498 #define TDM_DCAD_CPUID __BITS(7,0) 499 #define TDM_DCAD_CPUID_EN __BIT(31) 500 501 #define TDM_DCA_REG 0x8480 502 #define TDM_DCA_EN __BIT(31) 503 #define TDM_DCA_MODE __BITS(3,0) 504 505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 507 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 510 511 #define FW1X_CTRL_10G __BIT(0) 512 #define FW1X_CTRL_5G __BIT(1) 513 #define FW1X_CTRL_5GSR __BIT(2) 514 #define FW1X_CTRL_2G5 __BIT(3) 515 #define FW1X_CTRL_1G __BIT(4) 516 #define FW1X_CTRL_100M __BIT(5) 517 518 #define FW2X_CTRL_10BASET_HD __BIT(0) 519 #define FW2X_CTRL_10BASET_FD __BIT(1) 520 #define FW2X_CTRL_100BASETX_HD __BIT(2) 521 #define FW2X_CTRL_100BASET4_HD __BIT(3) 522 #define FW2X_CTRL_100BASET2_HD __BIT(4) 523 #define FW2X_CTRL_100BASETX_FD __BIT(5) 524 #define FW2X_CTRL_100BASET2_FD __BIT(6) 525 #define FW2X_CTRL_1000BASET_HD __BIT(7) 526 #define FW2X_CTRL_1000BASET_FD __BIT(8) 527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 528 #define FW2X_CTRL_5GBASET_FD __BIT(10) 529 #define FW2X_CTRL_10GBASET_FD __BIT(11) 530 #define FW2X_CTRL_RESERVED1 __BIT(32) 531 #define FW2X_CTRL_10BASET_EEE __BIT(33) 532 #define FW2X_CTRL_RESERVED2 __BIT(34) 533 #define FW2X_CTRL_PAUSE __BIT(35) 534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 535 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 536 #define FW2X_CTRL_RESERVED3 __BIT(38) 537 #define FW2X_CTRL_RESERVED4 __BIT(39) 538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 542 #define FW2X_CTRL_RESERVED5 __BIT(44) 543 #define FW2X_CTRL_RESERVED6 __BIT(45) 544 #define FW2X_CTRL_RESERVED7 __BIT(46) 545 #define FW2X_CTRL_RESERVED8 __BIT(47) 546 #define FW2X_CTRL_RESERVED9 __BIT(48) 547 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 548 #define FW2X_CTRL_TEMPERATURE __BIT(50) 549 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 552 #define FW2X_CTRL_LINK_DROP __BIT(54) 553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 554 #define FW2X_CTRL_WOL __BIT(56) 555 #define FW2X_CTRL_MAC_STOP __BIT(57) 556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 559 #define FW2X_CTRL_WOL_TIMER __BIT(61) 560 #define FW2X_CTRL_STATISTICS __BIT(62) 561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 562 563 #define FW2X_SNPRINTB \ 564 "\177\020" \ 565 "b\x23" "PAUSE\0" \ 566 "b\x24" "ASYMMETRIC-PAUSE\0" \ 567 "b\x31" "CABLE-DIAG\0" \ 568 "b\x32" "TEMPERATURE\0" \ 569 "b\x33" "DOWNSHIFT\0" \ 570 "b\x34" "PTP-AVB\0" \ 571 "b\x35" "MEDIA-DETECT\0" \ 572 "b\x36" "LINK-DROP\0" \ 573 "b\x37" "SLEEP-PROXY\0" \ 574 "b\x38" "WOL\0" \ 575 "b\x39" "MAC-STOP\0" \ 576 "b\x3a" "EXT-LOOPBACK\0" \ 577 "b\x3b" "INT-LOOPBACK\0" \ 578 "b\x3c" "EFUSE-AGENT\0" \ 579 "b\x3d" "WOL-TIMER\0" \ 580 "b\x3e" "STATISTICS\0" \ 581 "b\x3f" "TRANSACTION-ID\0" \ 582 "\0" 583 584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 589 #define FW2X_CTRL_RATE_MASK \ 590 (FW2X_CTRL_RATE_100M | \ 591 FW2X_CTRL_RATE_1G | \ 592 FW2X_CTRL_RATE_2G5 | \ 593 FW2X_CTRL_RATE_5G | \ 594 FW2X_CTRL_RATE_10G) 595 #define FW2X_CTRL_EEE_MASK \ 596 (FW2X_CTRL_10BASET_EEE | \ 597 FW2X_CTRL_100BASETX_EEE | \ 598 FW2X_CTRL_1000BASET_FD_EEE | \ 599 FW2X_CTRL_2P5GBASET_FD_EEE | \ 600 FW2X_CTRL_5GBASET_FD_EEE | \ 601 FW2X_CTRL_10GBASET_FD_EEE) 602 603 typedef enum aq_fw_bootloader_mode { 604 FW_BOOT_MODE_UNKNOWN = 0, 605 FW_BOOT_MODE_FLB, 606 FW_BOOT_MODE_RBL_FLASH, 607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 608 } aq_fw_bootloader_mode_t; 609 610 #define AQ_WRITE_REG(sc, reg, val) \ 611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 612 613 #define AQ_READ_REG(sc, reg) \ 614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 615 616 #define AQ_READ64_REG(sc, reg) \ 617 ((uint64_t)AQ_READ_REG(sc, reg) | \ 618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 619 620 #define AQ_WRITE64_REG(sc, reg, val) \ 621 do { \ 622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 624 } while (/* CONSTCOND */0) 625 626 #define AQ_READ_REG_BIT(sc, reg, mask) \ 627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 628 629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 630 do { \ 631 uint32_t _v; \ 632 _v = AQ_READ_REG((sc), (reg)); \ 633 _v &= ~(mask); \ 634 if ((val) != 0) \ 635 _v |= __SHIFTIN((val), (mask)); \ 636 AQ_WRITE_REG((sc), (reg), _v); \ 637 } while (/* CONSTCOND */ 0) 638 639 #define WAIT_FOR(expr, us, n, errp) \ 640 do { \ 641 unsigned int _n; \ 642 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 643 delay((us)); \ 644 } \ 645 if ((errp != NULL)) { \ 646 if (_n == 0) \ 647 *(errp) = ETIMEDOUT; \ 648 else \ 649 *(errp) = 0; \ 650 } \ 651 } while (/* CONSTCOND */ 0) 652 653 #define msec_delay(x) DELAY(1000 * (x)) 654 655 typedef struct aq_mailbox_header { 656 uint32_t version; 657 uint32_t transaction_id; 658 int32_t error; 659 } __packed __aligned(4) aq_mailbox_header_t; 660 661 typedef struct aq_hw_stats_s { 662 uint32_t uprc; 663 uint32_t mprc; 664 uint32_t bprc; 665 uint32_t erpt; 666 uint32_t uptc; 667 uint32_t mptc; 668 uint32_t bptc; 669 uint32_t erpr; 670 uint32_t mbtc; 671 uint32_t bbtc; 672 uint32_t mbrc; 673 uint32_t bbrc; 674 uint32_t ubrc; 675 uint32_t ubtc; 676 uint32_t ptc; 677 uint32_t prc; 678 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 679 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 680 } __packed __aligned(4) aq_hw_stats_s_t; 681 682 typedef struct fw1x_mailbox { 683 aq_mailbox_header_t header; 684 aq_hw_stats_s_t msm; 685 } __packed __aligned(4) fw1x_mailbox_t; 686 687 typedef struct fw2x_msm_statistics { 688 uint32_t uprc; 689 uint32_t mprc; 690 uint32_t bprc; 691 uint32_t erpt; 692 uint32_t uptc; 693 uint32_t mptc; 694 uint32_t bptc; 695 uint32_t erpr; 696 uint32_t mbtc; 697 uint32_t bbtc; 698 uint32_t mbrc; 699 uint32_t bbrc; 700 uint32_t ubrc; 701 uint32_t ubtc; 702 uint32_t ptc; 703 uint32_t prc; 704 } __packed __aligned(4) fw2x_msm_statistics_t; 705 706 typedef struct fw2x_phy_cable_diag_data { 707 uint32_t lane_data[4]; 708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 709 710 typedef struct fw2x_capabilities { 711 uint32_t caps_lo; 712 uint32_t caps_hi; 713 } __packed __aligned(4) fw2x_capabilities_t; 714 715 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 716 aq_mailbox_header_t header; 717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 718 719 uint32_t phy_info1; 720 #define PHYINFO1_FAULT_CODE __BITS(31,16) 721 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 722 uint32_t phy_info2; 723 #define PHYINFO2_TEMPERATURE __BITS(15,0) 724 #define PHYINFO2_CABLE_LEN __BITS(23,16) 725 726 fw2x_phy_cable_diag_data_t diag_data; 727 uint32_t reserved[8]; 728 729 fw2x_capabilities_t caps; 730 731 /* ... */ 732 } __packed __aligned(4) fw2x_mailbox_t; 733 734 typedef enum aq_link_speed { 735 AQ_LINK_NONE = 0, 736 AQ_LINK_100M = (1 << 0), 737 AQ_LINK_1G = (1 << 1), 738 AQ_LINK_2G5 = (1 << 2), 739 AQ_LINK_5G = (1 << 3), 740 AQ_LINK_10G = (1 << 4) 741 } aq_link_speed_t; 742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 743 AQ_LINK_5G | AQ_LINK_10G ) 744 #define AQ_LINK_AUTO AQ_LINK_ALL 745 746 typedef enum aq_link_fc { 747 AQ_FC_NONE = 0, 748 AQ_FC_RX = __BIT(0), 749 AQ_FC_TX = __BIT(1), 750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 751 } aq_link_fc_t; 752 753 typedef enum aq_link_eee { 754 AQ_EEE_DISABLE = 0, 755 AQ_EEE_ENABLE = 1 756 } aq_link_eee_t; 757 758 typedef enum aq_hw_fw_mpi_state { 759 MPI_DEINIT = 0, 760 MPI_RESET = 1, 761 MPI_INIT = 2, 762 MPI_POWER = 4 763 } aq_hw_fw_mpi_state_t; 764 765 enum aq_media_type { 766 AQ_MEDIA_TYPE_UNKNOWN = 0, 767 AQ_MEDIA_TYPE_FIBRE, 768 AQ_MEDIA_TYPE_TP 769 }; 770 771 struct aq_rx_desc_read { 772 uint64_t buf_addr; 773 uint64_t hdr_addr; 774 } __packed __aligned(8); 775 776 struct aq_rx_desc_wb { 777 uint32_t type; 778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 779 #define RXDESC_TYPE_RSSTYPE_NONE 0 780 #define RXDESC_TYPE_RSSTYPE_IPV4 2 781 #define RXDESC_TYPE_RSSTYPE_IPV6 3 782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 800 #define RXDESC_TYPE_RESERVED __BITS(18,13) 801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 803 #define RXDESC_TYPE_SPH __BIT(21) 804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 805 uint32_t rss_hash; 806 uint16_t status; 807 #define RXDESC_STATUS_DD __BIT(0) 808 #define RXDESC_STATUS_EOP __BIT(1) 809 #define RXDESC_STATUS_MACERR __BIT(2) 810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 813 814 #define RXDESC_STATUS_STAT __BITS(2,5) 815 #define RXDESC_STATUS_ESTAT __BITS(6,11) 816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 817 uint16_t pkt_len; 818 uint16_t next_desc_ptr; 819 uint16_t vlan; 820 } __packed __aligned(4); 821 822 typedef union aq_rx_desc { 823 struct aq_rx_desc_read read; 824 struct aq_rx_desc_wb wb; 825 } __packed __aligned(8) aq_rx_desc_t; 826 827 typedef struct aq_tx_desc { 828 uint64_t buf_addr; 829 uint32_t ctl1; 830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 846 uint32_t ctl2; 847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 850 } __packed __aligned(8) aq_tx_desc_t; 851 852 struct aq_txring { 853 struct aq_softc *txr_sc; 854 int txr_index; 855 kmutex_t txr_mutex; 856 bool txr_active; 857 bool txr_stopping; 858 bool txr_sending; 859 time_t txr_lastsent; 860 861 pcq_t *txr_pcq; 862 void *txr_softint; 863 864 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 865 bus_dmamap_t txr_txdesc_dmamap; 866 bus_dma_segment_t txr_txdesc_seg[1]; 867 bus_size_t txr_txdesc_size; 868 869 struct { 870 struct mbuf *m; 871 bus_dmamap_t dmamap; 872 } txr_mbufs[AQ_TXD_NUM]; 873 unsigned int txr_prodidx; 874 unsigned int txr_considx; 875 int txr_nfree; 876 }; 877 878 struct aq_rxring { 879 struct aq_softc *rxr_sc; 880 int rxr_index; 881 kmutex_t rxr_mutex; 882 bool rxr_active; 883 bool rxr_discarding; 884 bool rxr_stopping; 885 struct mbuf *rxr_receiving_m; /* receiving jumboframe */ 886 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */ 887 888 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 889 bus_dmamap_t rxr_rxdesc_dmamap; 890 bus_dma_segment_t rxr_rxdesc_seg[1]; 891 bus_size_t rxr_rxdesc_size; 892 struct { 893 struct mbuf *m; 894 bus_dmamap_t dmamap; 895 } rxr_mbufs[AQ_RXD_NUM]; 896 unsigned int rxr_readidx; 897 }; 898 899 struct aq_queue { 900 struct aq_softc *sc; 901 struct aq_txring txring; 902 struct aq_rxring rxring; 903 }; 904 905 struct aq_softc; 906 struct aq_firmware_ops { 907 int (*reset)(struct aq_softc *); 908 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 909 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 910 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 911 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 912 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 913 #if NSYSMON_ENVSYS > 0 914 int (*get_temperature)(struct aq_softc *, uint32_t *); 915 #endif 916 }; 917 918 #ifdef AQ_EVENT_COUNTERS 919 #define AQ_EVCNT_DECL(name) \ 920 char sc_evcount_##name##_name[32]; \ 921 struct evcnt sc_evcount_##name##_ev; 922 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 923 do { \ 924 snprintf((sc)->sc_evcount_##name##_name, \ 925 sizeof((sc)->sc_evcount_##name##_name), \ 926 "%s", desc); \ 927 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 928 (evtype), NULL, device_xname((sc)->sc_dev), \ 929 (sc)->sc_evcount_##name##_name); \ 930 } while (/*CONSTCOND*/0) 931 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 932 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 933 #define AQ_EVCNT_DETACH(sc, name) \ 934 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 935 #define AQ_EVCNT_ADD(sc, name, val) \ 936 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 937 #endif /* AQ_EVENT_COUNTERS */ 938 939 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 940 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 941 #define AQ_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mutex)); 942 943 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 944 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 945 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 946 #define AQ_MPI_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_mpi_mutex)); 947 948 949 struct aq_softc { 950 device_t sc_dev; 951 952 bus_space_tag_t sc_iot; 953 bus_space_handle_t sc_ioh; 954 bus_size_t sc_iosize; 955 bus_dma_tag_t sc_dmat; 956 957 void *sc_ihs[AQ_NINTR_MAX]; 958 pci_intr_handle_t *sc_intrs; 959 960 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 961 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 962 int sc_linkstat_irq; 963 bool sc_use_txrx_independent_intr; 964 bool sc_poll_linkstat; 965 bool sc_detect_linkstat; 966 967 #if NSYSMON_ENVSYS > 0 968 struct sysmon_envsys *sc_sme; 969 envsys_data_t sc_sensor_temp; 970 #endif 971 972 callout_t sc_tick_ch; 973 974 int sc_nintrs; 975 bool sc_msix; 976 977 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 978 int sc_nqueues; 979 980 pci_chipset_tag_t sc_pc; 981 pcitag_t sc_pcitag; 982 uint16_t sc_product; 983 uint16_t sc_revision; 984 985 kmutex_t sc_mutex; 986 kmutex_t sc_mpi_mutex; 987 988 const struct aq_firmware_ops *sc_fw_ops; 989 uint64_t sc_fw_caps; 990 enum aq_media_type sc_media_type; 991 aq_link_speed_t sc_available_rates; 992 993 aq_link_speed_t sc_link_rate; 994 aq_link_fc_t sc_link_fc; 995 aq_link_eee_t sc_link_eee; 996 997 uint32_t sc_fw_version; 998 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 999 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 1000 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 1001 uint32_t sc_features; 1002 #define FEATURES_MIPS 0x00000001 1003 #define FEATURES_TPO2 0x00000002 1004 #define FEATURES_RPF2 0x00000004 1005 #define FEATURES_MPI_AQ 0x00000008 1006 #define FEATURES_REV_A0 0x10000000 1007 #define FEATURES_REV_A (FEATURES_REV_A0) 1008 #define FEATURES_REV_B0 0x20000000 1009 #define FEATURES_REV_B1 0x40000000 1010 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 1011 uint32_t sc_max_mtu; 1012 uint32_t sc_mbox_addr; 1013 1014 bool sc_rbl_enabled; 1015 bool sc_fast_start_enabled; 1016 bool sc_flash_present; 1017 1018 bool sc_intr_moderation_enable; 1019 bool sc_rss_enable; 1020 1021 struct ethercom sc_ethercom; 1022 struct ether_addr sc_enaddr; 1023 struct ifmedia sc_media; 1024 int sc_ec_capenable; /* last ec_capenable */ 1025 unsigned short sc_if_flags; /* last if_flags */ 1026 1027 bool sc_tx_sending; 1028 bool sc_stopping; 1029 1030 struct workqueue *sc_reset_wq; 1031 struct work sc_reset_work; 1032 volatile unsigned sc_reset_pending; 1033 1034 bool sc_trigger_reset; 1035 1036 #ifdef AQ_EVENT_COUNTERS 1037 aq_hw_stats_s_t sc_statistics[2]; 1038 int sc_statistics_idx; 1039 bool sc_poll_statistics; 1040 1041 AQ_EVCNT_DECL(uprc); 1042 AQ_EVCNT_DECL(mprc); 1043 AQ_EVCNT_DECL(bprc); 1044 AQ_EVCNT_DECL(erpt); 1045 AQ_EVCNT_DECL(uptc); 1046 AQ_EVCNT_DECL(mptc); 1047 AQ_EVCNT_DECL(bptc); 1048 AQ_EVCNT_DECL(erpr); 1049 AQ_EVCNT_DECL(mbtc); 1050 AQ_EVCNT_DECL(bbtc); 1051 AQ_EVCNT_DECL(mbrc); 1052 AQ_EVCNT_DECL(bbrc); 1053 AQ_EVCNT_DECL(ubrc); 1054 AQ_EVCNT_DECL(ubtc); 1055 AQ_EVCNT_DECL(ptc); 1056 AQ_EVCNT_DECL(prc); 1057 AQ_EVCNT_DECL(dpc); 1058 AQ_EVCNT_DECL(cprc); 1059 #endif 1060 }; 1061 1062 static int aq_match(device_t, cfdata_t, void *); 1063 static void aq_attach(device_t, device_t, void *); 1064 static int aq_detach(device_t, int); 1065 1066 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1067 bool, bool); 1068 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1069 pci_intr_type_t); 1070 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1071 1072 static int aq_ifmedia_change(struct ifnet * const); 1073 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1074 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1075 static int aq_ifflags_cb(struct ethercom *); 1076 static int aq_init(struct ifnet *); 1077 static int aq_init_locked(struct ifnet *); 1078 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1079 struct aq_txring *, bool); 1080 static int aq_transmit(struct ifnet *, struct mbuf *); 1081 static void aq_deferred_transmit(void *); 1082 static void aq_start(struct ifnet *); 1083 static void aq_stop(struct ifnet *, int); 1084 static void aq_stop_locked(struct ifnet *, bool); 1085 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1086 1087 static int aq_txrx_rings_alloc(struct aq_softc *); 1088 static void aq_txrx_rings_free(struct aq_softc *); 1089 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1090 