1 /* $NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.25 2021/04/16 08:09:40 ryo Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 #define AQ_JUMBO_MTU_REV_A 9000 120 #define AQ_JUMBO_MTU_REV_B 16338 121 122 /* 123 * TERMINOLOGY 124 * MPI = MAC PHY INTERFACE? 125 * RPO = RX Protocol Offloading 126 * TPO = TX Protocol Offloading 127 * RPF = RX Packet Filter 128 * TPB = TX Packet buffer 129 * RPB = RX Packet buffer 130 */ 131 132 /* registers */ 133 #define AQ_FW_SOFTRESET_REG 0x0000 134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 136 137 #define AQ_FW_VERSION_REG 0x0018 138 #define AQ_HW_REVISION_REG 0x001c 139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 140 141 #define AQ_FW_MBOX_CMD_REG 0x0200 142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 144 #define AQ_FW_MBOX_ADDR_REG 0x0208 145 #define AQ_FW_MBOX_VAL_REG 0x020c 146 147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 148 #define FW2X_LED_REG 0x031c 149 #define FW2X_LED_DEFAULT 0x00000000 150 #define FW2X_LED_NONE 0x0000003f 151 #define FW2X_LINKLED __BITS(0,1) 152 #define FW2X_LINKLED_ACTIVE 0 153 #define FW2X_LINKLED_ON 1 154 #define FW2X_LINKLED_BLINK 2 155 #define FW2X_LINKLED_OFF 3 156 #define FW2X_STATUSLED __BITS(2,5) 157 #define FW2X_STATUSLED_ORANGE 0 158 #define FW2X_STATUSLED_ORANGE_BLINK 2 159 #define FW2X_STATUSLED_OFF 3 160 #define FW2X_STATUSLED_GREEN 4 161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 162 #define FW2X_STATUSLED_GREEN_BLINK 10 163 164 #define FW_MPI_MBOX_ADDR_REG 0x0360 165 #define FW1X_MPI_INIT1_REG 0x0364 166 #define FW1X_MPI_CONTROL_REG 0x0368 167 #define FW1X_MPI_STATE_REG 0x036c 168 #define FW1X_MPI_STATE_MODE __BITS(7,0) 169 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 172 #define FW1X_MPI_INIT2_REG 0x0370 173 #define FW1X_MPI_EFUSEADDR_REG 0x0374 174 175 #define FW2X_MPI_EFUSEADDR_REG 0x0364 176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 178 #define FW_BOOT_EXIT_CODE_REG 0x0388 179 #define RBL_STATUS_DEAD 0x0000dead 180 #define RBL_STATUS_SUCCESS 0x0000abba 181 #define RBL_STATUS_FAILURE 0x00000bad 182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 183 184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 186 187 #define AQ_FW_GLB_CTL2_REG 0x0404 188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 189 190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 192 193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 194 195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 196 197 // msix bitmap */ 198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 202 #define AQ_INTR_AUTOMASK_REG 0x2090 203 204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 212 213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 215 #define AQ_B0_ERR_INT 8U 216 217 #define AQ_INTR_CTRL_REG 0x2300 218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 220 #define AQ_INTR_CTRL_IRQMODE_MSI 1 221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 227 228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 229 230 #define FW_MPI_RESETCTRL_REG 0x4000 231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 232 233 #define RX_SYSCONTROL_REG 0x5000 234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 236 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 237 238 #define RX_TCP_RSS_HASH_REG 0x5040 239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 241 242 /* for RPF_*_REG.ACTION */ 243 #define RPF_ACTION_DISCARD 0 244 #define RPF_ACTION_HOST 1 245 #define RPF_ACTION_MANAGEMENT 2 246 #define RPF_ACTION_HOST_MANAGEMENT 3 247 #define RPF_ACTION_WOL 4 248 249 #define RPF_L2BC_REG 0x5100 250 #define RPF_L2BC_EN __BIT(0) 251 #define RPF_L2BC_PROMISC __BIT(3) 252 #define RPF_L2BC_ACTION __BITS(12,14) 253 #define RPF_L2BC_THRESHOLD __BITS(31,16) 254 255 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 259 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 260 #define RPF_L2UC_MSW_EN __BIT(31) 261 #define AQ_HW_MAC_OWN 0 /* index of own address */ 262 #define AQ_HW_MAC_NUM 34 263 264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 266 #define RPF_MCAST_FILTER_EN __BIT(31) 267 #define RPF_MCAST_FILTER_MASK_REG 0x5270 268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 269 270 #define RPF_VLAN_MODE_REG 0x5280 271 #define RPF_VLAN_MODE_PROMISC __BIT(1) 272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 274 275 #define RPF_VLAN_TPID_REG 0x5284 276 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 277 #define RPF_VLAN_TPID_INNER __BITS(15,0) 278 279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 280 #define RPF_VLAN_MAX_FILTERS 16 281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 282 #define RPF_VLAN_FILTER_EN __BIT(31) 283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 286 #define RPF_VLAN_FILTER_ID __BITS(11,0) 287 288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 298 299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 301 #define RPF_L3_FILTER_L4_EN __BIT(31) 302 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 308 #define RPF_L3_FILTER_ARP_EN __BIT(24) 309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 314 #define RPF_L3_FILTER_L4_PROTO_TCP 0 315 #define RPF_L3_FILTER_L4_PROTO_UDP 1 316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 318 /* parameters of RPF_L3_FILTER_REG[8] */ 319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 323 324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 326 327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 329 330 #define RPF_RSS_KEY_ADDR_REG 0x54d0 331 #define RPF_RSS_KEY_ADDR __BITS(4,0) 332 #define RPF_RSS_KEY_WR_EN __BIT(5) 333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 335 336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 337 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 338 #define RPF_RSS_REDIR_WR_EN __BIT(4) 339 340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 342 343 #define RPO_HWCSUM_REG 0x5580 344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 346 347 #define RPO_LRO_ENABLE_REG 0x5590 348 349 #define RPO_LRO_CONF_REG 0x5594 350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 354 #define RPO_LRO_RSC_MAX_REG 0x5598 355 356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 359 #define RPO_LRO_TB_DIV_REG 0x5620 360 #define RPO_LRO_TB_DIV __BITS(20,31) 361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 365 366 #define RPB_RPF_RX_REG 0x5700 367 #define RPB_RPF_RX_TC_MODE __BIT(8) 368 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 369 #define RPB_RPF_RX_BUF_EN __BIT(0) 370 371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 373 #define RPB_RXB_BUFSIZE __BITS(8,0) 374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 375 #define RPB_RXB_XOFF_EN __BIT(31) 376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 378 379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 380 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 381 382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 385 386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 388 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 391 392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 397 #define RX_DMA_DESC_RESET __BIT(25) 398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 400 #define RX_DMA_DESC_EN __BIT(31) 401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 407 408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 410 #define RX_DMA_DCAD_CPUID __BITS(7,0) 411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 412 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 413 #define RX_DMA_DCAD_DESC_EN __BIT(31) 414 415 #define RX_DMA_DCA_REG 0x6180 416 #define RX_DMA_DCA_EN __BIT(31) 417 #define RX_DMA_DCA_MODE __BITS(3,0) 418 419 /* counters */ 420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 424 425 #define TX_SYSCONTROL_REG 0x7000 426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 428 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 429 430 #define TX_TPO2_REG 0x7040 431 #define TX_TPO2_EN __BIT(16) 432 433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 434 #define TPS_DESC_VM_ARB_MODE __BIT(0) 435 #define TPS_DESC_RATE_REG 0x7310 436 #define TPS_DESC_RATE_TA_RST __BIT(31) 437 #define TPS_DESC_RATE_LIM __BITS(10,0) 438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 441 #define TPS_DATA_TC_ARB_MODE __BIT(0) 442 443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 451 452 #define AQ_HW_TXBUF_MAX 160 453 #define AQ_HW_RXBUF_MAX 320 454 455 #define TPO_HWCSUM_REG 0x7800 456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 458 459 #define TDM_LSO_EN_REG 0x7810 460 461 #define THM_LSO_TCP_FLAG1_REG 0x7820 462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 464 #define THM_LSO_TCP_FLAG2_REG 0x7824 465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 466 467 #define TPB_TX_BUF_REG 0x7900 468 #define TPB_TX_BUF_EN __BIT(0) 469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 471 472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 474 #define TPB_TXB_BUFSIZE __BITS(7,0) 475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 476 #define TPB_TXB_THRESH_HI __BITS(16,28) 477 #define TPB_TXB_THRESH_LO __BITS(12,0) 478 479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 483 484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 489 #define TX_DMA_DESC_EN __BIT(31) 490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 495 496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 498 #define TDM_DCAD_CPUID __BITS(7,0) 499 #define TDM_DCAD_CPUID_EN __BIT(31) 500 501 #define TDM_DCA_REG 0x8480 502 #define TDM_DCA_EN __BIT(31) 503 #define TDM_DCA_MODE __BITS(3,0) 504 505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 507 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 510 511 #define FW1X_CTRL_10G __BIT(0) 512 #define FW1X_CTRL_5G __BIT(1) 513 #define FW1X_CTRL_5GSR __BIT(2) 514 #define FW1X_CTRL_2G5 __BIT(3) 515 #define FW1X_CTRL_1G __BIT(4) 516 #define FW1X_CTRL_100M __BIT(5) 517 518 #define FW2X_CTRL_10BASET_HD __BIT(0) 519 #define FW2X_CTRL_10BASET_FD __BIT(1) 520 #define FW2X_CTRL_100BASETX_HD __BIT(2) 521 #define FW2X_CTRL_100BASET4_HD __BIT(3) 522 #define FW2X_CTRL_100BASET2_HD __BIT(4) 523 #define FW2X_CTRL_100BASETX_FD __BIT(5) 524 #define FW2X_CTRL_100BASET2_FD __BIT(6) 525 #define FW2X_CTRL_1000BASET_HD __BIT(7) 526 #define FW2X_CTRL_1000BASET_FD __BIT(8) 527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 528 #define FW2X_CTRL_5GBASET_FD __BIT(10) 529 #define FW2X_CTRL_10GBASET_FD __BIT(11) 530 #define FW2X_CTRL_RESERVED1 __BIT(32) 531 #define FW2X_CTRL_10BASET_EEE __BIT(33) 532 #define FW2X_CTRL_RESERVED2 __BIT(34) 533 #define FW2X_CTRL_PAUSE __BIT(35) 534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 535 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 536 #define FW2X_CTRL_RESERVED3 __BIT(38) 537 #define FW2X_CTRL_RESERVED4 __BIT(39) 538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 542 #define FW2X_CTRL_RESERVED5 __BIT(44) 543 #define FW2X_CTRL_RESERVED6 __BIT(45) 544 #define FW2X_CTRL_RESERVED7 __BIT(46) 545 #define FW2X_CTRL_RESERVED8 __BIT(47) 546 #define FW2X_CTRL_RESERVED9 __BIT(48) 547 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 548 #define FW2X_CTRL_TEMPERATURE __BIT(50) 549 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 552 #define FW2X_CTRL_LINK_DROP __BIT(54) 553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 554 #define FW2X_CTRL_WOL __BIT(56) 555 #define FW2X_CTRL_MAC_STOP __BIT(57) 556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 559 #define FW2X_CTRL_WOL_TIMER __BIT(61) 560 #define FW2X_CTRL_STATISTICS __BIT(62) 561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 562 563 #define FW2X_SNPRINTB \ 564 "\177\020" \ 565 "b\x23" "PAUSE\0" \ 566 "b\x24" "ASYMMETRIC-PAUSE\0" \ 567 "b\x31" "CABLE-DIAG\0" \ 568 "b\x32" "TEMPERATURE\0" \ 569 "b\x33" "DOWNSHIFT\0" \ 570 "b\x34" "PTP-AVB\0" \ 571 "b\x35" "MEDIA-DETECT\0" \ 572 "b\x36" "LINK-DROP\0" \ 573 "b\x37" "SLEEP-PROXY\0" \ 574 "b\x38" "WOL\0" \ 575 "b\x39" "MAC-STOP\0" \ 576 "b\x3a" "EXT-LOOPBACK\0" \ 577 "b\x3b" "INT-LOOPBACK\0" \ 578 "b\x3c" "EFUSE-AGENT\0" \ 579 "b\x3d" "WOL-TIMER\0" \ 580 "b\x3e" "STATISTICS\0" \ 581 "b\x3f" "TRANSACTION-ID\0" \ 582 "\0" 583 584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 589 #define FW2X_CTRL_RATE_MASK \ 590 (FW2X_CTRL_RATE_100M | \ 591 FW2X_CTRL_RATE_1G | \ 592 FW2X_CTRL_RATE_2G5 | \ 593 FW2X_CTRL_RATE_5G | \ 594 FW2X_CTRL_RATE_10G) 595 #define FW2X_CTRL_EEE_MASK \ 596 (FW2X_CTRL_10BASET_EEE | \ 597 FW2X_CTRL_100BASETX_EEE | \ 598 FW2X_CTRL_1000BASET_FD_EEE | \ 599 FW2X_CTRL_2P5GBASET_FD_EEE | \ 600 FW2X_CTRL_5GBASET_FD_EEE | \ 601 FW2X_CTRL_10GBASET_FD_EEE) 602 603 typedef enum aq_fw_bootloader_mode { 604 FW_BOOT_MODE_UNKNOWN = 0, 605 FW_BOOT_MODE_FLB, 606 FW_BOOT_MODE_RBL_FLASH, 607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 608 } aq_fw_bootloader_mode_t; 609 610 #define AQ_WRITE_REG(sc, reg, val) \ 611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 612 613 #define AQ_READ_REG(sc, reg) \ 614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 615 616 #define AQ_READ64_REG(sc, reg) \ 617 ((uint64_t)AQ_READ_REG(sc, reg) | \ 618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 619 620 #define AQ_WRITE64_REG(sc, reg, val) \ 621 do { \ 622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 624 } while (/* CONSTCOND */0) 625 626 #define AQ_READ_REG_BIT(sc, reg, mask) \ 627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 628 629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 630 do { \ 631 uint32_t _v; \ 632 _v = AQ_READ_REG((sc), (reg)); \ 633 _v &= ~(mask); \ 634 if ((val) != 0) \ 635 _v |= __SHIFTIN((val), (mask)); \ 636 AQ_WRITE_REG((sc), (reg), _v); \ 637 } while (/* CONSTCOND */ 0) 638 639 #define WAIT_FOR(expr, us, n, errp) \ 640 do { \ 641 unsigned int _n; \ 642 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 643 delay((us)); \ 644 } \ 645 if ((errp != NULL)) { \ 646 if (_n == 0) \ 647 *(errp) = ETIMEDOUT; \ 648 else \ 649 *(errp) = 0; \ 650 } \ 651 } while (/* CONSTCOND */ 0) 652 653 #define msec_delay(x) DELAY(1000 * (x)) 654 655 typedef struct aq_mailbox_header { 656 uint32_t version; 657 uint32_t transaction_id; 658 int32_t error; 659 } __packed __aligned(4) aq_mailbox_header_t; 660 661 typedef struct aq_hw_stats_s { 662 uint32_t uprc; 663 uint32_t mprc; 664 uint32_t bprc; 665 uint32_t erpt; 666 uint32_t uptc; 667 uint32_t mptc; 668 uint32_t bptc; 669 uint32_t erpr; 670 uint32_t mbtc; 671 uint32_t bbtc; 672 uint32_t mbrc; 673 uint32_t bbrc; 674 uint32_t ubrc; 675 uint32_t ubtc; 676 uint32_t ptc; 677 uint32_t prc; 678 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 679 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 680 } __packed __aligned(4) aq_hw_stats_s_t; 681 682 typedef struct fw1x_mailbox { 683 aq_mailbox_header_t header; 684 aq_hw_stats_s_t msm; 685 } __packed __aligned(4) fw1x_mailbox_t; 686 687 typedef struct fw2x_msm_statistics { 688 uint32_t uprc; 689 uint32_t mprc; 690 uint32_t bprc; 691 uint32_t erpt; 692 uint32_t uptc; 693 uint32_t mptc; 694 uint32_t bptc; 695 uint32_t erpr; 696 uint32_t mbtc; 697 uint32_t bbtc; 698 uint32_t mbrc; 699 uint32_t bbrc; 700 uint32_t ubrc; 701 uint32_t ubtc; 702 uint32_t ptc; 703 uint32_t prc; 704 } __packed __aligned(4) fw2x_msm_statistics_t; 705 706 typedef struct fw2x_phy_cable_diag_data { 707 uint32_t lane_data[4]; 708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 709 710 typedef struct fw2x_capabilities { 711 uint32_t caps_lo; 712 uint32_t caps_hi; 713 } __packed __aligned(4) fw2x_capabilities_t; 714 715 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 716 aq_mailbox_header_t header; 717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 718 719 uint32_t phy_info1; 720 #define PHYINFO1_FAULT_CODE __BITS(31,16) 721 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 722 uint32_t phy_info2; 723 #define PHYINFO2_TEMPERATURE __BITS(15,0) 724 #define PHYINFO2_CABLE_LEN __BITS(23,16) 725 726 fw2x_phy_cable_diag_data_t diag_data; 727 uint32_t reserved[8]; 728 729 fw2x_capabilities_t caps; 730 731 /* ... */ 732 } __packed __aligned(4) fw2x_mailbox_t; 733 734 typedef enum aq_link_speed { 735 AQ_LINK_NONE = 0, 736 AQ_LINK_100M = (1 << 0), 737 AQ_LINK_1G = (1 << 1), 738 AQ_LINK_2G5 = (1 << 2), 739 AQ_LINK_5G = (1 << 3), 740 AQ_LINK_10G = (1 << 4) 741 } aq_link_speed_t; 742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 743 AQ_LINK_5G | AQ_LINK_10G ) 744 #define AQ_LINK_AUTO AQ_LINK_ALL 745 746 typedef enum aq_link_fc { 747 AQ_FC_NONE = 0, 748 AQ_FC_RX = __BIT(0), 749 AQ_FC_TX = __BIT(1), 750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 751 } aq_link_fc_t; 752 753 typedef enum aq_link_eee { 754 AQ_EEE_DISABLE = 0, 755 AQ_EEE_ENABLE = 1 756 } aq_link_eee_t; 757 758 typedef enum aq_hw_fw_mpi_state { 759 MPI_DEINIT = 0, 760 MPI_RESET = 1, 761 MPI_INIT = 2, 762 MPI_POWER = 4 763 } aq_hw_fw_mpi_state_t; 764 765 enum aq_media_type { 766 AQ_MEDIA_TYPE_UNKNOWN = 0, 767 AQ_MEDIA_TYPE_FIBRE, 768 AQ_MEDIA_TYPE_TP 769 }; 770 771 struct aq_rx_desc_read { 772 uint64_t buf_addr; 773 uint64_t hdr_addr; 774 } __packed __aligned(8); 775 776 struct aq_rx_desc_wb { 777 uint32_t type; 778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 779 #define RXDESC_TYPE_RSSTYPE_NONE 0 780 #define RXDESC_TYPE_RSSTYPE_IPV4 2 781 #define RXDESC_TYPE_RSSTYPE_IPV6 3 782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 800 #define RXDESC_TYPE_RESERVED __BITS(18,13) 801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 803 #define RXDESC_TYPE_SPH __BIT(21) 804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 805 uint32_t rss_hash; 806 uint16_t status; 807 #define RXDESC_STATUS_DD __BIT(0) 808 #define RXDESC_STATUS_EOP __BIT(1) 809 #define RXDESC_STATUS_MACERR __BIT(2) 810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 813 814 #define RXDESC_STATUS_STAT __BITS(2,5) 815 #define RXDESC_STATUS_ESTAT __BITS(6,11) 816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 817 uint16_t pkt_len; 818 uint16_t next_desc_ptr; 819 uint16_t vlan; 820 } __packed __aligned(4); 821 822 typedef union aq_rx_desc { 823 struct aq_rx_desc_read read; 824 struct aq_rx_desc_wb wb; 825 } __packed __aligned(8) aq_rx_desc_t; 826 827 typedef struct aq_tx_desc { 828 uint64_t buf_addr; 829 uint32_t ctl1; 830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 846 uint32_t ctl2; 847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 850 } __packed __aligned(8) aq_tx_desc_t; 851 852 struct aq_txring { 853 struct aq_softc *txr_sc; 854 int txr_index; 855 kmutex_t txr_mutex; 856 bool txr_active; 857 858 pcq_t *txr_pcq; 859 void *txr_softint; 860 861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 862 bus_dmamap_t txr_txdesc_dmamap; 863 bus_dma_segment_t txr_txdesc_seg[1]; 864 bus_size_t txr_txdesc_size; 865 866 struct { 867 struct mbuf *m; 868 bus_dmamap_t dmamap; 869 } txr_mbufs[AQ_TXD_NUM]; 870 unsigned int txr_prodidx; 871 unsigned int txr_considx; 872 int txr_nfree; 873 }; 874 875 struct aq_rxring { 876 struct aq_softc *rxr_sc; 877 int rxr_index; 878 kmutex_t rxr_mutex; 879 bool rxr_active; 880 881 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 882 bus_dmamap_t rxr_rxdesc_dmamap; 883 bus_dma_segment_t rxr_rxdesc_seg[1]; 884 bus_size_t rxr_rxdesc_size; 885 struct { 886 struct mbuf *m; 887 bus_dmamap_t dmamap; 888 } rxr_mbufs[AQ_RXD_NUM]; 889 unsigned int rxr_readidx; 890 }; 891 892 struct aq_queue { 893 struct aq_softc *sc; 894 struct aq_txring txring; 895 struct aq_rxring rxring; 896 }; 897 898 struct aq_softc; 899 struct aq_firmware_ops { 900 int (*reset)(struct aq_softc *); 901 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 902 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 903 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 904 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 905 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 906 #if NSYSMON_ENVSYS > 0 907 int (*get_temperature)(struct aq_softc *, uint32_t *); 908 #endif 909 }; 910 911 #ifdef AQ_EVENT_COUNTERS 912 #define AQ_EVCNT_DECL(name) \ 913 char sc_evcount_##name##_name[32]; \ 914 struct evcnt sc_evcount_##name##_ev; 915 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 916 do { \ 917 snprintf((sc)->sc_evcount_##name##_name, \ 918 sizeof((sc)->sc_evcount_##name##_name), \ 919 "%s", desc); \ 920 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 921 (evtype), NULL, device_xname((sc)->sc_dev), \ 922 (sc)->sc_evcount_##name##_name); \ 923 } while (/*CONSTCOND*/0) 924 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 925 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 926 #define AQ_EVCNT_DETACH(sc, name) \ 927 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 928 #define AQ_EVCNT_ADD(sc, name, val) \ 929 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 930 #endif /* AQ_EVENT_COUNTERS */ 931 932 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 933 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 934 935 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 936 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 937 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 938 939 940 struct aq_softc { 941 device_t sc_dev; 942 943 bus_space_tag_t sc_iot; 944 bus_space_handle_t sc_ioh; 945 bus_size_t sc_iosize; 946 bus_dma_tag_t sc_dmat; 947 948 void *sc_ihs[AQ_NINTR_MAX]; 949 pci_intr_handle_t *sc_intrs; 950 951 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 952 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 953 int sc_linkstat_irq; 954 bool sc_use_txrx_independent_intr; 955 bool sc_poll_linkstat; 956 bool sc_detect_linkstat; 957 958 #if NSYSMON_ENVSYS > 0 959 struct sysmon_envsys *sc_sme; 960 envsys_data_t sc_sensor_temp; 961 #endif 962 963 callout_t sc_tick_ch; 964 965 int sc_nintrs; 966 bool sc_msix; 967 968 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 969 int sc_nqueues; 970 971 pci_chipset_tag_t sc_pc; 972 pcitag_t sc_pcitag; 973 uint16_t sc_product; 974 uint16_t sc_revision; 975 976 kmutex_t sc_mutex; 977 kmutex_t sc_mpi_mutex; 978 979 const struct aq_firmware_ops *sc_fw_ops; 980 uint64_t sc_fw_caps; 981 enum aq_media_type sc_media_type; 982 aq_link_speed_t sc_available_rates; 983 984 aq_link_speed_t sc_link_rate; 985 aq_link_fc_t sc_link_fc; 986 aq_link_eee_t sc_link_eee; 987 988 uint32_t sc_fw_version; 989 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 990 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 991 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 992 uint32_t sc_features; 993 #define FEATURES_MIPS 0x00000001 994 #define FEATURES_TPO2 0x00000002 995 #define FEATURES_RPF2 0x00000004 996 #define FEATURES_MPI_AQ 0x00000008 997 #define FEATURES_REV_A0 0x10000000 998 #define FEATURES_REV_A (FEATURES_REV_A0) 999 #define FEATURES_REV_B0 0x20000000 1000 #define FEATURES_REV_B1 0x40000000 1001 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 1002 uint32_t sc_max_mtu; 1003 uint32_t sc_mbox_addr; 1004 1005 bool sc_rbl_enabled; 1006 bool sc_fast_start_enabled; 1007 bool sc_flash_present; 1008 1009 bool sc_intr_moderation_enable; 1010 bool sc_rss_enable; 1011 1012 struct ethercom sc_ethercom; 1013 struct ether_addr sc_enaddr; 1014 struct ifmedia sc_media; 1015 int sc_ec_capenable; /* last ec_capenable */ 1016 unsigned short sc_if_flags; /* last if_flags */ 1017 1018 #ifdef AQ_EVENT_COUNTERS 1019 aq_hw_stats_s_t sc_statistics[2]; 1020 int sc_statistics_idx; 1021 bool sc_poll_statistics; 1022 1023 AQ_EVCNT_DECL(uprc); 1024 AQ_EVCNT_DECL(mprc); 1025 AQ_EVCNT_DECL(bprc); 1026 AQ_EVCNT_DECL(erpt); 1027 AQ_EVCNT_DECL(uptc); 1028 AQ_EVCNT_DECL(mptc); 1029 AQ_EVCNT_DECL(bptc); 1030 AQ_EVCNT_DECL(erpr); 1031 AQ_EVCNT_DECL(mbtc); 1032 AQ_EVCNT_DECL(bbtc); 1033 AQ_EVCNT_DECL(mbrc); 1034 AQ_EVCNT_DECL(bbrc); 1035 AQ_EVCNT_DECL(ubrc); 1036 AQ_EVCNT_DECL(ubtc); 1037 AQ_EVCNT_DECL(ptc); 1038 AQ_EVCNT_DECL(prc); 1039 AQ_EVCNT_DECL(dpc); 1040 AQ_EVCNT_DECL(cprc); 1041 #endif 1042 }; 1043 1044 static int aq_match(device_t, cfdata_t, void *); 1045 static void aq_attach(device_t, device_t, void *); 1046 static int aq_detach(device_t, int); 1047 1048 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1049 bool, bool); 1050 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1051 pci_intr_type_t); 1052 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1053 1054 static int aq_ifmedia_change(struct ifnet * const); 1055 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1056 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1057 static int aq_ifflags_cb(struct ethercom *); 1058 static int aq_init(struct ifnet *); 1059 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1060 struct aq_txring *, bool); 1061 static int aq_transmit(struct ifnet *, struct mbuf *); 1062 static void aq_deferred_transmit(void *); 1063 static void aq_start(struct ifnet *); 1064 static void aq_stop(struct ifnet *, int); 1065 static void aq_watchdog(struct ifnet *); 1066 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1067 1068 static int aq_txrx_rings_alloc(struct aq_softc *); 1069 static void aq_txrx_rings_free(struct aq_softc *); 1070 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1071 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1072 1073 static void aq_initmedia(struct aq_softc *); 1074 static void aq_enable_intr(struct aq_softc *, bool, bool); 1075 1076 #if NSYSMON_ENVSYS > 0 1077 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1078 #endif 1079 static void aq_tick(void *); 1080 static int aq_legacy_intr(void *); 1081 static int aq_link_intr(void *); 1082 static int aq_txrx_intr(void *); 1083 static int aq_tx_intr(void *); 1084 static int aq_rx_intr(void *); 1085 1086 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1087 aq_link_eee_t); 1088 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1089 aq_link_eee_t *); 1090 1091 static int aq_fw_reset(struct aq_softc *); 1092 static int aq_fw_version_init(struct aq_softc *); 1093 static int aq_hw_init(struct aq_softc *); 1094 static int aq_hw_init_ucp(struct aq_softc *); 1095 static int aq_hw_reset(struct aq_softc *); 1096 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1097 uint32_t); 1098 static int aq_get_mac_addr(struct aq_softc *); 1099 static int aq_init_rss(struct aq_softc *); 1100 static int aq_set_capability(struct aq_softc *); 1101 1102 static int fw1x_reset(struct aq_softc *); 1103 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1104 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1105 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1106 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1107 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1108 1109 static int fw2x_reset(struct aq_softc *); 1110 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1111 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1112 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1113 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1114 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1115 #if NSYSMON_ENVSYS > 0 1116 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1117 #endif 1118 1119 static const struct aq_firmware_ops aq_fw1x_ops = { 1120 .reset = fw1x_reset, 1121 .set_mode = fw1x_set_mode, 1122 .get_mode = fw1x_get_mode, 1123 .get_stats = fw1x_get_stats, 1124 #if NSYSMON_ENVSYS > 0 1125 .get_temperature = NULL 1126 #endif 1127 }; 1128 1129 static const struct aq_firmware_ops aq_fw2x_ops = { 1130 .reset = fw2x_reset, 1131 .set_mode = fw2x_set_mode, 1132 .get_mode = fw2x_get_mode, 1133 .get_stats = fw2x_get_stats, 1134 #if NSYSMON_ENVSYS > 0 1135 .get_temperature = fw2x_get_temperature 1136 #endif 1137 }; 1138 1139 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1140 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1141 1142 static const struct aq_product { 1143 pci_vendor_id_t aq_vendor; 1144 pci_product_id_t aq_product; 1145 const char *aq_name; 1146 enum aq_media_type aq_media_type; 1147 aq_link_speed_t aq_available_rates; 1148 } aq_products[] = { 1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1150 "Aquantia AQC100 10 Gigabit Network Adapter", 1151 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1152 }, 1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1154 "Aquantia AQC107 10 Gigabit Network Adapter", 1155 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1156 }, 1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1158 "Aquantia AQC108 5 Gigabit Network Adapter", 1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1160 }, 1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1162 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1164 }, 1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1166 "Aquantia AQC111 5 Gigabit Network Adapter", 1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1168 }, 1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1170 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1171 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1172 }, 1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1174 "Aquantia AQC100S 10 Gigabit Network Adapter", 1175 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1176 }, 1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1178 "Aquantia AQC107S 10 Gigabit Network Adapter", 1179 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1180 }, 1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1182 "Aquantia AQC108S 5 Gigabit Network Adapter", 1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1184 }, 1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1186 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1188 }, 1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1190 "Aquantia AQC111S 5 Gigabit Network Adapter", 1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1192 }, 1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1194 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1195 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1196 }, 1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1198 "Aquantia D100 10 Gigabit Network Adapter", 1199 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1200 }, 1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1202 "Aquantia D107 10 Gigabit Network Adapter", 1203 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1204 }, 1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1206 "Aquantia D108 5 Gigabit Network Adapter", 1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1208 }, 1209 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1210 "Aquantia D109 2.5 Gigabit Network Adapter", 1211 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1212 } 1213 }; 1214 1215 static const struct aq_product * 1216 aq_lookup(const struct pci_attach_args *pa) 1217 { 1218 unsigned int i; 1219 1220 for (i = 0; i < __arraycount(aq_products); i++) { 1221 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1222 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1223 return &aq_products[i]; 1224 } 1225 return NULL; 1226 } 1227 1228 static int 1229 aq_match(device_t parent, cfdata_t cf, void *aux) 1230 { 1231 struct pci_attach_args *pa = aux; 1232 1233 if (aq_lookup(pa) != NULL) 1234 return 1; 1235 1236 return 0; 1237 } 1238 1239 static void 1240 aq_attach(device_t parent, device_t self, void *aux) 1241 { 1242 struct aq_softc *sc = device_private(self); 1243 struct pci_attach_args *pa = aux; 1244 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1245 pci_chipset_tag_t pc; 1246 pcitag_t tag; 1247 pcireg_t command, memtype, bar; 1248 const struct aq_product *aqp; 1249 int error; 1250 1251 sc->sc_dev = self; 1252 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1253 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1254 1255 sc->sc_pc = pc = pa->pa_pc; 1256 sc->sc_pcitag = tag = pa->pa_tag; 1257 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1258 1259 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1260 command |= PCI_COMMAND_MASTER_ENABLE; 1261 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1262 1263 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1264 sc->sc_revision = PCI_REVISION(pa->pa_class); 1265 1266 aqp = aq_lookup(pa); 1267 KASSERT(aqp != NULL); 1268 1269 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1270 1271 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1272 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1273 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1274 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1275 return; 1276 } 1277 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1278 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1279 NULL, &sc->sc_iosize) != 0) { 1280 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1281 return; 1282 } 1283 1284 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1285 1286 /* max queue num is 8, and must be 2^n */ 1287 if (ncpu >= 8) 1288 sc->sc_nqueues = 8; 1289 else if (ncpu >= 4) 1290 sc->sc_nqueues = 4; 1291 else if (ncpu >= 2) 1292 sc->sc_nqueues = 2; 1293 else 1294 sc->sc_nqueues = 1; 1295 1296 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1297 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1298 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1299 /* TX intrs + RX intrs + LINKSTAT intrs */ 1300 sc->sc_use_txrx_independent_intr = true; 1301 sc->sc_poll_linkstat = false; 1302 sc->sc_msix = true; 1303 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1304 /* TX intrs + RX intrs */ 1305 sc->sc_use_txrx_independent_intr = true; 1306 sc->sc_poll_linkstat = true; 1307 sc->sc_msix = true; 1308 } else 1309 #endif 1310 if (msixcount >= (sc->sc_nqueues + 1)) { 1311 /* TX/RX intrs LINKSTAT intrs */ 1312 sc->sc_use_txrx_independent_intr = false; 1313 sc->sc_poll_linkstat = false; 1314 sc->sc_msix = true; 1315 } else if (msixcount >= sc->sc_nqueues) { 1316 /* TX/RX intrs */ 1317 sc->sc_use_txrx_independent_intr = false; 1318 sc->sc_poll_linkstat = true; 1319 sc->sc_msix = true; 1320 } else { 1321 /* giving up using MSI-X */ 1322 sc->sc_msix = false; 1323 } 1324 1325 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */ 1326 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE) 1327 sc->sc_poll_linkstat = true; 1328 1329 #ifdef AQ_FORCE_POLL_LINKSTAT 1330 sc->sc_poll_linkstat = true; 1331 #endif 1332 1333 aprint_debug_dev(sc->sc_dev, 1334 "ncpu=%d, pci_msix_count=%d." 1335 " allocate %d interrupts for %d%s queues%s\n", 1336 ncpu, msixcount, 1337 (sc->sc_use_txrx_independent_intr ? 