1 /* $NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 /* 120 * TERMINOLOGY 121 * MPI = MAC PHY INTERFACE? 122 * RPO = RX Protocol Offloading 123 * TPO = TX Protocol Offloading 124 * RPF = RX Packet Filter 125 * TPB = TX Packet buffer 126 * RPB = RX Packet buffer 127 */ 128 129 /* registers */ 130 #define AQ_FW_SOFTRESET_REG 0x0000 131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 133 134 #define AQ_FW_VERSION_REG 0x0018 135 #define AQ_HW_REVISION_REG 0x001c 136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 137 138 #define AQ_FW_MBOX_CMD_REG 0x0200 139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 141 #define AQ_FW_MBOX_ADDR_REG 0x0208 142 #define AQ_FW_MBOX_VAL_REG 0x020c 143 144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 145 #define FW2X_LED_REG 0x031c 146 #define FW2X_LED_DEFAULT 0x00000000 147 #define FW2X_LED_NONE 0x0000003f 148 #define FW2X_LINKLED __BITS(0,1) 149 #define FW2X_LINKLED_ACTIVE 0 150 #define FW2X_LINKLED_ON 1 151 #define FW2X_LINKLED_BLINK 2 152 #define FW2X_LINKLED_OFF 3 153 #define FW2X_STATUSLED __BITS(2,5) 154 #define FW2X_STATUSLED_ORANGE 0 155 #define FW2X_STATUSLED_ORANGE_BLINK 2 156 #define FW2X_STATUSLED_OFF 3 157 #define FW2X_STATUSLED_GREEN 4 158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 159 #define FW2X_STATUSLED_GREEN_BLINK 10 160 161 #define FW_MPI_MBOX_ADDR_REG 0x0360 162 #define FW1X_MPI_INIT1_REG 0x0364 163 #define FW1X_MPI_CONTROL_REG 0x0368 164 #define FW1X_MPI_STATE_REG 0x036c 165 #define FW1X_MPI_STATE_MODE __BITS(7,0) 166 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 169 #define FW1X_MPI_INIT2_REG 0x0370 170 #define FW1X_MPI_EFUSEADDR_REG 0x0374 171 172 #define FW2X_MPI_EFUSEADDR_REG 0x0364 173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 175 #define FW_BOOT_EXIT_CODE_REG 0x0388 176 #define RBL_STATUS_DEAD 0x0000dead 177 #define RBL_STATUS_SUCCESS 0x0000abba 178 #define RBL_STATUS_FAILURE 0x00000bad 179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 180 181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 183 184 #define AQ_FW_GLB_CTL2_REG 0x0404 185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 186 187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 189 190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 191 192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 193 194 // msix bitmap */ 195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 199 #define AQ_INTR_AUTOMASK_REG 0x2090 200 201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 209 210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 212 #define AQ_B0_ERR_INT 8U 213 214 #define AQ_INTR_CTRL_REG 0x2300 215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 217 #define AQ_INTR_CTRL_IRQMODE_MSI 1 218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 224 225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 226 227 #define FW_MPI_RESETCTRL_REG 0x4000 228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 229 230 #define RX_SYSCONTROL_REG 0x5000 231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 233 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 234 235 #define RX_TCP_RSS_HASH_REG 0x5040 236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 238 239 /* for RPF_*_REG.ACTION */ 240 #define RPF_ACTION_DISCARD 0 241 #define RPF_ACTION_HOST 1 242 #define RPF_ACTION_MANAGEMENT 2 243 #define RPF_ACTION_HOST_MANAGEMENT 3 244 #define RPF_ACTION_WOL 4 245 246 #define RPF_L2BC_REG 0x5100 247 #define RPF_L2BC_EN __BIT(0) 248 #define RPF_L2BC_PROMISC __BIT(3) 249 #define RPF_L2BC_ACTION __BITS(12,14) 250 #define RPF_L2BC_THRESHOLD __BITS(31,16) 251 252 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 256 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 257 #define RPF_L2UC_MSW_EN __BIT(31) 258 #define AQ_HW_MAC_OWN 0 /* index of own address */ 259 #define AQ_HW_MAC_NUM 34 260 261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 263 #define RPF_MCAST_FILTER_EN __BIT(31) 264 #define RPF_MCAST_FILTER_MASK_REG 0x5270 265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 266 267 #define RPF_VLAN_MODE_REG 0x5280 268 #define RPF_VLAN_MODE_PROMISC __BIT(1) 269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 271 272 #define RPF_VLAN_TPID_REG 0x5284 273 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 274 #define RPF_VLAN_TPID_INNER __BITS(15,0) 275 276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 277 #define RPF_VLAN_MAX_FILTERS 16 278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 279 #define RPF_VLAN_FILTER_EN __BIT(31) 280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 283 #define RPF_VLAN_FILTER_ID __BITS(11,0) 284 285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 295 296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 298 #define RPF_L3_FILTER_L4_EN __BIT(31) 299 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 305 #define RPF_L3_FILTER_ARP_EN __BIT(24) 306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 311 #define RPF_L3_FILTER_L4_PROTO_TCP 0 312 #define RPF_L3_FILTER_L4_PROTO_UDP 1 313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 315 /* parameters of RPF_L3_FILTER_REG[8] */ 316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 320 321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 323 324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 326 327 #define RPF_RSS_KEY_ADDR_REG 0x54d0 328 #define RPF_RSS_KEY_ADDR __BITS(4,0) 329 #define RPF_RSS_KEY_WR_EN __BIT(5) 330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 332 333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 334 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 335 #define RPF_RSS_REDIR_WR_EN __BIT(4) 336 337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 339 340 #define RPO_HWCSUM_REG 0x5580 341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 343 344 #define RPO_LRO_ENABLE_REG 0x5590 345 346 #define RPO_LRO_CONF_REG 0x5594 347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 351 #define RPO_LRO_RSC_MAX_REG 0x5598 352 353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 356 #define RPO_LRO_TB_DIV_REG 0x5620 357 #define RPO_LRO_TB_DIV __BITS(20,31) 358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 362 363 #define RPB_RPF_RX_REG 0x5700 364 #define RPB_RPF_RX_TC_MODE __BIT(8) 365 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 366 #define RPB_RPF_RX_BUF_EN __BIT(0) 367 368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 370 #define RPB_RXB_BUFSIZE __BITS(8,0) 371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 372 #define RPB_RXB_XOFF_EN __BIT(31) 373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 375 376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 377 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 378 379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 382 383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 385 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 388 389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 394 #define RX_DMA_DESC_RESET __BIT(25) 395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 397 #define RX_DMA_DESC_EN __BIT(31) 398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 404 405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 407 #define RX_DMA_DCAD_CPUID __BITS(7,0) 408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 409 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 410 #define RX_DMA_DCAD_DESC_EN __BIT(31) 411 412 #define RX_DMA_DCA_REG 0x6180 413 #define RX_DMA_DCA_EN __BIT(31) 414 #define RX_DMA_DCA_MODE __BITS(3,0) 415 416 /* counters */ 417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 421 422 #define TX_SYSCONTROL_REG 0x7000 423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 425 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 426 427 #define TX_TPO2_REG 0x7040 428 #define TX_TPO2_EN __BIT(16) 429 430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 431 #define TPS_DESC_VM_ARB_MODE __BIT(0) 432 #define TPS_DESC_RATE_REG 0x7310 433 #define TPS_DESC_RATE_TA_RST __BIT(31) 434 #define TPS_DESC_RATE_LIM __BITS(10,0) 435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 438 #define TPS_DATA_TC_ARB_MODE __BIT(0) 439 440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 448 449 #define AQ_HW_TXBUF_MAX 160 450 #define AQ_HW_RXBUF_MAX 320 451 452 #define TPO_HWCSUM_REG 0x7800 453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 455 456 #define TDM_LSO_EN_REG 0x7810 457 458 #define THM_LSO_TCP_FLAG1_REG 0x7820 459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 461 #define THM_LSO_TCP_FLAG2_REG 0x7824 462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 463 464 #define TPB_TX_BUF_REG 0x7900 465 #define TPB_TX_BUF_EN __BIT(0) 466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 468 469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 471 #define TPB_TXB_BUFSIZE __BITS(7,0) 472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 473 #define TPB_TXB_THRESH_HI __BITS(16,28) 474 #define TPB_TXB_THRESH_LO __BITS(12,0) 475 476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 480 481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 486 #define TX_DMA_DESC_EN __BIT(31) 487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 492 493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 495 #define TDM_DCAD_CPUID __BITS(7,0) 496 #define TDM_DCAD_CPUID_EN __BIT(31) 497 498 #define TDM_DCA_REG 0x8480 499 #define TDM_DCA_EN __BIT(31) 500 #define TDM_DCA_MODE __BITS(3,0) 501 502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 504 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 507 508 #define FW1X_CTRL_10G __BIT(0) 509 #define FW1X_CTRL_5G __BIT(1) 510 #define FW1X_CTRL_5GSR __BIT(2) 511 #define FW1X_CTRL_2G5 __BIT(3) 512 #define FW1X_CTRL_1G __BIT(4) 513 #define FW1X_CTRL_100M __BIT(5) 514 515 #define FW2X_CTRL_10BASET_HD __BIT(0) 516 #define FW2X_CTRL_10BASET_FD __BIT(1) 517 #define FW2X_CTRL_100BASETX_HD __BIT(2) 518 #define FW2X_CTRL_100BASET4_HD __BIT(3) 519 #define FW2X_CTRL_100BASET2_HD __BIT(4) 520 #define FW2X_CTRL_100BASETX_FD __BIT(5) 521 #define FW2X_CTRL_100BASET2_FD __BIT(6) 522 #define FW2X_CTRL_1000BASET_HD __BIT(7) 523 #define FW2X_CTRL_1000BASET_FD __BIT(8) 524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 525 #define FW2X_CTRL_5GBASET_FD __BIT(10) 526 #define FW2X_CTRL_10GBASET_FD __BIT(11) 527 #define FW2X_CTRL_RESERVED1 __BIT(32) 528 #define FW2X_CTRL_10BASET_EEE __BIT(33) 529 #define FW2X_CTRL_RESERVED2 __BIT(34) 530 #define FW2X_CTRL_PAUSE __BIT(35) 531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 532 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 533 #define FW2X_CTRL_RESERVED3 __BIT(38) 534 #define FW2X_CTRL_RESERVED4 __BIT(39) 535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 539 #define FW2X_CTRL_RESERVED5 __BIT(44) 540 #define FW2X_CTRL_RESERVED6 __BIT(45) 541 #define FW2X_CTRL_RESERVED7 __BIT(46) 542 #define FW2X_CTRL_RESERVED8 __BIT(47) 543 #define FW2X_CTRL_RESERVED9 __BIT(48) 544 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 545 #define FW2X_CTRL_TEMPERATURE __BIT(50) 546 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 549 #define FW2X_CTRL_LINK_DROP __BIT(54) 550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 551 #define FW2X_CTRL_WOL __BIT(56) 552 #define FW2X_CTRL_MAC_STOP __BIT(57) 553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 556 #define FW2X_CTRL_WOL_TIMER __BIT(61) 557 #define FW2X_CTRL_STATISTICS __BIT(62) 558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 559 560 #define FW2X_SNPRINTB \ 561 "\177\020" \ 562 "b\x23" "PAUSE\0" \ 563 "b\x24" "ASYMMETRIC-PAUSE\0" \ 564 "b\x31" "CABLE-DIAG\0" \ 565 "b\x32" "TEMPERATURE\0" \ 566 "b\x33" "DOWNSHIFT\0" \ 567 "b\x34" "PTP-AVB\0" \ 568 "b\x35" "MEDIA-DETECT\0" \ 569 "b\x36" "LINK-DROP\0" \ 570 "b\x37" "SLEEP-PROXY\0" \ 571 "b\x38" "WOL\0" \ 572 "b\x39" "MAC-STOP\0" \ 573 "b\x3a" "EXT-LOOPBACK\0" \ 574 "b\x3b" "INT-LOOPBACK\0" \ 575 "b\x3c" "EFUSE-AGENT\0" \ 576 "b\x3d" "WOL-TIMER\0" \ 577 "b\x3e" "STATISTICS\0" \ 578 "b\x3f" "TRANSACTION-ID\0" \ 579 "\0" 580 581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 586 #define FW2X_CTRL_RATE_MASK \ 587 (FW2X_CTRL_RATE_100M | \ 588 FW2X_CTRL_RATE_1G | \ 589 FW2X_CTRL_RATE_2G5 | \ 590 FW2X_CTRL_RATE_5G | \ 591 FW2X_CTRL_RATE_10G) 592 #define FW2X_CTRL_EEE_MASK \ 593 (FW2X_CTRL_10BASET_EEE | \ 594 FW2X_CTRL_100BASETX_EEE | \ 595 FW2X_CTRL_1000BASET_FD_EEE | \ 596 FW2X_CTRL_2P5GBASET_FD_EEE | \ 597 FW2X_CTRL_5GBASET_FD_EEE | \ 598 FW2X_CTRL_10GBASET_FD_EEE) 599 600 typedef enum aq_fw_bootloader_mode { 601 FW_BOOT_MODE_UNKNOWN = 0, 602 FW_BOOT_MODE_FLB, 603 FW_BOOT_MODE_RBL_FLASH, 604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 605 } aq_fw_bootloader_mode_t; 606 607 #define AQ_WRITE_REG(sc, reg, val) \ 608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 609 610 #define AQ_READ_REG(sc, reg) \ 611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 612 613 #define AQ_READ64_REG(sc, reg) \ 614 ((uint64_t)AQ_READ_REG(sc, reg) | \ 615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 