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1091 1092 static void aq_initmedia(struct aq_softc *); 1093 static void aq_enable_intr(struct aq_softc *, bool, bool); 1094 1095 static void aq_handle_reset_work(struct work *, void *); 1096 static void aq_unset_stopping_flags(struct aq_softc *); 1097 static void aq_set_stopping_flags(struct aq_softc *); 1098 1099 #if NSYSMON_ENVSYS > 0 1100 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1101 #endif 1102 static void aq_tick(void *); 1103 static int aq_legacy_intr(void *); 1104 static int aq_link_intr(void *); 1105 static int aq_txrx_intr(void *); 1106 static int aq_tx_intr(void *); 1107 static int aq_rx_intr(void *); 1108 1109 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1110 aq_link_eee_t); 1111 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1112 aq_link_eee_t *); 1113 1114 static int aq_fw_reset(struct aq_softc *); 1115 static int aq_fw_version_init(struct aq_softc *); 1116 static int aq_hw_init(struct aq_softc *); 1117 static int aq_hw_init_ucp(struct aq_softc *); 1118 static int aq_hw_reset(struct aq_softc *); 1119 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1120 uint32_t); 1121 static int aq_get_mac_addr(struct aq_softc *); 1122 static int aq_init_rss(struct aq_softc *); 1123 static int aq_set_capability(struct aq_softc *); 1124 1125 static int fw1x_reset(struct aq_softc *); 1126 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1127 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1128 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1129 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1130 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1131 1132 static int fw2x_reset(struct aq_softc *); 1133 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1134 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1135 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1136 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1137 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1138 #if NSYSMON_ENVSYS > 0 1139 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1140 #endif 1141 1142 #ifndef AQ_WATCHDOG_TIMEOUT 1143 #define AQ_WATCHDOG_TIMEOUT 5 1144 #endif 1145 static int aq_watchdog_timeout = AQ_WATCHDOG_TIMEOUT; 1146 1147 1148 static const struct aq_firmware_ops aq_fw1x_ops = { 1149 .reset = fw1x_reset, 1150 .set_mode = fw1x_set_mode, 1151 .get_mode = fw1x_get_mode, 1152 .get_stats = fw1x_get_stats, 1153 #if NSYSMON_ENVSYS > 0 1154 .get_temperature = NULL 1155 #endif 1156 }; 1157 1158 static const struct aq_firmware_ops aq_fw2x_ops = { 1159 .reset = fw2x_reset, 1160 .set_mode = fw2x_set_mode, 1161 .get_mode = fw2x_get_mode, 1162 .get_stats = fw2x_get_stats, 1163 #if NSYSMON_ENVSYS > 0 1164 .get_temperature = fw2x_get_temperature 1165 #endif 1166 }; 1167 1168 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1169 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1170 1171 static const struct aq_product { 1172 pci_vendor_id_t aq_vendor; 1173 pci_product_id_t aq_product; 1174 const char *aq_name; 1175 enum aq_media_type aq_media_type; 1176 aq_link_speed_t aq_available_rates; 1177 } aq_products[] = { 1178 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1179 "Aquantia AQC100 10 Gigabit Network Adapter", 1180 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1181 }, 1182 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1183 "Aquantia AQC107 10 Gigabit Network Adapter", 1184 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1185 }, 1186 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1187 "Aquantia AQC108 5 Gigabit Network Adapter", 1188 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1189 }, 1190 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1191 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1192 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1193 }, 1194 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1195 "Aquantia AQC111 5 Gigabit Network Adapter", 1196 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1197 }, 1198 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1199 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1200 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1201 }, 1202 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1203 "Aquantia AQC100S 10 Gigabit Network Adapter", 1204 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1205 }, 1206 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1207 "Aquantia AQC107S 10 Gigabit Network Adapter", 1208 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1209 }, 1210 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1211 "Aquantia AQC108S 5 Gigabit Network Adapter", 1212 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1213 }, 1214 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1215 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1216 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1217 }, 1218 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1219 "Aquantia AQC111S 5 Gigabit Network Adapter", 1220 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1221 }, 1222 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1223 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1224 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1225 }, 1226 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1227 "Aquantia D100 10 Gigabit Network Adapter", 1228 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1229 }, 1230 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1231 "Aquantia D107 10 Gigabit Network Adapter", 1232 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1233 }, 1234 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1235 "Aquantia D108 5 Gigabit Network Adapter", 1236 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1237 }, 1238 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1239 "Aquantia D109 2.5 Gigabit Network Adapter", 1240 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1241 } 1242 }; 1243 1244 static const struct aq_product * 1245 aq_lookup(const struct pci_attach_args *pa) 1246 { 1247 unsigned int i; 1248 1249 for (i = 0; i < __arraycount(aq_products); i++) { 1250 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1251 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1252 return &aq_products[i]; 1253 } 1254 return NULL; 1255 } 1256 1257 static int 1258 aq_match(device_t parent, cfdata_t cf, void *aux) 1259 { 1260 struct pci_attach_args * const pa = aux; 1261 1262 if (aq_lookup(pa) != NULL) 1263 return 1; 1264 1265 return 0; 1266 } 1267 1268 static void 1269 aq_attach(device_t parent, device_t self, void *aux) 1270 { 1271 struct aq_softc * const sc = device_private(self); 1272 struct pci_attach_args * const pa = aux; 1273 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 1274 pci_chipset_tag_t pc; 1275 pcitag_t tag; 1276 pcireg_t command, memtype, bar; 1277 const struct aq_product *aqp; 1278 int error; 1279 1280 sc->sc_dev = self; 1281 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1282 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1283 1284 sc->sc_pc = pc = pa->pa_pc; 1285 sc->sc_pcitag = tag = pa->pa_tag; 1286 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1287 1288 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1289 command |= PCI_COMMAND_MASTER_ENABLE; 1290 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1291 1292 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1293 sc->sc_revision = PCI_REVISION(pa->pa_class); 1294 1295 aqp = aq_lookup(pa); 1296 KASSERT(aqp != NULL); 1297 1298 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1299 1300 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1301 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1302 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1303 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1304 return; 1305 } 1306 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1307 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1308 NULL, &sc->sc_iosize) != 0) { 1309 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1310 return; 1311 } 1312 1313 error = aq_fw_reset(sc); 1314 if (error != 0) 1315 goto attach_failure; 1316 1317 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1318 1319 /* max queue num is 8, and must be 2^n */ 1320 if (ncpu >= 8) 1321 sc->sc_nqueues = 8; 1322 else if (ncpu >= 4) 1323 sc->sc_nqueues = 4; 1324 else if (ncpu >= 2) 1325 sc->sc_nqueues = 2; 1326 else 1327 sc->sc_nqueues = 1; 1328 1329 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1330 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1331 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1332 /* TX intrs + RX intrs + LINKSTAT intrs */ 1333 sc->sc_use_txrx_independent_intr = true; 1334 sc->sc_poll_linkstat = false; 1335 sc->sc_msix = true; 1336 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1337 /* TX intrs + RX intrs */ 1338 sc->sc_use_txrx_independent_intr = true; 1339 sc->sc_poll_linkstat = true; 1340 sc->sc_msix = true; 1341 } else 1342 #endif 1343 if (msixcount >= (sc->sc_nqueues + 1)) { 1344 /* TX/RX intrs LINKSTAT intrs */ 1345 sc->sc_use_txrx_independent_intr = false; 1346 sc->sc_poll_linkstat = false; 1347 sc->sc_msix = true; 1348 } else if (msixcount >= sc->sc_nqueues) { 1349 /* TX/RX intrs */ 1350 sc->sc_use_txrx_independent_intr = false; 1351 sc->sc_poll_linkstat = true; 1352 sc->sc_msix = true; 1353 } else { 1354 /* giving up using MSI-X */ 1355 sc->sc_msix = false; 1356 } 1357 1358 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */ 1359 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE || 1360 FW_VERSION_MAJOR(sc) == 1) 1361 sc->sc_poll_linkstat = true; 1362 1363 #ifdef AQ_FORCE_POLL_LINKSTAT 1364 sc->sc_poll_linkstat = true; 1365 #endif 1366 1367 aprint_debug_dev(sc->sc_dev, 1368 "ncpu=%d, pci_msix_count=%d." 1369 " allocate %d interrupts for %d%s queues%s\n", 1370 ncpu, msixcount, 1371 (sc->sc_use_txrx_independent_intr ? 1372 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1373 (sc->sc_poll_linkstat ? 0 : 1), 1374 sc->sc_nqueues, 1375 sc->sc_use_txrx_independent_intr ? "*2" : "", 1376 sc->sc_poll_linkstat ? "" : ", and link status"); 1377 1378 if (sc->sc_msix) 1379 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1380 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1381 else 1382 error = ENODEV; 1383 1384 if (error != 0) { 1385 /* if MSI-X failed, fallback to MSI with single queue */ 1386 sc->sc_use_txrx_independent_intr = false; 1387 sc->sc_poll_linkstat = false; 1388 sc->sc_msix = false; 1389 sc->sc_nqueues = 1; 1390 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1391 } 1392 if (error != 0) { 1393 /* if MSI failed, fallback to INTx */ 1394 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1395 } 1396 if (error != 0) 1397 goto attach_failure; 1398 1399 callout_init(&sc->sc_tick_ch, CALLOUT_MPSAFE); 1400 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1401 1402 char wqname[MAXCOMLEN]; 1403 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev)); 1404 error = workqueue_create(&sc->sc_reset_wq, wqname, 1405 aq_handle_reset_work, sc, PRI_SOFTNET, IPL_SOFTCLOCK, 1406 WQ_MPSAFE); 1407 if (error) { 1408 aprint_error_dev(sc->sc_dev, 1409 "unable to create reset workqueue\n"); 1410 goto attach_failure; 1411 } 1412 1413 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1414 1415 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1416 sc->sc_rss_enable = true; 1417 else 1418 sc->sc_rss_enable = false; 1419 1420 error = aq_txrx_rings_alloc(sc); 1421 if (error != 0) 1422 goto attach_failure; 1423 1424 error = aq_fw_version_init(sc); 1425 if (error != 0) 1426 goto attach_failure; 1427 1428 error = aq_hw_init_ucp(sc); 1429 if (error < 0) 1430 goto attach_failure; 1431 1432 KASSERT(sc->sc_mbox_addr != 0); 1433 error = aq_hw_reset(sc); 1434 if (error != 0) 1435 goto attach_failure; 1436 1437 aq_get_mac_addr(sc); 1438 aq_init_rss(sc); 1439 1440 error = aq_hw_init(sc); /* initialize and interrupts */ 1441 if (error != 0) 1442 goto attach_failure; 1443 1444 sc->sc_media_type = aqp->aq_media_type; 1445 sc->sc_available_rates = aqp->aq_available_rates; 1446 1447 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1448 ifmedia_init(&sc->sc_media, IFM_IMASK, 1449 aq_ifmedia_change, aq_ifmedia_status); 1450 aq_initmedia(sc); 1451 1452 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1453 ifp->if_softc = sc; 1454 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1455 ifp->if_extflags = IFEF_MPSAFE; 1456 ifp->if_baudrate = IF_Gbps(10); 1457 ifp->if_init = aq_init; 1458 ifp->if_ioctl = aq_ioctl; 1459 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1460 ifp->if_transmit = aq_transmit; 1461 ifp->if_start = aq_start; 1462 ifp->if_stop = aq_stop; 1463 ifp->if_watchdog = NULL; 1464 IFQ_SET_READY(&ifp->if_snd); 1465 1466 /* initialize capabilities */ 1467 sc->sc_ethercom.ec_capabilities = 0; 1468 sc->sc_ethercom.ec_capenable = 0; 1469 #if notyet 1470 /* TODO */ 1471 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1472 #endif 1473 sc->sc_ethercom.ec_capabilities |= 1474 ETHERCAP_JUMBO_MTU | 1475 ETHERCAP_VLAN_MTU | 1476 ETHERCAP_VLAN_HWTAGGING | 1477 ETHERCAP_VLAN_HWFILTER; 1478 sc->sc_ethercom.ec_capenable |= 1479 ETHERCAP_VLAN_HWTAGGING | 1480 ETHERCAP_VLAN_HWFILTER; 1481 1482 ifp->if_capabilities = 0; 1483 ifp->if_capenable = 0; 1484 #ifdef CONFIG_LRO_SUPPORT 1485 ifp->if_capabilities |= IFCAP_LRO; 1486 ifp->if_capenable |= IFCAP_LRO; 1487 #endif 1488 #if notyet 1489 /* TSO */ 1490 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1491 #endif 1492 1493 /* TX hardware checksum offloading */ 1494 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1495 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1496 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1497 /* RX hardware checksum offloading */ 1498 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1499 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1500 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1501 1502 if_initialize(ifp); 1503 ifp->if_percpuq = if_percpuq_create(ifp); 1504 if_deferred_start_init(ifp, NULL); 1505 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1506 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1507 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1508 if_register(ifp); 1509 1510 /* only intr about link */ 1511 aq_enable_intr(sc, /*link*/true, /*txrx*/false); 1512 1513 /* update media */ 1514 aq_ifmedia_change(ifp); 1515 1516 #if NSYSMON_ENVSYS > 0 1517 /* temperature monitoring */ 1518 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1519 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1520 1521 sc->sc_sme = sysmon_envsys_create(); 1522 sc->sc_sme->sme_name = device_xname(self); 1523 sc->sc_sme->sme_cookie = sc; 1524 sc->sc_sme->sme_flags = 0; 1525 sc->sc_sme->sme_refresh = aq_temp_refresh; 1526 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1527 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1528 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1529 1530 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1531 if (sysmon_envsys_register(sc->sc_sme)) { 1532 sysmon_envsys_destroy(sc->sc_sme); 1533 sc->sc_sme = NULL; 1534 goto attach_failure; 1535 } 1536 1537 /* 1538 * for unknown reasons, the first call of fw2x_get_temperature() 1539 * will always fail (firmware matter?), so run once now. 1540 */ 1541 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1542 } 1543 #endif 1544 1545 #ifdef AQ_EVENT_COUNTERS 1546 /* get starting statistics values */ 1547 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1548 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1549 sc->sc_poll_statistics = true; 1550 } 1551 1552 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1553 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1554 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1555 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1556 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1557 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1558 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1559 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1560 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1561 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1562 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1563 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1564 