1338 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1339 (sc->sc_poll_linkstat ? 0 : 1), 1340 sc->sc_nqueues, 1341 sc->sc_use_txrx_independent_intr ? "*2" : "", 1342 sc->sc_poll_linkstat ? "" : ", and link status"); 1343 1344 if (sc->sc_msix) 1345 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1346 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1347 else 1348 error = ENODEV; 1349 1350 if (error != 0) { 1351 /* if MSI-X failed, fallback to MSI with single queue */ 1352 sc->sc_use_txrx_independent_intr = false; 1353 sc->sc_poll_linkstat = false; 1354 sc->sc_msix = false; 1355 sc->sc_nqueues = 1; 1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1357 } 1358 if (error != 0) { 1359 /* if MSI failed, fallback to INTx */ 1360 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1361 } 1362 if (error != 0) 1363 return; 1364 1365 callout_init(&sc->sc_tick_ch, 0); 1366 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1367 1368 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1369 1370 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1371 sc->sc_rss_enable = true; 1372 else 1373 sc->sc_rss_enable = false; 1374 1375 error = aq_txrx_rings_alloc(sc); 1376 if (error != 0) 1377 goto attach_failure; 1378 1379 error = aq_fw_reset(sc); 1380 if (error != 0) 1381 goto attach_failure; 1382 1383 error = aq_fw_version_init(sc); 1384 if (error != 0) 1385 goto attach_failure; 1386 1387 error = aq_hw_init_ucp(sc); 1388 if (error < 0) 1389 goto attach_failure; 1390 1391 KASSERT(sc->sc_mbox_addr != 0); 1392 error = aq_hw_reset(sc); 1393 if (error != 0) 1394 goto attach_failure; 1395 1396 aq_get_mac_addr(sc); 1397 aq_init_rss(sc); 1398 1399 error = aq_hw_init(sc); /* initialize and interrupts */ 1400 if (error != 0) 1401 goto attach_failure; 1402 1403 sc->sc_media_type = aqp->aq_media_type; 1404 sc->sc_available_rates = aqp->aq_available_rates; 1405 1406 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1407 ifmedia_init(&sc->sc_media, IFM_IMASK, 1408 aq_ifmedia_change, aq_ifmedia_status); 1409 aq_initmedia(sc); 1410 1411 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1412 ifp->if_softc = sc; 1413 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1414 ifp->if_extflags = IFEF_MPSAFE; 1415 ifp->if_baudrate = IF_Gbps(10); 1416 ifp->if_init = aq_init; 1417 ifp->if_ioctl = aq_ioctl; 1418 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1419 ifp->if_transmit = aq_transmit; 1420 ifp->if_start = aq_start; 1421 ifp->if_stop = aq_stop; 1422 ifp->if_watchdog = aq_watchdog; 1423 IFQ_SET_READY(&ifp->if_snd); 1424 1425 /* initialize capabilities */ 1426 sc->sc_ethercom.ec_capabilities = 0; 1427 sc->sc_ethercom.ec_capenable = 0; 1428 #if notyet 1429 /* TODO */ 1430 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1431 #endif 1432 sc->sc_ethercom.ec_capabilities |= 1433 ETHERCAP_JUMBO_MTU | 1434 ETHERCAP_VLAN_MTU | 1435 ETHERCAP_VLAN_HWTAGGING | 1436 ETHERCAP_VLAN_HWFILTER; 1437 sc->sc_ethercom.ec_capenable |= 1438 ETHERCAP_VLAN_HWTAGGING | 1439 ETHERCAP_VLAN_HWFILTER; 1440 1441 ifp->if_capabilities = 0; 1442 ifp->if_capenable = 0; 1443 #ifdef CONFIG_LRO_SUPPORT 1444 ifp->if_capabilities |= IFCAP_LRO; 1445 ifp->if_capenable |= IFCAP_LRO; 1446 #endif 1447 #if notyet 1448 /* TSO */ 1449 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1450 #endif 1451 1452 /* TX hardware checksum offloading */ 1453 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1454 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1455 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1456 /* RX hardware checksum offloading */ 1457 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1458 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1459 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1460 1461 error = if_initialize(ifp); 1462 if (error != 0) { 1463 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", 1464 error); 1465 goto attach_failure; 1466 } 1467 ifp->if_percpuq = if_percpuq_create(ifp); 1468 if_deferred_start_init(ifp, NULL); 1469 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1470 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1471 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1472 if_register(ifp); 1473 1474 aq_enable_intr(sc, true, false); /* only intr about link */ 1475 1476 /* update media */ 1477 aq_ifmedia_change(ifp); 1478 1479 #if NSYSMON_ENVSYS > 0 1480 /* temperature monitoring */ 1481 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1482 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1483 1484 sc->sc_sme = sysmon_envsys_create(); 1485 sc->sc_sme->sme_name = device_xname(self); 1486 sc->sc_sme->sme_cookie = sc; 1487 sc->sc_sme->sme_flags = 0; 1488 sc->sc_sme->sme_refresh = aq_temp_refresh; 1489 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1490 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1491 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1492 1493 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1494 sysmon_envsys_register(sc->sc_sme); 1495 1496 /* 1497 * for unknown reasons, the first call of fw2x_get_temperature() 1498 * will always fail (firmware matter?), so run once now. 1499 */ 1500 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1501 } 1502 #endif 1503 1504 #ifdef AQ_EVENT_COUNTERS 1505 /* get starting statistics values */ 1506 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1507 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1508 sc->sc_poll_statistics = true; 1509 } 1510 1511 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1512 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1513 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1514 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1515 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1516 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1517 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1518 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1519 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1520 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1521 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1522 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1523 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1524 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1525 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1526 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1527 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1528 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1529 #endif 1530 1531 return; 1532 1533 attach_failure: 1534 aq_detach(self, 0); 1535 } 1536 1537 static int 1538 aq_detach(device_t self, int flags __unused) 1539 { 1540 struct aq_softc *sc = device_private(self); 1541 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1542 int i, s; 1543 1544 if (sc->sc_iosize != 0) { 1545 if (ifp->if_softc != NULL) { 1546 s = splnet(); 1547 aq_stop(ifp, 0); 1548 splx(s); 1549 } 1550 1551 for (i = 0; i < AQ_NINTR_MAX; i++) { 1552 if (sc->sc_ihs[i] != NULL) { 1553 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1554 sc->sc_ihs[i] = NULL; 1555 } 1556 } 1557 if (sc->sc_nintrs > 0) { 1558 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1559 sc->sc_nintrs); 1560 sc->sc_intrs = NULL; 1561 sc->sc_nintrs = 0; 1562 } 1563 1564 aq_txrx_rings_free(sc); 1565 1566 if (ifp->if_softc != NULL) { 1567 ether_ifdetach(ifp); 1568 if_detach(ifp); 1569 } 1570 1571 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1572 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1573 sc->sc_iosize = 0; 1574 } 1575 1576 callout_stop(&sc->sc_tick_ch); 1577 1578 #if NSYSMON_ENVSYS > 0 1579 if (sc->sc_sme != NULL) { 1580 /* all sensors associated with this will also be detached */ 1581 sysmon_envsys_unregister(sc->sc_sme); 1582 sc->sc_sme = NULL; 1583 } 1584 #endif 1585 1586 #ifdef AQ_EVENT_COUNTERS 1587 AQ_EVCNT_DETACH(sc, uprc); 1588 AQ_EVCNT_DETACH(sc, mprc); 1589 AQ_EVCNT_DETACH(sc, bprc); 1590 AQ_EVCNT_DETACH(sc, erpt); 1591 AQ_EVCNT_DETACH(sc, uptc); 1592 AQ_EVCNT_DETACH(sc, mptc); 1593 AQ_EVCNT_DETACH(sc, bptc); 1594 AQ_EVCNT_DETACH(sc, erpr); 1595 AQ_EVCNT_DETACH(sc, mbtc); 1596 AQ_EVCNT_DETACH(sc, bbtc); 1597 AQ_EVCNT_DETACH(sc, mbrc); 1598 AQ_EVCNT_DETACH(sc, bbrc); 1599 AQ_EVCNT_DETACH(sc, ubrc); 1600 AQ_EVCNT_DETACH(sc, ubtc); 1601 AQ_EVCNT_DETACH(sc, ptc); 1602 AQ_EVCNT_DETACH(sc, prc); 1603 AQ_EVCNT_DETACH(sc, dpc); 1604 AQ_EVCNT_DETACH(sc, cprc); 1605 #endif 1606 1607 ifmedia_fini(&sc->sc_media); 1608 1609 mutex_destroy(&sc->sc_mpi_mutex); 1610 mutex_destroy(&sc->sc_mutex); 1611 1612 return 0; 1613 } 1614 1615 static int 1616 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1617 int (*func)(void *), void *arg, const char *xname) 1618 { 1619 char intrbuf[PCI_INTRSTR_LEN]; 1620 pci_chipset_tag_t pc = sc->sc_pc; 1621 void *vih; 1622 const char *intrstr = NULL; 1623 1624 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1625 sizeof(intrbuf)); 1626 1627 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1628 1629 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1630 IPL_NET, func, arg, xname); 1631 if (vih == NULL) { 1632 aprint_error_dev(sc->sc_dev, 1633 "unable to establish MSI-X%s%s for %s\n", 1634 intrstr ? " at " : "", 1635 intrstr ? intrstr : "", xname); 1636 return EIO; 1637 } 1638 sc->sc_ihs[intno] = vih; 1639 1640 if (affinity != NULL) { 1641 /* Round-robin affinity */ 1642 kcpuset_zero(affinity); 1643 kcpuset_set(affinity, intno % ncpu); 1644 interrupt_distribute(vih, affinity, NULL); 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int 1651 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1652 bool linkintr) 1653 { 1654 kcpuset_t *affinity; 1655 int error, intno, i; 1656 char intr_xname[INTRDEVNAMEBUF]; 1657 1658 kcpuset_create(&affinity, false); 1659 1660 intno = 0; 1661 1662 if (txrx_independent) { 1663 for (i = 0; i < sc->sc_nqueues; i++) { 1664 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1665 device_xname(sc->sc_dev), i); 1666 sc->sc_rx_irq[i] = intno; 1667 error = aq_establish_intr(sc, intno++, affinity, 1668 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1669 if (error != 0) 1670 goto fail; 1671 } 1672 for (i = 0; i < sc->sc_nqueues; i++) { 1673 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1674 device_xname(sc->sc_dev), i); 1675 sc->sc_tx_irq[i] = intno; 1676 error = aq_establish_intr(sc, intno++, affinity, 1677 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1678 if (error != 0) 1679 goto fail; 1680 } 1681 } else { 1682 for (i = 0; i < sc->sc_nqueues; i++) { 1683 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1684 device_xname(sc->sc_dev), i); 1685 sc->sc_rx_irq[i] = intno; 1686 sc->sc_tx_irq[i] = intno; 1687 error = aq_establish_intr(sc, intno++, affinity, 1688 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1689 if (error != 0) 1690 goto fail; 1691 } 1692 } 1693 1694 if (linkintr) { 1695 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1696 device_xname(sc->sc_dev)); 1697 sc->sc_linkstat_irq = intno; 1698 error = aq_establish_intr(sc, intno++, affinity, 1699 aq_link_intr, sc, intr_xname); 1700 if (error != 0) 1701 goto fail; 1702 } 1703 1704 kcpuset_destroy(affinity); 1705 return 0; 1706 1707 fail: 1708 for (i = 0; i < AQ_NINTR_MAX; i++) { 1709 if (sc->sc_ihs[i] != NULL) { 1710 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1711 sc->sc_ihs[i] = NULL; 1712 } 1713 } 1714 1715 kcpuset_destroy(affinity); 1716 return ENOMEM; 1717 } 1718 1719 static int 1720 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1721 bool txrx_independent, bool linkintr) 1722 { 1723 int error, nintr; 1724 1725 if (txrx_independent) 1726 nintr = nqueue * 2; 1727 else 1728 nintr = nqueue; 1729 1730 if (linkintr) 1731 nintr++; 1732 1733 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1734 if (error != 0) { 1735 aprint_error_dev(sc->sc_dev, 1736 "failed to allocate MSI-X interrupts\n"); 1737 goto fail; 1738 } 1739 1740 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1741 if (error == 0) { 1742 sc->sc_nintrs = nintr; 1743 } else { 1744 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1745 sc->sc_nintrs = 0; 1746 } 1747 fail: 1748 return error; 1749 1750 } 1751 1752 static int 1753 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1754 pci_intr_type_t inttype) 1755 { 1756 int counts[PCI_INTR_TYPE_SIZE]; 1757 int error, nintr; 1758 1759 nintr = 1; 1760 1761 memset(counts, 0, sizeof(counts)); 1762 counts[inttype] = nintr; 1763 1764 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1765 if (error != 0) { 1766 aprint_error_dev(sc->sc_dev, 1767 "failed to allocate%s interrupts\n", 1768 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1769 return error; 1770 } 1771 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1772 device_xname(sc->sc_dev)); 1773 if (error == 0) { 1774 sc->sc_nintrs = nintr; 1775 } else { 1776 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1777 sc->sc_nintrs = 0; 1778 } 1779 return error; 1780 } 1781 1782 static void 1783 global_software_reset(struct aq_softc *sc) 1784 { 1785 uint32_t v; 1786 1787 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1788 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1789 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1790 FW_MPI_RESETCTRL_RESET_DIS, 0); 1791 1792 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1793 v &= ~AQ_FW_SOFTRESET_DIS; 1794 v |= AQ_FW_SOFTRESET_RESET; 1795 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1796 } 1797 1798 static int 1799 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1800 { 1801 int timo; 1802 1803 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1804 1805 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1806 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1807 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1808 1809 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1810 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1811 1812 global_software_reset(sc); 1813 1814 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1815 1816 /* Wait for RBL to finish boot process. */ 1817 #define RBL_TIMEOUT_MS 10000 1818 uint16_t rbl_status; 1819 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1820 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1821 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1822 break; 1823 msec_delay(1); 1824 } 1825 if (timo <= 0) { 1826 aprint_error_dev(sc->sc_dev, 1827 "RBL> RBL restart failed: timeout\n"); 1828 return EBUSY; 1829 } 1830 switch (rbl_status) { 1831 case RBL_STATUS_SUCCESS: 1832 if (mode != NULL) 1833 *mode = FW_BOOT_MODE_RBL_FLASH; 1834 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1835 break; 1836 case RBL_STATUS_HOST_BOOT: 1837 if (mode != NULL) 1838 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1839 aprint_debug_dev(sc->sc_dev, 1840 "RBL> reset complete! [Host Bootload]\n"); 1841 break; 1842 case RBL_STATUS_FAILURE: 1843 default: 1844 aprint_error_dev(sc->sc_dev, 1845 "unknown RBL status 0x%x\n", rbl_status); 1846 return EBUSY; 1847 } 1848 1849 return 0; 1850 } 1851 1852 static int 1853 mac_soft_reset_flb(struct aq_softc *sc) 1854 { 1855 uint32_t v; 1856 int timo; 1857 1858 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1859 /* 1860 * Let Felicity hardware to complete SMBUS transaction before 1861 * Global software reset. 1862 */ 1863 msec_delay(50); 1864 1865 /* 1866 * If SPI burst transaction was interrupted(before running the script), 1867 * global software reset may not clear SPI interface. 1868 * Clean it up manually before global reset. 1869 */ 1870 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1871 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1872 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1873 msec_delay(50); 1874 1875 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1876 v &= ~AQ_FW_SOFTRESET_DIS; 1877 v |= AQ_FW_SOFTRESET_RESET; 1878 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1879 1880 /* Kickstart. */ 1881 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1882 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1883 if (!sc->sc_fast_start_enabled) 1884 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1885 1886 /* 1887 * For the case SPI burst transaction was interrupted (by MCP reset 1888 * above), wait until it is completed by hardware. 