xref: /netbsd-src/sys/dev/pci/if_aq.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 #define AQ_JUMBO_MTU_REV_A		9000
120 #define AQ_JUMBO_MTU_REV_B		16338
121 
122 /*
123  * TERMINOLOGY
124  *	MPI = MAC PHY INTERFACE?
125  *	RPO = RX Protocol Offloading
126  *	TPO = TX Protocol Offloading
127  *	RPF = RX Packet Filter
128  *	TPB = TX Packet buffer
129  *	RPB = RX Packet buffer
130  */
131 
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG			0x0000
134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
136 
137 #define AQ_FW_VERSION_REG			0x0018
138 #define AQ_HW_REVISION_REG			0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
140 
141 #define AQ_FW_MBOX_CMD_REG			0x0200
142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
144 #define AQ_FW_MBOX_ADDR_REG			0x0208
145 #define AQ_FW_MBOX_VAL_REG			0x020c
146 
147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
148 #define FW2X_LED_REG				0x031c
149 #define  FW2X_LED_DEFAULT			0x00000000
150 #define  FW2X_LED_NONE				0x0000003f
151 #define  FW2X_LINKLED				__BITS(0,1)
152 #define   FW2X_LINKLED_ACTIVE			0
153 #define   FW2X_LINKLED_ON			1
154 #define   FW2X_LINKLED_BLINK			2
155 #define   FW2X_LINKLED_OFF			3
156 #define  FW2X_STATUSLED				__BITS(2,5)
157 #define   FW2X_STATUSLED_ORANGE			0
158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
159 #define   FW2X_STATUSLED_OFF			3
160 #define   FW2X_STATUSLED_GREEN			4
161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
162 #define   FW2X_STATUSLED_GREEN_BLINK		10
163 
164 #define FW_MPI_MBOX_ADDR_REG			0x0360
165 #define FW1X_MPI_INIT1_REG			0x0364
166 #define FW1X_MPI_CONTROL_REG			0x0368
167 #define FW1X_MPI_STATE_REG			0x036c
168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
172 #define FW1X_MPI_INIT2_REG			0x0370
173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
174 
175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG			0x0388
179 #define  RBL_STATUS_DEAD			0x0000dead
180 #define  RBL_STATUS_SUCCESS			0x0000abba
181 #define  RBL_STATUS_FAILURE			0x00000bad
182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
183 
184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
186 
187 #define AQ_FW_GLB_CTL2_REG			0x0404
188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
189 
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
192 
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
194 
195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
196 
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG			0x2090
203 
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
212 
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
215 #define  AQ_B0_ERR_INT				8U
216 
217 #define AQ_INTR_CTRL_REG			0x2300
218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
227 
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
229 
230 #define FW_MPI_RESETCTRL_REG			0x4000
231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
232 
233 #define RX_SYSCONTROL_REG			0x5000
234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
237 
238 #define RX_TCP_RSS_HASH_REG			0x5040
239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
241 
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD			0
244 #define RPF_ACTION_HOST				1
245 #define RPF_ACTION_MANAGEMENT			2
246 #define RPF_ACTION_HOST_MANAGEMENT		3
247 #define RPF_ACTION_WOL				4
248 
249 #define RPF_L2BC_REG				0x5100
250 #define  RPF_L2BC_EN				__BIT(0)
251 #define  RPF_L2BC_PROMISC			__BIT(3)
252 #define  RPF_L2BC_ACTION			__BITS(12,14)
253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
254 
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
260 #define  RPF_L2UC_MSW_EN			__BIT(31)
261 #define AQ_HW_MAC_OWN			0	/* index of own address */
262 #define AQ_HW_MAC_NUM			34
263 
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
269 
270 #define RPF_VLAN_MODE_REG			0x5280
271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
274 
275 #define RPF_VLAN_TPID_REG			0x5284
276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
278 
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS			16
281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
287 
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
298 
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
323 
324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
326 
327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
329 
330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
335 
336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
339 
340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
342 
343 #define RPO_HWCSUM_REG				0x5580
344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
346 
347 #define RPO_LRO_ENABLE_REG			0x5590
348 
349 #define RPO_LRO_CONF_REG			0x5594
350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG			0x5598
355 
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG			0x5620
360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
365 
366 #define RPB_RPF_RX_REG				0x5700
367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
370 
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
375 #define  RPB_RXB_XOFF_EN			__BIT(31)
376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
378 
379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
381 
382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
385 
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
391 
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
397 #define  RX_DMA_DESC_RESET			__BIT(25)
398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
400 #define  RX_DMA_DESC_EN				__BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
407 
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
414 
415 #define RX_DMA_DCA_REG				0x6180
416 #define  RX_DMA_DCA_EN				__BIT(31)
417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
418 
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
424 
425 #define TX_SYSCONTROL_REG			0x7000
426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
429 
430 #define TX_TPO2_REG				0x7040
431 #define  TX_TPO2_EN				__BIT(16)
432 
433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
435 #define TPS_DESC_RATE_REG			0x7310
436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
442 
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
451 
452 #define AQ_HW_TXBUF_MAX		160
453 #define AQ_HW_RXBUF_MAX		320
454 
455 #define TPO_HWCSUM_REG				0x7800
456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
458 
459 #define TDM_LSO_EN_REG				0x7810
460 
461 #define THM_LSO_TCP_FLAG1_REG			0x7820
462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG			0x7824
465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
466 
467 #define TPB_TX_BUF_REG				0x7900
468 #define  TPB_TX_BUF_EN				__BIT(0)
469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
471 
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
478 
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
483 
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
489 #define  TX_DMA_DESC_EN				__BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
495 
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
498 #define  TDM_DCAD_CPUID				__BITS(7,0)
499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
500 
501 #define TDM_DCA_REG				0x8480
502 #define  TDM_DCA_EN				__BIT(31)
503 #define  TDM_DCA_MODE				__BITS(3,0)
504 
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
510 
511 #define FW1X_CTRL_10G				__BIT(0)
512 #define FW1X_CTRL_5G				__BIT(1)
513 #define FW1X_CTRL_5GSR				__BIT(2)
514 #define FW1X_CTRL_2G5				__BIT(3)
515 #define FW1X_CTRL_1G				__BIT(4)
516 #define FW1X_CTRL_100M				__BIT(5)
517 
518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
530 #define FW2X_CTRL_RESERVED1			__BIT(32)
531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
532 #define FW2X_CTRL_RESERVED2			__BIT(34)
533 #define FW2X_CTRL_PAUSE				__BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
536 #define FW2X_CTRL_RESERVED3			__BIT(38)
537 #define FW2X_CTRL_RESERVED4			__BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
542 #define FW2X_CTRL_RESERVED5			__BIT(44)
543 #define FW2X_CTRL_RESERVED6			__BIT(45)
544 #define FW2X_CTRL_RESERVED7			__BIT(46)
545 #define FW2X_CTRL_RESERVED8			__BIT(47)
546 #define FW2X_CTRL_RESERVED9			__BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
554 #define FW2X_CTRL_WOL				__BIT(56)
555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
560 #define FW2X_CTRL_STATISTICS			__BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
562 
563 #define FW2X_SNPRINTB			\
564 	"\177\020"			\
565 	"b\x23" "PAUSE\0"		\
566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
567 	"b\x31" "CABLE-DIAG\0"		\
568 	"b\x32" "TEMPERATURE\0"		\
569 	"b\x33" "DOWNSHIFT\0"		\
570 	"b\x34" "PTP-AVB\0"		\
571 	"b\x35" "MEDIA-DETECT\0"	\
572 	"b\x36" "LINK-DROP\0"		\
573 	"b\x37" "SLEEP-PROXY\0"		\
574 	"b\x38" "WOL\0"			\
575 	"b\x39" "MAC-STOP\0"		\
576 	"b\x3a" "EXT-LOOPBACK\0"	\
577 	"b\x3b" "INT-LOOPBACK\0"	\
578 	"b\x3c" "EFUSE-AGENT\0"		\
579 	"b\x3d" "WOL-TIMER\0"		\
580 	"b\x3e" "STATISTICS\0"		\
581 	"b\x3f" "TRANSACTION-ID\0"	\
582 	"\0"
583 
584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK		\
590 	(FW2X_CTRL_RATE_100M |		\
591 	 FW2X_CTRL_RATE_1G |		\
592 	 FW2X_CTRL_RATE_2G5 |		\
593 	 FW2X_CTRL_RATE_5G |		\
594 	 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK		\
596 	(FW2X_CTRL_10BASET_EEE |	\
597 	 FW2X_CTRL_100BASETX_EEE |	\
598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
601 	 FW2X_CTRL_10GBASET_FD_EEE)
602 
603 typedef enum aq_fw_bootloader_mode {
604 	FW_BOOT_MODE_UNKNOWN = 0,
605 	FW_BOOT_MODE_FLB,
606 	FW_BOOT_MODE_RBL_FLASH,
607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609 
610 #define AQ_WRITE_REG(sc, reg, val)				\
611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612 
613 #define AQ_READ_REG(sc, reg)					\
614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615 
616 #define AQ_READ64_REG(sc, reg)					\
617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619 
620 #define AQ_WRITE64_REG(sc, reg, val)				\
621 	do {							\
622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 	} while (/* CONSTCOND */0)
625 
626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628 
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
630 	do {							\
631 		uint32_t _v;					\
632 		_v = AQ_READ_REG((sc), (reg));			\
633 		_v &= ~(mask);					\
634 		if ((val) != 0)					\
635 			_v |= __SHIFTIN((val), (mask));		\
636 		AQ_WRITE_REG((sc), (reg), _v);			\
637 	} while (/* CONSTCOND */ 0)
638 
639 #define WAIT_FOR(expr, us, n, errp)				\
640 	do {							\
641 		unsigned int _n;				\
642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
643 			delay((us));				\
644 		}						\
645 		if ((errp != NULL)) {				\
646 			if (_n == 0)				\
647 				*(errp) = ETIMEDOUT;		\
648 			else					\
649 				*(errp) = 0;			\
650 		}						\
651 	} while (/* CONSTCOND */ 0)
652 
653 #define msec_delay(x)	DELAY(1000 * (x))
654 
655 typedef struct aq_mailbox_header {
656 	uint32_t version;
657 	uint32_t transaction_id;
658 	int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660 
661 typedef struct aq_hw_stats_s {
662 	uint32_t uprc;
663 	uint32_t mprc;
664 	uint32_t bprc;
665 	uint32_t erpt;
666 	uint32_t uptc;
667 	uint32_t mptc;
668 	uint32_t bptc;
669 	uint32_t erpr;
670 	uint32_t mbtc;
671 	uint32_t bbtc;
672 	uint32_t mbrc;
673 	uint32_t bbrc;
674 	uint32_t ubrc;
675 	uint32_t ubtc;
676 	uint32_t ptc;
677 	uint32_t prc;
678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681 
682 typedef struct fw1x_mailbox {
683 	aq_mailbox_header_t header;
684 	aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686 
687 typedef struct fw2x_msm_statistics {
688 	uint32_t uprc;
689 	uint32_t mprc;
690 	uint32_t bprc;
691 	uint32_t erpt;
692 	uint32_t uptc;
693 	uint32_t mptc;
694 	uint32_t bptc;
695 	uint32_t erpr;
696 	uint32_t mbtc;
697 	uint32_t bbtc;
698 	uint32_t mbrc;
699 	uint32_t bbrc;
700 	uint32_t ubrc;
701 	uint32_t ubtc;
702 	uint32_t ptc;
703 	uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705 
706 typedef struct fw2x_phy_cable_diag_data {
707 	uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709 
710 typedef struct fw2x_capabilities {
711 	uint32_t caps_lo;
712 	uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714 
715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
716 	aq_mailbox_header_t header;
717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
718 
719 	uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
722 	uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
725 
726 	fw2x_phy_cable_diag_data_t diag_data;
727 	uint32_t reserved[8];
728 
729 	fw2x_capabilities_t caps;
730 
731 	/* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733 
734 typedef enum aq_link_speed {
735 	AQ_LINK_NONE	= 0,
736 	AQ_LINK_100M	= (1 << 0),
737 	AQ_LINK_1G	= (1 << 1),
738 	AQ_LINK_2G5	= (1 << 2),
739 	AQ_LINK_5G	= (1 << 3),
740 	AQ_LINK_10G	= (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 			 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO	AQ_LINK_ALL
745 
746 typedef enum aq_link_fc {
747 	AQ_FC_NONE = 0,
748 	AQ_FC_RX = __BIT(0),
749 	AQ_FC_TX = __BIT(1),
750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752 
753 typedef enum aq_link_eee {
754 	AQ_EEE_DISABLE = 0,
755 	AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757 
758 typedef enum aq_hw_fw_mpi_state {
759 	MPI_DEINIT	= 0,
760 	MPI_RESET	= 1,
761 	MPI_INIT	= 2,
762 	MPI_POWER	= 4
763 } aq_hw_fw_mpi_state_t;
764 
765 enum aq_media_type {
766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
767 	AQ_MEDIA_TYPE_FIBRE,
768 	AQ_MEDIA_TYPE_TP
769 };
770 
771 struct aq_rx_desc_read {
772 	uint64_t buf_addr;
773 	uint64_t hdr_addr;
774 } __packed __aligned(8);
775 
776 struct aq_rx_desc_wb {
777 	uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
803 #define RXDESC_TYPE_SPH			__BIT(21)
804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
805 	uint32_t rss_hash;
806 	uint16_t status;
807 #define RXDESC_STATUS_DD		__BIT(0)
808 #define RXDESC_STATUS_EOP		__BIT(1)
809 #define RXDESC_STATUS_MACERR		__BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
813 
814 #define RXDESC_STATUS_STAT		__BITS(2,5)
815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
817 	uint16_t pkt_len;
818 	uint16_t next_desc_ptr;
819 	uint16_t vlan;
820 } __packed __aligned(4);
821 
822 typedef union aq_rx_desc {
823 	struct aq_rx_desc_read read;
824 	struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826 
827 typedef struct aq_tx_desc {
828 	uint64_t buf_addr;
829 	uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
846 	uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851 
852 struct aq_txring {
853 	struct aq_softc *txr_sc;
854 	int txr_index;
855 	kmutex_t txr_mutex;
856 	bool txr_active;
857 
858 	pcq_t *txr_pcq;
859 	void *txr_softint;
860 
861 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
862 	bus_dmamap_t txr_txdesc_dmamap;
863 	bus_dma_segment_t txr_txdesc_seg[1];
864 	bus_size_t txr_txdesc_size;
865 
866 	struct {
867 		struct mbuf *m;
868 		bus_dmamap_t dmamap;
869 	} txr_mbufs[AQ_TXD_NUM];
870 	unsigned int txr_prodidx;
871 	unsigned int txr_considx;
872 	int txr_nfree;
873 };
874 
875 struct aq_rxring {
876 	struct aq_softc *rxr_sc;
877 	int rxr_index;
878 	kmutex_t rxr_mutex;
879 	bool rxr_active;
880 
881 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
882 	bus_dmamap_t rxr_rxdesc_dmamap;
883 	bus_dma_segment_t rxr_rxdesc_seg[1];
884 	bus_size_t rxr_rxdesc_size;
885 	struct {
886 		struct mbuf *m;
887 		bus_dmamap_t dmamap;
888 	} rxr_mbufs[AQ_RXD_NUM];
889 	unsigned int rxr_readidx;
890 };
891 
892 struct aq_queue {
893 	struct aq_softc *sc;
894 	struct aq_txring txring;
895 	struct aq_rxring rxring;
896 };
897 
898 struct aq_softc;
899 struct aq_firmware_ops {
900 	int (*reset)(struct aq_softc *);
901 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
902 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
903 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
904 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
905 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
906 #if NSYSMON_ENVSYS > 0
907 	int (*get_temperature)(struct aq_softc *, uint32_t *);
908 #endif
909 };
910 
911 #ifdef AQ_EVENT_COUNTERS
912 #define AQ_EVCNT_DECL(name)						\
913 	char sc_evcount_##name##_name[32];				\
914 	struct evcnt sc_evcount_##name##_ev;
915 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
916 	do {								\
917 		snprintf((sc)->sc_evcount_##name##_name,		\
918 		    sizeof((sc)->sc_evcount_##name##_name),		\
919 		    "%s", desc);					\
920 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
921 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
922 		    (sc)->sc_evcount_##name##_name);			\
923 	} while (/*CONSTCOND*/0)
924 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
925 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
926 #define AQ_EVCNT_DETACH(sc, name)					\
927 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
928 #define AQ_EVCNT_ADD(sc, name, val)					\
929 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
930 #endif /* AQ_EVENT_COUNTERS */
931 
932 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
933 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
934 
935 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
936 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
937 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
938 
939 
940 struct aq_softc {
941 	device_t sc_dev;
942 
943 	bus_space_tag_t sc_iot;
944 	bus_space_handle_t sc_ioh;
945 	bus_size_t sc_iosize;
946 	bus_dma_tag_t sc_dmat;
947 
948 	void *sc_ihs[AQ_NINTR_MAX];
949 	pci_intr_handle_t *sc_intrs;
950 
951 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
952 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
953 	int sc_linkstat_irq;
954 	bool sc_use_txrx_independent_intr;
955 	bool sc_poll_linkstat;
956 	bool sc_detect_linkstat;
957 
958 #if NSYSMON_ENVSYS > 0
959 	struct sysmon_envsys *sc_sme;
960 	envsys_data_t sc_sensor_temp;
961 #endif
962 