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1565 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1566 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1567 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1568 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1569 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1570 #endif 1571 1572 if (pmf_device_register(self, NULL, NULL)) 1573 pmf_class_network_register(self, ifp); 1574 else 1575 aprint_error_dev(self, "couldn't establish power handler\n"); 1576 1577 return; 1578 1579 attach_failure: 1580 aq_detach(self, 0); 1581 } 1582 1583 static int 1584 aq_detach(device_t self, int flags __unused) 1585 { 1586 struct aq_softc * const sc = device_private(self); 1587 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 1588 int i; 1589 1590 if (sc->sc_iosize != 0) { 1591 if (ifp->if_softc != NULL) { 1592 IFNET_LOCK(ifp); 1593 aq_stop(ifp, 1); 1594 IFNET_UNLOCK(ifp); 1595 } 1596 1597 for (i = 0; i < AQ_NINTR_MAX; i++) { 1598 if (sc->sc_ihs[i] != NULL) { 1599 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1600 sc->sc_ihs[i] = NULL; 1601 } 1602 } 1603 if (sc->sc_nintrs > 0) { 1604 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1605 sc->sc_nintrs); 1606 sc->sc_intrs = NULL; 1607 sc->sc_nintrs = 0; 1608 } 1609 1610 aq_txrx_rings_free(sc); 1611 1612 if (ifp->if_softc != NULL) { 1613 ether_ifdetach(ifp); 1614 if_detach(ifp); 1615 } 1616 1617 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1618 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1619 sc->sc_iosize = 0; 1620 } 1621 1622 #if NSYSMON_ENVSYS > 0 1623 if (sc->sc_sme != NULL) { 1624 /* all sensors associated with this will also be detached */ 1625 sysmon_envsys_unregister(sc->sc_sme); 1626 } 1627 #endif 1628 1629 #ifdef AQ_EVENT_COUNTERS 1630 AQ_EVCNT_DETACH(sc, uprc); 1631 AQ_EVCNT_DETACH(sc, mprc); 1632 AQ_EVCNT_DETACH(sc, bprc); 1633 AQ_EVCNT_DETACH(sc, erpt); 1634 AQ_EVCNT_DETACH(sc, uptc); 1635 AQ_EVCNT_DETACH(sc, mptc); 1636 AQ_EVCNT_DETACH(sc, bptc); 1637 AQ_EVCNT_DETACH(sc, erpr); 1638 AQ_EVCNT_DETACH(sc, mbtc); 1639 AQ_EVCNT_DETACH(sc, bbtc); 1640 AQ_EVCNT_DETACH(sc, mbrc); 1641 AQ_EVCNT_DETACH(sc, bbrc); 1642 AQ_EVCNT_DETACH(sc, ubrc); 1643 AQ_EVCNT_DETACH(sc, ubtc); 1644 AQ_EVCNT_DETACH(sc, ptc); 1645 AQ_EVCNT_DETACH(sc, prc); 1646 AQ_EVCNT_DETACH(sc, dpc); 1647 AQ_EVCNT_DETACH(sc, cprc); 1648 #endif 1649 1650 ifmedia_fini(&sc->sc_media); 1651 1652 mutex_destroy(&sc->sc_mpi_mutex); 1653 mutex_destroy(&sc->sc_mutex); 1654 1655 return 0; 1656 } 1657 1658 static int 1659 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1660 int (*func)(void *), void *arg, const char *xname) 1661 { 1662 char intrbuf[PCI_INTRSTR_LEN]; 1663 pci_chipset_tag_t pc = sc->sc_pc; 1664 void *vih; 1665 const char *intrstr = NULL; 1666 1667 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1668 sizeof(intrbuf)); 1669 1670 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1671 1672 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1673 IPL_NET, func, arg, xname); 1674 if (vih == NULL) { 1675 aprint_error_dev(sc->sc_dev, 1676 "unable to establish MSI-X%s%s for %s\n", 1677 intrstr ? " at " : "", 1678 intrstr ? intrstr : "", xname); 1679 return EIO; 1680 } 1681 sc->sc_ihs[intno] = vih; 1682 1683 if (affinity != NULL) { 1684 /* Round-robin affinity */ 1685 kcpuset_zero(affinity); 1686 kcpuset_set(affinity, intno % ncpu); 1687 interrupt_distribute(vih, affinity, NULL); 1688 } 1689 1690 return 0; 1691 } 1692 1693 static int 1694 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1695 bool linkintr) 1696 { 1697 kcpuset_t *affinity; 1698 int error, intno, i; 1699 char intr_xname[INTRDEVNAMEBUF]; 1700 1701 kcpuset_create(&affinity, false); 1702 1703 intno = 0; 1704 1705 if (txrx_independent) { 1706 for (i = 0; i < sc->sc_nqueues; i++) { 1707 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1708 device_xname(sc->sc_dev), i); 1709 sc->sc_rx_irq[i] = intno; 1710 error = aq_establish_intr(sc, intno++, affinity, 1711 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1712 if (error != 0) 1713 goto fail; 1714 } 1715 for (i = 0; i < sc->sc_nqueues; i++) { 1716 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1717 device_xname(sc->sc_dev), i); 1718 sc->sc_tx_irq[i] = intno; 1719 error = aq_establish_intr(sc, intno++, affinity, 1720 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1721 if (error != 0) 1722 goto fail; 1723 } 1724 } else { 1725 for (i = 0; i < sc->sc_nqueues; i++) { 1726 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1727 device_xname(sc->sc_dev), i); 1728 sc->sc_rx_irq[i] = intno; 1729 sc->sc_tx_irq[i] = intno; 1730 error = aq_establish_intr(sc, intno++, affinity, 1731 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1732 if (error != 0) 1733 goto fail; 1734 } 1735 } 1736 1737 if (linkintr) { 1738 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1739 device_xname(sc->sc_dev)); 1740 sc->sc_linkstat_irq = intno; 1741 error = aq_establish_intr(sc, intno++, affinity, 1742 aq_link_intr, sc, intr_xname); 1743 if (error != 0) 1744 goto fail; 1745 } 1746 1747 kcpuset_destroy(affinity); 1748 return 0; 1749 1750 fail: 1751 for (i = 0; i < AQ_NINTR_MAX; i++) { 1752 if (sc->sc_ihs[i] != NULL) { 1753 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1754 sc->sc_ihs[i] = NULL; 1755 } 1756 } 1757 1758 kcpuset_destroy(affinity); 1759 return ENOMEM; 1760 } 1761 1762 static int 1763 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1764 bool txrx_independent, bool linkintr) 1765 { 1766 int error, nintr; 1767 1768 if (txrx_independent) 1769 nintr = nqueue * 2; 1770 else 1771 nintr = nqueue; 1772 1773 if (linkintr) 1774 nintr++; 1775 1776 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1777 if (error != 0) { 1778 aprint_error_dev(sc->sc_dev, 1779 "failed to allocate MSI-X interrupts\n"); 1780 goto fail; 1781 } 1782 1783 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1784 if (error == 0) { 1785 sc->sc_nintrs = nintr; 1786 } else { 1787 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1788 sc->sc_nintrs = 0; 1789 } 1790 fail: 1791 return error; 1792 1793 } 1794 1795 static int 1796 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1797 pci_intr_type_t inttype) 1798 { 1799 int counts[PCI_INTR_TYPE_SIZE]; 1800 int error, nintr; 1801 1802 nintr = 1; 1803 1804 memset(counts, 0, sizeof(counts)); 1805 counts[inttype] = nintr; 1806 1807 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1808 if (error != 0) { 1809 aprint_error_dev(sc->sc_dev, 1810 "failed to allocate%s interrupts\n", 1811 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1812 return error; 1813 } 1814 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1815 device_xname(sc->sc_dev)); 1816 if (error == 0) { 1817 sc->sc_nintrs = nintr; 1818 } else { 1819 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1820 sc->sc_nintrs = 0; 1821 } 1822 return error; 1823 } 1824 1825 static void 1826 global_software_reset(struct aq_softc *sc) 1827 { 1828 uint32_t v; 1829 1830 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1831 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1832 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1833 FW_MPI_RESETCTRL_RESET_DIS, 0); 1834 1835 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1836 v &= ~AQ_FW_SOFTRESET_DIS; 1837 v |= AQ_FW_SOFTRESET_RESET; 1838 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1839 } 1840 1841 static int 1842 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1843 { 1844 int timo; 1845 1846 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1847 1848 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1849 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1850 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1851 1852 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1853 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1854 1855 global_software_reset(sc); 1856 1857 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1858 1859 /* Wait for RBL to finish boot process. */ 1860 #define RBL_TIMEOUT_MS 10000 1861 uint16_t rbl_status; 1862 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1863 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1864 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1865 break; 1866 msec_delay(1); 1867 } 1868 if (timo <= 0) { 1869 aprint_error_dev(sc->sc_dev, 1870 "RBL> RBL restart failed: timeout\n"); 1871 return EBUSY; 1872 } 1873 switch (rbl_status) { 1874 case RBL_STATUS_SUCCESS: 1875 if (mode != NULL) 1876 *mode = FW_BOOT_MODE_RBL_FLASH; 1877 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1878 break; 1879 case RBL_STATUS_HOST_BOOT: 1880 if (mode != NULL) 1881 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1882 aprint_debug_dev(sc->sc_dev, 1883 "RBL> reset complete! [Host Bootload]\n"); 1884 break; 1885 case RBL_STATUS_FAILURE: 1886 default: 1887 aprint_error_dev(sc->sc_dev, 1888 "unknown RBL status 0x%x\n", rbl_status); 1889 return EBUSY; 1890 } 1891 1892 return 0; 1893 } 1894 1895 static int 1896 mac_soft_reset_flb(struct aq_softc *sc) 1897 { 1898 uint32_t v; 1899 int timo; 1900 1901 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1902 /* 1903 * Let Felicity hardware to complete SMBUS transaction before 1904 * Global software reset. 1905 */ 1906 msec_delay(50); 1907 1908 /* 1909 * If SPI burst transaction was interrupted(before running the script), 1910 * global software reset may not clear SPI interface. 1911 * Clean it up manually before global reset. 1912 */ 1913 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1914 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1915 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1916 msec_delay(50); 1917 1918 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1919 v &= ~AQ_FW_SOFTRESET_DIS; 1920 v |= AQ_FW_SOFTRESET_RESET; 1921 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1922 1923 /* Kickstart. */ 1924 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1925 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1926 if (!sc->sc_fast_start_enabled) 1927 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1928 1929 /* 1930 * For the case SPI burst transaction was interrupted (by MCP reset 1931 * above), wait until it is completed by hardware. 1932 */ 1933 msec_delay(50); 1934 1935 /* MAC Kickstart */ 1936 if (!sc->sc_fast_start_enabled) { 1937 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1938 1939 uint32_t flb_status; 1940 for (timo = 0; timo < 1000; timo++) { 1941 flb_status = AQ_READ_REG(sc, 1942 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1943 if (flb_status != 0) 1944 break; 1945 msec_delay(1); 1946 } 1947 if (flb_status == 0) { 1948 aprint_error_dev(sc->sc_dev, 1949 "FLB> MAC kickstart failed: timed out\n"); 1950 return ETIMEDOUT; 1951 } 1952 aprint_debug_dev(sc->sc_dev, 1953 "FLB> MAC kickstart done, %d ms\n", timo); 1954 /* FW reset */ 1955 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1956 /* 1957 * Let Felicity hardware complete SMBUS transaction before 1958 * Global software reset. 1959 */ 1960 msec_delay(50); 1961 sc->sc_fast_start_enabled = true; 1962 } 1963 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1964 1965 /* PHY Kickstart: #undone */ 1966 global_software_reset(sc); 1967 1968 for (timo = 0; timo < 1000; timo++) { 1969 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1970 break; 1971 msec_delay(10); 1972 } 1973 if (timo >= 1000) { 1974 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1975 return ETIMEDOUT; 1976 } 1977 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1978 return 0; 1979 1980 } 1981 1982 static int 1983 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1984 { 1985 if (sc->sc_rbl_enabled) 1986 return mac_soft_reset_rbl(sc, mode); 1987 1988 if (mode != NULL) 1989 *mode = FW_BOOT_MODE_FLB; 1990 return mac_soft_reset_flb(sc); 1991 } 1992 1993 static int 1994 aq_fw_read_version(struct aq_softc *sc) 1995 { 1996 int i, error = EBUSY; 1997 #define MAC_FW_START_TIMEOUT_MS 10000 1998 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1999 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 2000 if (sc->sc_fw_version != 0) { 2001 error = 0; 2002 break; 2003 } 2004 delay(1000); 2005 } 2006 return error; 2007 } 2008 2009 static int 2010 aq_fw_reset(struct aq_softc *sc) 2011 { 2012 uint32_t ver, v, bootExitCode; 2013 int i, error; 2014 2015 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 2016 2017 for (i = 1000; i > 0; i--) { 2018 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 2019 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 2020 if (v != 0x06000000 || bootExitCode != 0) 2021 break; 2022 } 2023 if (i <= 0) { 2024 aprint_error_dev(sc->sc_dev, 2025 "F/W reset failed. Neither RBL nor FLB started\n"); 2026 return ETIMEDOUT; 2027 } 2028 sc->sc_rbl_enabled = (bootExitCode != 0); 2029 2030 /* 2031 * Having FW version 0 is an indicator that cold start 2032 * is in progress. This means two things: 2033 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 2034 * 2) Driver may skip reset sequence and save time. 2035 */ 2036 if (sc->sc_fast_start_enabled && (ver != 0)) { 2037 error = aq_fw_read_version(sc); 2038 /* Skip reset as it just completed */ 2039 if (error == 0) 2040 return 0; 2041 } 2042 2043 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2044 error = mac_soft_reset(sc, &mode); 2045 if (error != 0) { 2046 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2047 return error; 2048 } 2049 2050 switch (mode) { 2051 case FW_BOOT_MODE_FLB: 2052 aprint_debug_dev(sc->sc_dev, 2053 "FLB> F/W successfully loaded from flash.\n"); 2054 sc->sc_flash_present = true; 2055 return aq_fw_read_version(sc); 2056 case FW_BOOT_MODE_RBL_FLASH: 2057 aprint_debug_dev(sc->sc_dev, 2058 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2059 sc->sc_flash_present = true; 2060 return aq_fw_read_version(sc); 2061 case FW_BOOT_MODE_UNKNOWN: 2062 aprint_error_dev(sc->sc_dev, 2063 "F/W bootload error: unknown bootloader type\n"); 2064 return ENOTSUP; 2065 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2066 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2067 break; 2068 } 2069 2070 /* 2071 * XXX: TODO: add support Host Boot 2072 */ 2073 aprint_error_dev(sc->sc_dev, 2074 "RBL> F/W Host Bootload not implemented\n"); 2075 return ENOTSUP; 2076 } 2077 2078 static int 2079 aq_hw_reset(struct aq_softc *sc) 2080 { 2081 int error; 2082 2083 /* disable irq */ 2084 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2085 2086 /* apply */ 2087 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2088 2089 /* wait ack 10 times by 1ms */ 2090 WAIT_FOR( 2091 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2092 1000, 10, &error); 2093 if (error != 0) { 2094 aprint_error_dev(sc->sc_dev, 2095 "atlantic: IRQ reset failed: %d\n", error); 2096 return error; 2097 } 2098 2099 return sc->sc_fw_ops->reset(sc); 2100 } 2101 2102 static int 2103 aq_hw_init_ucp(struct aq_softc *sc) 2104 { 2105 int timo; 2106 2107 if (FW_VERSION_MAJOR(sc) == 1) { 2108 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) 2109 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe); 2110 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2111 } 2112 2113 /* Wait a maximum of 10sec. It usually takes about 5sec. */ 2114 for (timo = 10000; timo > 0; timo--) { 2115 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2116 if (sc->sc_mbox_addr != 0) 2117 break; 2118 delay(1000); 2119 } 2120 if (sc->sc_mbox_addr == 0) { 2121 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n"); 2122 return ETIMEDOUT; 2123 } 2124 2125 #define AQ_FW_MIN_VERSION 0x01050006 2126 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2127 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2128 aprint_error_dev(sc->sc_dev, 2129 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2130 " or later required, this is %d.%d.%d\n", 2131 FW_VERSION_MAJOR(sc), 2132 FW_VERSION_MINOR(sc), 2133 FW_VERSION_BUILD(sc)); 2134 return ENOTSUP; 2135 } 2136 2137 return 0; 2138 } 2139 2140 static int 2141 aq_fw_version_init(struct aq_softc *sc) 2142 { 2143 int error = 0; 2144 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2145 2146 if (FW_VERSION_MAJOR(sc) == 1) { 2147 sc->sc_fw_ops = &aq_fw1x_ops; 2148 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2149 sc->sc_fw_ops = &aq_fw2x_ops; 2150 } else { 2151 aprint_error_dev(sc->sc_dev, 2152 "Unsupported F/W version %d.%d.