1889 */ 1890 msec_delay(50); 1891 1892 /* MAC Kickstart */ 1893 if (!sc->sc_fast_start_enabled) { 1894 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1895 1896 uint32_t flb_status; 1897 for (timo = 0; timo < 1000; timo++) { 1898 flb_status = AQ_READ_REG(sc, 1899 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1900 if (flb_status != 0) 1901 break; 1902 msec_delay(1); 1903 } 1904 if (flb_status == 0) { 1905 aprint_error_dev(sc->sc_dev, 1906 "FLB> MAC kickstart failed: timed out\n"); 1907 return ETIMEDOUT; 1908 } 1909 aprint_debug_dev(sc->sc_dev, 1910 "FLB> MAC kickstart done, %d ms\n", timo); 1911 /* FW reset */ 1912 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1913 /* 1914 * Let Felicity hardware complete SMBUS transaction before 1915 * Global software reset. 1916 */ 1917 msec_delay(50); 1918 sc->sc_fast_start_enabled = true; 1919 } 1920 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1921 1922 /* PHY Kickstart: #undone */ 1923 global_software_reset(sc); 1924 1925 for (timo = 0; timo < 1000; timo++) { 1926 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1927 break; 1928 msec_delay(10); 1929 } 1930 if (timo >= 1000) { 1931 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1932 return ETIMEDOUT; 1933 } 1934 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1935 return 0; 1936 1937 } 1938 1939 static int 1940 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1941 { 1942 if (sc->sc_rbl_enabled) 1943 return mac_soft_reset_rbl(sc, mode); 1944 1945 if (mode != NULL) 1946 *mode = FW_BOOT_MODE_FLB; 1947 return mac_soft_reset_flb(sc); 1948 } 1949 1950 static int 1951 aq_fw_read_version(struct aq_softc *sc) 1952 { 1953 int i, error = EBUSY; 1954 #define MAC_FW_START_TIMEOUT_MS 10000 1955 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1956 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1957 if (sc->sc_fw_version != 0) { 1958 error = 0; 1959 break; 1960 } 1961 delay(1000); 1962 } 1963 return error; 1964 } 1965 1966 static int 1967 aq_fw_reset(struct aq_softc *sc) 1968 { 1969 uint32_t ver, v, bootExitCode; 1970 int i, error; 1971 1972 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1973 1974 for (i = 1000; i > 0; i--) { 1975 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1976 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1977 if (v != 0x06000000 || bootExitCode != 0) 1978 break; 1979 } 1980 if (i <= 0) { 1981 aprint_error_dev(sc->sc_dev, 1982 "F/W reset failed. Neither RBL nor FLB started\n"); 1983 return ETIMEDOUT; 1984 } 1985 sc->sc_rbl_enabled = (bootExitCode != 0); 1986 1987 /* 1988 * Having FW version 0 is an indicator that cold start 1989 * is in progress. This means two things: 1990 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1991 * 2) Driver may skip reset sequence and save time. 1992 */ 1993 if (sc->sc_fast_start_enabled && (ver != 0)) { 1994 error = aq_fw_read_version(sc); 1995 /* Skip reset as it just completed */ 1996 if (error == 0) 1997 return 0; 1998 } 1999 2000 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2001 error = mac_soft_reset(sc, &mode); 2002 if (error != 0) { 2003 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2004 return error; 2005 } 2006 2007 switch (mode) { 2008 case FW_BOOT_MODE_FLB: 2009 aprint_debug_dev(sc->sc_dev, 2010 "FLB> F/W successfully loaded from flash.\n"); 2011 sc->sc_flash_present = true; 2012 return aq_fw_read_version(sc); 2013 case FW_BOOT_MODE_RBL_FLASH: 2014 aprint_debug_dev(sc->sc_dev, 2015 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2016 sc->sc_flash_present = true; 2017 return aq_fw_read_version(sc); 2018 case FW_BOOT_MODE_UNKNOWN: 2019 aprint_error_dev(sc->sc_dev, 2020 "F/W bootload error: unknown bootloader type\n"); 2021 return ENOTSUP; 2022 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2023 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2024 break; 2025 } 2026 2027 /* 2028 * XXX: TODO: add support Host Boot 2029 */ 2030 aprint_error_dev(sc->sc_dev, 2031 "RBL> F/W Host Bootload not implemented\n"); 2032 return ENOTSUP; 2033 } 2034 2035 static int 2036 aq_hw_reset(struct aq_softc *sc) 2037 { 2038 int error; 2039 2040 /* disable irq */ 2041 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2042 2043 /* apply */ 2044 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2045 2046 /* wait ack 10 times by 1ms */ 2047 WAIT_FOR( 2048 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2049 1000, 10, &error); 2050 if (error != 0) { 2051 aprint_error_dev(sc->sc_dev, 2052 "atlantic: IRQ reset failed: %d\n", error); 2053 return error; 2054 } 2055 2056 return sc->sc_fw_ops->reset(sc); 2057 } 2058 2059 static int 2060 aq_hw_init_ucp(struct aq_softc *sc) 2061 { 2062 int timo; 2063 2064 if (FW_VERSION_MAJOR(sc) == 1) { 2065 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) { 2066 uint32_t data; 2067 cprng_fast(&data, sizeof(data)); 2068 data &= 0xfefefefe; 2069 data |= 0x02020202; 2070 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data); 2071 } 2072 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2073 } 2074 2075 for (timo = 100; timo > 0; timo--) { 2076 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2077 if (sc->sc_mbox_addr != 0) 2078 break; 2079 delay(1000); 2080 } 2081 2082 #define AQ_FW_MIN_VERSION 0x01050006 2083 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2084 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2085 aprint_error_dev(sc->sc_dev, 2086 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2087 " or later required, this is %d.%d.%d\n", 2088 FW_VERSION_MAJOR(sc), 2089 FW_VERSION_MINOR(sc), 2090 FW_VERSION_BUILD(sc)); 2091 return ENOTSUP; 2092 } 2093 2094 return 0; 2095 } 2096 2097 static int 2098 aq_fw_version_init(struct aq_softc *sc) 2099 { 2100 int error = 0; 2101 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2102 2103 if (FW_VERSION_MAJOR(sc) == 1) { 2104 sc->sc_fw_ops = &aq_fw1x_ops; 2105 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2106 sc->sc_fw_ops = &aq_fw2x_ops; 2107 } else { 2108 aprint_error_dev(sc->sc_dev, 2109 "Unsupported F/W version %d.%d.%d\n", 2110 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2111 FW_VERSION_BUILD(sc)); 2112 return ENOTSUP; 2113 } 2114 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2115 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2116 2117 /* detect revision */ 2118 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2119 switch (hwrev & 0x0000000f) { 2120 case 0x01: 2121 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2122 fw_vers); 2123 sc->sc_features |= FEATURES_REV_A0 | 2124 FEATURES_MPI_AQ | FEATURES_MIPS; 2125 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A; 2126 break; 2127 case 0x02: 2128 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2129 fw_vers); 2130 sc->sc_features |= FEATURES_REV_B0 | 2131 FEATURES_MPI_AQ | FEATURES_MIPS | 2132 FEATURES_TPO2 | FEATURES_RPF2; 2133 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2134 break; 2135 case 0x0A: 2136 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2137 fw_vers); 2138 sc->sc_features |= FEATURES_REV_B1 | 2139 FEATURES_MPI_AQ | FEATURES_MIPS | 2140 FEATURES_TPO2 | FEATURES_RPF2; 2141 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2142 break; 2143 default: 2144 aprint_error_dev(sc->sc_dev, 2145 "Unknown revision (0x%08x)\n", hwrev); 2146 sc->sc_features = 0; 2147 sc->sc_max_mtu = ETHERMTU; 2148 error = ENOTSUP; 2149 break; 2150 } 2151 return error; 2152 } 2153 2154 static int 2155 fw1x_reset(struct aq_softc *sc) 2156 { 2157 struct aq_mailbox_header mbox; 2158 const int retryCount = 1000; 2159 uint32_t tid0; 2160 int i; 2161 2162 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2163 2164 for (i = 0; i < retryCount; ++i) { 2165 /* 2166 * Read the beginning of Statistics structure to capture 2167 * the Transaction ID. 2168 */ 2169 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2170 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2171 2172 /* Successfully read the stats. */ 2173 if (tid0 == ~0U) { 2174 /* We have read the initial value. */ 2175 tid0 = mbox.transaction_id; 2176 continue; 2177 } else if (mbox.transaction_id != tid0) { 2178 /* 2179 * Compare transaction ID to initial value. 2180 * If it's different means f/w is alive. 2181 * We're done. 2182 */ 2183 return 0; 2184 } 2185 2186 /* 2187 * Transaction ID value haven't changed since last time. 2188 * Try reading the stats again. 2189 */ 2190 delay(10); 2191 } 2192 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2193 return EBUSY; 2194 } 2195 2196 static int 2197 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2198 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2199 { 2200 uint32_t mpictrl = 0; 2201 uint32_t mpispeed = 0; 2202 2203 if (speed & AQ_LINK_10G) 2204 mpispeed |= FW1X_CTRL_10G; 2205 if (speed & AQ_LINK_5G) 2206 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2207 if (speed & AQ_LINK_2G5) 2208 mpispeed |= FW1X_CTRL_2G5; 2209 if (speed & AQ_LINK_1G) 2210 mpispeed |= FW1X_CTRL_1G; 2211 if (speed & AQ_LINK_100M) 2212 mpispeed |= FW1X_CTRL_100M; 2213 2214 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2215 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2216 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2217 return 0; 2218 } 2219 2220 static int 2221 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2222 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2223 { 2224 uint32_t mpistate, mpi_speed; 2225 aq_link_speed_t speed = AQ_LINK_NONE; 2226 2227 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2228 2229 if (modep != NULL) 2230 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2231 2232 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2233 if (mpi_speed & FW1X_CTRL_10G) 2234 speed = AQ_LINK_10G; 2235 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2236 speed = AQ_LINK_5G; 2237 else if (mpi_speed & FW1X_CTRL_2G5) 2238 speed = AQ_LINK_2G5; 2239 else if (mpi_speed & FW1X_CTRL_1G) 2240 speed = AQ_LINK_1G; 2241 else if (mpi_speed & FW1X_CTRL_100M) 2242 speed = AQ_LINK_100M; 2243 2244 if (speedp != NULL) 2245 *speedp = speed; 2246 2247 if (fcp != NULL) 2248 *fcp = AQ_FC_NONE; 2249 2250 if (eeep != NULL) 2251 *eeep = AQ_EEE_DISABLE; 2252 2253 return 0; 2254 } 2255 2256 static int 2257 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2258 { 2259 int error; 2260 2261 error = aq_fw_downld_dwords(sc, 2262 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2263 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2264 if (error < 0) { 2265 device_printf(sc->sc_dev, 2266 "fw1x> download statistics data FAILED, error %d", error); 2267 return error; 2268 } 2269 2270 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2271 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2272 return 0; 2273 } 2274 2275 static int 2276 fw2x_reset(struct aq_softc *sc) 2277 { 2278 fw2x_capabilities_t caps = { 0 }; 2279 int error; 2280 2281 error = aq_fw_downld_dwords(sc, 2282 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2283 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2284 if (error != 0) { 2285 aprint_error_dev(sc->sc_dev, 2286 "fw2x> can't get F/W capabilities mask, error %d\n", 2287 error); 2288 return error; 2289 } 2290 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2291 2292 char buf[256]; 2293 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2294 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2295 2296 return 0; 2297 } 2298 2299 static int 2300 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2301 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2302 { 2303 uint64_t mpi_ctrl; 2304 int error = 0; 2305 2306 AQ_MPI_LOCK(sc); 2307 2308 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2309 2310 switch (mode) { 2311 case MPI_INIT: 2312 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2313 if (speed & AQ_LINK_10G) 2314 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2315 if (speed & AQ_LINK_5G) 2316 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2317 if (speed & AQ_LINK_2G5) 2318 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2319 if (speed & AQ_LINK_1G) 2320 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2321 if (speed & AQ_LINK_100M) 2322 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2323 2324 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2325 2326 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2327 if (eee == AQ_EEE_ENABLE) 2328 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2329 2330 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2331 if (fc & AQ_FC_RX) 2332 mpi_ctrl |= FW2X_CTRL_PAUSE; 2333 if (fc & AQ_FC_TX) 2334 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2335 break; 2336 case MPI_DEINIT: 2337 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2338 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2339 break; 2340 default: 2341 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2342 error = EINVAL; 2343 goto failure; 2344 } 2345 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2346 2347 failure: 2348 AQ_MPI_UNLOCK(sc); 2349 return error; 2350 } 2351 2352 static int 2353 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2354 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2355 { 2356 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2357 2358 if (modep != NULL) { 2359 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2360 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2361 *modep = MPI_INIT; 2362 else 2363 *modep = MPI_DEINIT; 2364 } 2365 2366 aq_link_speed_t speed = AQ_LINK_NONE; 2367 if (mpi_state & FW2X_CTRL_RATE_10G) 2368 speed = AQ_LINK_10G; 2369 else if (mpi_state & FW2X_CTRL_RATE_5G) 2370 speed = AQ_LINK_5G; 2371 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2372 speed = AQ_LINK_2G5; 2373 else if (mpi_state & FW2X_CTRL_RATE_1G) 2374 speed = AQ_LINK_1G; 2375 else if (mpi_state & FW2X_CTRL_RATE_100M) 2376 speed = AQ_LINK_100M; 2377 2378 if (speedp != NULL) 2379 *speedp = speed; 2380 2381 aq_link_fc_t fc = AQ_FC_NONE; 2382 if (mpi_state & FW2X_CTRL_PAUSE) 2383 fc |= AQ_FC_RX; 2384 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2385 fc |= AQ_FC_TX; 2386 if (fcp != NULL) 2387 *fcp = fc; 2388 2389 /* XXX: TODO: EEE */ 2390 if (eeep != NULL) 2391 *eeep = AQ_EEE_DISABLE; 2392 2393 return 0; 2394 } 2395 2396 static int 2397 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2398 uint32_t timeout_ms, uint32_t try_count) 2399 { 2400 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2401 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2402 int error; 2403 2404 /* First, check that control and state values are consistent */ 2405 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2406 device_printf(sc->sc_dev, 2407 "fw2x> MPI control (%#llx) and state (%#llx)" 2408 " are not consistent for mask %#llx!