963 	callout_t sc_tick_ch;
964 
965 	int sc_nintrs;
966 	bool sc_msix;
967 
968 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
969 	int sc_nqueues;
970 
971 	pci_chipset_tag_t sc_pc;
972 	pcitag_t sc_pcitag;
973 	uint16_t sc_product;
974 	uint16_t sc_revision;
975 
976 	kmutex_t sc_mutex;
977 	kmutex_t sc_mpi_mutex;
978 
979 	const struct aq_firmware_ops *sc_fw_ops;
980 	uint64_t sc_fw_caps;
981 	enum aq_media_type sc_media_type;
982 	aq_link_speed_t sc_available_rates;
983 
984 	aq_link_speed_t sc_link_rate;
985 	aq_link_fc_t sc_link_fc;
986 	aq_link_eee_t sc_link_eee;
987 
988 	uint32_t sc_fw_version;
989 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
990 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
991 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
992 	uint32_t sc_features;
993 #define FEATURES_MIPS		0x00000001
994 #define FEATURES_TPO2		0x00000002
995 #define FEATURES_RPF2		0x00000004
996 #define FEATURES_MPI_AQ		0x00000008
997 #define FEATURES_REV_A0		0x10000000
998 #define FEATURES_REV_A		(FEATURES_REV_A0)
999 #define FEATURES_REV_B0		0x20000000
1000 #define FEATURES_REV_B1		0x40000000
1001 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
1002 	uint32_t sc_max_mtu;
1003 	uint32_t sc_mbox_addr;
1004 
1005 	bool sc_rbl_enabled;
1006 	bool sc_fast_start_enabled;
1007 	bool sc_flash_present;
1008 
1009 	bool sc_intr_moderation_enable;
1010 	bool sc_rss_enable;
1011 
1012 	struct ethercom sc_ethercom;
1013 	struct ether_addr sc_enaddr;
1014 	struct ifmedia sc_media;
1015 	int sc_ec_capenable;		/* last ec_capenable */
1016 	unsigned short sc_if_flags;	/* last if_flags */
1017 
1018 #ifdef AQ_EVENT_COUNTERS
1019 	aq_hw_stats_s_t sc_statistics[2];
1020 	int sc_statistics_idx;
1021 	bool sc_poll_statistics;
1022 
1023 	AQ_EVCNT_DECL(uprc);
1024 	AQ_EVCNT_DECL(mprc);
1025 	AQ_EVCNT_DECL(bprc);
1026 	AQ_EVCNT_DECL(erpt);
1027 	AQ_EVCNT_DECL(uptc);
1028 	AQ_EVCNT_DECL(mptc);
1029 	AQ_EVCNT_DECL(bptc);
1030 	AQ_EVCNT_DECL(erpr);
1031 	AQ_EVCNT_DECL(mbtc);
1032 	AQ_EVCNT_DECL(bbtc);
1033 	AQ_EVCNT_DECL(mbrc);
1034 	AQ_EVCNT_DECL(bbrc);
1035 	AQ_EVCNT_DECL(ubrc);
1036 	AQ_EVCNT_DECL(ubtc);
1037 	AQ_EVCNT_DECL(ptc);
1038 	AQ_EVCNT_DECL(prc);
1039 	AQ_EVCNT_DECL(dpc);
1040 	AQ_EVCNT_DECL(cprc);
1041 #endif
1042 };
1043 
1044 static int aq_match(device_t, cfdata_t, void *);
1045 static void aq_attach(device_t, device_t, void *);
1046 static int aq_detach(device_t, int);
1047 
1048 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1049     bool, bool);
1050 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1051     pci_intr_type_t);
1052 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1053 
1054 static int aq_ifmedia_change(struct ifnet * const);
1055 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1056 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1057 static int aq_ifflags_cb(struct ethercom *);
1058 static int aq_init(struct ifnet *);
1059 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1060     struct aq_txring *, bool);
1061 static int aq_transmit(struct ifnet *, struct mbuf *);
1062 static void aq_deferred_transmit(void *);
1063 static void aq_start(struct ifnet *);
1064 static void aq_stop(struct ifnet *, int);
1065 static void aq_watchdog(struct ifnet *);
1066 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1067 
1068 static int aq_txrx_rings_alloc(struct aq_softc *);
1069 static void aq_txrx_rings_free(struct aq_softc *);
1070 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1071 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1072 
1073 static void aq_initmedia(struct aq_softc *);
1074 static void aq_enable_intr(struct aq_softc *, bool, bool);
1075 
1076 #if NSYSMON_ENVSYS > 0
1077 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1078 #endif
1079 static void aq_tick(void *);
1080 static int aq_legacy_intr(void *);
1081 static int aq_link_intr(void *);
1082 static int aq_txrx_intr(void *);
1083 static int aq_tx_intr(void *);
1084 static int aq_rx_intr(void *);
1085 
1086 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1087     aq_link_eee_t);
1088 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1089     aq_link_eee_t *);
1090 
1091 static int aq_fw_reset(struct aq_softc *);
1092 static int aq_fw_version_init(struct aq_softc *);
1093 static int aq_hw_init(struct aq_softc *);
1094 static int aq_hw_init_ucp(struct aq_softc *);
1095 static int aq_hw_reset(struct aq_softc *);
1096 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1097     uint32_t);
1098 static int aq_get_mac_addr(struct aq_softc *);
1099 static int aq_init_rss(struct aq_softc *);
1100 static int aq_set_capability(struct aq_softc *);
1101 
1102 static int fw1x_reset(struct aq_softc *);
1103 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1104     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1105 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1106     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1107 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1108 
1109 static int fw2x_reset(struct aq_softc *);
1110 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1111     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1112 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1113     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1114 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1115 #if NSYSMON_ENVSYS > 0
1116 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1117 #endif
1118 
1119 static const struct aq_firmware_ops aq_fw1x_ops = {
1120 	.reset = fw1x_reset,
1121 	.set_mode = fw1x_set_mode,
1122 	.get_mode = fw1x_get_mode,
1123 	.get_stats = fw1x_get_stats,
1124 #if NSYSMON_ENVSYS > 0
1125 	.get_temperature = NULL
1126 #endif
1127 };
1128 
1129 static const struct aq_firmware_ops aq_fw2x_ops = {
1130 	.reset = fw2x_reset,
1131 	.set_mode = fw2x_set_mode,
1132 	.get_mode = fw2x_get_mode,
1133 	.get_stats = fw2x_get_stats,
1134 #if NSYSMON_ENVSYS > 0
1135 	.get_temperature = fw2x_get_temperature
1136 #endif
1137 };
1138 
1139 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1140     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1141 
1142 static const struct aq_product {
1143 	pci_vendor_id_t aq_vendor;
1144 	pci_product_id_t aq_product;
1145 	const char *aq_name;
1146 	enum aq_media_type aq_media_type;
1147 	aq_link_speed_t aq_available_rates;
1148 } aq_products[] = {
1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1150 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1151 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1152 	},
1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1154 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1156 	},
1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1158 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1160 	},
1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1162 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1164 	},
1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1166 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1168 	},
1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1170 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1171 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1172 	},
1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1174 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1175 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1176 	},
1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1178 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1180 	},
1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1182 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1184 	},
1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1186 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1188 	},
1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1190 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1192 	},
1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1194 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1195 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1196 	},
1197 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1198 	  "Aquantia D100 10 Gigabit Network Adapter",
1199 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1200 	},
1201 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1202 	  "Aquantia D107 10 Gigabit Network Adapter",
1203 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1204 	},
1205 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1206 	  "Aquantia D108 5 Gigabit Network Adapter",
1207 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1208 	},
1209 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1210 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1211 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1212 	}
1213 };
1214 
1215 static const struct aq_product *
1216 aq_lookup(const struct pci_attach_args *pa)
1217 {
1218 	unsigned int i;
1219 
1220 	for (i = 0; i < __arraycount(aq_products); i++) {
1221 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1222 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1223 			return &aq_products[i];
1224 	}
1225 	return NULL;
1226 }
1227 
1228 static int
1229 aq_match(device_t parent, cfdata_t cf, void *aux)
1230 {
1231 	struct pci_attach_args *pa = aux;
1232 
1233 	if (aq_lookup(pa) != NULL)
1234 		return 1;
1235 
1236 	return 0;
1237 }
1238 
1239 static void
1240 aq_attach(device_t parent, device_t self, void *aux)
1241 {
1242 	struct aq_softc *sc = device_private(self);
1243 	struct pci_attach_args *pa = aux;
1244 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1245 	pci_chipset_tag_t pc;
1246 	pcitag_t tag;
1247 	pcireg_t command, memtype, bar;
1248 	const struct aq_product *aqp;
1249 	int error;
1250 
1251 	sc->sc_dev = self;
1252 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1253 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1254 
1255 	sc->sc_pc = pc = pa->pa_pc;
1256 	sc->sc_pcitag = tag = pa->pa_tag;
1257 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1258 
1259 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1260 	command |= PCI_COMMAND_MASTER_ENABLE;
1261 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1262 
1263 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1264 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1265 
1266 	aqp = aq_lookup(pa);
1267 	KASSERT(aqp != NULL);
1268 
1269 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1270 
1271 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1272 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1273 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1274 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1275 		return;
1276 	}
1277 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1278 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1279 	    NULL, &sc->sc_iosize) != 0) {
1280 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1281 		return;
1282 	}
1283 
1284 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1285 
1286 	/* max queue num is 8, and must be 2^n */
1287 	if (ncpu >= 8)
1288 		sc->sc_nqueues = 8;
1289 	else if (ncpu >= 4)
1290 		sc->sc_nqueues = 4;
1291 	else if (ncpu >= 2)
1292 		sc->sc_nqueues = 2;
1293 	else
1294 		sc->sc_nqueues = 1;
1295 
1296 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1297 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1298 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1299 		/* TX intrs + RX intrs + LINKSTAT intrs */
1300 		sc->sc_use_txrx_independent_intr = true;
1301 		sc->sc_poll_linkstat = false;
1302 		sc->sc_msix = true;
1303 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1304 		/* TX intrs + RX intrs */
1305 		sc->sc_use_txrx_independent_intr = true;
1306 		sc->sc_poll_linkstat = true;
1307 		sc->sc_msix = true;
1308 	} else
1309 #endif
1310 	if (msixcount >= (sc->sc_nqueues + 1)) {
1311 		/* TX/RX intrs LINKSTAT intrs */
1312 		sc->sc_use_txrx_independent_intr = false;
1313 		sc->sc_poll_linkstat = false;
1314 		sc->sc_msix = true;
1315 	} else if (msixcount >= sc->sc_nqueues) {
1316 		/* TX/RX intrs */
1317 		sc->sc_use_txrx_independent_intr = false;
1318 		sc->sc_poll_linkstat = true;
1319 		sc->sc_msix = true;
1320 	} else {
1321 		/* giving up using MSI-X */
1322 		sc->sc_msix = false;
1323 	}
1324 
1325 	/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1326 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1327 		sc->sc_poll_linkstat = true;
1328 
1329 #ifdef AQ_FORCE_POLL_LINKSTAT
1330 	sc->sc_poll_linkstat = true;
1331 #endif
1332 
1333 	aprint_debug_dev(sc->sc_dev,
1334 	    "ncpu=%d, pci_msix_count=%d."
1335 	    " allocate %d interrupts for %d%s queues%s\n",
1336 	    ncpu, msixcount,
1337 	    (sc->sc_use_txrx_independent_intr ?
1338 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1339 	    (sc->sc_poll_linkstat ? 0 : 1),
1340 	    sc->sc_nqueues,
1341 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1342 	    sc->sc_poll_linkstat ? "" : ", and link status");
1343 
1344 	if (sc->sc_msix)
1345 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1346 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1347 	else
1348 		error = ENODEV;
1349 
1350 	if (error != 0) {
1351 		/* if MSI-X failed, fallback to MSI with single queue */
1352 		sc->sc_use_txrx_independent_intr = false;
1353 		sc->sc_poll_linkstat = false;
1354 		sc->sc_msix = false;
1355 		sc->sc_nqueues = 1;
1356 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1357 	}
1358 	if (error != 0) {
1359 		/* if MSI failed, fallback to INTx */
1360 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1361 	}
1362 	if (error != 0)
1363 		return;
1364 
1365 	callout_init(&sc->sc_tick_ch, 0);
1366 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1367 
1368 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1369 
1370 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1371 		sc->sc_rss_enable = true;
1372 	else
1373 		sc->sc_rss_enable = false;
1374 
1375 	error = aq_txrx_rings_alloc(sc);
1376 	if (error != 0)
1377 		goto attach_failure;
1378 
1379 	error = aq_fw_reset(sc);
1380 	if (error != 0)
1381 		goto attach_failure;
1382 
1383 	error = aq_fw_version_init(sc);
1384 	if (error != 0)
1385 		goto attach_failure;
1386 
1387 	error = aq_hw_init_ucp(sc);
1388 	if (error < 0)
1389 		goto attach_failure;
1390 
1391 	KASSERT(sc->sc_mbox_addr != 0);
1392 	error = aq_hw_reset(sc);
1393 	if (error != 0)
1394 		goto attach_failure;
1395 
1396 	aq_get_mac_addr(sc);
1397 	aq_init_rss(sc);
1398 
1399 	error = aq_hw_init(sc);	/* initialize and interrupts */
1400 	if (error != 0)
1401 		goto attach_failure;
1402 
1403 	sc->sc_media_type = aqp->aq_media_type;
1404 	sc->sc_available_rates = aqp->aq_available_rates;
1405 
1406 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1407 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1408 	    aq_ifmedia_change, aq_ifmedia_status);
1409 	aq_initmedia(sc);
1410 
1411 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1412 	ifp->if_softc = sc;
1413 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1414 	ifp->if_extflags = IFEF_MPSAFE;
1415 	ifp->if_baudrate = IF_Gbps(10);
1416 	ifp->if_init = aq_init;
1417 	ifp->if_ioctl = aq_ioctl;
1418 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1419 		ifp->if_transmit = aq_transmit;
1420 	ifp->if_start = aq_start;
1421 	ifp->if_stop = aq_stop;
1422 	ifp->if_watchdog = aq_watchdog;
1423 	IFQ_SET_READY(&ifp->if_snd);
1424 
1425 	/* initialize capabilities */
1426 	sc->sc_ethercom.ec_capabilities = 0;
1427 	sc->sc_ethercom.ec_capenable = 0;
1428 #if notyet
1429 	/* TODO */
1430 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1431 #endif
1432 	sc->sc_ethercom.ec_capabilities |=
1433 	    ETHERCAP_JUMBO_MTU |
1434 	    ETHERCAP_VLAN_MTU |
1435 	    ETHERCAP_VLAN_HWTAGGING |
1436 	    ETHERCAP_VLAN_HWFILTER;
1437 	sc->sc_ethercom.ec_capenable |=
1438 	    ETHERCAP_VLAN_HWTAGGING |
1439 	    ETHERCAP_VLAN_HWFILTER;
1440 
1441 	ifp->if_capabilities = 0;
1442 	ifp->if_capenable = 0;
1443 #ifdef CONFIG_LRO_SUPPORT
1444 	ifp->if_capabilities |= IFCAP_LRO;
1445 	ifp->if_capenable |= IFCAP_LRO;
1446 #endif
1447 #if notyet
1448 	/* TSO */
1449 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1450 #endif
1451 
1452 	/* TX hardware checksum offloading */
1453 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1454 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1455 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1456 	/* RX hardware checksum offloading */
1457 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1458 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1459 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1460 
1461 	error = if_initialize(ifp);
1462 	if (error != 0) {
1463 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
1464 		    error);
1465 		goto attach_failure;
1466 	}
1467 	ifp->if_percpuq = if_percpuq_create(ifp);
1468 	if_deferred_start_init(ifp, NULL);
1469 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1470 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1471 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1472 	if_register(ifp);
1473 
1474 	aq_enable_intr(sc, true, false);	/* only intr about link */
1475 
1476 	/* update media */
1477 	aq_ifmedia_change(ifp);
1478 
1479 #if NSYSMON_ENVSYS > 0
1480 	/* temperature monitoring */
1481 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1482 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1483 
1484 		sc->sc_sme = sysmon_envsys_create();
1485 		sc->sc_sme->sme_name = device_xname(self);
1486 		sc->sc_sme->sme_cookie = sc;
1487 		sc->sc_sme->sme_flags = 0;
1488 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1489 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1490 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1491 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1492 
1493 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1494 		sysmon_envsys_register(sc->sc_sme);
1495 
1496 		/*
1497 		 * for unknown reasons, the first call of fw2x_get_temperature()
1498 		 * will always fail (firmware matter?), so run once now.