616 617 #define AQ_WRITE64_REG(sc, reg, val) \ 618 do { \ 619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 621 } while (/* CONSTCOND */0) 622 623 #define AQ_READ_REG_BIT(sc, reg, mask) \ 624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 625 626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 627 do { \ 628 uint32_t _v; \ 629 _v = AQ_READ_REG((sc), (reg)); \ 630 _v &= ~(mask); \ 631 if ((val) != 0) \ 632 _v |= __SHIFTIN((val), (mask)); \ 633 AQ_WRITE_REG((sc), (reg), _v); \ 634 } while (/* CONSTCOND */ 0) 635 636 #define WAIT_FOR(expr, us, n, errp) \ 637 do { \ 638 unsigned int _n; \ 639 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 640 delay((us)); \ 641 } \ 642 if ((errp != NULL)) { \ 643 if (_n == 0) \ 644 *(errp) = ETIMEDOUT; \ 645 else \ 646 *(errp) = 0; \ 647 } \ 648 } while (/* CONSTCOND */ 0) 649 650 #define msec_delay(x) DELAY(1000 * (x)) 651 652 typedef struct aq_mailbox_header { 653 uint32_t version; 654 uint32_t transaction_id; 655 int32_t error; 656 } __packed __aligned(4) aq_mailbox_header_t; 657 658 typedef struct aq_hw_stats_s { 659 uint32_t uprc; 660 uint32_t mprc; 661 uint32_t bprc; 662 uint32_t erpt; 663 uint32_t uptc; 664 uint32_t mptc; 665 uint32_t bptc; 666 uint32_t erpr; 667 uint32_t mbtc; 668 uint32_t bbtc; 669 uint32_t mbrc; 670 uint32_t bbrc; 671 uint32_t ubrc; 672 uint32_t ubtc; 673 uint32_t ptc; 674 uint32_t prc; 675 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 676 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 677 } __packed __aligned(4) aq_hw_stats_s_t; 678 679 typedef struct fw1x_mailbox { 680 aq_mailbox_header_t header; 681 aq_hw_stats_s_t msm; 682 } __packed __aligned(4) fw1x_mailbox_t; 683 684 typedef struct fw2x_msm_statistics { 685 uint32_t uprc; 686 uint32_t mprc; 687 uint32_t bprc; 688 uint32_t erpt; 689 uint32_t uptc; 690 uint32_t mptc; 691 uint32_t bptc; 692 uint32_t erpr; 693 uint32_t mbtc; 694 uint32_t bbtc; 695 uint32_t mbrc; 696 uint32_t bbrc; 697 uint32_t ubrc; 698 uint32_t ubtc; 699 uint32_t ptc; 700 uint32_t prc; 701 } __packed __aligned(4) fw2x_msm_statistics_t; 702 703 typedef struct fw2x_phy_cable_diag_data { 704 uint32_t lane_data[4]; 705 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 706 707 typedef struct fw2x_capabilities { 708 uint32_t caps_lo; 709 uint32_t caps_hi; 710 } __packed __aligned(4) fw2x_capabilities_t; 711 712 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 713 aq_mailbox_header_t header; 714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 715 716 uint32_t phy_info1; 717 #define PHYINFO1_FAULT_CODE __BITS(31,16) 718 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 719 uint32_t phy_info2; 720 #define PHYINFO2_TEMPERATURE __BITS(15,0) 721 #define PHYINFO2_CABLE_LEN __BITS(23,16) 722 723 fw2x_phy_cable_diag_data_t diag_data; 724 uint32_t reserved[8]; 725 726 fw2x_capabilities_t caps; 727 728 /* ... */ 729 } __packed __aligned(4) fw2x_mailbox_t; 730 731 typedef enum aq_link_speed { 732 AQ_LINK_NONE = 0, 733 AQ_LINK_100M = (1 << 0), 734 AQ_LINK_1G = (1 << 1), 735 AQ_LINK_2G5 = (1 << 2), 736 AQ_LINK_5G = (1 << 3), 737 AQ_LINK_10G = (1 << 4) 738 } aq_link_speed_t; 739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 740 AQ_LINK_5G | AQ_LINK_10G ) 741 #define AQ_LINK_AUTO AQ_LINK_ALL 742 743 typedef enum aq_link_fc { 744 AQ_FC_NONE = 0, 745 AQ_FC_RX = __BIT(0), 746 AQ_FC_TX = __BIT(1), 747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 748 } aq_link_fc_t; 749 750 typedef enum aq_link_eee { 751 AQ_EEE_DISABLE = 0, 752 AQ_EEE_ENABLE = 1 753 } aq_link_eee_t; 754 755 typedef enum aq_hw_fw_mpi_state { 756 MPI_DEINIT = 0, 757 MPI_RESET = 1, 758 MPI_INIT = 2, 759 MPI_POWER = 4 760 } aq_hw_fw_mpi_state_t; 761 762 enum aq_media_type { 763 AQ_MEDIA_TYPE_UNKNOWN = 0, 764 AQ_MEDIA_TYPE_FIBRE, 765 AQ_MEDIA_TYPE_TP 766 }; 767 768 struct aq_rx_desc_read { 769 uint64_t buf_addr; 770 uint64_t hdr_addr; 771 } __packed __aligned(8); 772 773 struct aq_rx_desc_wb { 774 uint32_t type; 775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 776 #define RXDESC_TYPE_RSSTYPE_NONE 0 777 #define RXDESC_TYPE_RSSTYPE_IPV4 2 778 #define RXDESC_TYPE_RSSTYPE_IPV6 3 779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 797 #define RXDESC_TYPE_RESERVED __BITS(18,13) 798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 800 #define RXDESC_TYPE_SPH __BIT(21) 801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 802 uint32_t rss_hash; 803 uint16_t status; 804 #define RXDESC_STATUS_DD __BIT(0) 805 #define RXDESC_STATUS_EOP __BIT(1) 806 #define RXDESC_STATUS_MACERR __BIT(2) 807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 810 811 #define RXDESC_STATUS_STAT __BITS(2,5) 812 #define RXDESC_STATUS_ESTAT __BITS(6,11) 813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 814 uint16_t pkt_len; 815 uint16_t next_desc_ptr; 816 uint16_t vlan; 817 } __packed __aligned(4); 818 819 typedef union aq_rx_desc { 820 struct aq_rx_desc_read read; 821 struct aq_rx_desc_wb wb; 822 } __packed __aligned(8) aq_rx_desc_t; 823 824 typedef struct aq_tx_desc { 825 uint64_t buf_addr; 826 uint32_t ctl1; 827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 843 uint32_t ctl2; 844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 847 } __packed __aligned(8) aq_tx_desc_t; 848 849 struct aq_txring { 850 struct aq_softc *txr_sc; 851 int txr_index; 852 kmutex_t txr_mutex; 853 bool txr_active; 854 855 pcq_t *txr_pcq; 856 void *txr_softint; 857 858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 859 bus_dmamap_t txr_txdesc_dmamap; 860 bus_dma_segment_t txr_txdesc_seg[1]; 861 bus_size_t txr_txdesc_size; 862 863 struct { 864 struct mbuf *m; 865 bus_dmamap_t dmamap; 866 } txr_mbufs[AQ_TXD_NUM]; 867 unsigned int txr_prodidx; 868 unsigned int txr_considx; 869 int txr_nfree; 870 }; 871 872 struct aq_rxring { 873 struct aq_softc *rxr_sc; 874 int rxr_index; 875 kmutex_t rxr_mutex; 876 bool rxr_active; 877 878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 879 bus_dmamap_t rxr_rxdesc_dmamap; 880 bus_dma_segment_t rxr_rxdesc_seg[1]; 881 bus_size_t rxr_rxdesc_size; 882 struct { 883 struct mbuf *m; 884 bus_dmamap_t dmamap; 885 } rxr_mbufs[AQ_RXD_NUM]; 886 unsigned int rxr_readidx; 887 }; 888 889 struct aq_queue { 890 struct aq_softc *sc; 891 struct aq_txring txring; 892 struct aq_rxring rxring; 893 }; 894 895 struct aq_softc; 896 struct aq_firmware_ops { 897 int (*reset)(struct aq_softc *); 898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 903 #if NSYSMON_ENVSYS > 0 904 int (*get_temperature)(struct aq_softc *, uint32_t *); 905 #endif 906 }; 907 908 #ifdef AQ_EVENT_COUNTERS 909 #define AQ_EVCNT_DECL(name) \ 910 char sc_evcount_##name##_name[32]; \ 911 struct evcnt sc_evcount_##name##_ev; 912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 913 do { \ 914 snprintf((sc)->sc_evcount_##name##_name, \ 915 sizeof((sc)->sc_evcount_##name##_name), \ 916 "%s", desc); \ 917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 918 (evtype), NULL, device_xname((sc)->sc_dev), \ 919 (sc)->sc_evcount_##name##_name); \ 920 } while (/*CONSTCOND*/0) 921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 923 #define AQ_EVCNT_DETACH(sc, name) \ 924 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 925 #define AQ_EVCNT_ADD(sc, name, val) \ 926 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 927 #endif /* AQ_EVENT_COUNTERS */ 928 929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 931 932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 935 936 937 struct aq_softc { 938 device_t sc_dev; 939 940 bus_space_tag_t sc_iot; 941 bus_space_handle_t sc_ioh; 942 bus_size_t sc_iosize; 943 bus_dma_tag_t sc_dmat; 944 945 void *sc_ihs[AQ_NINTR_MAX]; 946 pci_intr_handle_t *sc_intrs; 947 948 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 949 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 950 int sc_linkstat_irq; 951 bool sc_use_txrx_independent_intr; 952 bool sc_poll_linkstat; 953 bool sc_detect_linkstat; 954 955 #if NSYSMON_ENVSYS > 0 956 struct sysmon_envsys *sc_sme; 957 envsys_data_t sc_sensor_temp; 958 #endif 959 960 callout_t sc_tick_ch; 961 962 int sc_nintrs; 963 bool sc_msix; 964 965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 966 int sc_nqueues; 967 968 pci_chipset_tag_t sc_pc; 969 pcitag_t sc_pcitag; 970 uint16_t sc_product; 971 uint16_t sc_revision; 972 973 kmutex_t sc_mutex; 974 kmutex_t sc_mpi_mutex; 975 976 const struct aq_firmware_ops *sc_fw_ops; 977 uint64_t sc_fw_caps; 978 enum aq_media_type sc_media_type; 979 aq_link_speed_t sc_available_rates; 980 981 aq_link_speed_t sc_link_rate; 982 aq_link_fc_t sc_link_fc; 983 aq_link_eee_t sc_link_eee; 984 985 uint32_t sc_fw_version; 986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 989 uint32_t sc_features; 990 #define FEATURES_MIPS 0x00000001 991 #define FEATURES_TPO2 0x00000002 992 #define FEATURES_RPF2 0x00000004 993 #define FEATURES_MPI_AQ 0x00000008 994 #define FEATURES_REV_A0 0x10000000 995 #define FEATURES_REV_A (FEATURES_REV_A0) 996 #define FEATURES_REV_B0 0x20000000 997 #define FEATURES_REV_B1 0x40000000 998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 999 uint32_t sc_mbox_addr; 1000 1001 bool sc_rbl_enabled; 1002 bool sc_fast_start_enabled; 1003 bool sc_flash_present; 1004 1005 bool sc_intr_moderation_enable; 1006 bool sc_rss_enable; 1007 1008 struct ethercom sc_ethercom; 1009 struct ether_addr sc_enaddr; 1010 struct ifmedia sc_media; 1011 int sc_ec_capenable; /* last ec_capenable */ 1012 unsigned short sc_if_flags; /* last if_flags */ 1013 1014 #ifdef AQ_EVENT_COUNTERS 1015 aq_hw_stats_s_t sc_statistics[2]; 1016 int sc_statistics_idx; 1017 bool sc_poll_statistics; 1018 1019 AQ_EVCNT_DECL(uprc); 1020 AQ_EVCNT_DECL(mprc); 1021 AQ_EVCNT_DECL(bprc); 1022 AQ_EVCNT_DECL(erpt); 1023 AQ_EVCNT_DECL(uptc); 1024 AQ_EVCNT_DECL(mptc); 1025 AQ_EVCNT_DECL(bptc); 1026 AQ_EVCNT_DECL(erpr); 1027 AQ_EVCNT_DECL(mbtc); 1028 AQ_EVCNT_DECL(bbtc); 1029 AQ_EVCNT_DECL(mbrc); 1030 AQ_EVCNT_DECL(bbrc); 1031 AQ_EVCNT_DECL(ubrc); 1032 AQ_EVCNT_DECL(ubtc); 1033 AQ_EVCNT_DECL(ptc); 1034 AQ_EVCNT_DECL(prc); 1035 AQ_EVCNT_DECL(dpc); 1036 AQ_EVCNT_DECL(cprc); 1037 #endif 1038 }; 1039 1040 static int aq_match(device_t, cfdata_t, void *); 1041 static void aq_attach(device_t, device_t, void *); 1042 static int aq_detach(device_t, int); 1043 1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1045 bool, bool); 1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1047 pci_intr_type_t); 1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1049 1050 static int aq_ifmedia_change(struct ifnet * const); 1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1053 static int aq_ifflags_cb(struct ethercom *); 1054 static int aq_init(struct ifnet *); 1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1056 struct aq_txring *, bool); 1057 static int aq_transmit(struct ifnet *, struct mbuf *); 1058 static void aq_deferred_transmit(void *); 1059 static void aq_start(struct ifnet *); 1060 static void aq_stop(struct ifnet *, int); 1061 static void aq_watchdog(struct ifnet *); 1062 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1063 1064 static int aq_txrx_rings_alloc(struct aq_softc *); 1065 static void aq_txrx_rings_free(struct aq_softc *); 1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1068 1069 static void aq_initmedia(struct aq_softc *); 1070 static void aq_enable_intr(struct aq_softc *, bool, bool); 1071 1072 #if NSYSMON_ENVSYS > 0 1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1074 #endif 1075 static void aq_tick(void *); 1076 static int aq_legacy_intr(void *); 1077 static int aq_link_intr(void *); 1078 static int aq_txrx_intr(void *); 1079 static int aq_tx_intr(void *); 1080 static int aq_rx_intr(void *); 1081 1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1083 aq_link_eee_t); 1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1085 aq_link_eee_t *); 1086 1087 static int aq_fw_reset(struct aq_softc *); 1088 static int aq_fw_version_init(struct aq_softc *); 1089 static int aq_hw_init(struct aq_softc *); 1090 static int aq_hw_init_ucp(struct aq_softc *); 1091 static int aq_hw_reset(struct aq_softc *); 1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1093 uint32_t); 1094 static int aq_get_mac_addr(struct aq_softc *); 1095 static int aq_init_rss(struct aq_softc *); 1096 static int aq_set_capability(struct aq_softc *); 1097 1098 static int fw1x_reset(struct aq_softc *); 1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1104 1105 static int fw2x_reset(struct aq_softc *); 1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1111 #if NSYSMON_ENVSYS > 0 1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1113 #endif 1114 1115 static const struct aq_firmware_ops aq_fw1x_ops = { 1116 .reset = fw1x_reset, 1117 .set_mode = fw1x_set_mode, 1118 .get_mode = fw1x_get_mode, 1119 .get_stats = fw1x_get_stats, 1120 #if NSYSMON_ENVSYS > 0 1121 .get_temperature = NULL 1122 #endif 1123 }; 1124 1125 static const struct aq_firmware_ops aq_fw2x_ops = { 1126 .reset = fw2x_reset, 1127 .set_mode = fw2x_set_mode, 1128 .get_mode = fw2x_get_mode, 1129 .get_stats = fw2x_get_stats, 