\n", 2409 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2410 (unsigned long long)mask); 2411 return EINVAL; 2412 } 2413 2414 /* Invert bits (toggle) in control register */ 2415 mpi_ctrl ^= mask; 2416 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2417 2418 /* Clear all bits except masked */ 2419 mpi_ctrl &= mask; 2420 2421 /* Wait for FW reflecting change in state register */ 2422 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2423 1000 * timeout_ms, try_count, &error); 2424 if (error != 0) { 2425 device_printf(sc->sc_dev, 2426 "f/w2x> timeout while waiting for response" 2427 " in state register for bit %#llx!", 2428 (unsigned long long)mask); 2429 return error; 2430 } 2431 return 0; 2432 } 2433 2434 static int 2435 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2436 { 2437 int error; 2438 2439 AQ_MPI_LOCK(sc); 2440 /* Say to F/W to update the statistics */ 2441 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2442 if (error != 0) { 2443 device_printf(sc->sc_dev, 2444 "fw2x> statistics update error %d\n", error); 2445 goto failure; 2446 } 2447 2448 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2449 error = aq_fw_downld_dwords(sc, 2450 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2451 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2452 if (error != 0) { 2453 device_printf(sc->sc_dev, 2454 "fw2x> download statistics data FAILED, error %d", error); 2455 goto failure; 2456 } 2457 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2458 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2459 2460 failure: 2461 AQ_MPI_UNLOCK(sc); 2462 return error; 2463 } 2464 2465 #if NSYSMON_ENVSYS > 0 2466 static int 2467 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2468 { 2469 int error; 2470 uint32_t value, celsius; 2471 2472 AQ_MPI_LOCK(sc); 2473 2474 /* Say to F/W to update the temperature */ 2475 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2476 if (error != 0) 2477 goto failure; 2478 2479 error = aq_fw_downld_dwords(sc, 2480 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2481 &value, sizeof(value) / sizeof(uint32_t)); 2482 if (error != 0) 2483 goto failure; 2484 2485 /* 1/256 decrees C to microkelvin */ 2486 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2487 if (celsius == 0) { 2488 error = EIO; 2489 goto failure; 2490 } 2491 *temp = celsius * (1000000 / 256) + 273150000; 2492 2493 failure: 2494 AQ_MPI_UNLOCK(sc); 2495 return 0; 2496 } 2497 #endif 2498 2499 static int 2500 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2501 uint32_t cnt) 2502 { 2503 uint32_t v; 2504 int error = 0; 2505 2506 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2507 if (error != 0) { 2508 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2509 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2510 if (v == 0) { 2511 device_printf(sc->sc_dev, 2512 "%s:%d: timeout\n", __func__, __LINE__); 2513 return ETIMEDOUT; 2514 } 2515 } 2516 2517 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2518 2519 error = 0; 2520 for (; cnt > 0 && error == 0; cnt--) { 2521 /* execute mailbox interface */ 2522 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2523 AQ_FW_MBOX_CMD_EXECUTE, 1); 2524 if (sc->sc_features & FEATURES_REV_B1) { 2525 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2526 1, 1000, &error); 2527 } else { 2528 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2529 AQ_FW_MBOX_CMD_BUSY) == 0, 2530 1, 1000, &error); 2531 } 2532 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2533 addr += sizeof(uint32_t); 2534 } 2535 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2536 2537 if (error != 0) 2538 device_printf(sc->sc_dev, 2539 "%s:%d: timeout\n", __func__, __LINE__); 2540 2541 return error; 2542 } 2543 2544 /* read my mac address */ 2545 static int 2546 aq_get_mac_addr(struct aq_softc *sc) 2547 { 2548 uint32_t mac_addr[2]; 2549 uint32_t efuse_shadow_addr; 2550 int err; 2551 2552 efuse_shadow_addr = 0; 2553 if (FW_VERSION_MAJOR(sc) >= 2) 2554 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2555 else 2556 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2557 2558 if (efuse_shadow_addr == 0) { 2559 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2560 return ENXIO; 2561 } 2562 2563 memset(mac_addr, 0, sizeof(mac_addr)); 2564 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2565 mac_addr, __arraycount(mac_addr)); 2566 if (err < 0) 2567 return err; 2568 2569 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2570 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2571 return ENXIO; 2572 } 2573 2574 mac_addr[0] = htobe32(mac_addr[0]); 2575 mac_addr[1] = htobe32(mac_addr[1]); 2576 2577 memcpy(sc->sc_enaddr.ether_addr_octet, 2578 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2579 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2580 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2581 2582 return 0; 2583 } 2584 2585 /* set multicast filter. index 0 for own address */ 2586 static int 2587 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2588 { 2589 uint32_t h, l; 2590 2591 if (index >= AQ_HW_MAC_NUM) 2592 return EINVAL; 2593 2594 if (enaddr == NULL) { 2595 /* disable */ 2596 AQ_WRITE_REG_BIT(sc, 2597 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2598 return 0; 2599 } 2600 2601 h = (enaddr[0] << 8) | (enaddr[1]); 2602 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2603 (enaddr[4] << 8) | (enaddr[5]); 2604 2605 /* disable, set, and enable */ 2606 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2607 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2608 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2609 RPF_L2UC_MSW_MACADDR_HI, h); 2610 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2611 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2612 2613 return 0; 2614 } 2615 2616 static int 2617 aq_set_capability(struct aq_softc *sc) 2618 { 2619 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2620 int ip4csum_tx = 2621 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2622 int ip4csum_rx = 2623 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2624 int l4csum_tx = ((ifp->if_capenable & 2625 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2626 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2627 int l4csum_rx = 2628 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2629 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2630 uint32_t lso = 2631 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2632 0 : 0xffffffff; 2633 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2634 0 : 0xffffffff; 2635 uint32_t i, v; 2636 2637 /* TX checksums offloads*/ 2638 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2639 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2640 2641 /* RX checksums offloads*/ 2642 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2643 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2644 2645 /* LSO offloads*/ 2646 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2647 2648 #define AQ_B0_LRO_RXD_MAX 16 2649 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2650 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2651 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2652 for (i = 0; i < AQ_RINGS_NUM; i++) { 2653 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2654 RPO_LRO_LDES_MAX_MASK(i), v); 2655 } 2656 2657 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2658 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2659 RPO_LRO_INACTIVE_IVAL, 0); 2660 /* 2661 * the LRO timebase divider is 5 uS (0x61a), 2662 * to get a maximum coalescing interval of 250 uS, 2663 * we need to multiply by 50(0x32) to get 2664 * the default value 250 uS 2665 */ 2666 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2667 RPO_LRO_MAX_COALESCING_IVAL, 50); 2668 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2669 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2670 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2671 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2672 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2673 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2674 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2675 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2676 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2677 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2678 2679 return 0; 2680 } 2681 2682 static int 2683 aq_set_filter(struct aq_softc *sc) 2684 { 2685 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2686 struct ethercom *ec = &sc->sc_ethercom; 2687 struct ether_multi *enm; 2688 struct ether_multistep step; 2689 int idx, error = 0; 2690 2691 if (ifp->if_flags & IFF_PROMISC) { 2692 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2693 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2694 ec->ec_flags |= ETHER_F_ALLMULTI; 2695 goto done; 2696 } 2697 2698 /* clear all table */ 2699 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2700 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2701 continue; 2702 aq_set_mac_addr(sc, idx, NULL); 2703 } 2704 2705 /* don't accept all multicast */ 2706 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2707 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2708 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2709 RPF_MCAST_FILTER_EN, 0); 2710 2711 idx = 0; 2712 ETHER_LOCK(ec); 2713 ETHER_FIRST_MULTI(step, ec, enm); 2714 while (enm != NULL) { 2715 if (idx == AQ_HW_MAC_OWN) 2716 idx++; 2717 2718 if ((idx >= AQ_HW_MAC_NUM) || 2719 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2720 /* 2721 * too many filters. 2722 * fallback to accept all multicast addresses. 2723 */ 2724 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2725 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2726 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2727 RPF_MCAST_FILTER_EN, 1); 2728 ec->ec_flags |= ETHER_F_ALLMULTI; 2729 ETHER_UNLOCK(ec); 2730 goto done; 2731 } 2732 2733 /* add a filter */ 2734 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2735 2736 ETHER_NEXT_MULTI(step, enm); 2737 } 2738 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2739 ETHER_UNLOCK(ec); 2740 2741 done: 2742 return error; 2743 } 2744 2745 static int 2746 aq_ifmedia_change(struct ifnet * const ifp) 2747 { 2748 struct aq_softc *sc = ifp->if_softc; 2749 aq_link_speed_t rate = AQ_LINK_NONE; 2750 aq_link_fc_t fc = AQ_FC_NONE; 2751 aq_link_eee_t eee = AQ_EEE_DISABLE; 2752 2753 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2754 return EINVAL; 2755 2756 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2757 case IFM_AUTO: 2758 rate = AQ_LINK_AUTO; 2759 break; 2760 case IFM_NONE: 2761 rate = AQ_LINK_NONE; 2762 break; 2763 case IFM_100_TX: 2764 rate = AQ_LINK_100M; 2765 break; 2766 case IFM_1000_T: 2767 rate = AQ_LINK_1G; 2768 break; 2769 case IFM_2500_T: 2770 rate = AQ_LINK_2G5; 2771 break; 2772 case IFM_5000_T: 2773 rate = AQ_LINK_5G; 2774 break; 2775 case IFM_10G_T: 2776 rate = AQ_LINK_10G; 2777 break; 2778 default: 2779 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2780 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2781 return ENODEV; 2782 } 2783 2784 if (sc->sc_media.ifm_media & IFM_FLOW) 2785 fc = AQ_FC_ALL; 2786 2787 /* XXX: todo EEE */ 2788 2789 /* re-initialize hardware with new parameters */ 2790 aq_set_linkmode(sc, rate, fc, eee); 2791 2792 return 0; 2793 } 2794 2795 static void 2796 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2797 { 2798 struct aq_softc *sc = ifp->if_softc; 2799 2800 /* update ifm_active */ 2801 ifmr->ifm_active = IFM_ETHER; 2802 if (sc->sc_link_fc & AQ_FC_RX) 2803 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2804 if (sc->sc_link_fc & AQ_FC_TX) 2805 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2806 2807 switch (sc->sc_link_rate) { 2808 case AQ_LINK_100M: 2809 /* XXX: need to detect fulldup or halfdup */ 2810 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2811 break; 2812 case AQ_LINK_1G: 2813 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2814 break; 2815 case AQ_LINK_2G5: 2816 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2817 break; 2818 case AQ_LINK_5G: 2819 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2820 break; 2821 case AQ_LINK_10G: 2822 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2823 break; 2824 default: 2825 ifmr->ifm_active |= IFM_NONE; 2826 break; 2827 } 2828 2829 /* update ifm_status */ 2830 ifmr->ifm_status = IFM_AVALID; 2831 if (sc->sc_link_rate != AQ_LINK_NONE) 2832 ifmr->ifm_status |= IFM_ACTIVE; 2833 } 2834 2835 static void 2836 aq_initmedia(struct aq_softc *sc) 2837 { 2838 #define IFMEDIA_ETHER_ADD(sc, media) \ 2839 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2840 2841 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2842 if (sc->sc_available_rates & AQ_LINK_100M) { 2843 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2844 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2845 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2846 } 2847 if (sc->sc_available_rates & AQ_LINK_1G) { 2848 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2849 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2850 } 2851 if (sc->sc_available_rates & AQ_LINK_2G5) { 2852 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2853 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2854 } 2855 if (sc->sc_available_rates & AQ_LINK_5G) { 2856 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2857 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2858 } 2859 if (sc->sc_available_rates & AQ_LINK_10G) { 2860 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2861 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2862 } 2863 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2864 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2865 2866 /* default: auto without flowcontrol */ 2867 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2868 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2869 } 2870 2871 static int 2872 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2873 aq_link_eee_t eee) 2874 { 2875 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2876 } 2877 2878 static int 2879 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2880 aq_link_eee_t *eee) 2881 { 2882 aq_hw_fw_mpi_state_t mode; 2883 int error; 2884 2885 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2886 if (error != 0) 2887 return error; 2888 if (mode != MPI_INIT) 2889 return ENXIO; 2890 2891 return 0; 2892 } 2893 2894 static void 2895 aq_hw_init_tx_path(struct aq_softc *sc) 2896 { 2897 /* Tx TC/RSS number config */ 2898 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2899 2900 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2901 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2902 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2903 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2904 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2905 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2906 2907 /* misc */ 2908 AQ_WRITE_REG(sc, TX_TPO2_REG, 2909 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2910 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2911 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2912 2913 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2914 } 2915 2916 static void 2917 aq_hw_init_rx_path(struct aq_softc *sc) 2918 { 2919 int i; 2920 2921 /* clear setting */ 2922 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2923 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2924 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2925 for (i = 0; i < 32; i++) { 2926 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2927 RPF_ETHERTYPE_FILTER_EN, 0); 2928 } 2929 2930 if (sc->sc_rss_enable) { 2931 /* Rx TC/RSS number config */ 2932 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2933 2934 /* Rx flow control */ 2935 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2936 2937 /* RSS Ring selection */ 2938 switch (sc->sc_nqueues) { 2939 case 2: 2940 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2941 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2942 break; 2943 case 4: 2944 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2945 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2946 break; 2947 case 8: 2948 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2949 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2950 break; 2951 } 2952 } 2953 2954 /* L2 and Multicast filters */ 2955 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2956 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2957 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2958 RPF_ACTION_HOST); 2959 } 2960 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2961 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2962 2963 /* Vlan filters */ 2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2965 ETHERTYPE_QINQ); 2966 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2967 ETHERTYPE_VLAN); 2968 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2969 2970 if (sc->sc_features & FEATURES_REV_B) { 2971 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2972 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2973 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2974 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2975 } 2976 2977 /* misc */ 2978 if (sc->sc_features & FEATURES_RPF2) 2979 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2980 else 2981 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2982 2983 /* 2984 * XXX: RX_TCP_RSS_HASH_REG: 2985 * linux set 0x000f0000 2986 * freebsd set 0x000f001e 2987 */ 2988 /* RSS hash type set for IP/TCP */ 2989 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2990 RX_TCP_RSS_HASH_TYPE, 0x001e); 2991 2992 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 2993 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 2994 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 2995 2996 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 2997 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 2998 } 2999 3000 static void 3001 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3002 { 3003 int i; 3004 3005 if (sc->sc_intr_moderation_enable) { 3006 unsigned int tx_min, rx_min; /* 0-255 */ 3007 unsigned int tx_max, rx_max; /* 0-511? */ 3008 3009 switch (sc->sc_link_rate) { 3010 case AQ_LINK_100M: 3011 tx_min = 0x4f; 3012 tx_max = 0xff; 3013 rx_min = 0x04; 3014 rx_max = 0x50; 3015 break; 3016 case AQ_LINK_1G: 3017 default: 