1499 		 */
1500 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1501 	}
1502 #endif
1503 
1504 #ifdef AQ_EVENT_COUNTERS
1505 	/* get starting statistics values */
1506 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1507 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1508 		sc->sc_poll_statistics = true;
1509 	}
1510 
1511 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1512 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1513 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1514 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1515 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1516 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1517 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1518 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1519 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1520 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1521 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1522 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1523 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1524 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1525 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1526 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1527 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1528 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1529 #endif
1530 
1531 	return;
1532 
1533  attach_failure:
1534 	aq_detach(self, 0);
1535 }
1536 
1537 static int
1538 aq_detach(device_t self, int flags __unused)
1539 {
1540 	struct aq_softc *sc = device_private(self);
1541 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1542 	int i, s;
1543 
1544 	if (sc->sc_iosize != 0) {
1545 		if (ifp->if_softc != NULL) {
1546 			s = splnet();
1547 			aq_stop(ifp, 0);
1548 			splx(s);
1549 		}
1550 
1551 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1552 			if (sc->sc_ihs[i] != NULL) {
1553 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1554 				sc->sc_ihs[i] = NULL;
1555 			}
1556 		}
1557 		if (sc->sc_nintrs > 0) {
1558 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1559 			    sc->sc_nintrs);
1560 			sc->sc_intrs = NULL;
1561 			sc->sc_nintrs = 0;
1562 		}
1563 
1564 		aq_txrx_rings_free(sc);
1565 
1566 		if (ifp->if_softc != NULL) {
1567 			ether_ifdetach(ifp);
1568 			if_detach(ifp);
1569 		}
1570 
1571 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1572 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1573 		sc->sc_iosize = 0;
1574 	}
1575 
1576 	callout_stop(&sc->sc_tick_ch);
1577 
1578 #if NSYSMON_ENVSYS > 0
1579 	if (sc->sc_sme != NULL) {
1580 		/* all sensors associated with this will also be detached */
1581 		sysmon_envsys_unregister(sc->sc_sme);
1582 		sc->sc_sme = NULL;
1583 	}
1584 #endif
1585 
1586 #ifdef AQ_EVENT_COUNTERS
1587 	AQ_EVCNT_DETACH(sc, uprc);
1588 	AQ_EVCNT_DETACH(sc, mprc);
1589 	AQ_EVCNT_DETACH(sc, bprc);
1590 	AQ_EVCNT_DETACH(sc, erpt);
1591 	AQ_EVCNT_DETACH(sc, uptc);
1592 	AQ_EVCNT_DETACH(sc, mptc);
1593 	AQ_EVCNT_DETACH(sc, bptc);
1594 	AQ_EVCNT_DETACH(sc, erpr);
1595 	AQ_EVCNT_DETACH(sc, mbtc);
1596 	AQ_EVCNT_DETACH(sc, bbtc);
1597 	AQ_EVCNT_DETACH(sc, mbrc);
1598 	AQ_EVCNT_DETACH(sc, bbrc);
1599 	AQ_EVCNT_DETACH(sc, ubrc);
1600 	AQ_EVCNT_DETACH(sc, ubtc);
1601 	AQ_EVCNT_DETACH(sc, ptc);
1602 	AQ_EVCNT_DETACH(sc, prc);
1603 	AQ_EVCNT_DETACH(sc, dpc);
1604 	AQ_EVCNT_DETACH(sc, cprc);
1605 #endif
1606 
1607 	ifmedia_fini(&sc->sc_media);
1608 
1609 	mutex_destroy(&sc->sc_mpi_mutex);
1610 	mutex_destroy(&sc->sc_mutex);
1611 
1612 	return 0;
1613 }
1614 
1615 static int
1616 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1617     int (*func)(void *), void *arg, const char *xname)
1618 {
1619 	char intrbuf[PCI_INTRSTR_LEN];
1620 	pci_chipset_tag_t pc = sc->sc_pc;
1621 	void *vih;
1622 	const char *intrstr = NULL;
1623 
1624 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1625 	    sizeof(intrbuf));
1626 
1627 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1628 
1629 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1630 	    IPL_NET, func, arg, xname);
1631 	if (vih == NULL) {
1632 		aprint_error_dev(sc->sc_dev,
1633 		    "unable to establish MSI-X%s%s for %s\n",
1634 		    intrstr ? " at " : "",
1635 		    intrstr ? intrstr : "", xname);
1636 		return EIO;
1637 	}
1638 	sc->sc_ihs[intno] = vih;
1639 
1640 	if (affinity != NULL) {
1641 		/* Round-robin affinity */
1642 		kcpuset_zero(affinity);
1643 		kcpuset_set(affinity, intno % ncpu);
1644 		interrupt_distribute(vih, affinity, NULL);
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static int
1651 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1652     bool linkintr)
1653 {
1654 	kcpuset_t *affinity;
1655 	int error, intno, i;
1656 	char intr_xname[INTRDEVNAMEBUF];
1657 
1658 	kcpuset_create(&affinity, false);
1659 
1660 	intno = 0;
1661 
1662 	if (txrx_independent) {
1663 		for (i = 0; i < sc->sc_nqueues; i++) {
1664 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1665 			    device_xname(sc->sc_dev), i);
1666 			sc->sc_rx_irq[i] = intno;
1667 			error = aq_establish_intr(sc, intno++, affinity,
1668 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1669 			if (error != 0)
1670 				goto fail;
1671 		}
1672 		for (i = 0; i < sc->sc_nqueues; i++) {
1673 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1674 			    device_xname(sc->sc_dev), i);
1675 			sc->sc_tx_irq[i] = intno;
1676 			error = aq_establish_intr(sc, intno++, affinity,
1677 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1678 			if (error != 0)
1679 				goto fail;
1680 		}
1681 	} else {
1682 		for (i = 0; i < sc->sc_nqueues; i++) {
1683 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1684 			    device_xname(sc->sc_dev), i);
1685 			sc->sc_rx_irq[i] = intno;
1686 			sc->sc_tx_irq[i] = intno;
1687 			error = aq_establish_intr(sc, intno++, affinity,
1688 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1689 			if (error != 0)
1690 				goto fail;
1691 		}
1692 	}
1693 
1694 	if (linkintr) {
1695 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1696 		    device_xname(sc->sc_dev));
1697 		sc->sc_linkstat_irq = intno;
1698 		error = aq_establish_intr(sc, intno++, affinity,
1699 		    aq_link_intr, sc, intr_xname);
1700 		if (error != 0)
1701 			goto fail;
1702 	}
1703 
1704 	kcpuset_destroy(affinity);
1705 	return 0;
1706 
1707  fail:
1708 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1709 		if (sc->sc_ihs[i] != NULL) {
1710 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1711 			sc->sc_ihs[i] = NULL;
1712 		}
1713 	}
1714 
1715 	kcpuset_destroy(affinity);
1716 	return ENOMEM;
1717 }
1718 
1719 static int
1720 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1721     bool txrx_independent, bool linkintr)
1722 {
1723 	int error, nintr;
1724 
1725 	if (txrx_independent)
1726 		nintr = nqueue * 2;
1727 	else
1728 		nintr = nqueue;
1729 
1730 	if (linkintr)
1731 		nintr++;
1732 
1733 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1734 	if (error != 0) {
1735 		aprint_error_dev(sc->sc_dev,
1736 		    "failed to allocate MSI-X interrupts\n");
1737 		goto fail;
1738 	}
1739 
1740 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1741 	if (error == 0) {
1742 		sc->sc_nintrs = nintr;
1743 	} else {
1744 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1745 		sc->sc_nintrs = 0;
1746 	}
1747  fail:
1748 	return error;
1749 
1750 }
1751 
1752 static int
1753 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1754     pci_intr_type_t inttype)
1755 {
1756 	int counts[PCI_INTR_TYPE_SIZE];
1757 	int error, nintr;
1758 
1759 	nintr = 1;
1760 
1761 	memset(counts, 0, sizeof(counts));
1762 	counts[inttype] = nintr;
1763 
1764 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1765 	if (error != 0) {
1766 		aprint_error_dev(sc->sc_dev,
1767 		    "failed to allocate%s interrupts\n",
1768 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1769 		return error;
1770 	}
1771 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1772 	    device_xname(sc->sc_dev));
1773 	if (error == 0) {
1774 		sc->sc_nintrs = nintr;
1775 	} else {
1776 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1777 		sc->sc_nintrs = 0;
1778 	}
1779 	return error;
1780 }
1781 
1782 static void
1783 global_software_reset(struct aq_softc *sc)
1784 {
1785 	uint32_t v;
1786 
1787 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1788 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1789 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1790 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1791 
1792 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1793 	v &= ~AQ_FW_SOFTRESET_DIS;
1794 	v |= AQ_FW_SOFTRESET_RESET;
1795 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1796 }
1797 
1798 static int
1799 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1800 {
1801 	int timo;
1802 
1803 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1804 
1805 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1806 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1807 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1808 
1809 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1810 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1811 
1812 	global_software_reset(sc);
1813 
1814 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1815 
1816 	/* Wait for RBL to finish boot process. */
1817 #define RBL_TIMEOUT_MS	10000
1818 	uint16_t rbl_status;
1819 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1820 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1821 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1822 			break;
1823 		msec_delay(1);
1824 	}
1825 	if (timo <= 0) {
1826 		aprint_error_dev(sc->sc_dev,
1827 		    "RBL> RBL restart failed: timeout\n");
1828 		return EBUSY;
1829 	}
1830 	switch (rbl_status) {
1831 	case RBL_STATUS_SUCCESS:
1832 		if (mode != NULL)
1833 			*mode = FW_BOOT_MODE_RBL_FLASH;
1834 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1835 		break;
1836 	case RBL_STATUS_HOST_BOOT:
1837 		if (mode != NULL)
1838 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1839 		aprint_debug_dev(sc->sc_dev,
1840 		    "RBL> reset complete! [Host Bootload]\n");
1841 		break;
1842 	case RBL_STATUS_FAILURE:
1843 	default:
1844 		aprint_error_dev(sc->sc_dev,
1845 		    "unknown RBL status 0x%x\n", rbl_status);
1846 		return EBUSY;
1847 	}
1848 
1849 	return 0;
1850 }
1851 
1852 static int
1853 mac_soft_reset_flb(struct aq_softc *sc)
1854 {
1855 	uint32_t v;
1856 	int timo;
1857 
1858 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1859 	/*
1860 	 * Let Felicity hardware to complete SMBUS transaction before
1861 	 * Global software reset.
1862 	 */
1863 	msec_delay(50);
1864 
1865 	/*
1866 	 * If SPI burst transaction was interrupted(before running the script),
1867 	 * global software reset may not clear SPI interface.
1868 	 * Clean it up manually before global reset.
1869 	 */
1870 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1871 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1872 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1873 	msec_delay(50);
1874 
1875 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1876 	v &= ~AQ_FW_SOFTRESET_DIS;
1877 	v |= AQ_FW_SOFTRESET_RESET;
1878 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1879 
1880 	/* Kickstart. */
1881 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1882 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1883 	if (!sc->sc_fast_start_enabled)
1884 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1885 
1886 	/*
1887 	 * For the case SPI burst transaction was interrupted (by MCP reset
1888 	 * above), wait until it is completed by hardware.
1889 	 */
1890 	msec_delay(50);
1891 
1892 	/* MAC Kickstart */
1893 	if (!sc->sc_fast_start_enabled) {
1894 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1895 
1896 		uint32_t flb_status;
1897 		for (timo = 0; timo < 1000; timo++) {
1898 			flb_status = AQ_READ_REG(sc,
1899 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1900 			if (flb_status != 0)
1901 				break;
1902 			msec_delay(1);
1903 		}
1904 		if (flb_status == 0) {
1905 			aprint_error_dev(sc->sc_dev,
1906 			    "FLB> MAC kickstart failed: timed out\n");
1907 			return ETIMEDOUT;
1908 		}
1909 		aprint_debug_dev(sc->sc_dev,
1910 		    "FLB> MAC kickstart done, %d ms\n", timo);
1911 		/* FW reset */
1912 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1913 		/*
1914 		 * Let Felicity hardware complete SMBUS transaction before
1915 		 * Global software reset.