%d\n", 2153 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2154 FW_VERSION_BUILD(sc)); 2155 return ENOTSUP; 2156 } 2157 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2158 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2159 2160 /* detect revision */ 2161 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2162 switch (hwrev & 0x0000000f) { 2163 case 0x01: 2164 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2165 fw_vers); 2166 sc->sc_features |= FEATURES_REV_A0 | 2167 FEATURES_MPI_AQ | FEATURES_MIPS; 2168 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A; 2169 break; 2170 case 0x02: 2171 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2172 fw_vers); 2173 sc->sc_features |= FEATURES_REV_B0 | 2174 FEATURES_MPI_AQ | FEATURES_MIPS | 2175 FEATURES_TPO2 | FEATURES_RPF2; 2176 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2177 break; 2178 case 0x0A: 2179 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2180 fw_vers); 2181 sc->sc_features |= FEATURES_REV_B1 | 2182 FEATURES_MPI_AQ | FEATURES_MIPS | 2183 FEATURES_TPO2 | FEATURES_RPF2; 2184 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2185 break; 2186 default: 2187 aprint_error_dev(sc->sc_dev, 2188 "Unknown revision (0x%08x)\n", hwrev); 2189 sc->sc_features = 0; 2190 sc->sc_max_mtu = ETHERMTU; 2191 error = ENOTSUP; 2192 break; 2193 } 2194 return error; 2195 } 2196 2197 static int 2198 fw1x_reset(struct aq_softc *sc) 2199 { 2200 struct aq_mailbox_header mbox; 2201 const int retryCount = 1000; 2202 uint32_t tid0; 2203 int i; 2204 2205 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2206 2207 for (i = 0; i < retryCount; ++i) { 2208 /* 2209 * Read the beginning of Statistics structure to capture 2210 * the Transaction ID. 2211 */ 2212 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2213 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2214 2215 /* Successfully read the stats. */ 2216 if (tid0 == ~0U) { 2217 /* We have read the initial value. */ 2218 tid0 = mbox.transaction_id; 2219 continue; 2220 } else if (mbox.transaction_id != tid0) { 2221 /* 2222 * Compare transaction ID to initial value. 2223 * If it's different means f/w is alive. 2224 * We're done. 2225 */ 2226 return 0; 2227 } 2228 2229 /* 2230 * Transaction ID value haven't changed since last time. 2231 * Try reading the stats again. 2232 */ 2233 delay(10); 2234 } 2235 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2236 return EBUSY; 2237 } 2238 2239 static int 2240 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2241 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2242 { 2243 uint32_t mpictrl = 0; 2244 uint32_t mpispeed = 0; 2245 2246 if (speed & AQ_LINK_10G) 2247 mpispeed |= FW1X_CTRL_10G; 2248 if (speed & AQ_LINK_5G) 2249 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2250 if (speed & AQ_LINK_2G5) 2251 mpispeed |= FW1X_CTRL_2G5; 2252 if (speed & AQ_LINK_1G) 2253 mpispeed |= FW1X_CTRL_1G; 2254 if (speed & AQ_LINK_100M) 2255 mpispeed |= FW1X_CTRL_100M; 2256 2257 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2258 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2259 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2260 return 0; 2261 } 2262 2263 static int 2264 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2265 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2266 { 2267 uint32_t mpistate, mpi_speed; 2268 aq_link_speed_t speed = AQ_LINK_NONE; 2269 2270 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2271 2272 if (modep != NULL) 2273 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2274 2275 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2276 if (mpi_speed & FW1X_CTRL_10G) 2277 speed = AQ_LINK_10G; 2278 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2279 speed = AQ_LINK_5G; 2280 else if (mpi_speed & FW1X_CTRL_2G5) 2281 speed = AQ_LINK_2G5; 2282 else if (mpi_speed & FW1X_CTRL_1G) 2283 speed = AQ_LINK_1G; 2284 else if (mpi_speed & FW1X_CTRL_100M) 2285 speed = AQ_LINK_100M; 2286 2287 if (speedp != NULL) 2288 *speedp = speed; 2289 2290 if (fcp != NULL) 2291 *fcp = AQ_FC_NONE; 2292 2293 if (eeep != NULL) 2294 *eeep = AQ_EEE_DISABLE; 2295 2296 return 0; 2297 } 2298 2299 static int 2300 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2301 { 2302 int error; 2303 2304 error = aq_fw_downld_dwords(sc, 2305 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2306 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2307 if (error < 0) { 2308 device_printf(sc->sc_dev, 2309 "fw1x> download statistics data FAILED, error %d", error); 2310 return error; 2311 } 2312 2313 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2314 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2315 return 0; 2316 } 2317 2318 static int 2319 fw2x_reset(struct aq_softc *sc) 2320 { 2321 fw2x_capabilities_t caps = { 0 }; 2322 int error; 2323 2324 error = aq_fw_downld_dwords(sc, 2325 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2326 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2327 if (error != 0) { 2328 aprint_error_dev(sc->sc_dev, 2329 "fw2x> can't get F/W capabilities mask, error %d\n", 2330 error); 2331 return error; 2332 } 2333 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2334 2335 char buf[256]; 2336 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2337 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2338 2339 return 0; 2340 } 2341 2342 static int 2343 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2344 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2345 { 2346 uint64_t mpi_ctrl; 2347 int error = 0; 2348 2349 AQ_MPI_LOCK(sc); 2350 2351 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2352 2353 switch (mode) { 2354 case MPI_INIT: 2355 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2356 if (speed & AQ_LINK_10G) 2357 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2358 if (speed & AQ_LINK_5G) 2359 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2360 if (speed & AQ_LINK_2G5) 2361 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2362 if (speed & AQ_LINK_1G) 2363 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2364 if (speed & AQ_LINK_100M) 2365 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2366 2367 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2368 2369 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2370 if (eee == AQ_EEE_ENABLE) 2371 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2372 2373 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2374 if (fc & AQ_FC_RX) 2375 mpi_ctrl |= FW2X_CTRL_PAUSE; 2376 if (fc & AQ_FC_TX) 2377 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2378 break; 2379 case MPI_DEINIT: 2380 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2381 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2382 break; 2383 default: 2384 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2385 error = EINVAL; 2386 goto failure; 2387 } 2388 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2389 2390 failure: 2391 AQ_MPI_UNLOCK(sc); 2392 return error; 2393 } 2394 2395 static int 2396 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2397 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2398 { 2399 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2400 2401 if (modep != NULL) { 2402 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2403 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2404 *modep = MPI_INIT; 2405 else 2406 *modep = MPI_DEINIT; 2407 } 2408 2409 aq_link_speed_t speed = AQ_LINK_NONE; 2410 if (mpi_state & FW2X_CTRL_RATE_10G) 2411 speed = AQ_LINK_10G; 2412 else if (mpi_state & FW2X_CTRL_RATE_5G) 2413 speed = AQ_LINK_5G; 2414 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2415 speed = AQ_LINK_2G5; 2416 else if (mpi_state & FW2X_CTRL_RATE_1G) 2417 speed = AQ_LINK_1G; 2418 else if (mpi_state & FW2X_CTRL_RATE_100M) 2419 speed = AQ_LINK_100M; 2420 2421 if (speedp != NULL) 2422 *speedp = speed; 2423 2424 aq_link_fc_t fc = AQ_FC_NONE; 2425 if (mpi_state & FW2X_CTRL_PAUSE) 2426 fc |= AQ_FC_RX; 2427 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2428 fc |= AQ_FC_TX; 2429 if (fcp != NULL) 2430 *fcp = fc; 2431 2432 /* XXX: TODO: EEE */ 2433 if (eeep != NULL) 2434 *eeep = AQ_EEE_DISABLE; 2435 2436 return 0; 2437 } 2438 2439 static int 2440 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2441 uint32_t timeout_ms, uint32_t try_count) 2442 { 2443 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2444 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2445 int error; 2446 2447 /* First, check that control and state values are consistent */ 2448 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2449 device_printf(sc->sc_dev, 2450 "fw2x> MPI control (%#llx) and state (%#llx)" 2451 " are not consistent for mask %#llx!\n", 2452 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2453 (unsigned long long)mask); 2454 return EINVAL; 2455 } 2456 2457 /* Invert bits (toggle) in control register */ 2458 mpi_ctrl ^= mask; 2459 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2460 2461 /* Clear all bits except masked */ 2462 mpi_ctrl &= mask; 2463 2464 /* Wait for FW reflecting change in state register */ 2465 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2466 1000 * timeout_ms, try_count, &error); 2467 if (error != 0) { 2468 device_printf(sc->sc_dev, 2469 "f/w2x> timeout while waiting for response" 2470 " in state register for bit %#llx!", 2471 (unsigned long long)mask); 2472 return error; 2473 } 2474 return 0; 2475 } 2476 2477 static int 2478 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2479 { 2480 int error; 2481 2482 AQ_MPI_LOCK(sc); 2483 /* Say to F/W to update the statistics */ 2484 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2485 if (error != 0) { 2486 device_printf(sc->sc_dev, 2487 "fw2x> statistics update error %d\n", error); 2488 goto failure; 2489 } 2490 2491 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2492 error = aq_fw_downld_dwords(sc, 2493 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2494 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2495 if (error != 0) { 2496 device_printf(sc->sc_dev, 2497 "fw2x> download statistics data FAILED, error %d", error); 2498 goto failure; 2499 } 2500 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2501 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2502 2503 failure: 2504 AQ_MPI_UNLOCK(sc); 2505 return error; 2506 } 2507 2508 #if NSYSMON_ENVSYS > 0 2509 static int 2510 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2511 { 2512 int error; 2513 uint32_t value, celsius; 2514 2515 AQ_MPI_LOCK(sc); 2516 2517 /* Say to F/W to update the temperature */ 2518 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2519 if (error != 0) 2520 goto failure; 2521 2522 error = aq_fw_downld_dwords(sc, 2523 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2524 &value, sizeof(value) / sizeof(uint32_t)); 2525 if (error != 0) 2526 goto failure; 2527 2528 /* 1/256 decrees C to microkelvin */ 2529 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2530 if (celsius == 0) { 2531 error = EIO; 2532 goto failure; 2533 } 2534 *temp = celsius * (1000000 / 256) + 273150000; 2535 2536 failure: 2537 AQ_MPI_UNLOCK(sc); 2538 return 0; 2539 } 2540 #endif 2541 2542 static int 2543 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2544 uint32_t cnt) 2545 { 2546 uint32_t v; 2547 int error = 0; 2548 2549 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2550 if (error != 0) { 2551 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2552 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2553 if (v == 0) { 2554 device_printf(sc->sc_dev, 2555 "%s:%d: timeout\n", __func__, __LINE__); 2556 return ETIMEDOUT; 2557 } 2558 } 2559 2560 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2561 2562 error = 0; 2563 for (; cnt > 0 && error == 0; cnt--) { 2564 /* execute mailbox interface */ 2565 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2566 AQ_FW_MBOX_CMD_EXECUTE, 1); 2567 if (sc->sc_features & FEATURES_REV_B1) { 2568 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2569 1, 1000, &error); 2570 } else { 2571 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2572 AQ_FW_MBOX_CMD_BUSY) == 0, 2573 1, 1000, &error); 2574 } 2575 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2576 addr += sizeof(uint32_t); 2577 } 2578 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2579 2580 if (error != 0) 2581 device_printf(sc->sc_dev, 2582 "%s:%d: timeout\n", __func__, __LINE__); 2583 2584 return error; 2585 } 2586 2587 /* read my mac address */ 2588 static int 2589 aq_get_mac_addr(struct aq_softc *sc) 2590 { 2591 uint32_t mac_addr[2]; 2592 uint32_t efuse_shadow_addr; 2593 int err; 2594 2595 efuse_shadow_addr = 0; 2596 if (FW_VERSION_MAJOR(sc) >= 2) 2597 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2598 else 2599 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2600 2601 if (efuse_shadow_addr == 0) { 2602 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2603 return ENXIO; 2604 } 2605 2606 memset(mac_addr, 0, sizeof(mac_addr)); 2607 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2608 mac_addr, __arraycount(mac_addr)); 2609 if (err < 0) 2610 return err; 2611 2612 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2613 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2614 return ENXIO; 2615 } 2616 2617 mac_addr[0] = htobe32(mac_addr[0]); 2618 mac_addr[1] = htobe32(mac_addr[1]); 2619 2620 memcpy(sc->sc_enaddr.ether_addr_octet, 2621 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2622 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2623 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2624 2625 return 0; 2626 } 2627 2628 /* set multicast filter. index 0 for own address */ 2629 static int 2630 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2631 { 2632 uint32_t h, l; 2633 2634 if (index >= AQ_HW_MAC_NUM) 2635 return EINVAL; 2636 2637 if (enaddr == NULL) { 2638 /* disable */ 2639 AQ_WRITE_REG_BIT(sc, 2640 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2641 return 0; 2642 } 2643 2644 h = (enaddr[0] << 8) | (enaddr[1]); 2645 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2646 (enaddr[4] << 8) | (enaddr[5]); 2647 2648 /* disable, set, and enable */ 2649 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2650 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2651 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2652 RPF_L2UC_MSW_MACADDR_HI, h); 2653 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2654 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2655 2656 return 0; 2657 } 2658 2659 static int 2660 aq_set_capability(struct aq_softc *sc) 2661 { 2662 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 2663 int ip4csum_tx = 2664 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2665 int ip4csum_rx = 2666 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2667 int l4csum_tx = ((ifp->if_capenable & 2668 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2669 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2670 int l4csum_rx = 2671 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2672 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2673 uint32_t lso = 2674 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2675 0 : 0xffffffff; 2676 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2677 0 : 0xffffffff; 2678 uint32_t i, v; 2679 2680 /* TX checksums offloads*/ 2681 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2682 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2683 2684 /* RX checksums offloads*/ 2685 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2686 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2687 2688 /* LSO offloads*/ 2689 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2690 2691 #define AQ_B0_LRO_RXD_MAX 16 2692 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2693 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2694 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2695 for (i = 0; i < AQ_RINGS_NUM; i++) { 2696 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2697 RPO_LRO_LDES_MAX_MASK(i), v); 2698 } 2699 2700 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2701 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2702 RPO_LRO_INACTIVE_IVAL, 0); 2703 /* 2704 * the LRO timebase divider is 5 uS (0x61a), 2705 * to get a maximum coalescing interval of 250 uS, 2706 * we need to multiply by 50(0x32) to get 2707 * the default value 250 uS 2708 */ 2709 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2710 RPO_LRO_MAX_COALESCING_IVAL, 50); 2711 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2712 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2713 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2714 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2715 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2716 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2717 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2718 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2719 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2720 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2721 2722 return 0; 2723 } 2724 2725 static int 2726 aq_set_filter(struct aq_softc *sc) 2727 { 2728 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 2729 struct ethercom * const ec = &sc->sc_ethercom; 2730 struct ether_multi *enm; 2731 struct ether_multistep step; 2732 int idx, error = 0; 2733 2734 if (ifp->if_flags & IFF_PROMISC) { 2735 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2736 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2737 ec->ec_flags |= ETHER_F_ALLMULTI; 2738 goto done; 2739 } 2740 2741 /* clear all table */ 2742 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2743 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2744 continue; 2745 aq_set_mac_addr(sc, idx, NULL); 2746 } 2747 2748 /* don't accept all multicast */ 2749 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2750 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2751 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2752 RPF_MCAST_FILTER_EN, 0); 2753 2754 idx = 0; 2755 ETHER_LOCK(ec); 2756 ETHER_FIRST_MULTI(step, ec, enm); 2757 while (enm != NULL) { 2758 if (idx == AQ_HW_MAC_OWN) 2759 idx++; 2760 2761 if ((idx >= AQ_HW_MAC_NUM) || 2762 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2763 /* 2764 * too many filters. 