3018 tx_min = 0x4f; 3019 tx_max = 0xff; 3020 rx_min = 0x30; 3021 rx_max = 0x80; 3022 break; 3023 case AQ_LINK_2G5: 3024 tx_min = 0x4f; 3025 tx_max = 0xff; 3026 rx_min = 0x18; 3027 rx_max = 0xe0; 3028 break; 3029 case AQ_LINK_5G: 3030 tx_min = 0x4f; 3031 tx_max = 0xff; 3032 rx_min = 0x0c; 3033 rx_max = 0x70; 3034 break; 3035 case AQ_LINK_10G: 3036 tx_min = 0x4f; 3037 tx_max = 0x1ff; 3038 rx_min = 0x06; /* freebsd use 80 */ 3039 rx_max = 0x38; /* freebsd use 120 */ 3040 break; 3041 } 3042 3043 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3044 TX_DMA_INT_DESC_WRWB_EN, 0); 3045 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3046 TX_DMA_INT_DESC_MODERATE_EN, 1); 3047 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3048 RX_DMA_INT_DESC_WRWB_EN, 0); 3049 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3050 RX_DMA_INT_DESC_MODERATE_EN, 1); 3051 3052 for (i = 0; i < AQ_RINGS_NUM; i++) { 3053 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3054 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3055 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3056 TX_INTR_MODERATION_CTL_EN); 3057 } 3058 for (i = 0; i < AQ_RINGS_NUM; i++) { 3059 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3060 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3061 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3062 RX_INTR_MODERATION_CTL_EN); 3063 } 3064 3065 } else { 3066 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3067 TX_DMA_INT_DESC_WRWB_EN, 1); 3068 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3069 TX_DMA_INT_DESC_MODERATE_EN, 0); 3070 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3071 RX_DMA_INT_DESC_WRWB_EN, 1); 3072 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3073 RX_DMA_INT_DESC_MODERATE_EN, 0); 3074 3075 for (i = 0; i < AQ_RINGS_NUM; i++) { 3076 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3077 } 3078 for (i = 0; i < AQ_RINGS_NUM; i++) { 3079 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3080 } 3081 } 3082 } 3083 3084 static void 3085 aq_hw_qos_set(struct aq_softc *sc) 3086 { 3087 uint32_t tc = 0; 3088 uint32_t buff_size; 3089 3090 /* TPS Descriptor rate init */ 3091 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3092 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3093 3094 /* TPS VM init */ 3095 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3096 3097 /* TPS TC credits init */ 3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3099 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3100 3101 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3102 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3103 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3104 TPS_DATA_TCT_WEIGHT, 0x64); 3105 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3106 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3107 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3108 TPS_DESC_TCT_WEIGHT, 0x1e); 3109 3110 /* Tx buf size */ 3111 tc = 0; 3112 buff_size = AQ_HW_TXBUF_MAX; 3113 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3114 buff_size); 3115 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3116 (buff_size * (1024 / 32) * 66) / 100); 3117 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3118 (buff_size * (1024 / 32) * 50) / 100); 3119 3120 /* QoS Rx buf size per TC */ 3121 tc = 0; 3122 buff_size = AQ_HW_RXBUF_MAX; 3123 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3124 buff_size); 3125 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3126 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3127 (buff_size * (1024 / 32) * 66) / 100); 3128 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3129 (buff_size * (1024 / 32) * 50) / 100); 3130 3131 /* QoS 802.1p priority -> TC mapping */ 3132 int i_priority; 3133 for (i_priority = 0; i_priority < 8; i_priority++) { 3134 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3135 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3136 } 3137 } 3138 3139 /* called once from aq_attach */ 3140 static int 3141 aq_init_rss(struct aq_softc *sc) 3142 { 3143 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3144 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3145 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3146 unsigned int i; 3147 int error; 3148 3149 /* initialize rss key */ 3150 rss_getkey((uint8_t *)rss_key); 3151 3152 /* hash to ring table */ 3153 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3154 rss_table[i] = i % sc->sc_nqueues; 3155 } 3156 3157 /* 3158 * set rss key 3159 */ 3160 for (i = 0; i < __arraycount(rss_key); i++) { 3161 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3162 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3163 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3164 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3165 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3166 RPF_RSS_KEY_WR_EN, 1); 3167 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3168 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3169 if (error != 0) { 3170 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3171 __func__); 3172 goto rss_set_timeout; 3173 } 3174 } 3175 3176 /* 3177 * set rss indirection table 3178 * 3179 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3180 * we'll make it by __BITMAP(3) macros. 3181 */ 3182 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3183 __BITMAP_ZERO(&bit3x64); 3184 3185 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3186 do { \ 3187 if (val & 1) { \ 3188 __BITMAP_SET((idx) * 3, (bitmap)); \ 3189 } else { \ 3190 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3191 } \ 3192 if (val & 2) { \ 3193 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3194 } else { \ 3195 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3196 } \ 3197 if (val & 4) { \ 3198 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3199 } else { \ 3200 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3201 } \ 3202 } while (0 /* CONSTCOND */) 3203 3204 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3205 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3206 } 3207 3208 /* write 192bit data in steps of 16bit */ 3209 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3210 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3211 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3212 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3213 RPF_RSS_REDIR_ADDR, i); 3214 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3215 RPF_RSS_REDIR_WR_EN, 1); 3216 3217 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3218 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3219 if (error != 0) 3220 break; 3221 } 3222 3223 rss_set_timeout: 3224 return error; 3225 } 3226 3227 static void 3228 aq_hw_l3_filter_set(struct aq_softc *sc) 3229 { 3230 int i; 3231 3232 /* clear all filter */ 3233 for (i = 0; i < 8; i++) { 3234 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3235 RPF_L3_FILTER_L4_EN, 0); 3236 } 3237 } 3238 3239 static void 3240 aq_set_vlan_filters(struct aq_softc *sc) 3241 { 3242 struct ethercom *ec = &sc->sc_ethercom; 3243 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3244 struct vlanid_list *vlanidp; 3245 int i; 3246 3247 ETHER_LOCK(ec); 3248 3249 /* disable all vlan filters */ 3250 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3251 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3252 3253 /* count VID */ 3254 i = 0; 3255 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3256 i++; 3257 3258 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3259 (ifp->if_flags & IFF_PROMISC) || 3260 (i > RPF_VLAN_MAX_FILTERS)) { 3261 /* 3262 * no vlan hwfilter, in promiscuous mode, or too many VID? 3263 * must receive all VID 3264 */ 3265 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3266 RPF_VLAN_MODE_PROMISC, 1); 3267 goto done; 3268 } 3269 3270 /* receive only selected VID */ 3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3272 i = 0; 3273 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3274 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3275 RPF_VLAN_FILTER_EN, 1); 3276 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3277 RPF_VLAN_FILTER_RXQ_EN, 0); 3278 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3279 RPF_VLAN_FILTER_RXQ, 0); 3280 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3281 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3282 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3283 RPF_VLAN_FILTER_ID, vlanidp->vid); 3284 i++; 3285 } 3286 3287 done: 3288 ETHER_UNLOCK(ec); 3289 } 3290 3291 static int 3292 aq_hw_init(struct aq_softc *sc) 3293 { 3294 uint32_t v; 3295 3296 /* Force limit MRRS on RDM/TDM to 2K */ 3297 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3298 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3299 3300 /* 3301 * TX DMA total request limit. B0 hardware is not capable to 3302 * handle more than (8K-MRRS) incoming DMA data. 3303 * Value 24 in 256byte units 3304 */ 3305 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3306 3307 aq_hw_init_tx_path(sc); 3308 aq_hw_init_rx_path(sc); 3309 3310 aq_hw_interrupt_moderation_set(sc); 3311 3312 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3313 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3314 3315 aq_hw_qos_set(sc); 3316 3317 /* Enable interrupt */ 3318 int irqmode; 3319 if (sc->sc_msix) 3320 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3321 else 3322 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3323 3324 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3325 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3326 sc->sc_msix ? 1 : 0); 3327 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3328 3329 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3330 3331 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3332 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3333 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3334 ); 3335 3336 /* link interrupt */ 3337 if (!sc->sc_msix) 3338 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3339 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3340 __BIT(7) | sc->sc_linkstat_irq); 3341 3342 return 0; 3343 } 3344 3345 static int 3346 aq_update_link_status(struct aq_softc *sc) 3347 { 3348 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3349 aq_link_speed_t rate = AQ_LINK_NONE; 3350 aq_link_fc_t fc = AQ_FC_NONE; 3351 aq_link_eee_t eee = AQ_EEE_DISABLE; 3352 unsigned int speed; 3353 int changed = 0; 3354 3355 aq_get_linkmode(sc, &rate, &fc, &eee); 3356 3357 if (sc->sc_link_rate != rate) 3358 changed = 1; 3359 if (sc->sc_link_fc != fc) 3360 changed = 1; 3361 if (sc->sc_link_eee != eee) 3362 changed = 1; 3363 3364 if (changed) { 3365 switch (rate) { 3366 case AQ_LINK_100M: 3367 speed = 100; 3368 break; 3369 case AQ_LINK_1G: 3370 speed = 1000; 3371 break; 3372 case AQ_LINK_2G5: 3373 speed = 2500; 3374 break; 3375 case AQ_LINK_5G: 3376 speed = 5000; 3377 break; 3378 case AQ_LINK_10G: 3379 speed = 10000; 3380 break; 3381 case AQ_LINK_NONE: 3382 default: 3383 speed = 0; 3384 break; 3385 } 3386 3387 if (sc->sc_link_rate == AQ_LINK_NONE) { 3388 /* link DOWN -> UP */ 3389 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3390 speed); 3391 if_link_state_change(ifp, LINK_STATE_UP); 3392 } else if (rate == AQ_LINK_NONE) { 3393 /* link UP -> DOWN */ 3394 device_printf(sc->sc_dev, "link is DOWN\n"); 3395 if_link_state_change(ifp, LINK_STATE_DOWN); 3396 } else { 3397 device_printf(sc->sc_dev, 3398 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3399 speed, fc, eee); 3400 } 3401 3402 sc->sc_link_rate = rate; 3403 sc->sc_link_fc = fc; 3404 sc->sc_link_eee = eee; 3405 3406 /* update interrupt timing according to new link speed */ 3407 aq_hw_interrupt_moderation_set(sc); 3408 } 3409 3410 return changed; 3411 } 3412 3413 #ifdef AQ_EVENT_COUNTERS 3414 static void 3415 aq_update_statistics(struct aq_softc *sc) 3416 { 3417 int prev = sc->sc_statistics_idx; 3418 int cur = prev ^ 1; 3419 3420 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3421 3422 /* 3423 * aq's internal statistics counter is 32bit. 3424 * cauculate delta, and add to evcount 3425 */ 3426 #define ADD_DELTA(cur, prev, name) \ 3427 do { \ 3428 uint32_t n; \ 3429 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3430 sc->sc_statistics[prev].name); \ 3431 if (n != 0) { \ 3432 AQ_EVCNT_ADD(sc, name, n); \ 3433 } \ 3434 } while (/*CONSTCOND*/0); 3435 3436 ADD_DELTA(cur, prev, uprc); 3437 ADD_DELTA(cur, prev, mprc); 3438 ADD_DELTA(cur, prev, bprc); 3439 ADD_DELTA(cur, prev, prc); 3440 ADD_DELTA(cur, prev, erpr); 3441 ADD_DELTA(cur, prev, uptc); 3442 ADD_DELTA(cur, prev, mptc); 3443 ADD_DELTA(cur, prev, bptc); 3444 ADD_DELTA(cur, prev, ptc); 3445 ADD_DELTA(cur, prev, erpt); 3446 ADD_DELTA(cur, prev, mbtc); 3447 ADD_DELTA(cur, prev, bbtc); 3448 ADD_DELTA(cur, prev, mbrc); 3449 ADD_DELTA(cur, prev, bbrc); 3450 ADD_DELTA(cur, prev, ubrc); 3451 ADD_DELTA(cur, prev, ubtc); 3452 ADD_DELTA(cur, prev, dpc); 3453 ADD_DELTA(cur, prev, cprc); 3454 3455 sc->sc_statistics_idx = cur; 3456 } 3457 #endif /* AQ_EVENT_COUNTERS */ 3458 3459 /* allocate and map one DMA block */ 3460 static int 3461 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3462 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3463 { 3464 int nsegs, error; 3465 3466 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3467 1, &nsegs, 0)) != 0) { 3468 aprint_error_dev(sc->sc_dev, 3469 "unable to allocate DMA buffer, error=%d\n", error); 3470 goto fail_alloc; 3471 } 3472 3473 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3474 BUS_DMA_COHERENT)) != 0) { 3475 aprint_error_dev(sc->sc_dev, 3476 "unable to map DMA buffer, error=%d\n", error); 3477 goto fail_map; 3478 } 3479 3480 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3481 0, mapp)) != 0) { 3482 aprint_error_dev(sc->sc_dev, 3483 "unable to create DMA map, error=%d\n", error); 3484 goto fail_create; 3485 } 3486 3487 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3488 0)) != 0) { 3489 aprint_error_dev(sc->sc_dev, 3490 "unable to load DMA map, error=%d\n", error); 3491 goto fail_load; 3492 } 3493 3494 *sizep = size; 3495 return 0; 3496 3497 fail_load: 3498 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3499 *mapp = NULL; 3500 fail_create: 3501 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3502 *addrp = NULL; 3503 fail_map: 3504 bus_dmamem_free(sc->sc_dmat, seg, 1); 3505 memset(seg, 0, sizeof(*seg)); 3506 fail_alloc: 3507 *sizep = 0; 3508 return error; 3509 } 3510 3511 static void 3512 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3513 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3514 { 3515 if (*mapp != NULL) { 3516 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3517 *mapp = NULL; 3518 } 3519 if (*addrp != NULL) { 3520 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3521 *addrp = NULL; 3522 } 3523 if (*sizep != 0) { 3524 bus_dmamem_free(sc->sc_dmat, seg, 1); 3525 memset(seg, 0, sizeof(*seg)); 3526 *sizep = 0; 3527 } 3528 } 3529 3530 static int 3531 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3532 { 3533 int i, error; 3534 3535 /* allocate tx descriptors */ 3536 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3537 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3538 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3539 if (error != 0) 3540 return error; 3541 3542 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3543 3544 /* fill tx ring with dmamap */ 3545 for (i = 0; i < AQ_TXD_NUM; i++) { 3546 #define AQ_MAXDMASIZE (16 * 1024) 3547 #define AQ_NTXSEGS 32 3548 /* XXX: TODO: error check */ 3549 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3550 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3551 } 3552 return 0; 3553 } 3554 3555 static void 3556 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3557 { 3558 int i; 3559 3560 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3561 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3562 3563 for (i = 0; i < AQ_TXD_NUM; i++) { 3564 if (txring->txr_mbufs[i].dmamap != NULL) { 3565 if (txring->txr_mbufs[i].m != NULL) { 3566 bus_dmamap_unload(sc->sc_dmat, 3567 txring->txr_mbufs[i].dmamap); 3568 m_freem(txring->txr_mbufs[i].m); 3569 txring->txr_mbufs[i].m = NULL; 3570 } 3571 bus_dmamap_destroy(sc->sc_dmat, 3572 txring->txr_mbufs[i].dmamap); 3573 txring->txr_mbufs[i].dmamap = NULL; 3574 } 3575 } 3576 } 3577 3578 static int 3579 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3580 { 3581 int i, error; 3582 3583 /* allocate rx descriptors */ 3584 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3585 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3586 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3587 if (error != 0) 3588 return error; 3589 3590 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3591 