1916 		 */
1917 		msec_delay(50);
1918 		sc->sc_fast_start_enabled = true;
1919 	}
1920 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1921 
1922 	/* PHY Kickstart: #undone */
1923 	global_software_reset(sc);
1924 
1925 	for (timo = 0; timo < 1000; timo++) {
1926 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1927 			break;
1928 		msec_delay(10);
1929 	}
1930 	if (timo >= 1000) {
1931 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1932 		return ETIMEDOUT;
1933 	}
1934 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1935 	return 0;
1936 
1937 }
1938 
1939 static int
1940 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1941 {
1942 	if (sc->sc_rbl_enabled)
1943 		return mac_soft_reset_rbl(sc, mode);
1944 
1945 	if (mode != NULL)
1946 		*mode = FW_BOOT_MODE_FLB;
1947 	return mac_soft_reset_flb(sc);
1948 }
1949 
1950 static int
1951 aq_fw_read_version(struct aq_softc *sc)
1952 {
1953 	int i, error = EBUSY;
1954 #define MAC_FW_START_TIMEOUT_MS	10000
1955 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1956 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1957 		if (sc->sc_fw_version != 0) {
1958 			error = 0;
1959 			break;
1960 		}
1961 		delay(1000);
1962 	}
1963 	return error;
1964 }
1965 
1966 static int
1967 aq_fw_reset(struct aq_softc *sc)
1968 {
1969 	uint32_t ver, v, bootExitCode;
1970 	int i, error;
1971 
1972 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1973 
1974 	for (i = 1000; i > 0; i--) {
1975 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1976 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1977 		if (v != 0x06000000 || bootExitCode != 0)
1978 			break;
1979 	}
1980 	if (i <= 0) {
1981 		aprint_error_dev(sc->sc_dev,
1982 		    "F/W reset failed. Neither RBL nor FLB started\n");
1983 		return ETIMEDOUT;
1984 	}
1985 	sc->sc_rbl_enabled = (bootExitCode != 0);
1986 
1987 	/*
1988 	 * Having FW version 0 is an indicator that cold start
1989 	 * is in progress. This means two things:
1990 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1991 	 * 2) Driver may skip reset sequence and save time.
1992 	 */
1993 	if (sc->sc_fast_start_enabled && (ver != 0)) {
1994 		error = aq_fw_read_version(sc);
1995 		/* Skip reset as it just completed */
1996 		if (error == 0)
1997 			return 0;
1998 	}
1999 
2000 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2001 	error = mac_soft_reset(sc, &mode);
2002 	if (error != 0) {
2003 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2004 		return error;
2005 	}
2006 
2007 	switch (mode) {
2008 	case FW_BOOT_MODE_FLB:
2009 		aprint_debug_dev(sc->sc_dev,
2010 		    "FLB> F/W successfully loaded from flash.\n");
2011 		sc->sc_flash_present = true;
2012 		return aq_fw_read_version(sc);
2013 	case FW_BOOT_MODE_RBL_FLASH:
2014 		aprint_debug_dev(sc->sc_dev,
2015 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2016 		sc->sc_flash_present = true;
2017 		return aq_fw_read_version(sc);
2018 	case FW_BOOT_MODE_UNKNOWN:
2019 		aprint_error_dev(sc->sc_dev,
2020 		    "F/W bootload error: unknown bootloader type\n");
2021 		return ENOTSUP;
2022 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2023 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2024 		break;
2025 	}
2026 
2027 	/*
2028 	 * XXX: TODO: add support Host Boot
2029 	 */
2030 	aprint_error_dev(sc->sc_dev,
2031 	    "RBL> F/W Host Bootload not implemented\n");
2032 	return ENOTSUP;
2033 }
2034 
2035 static int
2036 aq_hw_reset(struct aq_softc *sc)
2037 {
2038 	int error;
2039 
2040 	/* disable irq */
2041 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2042 
2043 	/* apply */
2044 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2045 
2046 	/* wait ack 10 times by 1ms */
2047 	WAIT_FOR(
2048 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2049 	    1000, 10, &error);
2050 	if (error != 0) {
2051 		aprint_error_dev(sc->sc_dev,
2052 		    "atlantic: IRQ reset failed: %d\n", error);
2053 		return error;
2054 	}
2055 
2056 	return sc->sc_fw_ops->reset(sc);
2057 }
2058 
2059 static int
2060 aq_hw_init_ucp(struct aq_softc *sc)
2061 {
2062 	int timo;
2063 
2064 	if (FW_VERSION_MAJOR(sc) == 1) {
2065 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2066 			uint32_t data;
2067 			cprng_fast(&data, sizeof(data));
2068 			data &= 0xfefefefe;
2069 			data |= 0x02020202;
2070 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2071 		}
2072 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2073 	}
2074 
2075 	for (timo = 100; timo > 0; timo--) {
2076 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2077 		if (sc->sc_mbox_addr != 0)
2078 			break;
2079 		delay(1000);
2080 	}
2081 
2082 #define AQ_FW_MIN_VERSION	0x01050006
2083 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2084 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2085 		aprint_error_dev(sc->sc_dev,
2086 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2087 		    " or later required, this is %d.%d.%d\n",
2088 		    FW_VERSION_MAJOR(sc),
2089 		    FW_VERSION_MINOR(sc),
2090 		    FW_VERSION_BUILD(sc));
2091 		return ENOTSUP;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static int
2098 aq_fw_version_init(struct aq_softc *sc)
2099 {
2100 	int error = 0;
2101 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2102 
2103 	if (FW_VERSION_MAJOR(sc) == 1) {
2104 		sc->sc_fw_ops = &aq_fw1x_ops;
2105 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2106 		sc->sc_fw_ops = &aq_fw2x_ops;
2107 	} else {
2108 		aprint_error_dev(sc->sc_dev,
2109 		    "Unsupported F/W version %d.%d.%d\n",
2110 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2111 		    FW_VERSION_BUILD(sc));
2112 		return ENOTSUP;
2113 	}
2114 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2115 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2116 
2117 	/* detect revision */
2118 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2119 	switch (hwrev & 0x0000000f) {
2120 	case 0x01:
2121 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2122 		    fw_vers);
2123 		sc->sc_features |= FEATURES_REV_A0 |
2124 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2125 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2126 		break;
2127 	case 0x02:
2128 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2129 		    fw_vers);
2130 		sc->sc_features |= FEATURES_REV_B0 |
2131 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2132 		    FEATURES_TPO2 | FEATURES_RPF2;
2133 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2134 		break;
2135 	case 0x0A:
2136 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2137 		    fw_vers);
2138 		sc->sc_features |= FEATURES_REV_B1 |
2139 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2140 		    FEATURES_TPO2 | FEATURES_RPF2;
2141 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2142 		break;
2143 	default:
2144 		aprint_error_dev(sc->sc_dev,
2145 		    "Unknown revision (0x%08x)\n", hwrev);
2146 		sc->sc_features = 0;
2147 		sc->sc_max_mtu = ETHERMTU;
2148 		error = ENOTSUP;
2149 		break;
2150 	}
2151 	return error;
2152 }
2153 
2154 static int
2155 fw1x_reset(struct aq_softc *sc)
2156 {
2157 	struct aq_mailbox_header mbox;
2158 	const int retryCount = 1000;
2159 	uint32_t tid0;
2160 	int i;
2161 
2162 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2163 
2164 	for (i = 0; i < retryCount; ++i) {
2165 		/*
2166 		 * Read the beginning of Statistics structure to capture
2167 		 * the Transaction ID.
2168 		 */
2169 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2170 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2171 
2172 		/* Successfully read the stats. */
2173 		if (tid0 == ~0U) {
2174 			/* We have read the initial value. */
2175 			tid0 = mbox.transaction_id;
2176 			continue;
2177 		} else if (mbox.transaction_id != tid0) {
2178 			/*
2179 			 * Compare transaction ID to initial value.
2180 			 * If it's different means f/w is alive.
2181 			 * We're done.
2182 			 */
2183 			return 0;
2184 		}
2185 
2186 		/*
2187 		 * Transaction ID value haven't changed since last time.
2188 		 * Try reading the stats again.
2189 		 */
2190 		delay(10);
2191 	}
2192 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2193 	return EBUSY;
2194 }
2195 
2196 static int
2197 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2198     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2199 {
2200 	uint32_t mpictrl = 0;
2201 	uint32_t mpispeed = 0;
2202 
2203 	if (speed & AQ_LINK_10G)
2204 		mpispeed |= FW1X_CTRL_10G;
2205 	if (speed & AQ_LINK_5G)
2206 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2207 	if (speed & AQ_LINK_2G5)
2208 		mpispeed |= FW1X_CTRL_2G5;
2209 	if (speed & AQ_LINK_1G)
2210 		mpispeed |= FW1X_CTRL_1G;
2211 	if (speed & AQ_LINK_100M)
2212 		mpispeed |= FW1X_CTRL_100M;
2213 
2214 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2215 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2216 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2217 	return 0;
2218 }
2219 
2220 static int
2221 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2222     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2223 {
2224 	uint32_t mpistate, mpi_speed;
2225 	aq_link_speed_t speed = AQ_LINK_NONE;
2226 
2227 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2228 
2229 	if (modep != NULL)
2230 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2231 
2232 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2233 	if (mpi_speed & FW1X_CTRL_10G)
2234 		speed = AQ_LINK_10G;
2235 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2236 		speed = AQ_LINK_5G;
2237 	else if (mpi_speed & FW1X_CTRL_2G5)
2238 		speed = AQ_LINK_2G5;
2239 	else if (mpi_speed & FW1X_CTRL_1G)
2240 		speed = AQ_LINK_1G;
2241 	else if (mpi_speed & FW1X_CTRL_100M)
2242 		speed = AQ_LINK_100M;
2243 
2244 	if (speedp != NULL)
2245 		*speedp = speed;
2246 
2247 	if (fcp != NULL)
2248 		*fcp = AQ_FC_NONE;
2249 
2250 	if (eeep != NULL)
2251 		*eeep = AQ_EEE_DISABLE;
2252 
2253 	return 0;
2254 }
2255 
2256 static int
2257 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2258 {
2259 	int error;
2260 
2261 	error = aq_fw_downld_dwords(sc,
2262 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2263 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2264 	if (error < 0) {
2265 		device_printf(sc->sc_dev,
2266 		    "fw1x> download statistics data FAILED, error %d", error);
2267 		return error;
2268 	}
2269 
2270 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2271 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2272 	return 0;
2273 }
2274 
2275 static int
2276 fw2x_reset(struct aq_softc *sc)
2277 {
2278 	fw2x_capabilities_t caps = { 0 };
2279 	int error;
2280 
2281 	error = aq_fw_downld_dwords(sc,
2282 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2283 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2284 	if (error != 0) {
2285 		aprint_error_dev(sc->sc_dev,
2286 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2287 		    error);
2288 		return error;
2289 	}
2290 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2291 
2292 	char buf[256];
2293 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2294 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2295 
2296 	return 0;
2297 }
2298 
2299 static int
2300 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2301     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2302 {
2303 	uint64_t mpi_ctrl;
2304 	int error = 0;
2305 
2306 	AQ_MPI_LOCK(sc);
2307 
2308 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2309 
2310 	switch (mode) {
2311 	case MPI_INIT:
2312 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2313 		if (speed & AQ_LINK_10G)
2314 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2315 		if (speed & AQ_LINK_5G)
2316 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2317 		if (speed & AQ_LINK_2G5)
2318 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2319 		if (speed & AQ_LINK_1G)
2320 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2321 		if (speed & AQ_LINK_100M)
2322 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2323 
2324 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2325 
2326 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2327 		if (eee == AQ_EEE_ENABLE)
2328 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2329 
2330 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2331 		if (fc & AQ_FC_RX)
2332 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2333 		if (fc & AQ_FC_TX)
2334 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2335 		break;
2336 	case MPI_DEINIT:
2337 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2338 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2339 		break;
2340 	default:
2341 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2342 		error =  EINVAL;
2343 		goto failure;
2344 	}
2345 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2346 
2347  failure:
2348 	AQ_MPI_UNLOCK(sc);
2349 	return error;
2350 }
2351 
2352 static int
2353 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2354     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2355 {
2356 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2357 
2358 	if (modep != NULL) {
2359 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2360 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2361 			*modep = MPI_INIT;
2362 		else
2363 			*modep = MPI_DEINIT;
2364 	}
2365 
2366 	aq_link_speed_t speed = AQ_LINK_NONE;
2367 	if (mpi_state & FW2X_CTRL_RATE_10G)
2368 		speed = AQ_LINK_10G;
2369 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2370 		speed = AQ_LINK_5G;
2371 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2372 		speed = AQ_LINK_2G5;
2373 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2374 		speed = AQ_LINK_1G;
2375 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2376 		speed = AQ_LINK_100M;
2377 
2378 	if (speedp != NULL)
2379 		*speedp = speed;
2380 
2381 	aq_link_fc_t fc = AQ_FC_NONE;
2382 	if (mpi_state & FW2X_CTRL_PAUSE)
2383 		fc |= AQ_FC_RX;
2384 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2385 		fc |= AQ_FC_TX;
2386 	if (fcp != NULL)
2387 		*fcp = fc;
2388 
2389 	/* XXX: TODO: EEE */
2390 	if (eeep != NULL)
2391 		*eeep = AQ_EEE_DISABLE;
2392 
2393 	return 0;
2394 }
2395 
2396 static int
2397 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2398     uint32_t timeout_ms, uint32_t try_count)
2399 {
2400 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2401 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2402 	int error;
2403 
2404 	/* First, check that control and state values are consistent */
2405 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2406 		device_printf(sc->sc_dev,
2407 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2408 		    " are not consistent for mask %#llx!\n",
2409 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2410 		    (unsigned long long)mask);
2411 		return EINVAL;
2412 	}
2413 
2414 	/* Invert bits (toggle) in control register */
2415 	mpi_ctrl ^= mask;
2416 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2417 
2418 	/* Clear all bits except masked */
2419 	mpi_ctrl &= mask;
2420 
2421 	/* Wait for FW reflecting change in state register */
2422 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2423 	    1000 * timeout_ms, try_count, &error);
2424 	if (error != 0) {
2425 		device_printf(sc->sc_dev,
2426 		    "f/w2x> timeout while waiting for response"
2427 		    " in state register for bit %#llx!",
2428 		    (unsigned long long)mask);
2429 		return error;
2430 	}
2431 	return 0;
2432 }
2433 
2434 static int
2435 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2436 {
2437 	int error;
2438 
2439 	AQ_MPI_LOCK(sc);
2440 	/* Say to F/W to update the statistics */
2441 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2442 	if (error != 0) {
2443 		device_printf(sc->sc_dev,
2444 		    "fw2x> statistics update error %d\n", error);
2445 		goto failure;
2446 	}
2447 
2448 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2449 	error = aq_fw_downld_dwords(sc,
2450 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2451 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2452 	if (error != 0) {
2453 		device_printf(sc->sc_dev,
2454 		    "fw2x> download statistics data FAILED, error %d", error);
2455 		goto failure;
2456 	}
2457 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2458 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2459 
2460  failure:
2461 	AQ_MPI_UNLOCK(sc);
2462 	return error;
2463 }
2464 
2465 #if NSYSMON_ENVSYS > 0
2466 static int
2467 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2468 {
2469 	int error;
2470 	uint32_t value, celsius;
2471 
2472 	AQ_MPI_LOCK(sc);
2473 
2474 	/* Say to F/W to update the temperature */
2475 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2476 	if (error != 0)
2477 		goto failure;
2478 
2479 	error = aq_fw_downld_dwords(sc,
2480 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2481 	    &value, sizeof(value) / sizeof(uint32_t));
2482 	if (error != 0)
2483 		goto failure;
2484 
2485 	/* 1/256 decrees C to microkelvin */
2486 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2487 	if (celsius == 0) {
2488 		error = EIO;
2489 		goto failure;
2490 	}
2491 	*temp = celsius * (1000000 / 256) + 273150000;
2492 
2493  failure:
2494 	AQ_MPI_UNLOCK(sc);
2495 	return 0;
2496 }
2497 #endif
2498 
2499 static int
2500 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2501     uint32_t cnt)
2502 {
2503 	uint32_t v;
2504 	int error = 0;
2505 
2506 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2507 	if (error != 0) {
2508 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2509 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2510 		if (v == 0) {
2511 			device_printf(sc->sc_dev,
2512 			    "%s:%d: timeout\n", __func__, __LINE__);
2513 			return ETIMEDOUT;
2514 		}
2515 	}
2516 
2517 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2518 
2519 	error = 0;
2520 	for (; cnt > 0 && error == 0; cnt--) {
2521 		/* execute mailbox interface */
2522 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2523 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2524 		if (sc->sc_features & FEATURES_REV_B1) {
2525 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2526 			    1, 1000, &error);
2527 		} else {
2528 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2529 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2530 			    1, 1000, &error);
2531 		}
2532 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2533 		addr += sizeof(uint32_t);
2534 	}
2535 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2536 
2537 	if (error != 0)
2538 		device_printf(sc->sc_dev,
2539 		    "%s:%d: timeout\n", __func__, __LINE__);
2540 
2541 	return error;
2542 }
2543 
2544 /* read my mac address */
2545 static int
2546 aq_get_mac_addr(struct aq_softc *sc)
2547 {
2548 	uint32_t mac_addr[2];
2549 	uint32_t efuse_shadow_addr;
2550 	int err;
2551 
2552 	efuse_shadow_addr = 0;
2553 	if (FW_VERSION_MAJOR(sc) >= 2)
2554 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2555 	else
2556 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2557 
2558 	if (efuse_shadow_addr == 0) {
2559 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2560 		return ENXIO;
2561 	}
2562 
2563 	memset(mac_addr, 0, sizeof(mac_addr));
2564 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2565 	    mac_addr, __arraycount(mac_addr));
2566 	if (err < 0)
2567 		return err;
2568 
2569 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2570 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2571 		return ENXIO;
2572 	}
2573 
2574 	mac_addr[0] = htobe32(mac_addr[0]);
2575 	mac_addr[1] = htobe32(mac_addr[1]);
2576 
2577 	memcpy(sc->sc_enaddr.ether_addr_octet,
2578 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2579 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2580 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2581 
2582 	return 0;
2583 }
2584 