2765 * fallback to accept all multicast addresses. 2766 */ 2767 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2768 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2769 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2770 RPF_MCAST_FILTER_EN, 1); 2771 ec->ec_flags |= ETHER_F_ALLMULTI; 2772 ETHER_UNLOCK(ec); 2773 goto done; 2774 } 2775 2776 /* add a filter */ 2777 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2778 2779 ETHER_NEXT_MULTI(step, enm); 2780 } 2781 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2782 ETHER_UNLOCK(ec); 2783 2784 done: 2785 return error; 2786 } 2787 2788 static int 2789 aq_ifmedia_change(struct ifnet * const ifp) 2790 { 2791 struct aq_softc * const sc = ifp->if_softc; 2792 2793 aq_link_speed_t rate = AQ_LINK_NONE; 2794 aq_link_fc_t fc = AQ_FC_NONE; 2795 aq_link_eee_t eee = AQ_EEE_DISABLE; 2796 2797 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2798 return EINVAL; 2799 2800 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2801 case IFM_AUTO: 2802 rate = AQ_LINK_AUTO; 2803 break; 2804 case IFM_NONE: 2805 rate = AQ_LINK_NONE; 2806 break; 2807 case IFM_100_TX: 2808 rate = AQ_LINK_100M; 2809 break; 2810 case IFM_1000_T: 2811 rate = AQ_LINK_1G; 2812 break; 2813 case IFM_2500_T: 2814 rate = AQ_LINK_2G5; 2815 break; 2816 case IFM_5000_T: 2817 rate = AQ_LINK_5G; 2818 break; 2819 case IFM_10G_T: 2820 rate = AQ_LINK_10G; 2821 break; 2822 default: 2823 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2824 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2825 return ENODEV; 2826 } 2827 2828 if (sc->sc_media.ifm_media & IFM_FLOW) 2829 fc = AQ_FC_ALL; 2830 2831 /* XXX: todo EEE */ 2832 2833 /* re-initialize hardware with new parameters */ 2834 aq_set_linkmode(sc, rate, fc, eee); 2835 2836 return 0; 2837 } 2838 2839 static void 2840 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2841 { 2842 struct aq_softc * const sc = ifp->if_softc; 2843 2844 /* update ifm_active */ 2845 ifmr->ifm_active = IFM_ETHER; 2846 if (sc->sc_link_fc & AQ_FC_RX) 2847 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2848 if (sc->sc_link_fc & AQ_FC_TX) 2849 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2850 2851 switch (sc->sc_link_rate) { 2852 case AQ_LINK_100M: 2853 /* XXX: need to detect fulldup or halfdup */ 2854 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2855 break; 2856 case AQ_LINK_1G: 2857 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2858 break; 2859 case AQ_LINK_2G5: 2860 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2861 break; 2862 case AQ_LINK_5G: 2863 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2864 break; 2865 case AQ_LINK_10G: 2866 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2867 break; 2868 default: 2869 ifmr->ifm_active |= IFM_NONE; 2870 break; 2871 } 2872 2873 /* update ifm_status */ 2874 ifmr->ifm_status = IFM_AVALID; 2875 if (sc->sc_link_rate != AQ_LINK_NONE) 2876 ifmr->ifm_status |= IFM_ACTIVE; 2877 } 2878 2879 static void 2880 aq_initmedia(struct aq_softc *sc) 2881 { 2882 #define IFMEDIA_ETHER_ADD(sc, media) \ 2883 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2884 2885 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2886 if (sc->sc_available_rates & AQ_LINK_100M) { 2887 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2888 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2889 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2890 } 2891 if (sc->sc_available_rates & AQ_LINK_1G) { 2892 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2893 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2894 } 2895 if (sc->sc_available_rates & AQ_LINK_2G5) { 2896 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2897 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2898 } 2899 if (sc->sc_available_rates & AQ_LINK_5G) { 2900 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2901 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2902 } 2903 if (sc->sc_available_rates & AQ_LINK_10G) { 2904 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2905 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2906 } 2907 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2908 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2909 2910 /* default: auto without flowcontrol */ 2911 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2912 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2913 } 2914 2915 static int 2916 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2917 aq_link_eee_t eee) 2918 { 2919 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2920 } 2921 2922 static int 2923 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2924 aq_link_eee_t *eee) 2925 { 2926 aq_hw_fw_mpi_state_t mode; 2927 int error; 2928 2929 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2930 if (error != 0) 2931 return error; 2932 if (mode != MPI_INIT) 2933 return ENXIO; 2934 2935 return 0; 2936 } 2937 2938 static void 2939 aq_hw_init_tx_path(struct aq_softc *sc) 2940 { 2941 /* Tx TC/RSS number config */ 2942 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2943 2944 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2945 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2946 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2947 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2948 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2949 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2950 2951 /* misc */ 2952 AQ_WRITE_REG(sc, TX_TPO2_REG, 2953 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2954 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2955 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2956 2957 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2958 } 2959 2960 static void 2961 aq_hw_init_rx_path(struct aq_softc *sc) 2962 { 2963 int i; 2964 2965 /* clear setting */ 2966 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2967 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2968 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2969 for (i = 0; i < 32; i++) { 2970 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2971 RPF_ETHERTYPE_FILTER_EN, 0); 2972 } 2973 2974 if (sc->sc_rss_enable) { 2975 /* Rx TC/RSS number config */ 2976 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2977 2978 /* Rx flow control */ 2979 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2980 2981 /* RSS Ring selection */ 2982 switch (sc->sc_nqueues) { 2983 case 2: 2984 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2985 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2986 break; 2987 case 4: 2988 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2989 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2990 break; 2991 case 8: 2992 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2993 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2994 break; 2995 } 2996 } 2997 2998 /* L2 and Multicast filters */ 2999 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 3000 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 3001 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 3002 RPF_ACTION_HOST); 3003 } 3004 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 3005 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 3006 3007 /* Vlan filters */ 3008 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 3009 ETHERTYPE_QINQ); 3010 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 3011 ETHERTYPE_VLAN); 3012 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3013 3014 if (sc->sc_features & FEATURES_REV_B) { 3015 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3016 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 3017 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3018 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 3019 } 3020 3021 /* misc */ 3022 if (sc->sc_features & FEATURES_RPF2) 3023 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 3024 else 3025 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 3026 3027 /* 3028 * XXX: RX_TCP_RSS_HASH_REG: 3029 * linux set 0x000f0000 3030 * freebsd set 0x000f001e 3031 */ 3032 /* RSS hash type set for IP/TCP */ 3033 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 3034 RX_TCP_RSS_HASH_TYPE, 0x001e); 3035 3036 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 3037 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 3038 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 3039 3040 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 3041 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 3042 } 3043 3044 static void 3045 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3046 { 3047 int i; 3048 3049 if (sc->sc_intr_moderation_enable) { 3050 unsigned int tx_min, rx_min; /* 0-255 */ 3051 unsigned int tx_max, rx_max; /* 0-511? */ 3052 3053 switch (sc->sc_link_rate) { 3054 case AQ_LINK_100M: 3055 tx_min = 0x4f; 3056 tx_max = 0xff; 3057 rx_min = 0x04; 3058 rx_max = 0x50; 3059 break; 3060 case AQ_LINK_1G: 3061 default: 3062 tx_min = 0x4f; 3063 tx_max = 0xff; 3064 rx_min = 0x30; 3065 rx_max = 0x80; 3066 break; 3067 case AQ_LINK_2G5: 3068 tx_min = 0x4f; 3069 tx_max = 0xff; 3070 rx_min = 0x18; 3071 rx_max = 0xe0; 3072 break; 3073 case AQ_LINK_5G: 3074 tx_min = 0x4f; 3075 tx_max = 0xff; 3076 rx_min = 0x0c; 3077 rx_max = 0x70; 3078 break; 3079 case AQ_LINK_10G: 3080 tx_min = 0x4f; 3081 tx_max = 0x1ff; 3082 rx_min = 0x06; /* freebsd use 80 */ 3083 rx_max = 0x38; /* freebsd use 120 */ 3084 break; 3085 } 3086 3087 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3088 TX_DMA_INT_DESC_WRWB_EN, 0); 3089 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3090 TX_DMA_INT_DESC_MODERATE_EN, 1); 3091 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3092 RX_DMA_INT_DESC_WRWB_EN, 0); 3093 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3094 RX_DMA_INT_DESC_MODERATE_EN, 1); 3095 3096 for (i = 0; i < AQ_RINGS_NUM; i++) { 3097 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3098 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3099 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3100 TX_INTR_MODERATION_CTL_EN); 3101 } 3102 for (i = 0; i < AQ_RINGS_NUM; i++) { 3103 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3104 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3105 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3106 RX_INTR_MODERATION_CTL_EN); 3107 } 3108 3109 } else { 3110 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3111 TX_DMA_INT_DESC_WRWB_EN, 1); 3112 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3113 TX_DMA_INT_DESC_MODERATE_EN, 0); 3114 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3115 RX_DMA_INT_DESC_WRWB_EN, 1); 3116 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3117 RX_DMA_INT_DESC_MODERATE_EN, 0); 3118 3119 for (i = 0; i < AQ_RINGS_NUM; i++) { 3120 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3121 } 3122 for (i = 0; i < AQ_RINGS_NUM; i++) { 3123 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3124 } 3125 } 3126 } 3127 3128 static void 3129 aq_hw_qos_set(struct aq_softc *sc) 3130 { 3131 uint32_t tc = 0; 3132 uint32_t buff_size; 3133 3134 /* TPS Descriptor rate init */ 3135 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3136 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3137 3138 /* TPS VM init */ 3139 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3140 3141 /* TPS TC credits init */ 3142 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3143 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3144 3145 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3146 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3147 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3148 TPS_DATA_TCT_WEIGHT, 0x64); 3149 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3150 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3151 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3152 TPS_DESC_TCT_WEIGHT, 0x1e); 3153 3154 /* Tx buf size */ 3155 tc = 0; 3156 buff_size = AQ_HW_TXBUF_MAX; 3157 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3158 buff_size); 3159 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3160 (buff_size * (1024 / 32) * 66) / 100); 3161 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3162 (buff_size * (1024 / 32) * 50) / 100); 3163 3164 /* QoS Rx buf size per TC */ 3165 tc = 0; 3166 buff_size = AQ_HW_RXBUF_MAX; 3167 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3168 buff_size); 3169 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3170 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3171 (buff_size * (1024 / 32) * 66) / 100); 3172 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3173 (buff_size * (1024 / 32) * 50) / 100); 3174 3175 /* QoS 802.1p priority -> TC mapping */ 3176 int i_priority; 3177 for (i_priority = 0; i_priority < 8; i_priority++) { 3178 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3179 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3180 } 3181 } 3182 3183 /* called once from aq_attach */ 3184 static int 3185 aq_init_rss(struct aq_softc *sc) 3186 { 3187 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3188 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3189 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3190 unsigned int i; 3191 int error; 3192 3193 /* initialize rss key */ 3194 rss_getkey((uint8_t *)rss_key); 3195 3196 /* hash to ring table */ 3197 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3198 rss_table[i] = i % sc->sc_nqueues; 3199 } 3200 3201 /* 3202 * set rss key 3203 */ 3204 for (i = 0; i < __arraycount(rss_key); i++) { 3205 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3206 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3207 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3208 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3209 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3210 RPF_RSS_KEY_WR_EN, 1); 3211 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3212 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3213 if (error != 0) { 3214 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3215 __func__); 3216 goto rss_set_timeout; 3217 } 3218 } 3219 3220 /* 3221 * set rss indirection table 3222 * 3223 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3224 * we'll make it by __BITMAP(3) macros. 