3592 /* fill rxring with dmamaps */ 3593 for (i = 0; i < AQ_RXD_NUM; i++) { 3594 rxring->rxr_mbufs[i].m = NULL; 3595 /* XXX: TODO: error check */ 3596 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3597 &rxring->rxr_mbufs[i].dmamap); 3598 } 3599 return 0; 3600 } 3601 3602 static void 3603 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3604 { 3605 int i; 3606 3607 /* free all mbufs allocated for RX */ 3608 for (i = 0; i < AQ_RXD_NUM; i++) { 3609 if (rxring->rxr_mbufs[i].m != NULL) { 3610 bus_dmamap_unload(sc->sc_dmat, 3611 rxring->rxr_mbufs[i].dmamap); 3612 m_freem(rxring->rxr_mbufs[i].m); 3613 rxring->rxr_mbufs[i].m = NULL; 3614 } 3615 } 3616 } 3617 3618 static void 3619 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3620 { 3621 int i; 3622 3623 /* free all mbufs and dmamaps */ 3624 aq_rxdrain(sc, rxring); 3625 for (i = 0; i < AQ_RXD_NUM; i++) { 3626 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3627 bus_dmamap_destroy(sc->sc_dmat, 3628 rxring->rxr_mbufs[i].dmamap); 3629 rxring->rxr_mbufs[i].dmamap = NULL; 3630 } 3631 } 3632 3633 /* free RX descriptor */ 3634 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3635 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3636 } 3637 3638 static void 3639 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3640 struct mbuf *m) 3641 { 3642 int error; 3643 3644 /* if mbuf already exists, unload and free */ 3645 if (rxring->rxr_mbufs[idx].m != NULL) { 3646 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3647 m_freem(rxring->rxr_mbufs[idx].m); 3648 rxring->rxr_mbufs[idx].m = NULL; 3649 } 3650 3651 rxring->rxr_mbufs[idx].m = m; 3652 3653 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3654 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3655 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3656 if (error) { 3657 device_printf(sc->sc_dev, 3658 "unable to load rx DMA map %d, error = %d\n", idx, error); 3659 panic("%s: unable to load rx DMA map. error=%d", 3660 __func__, error); 3661 } 3662 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3663 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3664 } 3665 3666 static inline void 3667 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3668 { 3669 /* refill rxdesc, and sync */ 3670 rxring->rxr_rxdesc[idx].read.buf_addr = 3671 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3672 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3673 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3674 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3675 BUS_DMASYNC_PREWRITE); 3676 } 3677 3678 static struct mbuf * 3679 aq_alloc_mbuf(void) 3680 { 3681 struct mbuf *m; 3682 3683 MGETHDR(m, M_DONTWAIT, MT_DATA); 3684 if (m == NULL) 3685 return NULL; 3686 3687 MCLGET(m, M_DONTWAIT); 3688 if ((m->m_flags & M_EXT) == 0) { 3689 m_freem(m); 3690 return NULL; 3691 } 3692 3693 return m; 3694 } 3695 3696 /* allocate mbuf and unload dmamap */ 3697 static int 3698 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3699 { 3700 struct mbuf *m; 3701 3702 m = aq_alloc_mbuf(); 3703 if (m == NULL) 3704 return ENOBUFS; 3705 3706 aq_rxring_setmbuf(sc, rxring, idx, m); 3707 return 0; 3708 } 3709 3710 static int 3711 aq_txrx_rings_alloc(struct aq_softc *sc) 3712 { 3713 int n, error; 3714 3715 for (n = 0; n < sc->sc_nqueues; n++) { 3716 sc->sc_queue[n].sc = sc; 3717 sc->sc_queue[n].txring.txr_sc = sc; 3718 sc->sc_queue[n].txring.txr_index = n; 3719 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3720 IPL_NET); 3721 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3722 if (error != 0) 3723 goto failure; 3724 3725 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3726 if (error != 0) 3727 goto failure; 3728 3729 sc->sc_queue[n].rxring.rxr_sc = sc; 3730 sc->sc_queue[n].rxring.rxr_index = n; 3731 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3732 IPL_NET); 3733 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3734 if (error != 0) 3735 break; 3736 } 3737 3738 failure: 3739 return error; 3740 } 3741 3742 static void 3743 aq_txrx_rings_free(struct aq_softc *sc) 3744 { 3745 int n; 3746 3747 for (n = 0; n < sc->sc_nqueues; n++) { 3748 aq_txring_free(sc, &sc->sc_queue[n].txring); 3749 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3750 3751 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3752 3753 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3754 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3755 } 3756 } 3757 3758 static int 3759 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3760 { 3761 int error = 0; 3762 txring->txr_softint = NULL; 3763 3764 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3765 if (txring->txr_pcq == NULL) { 3766 aprint_error_dev(sc->sc_dev, 3767 "unable to allocate pcq for TXring[%d]\n", 3768 txring->txr_index); 3769 error = ENOMEM; 3770 goto done; 3771 } 3772 3773 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3774 aq_deferred_transmit, txring); 3775 if (txring->txr_softint == NULL) { 3776 aprint_error_dev(sc->sc_dev, 3777 "unable to establish softint for TXring[%d]\n", 3778 txring->txr_index); 3779 error = ENOENT; 3780 } 3781 3782 done: 3783 return error; 3784 } 3785 3786 static void 3787 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3788 { 3789 struct mbuf *m; 3790 3791 if (txring->txr_softint != NULL) { 3792 softint_disestablish(txring->txr_softint); 3793 txring->txr_softint = NULL; 3794 } 3795 3796 if (txring->txr_pcq != NULL) { 3797 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3798 m_freem(m); 3799 pcq_destroy(txring->txr_pcq); 3800 txring->txr_pcq = NULL; 3801 } 3802 } 3803 3804 #if NSYSMON_ENVSYS > 0 3805 static void 3806 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3807 { 3808 struct aq_softc *sc; 3809 uint32_t temp; 3810 int error; 3811 3812 sc = sme->sme_cookie; 3813 3814 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3815 if (error == 0) { 3816 edata->value_cur = temp; 3817 edata->state = ENVSYS_SVALID; 3818 } else { 3819 edata->state = ENVSYS_SINVALID; 3820 } 3821 } 3822 #endif 3823 3824 static void 3825 aq_tick(void *arg) 3826 { 3827 struct aq_softc *sc = arg; 3828 3829 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3830 sc->sc_detect_linkstat = false; 3831 aq_update_link_status(sc); 3832 } 3833 3834 #ifdef AQ_EVENT_COUNTERS 3835 if (sc->sc_poll_statistics) 3836 aq_update_statistics(sc); 3837 #endif 3838 3839 if (sc->sc_poll_linkstat 3840 #ifdef AQ_EVENT_COUNTERS 3841 || sc->sc_poll_statistics 3842 #endif 3843 ) { 3844 callout_schedule(&sc->sc_tick_ch, hz); 3845 } 3846 } 3847 3848 /* interrupt enable/disable */ 3849 static void 3850 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3851 { 3852 uint32_t imask = 0; 3853 int i; 3854 3855 if (txrx) { 3856 for (i = 0; i < sc->sc_nqueues; i++) { 3857 imask |= __BIT(sc->sc_tx_irq[i]); 3858 imask |= __BIT(sc->sc_rx_irq[i]); 3859 } 3860 } 3861 3862 if (link) 3863 imask |= __BIT(sc->sc_linkstat_irq); 3864 3865 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3866 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3867 } 3868 3869 static int 3870 aq_legacy_intr(void *arg) 3871 { 3872 struct aq_softc *sc = arg; 3873 uint32_t status; 3874 int nintr = 0; 3875 3876 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3877 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3878 3879 if (status & __BIT(sc->sc_linkstat_irq)) { 3880 sc->sc_detect_linkstat = true; 3881 callout_schedule(&sc->sc_tick_ch, 0); 3882 nintr++; 3883 } 3884 3885 if (status & __BIT(sc->sc_rx_irq[0])) { 3886 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3887 } 3888 3889 if (status & __BIT(sc->sc_tx_irq[0])) { 3890 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3891 } 3892 3893 return nintr; 3894 } 3895 3896 static int 3897 aq_txrx_intr(void *arg) 3898 { 3899 struct aq_queue *queue = arg; 3900 struct aq_softc *sc = queue->sc; 3901 struct aq_txring *txring = &queue->txring; 3902 struct aq_rxring *rxring = &queue->rxring; 3903 uint32_t status; 3904 int nintr = 0; 3905 int txringidx, rxringidx, txirq, rxirq; 3906 3907 txringidx = txring->txr_index; 3908 rxringidx = rxring->rxr_index; 3909 txirq = sc->sc_tx_irq[txringidx]; 3910 rxirq = sc->sc_rx_irq[rxringidx]; 3911 3912 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3913 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3914 /* stray interrupt? */ 3915 return 0; 3916 } 3917 3918 nintr += aq_rx_intr(rxring); 3919 nintr += aq_tx_intr(txring); 3920 3921 return nintr; 3922 } 3923 3924 static int 3925 aq_link_intr(void *arg) 3926 { 3927 struct aq_softc *sc = arg; 3928 uint32_t status; 3929 int nintr = 0; 3930 3931 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3932 if (status & __BIT(sc->sc_linkstat_irq)) { 3933 sc->sc_detect_linkstat = true; 3934 callout_schedule(&sc->sc_tick_ch, 0); 3935 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3936 __BIT(sc->sc_linkstat_irq)); 3937 nintr++; 3938 } 3939 3940 return nintr; 3941 } 3942 3943 static void 3944 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3945 { 3946 const int ringidx = txring->txr_index; 3947 int i; 3948 3949 mutex_enter(&txring->txr_mutex); 3950 3951 txring->txr_prodidx = 0; 3952 txring->txr_considx = 0; 3953 txring->txr_nfree = AQ_TXD_NUM; 3954 txring->txr_active = false; 3955 3956 /* free mbufs untransmitted */ 3957 for (i = 0; i < AQ_TXD_NUM; i++) { 3958 if (txring->txr_mbufs[i].m != NULL) { 3959 m_freem(txring->txr_mbufs[i].m); 3960 txring->txr_mbufs[i].m = NULL; 3961 } 3962 } 3963 3964 /* disable DMA */ 3965 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3966 3967 if (start) { 3968 /* TX descriptor physical address */ 3969 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3970 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3971 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3972 (uint32_t)((uint64_t)paddr >> 32)); 3973 3974 /* TX descriptor size */ 3975 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3976 AQ_TXD_NUM / 8); 3977 3978 /* reload TAIL pointer */ 3979 txring->txr_prodidx = txring->txr_considx = 3980 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3981 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3982 3983 /* Mapping interrupt vector */ 3984 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3985 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3986 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3987 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3988 3989 /* enable DMA */ 3990 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3991 TX_DMA_DESC_EN, 1); 3992 3993 const int cpuid = 0; /* XXX? */ 3994 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3995 TDM_DCAD_CPUID, cpuid); 3996 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3997 TDM_DCAD_CPUID_EN, 0); 3998 3999 txring->txr_active = true; 4000 } 4001 4002 mutex_exit(&txring->txr_mutex); 4003 } 4004 4005 static int 4006 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4007 { 4008 const int ringidx = rxring->rxr_index; 4009 int i; 4010 int error = 0; 4011 4012 mutex_enter(&rxring->rxr_mutex); 4013 rxring->rxr_active = false; 4014 4015 /* disable DMA */ 4016 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4017 4018 /* free all RX mbufs */ 4019 aq_rxdrain(sc, rxring); 4020 4021 if (start) { 4022 for (i = 0; i < AQ_RXD_NUM; i++) { 4023 error = aq_rxring_add(sc, rxring, i); 4024 if (error != 0) { 4025 aq_rxdrain(sc, rxring); 4026 return error; 4027 } 4028 aq_rxring_reset_desc(sc, rxring, i); 4029 } 4030 4031 /* RX descriptor physical address */ 4032 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4033 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4034 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4035 (uint32_t)((uint64_t)paddr >> 32)); 4036 4037 /* RX descriptor size */ 4038 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4039 AQ_RXD_NUM / 8); 4040 4041 /* maximum receive frame size */ 4042 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4043 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4044 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4045 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4046 4047 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4048 RX_DMA_DESC_HEADER_SPLIT, 0); 4049 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4050 RX_DMA_DESC_VLAN_STRIP, 4051 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4052 1 : 0); 4053 4054 /* 4055 * reload TAIL pointer, and update readidx 4056 * (HEAD pointer cannot write) 4057 */ 4058 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4059 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4060 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4061 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4062 4063 /* Rx ring set mode */ 4064 4065 /* Mapping interrupt vector */ 4066 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4067 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4068 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4069 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4070 4071 const int cpuid = 0; /* XXX? */ 4072 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4073 RX_DMA_DCAD_CPUID, cpuid); 4074 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4075 RX_DMA_DCAD_DESC_EN, 0); 4076 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4077 RX_DMA_DCAD_HEADER_EN, 0); 4078 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4079 RX_DMA_DCAD_PAYLOAD_EN, 0); 4080 4081 /* enable DMA. start receiving */ 4082 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4083 RX_DMA_DESC_EN, 1); 4084 4085 rxring->rxr_active = true; 4086 } 4087 4088 mutex_exit(&rxring->rxr_mutex); 4089 return error; 4090 } 4091 4092 #define TXRING_NEXTIDX(idx) \ 4093 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4094 #define RXRING_NEXTIDX(idx) \ 4095 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4096 4097 static int 4098 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4099 { 4100 bus_dmamap_t map; 4101 struct mbuf *m = *mp; 4102 uint32_t ctl1, ctl1_ctx, ctl2; 4103 int idx, i, error; 4104 4105 idx = txring->txr_prodidx; 4106 map = txring->txr_mbufs[idx].dmamap; 4107 4108 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4109 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4110 if (error == EFBIG) { 4111 struct mbuf *n; 4112 n = m_defrag(m, M_DONTWAIT); 4113 if (n == NULL) 4114 return EFBIG; 4115 /* m_defrag() preserve m */ 4116 KASSERT(n == m); 4117 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4118 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4119 } 4120 if (error != 0) 4121 return error; 4122 4123 /* 4124 * check spaces of free descriptors. 4125 * +1 is additional descriptor for context (vlan, etc,.) 