2585 /* set multicast filter. index 0 for own address */
2586 static int
2587 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2588 {
2589 	uint32_t h, l;
2590 
2591 	if (index >= AQ_HW_MAC_NUM)
2592 		return EINVAL;
2593 
2594 	if (enaddr == NULL) {
2595 		/* disable */
2596 		AQ_WRITE_REG_BIT(sc,
2597 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2598 		return 0;
2599 	}
2600 
2601 	h = (enaddr[0] <<  8) | (enaddr[1]);
2602 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2603 	    (enaddr[4] <<  8) | (enaddr[5]);
2604 
2605 	/* disable, set, and enable */
2606 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2607 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2608 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2609 	    RPF_L2UC_MSW_MACADDR_HI, h);
2610 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2611 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2612 
2613 	return 0;
2614 }
2615 
2616 static int
2617 aq_set_capability(struct aq_softc *sc)
2618 {
2619 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2620 	int ip4csum_tx =
2621 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2622 	int ip4csum_rx =
2623 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2624 	int l4csum_tx = ((ifp->if_capenable &
2625 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2626 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2627 	int l4csum_rx =
2628 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2629 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2630 	uint32_t lso =
2631 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2632 	   0 : 0xffffffff;
2633 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2634 	    0 : 0xffffffff;
2635 	uint32_t i, v;
2636 
2637 	/* TX checksums offloads*/
2638 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2639 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2640 
2641 	/* RX checksums offloads*/
2642 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2643 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2644 
2645 	/* LSO offloads*/
2646 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2647 
2648 #define AQ_B0_LRO_RXD_MAX	16
2649 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2650 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2651 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2652 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2653 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2654 		    RPO_LRO_LDES_MAX_MASK(i), v);
2655 	}
2656 
2657 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2658 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2659 	    RPO_LRO_INACTIVE_IVAL, 0);
2660 	/*
2661 	 * the LRO timebase divider is 5 uS (0x61a),
2662 	 * to get a maximum coalescing interval of 250 uS,
2663 	 * we need to multiply by 50(0x32) to get
2664 	 * the default value 250 uS
2665 	 */
2666 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2667 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2668 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2669 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2670 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2671 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2672 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2673 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2674 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2675 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2676 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2677 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2678 
2679 	return 0;
2680 }
2681 
2682 static int
2683 aq_set_filter(struct aq_softc *sc)
2684 {
2685 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2686 	struct ethercom *ec = &sc->sc_ethercom;
2687 	struct ether_multi *enm;
2688 	struct ether_multistep step;
2689 	int idx, error = 0;
2690 
2691 	if (ifp->if_flags & IFF_PROMISC) {
2692 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2693 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2694 		ec->ec_flags |= ETHER_F_ALLMULTI;
2695 		goto done;
2696 	}
2697 
2698 	/* clear all table */
2699 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2700 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2701 			continue;
2702 		aq_set_mac_addr(sc, idx, NULL);
2703 	}
2704 
2705 	/* don't accept all multicast */
2706 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2707 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2708 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2709 	    RPF_MCAST_FILTER_EN, 0);
2710 
2711 	idx = 0;
2712 	ETHER_LOCK(ec);
2713 	ETHER_FIRST_MULTI(step, ec, enm);
2714 	while (enm != NULL) {
2715 		if (idx == AQ_HW_MAC_OWN)
2716 			idx++;
2717 
2718 		if ((idx >= AQ_HW_MAC_NUM) ||
2719 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2720 			/*
2721 			 * too many filters.
2722 			 * fallback to accept all multicast addresses.
2723 			 */
2724 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2725 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2726 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2727 			    RPF_MCAST_FILTER_EN, 1);
2728 			ec->ec_flags |= ETHER_F_ALLMULTI;
2729 			ETHER_UNLOCK(ec);
2730 			goto done;
2731 		}
2732 
2733 		/* add a filter */
2734 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2735 
2736 		ETHER_NEXT_MULTI(step, enm);
2737 	}
2738 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2739 	ETHER_UNLOCK(ec);
2740 
2741  done:
2742 	return error;
2743 }
2744 
2745 static int
2746 aq_ifmedia_change(struct ifnet * const ifp)
2747 {
2748 	struct aq_softc *sc = ifp->if_softc;
2749 	aq_link_speed_t rate = AQ_LINK_NONE;
2750 	aq_link_fc_t fc = AQ_FC_NONE;
2751 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2752 
2753 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2754 		return EINVAL;
2755 
2756 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2757 	case IFM_AUTO:
2758 		rate = AQ_LINK_AUTO;
2759 		break;
2760 	case IFM_NONE:
2761 		rate = AQ_LINK_NONE;
2762 		break;
2763 	case IFM_100_TX:
2764 		rate = AQ_LINK_100M;
2765 		break;
2766 	case IFM_1000_T:
2767 		rate = AQ_LINK_1G;
2768 		break;
2769 	case IFM_2500_T:
2770 		rate = AQ_LINK_2G5;
2771 		break;
2772 	case IFM_5000_T:
2773 		rate = AQ_LINK_5G;
2774 		break;
2775 	case IFM_10G_T:
2776 		rate = AQ_LINK_10G;
2777 		break;
2778 	default:
2779 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2780 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2781 		return ENODEV;
2782 	}
2783 
2784 	if (sc->sc_media.ifm_media & IFM_FLOW)
2785 		fc = AQ_FC_ALL;
2786 
2787 	/* XXX: todo EEE */
2788 
2789 	/* re-initialize hardware with new parameters */
2790 	aq_set_linkmode(sc, rate, fc, eee);
2791 
2792 	return 0;
2793 }
2794 
2795 static void
2796 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2797 {
2798 	struct aq_softc *sc = ifp->if_softc;
2799 
2800 	/* update ifm_active */
2801 	ifmr->ifm_active = IFM_ETHER;
2802 	if (sc->sc_link_fc & AQ_FC_RX)
2803 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2804 	if (sc->sc_link_fc & AQ_FC_TX)
2805 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2806 
2807 	switch (sc->sc_link_rate) {
2808 	case AQ_LINK_100M:
2809 		/* XXX: need to detect fulldup or halfdup */
2810 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2811 		break;
2812 	case AQ_LINK_1G:
2813 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2814 		break;
2815 	case AQ_LINK_2G5:
2816 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2817 		break;
2818 	case AQ_LINK_5G:
2819 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2820 		break;
2821 	case AQ_LINK_10G:
2822 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2823 		break;
2824 	default:
2825 		ifmr->ifm_active |= IFM_NONE;
2826 		break;
2827 	}
2828 
2829 	/* update ifm_status */
2830 	ifmr->ifm_status = IFM_AVALID;
2831 	if (sc->sc_link_rate != AQ_LINK_NONE)
2832 		ifmr->ifm_status |= IFM_ACTIVE;
2833 }
2834 
2835 static void
2836 aq_initmedia(struct aq_softc *sc)
2837 {
2838 #define IFMEDIA_ETHER_ADD(sc, media)	\
2839 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2840 
2841 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2842 	if (sc->sc_available_rates & AQ_LINK_100M) {
2843 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2844 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2845 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2846 	}
2847 	if (sc->sc_available_rates & AQ_LINK_1G) {
2848 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2849 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2850 	}
2851 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2852 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2853 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2854 	}
2855 	if (sc->sc_available_rates & AQ_LINK_5G) {
2856 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2857 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2858 	}
2859 	if (sc->sc_available_rates & AQ_LINK_10G) {
2860 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2861 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2862 	}
2863 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2864 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2865 
2866 	/* default: auto without flowcontrol */
2867 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2868 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2869 }
2870 
2871 static int
2872 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2873     aq_link_eee_t eee)
2874 {
2875 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2876 }
2877 
2878 static int
2879 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2880    aq_link_eee_t *eee)
2881 {
2882 	aq_hw_fw_mpi_state_t mode;
2883 	int error;
2884 
2885 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2886 	if (error != 0)
2887 		return error;
2888 	if (mode != MPI_INIT)
2889 		return ENXIO;
2890 
2891 	return 0;
2892 }
2893 
2894 static void
2895 aq_hw_init_tx_path(struct aq_softc *sc)
2896 {
2897 	/* Tx TC/RSS number config */
2898 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2899 
2900 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2901 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2902 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2903 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2904 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2905 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2906 
2907 	/* misc */
2908 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2909 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2910 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2911 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2912 
2913 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2914 }
2915 
2916 static void
2917 aq_hw_init_rx_path(struct aq_softc *sc)
2918 {
2919 	int i;
2920 
2921 	/* clear setting */
2922 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2923 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2924 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2925 	for (i = 0; i < 32; i++) {
2926 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2927 		   RPF_ETHERTYPE_FILTER_EN, 0);
2928 	}
2929 
2930 	if (sc->sc_rss_enable) {
2931 		/* Rx TC/RSS number config */
2932 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2933 
2934 		/* Rx flow control */
2935 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2936 
2937 		/* RSS Ring selection */
2938 		switch (sc->sc_nqueues) {
2939 		case 2:
2940 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2941 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2942 			break;
2943 		case 4:
2944 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2945 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2946 			break;
2947 		case 8:
2948 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2949 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2950 			break;
2951 		}
2952 	}
2953 
2954 	/* L2 and Multicast filters */
2955 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2956 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2957 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2958 		    RPF_ACTION_HOST);
2959 	}
2960 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2961 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2962 
2963 	/* Vlan filters */
2964 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2965 	    ETHERTYPE_QINQ);
2966 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2967 	    ETHERTYPE_VLAN);
2968 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2969 
2970 	if (sc->sc_features & FEATURES_REV_B) {
2971 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2972 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2973 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2974 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2975 	}
2976 
2977 	/* misc */
2978 	if (sc->sc_features & FEATURES_RPF2)
2979 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2980 	else
2981 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2982 
2983 	/*
2984 	 * XXX: RX_TCP_RSS_HASH_REG:
2985 	 *  linux   set 0x000f0000
2986 	 *  freebsd set 0x000f001e
2987 	 */
2988 	/* RSS hash type set for IP/TCP */
2989 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2990 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2991 
2992 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2993 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2994 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2995 
2996 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2997 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2998 }
2999 
3000 static void
3001 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3002 {
3003 	int i;
3004 
3005 	if (sc->sc_intr_moderation_enable) {
3006 		unsigned int tx_min, rx_min;	/* 0-255 */
3007 		unsigned int tx_max, rx_max;	/* 0-511? */
3008 
3009 		switch (sc->sc_link_rate) {
3010 		case AQ_LINK_100M:
3011 			tx_min = 0x4f;
3012 			tx_max = 0xff;
3013 			rx_min = 0x04;
3014 			rx_max = 0x50;
3015 			break;
3016 		case AQ_LINK_1G:
3017 		default:
3018 			tx_min = 0x4f;
3019 			tx_max = 0xff;
3020 			rx_min = 0x30;
3021 			rx_max = 0x80;
3022 			break;
3023 		case AQ_LINK_2G5:
3024 			tx_min = 0x4f;
3025 			tx_max = 0xff;
3026 			rx_min = 0x18;
3027 			rx_max = 0xe0;
3028 			break;
3029 		case AQ_LINK_5G:
3030 			tx_min = 0x4f;
3031 			tx_max = 0xff;
3032 			rx_min = 0x0c;
3033 			rx_max = 0x70;
3034 			break;
3035 		case AQ_LINK_10G:
3036 			tx_min = 0x4f;
3037 			tx_max = 0x1ff;
3038 			rx_min = 0x06;	/* freebsd use 80 */
3039 			rx_max = 0x38;	/* freebsd use 120 */
3040 			break;
3041 		}
3042 
3043 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3044 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3045 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3046 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3047 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3048 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3049 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3050 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3051 
3052 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3053 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3054 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3055 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3056 			    TX_INTR_MODERATION_CTL_EN);
3057 		}
3058 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3059 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3060 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3061 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3062 			    RX_INTR_MODERATION_CTL_EN);
3063 		}
3064 
3065 	} else {
3066 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3067 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3068 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3069 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3070 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3071 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3072 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3073 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3074 
3075 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3076 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3077 		}
3078 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3079 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3080 		}
3081 	}
3082 }
3083 
3084 static void
3085 aq_hw_qos_set(struct aq_softc *sc)
3086 {
3087 	uint32_t tc = 0;
3088 	uint32_t buff_size;
3089 
3090 	/* TPS Descriptor rate init */
3091 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3092 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3093 
3094 	/* TPS VM init */
3095 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3096 
3097 	/* TPS TC credits init */
3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3099 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3100 
3101 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3102 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3103 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3104 	    TPS_DATA_TCT_WEIGHT, 0x64);
3105 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3106 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3107 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3108 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3109 
3110 	/* Tx buf size */
3111 	tc = 0;
3112 	buff_size = AQ_HW_TXBUF_MAX;
3113 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3114 	    buff_size);
3115 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3116 	    (buff_size * (1024 / 32) * 66) / 100);
3117 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3118 	    (buff_size * (1024 / 32) * 50) / 100);
3119 
3120 	/* QoS Rx buf size per TC */
3121 	tc = 0;
3122 	buff_size = AQ_HW_RXBUF_MAX;
3123 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3124 	    buff_size);
3125 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3126 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3127 	    (buff_size * (1024 / 32) * 66) / 100);
3128 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3129 	    (buff_size * (1024 / 32) * 50) / 100);
3130 
3131 	/* QoS 802.1p priority -> TC mapping */
3132 	int i_priority;
3133 	for (i_priority = 0; i_priority < 8; i_priority++) {
3134 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3135 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3136 	}
3137 }
3138 
3139 /* called once from aq_attach */
3140 static int
3141 aq_init_rss(struct aq_softc *sc)
3142 {
3143 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3144 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3145 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3146 	unsigned int i;
3147 	int error;
3148 
3149 	/* initialize rss key */
3150 	rss_getkey((uint8_t *)rss_key);
3151 
3152 	/* hash to ring table */
3153 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3154 		rss_table[i] = i % sc->sc_nqueues;
3155 	}
3156 
3157 	/*
3158 	 * set rss key
3159 	 */
3160 	for (i = 0; i < __arraycount(rss_key); i++) {
3161 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3162 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3163 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3164 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3165 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3166 		    RPF_RSS_KEY_WR_EN, 1);
3167 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3168 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3169 		if (error != 0) {
3170 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3171 			    __func__);
3172 			goto rss_set_timeout;
3173 		}
3174 	}
3175 
3176 	/*
3177 	 * set rss indirection table
3178 	 *
3179 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3180 	 * we'll make it by __BITMAP(3) macros.