3225 */ 3226 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3227 __BITMAP_ZERO(&bit3x64); 3228 3229 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3230 do { \ 3231 if (val & 1) { \ 3232 __BITMAP_SET((idx) * 3, (bitmap)); \ 3233 } else { \ 3234 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3235 } \ 3236 if (val & 2) { \ 3237 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3238 } else { \ 3239 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3240 } \ 3241 if (val & 4) { \ 3242 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3243 } else { \ 3244 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3245 } \ 3246 } while (0 /* CONSTCOND */) 3247 3248 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3249 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3250 } 3251 3252 /* write 192bit data in steps of 16bit */ 3253 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3254 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3255 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3256 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3257 RPF_RSS_REDIR_ADDR, i); 3258 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3259 RPF_RSS_REDIR_WR_EN, 1); 3260 3261 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3262 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3263 if (error != 0) 3264 break; 3265 } 3266 3267 rss_set_timeout: 3268 return error; 3269 } 3270 3271 static void 3272 aq_hw_l3_filter_set(struct aq_softc *sc) 3273 { 3274 int i; 3275 3276 /* clear all filter */ 3277 for (i = 0; i < 8; i++) { 3278 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3279 RPF_L3_FILTER_L4_EN, 0); 3280 } 3281 } 3282 3283 static void 3284 aq_set_vlan_filters(struct aq_softc *sc) 3285 { 3286 struct ethercom * const ec = &sc->sc_ethercom; 3287 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3288 struct vlanid_list *vlanidp; 3289 int i; 3290 3291 ETHER_LOCK(ec); 3292 3293 /* disable all vlan filters */ 3294 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3295 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3296 3297 /* count VID */ 3298 i = 0; 3299 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3300 i++; 3301 3302 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3303 (ifp->if_flags & IFF_PROMISC) || 3304 (i > RPF_VLAN_MAX_FILTERS)) { 3305 /* 3306 * no vlan hwfilter, in promiscuous mode, or too many VID? 3307 * must receive all VID 3308 */ 3309 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3310 RPF_VLAN_MODE_PROMISC, 1); 3311 goto done; 3312 } 3313 3314 /* receive only selected VID */ 3315 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3316 i = 0; 3317 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3318 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3319 RPF_VLAN_FILTER_EN, 1); 3320 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3321 RPF_VLAN_FILTER_RXQ_EN, 0); 3322 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3323 RPF_VLAN_FILTER_RXQ, 0); 3324 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3325 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3326 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3327 RPF_VLAN_FILTER_ID, vlanidp->vid); 3328 i++; 3329 } 3330 3331 done: 3332 ETHER_UNLOCK(ec); 3333 } 3334 3335 static int 3336 aq_hw_init(struct aq_softc *sc) 3337 { 3338 uint32_t v; 3339 3340 /* Force limit MRRS on RDM/TDM to 2K */ 3341 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3342 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3343 3344 /* 3345 * TX DMA total request limit. B0 hardware is not capable to 3346 * handle more than (8K-MRRS) incoming DMA data. 3347 * Value 24 in 256byte units 3348 */ 3349 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3350 3351 aq_hw_init_tx_path(sc); 3352 aq_hw_init_rx_path(sc); 3353 3354 aq_hw_interrupt_moderation_set(sc); 3355 3356 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3357 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3358 3359 aq_hw_qos_set(sc); 3360 3361 /* Enable interrupt */ 3362 int irqmode; 3363 if (sc->sc_msix) 3364 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3365 else 3366 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3367 3368 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3369 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3370 sc->sc_msix ? 1 : 0); 3371 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3372 3373 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3374 3375 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3376 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3377 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3378 ); 3379 3380 /* link interrupt */ 3381 if (!sc->sc_msix) 3382 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3383 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3384 __BIT(7) | sc->sc_linkstat_irq); 3385 3386 return 0; 3387 } 3388 3389 static int 3390 aq_update_link_status(struct aq_softc *sc) 3391 { 3392 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3393 aq_link_speed_t rate = AQ_LINK_NONE; 3394 aq_link_fc_t fc = AQ_FC_NONE; 3395 aq_link_eee_t eee = AQ_EEE_DISABLE; 3396 unsigned int speed; 3397 int changed = 0; 3398 3399 aq_get_linkmode(sc, &rate, &fc, &eee); 3400 3401 if (sc->sc_link_rate != rate) 3402 changed = 1; 3403 if (sc->sc_link_fc != fc) 3404 changed = 1; 3405 if (sc->sc_link_eee != eee) 3406 changed = 1; 3407 3408 if (changed) { 3409 switch (rate) { 3410 case AQ_LINK_100M: 3411 speed = 100; 3412 break; 3413 case AQ_LINK_1G: 3414 speed = 1000; 3415 break; 3416 case AQ_LINK_2G5: 3417 speed = 2500; 3418 break; 3419 case AQ_LINK_5G: 3420 speed = 5000; 3421 break; 3422 case AQ_LINK_10G: 3423 speed = 10000; 3424 break; 3425 case AQ_LINK_NONE: 3426 default: 3427 speed = 0; 3428 break; 3429 } 3430 3431 if (sc->sc_link_rate == AQ_LINK_NONE) { 3432 /* link DOWN -> UP */ 3433 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3434 speed); 3435 if_link_state_change(ifp, LINK_STATE_UP); 3436 } else if (rate == AQ_LINK_NONE) { 3437 /* link UP -> DOWN */ 3438 device_printf(sc->sc_dev, "link is DOWN\n"); 3439 if_link_state_change(ifp, LINK_STATE_DOWN); 3440 } else { 3441 device_printf(sc->sc_dev, 3442 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3443 speed, fc, eee); 3444 } 3445 3446 sc->sc_link_rate = rate; 3447 sc->sc_link_fc = fc; 3448 sc->sc_link_eee = eee; 3449 3450 /* update interrupt timing according to new link speed */ 3451 aq_hw_interrupt_moderation_set(sc); 3452 } 3453 3454 return changed; 3455 } 3456 3457 #ifdef AQ_EVENT_COUNTERS 3458 static void 3459 aq_update_statistics(struct aq_softc *sc) 3460 { 3461 int prev = sc->sc_statistics_idx; 3462 int cur = prev ^ 1; 3463 3464 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3465 3466 /* 3467 * aq's internal statistics counter is 32bit. 3468 * cauculate delta, and add to evcount 3469 */ 3470 #define ADD_DELTA(cur, prev, name) \ 3471 do { \ 3472 uint32_t n; \ 3473 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3474 sc->sc_statistics[prev].name); \ 3475 if (n != 0) { \ 3476 AQ_EVCNT_ADD(sc, name, n); \ 3477 } \ 3478 } while (/*CONSTCOND*/0); 3479 3480 ADD_DELTA(cur, prev, uprc); 3481 ADD_DELTA(cur, prev, mprc); 3482 ADD_DELTA(cur, prev, bprc); 3483 ADD_DELTA(cur, prev, prc); 3484 ADD_DELTA(cur, prev, erpr); 3485 ADD_DELTA(cur, prev, uptc); 3486 ADD_DELTA(cur, prev, mptc); 3487 ADD_DELTA(cur, prev, bptc); 3488 ADD_DELTA(cur, prev, ptc); 3489 ADD_DELTA(cur, prev, erpt); 3490 ADD_DELTA(cur, prev, mbtc); 3491 ADD_DELTA(cur, prev, bbtc); 3492 ADD_DELTA(cur, prev, mbrc); 3493 ADD_DELTA(cur, prev, bbrc); 3494 ADD_DELTA(cur, prev, ubrc); 3495 ADD_DELTA(cur, prev, ubtc); 3496 ADD_DELTA(cur, prev, dpc); 3497 ADD_DELTA(cur, prev, cprc); 3498 3499 sc->sc_statistics_idx = cur; 3500 } 3501 #endif /* AQ_EVENT_COUNTERS */ 3502 3503 /* allocate and map one DMA block */ 3504 static int 3505 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3506 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3507 { 3508 int nsegs, error; 3509 3510 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3511 1, &nsegs, 0)) != 0) { 3512 aprint_error_dev(sc->sc_dev, 3513 "unable to allocate DMA buffer, error=%d\n", error); 3514 goto fail_alloc; 3515 } 3516 3517 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3518 BUS_DMA_COHERENT)) != 0) { 3519 aprint_error_dev(sc->sc_dev, 3520 "unable to map DMA buffer, error=%d\n", error); 3521 goto fail_map; 3522 } 3523 3524 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3525 0, mapp)) != 0) { 3526 aprint_error_dev(sc->sc_dev, 3527 "unable to create DMA map, error=%d\n", error); 3528 goto fail_create; 3529 } 3530 3531 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3532 0)) != 0) { 3533 aprint_error_dev(sc->sc_dev, 3534 "unable to load DMA map, error=%d\n", error); 3535 goto fail_load; 3536 } 3537 3538 *sizep = size; 3539 return 0; 3540 3541 fail_load: 3542 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3543 *mapp = NULL; 3544 fail_create: 3545 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3546 *addrp = NULL; 3547 fail_map: 3548 bus_dmamem_free(sc->sc_dmat, seg, 1); 3549 memset(seg, 0, sizeof(*seg)); 3550 fail_alloc: 3551 *sizep = 0; 3552 return error; 3553 } 3554 3555 static void 3556 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3557 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3558 { 3559 if (*mapp != NULL) { 3560 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3561 *mapp = NULL; 3562 } 3563 if (*addrp != NULL) { 3564 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3565 *addrp = NULL; 3566 } 3567 if (*sizep != 0) { 3568 bus_dmamem_free(sc->sc_dmat, seg, 1); 3569 memset(seg, 0, sizeof(*seg)); 3570 *sizep = 0; 3571 } 3572 } 3573 3574 static int 3575 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3576 { 3577 int i, error; 3578 3579 /* allocate tx descriptors */ 3580 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3581 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3582 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3583 if (error != 0) 3584 return error; 3585 3586 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3587 3588 /* fill tx ring with dmamap */ 3589 for (i = 0; i < AQ_TXD_NUM; i++) { 3590 #define AQ_MAXDMASIZE (16 * 1024) 3591 #define AQ_NTXSEGS 32 3592 /* XXX: TODO: error check */ 3593 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3594 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3595 } 3596 return 0; 3597 } 3598 3599 static void 3600 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3601 { 3602 int i; 3603 3604 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3605 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3606 3607 for (i = 0; i < AQ_TXD_NUM; i++) { 3608 if (txring->txr_mbufs[i].dmamap != NULL) { 3609 if (txring->txr_mbufs[i].m != NULL) { 3610 bus_dmamap_unload(sc->sc_dmat, 3611 txring->txr_mbufs[i].dmamap); 3612 m_freem(txring->txr_mbufs[i].m); 3613 txring->txr_mbufs[i].m = NULL; 3614 } 3615 bus_dmamap_destroy(sc->sc_dmat, 3616 txring->txr_mbufs[i].dmamap); 3617 txring->txr_mbufs[i].dmamap = NULL; 3618 } 3619 } 3620 } 3621 3622 static int 3623 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3624 { 3625 int i, error; 3626 3627 /* allocate rx descriptors */ 3628 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3629 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3630 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3631 if (error != 0) 3632 return error; 3633 3634 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3635 3636 /* fill rxring with dmamaps */ 3637 for (i = 0; i < AQ_RXD_NUM; i++) { 3638 rxring->rxr_mbufs[i].m = NULL; 3639 /* XXX: TODO: error check */ 3640 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3641 &rxring->rxr_mbufs[i].dmamap); 3642 } 3643 return 0; 3644 } 3645 3646 static void 3647 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3648 { 3649 int i; 3650 3651 /* free all mbufs allocated for RX */ 3652 for (i = 0; i < AQ_RXD_NUM; i++) { 3653 if (rxring->rxr_mbufs[i].m != NULL) { 3654 bus_dmamap_unload(sc->sc_dmat, 3655 rxring->rxr_mbufs[i].dmamap); 3656 m_freem(rxring->rxr_mbufs[i].m); 3657 rxring->rxr_mbufs[i].m = NULL; 3658 } 3659 } 3660 } 3661 3662 static void 3663 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3664 { 3665 int i; 3666 3667 /* free all mbufs and dmamaps */ 3668 aq_rxdrain(sc, rxring); 3669 for (i = 0; i < AQ_RXD_NUM; i++) { 3670 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3671 bus_dmamap_destroy(sc->sc_dmat, 3672 rxring->rxr_mbufs[i].dmamap); 3673 rxring->rxr_mbufs[i].dmamap = NULL; 3674 } 3675 } 3676 3677 /* free RX descriptor */ 3678 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3679 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3680 } 3681 3682 static void 3683 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3684 struct mbuf *m) 3685 { 3686 int error; 3687 3688 /* if mbuf already exists, unload and free */ 3689 if (rxring->rxr_mbufs[idx].m != NULL) { 3690 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3691 m_freem(rxring->rxr_mbufs[idx].m); 3692 rxring->rxr_mbufs[idx].m = NULL; 3693 } 3694 3695 rxring->rxr_mbufs[idx].m = m; 3696 3697 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3698 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3699 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3700 if (error) { 3701 device_printf(sc->sc_dev, 3702 "unable to load rx DMA map %d, error = %d\n", idx, error); 3703 panic("%s: unable to load rx DMA map. error=%d", 3704 __func__, error); 3705 } 3706 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3707 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3708 } 3709 3710 static inline void 3711 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3712 { 3713 /* refill rxdesc, and sync */ 3714 rxring->rxr_rxdesc[idx].read.buf_addr = 3715 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3716 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3717 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3718 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3719 BUS_DMASYNC_PREWRITE); 3720 } 3721 3722 static struct mbuf * 3723 aq_alloc_mbuf(void) 3724 { 3725 struct mbuf *m; 3726 3727 MGETHDR(m, M_DONTWAIT, MT_DATA); 3728 if (m == NULL) 3729 return NULL; 3730 3731 MCLGET(m, M_DONTWAIT); 3732 if ((m->m_flags & M_EXT) == 0) { 3733 m_freem(m); 3734 return NULL; 3735 } 3736 3737 return m; 3738 } 3739 3740 /* allocate mbuf and unload dmamap */ 3741 static int 3742 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3743 { 3744 struct mbuf *m; 3745 3746 m = aq_alloc_mbuf(); 3747 if (m == NULL) 3748 return ENOBUFS; 3749 3750 aq_rxring_setmbuf(sc, rxring, idx, m); 3751 return 0; 3752 } 3753 3754 static int 3755 aq_txrx_rings_alloc(struct aq_softc *sc) 3756 { 3757 int n, error; 3758 3759 for (n = 0; n < sc->sc_nqueues; n++) { 3760 sc->sc_queue[n].sc = sc; 3761 sc->sc_queue[n].txring.txr_sc = sc; 3762 sc->sc_queue[n].txring.txr_index = n; 3763 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3764 IPL_NET); 3765 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3766 if (error != 0) 3767 goto failure; 3768 3769 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3770 if (error != 0) 3771 goto failure; 3772 3773 sc->sc_queue[n].rxring.rxr_sc = sc; 3774 sc->sc_queue[n].rxring.rxr_index = n; 3775 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3776 IPL_NET); 3777 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3778 if (error != 0) 3779 break; 3780 } 3781 3782 failure: 3783 return error; 3784 } 3785 3786 static void 3787 aq_txrx_rings_free(struct aq_softc *sc) 3788 { 3789 int n; 3790 3791 for (n = 0; n < sc->sc_nqueues; n++) { 3792 aq_txring_free(sc, &sc->sc_queue[n].txring); 3793 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3794 3795 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3796 3797 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3798 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3799 } 3800 } 3801 3802 static int 3803 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3804 { 3805 int error = 0; 3806 txring->txr_softint = NULL; 3807 3808 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3809 if (txring->txr_pcq == NULL) { 3810 aprint_error_dev(sc->sc_dev, 3811 "unable to allocate pcq for TXring[%d]\n", 3812 txring->txr_index); 3813 error = ENOMEM; 3814 goto done; 3815 } 3816 3817 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3818 aq_deferred_transmit, txring); 3819 if (txring->txr_softint == NULL) { 3820 aprint_error_dev(sc->sc_dev, 3821 "unable to establish softint for TXring[%d]\n", 3822 txring->txr_index); 3823 