4126 */ 4127 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4128 device_printf(sc->sc_dev, 4129 "TX: not enough descriptors left %d for %d segs\n", 4130 txring->txr_nfree, map->dm_nsegs + 1); 4131 bus_dmamap_unload(sc->sc_dmat, map); 4132 return ENOBUFS; 4133 } 4134 4135 /* sync dma for mbuf */ 4136 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4137 BUS_DMASYNC_PREWRITE); 4138 4139 ctl1_ctx = 0; 4140 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4141 4142 if (vlan_has_tag(m)) { 4143 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4144 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4145 4146 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4147 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4148 4149 /* fill context descriptor and forward index */ 4150 txring->txr_txdesc[idx].buf_addr = 0; 4151 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4152 txring->txr_txdesc[idx].ctl2 = 0; 4153 4154 idx = TXRING_NEXTIDX(idx); 4155 txring->txr_nfree--; 4156 } 4157 4158 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4159 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4160 if (m->m_pkthdr.csum_flags & 4161 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4162 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4163 } 4164 4165 /* fill descriptor(s) */ 4166 for (i = 0; i < map->dm_nsegs; i++) { 4167 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4168 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4169 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4170 4171 if (i == 0) { 4172 /* remember mbuf of these descriptors */ 4173 txring->txr_mbufs[idx].m = m; 4174 } else { 4175 txring->txr_mbufs[idx].m = NULL; 4176 } 4177 4178 if (i == map->dm_nsegs - 1) { 4179 /* last segment, mark an EndOfPacket, and cause intr */ 4180 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4181 } 4182 4183 txring->txr_txdesc[idx].buf_addr = 4184 htole64(map->dm_segs[i].ds_addr); 4185 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4186 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4187 4188 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4189 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4190 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4191 4192 idx = TXRING_NEXTIDX(idx); 4193 txring->txr_nfree--; 4194 } 4195 4196 txring->txr_prodidx = idx; 4197 4198 return 0; 4199 } 4200 4201 static int 4202 aq_tx_intr(void *arg) 4203 { 4204 struct aq_txring *txring = arg; 4205 struct aq_softc *sc = txring->txr_sc; 4206 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4207 struct mbuf *m; 4208 const int ringidx = txring->txr_index; 4209 unsigned int idx, hw_head, n = 0; 4210 4211 mutex_enter(&txring->txr_mutex); 4212 4213 if (!txring->txr_active) 4214 goto tx_intr_done; 4215 4216 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4217 TX_DMA_DESC_HEAD_PTR); 4218 if (hw_head == txring->txr_considx) { 4219 goto tx_intr_done; 4220 } 4221 4222 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4223 4224 for (idx = txring->txr_considx; idx != hw_head; 4225 idx = TXRING_NEXTIDX(idx), n++) { 4226 4227 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4228 bus_dmamap_unload(sc->sc_dmat, 4229 txring->txr_mbufs[idx].dmamap); 4230 4231 if_statinc_ref(nsr, if_opackets); 4232 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4233 if (m->m_flags & M_MCAST) 4234 if_statinc_ref(nsr, if_omcasts); 4235 4236 m_freem(m); 4237 txring->txr_mbufs[idx].m = NULL; 4238 } 4239 4240 txring->txr_nfree++; 4241 } 4242 txring->txr_considx = idx; 4243 4244 IF_STAT_PUTREF(ifp); 4245 4246 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4247 ifp->if_flags &= ~IFF_OACTIVE; 4248 4249 /* no more pending TX packet, cancel watchdog */ 4250 if (txring->txr_nfree >= AQ_TXD_NUM) 4251 ifp->if_timer = 0; 4252 4253 tx_intr_done: 4254 mutex_exit(&txring->txr_mutex); 4255 4256 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4257 return n; 4258 } 4259 4260 static int 4261 aq_rx_intr(void *arg) 4262 { 4263 struct aq_rxring *rxring = arg; 4264 struct aq_softc *sc = rxring->rxr_sc; 4265 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4266 const int ringidx = rxring->rxr_index; 4267 aq_rx_desc_t *rxd; 4268 struct mbuf *m, *m0, *mprev, *new_m; 4269 uint32_t rxd_type, rxd_hash __unused; 4270 uint16_t rxd_status, rxd_pktlen; 4271 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4272 unsigned int idx, n = 0; 4273 4274 mutex_enter(&rxring->rxr_mutex); 4275 4276 if (!rxring->rxr_active) 4277 goto rx_intr_done; 4278 4279 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4280 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4281 goto rx_intr_done; 4282 } 4283 4284 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4285 4286 m0 = mprev = NULL; 4287 for (idx = rxring->rxr_readidx; 4288 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4289 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4290 4291 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4292 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4293 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4294 4295 rxd = &rxring->rxr_rxdesc[idx]; 4296 rxd_status = le16toh(rxd->wb.status); 4297 4298 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4299 break; /* not yet done */ 4300 4301 rxd_type = le32toh(rxd->wb.type); 4302 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4303 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4304 rxd_hash = le32toh(rxd->wb.rss_hash); 4305 rxd_vlan = le16toh(rxd->wb.vlan); 4306 4307 if ((rxd_status & RXDESC_STATUS_MACERR) || 4308 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4309 if_statinc_ref(nsr, if_ierrors); 4310 goto rx_next; 4311 } 4312 4313 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4314 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4315 BUS_DMASYNC_POSTREAD); 4316 m = rxring->rxr_mbufs[idx].m; 4317 4318 new_m = aq_alloc_mbuf(); 4319 if (new_m == NULL) { 4320 /* 4321 * cannot allocate new mbuf. 4322 * discard this packet, and reuse mbuf for next. 4323 */ 4324 if_statinc_ref(nsr, if_iqdrops); 4325 goto rx_next; 4326 } 4327 rxring->rxr_mbufs[idx].m = NULL; 4328 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4329 4330 if (m0 == NULL) { 4331 m0 = m; 4332 } else { 4333 if (m->m_flags & M_PKTHDR) 4334 m_remove_pkthdr(m); 4335 mprev->m_next = m; 4336 } 4337 mprev = m; 4338 4339 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4340 m->m_len = MCLBYTES; 4341 } else { 4342 /* last buffer */ 4343 int mlen = rxd_pktlen % MCLBYTES; 4344 if (mlen == 0) 4345 mlen = MCLBYTES; 4346 m->m_len = mlen; 4347 m0->m_pkthdr.len = rxd_pktlen; 4348 /* VLAN offloading */ 4349 if ((sc->sc_ethercom.ec_capenable & 4350 ETHERCAP_VLAN_HWTAGGING) && 4351 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4352 __SHIFTOUT(rxd_type, 4353 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4354 vlan_set_tag(m0, rxd_vlan); 4355 } 4356 4357 /* Checksum offloading */ 4358 unsigned int pkttype_eth = 4359 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4360 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4361 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4362 __SHIFTOUT(rxd_type, 4363 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4364 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4365 if (__SHIFTOUT(rxd_status, 4366 RXDESC_STATUS_IPV4_CSUM_NG)) 4367 m0->m_pkthdr.csum_flags |= 4368 M_CSUM_IPv4_BAD; 4369 } 4370 4371 /* 4372 * aq will always mark BAD for fragment packets, 4373 * but this is not a problem because the IP stack 4374 * ignores the CSUM flag in fragment packets. 4375 */ 4376 if (__SHIFTOUT(rxd_type, 4377 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4378 bool checked = false; 4379 unsigned int pkttype_proto = 4380 __SHIFTOUT(rxd_type, 4381 RXDESC_TYPE_PKTTYPE_PROTO); 4382 4383 if (pkttype_proto == 4384 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4385 if ((pkttype_eth == 4386 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4387 (ifp->if_capabilities & 4388 IFCAP_CSUM_TCPv4_Rx)) { 4389 m0->m_pkthdr.csum_flags |= 4390 M_CSUM_TCPv4; 4391 checked = true; 4392 } else if ((pkttype_eth == 4393 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4394 (ifp->if_capabilities & 4395 IFCAP_CSUM_TCPv6_Rx)) { 4396 m0->m_pkthdr.csum_flags |= 4397 M_CSUM_TCPv6; 4398 checked = true; 4399 } 4400 } else if (pkttype_proto == 4401 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4402 if ((pkttype_eth == 4403 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4404 (ifp->if_capabilities & 4405 IFCAP_CSUM_UDPv4_Rx)) { 4406 m0->m_pkthdr.csum_flags |= 4407 M_CSUM_UDPv4; 4408 checked = true; 4409 } else if ((pkttype_eth == 4410 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4411 (ifp->if_capabilities & 4412 IFCAP_CSUM_UDPv6_Rx)) { 4413 m0->m_pkthdr.csum_flags |= 4414 M_CSUM_UDPv6; 4415 checked = true; 4416 } 4417 } 4418 if (checked && 4419 (__SHIFTOUT(rxd_status, 4420 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4421 !__SHIFTOUT(rxd_status, 4422 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4423 m0->m_pkthdr.csum_flags |= 4424 M_CSUM_TCP_UDP_BAD; 4425 } 4426 } 4427 4428 m_set_rcvif(m0, ifp); 4429 if_statinc_ref(nsr, if_ipackets); 4430 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4431 if_percpuq_enqueue(ifp->if_percpuq, m0); 4432 m0 = mprev = NULL; 4433 } 4434 4435 rx_next: 4436 aq_rxring_reset_desc(sc, rxring, idx); 4437 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4438 } 4439 rxring->rxr_readidx = idx; 4440 4441 IF_STAT_PUTREF(ifp); 4442 4443 rx_intr_done: 4444 mutex_exit(&rxring->rxr_mutex); 4445 4446 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4447 return n; 4448 } 4449 4450 static int 4451 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4452 { 4453 struct ifnet *ifp = &ec->ec_if; 4454 struct aq_softc *sc = ifp->if_softc; 4455 4456 aq_set_vlan_filters(sc); 4457 return 0; 4458 } 4459 4460 static int 4461 aq_ifflags_cb(struct ethercom *ec) 4462 { 4463 struct ifnet *ifp = &ec->ec_if; 4464 struct aq_softc *sc = ifp->if_softc; 4465 int i, ecchange, error = 0; 4466 unsigned short iffchange; 4467 4468 AQ_LOCK(sc); 4469 4470 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4471 if ((iffchange & IFF_PROMISC) != 0) 4472 error = aq_set_filter(sc); 4473 4474 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4475 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4476 for (i = 0; i < AQ_RINGS_NUM; i++) { 4477 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4478 RX_DMA_DESC_VLAN_STRIP, 4479 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4480 1 : 0); 4481 } 4482 } 4483 4484 /* vlan configuration depends on also interface promiscuous mode */ 4485 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4486 aq_set_vlan_filters(sc); 4487 4488 sc->sc_ec_capenable = ec->ec_capenable; 4489 sc->sc_if_flags = ifp->if_flags; 4490 4491 AQ_UNLOCK(sc); 4492 4493 return error; 4494 } 4495 4496 static int 4497 aq_init(struct ifnet *ifp) 4498 { 4499 struct aq_softc *sc = ifp->if_softc; 4500 int i, error = 0; 4501 4502 aq_stop(ifp, false); 4503 4504 AQ_LOCK(sc); 4505 4506 aq_set_vlan_filters(sc); 4507 aq_set_capability(sc); 4508 4509 for (i = 0; i < sc->sc_nqueues; i++) { 4510 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4511 } 4512 4513 /* invalidate RX descriptor cache */ 4514 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4515 AQ_READ_REG_BIT(sc, 4516 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4517 4518 /* start RX */ 4519 for (i = 0; i < sc->sc_nqueues; i++) { 4520 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4521 if (error != 0) { 4522 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4523 __func__); 4524 goto aq_init_failure; 4525 } 4526 } 4527 aq_init_rss(sc); 4528 aq_hw_l3_filter_set(sc); 4529 4530 /* need to start callout? */ 4531 if (sc->sc_poll_linkstat 4532 #ifdef AQ_EVENT_COUNTERS 4533 || sc->sc_poll_statistics 4534 #endif 4535 ) { 4536 callout_schedule(&sc->sc_tick_ch, hz); 4537 } 4538 4539 /* ready */ 4540 ifp->if_flags |= IFF_RUNNING; 4541 ifp->if_flags &= ~IFF_OACTIVE; 4542 4543 /* start TX and RX */ 4544 aq_enable_intr(sc, true, true); 4545 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4546 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4547 4548 aq_init_failure: 4549 sc->sc_if_flags = ifp->if_flags; 4550 4551 AQ_UNLOCK(sc); 4552 4553 return error; 4554 } 4555 4556 static void 4557 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4558 struct aq_txring *txring, bool is_transmit) 4559 { 4560 struct mbuf *m; 4561 int npkt, error; 4562 4563 if ((ifp->if_flags & IFF_RUNNING) == 0) 4564 return; 4565 4566 for (npkt = 0; ; npkt++) { 4567 if (is_transmit) 4568 m = pcq_peek(txring->txr_pcq); 4569 else 4570 IFQ_POLL(&ifp->if_snd, m); 4571 4572 if (m == NULL) 4573 break; 4574 4575 if (txring->txr_nfree < AQ_TXD_MIN) 4576 break; 4577 4578 if (is_transmit) 4579 pcq_get(txring->txr_pcq); 4580 else 4581 IFQ_DEQUEUE(&ifp->if_snd, m); 4582 4583 error = aq_encap_txring(sc, txring, &m); 4584 if (error != 0) { 4585 /* too many mbuf chains? or not enough descriptors? */ 4586 m_freem(m); 4587 if_statinc(ifp, if_oerrors); 4588 if (txring->txr_index == 0 && error == ENOBUFS) 4589 ifp->if_flags |= IFF_OACTIVE; 4590 break; 4591 } 4592 4593 /* update tail ptr */ 4594 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4595 txring->txr_prodidx); 4596 4597 /* Pass the packet to any BPF listeners */ 4598 bpf_mtap(ifp, m, BPF_D_OUT); 4599 } 4600 4601 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4602 ifp->if_flags |= IFF_OACTIVE; 4603 4604 if (npkt) 4605 ifp->if_timer = 5; 4606 } 4607 4608 static void 4609 aq_start(struct ifnet *ifp) 4610 { 4611 struct aq_softc *sc; 4612 struct aq_txring *txring; 4613 4614 sc = ifp->if_softc; 4615 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4616 4617 mutex_enter(&txring->txr_mutex); 4618 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4619 aq_send_common_locked(ifp, sc, txring, false); 4620 mutex_exit(&txring->txr_mutex); 4621 } 4622 4623 static inline unsigned int 4624 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4625 { 4626 return (cpu_index(curcpu()) % sc->sc_nqueues); 4627 } 4628 4629 static int 4630 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4631 { 4632 struct aq_softc *sc = ifp->if_softc; 4633 struct aq_txring *txring; 4634 int ringidx; 4635 4636 ringidx = aq_select_txqueue(sc, m); 4637 txring = &sc->sc_queue[ringidx].txring; 4638 4639 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4640 m_freem(m); 4641 return ENOBUFS; 4642 } 4643 4644 if (mutex_tryenter(&txring->txr_mutex)) { 4645 aq_send_common_locked(ifp, sc, txring, true); 4646 mutex_exit(&txring->txr_mutex); 4647 } else { 4648 softint_schedule(txring->txr_softint); 4649 } 4650 return 0; 4651 } 4652 4653 static void 4654 aq_deferred_transmit(void *arg) 4655 { 4656 struct aq_txring *txring = arg; 4657 struct aq_softc *sc = txring->txr_sc; 4658 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4659 4660 mutex_enter(&txring->txr_mutex); 4661 if (pcq_peek(txring->txr_pcq) != NULL) 4662 aq_send_common_locked(ifp, sc, txring, true); 4663 mutex_exit(&txring->txr_mutex); 4664 } 4665 4666 static void 4667 aq_stop(struct ifnet *ifp, int disable) 4668 { 4669 struct aq_softc *sc = ifp->if_softc; 4670 int i; 4671 4672 AQ_LOCK(sc); 4673 4674 ifp->if_timer = 0; 4675 4676 if ((ifp->if_flags & IFF_RUNNING) == 0) 4677 goto already_stopped; 4678 4679 /* disable tx/rx interrupts */ 4680 aq_enable_intr(sc, true, false); 4681 4682 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4683 for (i = 0; i < sc->sc_nqueues; i++) { 4684 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4685 } 4686 4687 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4688 for (i = 0; i < sc->sc_nqueues; i++) { 4689 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4690 } 4691 4692 /* invalidate RX descriptor cache */ 4693 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4694 AQ_READ_REG_BIT(sc, 4695 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4696 4697 ifp->if_timer = 0; 4698 4699 already_stopped: 4700 if (!disable) { 4701 /* when pmf stop, disable link status intr and callout */ 4702 aq_enable_intr(sc, false, false); 4703 callout_stop(&sc->sc_tick_ch); 4704 } 4705 4706 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4707 4708 AQ_UNLOCK(sc); 4709 } 4710 4711 static void 4712 aq_watchdog(struct ifnet *ifp) 4713 { 4714 struct aq_softc *sc = ifp->if_softc; 4715 struct aq_txring *txring; 4716 int n, head, tail; 4717 4718 AQ_LOCK(sc); 4719 4720 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4721 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4722 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4723 4724 for (n = 0; n < sc->sc_nqueues; n++) { 4725 txring = &sc->sc_queue[n].txring; 4726 head = AQ_READ_REG_BIT(sc, 4727 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4728 TX_DMA_DESC_HEAD_PTR), 4729 tail = AQ_READ_REG(sc, 4730 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4731 4732 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4733 __func__, txring->txr_index, head, tail); 4734 4735 aq_tx_intr(txring); 4736 } 4737 4738 AQ_UNLOCK(sc); 4739 4740 aq_init(ifp); 4741 } 4742 4743 static int 4744 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4745 { 4746 struct aq_softc *sc __unused; 4747 struct ifreq *ifr __unused; 4748 int error, s; 4749 4750 sc = (struct aq_softc *)ifp->if_softc; 4751 ifr = (struct ifreq *)data; 4752 error = 0; 4753 4754 s = splnet(); 4755 switch (cmd) { 4756 case SIOCSIFMTU: 4757 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) { 4758 error = EINVAL; 4759 } else { 4760 ifp->if_mtu = ifr->ifr_mtu; 4761 error = 0; /* no need to reset (no ENETRESET) */ 4762 } 4763 break; 4764 default: 4765 error = ether_ioctl(ifp, cmd, data); 4766 break; 4767 } 4768 splx(s); 4769 4770 if (error != ENETRESET) 4771 return error; 4772 4773 switch (cmd) { 4774 case SIOCSIFCAP: 4775 error = aq_set_capability(sc); 4776 break; 4777 case SIOCADDMULTI: 4778 case SIOCDELMULTI: 4779 if ((ifp->if_flags & IFF_RUNNING) == 0) 4780 break; 4781 4782 /* 4783 * Multicast list has changed; set the hardware filter 4784 * accordingly. 4785 */ 4786 error = aq_set_filter(sc); 4787 break; 4788 } 4789 4790 return error; 4791 } 4792 4793 4794 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4795 4796 #ifdef _MODULE 4797 #include "ioconf.c" 4798 #endif 4799 4800 static int 4801 if_aq_modcmd(modcmd_t cmd, void *opaque) 4802 { 4803 int error = 0; 4804 4805 switch (cmd) { 4806 case MODULE_CMD_INIT: 4807 #ifdef _MODULE 4808 error = config_init_component(cfdriver_ioconf_if_aq, 4809 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4810 #endif 4811 return error; 4812 case MODULE_CMD_FINI: 4813 #ifdef _MODULE 4814 error = config_fini_component(cfdriver_ioconf_if_aq, 4815 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4816 #endif 4817 return error; 4818 default: 4819 return ENOTTY; 4820 } 4821 } 4822