3181 	 */
3182 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3183 	__BITMAP_ZERO(&bit3x64);
3184 
3185 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3186 	do {							\
3187 		if (val & 1) {					\
3188 			__BITMAP_SET((idx) * 3, (bitmap));	\
3189 		} else {					\
3190 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3191 		}						\
3192 		if (val & 2) {					\
3193 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3194 		} else {					\
3195 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3196 		}						\
3197 		if (val & 4) {					\
3198 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3199 		} else {					\
3200 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3201 		}						\
3202 	} while (0 /* CONSTCOND */)
3203 
3204 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3205 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3206 	}
3207 
3208 	/* write 192bit data in steps of 16bit */
3209 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3210 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3211 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3212 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3213 		    RPF_RSS_REDIR_ADDR, i);
3214 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3215 		    RPF_RSS_REDIR_WR_EN, 1);
3216 
3217 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3218 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3219 		if (error != 0)
3220 			break;
3221 	}
3222 
3223  rss_set_timeout:
3224 	return error;
3225 }
3226 
3227 static void
3228 aq_hw_l3_filter_set(struct aq_softc *sc)
3229 {
3230 	int i;
3231 
3232 	/* clear all filter */
3233 	for (i = 0; i < 8; i++) {
3234 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3235 		    RPF_L3_FILTER_L4_EN, 0);
3236 	}
3237 }
3238 
3239 static void
3240 aq_set_vlan_filters(struct aq_softc *sc)
3241 {
3242 	struct ethercom *ec = &sc->sc_ethercom;
3243 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3244 	struct vlanid_list *vlanidp;
3245 	int i;
3246 
3247 	ETHER_LOCK(ec);
3248 
3249 	/* disable all vlan filters */
3250 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3251 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3252 
3253 	/* count VID */
3254 	i = 0;
3255 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3256 		i++;
3257 
3258 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3259 	    (ifp->if_flags & IFF_PROMISC) ||
3260 	    (i > RPF_VLAN_MAX_FILTERS)) {
3261 		/*
3262 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3263 		 * must receive all VID
3264 		 */
3265 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3266 		    RPF_VLAN_MODE_PROMISC, 1);
3267 		goto done;
3268 	}
3269 
3270 	/* receive only selected VID */
3271 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3272 	i = 0;
3273 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3274 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3275 		    RPF_VLAN_FILTER_EN, 1);
3276 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3277 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3278 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3279 		    RPF_VLAN_FILTER_RXQ, 0);
3280 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3281 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3282 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3283 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3284 		i++;
3285 	}
3286 
3287  done:
3288 	ETHER_UNLOCK(ec);
3289 }
3290 
3291 static int
3292 aq_hw_init(struct aq_softc *sc)
3293 {
3294 	uint32_t v;
3295 
3296 	/* Force limit MRRS on RDM/TDM to 2K */
3297 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3298 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3299 
3300 	/*
3301 	 * TX DMA total request limit. B0 hardware is not capable to
3302 	 * handle more than (8K-MRRS) incoming DMA data.
3303 	 * Value 24 in 256byte units
3304 	 */
3305 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3306 
3307 	aq_hw_init_tx_path(sc);
3308 	aq_hw_init_rx_path(sc);
3309 
3310 	aq_hw_interrupt_moderation_set(sc);
3311 
3312 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3313 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3314 
3315 	aq_hw_qos_set(sc);
3316 
3317 	/* Enable interrupt */
3318 	int irqmode;
3319 	if (sc->sc_msix)
3320 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3321 	else
3322 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3323 
3324 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3325 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3326 	    sc->sc_msix ? 1 : 0);
3327 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3328 
3329 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3330 
3331 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3332 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3333 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3334 	);
3335 
3336 	/* link interrupt */
3337 	if (!sc->sc_msix)
3338 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3339 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3340 	    __BIT(7) | sc->sc_linkstat_irq);
3341 
3342 	return 0;
3343 }
3344 
3345 static int
3346 aq_update_link_status(struct aq_softc *sc)
3347 {
3348 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3349 	aq_link_speed_t rate = AQ_LINK_NONE;
3350 	aq_link_fc_t fc = AQ_FC_NONE;
3351 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3352 	unsigned int speed;
3353 	int changed = 0;
3354 
3355 	aq_get_linkmode(sc, &rate, &fc, &eee);
3356 
3357 	if (sc->sc_link_rate != rate)
3358 		changed = 1;
3359 	if (sc->sc_link_fc != fc)
3360 		changed = 1;
3361 	if (sc->sc_link_eee != eee)
3362 		changed = 1;
3363 
3364 	if (changed) {
3365 		switch (rate) {
3366 		case AQ_LINK_100M:
3367 			speed = 100;
3368 			break;
3369 		case AQ_LINK_1G:
3370 			speed = 1000;
3371 			break;
3372 		case AQ_LINK_2G5:
3373 			speed = 2500;
3374 			break;
3375 		case AQ_LINK_5G:
3376 			speed = 5000;
3377 			break;
3378 		case AQ_LINK_10G:
3379 			speed = 10000;
3380 			break;
3381 		case AQ_LINK_NONE:
3382 		default:
3383 			speed = 0;
3384 			break;
3385 		}
3386 
3387 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3388 			/* link DOWN -> UP */
3389 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3390 			    speed);
3391 			if_link_state_change(ifp, LINK_STATE_UP);
3392 		} else if (rate == AQ_LINK_NONE) {
3393 			/* link UP -> DOWN */
3394 			device_printf(sc->sc_dev, "link is DOWN\n");
3395 			if_link_state_change(ifp, LINK_STATE_DOWN);
3396 		} else {
3397 			device_printf(sc->sc_dev,
3398 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3399 			    speed, fc, eee);
3400 		}
3401 
3402 		sc->sc_link_rate = rate;
3403 		sc->sc_link_fc = fc;
3404 		sc->sc_link_eee = eee;
3405 
3406 		/* update interrupt timing according to new link speed */
3407 		aq_hw_interrupt_moderation_set(sc);
3408 	}
3409 
3410 	return changed;
3411 }
3412 
3413 #ifdef AQ_EVENT_COUNTERS
3414 static void
3415 aq_update_statistics(struct aq_softc *sc)
3416 {
3417 	int prev = sc->sc_statistics_idx;
3418 	int cur = prev ^ 1;
3419 
3420 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3421 
3422 	/*
3423 	 * aq's internal statistics counter is 32bit.
3424 	 * cauculate delta, and add to evcount
3425 	 */
3426 #define ADD_DELTA(cur, prev, name)				\
3427 	do {							\
3428 		uint32_t n;					\
3429 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3430 		    sc->sc_statistics[prev].name);		\
3431 		if (n != 0) {					\
3432 			AQ_EVCNT_ADD(sc, name, n);		\
3433 		}						\
3434 	} while (/*CONSTCOND*/0);
3435 
3436 	ADD_DELTA(cur, prev, uprc);
3437 	ADD_DELTA(cur, prev, mprc);
3438 	ADD_DELTA(cur, prev, bprc);
3439 	ADD_DELTA(cur, prev, prc);
3440 	ADD_DELTA(cur, prev, erpr);
3441 	ADD_DELTA(cur, prev, uptc);
3442 	ADD_DELTA(cur, prev, mptc);
3443 	ADD_DELTA(cur, prev, bptc);
3444 	ADD_DELTA(cur, prev, ptc);
3445 	ADD_DELTA(cur, prev, erpt);
3446 	ADD_DELTA(cur, prev, mbtc);
3447 	ADD_DELTA(cur, prev, bbtc);
3448 	ADD_DELTA(cur, prev, mbrc);
3449 	ADD_DELTA(cur, prev, bbrc);
3450 	ADD_DELTA(cur, prev, ubrc);
3451 	ADD_DELTA(cur, prev, ubtc);
3452 	ADD_DELTA(cur, prev, dpc);
3453 	ADD_DELTA(cur, prev, cprc);
3454 
3455 	sc->sc_statistics_idx = cur;
3456 }
3457 #endif /* AQ_EVENT_COUNTERS */
3458 
3459 /* allocate and map one DMA block */
3460 static int
3461 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3462     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3463 {
3464 	int nsegs, error;
3465 
3466 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3467 	    1, &nsegs, 0)) != 0) {
3468 		aprint_error_dev(sc->sc_dev,
3469 		    "unable to allocate DMA buffer, error=%d\n", error);
3470 		goto fail_alloc;
3471 	}
3472 
3473 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3474 	    BUS_DMA_COHERENT)) != 0) {
3475 		aprint_error_dev(sc->sc_dev,
3476 		    "unable to map DMA buffer, error=%d\n", error);
3477 		goto fail_map;
3478 	}
3479 
3480 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3481 	    0, mapp)) != 0) {
3482 		aprint_error_dev(sc->sc_dev,
3483 		    "unable to create DMA map, error=%d\n", error);
3484 		goto fail_create;
3485 	}
3486 
3487 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3488 	    0)) != 0) {
3489 		aprint_error_dev(sc->sc_dev,
3490 		    "unable to load DMA map, error=%d\n", error);
3491 		goto fail_load;
3492 	}
3493 
3494 	*sizep = size;
3495 	return 0;
3496 
3497  fail_load:
3498 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3499 	*mapp = NULL;
3500  fail_create:
3501 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3502 	*addrp = NULL;
3503  fail_map:
3504 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3505 	memset(seg, 0, sizeof(*seg));
3506  fail_alloc:
3507 	*sizep = 0;
3508 	return error;
3509 }
3510 
3511 static void
3512 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3513     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3514 {
3515 	if (*mapp != NULL) {
3516 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3517 		*mapp = NULL;
3518 	}
3519 	if (*addrp != NULL) {
3520 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3521 		*addrp = NULL;
3522 	}
3523 	if (*sizep != 0) {
3524 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3525 		memset(seg, 0, sizeof(*seg));
3526 		*sizep = 0;
3527 	}
3528 }
3529 
3530 static int
3531 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3532 {
3533 	int i, error;
3534 
3535 	/* allocate tx descriptors */
3536 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3537 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3538 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3539 	if (error != 0)
3540 		return error;
3541 
3542 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3543 
3544 	/* fill tx ring with dmamap */
3545 	for (i = 0; i < AQ_TXD_NUM; i++) {
3546 #define AQ_MAXDMASIZE	(16 * 1024)
3547 #define AQ_NTXSEGS	32
3548 		/* XXX: TODO: error check */
3549 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3550 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3551 	}
3552 	return 0;
3553 }
3554 
3555 static void
3556 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3557 {
3558 	int i;
3559 
3560 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3561 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3562 
3563 	for (i = 0; i < AQ_TXD_NUM; i++) {
3564 		if (txring->txr_mbufs[i].dmamap != NULL) {
3565 			if (txring->txr_mbufs[i].m != NULL) {
3566 				bus_dmamap_unload(sc->sc_dmat,
3567 				    txring->txr_mbufs[i].dmamap);
3568 				m_freem(txring->txr_mbufs[i].m);
3569 				txring->txr_mbufs[i].m = NULL;
3570 			}
3571 			bus_dmamap_destroy(sc->sc_dmat,
3572 			    txring->txr_mbufs[i].dmamap);
3573 			txring->txr_mbufs[i].dmamap = NULL;
3574 		}
3575 	}
3576 }
3577 
3578 static int
3579 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3580 {
3581 	int i, error;
3582 
3583 	/* allocate rx descriptors */
3584 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3585 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3586 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3587 	if (error != 0)
3588 		return error;
3589 
3590 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3591 
3592 	/* fill rxring with dmamaps */
3593 	for (i = 0; i < AQ_RXD_NUM; i++) {
3594 		rxring->rxr_mbufs[i].m = NULL;
3595 		/* XXX: TODO: error check */
3596 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3597 		    &rxring->rxr_mbufs[i].dmamap);
3598 	}
3599 	return 0;
3600 }
3601 
3602 static void
3603 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3604 {
3605 	int i;
3606 
3607 	/* free all mbufs allocated for RX */
3608 	for (i = 0; i < AQ_RXD_NUM; i++) {
3609 		if (rxring->rxr_mbufs[i].m != NULL) {
3610 			bus_dmamap_unload(sc->sc_dmat,
3611 			    rxring->rxr_mbufs[i].dmamap);
3612 			m_freem(rxring->rxr_mbufs[i].m);
3613 			rxring->rxr_mbufs[i].m = NULL;
3614 		}
3615 	}
3616 }
3617 
3618 static void
3619 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3620 {
3621 	int i;
3622 
3623 	/* free all mbufs and dmamaps */
3624 	aq_rxdrain(sc, rxring);
3625 	for (i = 0; i < AQ_RXD_NUM; i++) {
3626 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3627 			bus_dmamap_destroy(sc->sc_dmat,
3628 			    rxring->rxr_mbufs[i].dmamap);
3629 			rxring->rxr_mbufs[i].dmamap = NULL;
3630 		}
3631 	}
3632 
3633 	/* free RX descriptor */
3634 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3635 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3636 }
3637 
3638 static void
3639 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3640     struct mbuf *m)
3641 {
3642 	int error;
3643 
3644 	/* if mbuf already exists, unload and free */
3645 	if (rxring->rxr_mbufs[idx].m != NULL) {
3646 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3647 		m_freem(rxring->rxr_mbufs[idx].m);
3648 		rxring->rxr_mbufs[idx].m = NULL;
3649 	}
3650 
3651 	rxring->rxr_mbufs[idx].m = m;
3652 
3653 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3654 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3655 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3656 	if (error) {
3657 		device_printf(sc->sc_dev,
3658 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3659 		panic("%s: unable to load rx DMA map. error=%d",
3660 		    __func__, error);
3661 	}
3662 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3663 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3664 }
3665 
3666 static inline void
3667 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3668 {
3669 	/* refill rxdesc, and sync */
3670 	rxring->rxr_rxdesc[idx].read.buf_addr =
3671 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3672 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3673 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3674 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3675 	    BUS_DMASYNC_PREWRITE);
3676 }
3677 
3678 static struct mbuf *
3679 aq_alloc_mbuf(void)
3680 {
3681 	struct mbuf *m;
3682 
3683 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3684 	if (m == NULL)
3685 		return NULL;
3686 
3687 	MCLGET(m, M_DONTWAIT);
3688 	if ((m->m_flags & M_EXT) == 0) {
3689 		m_freem(m);
3690 		return NULL;
3691 	}
3692 
3693 	return m;
3694 }
3695 
3696 /* allocate mbuf and unload dmamap */
3697 static int
3698 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3699 {
3700 	struct mbuf *m;
3701 
3702 	m = aq_alloc_mbuf();
3703 	if (m == NULL)
3704 		return ENOBUFS;
3705 
3706 	aq_rxring_setmbuf(sc, rxring, idx, m);
3707 	return 0;
3708 }
3709 
3710 static int
3711 aq_txrx_rings_alloc(struct aq_softc *sc)
3712 {
3713 	int n, error;
3714 
3715 	for (n = 0; n < sc->sc_nqueues; n++) {
3716 		sc->sc_queue[n].sc = sc;
3717 		sc->sc_queue[n].txring.txr_sc = sc;
3718 		sc->sc_queue[n].txring.txr_index = n;
3719 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3720 		    IPL_NET);
3721 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3722 		if (error != 0)
3723 			goto failure;
3724 
3725 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3726 		if (error != 0)
3727 			goto failure;
3728 
3729 		sc->sc_queue[n].rxring.rxr_sc = sc;
3730 		sc->sc_queue[n].rxring.rxr_index = n;
3731 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3732 		   IPL_NET);
3733 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3734 		if (error != 0)
3735 			break;
3736 	}
3737 
3738  failure:
3739 	return error;
3740 }
3741 
3742 static void
3743 aq_txrx_rings_free(struct aq_softc *sc)
3744 {
3745 	int n;
3746 
3747 	for (n = 0; n < sc->sc_nqueues; n++) {
3748 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3749 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3750 
3751 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3752 
3753 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3754 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3755 	}
3756 }
3757 
3758 static int