1130 #if NSYSMON_ENVSYS > 0 1131 .get_temperature = fw2x_get_temperature 1132 #endif 1133 }; 1134 1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1137 1138 static const struct aq_product { 1139 pci_vendor_id_t aq_vendor; 1140 pci_product_id_t aq_product; 1141 const char *aq_name; 1142 enum aq_media_type aq_media_type; 1143 aq_link_speed_t aq_available_rates; 1144 } aq_products[] = { 1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1146 "Aquantia AQC100 10 Gigabit Network Adapter", 1147 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1148 }, 1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1150 "Aquantia AQC107 10 Gigabit Network Adapter", 1151 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1152 }, 1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1154 "Aquantia AQC108 5 Gigabit Network Adapter", 1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1156 }, 1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1158 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1160 }, 1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1162 "Aquantia AQC111 5 Gigabit Network Adapter", 1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1164 }, 1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1166 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1168 }, 1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1170 "Aquantia AQC100S 10 Gigabit Network Adapter", 1171 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1172 }, 1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1174 "Aquantia AQC107S 10 Gigabit Network Adapter", 1175 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1176 }, 1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1178 "Aquantia AQC108S 5 Gigabit Network Adapter", 1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1180 }, 1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1182 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1184 }, 1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1186 "Aquantia AQC111S 5 Gigabit Network Adapter", 1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1188 }, 1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1190 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1192 }, 1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1194 "Aquantia D100 10 Gigabit Network Adapter", 1195 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1196 }, 1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1198 "Aquantia D107 10 Gigabit Network Adapter", 1199 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1200 }, 1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1202 "Aquantia D108 5 Gigabit Network Adapter", 1203 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1204 }, 1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1206 "Aquantia D109 2.5 Gigabit Network Adapter", 1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1208 } 1209 }; 1210 1211 static const struct aq_product * 1212 aq_lookup(const struct pci_attach_args *pa) 1213 { 1214 unsigned int i; 1215 1216 for (i = 0; i < __arraycount(aq_products); i++) { 1217 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1218 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1219 return &aq_products[i]; 1220 } 1221 return NULL; 1222 } 1223 1224 static int 1225 aq_match(device_t parent, cfdata_t cf, void *aux) 1226 { 1227 struct pci_attach_args *pa = aux; 1228 1229 if (aq_lookup(pa) != NULL) 1230 return 1; 1231 1232 return 0; 1233 } 1234 1235 static void 1236 aq_attach(device_t parent, device_t self, void *aux) 1237 { 1238 struct aq_softc *sc = device_private(self); 1239 struct pci_attach_args *pa = aux; 1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1241 pci_chipset_tag_t pc; 1242 pcitag_t tag; 1243 pcireg_t command, memtype, bar; 1244 const struct aq_product *aqp; 1245 int error; 1246 1247 sc->sc_dev = self; 1248 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1249 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1250 1251 sc->sc_pc = pc = pa->pa_pc; 1252 sc->sc_pcitag = tag = pa->pa_tag; 1253 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1254 1255 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1256 command |= PCI_COMMAND_MASTER_ENABLE; 1257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1258 1259 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1260 sc->sc_revision = PCI_REVISION(pa->pa_class); 1261 1262 aqp = aq_lookup(pa); 1263 KASSERT(aqp != NULL); 1264 1265 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1266 1267 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1268 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1269 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1270 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1271 return; 1272 } 1273 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1274 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1275 NULL, &sc->sc_iosize) != 0) { 1276 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1277 return; 1278 } 1279 1280 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1281 1282 /* max queue num is 8, and must be 2^n */ 1283 if (ncpu >= 8) 1284 sc->sc_nqueues = 8; 1285 else if (ncpu >= 4) 1286 sc->sc_nqueues = 4; 1287 else if (ncpu >= 2) 1288 sc->sc_nqueues = 2; 1289 else 1290 sc->sc_nqueues = 1; 1291 1292 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1294 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1295 /* TX intrs + RX intrs + LINKSTAT intrs */ 1296 sc->sc_use_txrx_independent_intr = true; 1297 sc->sc_poll_linkstat = false; 1298 sc->sc_msix = true; 1299 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1300 /* TX intrs + RX intrs */ 1301 sc->sc_use_txrx_independent_intr = true; 1302 sc->sc_poll_linkstat = true; 1303 sc->sc_msix = true; 1304 } else 1305 #endif 1306 if (msixcount >= (sc->sc_nqueues + 1)) { 1307 /* TX/RX intrs LINKSTAT intrs */ 1308 sc->sc_use_txrx_independent_intr = false; 1309 sc->sc_poll_linkstat = false; 1310 sc->sc_msix = true; 1311 } else if (msixcount >= sc->sc_nqueues) { 1312 /* TX/RX intrs */ 1313 sc->sc_use_txrx_independent_intr = false; 1314 sc->sc_poll_linkstat = true; 1315 sc->sc_msix = true; 1316 } else { 1317 /* giving up using MSI-X */ 1318 sc->sc_msix = false; 1319 } 1320 1321 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */ 1322 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE) 1323 sc->sc_poll_linkstat = true; 1324 1325 #ifdef AQ_FORCE_POLL_LINKSTAT 1326 sc->sc_poll_linkstat = true; 1327 #endif 1328 1329 aprint_debug_dev(sc->sc_dev, 1330 "ncpu=%d, pci_msix_count=%d." 1331 " allocate %d interrupts for %d%s queues%s\n", 1332 ncpu, msixcount, 1333 (sc->sc_use_txrx_independent_intr ? 