error = ENOENT; 3824 } 3825 3826 done: 3827 return error; 3828 } 3829 3830 static void 3831 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3832 { 3833 struct mbuf *m; 3834 3835 if (txring->txr_softint != NULL) { 3836 softint_disestablish(txring->txr_softint); 3837 txring->txr_softint = NULL; 3838 } 3839 3840 if (txring->txr_pcq != NULL) { 3841 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3842 m_freem(m); 3843 pcq_destroy(txring->txr_pcq); 3844 txring->txr_pcq = NULL; 3845 } 3846 } 3847 3848 #if NSYSMON_ENVSYS > 0 3849 static void 3850 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3851 { 3852 struct aq_softc *sc; 3853 uint32_t temp; 3854 int error; 3855 3856 sc = sme->sme_cookie; 3857 3858 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3859 if (error == 0) { 3860 edata->value_cur = temp; 3861 edata->state = ENVSYS_SVALID; 3862 } else { 3863 edata->state = ENVSYS_SINVALID; 3864 } 3865 } 3866 #endif 3867 3868 3869 3870 static bool 3871 aq_watchdog_check(struct aq_softc * const sc) 3872 { 3873 3874 AQ_LOCKED(sc); 3875 3876 bool ok = true; 3877 for (u_int n = 0; n < sc->sc_nqueues; n++) { 3878 struct aq_txring *txring = &sc->sc_queue[n].txring; 3879 3880 mutex_enter(&txring->txr_mutex); 3881 if (txring->txr_sending && 3882 time_uptime - txring->txr_lastsent > aq_watchdog_timeout) 3883 ok = false; 3884 3885 mutex_exit(&txring->txr_mutex); 3886 3887 if (!ok) 3888 return false; 3889 } 3890 3891 if (sc->sc_trigger_reset) { 3892 /* debug operation, no need for atomicity or reliability */ 3893 sc->sc_trigger_reset = 0; 3894 return false; 3895 } 3896 3897 return true; 3898 } 3899 3900 3901 3902 static bool 3903 aq_watchdog_tick(struct ifnet *ifp) 3904 { 3905 struct aq_softc * const sc = ifp->if_softc; 3906 3907 AQ_LOCKED(sc); 3908 3909 if (!sc->sc_trigger_reset && aq_watchdog_check(sc)) 3910 return true; 3911 3912 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0) { 3913 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL); 3914 } 3915 3916 return false; 3917 } 3918 3919 static void 3920 aq_tick(void *arg) 3921 { 3922 struct aq_softc * const sc = arg; 3923 3924 AQ_LOCK(sc); 3925 if (sc->sc_stopping) { 3926 AQ_UNLOCK(sc); 3927 return; 3928 } 3929 3930 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3931 sc->sc_detect_linkstat = false; 3932 aq_update_link_status(sc); 3933 } 3934 3935 #ifdef AQ_EVENT_COUNTERS 3936 if (sc->sc_poll_statistics) 3937 aq_update_statistics(sc); 3938 #endif 3939 3940 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 3941 const bool ok = aq_watchdog_tick(ifp); 3942 if (ok) 3943 callout_schedule(&sc->sc_tick_ch, hz); 3944 3945 AQ_UNLOCK(sc); 3946 } 3947 3948 /* interrupt enable/disable */ 3949 static void 3950 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3951 { 3952 uint32_t imask = 0; 3953 int i; 3954 3955 if (txrx) { 3956 for (i = 0; i < sc->sc_nqueues; i++) { 3957 imask |= __BIT(sc->sc_tx_irq[i]); 3958 imask |= __BIT(sc->sc_rx_irq[i]); 3959 } 3960 } 3961 3962 if (link) 3963 imask |= __BIT(sc->sc_linkstat_irq); 3964 3965 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3966 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3967 } 3968 3969 static int 3970 aq_legacy_intr(void *arg) 3971 { 3972 struct aq_softc *sc = arg; 3973 uint32_t status; 3974 int nintr = 0; 3975 3976 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3977 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3978 3979 if (status & __BIT(sc->sc_linkstat_irq)) { 3980 AQ_LOCK(sc); 3981 sc->sc_detect_linkstat = true; 3982 if (!sc->sc_stopping) 3983 callout_schedule(&sc->sc_tick_ch, 0); 3984 AQ_UNLOCK(sc); 3985 nintr++; 3986 } 3987 3988 if (status & __BIT(sc->sc_rx_irq[0])) { 3989 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3990 } 3991 3992 if (status & __BIT(sc->sc_tx_irq[0])) { 3993 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3994 } 3995 3996 return nintr; 3997 } 3998 3999 static int 4000 aq_txrx_intr(void *arg) 4001 { 4002 struct aq_queue *queue = arg; 4003 struct aq_softc *sc = queue->sc; 4004 struct aq_txring *txring = &queue->txring; 4005 struct aq_rxring *rxring = &queue->rxring; 4006 uint32_t status; 4007 int nintr = 0; 4008 int txringidx, rxringidx, txirq, rxirq; 4009 4010 txringidx = txring->txr_index; 4011 rxringidx = rxring->rxr_index; 4012 txirq = sc->sc_tx_irq[txringidx]; 4013 rxirq = sc->sc_rx_irq[rxringidx]; 4014 4015 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 4016 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 4017 /* stray interrupt? */ 4018 return 0; 4019 } 4020 4021 nintr += aq_rx_intr(rxring); 4022 nintr += aq_tx_intr(txring); 4023 4024 return nintr; 4025 } 4026 4027 static int 4028 aq_link_intr(void *arg) 4029 { 4030 struct aq_softc * const sc = arg; 4031 uint32_t status; 4032 int nintr = 0; 4033 4034 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 4035 if (status & __BIT(sc->sc_linkstat_irq)) { 4036 AQ_LOCK(sc); 4037 sc->sc_detect_linkstat = true; 4038 if (!sc->sc_stopping) 4039 callout_schedule(&sc->sc_tick_ch, 0); 4040 AQ_UNLOCK(sc); 4041 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 4042 __BIT(sc->sc_linkstat_irq)); 4043 nintr++; 4044 } 4045 4046 return nintr; 4047 } 4048 4049 static void 4050 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 4051 { 4052 const int ringidx = txring->txr_index; 4053 int i; 4054 4055 mutex_enter(&txring->txr_mutex); 4056 4057 txring->txr_prodidx = 0; 4058 txring->txr_considx = 0; 4059 txring->txr_nfree = AQ_TXD_NUM; 4060 txring->txr_active = false; 4061 4062 /* free mbufs untransmitted */ 4063 for (i = 0; i < AQ_TXD_NUM; i++) { 4064 if (txring->txr_mbufs[i].m != NULL) { 4065 m_freem(txring->txr_mbufs[i].m); 4066 txring->txr_mbufs[i].m = NULL; 4067 } 4068 } 4069 4070 /* disable DMA */ 4071 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 4072 4073 if (start) { 4074 /* TX descriptor physical address */ 4075 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 4076 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4077 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4078 (uint32_t)((uint64_t)paddr >> 32)); 4079 4080 /* TX descriptor size */ 4081 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 4082 AQ_TXD_NUM / 8); 4083 4084 /* reload TAIL pointer */ 4085 txring->txr_prodidx = txring->txr_considx = 4086 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 4087 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 4088 4089 /* Mapping interrupt vector */ 4090 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 4091 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 4092 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 4093 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 4094 4095 /* enable DMA */ 4096 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 4097 TX_DMA_DESC_EN, 1); 4098 4099 const int cpuid = 0; /* XXX? */ 4100 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4101 TDM_DCAD_CPUID, cpuid); 4102 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4103 TDM_DCAD_CPUID_EN, 0); 4104 4105 txring->txr_active = true; 4106 } 4107 4108 mutex_exit(&txring->txr_mutex); 4109 } 4110 4111 static int 4112 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4113 { 4114 const int ringidx = rxring->rxr_index; 4115 int i; 4116 int error = 0; 4117 4118 mutex_enter(&rxring->rxr_mutex); 4119 rxring->rxr_active = false; 4120 rxring->rxr_discarding = false; 4121 if (rxring->rxr_receiving_m != NULL) { 4122 m_freem(rxring->rxr_receiving_m); 4123 rxring->rxr_receiving_m = NULL; 4124 rxring->rxr_receiving_m_last = NULL; 4125 } 4126 4127 /* disable DMA */ 4128 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4129 4130 /* free all RX mbufs */ 4131 aq_rxdrain(sc, rxring); 4132 4133 if (start) { 4134 for (i = 0; i < AQ_RXD_NUM; i++) { 4135 error = aq_rxring_add(sc, rxring, i); 4136 if (error != 0) { 4137 aq_rxdrain(sc, rxring); 4138 return error; 4139 } 4140 aq_rxring_reset_desc(sc, rxring, i); 4141 } 4142 4143 /* RX descriptor physical address */ 4144 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4145 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4146 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4147 (uint32_t)((uint64_t)paddr >> 32)); 4148 4149 /* RX descriptor size */ 4150 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4151 AQ_RXD_NUM / 8); 4152 4153 /* maximum receive frame size */ 4154 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4155 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4156 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4157 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4158 4159 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4160 RX_DMA_DESC_HEADER_SPLIT, 0); 4161 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4162 RX_DMA_DESC_VLAN_STRIP, 4163 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4164 1 : 0); 4165 4166 /* 4167 * reload TAIL pointer, and update readidx 4168 * (HEAD pointer cannot write) 4169 */ 4170 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4171 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4172 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4173 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4174 4175 /* Rx ring set mode */ 4176 4177 /* Mapping interrupt vector */ 4178 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4179 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4180 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4181 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4182 4183 const int cpuid = 0; /* XXX? */ 4184 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4185 RX_DMA_DCAD_CPUID, cpuid); 4186 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4187 RX_DMA_DCAD_DESC_EN, 0); 4188 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4189 RX_DMA_DCAD_HEADER_EN, 0); 4190 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4191 RX_DMA_DCAD_PAYLOAD_EN, 0); 4192 4193 /* enable DMA. start receiving */ 4194 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4195 RX_DMA_DESC_EN, 1); 4196 4197 rxring->rxr_active = true; 4198 } 4199 4200 mutex_exit(&rxring->rxr_mutex); 4201 return error; 4202 } 4203 4204 #define TXRING_NEXTIDX(idx) \ 4205 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4206 #define RXRING_NEXTIDX(idx) \ 4207 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4208 4209 static int 4210 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4211 { 4212 bus_dmamap_t map; 4213 struct mbuf *m = *mp; 4214 uint32_t ctl1, ctl1_ctx, ctl2; 4215 int idx, i, error; 4216 4217 idx = txring->txr_prodidx; 4218 map = txring->txr_mbufs[idx].dmamap; 4219 4220 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4221 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4222 if (error == EFBIG) { 4223 struct mbuf *n; 4224 n = m_defrag(m, M_DONTWAIT); 4225 if (n == NULL) 4226 return EFBIG; 4227 /* m_defrag() preserve m */ 4228 KASSERT(n == m); 4229 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4230 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4231 } 4232 if (error != 0) 4233 return error; 4234 4235 /* 4236 * check spaces of free descriptors. 4237 * +1 is additional descriptor for context (vlan, etc,.) 4238 */ 4239 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4240 device_printf(sc->sc_dev, 4241 "TX: not enough descriptors left %d for %d segs\n", 4242 txring->txr_nfree, map->dm_nsegs + 1); 4243 bus_dmamap_unload(sc->sc_dmat, map); 4244 return ENOBUFS; 4245 } 4246 4247 /* sync dma for mbuf */ 4248 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4249 BUS_DMASYNC_PREWRITE); 4250 4251 ctl1_ctx = 0; 4252 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4253 4254 if (vlan_has_tag(m)) { 4255 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4256 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4257 4258 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4259 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4260 4261 /* fill context descriptor and forward index */ 4262 txring->txr_txdesc[idx].buf_addr = 0; 4263 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4264 txring->txr_txdesc[idx].ctl2 = 0; 4265 4266 idx = TXRING_NEXTIDX(idx); 4267 txring->txr_nfree--; 4268 } 4269 4270 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4271 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4272 if (m->m_pkthdr.csum_flags & 4273 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4274 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4275 } 4276 4277 /* fill descriptor(s) */ 4278 for (i = 0; i < map->dm_nsegs; i++) { 4279 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4280 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4281 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4282 4283 if (i == 0) { 4284 /* remember mbuf of these descriptors */ 4285 txring->txr_mbufs[idx].m = m; 4286 } else { 4287 txring->txr_mbufs[idx].m = NULL; 4288 } 4289 4290 if (i == map->dm_nsegs - 1) { 4291 /* last segment, mark an EndOfPacket, and cause intr */ 4292 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4293 } 4294 4295 txring->txr_txdesc[idx].buf_addr = 4296 htole64(map->dm_segs[i].ds_addr); 4297 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4298 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4299 4300 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4301 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4302 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4303 4304 idx = TXRING_NEXTIDX(idx); 4305 txring->txr_nfree--; 4306 } 4307 4308 txring->txr_prodidx = idx; 4309 4310 return 0; 4311 } 4312 4313 static int 4314 aq_tx_intr(void *arg) 4315 { 4316 struct aq_txring * const txring = arg; 4317 struct aq_softc * const sc = txring->txr_sc; 4318 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4319 struct mbuf *m; 4320 const int ringidx = txring->txr_index; 4321 unsigned int idx, hw_head, n = 0; 4322 4323 mutex_enter(&txring->txr_mutex); 4324 4325 if (!txring->txr_active) 4326 goto tx_intr_done; 4327 4328 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4329 TX_DMA_DESC_HEAD_PTR); 4330 if (hw_head == txring->txr_considx) { 4331 txring->txr_sending = false; 4332 goto tx_intr_done; 4333 } 4334 4335 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4336 4337 for (idx = txring->txr_considx; idx != hw_head; 4338 idx = TXRING_NEXTIDX(idx), n++) { 4339 4340 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4341 bus_dmamap_unload(sc->sc_dmat, 4342 txring->txr_mbufs[idx].dmamap); 4343 4344 if_statinc_ref(nsr, if_opackets); 4345 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4346 if (m->m_flags & M_MCAST) 4347 if_statinc_ref(nsr, if_omcasts); 4348 4349 m_freem(m); 4350 txring->txr_mbufs[idx].m = NULL; 4351 } 4352 4353 txring->txr_nfree++; 4354 } 4355 txring->txr_considx = idx; 4356 4357 IF_STAT_PUTREF(ifp); 4358 4359 /* no more pending TX packet, cancel watchdog */ 4360 if (txring->txr_nfree >= AQ_TXD_NUM) 4361 txring->txr_sending = false; 4362 4363 tx_intr_done: 4364 mutex_exit(&txring->txr_mutex); 4365 4366 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4367 return n; 4368 } 4369 4370 static int 4371 aq_rx_intr(void *arg) 4372 { 4373 struct aq_rxring * const rxring = arg; 4374 struct aq_softc * const sc = rxring->rxr_sc; 4375 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4376 const int ringidx = rxring->rxr_index; 4377 aq_rx_desc_t *rxd; 4378 struct mbuf *m, *m0, *mprev, *new_m; 4379 uint32_t rxd_type, rxd_hash __unused; 4380 uint16_t rxd_status, rxd_pktlen; 4381 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4382 unsigned int idx, n = 0; 4383 bool discarding; 4384 4385 mutex_enter(&rxring->rxr_mutex); 4386 4387 if (!rxring->rxr_active) 4388 goto rx_intr_done; 4389 4390 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4391 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4392 goto rx_intr_done; 4393 } 4394 4395 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4396 4397 /* restore ring context */ 4398 discarding = rxring->rxr_discarding; 4399 m0 = rxring->rxr_receiving_m; 4400 mprev = rxring->rxr_receiving_m_last; 4401 4402 for (idx = rxring->rxr_readidx; 4403 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4404 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4405 4406 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4407 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4408 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4409 4410 rxd = &rxring->rxr_rxdesc[idx]; 4411 rxd_status = le16toh(rxd->wb.status); 4412 4413 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4414 break; /* not yet done */ 4415 4416 rxd_type = le32toh(rxd->wb.type); 4417 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4418 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4419 rxd_hash = le32toh(rxd->wb.rss_hash); 4420 rxd_vlan = le16toh(rxd->wb.vlan); 4421 4422 /* 4423 * Some segments are being dropped while receiving jumboframe. 