3759 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3760 {
3761 	int error = 0;
3762 	txring->txr_softint = NULL;
3763 
3764 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3765 	if (txring->txr_pcq == NULL) {
3766 		aprint_error_dev(sc->sc_dev,
3767 		    "unable to allocate pcq for TXring[%d]\n",
3768 		    txring->txr_index);
3769 		error = ENOMEM;
3770 		goto done;
3771 	}
3772 
3773 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3774 	    aq_deferred_transmit, txring);
3775 	if (txring->txr_softint == NULL) {
3776 		aprint_error_dev(sc->sc_dev,
3777 		    "unable to establish softint for TXring[%d]\n",
3778 		    txring->txr_index);
3779 		error = ENOENT;
3780 	}
3781 
3782  done:
3783 	return error;
3784 }
3785 
3786 static void
3787 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3788 {
3789 	struct mbuf *m;
3790 
3791 	if (txring->txr_softint != NULL) {
3792 		softint_disestablish(txring->txr_softint);
3793 		txring->txr_softint = NULL;
3794 	}
3795 
3796 	if (txring->txr_pcq != NULL) {
3797 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3798 			m_freem(m);
3799 		pcq_destroy(txring->txr_pcq);
3800 		txring->txr_pcq = NULL;
3801 	}
3802 }
3803 
3804 #if NSYSMON_ENVSYS > 0
3805 static void
3806 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3807 {
3808 	struct aq_softc *sc;
3809 	uint32_t temp;
3810 	int error;
3811 
3812 	sc = sme->sme_cookie;
3813 
3814 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3815 	if (error == 0) {
3816 		edata->value_cur = temp;
3817 		edata->state = ENVSYS_SVALID;
3818 	} else {
3819 		edata->state = ENVSYS_SINVALID;
3820 	}
3821 }
3822 #endif
3823 
3824 static void
3825 aq_tick(void *arg)
3826 {
3827 	struct aq_softc *sc = arg;
3828 
3829 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3830 		sc->sc_detect_linkstat = false;
3831 		aq_update_link_status(sc);
3832 	}
3833 
3834 #ifdef AQ_EVENT_COUNTERS
3835 	if (sc->sc_poll_statistics)
3836 		aq_update_statistics(sc);
3837 #endif
3838 
3839 	if (sc->sc_poll_linkstat
3840 #ifdef AQ_EVENT_COUNTERS
3841 	    || sc->sc_poll_statistics
3842 #endif
3843 	    ) {
3844 		callout_schedule(&sc->sc_tick_ch, hz);
3845 	}
3846 }
3847 
3848 /* interrupt enable/disable */
3849 static void
3850 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3851 {
3852 	uint32_t imask = 0;
3853 	int i;
3854 
3855 	if (txrx) {
3856 		for (i = 0; i < sc->sc_nqueues; i++) {
3857 			imask |= __BIT(sc->sc_tx_irq[i]);
3858 			imask |= __BIT(sc->sc_rx_irq[i]);
3859 		}
3860 	}
3861 
3862 	if (link)
3863 		imask |= __BIT(sc->sc_linkstat_irq);
3864 
3865 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3866 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3867 }
3868 
3869 static int
3870 aq_legacy_intr(void *arg)
3871 {
3872 	struct aq_softc *sc = arg;
3873 	uint32_t status;
3874 	int nintr = 0;
3875 
3876 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3877 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3878 
3879 	if (status & __BIT(sc->sc_linkstat_irq)) {
3880 		sc->sc_detect_linkstat = true;
3881 		callout_schedule(&sc->sc_tick_ch, 0);
3882 		nintr++;
3883 	}
3884 
3885 	if (status & __BIT(sc->sc_rx_irq[0])) {
3886 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3887 	}
3888 
3889 	if (status & __BIT(sc->sc_tx_irq[0])) {
3890 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3891 	}
3892 
3893 	return nintr;
3894 }
3895 
3896 static int
3897 aq_txrx_intr(void *arg)
3898 {
3899 	struct aq_queue *queue = arg;
3900 	struct aq_softc *sc = queue->sc;
3901 	struct aq_txring *txring = &queue->txring;
3902 	struct aq_rxring *rxring = &queue->rxring;
3903 	uint32_t status;
3904 	int nintr = 0;
3905 	int txringidx, rxringidx, txirq, rxirq;
3906 
3907 	txringidx = txring->txr_index;
3908 	rxringidx = rxring->rxr_index;
3909 	txirq = sc->sc_tx_irq[txringidx];
3910 	rxirq = sc->sc_rx_irq[rxringidx];
3911 
3912 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3913 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3914 		/* stray interrupt? */
3915 		return 0;
3916 	}
3917 
3918 	nintr += aq_rx_intr(rxring);
3919 	nintr += aq_tx_intr(txring);
3920 
3921 	return nintr;
3922 }
3923 
3924 static int
3925 aq_link_intr(void *arg)
3926 {
3927 	struct aq_softc *sc = arg;
3928 	uint32_t status;
3929 	int nintr = 0;
3930 
3931 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3932 	if (status & __BIT(sc->sc_linkstat_irq)) {
3933 		sc->sc_detect_linkstat = true;
3934 		callout_schedule(&sc->sc_tick_ch, 0);
3935 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3936 		    __BIT(sc->sc_linkstat_irq));
3937 		nintr++;
3938 	}
3939 
3940 	return nintr;
3941 }
3942 
3943 static void
3944 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3945 {
3946 	const int ringidx = txring->txr_index;
3947 	int i;
3948 
3949 	mutex_enter(&txring->txr_mutex);
3950 
3951 	txring->txr_prodidx = 0;
3952 	txring->txr_considx = 0;
3953 	txring->txr_nfree = AQ_TXD_NUM;
3954 	txring->txr_active = false;
3955 
3956 	/* free mbufs untransmitted */
3957 	for (i = 0; i < AQ_TXD_NUM; i++) {
3958 		if (txring->txr_mbufs[i].m != NULL) {
3959 			m_freem(txring->txr_mbufs[i].m);
3960 			txring->txr_mbufs[i].m = NULL;
3961 		}
3962 	}
3963 
3964 	/* disable DMA */
3965 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3966 
3967 	if (start) {
3968 		/* TX descriptor physical address */
3969 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3970 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3971 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3972 		    (uint32_t)((uint64_t)paddr >> 32));
3973 
3974 		/* TX descriptor size */
3975 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3976 		    AQ_TXD_NUM / 8);
3977 
3978 		/* reload TAIL pointer */
3979 		txring->txr_prodidx = txring->txr_considx =
3980 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3981 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3982 
3983 		/* Mapping interrupt vector */
3984 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3985 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3986 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3987 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3988 
3989 		/* enable DMA */
3990 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3991 		    TX_DMA_DESC_EN, 1);
3992 
3993 		const int cpuid = 0;	/* XXX? */
3994 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3995 		    TDM_DCAD_CPUID, cpuid);
3996 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3997 		    TDM_DCAD_CPUID_EN, 0);
3998 
3999 		txring->txr_active = true;
4000 	}
4001 
4002 	mutex_exit(&txring->txr_mutex);
4003 }
4004 
4005 static int
4006 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4007 {
4008 	const int ringidx = rxring->rxr_index;
4009 	int i;
4010 	int error = 0;
4011 
4012 	mutex_enter(&rxring->rxr_mutex);
4013 	rxring->rxr_active = false;
4014 
4015 	/* disable DMA */
4016 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4017 
4018 	/* free all RX mbufs */
4019 	aq_rxdrain(sc, rxring);
4020 
4021 	if (start) {
4022 		for (i = 0; i < AQ_RXD_NUM; i++) {
4023 			error = aq_rxring_add(sc, rxring, i);
4024 			if (error != 0) {
4025 				aq_rxdrain(sc, rxring);
4026 				return error;
4027 			}
4028 			aq_rxring_reset_desc(sc, rxring, i);
4029 		}
4030 
4031 		/* RX descriptor physical address */
4032 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4033 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4034 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4035 		    (uint32_t)((uint64_t)paddr >> 32));
4036 
4037 		/* RX descriptor size */
4038 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4039 		    AQ_RXD_NUM / 8);
4040 
4041 		/* maximum receive frame size */
4042 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4043 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4044 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4045 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4046 
4047 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4048 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4049 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4050 		    RX_DMA_DESC_VLAN_STRIP,
4051 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4052 		    1 : 0);
4053 
4054 		/*
4055 		 * reload TAIL pointer, and update readidx
4056 		 * (HEAD pointer cannot write)
4057 		 */
4058 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4059 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4060 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4061 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4062 
4063 		/* Rx ring set mode */
4064 
4065 		/* Mapping interrupt vector */
4066 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4067 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4068 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4069 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4070 
4071 		const int cpuid = 0;	/* XXX? */
4072 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4073 		    RX_DMA_DCAD_CPUID, cpuid);
4074 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4075 		    RX_DMA_DCAD_DESC_EN, 0);
4076 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4077 		    RX_DMA_DCAD_HEADER_EN, 0);
4078 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4079 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4080 
4081 		/* enable DMA. start receiving */
4082 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4083 		    RX_DMA_DESC_EN, 1);
4084 
4085 		rxring->rxr_active = true;
4086 	}
4087 
4088 	mutex_exit(&rxring->rxr_mutex);
4089 	return error;
4090 }
4091 
4092 #define TXRING_NEXTIDX(idx)	\
4093 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4094 #define RXRING_NEXTIDX(idx)	\
4095 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4096 
4097 static int
4098 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4099 {
4100 	bus_dmamap_t map;
4101 	struct mbuf *m = *mp;
4102 	uint32_t ctl1, ctl1_ctx, ctl2;
4103 	int idx, i, error;
4104 
4105 	idx = txring->txr_prodidx;
4106 	map = txring->txr_mbufs[idx].dmamap;
4107 
4108 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4109 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4110 	if (error == EFBIG) {
4111 		struct mbuf *n;
4112 		n = m_defrag(m, M_DONTWAIT);
4113 		if (n == NULL)
4114 			return EFBIG;
4115 		/* m_defrag() preserve m */
4116 		KASSERT(n == m);
4117 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4118 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4119 	}
4120 	if (error != 0)
4121 		return error;
4122 
4123 	/*
4124 	 * check spaces of free descriptors.
4125 	 * +1 is additional descriptor for context (vlan, etc,.)
4126 	 */
4127 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4128 		device_printf(sc->sc_dev,
4129 		    "TX: not enough descriptors left %d for %d segs\n",
4130 		    txring->txr_nfree, map->dm_nsegs + 1);
4131 		bus_dmamap_unload(sc->sc_dmat, map);
4132 		return ENOBUFS;
4133 	}
4134 
4135 	/* sync dma for mbuf */
4136 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4137 	    BUS_DMASYNC_PREWRITE);
4138 
4139 	ctl1_ctx = 0;
4140 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4141 
4142 	if (vlan_has_tag(m)) {
4143 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4144 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4145 
4146 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4147 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4148 
4149 		/* fill context descriptor and forward index */
4150 		txring->txr_txdesc[idx].buf_addr = 0;
4151 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4152 		txring->txr_txdesc[idx].ctl2 = 0;
4153 
4154 		idx = TXRING_NEXTIDX(idx);
4155 		txring->txr_nfree--;
4156 	}
4157 
4158 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4159 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4160 	if (m->m_pkthdr.csum_flags &
4161 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4162 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4163 	}
4164 
4165 	/* fill descriptor(s) */
4166 	for (i = 0; i < map->dm_nsegs; i++) {
4167 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4168 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4169 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4170 
4171 		if (i == 0) {
4172 			/* remember mbuf of these descriptors */
4173 			txring->txr_mbufs[idx].m = m;
4174 		} else {
4175 			txring->txr_mbufs[idx].m = NULL;
4176 		}
4177 
4178 		if (i == map->dm_nsegs - 1) {
4179 			/* last segment, mark an EndOfPacket, and cause intr */
4180 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4181 		}
4182 
4183 		txring->txr_txdesc[idx].buf_addr =
4184 		    htole64(map->dm_segs[i].ds_addr);
4185 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4186 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4187 
4188 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4189 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4190 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4191 
4192 		idx = TXRING_NEXTIDX(idx);
4193 		txring->txr_nfree--;
4194 	}
4195 
4196 	txring->txr_prodidx = idx;
4197 
4198 	return 0;
4199 }
4200 
4201 static int
4202 aq_tx_intr(void *arg)
4203 {
4204 	struct aq_txring *txring = arg;
4205 	struct aq_softc *sc = txring->txr_sc;
4206 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4207 	struct mbuf *m;
4208 	const int ringidx = txring->txr_index;
4209 	unsigned int idx, hw_head, n = 0;
4210 
4211 	mutex_enter(&txring->txr_mutex);
4212 
4213 	if (!txring->txr_active)
4214 		goto tx_intr_done;
4215 
4216 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4217 	    TX_DMA_DESC_HEAD_PTR);
4218 	if (hw_head == txring->txr_considx) {
4219 		goto tx_intr_done;
4220 	}
4221 
4222 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4223 
4224 	for (idx = txring->txr_considx; idx != hw_head;
4225 	    idx = TXRING_NEXTIDX(idx), n++) {
4226 
4227 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4228 			bus_dmamap_unload(sc->sc_dmat,
4229 			    txring->txr_mbufs[idx].dmamap);
4230 
4231 			if_statinc_ref(nsr, if_opackets);
4232 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4233 			if (m->m_flags & M_MCAST)
4234 				if_statinc_ref(nsr, if_omcasts);
4235 
4236 			m_freem(m);
4237 			txring->txr_mbufs[idx].m = NULL;
4238 		}
4239 
4240 		txring->txr_nfree++;
4241 	}
4242 	txring->txr_considx = idx;
4243 
4244 	IF_STAT_PUTREF(ifp);
4245 
4246 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4247 		ifp->if_flags &= ~IFF_OACTIVE;
4248 
4249 	/* no more pending TX packet, cancel watchdog */
4250 	if (txring->txr_nfree >= AQ_TXD_NUM)
4251 		ifp->if_timer = 0;
4252 
4253  tx_intr_done:
4254 	mutex_exit(&txring->txr_mutex);
4255 
4256 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4257 	return n;
4258 }
4259 
4260 static int
4261 aq_rx_intr(void *arg)
4262 {
4263 	struct aq_rxring *rxring = arg;
4264 	struct aq_softc *sc = rxring->rxr_sc;
4265 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4266 	const int ringidx = rxring->rxr_index;
4267 	aq_rx_desc_t *rxd;
4268 	struct mbuf *m, *m0, *mprev, *new_m;
4269 	uint32_t rxd_type, rxd_hash __unused;
4270 	uint16_t rxd_status, rxd_pktlen;
4271 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4272 	unsigned int idx, n = 0;
4273 
4274 	mutex_enter(&rxring->rxr_mutex);
4275 
4276 	if (!rxring->rxr_active)
4277 		goto rx_intr_done;
4278 
4279 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4280 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4281 		goto rx_intr_done;
4282 	}
4283 
4284 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4285 
4286 	m0 = mprev = NULL;
4287 	for (idx = rxring->rxr_readidx;
4288 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4289 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4290 
4291 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4292 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4293 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4294 
4295 		rxd = &rxring->rxr_rxdesc[idx];
4296 		rxd_status = le16toh(rxd->wb.status);
4297 
4298 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4299 			break;	/* not yet done */
4300 
4301 		rxd_type = le32toh(rxd->wb.type);
4302 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4303 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4304 		rxd_hash = le32toh(rxd->wb.rss_hash);
4305 		rxd_vlan = le16toh(rxd->wb.vlan);
4306 
4307 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4308 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4309 			if_statinc_ref(nsr, if_ierrors);
4310 			goto rx_next;
4311 		}
4312 
4313 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4314 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4315 		    BUS_DMASYNC_POSTREAD);
4316 		m = rxring->rxr_mbufs[idx].m;
4317 
4318 		new_m = aq_alloc_mbuf();
4319 		if (new_m == NULL) {
4320 			/*
4321 			 * cannot allocate new mbuf.