1334 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1335 (sc->sc_poll_linkstat ? 0 : 1), 1336 sc->sc_nqueues, 1337 sc->sc_use_txrx_independent_intr ? "*2" : "", 1338 sc->sc_poll_linkstat ? "" : ", and link status"); 1339 1340 if (sc->sc_msix) 1341 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1342 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1343 else 1344 error = ENODEV; 1345 1346 if (error != 0) { 1347 /* if MSI-X failed, fallback to MSI with single queue */ 1348 sc->sc_use_txrx_independent_intr = false; 1349 sc->sc_poll_linkstat = false; 1350 sc->sc_msix = false; 1351 sc->sc_nqueues = 1; 1352 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1353 } 1354 if (error != 0) { 1355 /* if MSI failed, fallback to INTx */ 1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1357 } 1358 if (error != 0) 1359 return; 1360 1361 callout_init(&sc->sc_tick_ch, 0); 1362 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1363 1364 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1365 1366 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1367 sc->sc_rss_enable = true; 1368 else 1369 sc->sc_rss_enable = false; 1370 1371 error = aq_txrx_rings_alloc(sc); 1372 if (error != 0) 1373 goto attach_failure; 1374 1375 error = aq_fw_reset(sc); 1376 if (error != 0) 1377 goto attach_failure; 1378 1379 error = aq_fw_version_init(sc); 1380 if (error != 0) 1381 goto attach_failure; 1382 1383 error = aq_hw_init_ucp(sc); 1384 if (error < 0) 1385 goto attach_failure; 1386 1387 KASSERT(sc->sc_mbox_addr != 0); 1388 error = aq_hw_reset(sc); 1389 if (error != 0) 1390 goto attach_failure; 1391 1392 aq_get_mac_addr(sc); 1393 aq_init_rss(sc); 1394 1395 error = aq_hw_init(sc); /* initialize and interrupts */ 1396 if (error != 0) 1397 goto attach_failure; 1398 1399 sc->sc_media_type = aqp->aq_media_type; 1400 sc->sc_available_rates = aqp->aq_available_rates; 1401 1402 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1403 ifmedia_init(&sc->sc_media, IFM_IMASK, 1404 aq_ifmedia_change, aq_ifmedia_status); 1405 aq_initmedia(sc); 1406 1407 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1408 ifp->if_softc = sc; 1409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1410 ifp->if_extflags = IFEF_MPSAFE; 1411 ifp->if_baudrate = IF_Gbps(10); 1412 ifp->if_init = aq_init; 1413 ifp->if_ioctl = aq_ioctl; 1414 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1415 ifp->if_transmit = aq_transmit; 1416 ifp->if_start = aq_start; 1417 ifp->if_stop = aq_stop; 1418 ifp->if_watchdog = aq_watchdog; 1419 IFQ_SET_READY(&ifp->if_snd); 1420 1421 /* initialize capabilities */ 1422 sc->sc_ethercom.ec_capabilities = 0; 1423 sc->sc_ethercom.ec_capenable = 0; 1424 #if notyet 1425 /* TODO */ 1426 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1427 #endif 1428 sc->sc_ethercom.ec_capabilities |= 1429 ETHERCAP_JUMBO_MTU | 1430 ETHERCAP_VLAN_MTU | 1431 ETHERCAP_VLAN_HWTAGGING | 1432 ETHERCAP_VLAN_HWFILTER; 1433 sc->sc_ethercom.ec_capenable |= 1434 ETHERCAP_VLAN_HWTAGGING | 1435 ETHERCAP_VLAN_HWFILTER; 1436 1437 ifp->if_capabilities = 0; 1438 ifp->if_capenable = 0; 1439 #ifdef CONFIG_LRO_SUPPORT 1440 ifp->if_capabilities |= IFCAP_LRO; 1441 ifp->if_capenable |= IFCAP_LRO; 1442 #endif 1443 #if notyet 1444 /* TSO */ 1445 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1446 #endif 1447 1448 #if notyet 1449 /* 1450 * XXX: 1451 * Rx L4 CSUM doesn't work well for fragment packet. 1452 * aq marks 'CHEDKED' and 'BAD' for them. 1453 * we need to ignore (clear) hw-csum flags if the packet is fragmented 1454 * 1455 * TODO: test with LRO enabled 1456 */ 1457 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1458 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1459 #endif 1460 /* TX hardware checksum offloadding */ 1461 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1462 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1463 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1464 /* RX hardware checksum offloadding */ 1465 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1466 1467 error = if_initialize(ifp); 1468 if (error != 0) { 1469 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", 1470 error); 1471 goto attach_failure; 1472 } 1473 ifp->if_percpuq = if_percpuq_create(ifp); 1474 if_deferred_start_init(ifp, NULL); 1475 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1476 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1477 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1478 if_register(ifp); 1479 1480 aq_enable_intr(sc, true, false); /* only intr about link */ 1481 1482 /* update media */ 1483 aq_ifmedia_change(ifp); 1484 1485 #if NSYSMON_ENVSYS > 0 1486 /* temperature monitoring */ 1487 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1488 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1489 1490 sc->sc_sme = sysmon_envsys_create(); 1491 sc->sc_sme->sme_name = device_xname(self); 1492 sc->sc_sme->sme_cookie = sc; 1493 sc->sc_sme->sme_flags = 0; 1494 sc->sc_sme->sme_refresh = aq_temp_refresh; 1495 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1496 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1497 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1498 1499 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1500 sysmon_envsys_register(sc->sc_sme); 1501 1502 /* 1503 * for unknown reasons, the first call of fw2x_get_temperature() 1504 * will always fail (firmware matter?), so run once now. 1505 */ 1506 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1507 } 1508 #endif 1509 1510 #ifdef AQ_EVENT_COUNTERS 1511 /* get starting statistics values */ 1512 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1513 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1514 sc->sc_poll_statistics = true; 1515 } 1516 1517 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1518 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1519 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1520 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1521 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1522 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1523 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1524 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1525 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1526 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1527 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1528 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1529 