4424 * Discard until EOP. 4425 */ 4426 if (discarding) 4427 goto rx_next; 4428 4429 if ((rxd_status & RXDESC_STATUS_MACERR) || 4430 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4431 if_statinc_ref(nsr, if_ierrors); 4432 if (m0 != NULL) { 4433 m_freem(m0); 4434 m0 = mprev = NULL; 4435 } 4436 discarding = true; 4437 goto rx_next; 4438 } 4439 4440 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4441 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4442 BUS_DMASYNC_POSTREAD); 4443 m = rxring->rxr_mbufs[idx].m; 4444 4445 new_m = aq_alloc_mbuf(); 4446 if (new_m == NULL) { 4447 /* 4448 * cannot allocate new mbuf. 4449 * discard this packet, and reuse mbuf for next. 4450 */ 4451 if_statinc_ref(nsr, if_iqdrops); 4452 if (m0 != NULL) { 4453 m_freem(m0); 4454 m0 = mprev = NULL; 4455 } 4456 discarding = true; 4457 goto rx_next; 4458 } 4459 rxring->rxr_mbufs[idx].m = NULL; 4460 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4461 4462 if (m0 == NULL) { 4463 m0 = m; 4464 } else { 4465 if (m->m_flags & M_PKTHDR) 4466 m_remove_pkthdr(m); 4467 mprev->m_next = m; 4468 } 4469 mprev = m; 4470 4471 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4472 /* to be continued in the next segment */ 4473 m->m_len = MCLBYTES; 4474 } else { 4475 /* the last segment */ 4476 int mlen = rxd_pktlen % MCLBYTES; 4477 if (mlen == 0) 4478 mlen = MCLBYTES; 4479 m->m_len = mlen; 4480 m0->m_pkthdr.len = rxd_pktlen; 4481 /* VLAN offloading */ 4482 if ((sc->sc_ethercom.ec_capenable & 4483 ETHERCAP_VLAN_HWTAGGING) && 4484 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4485 __SHIFTOUT(rxd_type, 4486 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4487 vlan_set_tag(m0, rxd_vlan); 4488 } 4489 4490 /* Checksum offloading */ 4491 unsigned int pkttype_eth = 4492 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4493 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4494 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4495 __SHIFTOUT(rxd_type, 4496 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4497 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4498 if (__SHIFTOUT(rxd_status, 4499 RXDESC_STATUS_IPV4_CSUM_NG)) 4500 m0->m_pkthdr.csum_flags |= 4501 M_CSUM_IPv4_BAD; 4502 } 4503 4504 /* 4505 * aq will always mark BAD for fragment packets, 4506 * but this is not a problem because the IP stack 4507 * ignores the CSUM flag in fragment packets. 4508 */ 4509 if (__SHIFTOUT(rxd_type, 4510 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4511 bool checked = false; 4512 unsigned int pkttype_proto = 4513 __SHIFTOUT(rxd_type, 4514 RXDESC_TYPE_PKTTYPE_PROTO); 4515 4516 if (pkttype_proto == 4517 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4518 if ((pkttype_eth == 4519 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4520 (ifp->if_capabilities & 4521 IFCAP_CSUM_TCPv4_Rx)) { 4522 m0->m_pkthdr.csum_flags |= 4523 M_CSUM_TCPv4; 4524 checked = true; 4525 } else if ((pkttype_eth == 4526 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4527 (ifp->if_capabilities & 4528 IFCAP_CSUM_TCPv6_Rx)) { 4529 m0->m_pkthdr.csum_flags |= 4530 M_CSUM_TCPv6; 4531 checked = true; 4532 } 4533 } else if (pkttype_proto == 4534 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4535 if ((pkttype_eth == 4536 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4537 (ifp->if_capabilities & 4538 IFCAP_CSUM_UDPv4_Rx)) { 4539 m0->m_pkthdr.csum_flags |= 4540 M_CSUM_UDPv4; 4541 checked = true; 4542 } else if ((pkttype_eth == 4543 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4544 (ifp->if_capabilities & 4545 IFCAP_CSUM_UDPv6_Rx)) { 4546 m0->m_pkthdr.csum_flags |= 4547 M_CSUM_UDPv6; 4548 checked = true; 4549 } 4550 } 4551 if (checked && 4552 (__SHIFTOUT(rxd_status, 4553 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4554 !__SHIFTOUT(rxd_status, 4555 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4556 m0->m_pkthdr.csum_flags |= 4557 M_CSUM_TCP_UDP_BAD; 4558 } 4559 } 4560 4561 m_set_rcvif(m0, ifp); 4562 if_statinc_ref(nsr, if_ipackets); 4563 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4564 if_percpuq_enqueue(ifp->if_percpuq, m0); 4565 m0 = mprev = NULL; 4566 } 4567 4568 rx_next: 4569 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0) 4570 discarding = false; 4571 4572 aq_rxring_reset_desc(sc, rxring, idx); 4573 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4574 } 4575 /* save ring context */ 4576 rxring->rxr_readidx = idx; 4577 rxring->rxr_discarding = discarding; 4578 rxring->rxr_receiving_m = m0; 4579 rxring->rxr_receiving_m_last = mprev; 4580 4581 IF_STAT_PUTREF(ifp); 4582 4583 rx_intr_done: 4584 mutex_exit(&rxring->rxr_mutex); 4585 4586 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4587 return n; 4588 } 4589 4590 static int 4591 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4592 { 4593 struct ifnet *ifp = &ec->ec_if; 4594 struct aq_softc * const sc = ifp->if_softc; 4595 4596 aq_set_vlan_filters(sc); 4597 return 0; 4598 } 4599 4600 static int 4601 aq_ifflags_cb(struct ethercom *ec) 4602 { 4603 struct ifnet * const ifp = &ec->ec_if; 4604 struct aq_softc * const sc = ifp->if_softc; 4605 int i, ecchange, error = 0; 4606 unsigned short iffchange; 4607 4608 AQ_LOCK(sc); 4609 4610 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4611 if ((iffchange & IFF_PROMISC) != 0) 4612 error = aq_set_filter(sc); 4613 4614 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4615 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4616 for (i = 0; i < AQ_RINGS_NUM; i++) { 4617 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4618 RX_DMA_DESC_VLAN_STRIP, 4619 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4620 1 : 0); 4621 } 4622 } 4623 4624 /* vlan configuration depends on also interface promiscuous mode */ 4625 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4626 aq_set_vlan_filters(sc); 4627 4628 sc->sc_ec_capenable = ec->ec_capenable; 4629 sc->sc_if_flags = ifp->if_flags; 4630 4631 AQ_UNLOCK(sc); 4632 4633 return error; 4634 } 4635 4636 4637 static int 4638 aq_init(struct ifnet *ifp) 4639 { 4640 struct aq_softc * const sc = ifp->if_softc; 4641 4642 AQ_LOCK(sc); 4643 4644 int ret = aq_init_locked(ifp); 4645 4646 AQ_UNLOCK(sc); 4647 4648 return ret; 4649 } 4650 4651 static int 4652 aq_init_locked(struct ifnet *ifp) 4653 { 4654 struct aq_softc * const sc = ifp->if_softc; 4655 int i, error = 0; 4656 4657 KASSERT(IFNET_LOCKED(ifp)); 4658 AQ_LOCKED(sc); 4659 4660 aq_stop_locked(ifp, false); 4661 4662 aq_set_vlan_filters(sc); 4663 aq_set_capability(sc); 4664 4665 for (i = 0; i < sc->sc_nqueues; i++) { 4666 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4667 } 4668 4669 /* invalidate RX descriptor cache */ 4670 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4671 AQ_READ_REG_BIT(sc, 4672 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4673 4674 /* start RX */ 4675 for (i = 0; i < sc->sc_nqueues; i++) { 4676 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4677 if (error != 0) { 4678 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4679 __func__); 4680 goto aq_init_failure; 4681 } 4682 } 4683 aq_init_rss(sc); 4684 aq_hw_l3_filter_set(sc); 4685 4686 /* ring reset? */ 4687 aq_unset_stopping_flags(sc); 4688 4689 callout_schedule(&sc->sc_tick_ch, hz); 4690 4691 /* ready */ 4692 ifp->if_flags |= IFF_RUNNING; 4693 4694 /* start TX and RX */ 4695 aq_enable_intr(sc, /*link*/true, /*txrx*/true); 4696 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4697 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4698 4699 aq_init_failure: 4700 sc->sc_if_flags = ifp->if_flags; 4701 4702 return error; 4703 } 4704 4705 static void 4706 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4707 struct aq_txring *txring, bool is_transmit) 4708 { 4709 struct mbuf *m; 4710 int npkt, error; 4711 4712 if (txring->txr_nfree < AQ_TXD_MIN) 4713 return; 4714 4715 for (npkt = 0; ; npkt++) { 4716 if (is_transmit) 4717 m = pcq_peek(txring->txr_pcq); 4718 else 4719 IFQ_POLL(&ifp->if_snd, m); 4720 4721 if (m == NULL) 4722 break; 4723 4724 if (is_transmit) 4725 pcq_get(txring->txr_pcq); 4726 else 4727 IFQ_DEQUEUE(&ifp->if_snd, m); 4728 4729 error = aq_encap_txring(sc, txring, &m); 4730 if (error != 0) { 4731 /* too many mbuf chains? or not enough descriptors? */ 4732 m_freem(m); 4733 if_statinc(ifp, if_oerrors); 4734 break; 4735 } 4736 4737 /* update tail ptr */ 4738 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4739 txring->txr_prodidx); 4740 4741 /* Pass the packet to any BPF listeners */ 4742 bpf_mtap(ifp, m, BPF_D_OUT); 4743 } 4744 4745 if (npkt) { 4746 /* Set a watchdog timer in case the chip flakes out. */ 4747 txring->txr_lastsent = time_uptime; 4748 txring->txr_sending = true; 4749 } 4750 } 4751 4752 static void 4753 aq_start(struct ifnet *ifp) 4754 { 4755 struct aq_softc * const sc = ifp->if_softc; 4756 /* aq_start() always use TX ring[0] */ 4757 struct aq_txring * const txring = &sc->sc_queue[0].txring; 4758 4759 mutex_enter(&txring->txr_mutex); 4760 if (txring->txr_active && !txring->txr_stopping) 4761 aq_send_common_locked(ifp, sc, txring, false); 4762 mutex_exit(&txring->txr_mutex); 4763 } 4764 4765 static inline unsigned int 4766 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4767 { 4768 return (cpu_index(curcpu()) % sc->sc_nqueues); 4769 } 4770 4771 static int 4772 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4773 { 4774 struct aq_softc * const sc = ifp->if_softc; 4775 const int ringidx = aq_select_txqueue(sc, m); 4776 struct aq_txring * const txring = &sc->sc_queue[ringidx].txring; 4777 4778 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4779 m_freem(m); 4780 return ENOBUFS; 4781 } 4782 4783 if (mutex_tryenter(&txring->txr_mutex)) { 4784 aq_send_common_locked(ifp, sc, txring, true); 4785 mutex_exit(&txring->txr_mutex); 4786 } else { 4787 softint_schedule(txring->txr_softint); 4788 } 4789 return 0; 4790 } 4791 4792 static void 4793 aq_deferred_transmit(void *arg) 4794 { 4795 struct aq_txring * const txring = arg; 4796 struct aq_softc * const sc = txring->txr_sc; 4797 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4798 4799 mutex_enter(&txring->txr_mutex); 4800 if (pcq_peek(txring->txr_pcq) != NULL) 4801 aq_send_common_locked(ifp, sc, txring, true); 4802 mutex_exit(&txring->txr_mutex); 4803 } 4804 4805 4806 static void 4807 aq_unset_stopping_flags(struct aq_softc *sc) 4808 { 4809 4810 AQ_LOCKED(sc); 4811 4812 /* Must unset stopping flags in ascending order. */ 4813 for (unsigned i = 0; i < sc->sc_nqueues; i++) { 4814 struct aq_txring *txr = &sc->sc_queue[i].txring; 4815 struct aq_rxring *rxr = &sc->sc_queue[i].rxring; 4816 4817 mutex_enter(&txr->txr_mutex); 4818 txr->txr_stopping = false; 4819 mutex_exit(&txr->txr_mutex); 4820 4821 mutex_enter(&rxr->rxr_mutex); 4822 rxr->rxr_stopping = false; 4823 mutex_exit(&rxr->rxr_mutex); 4824 } 4825 4826 sc->sc_stopping = false; 4827 } 4828 4829 static void 4830 aq_set_stopping_flags(struct aq_softc *sc) 4831 { 4832 4833 AQ_LOCKED(sc); 4834 4835 /* Must unset stopping flags in ascending order. */ 4836 for (unsigned i = 0; i < sc->sc_nqueues; i++) { 4837 struct aq_txring *txr = &sc->sc_queue[i].txring; 4838 struct aq_rxring *rxr = &sc->sc_queue[i].rxring; 4839 4840 mutex_enter(&txr->txr_mutex); 4841 txr->txr_stopping = true; 4842 mutex_exit(&txr->txr_mutex); 4843 4844 mutex_enter(&rxr->rxr_mutex); 4845 rxr->rxr_stopping = true; 4846 mutex_exit(&rxr->rxr_mutex); 4847 } 4848 4849 sc->sc_stopping = true; 4850 } 4851 4852 4853 static void 4854 aq_stop(struct ifnet *ifp, int disable) 4855 { 4856 struct aq_softc * const sc = ifp->if_softc; 4857 4858 ASSERT_SLEEPABLE(); 4859 KASSERT(IFNET_LOCKED(ifp)); 4860 4861 AQ_LOCK(sc); 4862 aq_stop_locked(ifp, disable ? true : false); 4863 AQ_UNLOCK(sc); 4864 } 4865 4866 4867 4868 static void 4869 aq_stop_locked(struct ifnet *ifp, bool disable) 4870 { 4871 struct aq_softc * const sc = ifp->if_softc; 4872 int i; 4873 4874 KASSERT(IFNET_LOCKED(ifp)); 4875 AQ_LOCKED(sc); 4876 4877 aq_set_stopping_flags(sc); 4878 4879 if ((ifp->if_flags & IFF_RUNNING) == 0) 4880 goto already_stopped; 4881 4882 /* disable tx/rx interrupts */ 4883 aq_enable_intr(sc, /*link*/true, /*txrx*/false); 4884 4885 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4886 for (i = 0; i < sc->sc_nqueues; i++) { 4887 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4888 } 4889 4890 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4891 for (i = 0; i < sc->sc_nqueues; i++) { 4892 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4893 } 4894 4895 /* invalidate RX descriptor cache */ 4896 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4897 AQ_READ_REG_BIT(sc, 4898 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4899 4900 already_stopped: 4901 aq_enable_intr(sc, /*link*/false, /*txrx*/false); 4902 callout_halt(&sc->sc_tick_ch, &sc->sc_mutex); 4903 4904 ifp->if_flags &= ~IFF_RUNNING; 4905 sc->sc_if_flags = ifp->if_flags; 4906 } 4907 4908 4909 static void 4910 aq_handle_reset_work(struct work *work, void *arg) 4911 { 4912 struct aq_softc * const sc = arg; 4913 struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 4914 4915 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname); 4916 4917 AQ_LOCK(sc); 4918 4919 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4920 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4921 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4922 4923 for (u_int n = 0; n < sc->sc_nqueues; n++) { 4924 struct aq_txring *txring = &sc->sc_queue[n].txring; 4925 u_int head = AQ_READ_REG_BIT(sc, 4926 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4927 TX_DMA_DESC_HEAD_PTR); 4928 u_int tail = AQ_READ_REG(sc, 4929 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4930 4931 device_printf(sc->sc_dev, "%s: TXring[%u] HEAD/TAIL=%u/%u\n", 4932 __func__, txring->txr_index, head, tail); 4933 4934 aq_tx_intr(txring); 4935 } 4936 4937 AQ_UNLOCK(sc); 4938 4939 /* Don't want ioctl operations to happen */ 4940 IFNET_LOCK(ifp); 4941 4942 /* reset the interface. */ 4943 aq_init(ifp); 4944 4945 IFNET_UNLOCK(ifp); 4946 4947 atomic_store_relaxed(&sc->sc_reset_pending, 0); 4948 } 4949 4950 static int 4951 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4952 { 4953 struct aq_softc * const sc = ifp->if_softc; 4954 struct ifreq * const ifr = data; 4955 int error = 0; 4956 4957 switch (cmd) { 4958 case SIOCADDMULTI: 4959 case SIOCDELMULTI: 4960 break; 4961 default: 4962 KASSERT(IFNET_LOCKED(ifp)); 4963 } 4964 4965 const int s = splnet(); 4966 switch (cmd) { 4967 case SIOCSIFMTU: 4968 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) { 4969 error = EINVAL; 4970 } else { 4971 ifp->if_mtu = ifr->ifr_mtu; 4972 error = 0; /* no need to reset (no ENETRESET) */ 4973 } 4974 break; 4975 default: 4976 error = ether_ioctl(ifp, cmd, data); 4977 break; 4978 } 4979 splx(s); 4980 4981 if (error != ENETRESET) 4982 return error; 4983 4984 switch (cmd) { 4985 case SIOCSIFCAP: 4986 error = aq_set_capability(sc); 4987 break; 4988 case SIOCADDMULTI: 4989 case SIOCDELMULTI: 4990 AQ_LOCK(sc); 4991 if ((sc->sc_if_flags & IFF_RUNNING) != 0) { 4992 /* 4993 * Multicast list has changed; set the hardware filter 4994 * accordingly. 4995 */ 4996 error = aq_set_filter(sc); 4997 } 4998 AQ_UNLOCK(sc); 4999 break; 5000 } 5001 5002 return error; 5003 } 5004 5005 5006 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 5007 5008 #ifdef _MODULE 5009 #include "ioconf.c" 5010 #endif 5011 5012 static int 5013 if_aq_modcmd(modcmd_t cmd, void *opaque) 5014 { 5015 int error = 0; 5016 5017 switch (cmd) { 5018 case MODULE_CMD_INIT: 5019 #ifdef _MODULE 5020 error = config_init_component(cfdriver_ioconf_if_aq, 5021 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 5022 #endif 5023 return error; 5024 case MODULE_CMD_FINI: 5025 #ifdef _MODULE 5026 error = config_fini_component(cfdriver_ioconf_if_aq, 5027 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 5028 #endif 5029 return error; 5030 default: 5031 return ENOTTY; 5032 } 5033 } 5034