4322 			 * discard this packet, and reuse mbuf for next.
4323 			 */
4324 			if_statinc_ref(nsr, if_iqdrops);
4325 			goto rx_next;
4326 		}
4327 		rxring->rxr_mbufs[idx].m = NULL;
4328 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4329 
4330 		if (m0 == NULL) {
4331 			m0 = m;
4332 		} else {
4333 			if (m->m_flags & M_PKTHDR)
4334 				m_remove_pkthdr(m);
4335 			mprev->m_next = m;
4336 		}
4337 		mprev = m;
4338 
4339 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4340 			m->m_len = MCLBYTES;
4341 		} else {
4342 			/* last buffer */
4343 			int mlen = rxd_pktlen % MCLBYTES;
4344 			if (mlen == 0)
4345 				mlen = MCLBYTES;
4346 			m->m_len = mlen;
4347 			m0->m_pkthdr.len = rxd_pktlen;
4348 			/* VLAN offloading */
4349 			if ((sc->sc_ethercom.ec_capenable &
4350 			    ETHERCAP_VLAN_HWTAGGING) &&
4351 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4352 			    __SHIFTOUT(rxd_type,
4353 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4354 				vlan_set_tag(m0, rxd_vlan);
4355 			}
4356 
4357 			/* Checksum offloading */
4358 			unsigned int pkttype_eth =
4359 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4360 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4361 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4362 			    __SHIFTOUT(rxd_type,
4363 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4364 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4365 				if (__SHIFTOUT(rxd_status,
4366 				    RXDESC_STATUS_IPV4_CSUM_NG))
4367 					m0->m_pkthdr.csum_flags |=
4368 					    M_CSUM_IPv4_BAD;
4369 			}
4370 
4371 			/*
4372 			 * aq will always mark BAD for fragment packets,
4373 			 * but this is not a problem because the IP stack
4374 			 * ignores the CSUM flag in fragment packets.
4375 			 */
4376 			if (__SHIFTOUT(rxd_type,
4377 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4378 				bool checked = false;
4379 				unsigned int pkttype_proto =
4380 				    __SHIFTOUT(rxd_type,
4381 				    RXDESC_TYPE_PKTTYPE_PROTO);
4382 
4383 				if (pkttype_proto ==
4384 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4385 					if ((pkttype_eth ==
4386 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4387 					    (ifp->if_capabilities &
4388 					    IFCAP_CSUM_TCPv4_Rx)) {
4389 						m0->m_pkthdr.csum_flags |=
4390 						    M_CSUM_TCPv4;
4391 						checked = true;
4392 					} else if ((pkttype_eth ==
4393 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4394 					    (ifp->if_capabilities &
4395 					    IFCAP_CSUM_TCPv6_Rx)) {
4396 						m0->m_pkthdr.csum_flags |=
4397 						    M_CSUM_TCPv6;
4398 						checked = true;
4399 					}
4400 				} else if (pkttype_proto ==
4401 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4402 					if ((pkttype_eth ==
4403 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4404 					    (ifp->if_capabilities &
4405 					    IFCAP_CSUM_UDPv4_Rx)) {
4406 						m0->m_pkthdr.csum_flags |=
4407 						    M_CSUM_UDPv4;
4408 						checked = true;
4409 					} else if ((pkttype_eth ==
4410 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4411 					    (ifp->if_capabilities &
4412 					    IFCAP_CSUM_UDPv6_Rx)) {
4413 						m0->m_pkthdr.csum_flags |=
4414 						    M_CSUM_UDPv6;
4415 						checked = true;
4416 					}
4417 				}
4418 				if (checked &&
4419 				    (__SHIFTOUT(rxd_status,
4420 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4421 				    !__SHIFTOUT(rxd_status,
4422 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4423 					m0->m_pkthdr.csum_flags |=
4424 					    M_CSUM_TCP_UDP_BAD;
4425 				}
4426 			}
4427 
4428 			m_set_rcvif(m0, ifp);
4429 			if_statinc_ref(nsr, if_ipackets);
4430 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4431 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4432 			m0 = mprev = NULL;
4433 		}
4434 
4435  rx_next:
4436 		aq_rxring_reset_desc(sc, rxring, idx);
4437 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4438 	}
4439 	rxring->rxr_readidx = idx;
4440 
4441 	IF_STAT_PUTREF(ifp);
4442 
4443  rx_intr_done:
4444 	mutex_exit(&rxring->rxr_mutex);
4445 
4446 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4447 	return n;
4448 }
4449 
4450 static int
4451 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4452 {
4453 	struct ifnet *ifp = &ec->ec_if;
4454 	struct aq_softc *sc = ifp->if_softc;
4455 
4456 	aq_set_vlan_filters(sc);
4457 	return 0;
4458 }
4459 
4460 static int
4461 aq_ifflags_cb(struct ethercom *ec)
4462 {
4463 	struct ifnet *ifp = &ec->ec_if;
4464 	struct aq_softc *sc = ifp->if_softc;
4465 	int i, ecchange, error = 0;
4466 	unsigned short iffchange;
4467 
4468 	AQ_LOCK(sc);
4469 
4470 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4471 	if ((iffchange & IFF_PROMISC) != 0)
4472 		error = aq_set_filter(sc);
4473 
4474 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4475 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4476 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4477 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4478 			    RX_DMA_DESC_VLAN_STRIP,
4479 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4480 			    1 : 0);
4481 		}
4482 	}
4483 
4484 	/* vlan configuration depends on also interface promiscuous mode */
4485 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4486 		aq_set_vlan_filters(sc);
4487 
4488 	sc->sc_ec_capenable = ec->ec_capenable;
4489 	sc->sc_if_flags = ifp->if_flags;
4490 
4491 	AQ_UNLOCK(sc);
4492 
4493 	return error;
4494 }
4495 
4496 static int
4497 aq_init(struct ifnet *ifp)
4498 {
4499 	struct aq_softc *sc = ifp->if_softc;
4500 	int i, error = 0;
4501 
4502 	aq_stop(ifp, false);
4503 
4504 	AQ_LOCK(sc);
4505 
4506 	aq_set_vlan_filters(sc);
4507 	aq_set_capability(sc);
4508 
4509 	for (i = 0; i < sc->sc_nqueues; i++) {
4510 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4511 	}
4512 
4513 	/* invalidate RX descriptor cache */
4514 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4515 	    AQ_READ_REG_BIT(sc,
4516 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4517 
4518 	/* start RX */
4519 	for (i = 0; i < sc->sc_nqueues; i++) {
4520 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4521 		if (error != 0) {
4522 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4523 			    __func__);
4524 			goto aq_init_failure;
4525 		}
4526 	}
4527 	aq_init_rss(sc);
4528 	aq_hw_l3_filter_set(sc);
4529 
4530 	/* need to start callout? */
4531 	if (sc->sc_poll_linkstat
4532 #ifdef AQ_EVENT_COUNTERS
4533 	    || sc->sc_poll_statistics
4534 #endif
4535 	    ) {
4536 		callout_schedule(&sc->sc_tick_ch, hz);
4537 	}
4538 
4539 	/* ready */
4540 	ifp->if_flags |= IFF_RUNNING;
4541 	ifp->if_flags &= ~IFF_OACTIVE;
4542 
4543 	/* start TX and RX */
4544 	aq_enable_intr(sc, true, true);
4545 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4546 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4547 
4548  aq_init_failure:
4549 	sc->sc_if_flags = ifp->if_flags;
4550 
4551 	AQ_UNLOCK(sc);
4552 
4553 	return error;
4554 }
4555 
4556 static void
4557 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4558     struct aq_txring *txring, bool is_transmit)
4559 {
4560 	struct mbuf *m;
4561 	int npkt, error;
4562 
4563 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4564 		return;
4565 
4566 	for (npkt = 0; ; npkt++) {
4567 		if (is_transmit)
4568 			m = pcq_peek(txring->txr_pcq);
4569 		else
4570 			IFQ_POLL(&ifp->if_snd, m);
4571 
4572 		if (m == NULL)
4573 			break;
4574 
4575 		if (txring->txr_nfree < AQ_TXD_MIN)
4576 			break;
4577 
4578 		if (is_transmit)
4579 			pcq_get(txring->txr_pcq);
4580 		else
4581 			IFQ_DEQUEUE(&ifp->if_snd, m);
4582 
4583 		error = aq_encap_txring(sc, txring, &m);
4584 		if (error != 0) {
4585 			/* too many mbuf chains? or not enough descriptors? */
4586 			m_freem(m);
4587 			if_statinc(ifp, if_oerrors);
4588 			if (txring->txr_index == 0 && error == ENOBUFS)
4589 				ifp->if_flags |= IFF_OACTIVE;
4590 			break;
4591 		}
4592 
4593 		/* update tail ptr */
4594 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4595 		    txring->txr_prodidx);
4596 
4597 		/* Pass the packet to any BPF listeners */
4598 		bpf_mtap(ifp, m, BPF_D_OUT);
4599 	}
4600 
4601 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4602 		ifp->if_flags |= IFF_OACTIVE;
4603 
4604 	if (npkt)
4605 		ifp->if_timer = 5;
4606 }
4607 
4608 static void
4609 aq_start(struct ifnet *ifp)
4610 {
4611 	struct aq_softc *sc;
4612 	struct aq_txring *txring;
4613 
4614 	sc = ifp->if_softc;
4615 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4616 
4617 	mutex_enter(&txring->txr_mutex);
4618 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4619 		aq_send_common_locked(ifp, sc, txring, false);
4620 	mutex_exit(&txring->txr_mutex);
4621 }
4622 
4623 static inline unsigned int
4624 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4625 {
4626 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4627 }
4628 
4629 static int
4630 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4631 {
4632 	struct aq_softc *sc = ifp->if_softc;
4633 	struct aq_txring *txring;
4634 	int ringidx;
4635 
4636 	ringidx = aq_select_txqueue(sc, m);
4637 	txring = &sc->sc_queue[ringidx].txring;
4638 
4639 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4640 		m_freem(m);
4641 		return ENOBUFS;
4642 	}
4643 
4644 	if (mutex_tryenter(&txring->txr_mutex)) {
4645 		aq_send_common_locked(ifp, sc, txring, true);
4646 		mutex_exit(&txring->txr_mutex);
4647 	} else {
4648 		softint_schedule(txring->txr_softint);
4649 	}
4650 	return 0;
4651 }
4652 
4653 static void
4654 aq_deferred_transmit(void *arg)
4655 {
4656 	struct aq_txring *txring = arg;
4657 	struct aq_softc *sc = txring->txr_sc;
4658 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4659 
4660 	mutex_enter(&txring->txr_mutex);
4661 	if (pcq_peek(txring->txr_pcq) != NULL)
4662 		aq_send_common_locked(ifp, sc, txring, true);
4663 	mutex_exit(&txring->txr_mutex);
4664 }
4665 
4666 static void
4667 aq_stop(struct ifnet *ifp, int disable)
4668 {
4669 	struct aq_softc *sc = ifp->if_softc;
4670 	int i;
4671 
4672 	AQ_LOCK(sc);
4673 
4674 	ifp->if_timer = 0;
4675 
4676 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4677 		goto already_stopped;
4678 
4679 	/* disable tx/rx interrupts */
4680 	aq_enable_intr(sc, true, false);
4681 
4682 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4683 	for (i = 0; i < sc->sc_nqueues; i++) {
4684 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4685 	}
4686 
4687 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4688 	for (i = 0; i < sc->sc_nqueues; i++) {
4689 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4690 	}
4691 
4692 	/* invalidate RX descriptor cache */
4693 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4694 	    AQ_READ_REG_BIT(sc,
4695 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4696 
4697 	ifp->if_timer = 0;
4698 
4699  already_stopped:
4700 	if (!disable) {
4701 		/* when pmf stop, disable link status intr and callout */
4702 		aq_enable_intr(sc, false, false);
4703 		callout_stop(&sc->sc_tick_ch);
4704 	}
4705 
4706 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4707 
4708 	AQ_UNLOCK(sc);
4709 }
4710 
4711 static void
4712 aq_watchdog(struct ifnet *ifp)
4713 {
4714 	struct aq_softc *sc = ifp->if_softc;
4715 	struct aq_txring *txring;
4716 	int n, head, tail;
4717 
4718 	AQ_LOCK(sc);
4719 
4720 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4721 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4722 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4723 
4724 	for (n = 0; n < sc->sc_nqueues; n++) {
4725 		txring = &sc->sc_queue[n].txring;
4726 		head = AQ_READ_REG_BIT(sc,
4727 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4728 		    TX_DMA_DESC_HEAD_PTR),
4729 		tail = AQ_READ_REG(sc,
4730 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4731 
4732 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4733 		    __func__, txring->txr_index, head, tail);
4734 
4735 		aq_tx_intr(txring);
4736 	}
4737 
4738 	AQ_UNLOCK(sc);
4739 
4740 	aq_init(ifp);
4741 }
4742 
4743 static int
4744 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4745 {
4746 	struct aq_softc *sc __unused;
4747 	struct ifreq *ifr __unused;
4748 	int error, s;
4749 
4750 	sc = (struct aq_softc *)ifp->if_softc;
4751 	ifr = (struct ifreq *)data;
4752 	error = 0;
4753 
4754 	s = splnet();
4755 	switch (cmd) {
4756 	case SIOCSIFMTU:
4757 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4758 			error = EINVAL;
4759 		} else {
4760 			ifp->if_mtu = ifr->ifr_mtu;
4761 			error = 0;	/* no need to reset (no ENETRESET) */
4762 		}
4763 		break;
4764 	default:
4765 		error = ether_ioctl(ifp, cmd, data);
4766 		break;
4767 	}
4768 	splx(s);
4769 
4770 	if (error != ENETRESET)
4771 		return error;
4772 
4773 	switch (cmd) {
4774 	case SIOCSIFCAP:
4775 		error = aq_set_capability(sc);
4776 		break;
4777 	case SIOCADDMULTI:
4778 	case SIOCDELMULTI:
4779 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4780 			break;
4781 
4782 		/*
4783 		 * Multicast list has changed; set the hardware filter
4784 		 * accordingly.
4785 		 */
4786 		error = aq_set_filter(sc);
4787 		break;
4788 	}
4789 
4790 	return error;
4791 }
4792 
4793 
4794 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4795 
4796 #ifdef _MODULE
4797 #include "ioconf.c"
4798 #endif
4799 
4800 static int
4801 if_aq_modcmd(modcmd_t cmd, void *opaque)
4802 {
4803 	int error = 0;
4804 
4805 	switch (cmd) {
4806 	case MODULE_CMD_INIT:
4807 #ifdef _MODULE
4808 		error = config_init_component(cfdriver_ioconf_if_aq,
4809 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4810 #endif
4811 		return error;
4812 	case MODULE_CMD_FINI:
4813 #ifdef _MODULE
4814 		error = config_fini_component(cfdriver_ioconf_if_aq,
4815 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4816 #endif
4817 		return error;
4818 	default:
4819 		return ENOTTY;
4820 	}
4821 }
4822