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1530 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1531 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1532 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1533 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1534 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1535 #endif 1536 1537 return; 1538 1539 attach_failure: 1540 aq_detach(self, 0); 1541 } 1542 1543 static int 1544 aq_detach(device_t self, int flags __unused) 1545 { 1546 struct aq_softc *sc = device_private(self); 1547 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1548 int i, s; 1549 1550 if (sc->sc_iosize != 0) { 1551 if (ifp->if_softc != NULL) { 1552 s = splnet(); 1553 aq_stop(ifp, 0); 1554 splx(s); 1555 } 1556 1557 for (i = 0; i < AQ_NINTR_MAX; i++) { 1558 if (sc->sc_ihs[i] != NULL) { 1559 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1560 sc->sc_ihs[i] = NULL; 1561 } 1562 } 1563 if (sc->sc_nintrs > 0) { 1564 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1565 sc->sc_nintrs); 1566 sc->sc_intrs = NULL; 1567 sc->sc_nintrs = 0; 1568 } 1569 1570 aq_txrx_rings_free(sc); 1571 1572 if (ifp->if_softc != NULL) { 1573 ether_ifdetach(ifp); 1574 if_detach(ifp); 1575 } 1576 1577 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1578 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1579 sc->sc_iosize = 0; 1580 } 1581 1582 callout_stop(&sc->sc_tick_ch); 1583 1584 #if NSYSMON_ENVSYS > 0 1585 if (sc->sc_sme != NULL) { 1586 /* all sensors associated with this will also be detached */ 1587 sysmon_envsys_unregister(sc->sc_sme); 1588 sc->sc_sme = NULL; 1589 } 1590 #endif 1591 1592 #ifdef AQ_EVENT_COUNTERS 1593 AQ_EVCNT_DETACH(sc, uprc); 1594 AQ_EVCNT_DETACH(sc, mprc); 1595 AQ_EVCNT_DETACH(sc, bprc); 1596 AQ_EVCNT_DETACH(sc, erpt); 1597 AQ_EVCNT_DETACH(sc, uptc); 1598 AQ_EVCNT_DETACH(sc, mptc); 1599 AQ_EVCNT_DETACH(sc, bptc); 1600 AQ_EVCNT_DETACH(sc, erpr); 1601 AQ_EVCNT_DETACH(sc, mbtc); 1602 AQ_EVCNT_DETACH(sc, bbtc); 1603 AQ_EVCNT_DETACH(sc, mbrc); 1604 AQ_EVCNT_DETACH(sc, bbrc); 1605 AQ_EVCNT_DETACH(sc, ubrc); 1606 AQ_EVCNT_DETACH(sc, ubtc); 1607 AQ_EVCNT_DETACH(sc, ptc); 1608 AQ_EVCNT_DETACH(sc, prc); 1609 AQ_EVCNT_DETACH(sc, dpc); 1610 AQ_EVCNT_DETACH(sc, cprc); 1611 #endif 1612 1613 ifmedia_fini(&sc->sc_media); 1614 1615 mutex_destroy(&sc->sc_mpi_mutex); 1616 mutex_destroy(&sc->sc_mutex); 1617 1618 return 0; 1619 } 1620 1621 static int 1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1623 int (*func)(void *), void *arg, const char *xname) 1624 { 1625 char intrbuf[PCI_INTRSTR_LEN]; 1626 pci_chipset_tag_t pc = sc->sc_pc; 1627 void *vih; 1628 const char *intrstr = NULL; 1629 1630 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1631 sizeof(intrbuf)); 1632 1633 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1634 1635 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1636 IPL_NET, func, arg, xname); 1637 if (vih == NULL) { 1638 aprint_error_dev(sc->sc_dev, 1639 "unable to establish MSI-X%s%s for %s\n", 1640 intrstr ? " at " : "", 1641 intrstr ? intrstr : "", xname); 1642 return EIO; 1643 } 1644 sc->sc_ihs[intno] = vih; 1645 1646 if (affinity != NULL) { 1647 /* Round-robin affinity */ 1648 kcpuset_zero(affinity); 1649 kcpuset_set(affinity, intno % ncpu); 1650 interrupt_distribute(vih, affinity, NULL); 1651 } 1652 1653 return 0; 1654 } 1655 1656 static int 1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1658 bool linkintr) 1659 { 1660 kcpuset_t *affinity; 1661 int error, intno, i; 1662 char intr_xname[INTRDEVNAMEBUF]; 1663 1664 kcpuset_create(&affinity, false); 1665 1666 intno = 0; 1667 1668 if (txrx_independent) { 1669 for (i = 0; i < sc->sc_nqueues; i++) { 1670 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1671 device_xname(sc->sc_dev), i); 1672 sc->sc_rx_irq[i] = intno; 1673 error = aq_establish_intr(sc, intno++, affinity, 1674 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1675 if (error != 0) 1676 goto fail; 1677 } 1678 for (i = 0; i < sc->sc_nqueues; i++) { 1679 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1680 device_xname(sc->sc_dev), i); 1681 sc->sc_tx_irq[i] = intno; 1682 error = aq_establish_intr(sc, intno++, affinity, 1683 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1684 if (error != 0) 1685 goto fail; 1686 } 1687 } else { 1688 for (i = 0; i < sc->sc_nqueues; i++) { 1689 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1690 device_xname(sc->sc_dev), i); 1691 sc->sc_rx_irq[i] = intno; 1692 sc->sc_tx_irq[i] = intno; 1693 error = aq_establish_intr(sc, intno++, affinity, 1694 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1695 if (error != 0) 1696 goto fail; 1697 } 1698 } 1699 1700 if (linkintr) { 1701 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1702 device_xname(sc->sc_dev)); 1703 sc->sc_linkstat_irq = intno; 1704 error = aq_establish_intr(sc, intno++, affinity, 1705 aq_link_intr, sc, intr_xname); 1706 if (error != 0) 1707 goto fail; 1708 } 1709 1710 kcpuset_destroy(affinity); 1711 return 0; 1712 1713 fail: 1714 for (i = 0; i < AQ_NINTR_MAX; i++) { 1715 if (sc->sc_ihs[i] != NULL) { 1716 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1717 sc->sc_ihs[i] = NULL; 1718 } 1719 } 1720 1721 kcpuset_destroy(affinity); 1722 return ENOMEM; 1723 } 1724 1725 static int 1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1727 bool txrx_independent, bool linkintr) 1728 { 1729 int error, nintr; 1730 1731 if (txrx_independent) 1732 nintr = nqueue * 2; 1733 else 1734 nintr = nqueue; 1735 1736 if (linkintr) 1737 nintr++; 1738 1739 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1740 if (error != 0) { 1741 aprint_error_dev(sc->sc_dev, 1742 "failed to allocate MSI-X interrupts\n"); 1743 goto fail; 1744 } 1745 1746 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1747 if (error == 0) { 1748 sc->sc_nintrs = nintr; 1749 } else { 1750 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1751 sc->sc_nintrs = 0; 1752 } 1753 fail: 1754 return error; 1755 1756 } 1757 1758 static int 1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1760 pci_intr_type_t inttype) 1761 { 1762 int counts[PCI_INTR_TYPE_SIZE]; 1763 int error, nintr; 1764 1765 nintr = 1; 1766 1767 memset(counts, 0, sizeof(counts)); 1768 counts[inttype] = nintr; 1769 1770 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1771 if (error != 0) { 1772 aprint_error_dev(sc->sc_dev, 1773 "failed to allocate%s interrupts\n", 1774 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1775 return error; 1776 } 1777 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1778 device_xname(sc->sc_dev)); 1779 if (error == 0) { 1780 sc->sc_nintrs = nintr; 1781 } else { 1782 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1783 sc->sc_nintrs = 0; 1784 } 1785 return error; 1786 } 1787 1788 static void 1789 global_software_reset(struct aq_softc *sc) 1790 { 1791 uint32_t v; 1792 1793 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1794 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1795 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1796 FW_MPI_RESETCTRL_RESET_DIS, 0); 1797 1798 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1799 v &= ~AQ_FW_SOFTRESET_DIS; 1800 v |= AQ_FW_SOFTRESET_RESET; 1801 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1802 } 1803 1804 static int 1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1806 { 1807 int timo; 1808 1809 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1810 1811 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1813 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1814 1815 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1816 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1817 1818 global_software_reset(sc); 1819 1820 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1821 1822 /* Wait for RBL to finish boot process. */ 1823 #define RBL_TIMEOUT_MS 10000 1824 uint16_t rbl_status; 1825 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1826 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1827 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1828 break; 1829 msec_delay(1); 1830 } 1831 if (timo <= 0) { 1832 aprint_error_dev(sc->sc_dev, 1833 "RBL> RBL restart failed: timeout\n"); 1834 return EBUSY; 1835 } 1836 switch (rbl_status) { 1837 case RBL_STATUS_SUCCESS: 1838 if (mode != NULL) 1839 *mode = FW_BOOT_MODE_RBL_FLASH; 1840 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1841 break; 1842 case RBL_STATUS_HOST_BOOT: 1843 if (mode != NULL) 1844 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1845 aprint_debug_dev(sc->sc_dev, 1846 "RBL> reset complete! [Host Bootload]\n"); 1847 break; 1848 case RBL_STATUS_FAILURE: 1849 default: 1850 aprint_error_dev(sc->sc_dev, 1851 "unknown RBL status 0x%x\n", rbl_status); 1852 return EBUSY; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int 1859 mac_soft_reset_flb(struct aq_softc *sc) 1860 { 1861 uint32_t v; 1862 int timo; 1863 1864 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1865 /* 1866 * Let Felicity hardware to complete SMBUS transaction before 1867 * Global software reset. 1868 */ 1869 msec_delay(50); 1870 1871 /* 1872 * If SPI burst transaction was interrupted(before running the script), 1873 * global software reset may not clear SPI interface. 1874 * Clean it up manually before global reset. 1875 */ 1876 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1879 msec_delay(50); 1880 1881 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1882 v &= ~AQ_FW_SOFTRESET_DIS; 1883 v |= AQ_FW_SOFTRESET_RESET; 1884 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1885 1886 /* Kickstart. */ 1887 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1888 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1889 if (!sc->sc_fast_start_enabled) 1890 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1891 1892 /* 1893 * For the case SPI burst transaction was interrupted (by MCP reset 1894 * above), wait until it is completed by hardware. 1895 */ 1896 msec_delay(50); 1897 1898 /* MAC Kickstart */ 1899 if (!sc->sc_fast_start_enabled) { 1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1901 1902 uint32_t flb_status; 1903 for (timo = 0; timo < 1000; timo++) { 1904 flb_status = AQ_READ_REG(sc, 1905 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1906 if (flb_status != 0) 1907 break; 1908 msec_delay(1); 1909 } 1910 if (flb_status == 0) { 1911 aprint_error_dev(sc->sc_dev, 1912 "FLB> MAC kickstart failed: timed out\n"); 1913 return ETIMEDOUT; 1914 } 1915 aprint_debug_dev(sc->sc_dev, 1916 "FLB> MAC kickstart done, %d ms\n", timo); 1917 /* FW reset */ 1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1919 /* 1920 * Let Felicity hardware complete SMBUS transaction before 1921 * Global software reset. 1922 */ 1923 msec_delay(50); 1924 sc->sc_fast_start_enabled = true; 1925 } 1926 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1927 1928 /* PHY Kickstart: #undone */ 1929 global_software_reset(sc); 1930 1931 for (timo = 0; timo < 1000; timo++) { 1932 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1933 break; 1934 msec_delay(10); 1935 } 1936 if (timo >= 1000) { 1937 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1938 return ETIMEDOUT; 1939 } 1940 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1941 return 0; 1942 1943 } 1944 1945 static int 1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1947 { 1948 if (sc->sc_rbl_enabled) 1949 return mac_soft_reset_rbl(sc, mode); 1950 1951 if (mode != NULL) 1952 *mode = FW_BOOT_MODE_FLB; 1953 return mac_soft_reset_flb(sc); 1954 } 1955 1956 static int 1957 aq_fw_read_version(struct aq_softc *sc) 1958 { 1959 int i, error = EBUSY; 1960 #define MAC_FW_START_TIMEOUT_MS 10000 1961 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1962 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1963 if (sc->sc_fw_version != 0) { 1964 error = 0; 1965 break; 1966 } 1967 delay(1000); 1968 } 1969 return error; 1970 } 1971 1972 static int 1973 aq_fw_reset(struct aq_softc *sc) 1974 { 1975 uint32_t ver, v, bootExitCode; 1976 int i, error; 1977 1978 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1979 1980 for (i = 1000; i > 0; i--) { 1981 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1982 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1983 if (v != 0x06000000 || bootExitCode != 0) 1984 break; 1985 } 1986 if (i <= 0) { 1987 aprint_error_dev(sc->sc_dev, 1988 "F/W reset failed. Neither RBL nor FLB started\n"); 1989 return ETIMEDOUT; 1990 } 1991 sc->sc_rbl_enabled = (bootExitCode != 0); 1992 1993 /* 1994 * Having FW version 0 is an indicator that cold start 1995 * is in progress. This means two things: 1996 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1997 * 2) Driver may skip reset sequence and save time. 1998 */ 1999 if (sc->sc_fast_start_enabled && (ver != 0)) { 2000 error = aq_fw_read_version(sc); 2001 /* Skip reset as it just completed */ 2002 if (error == 0) 2003 return 0; 2004 } 2005 2006 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2007 error = mac_soft_reset(sc, &mode); 2008 if (error != 0) { 2009 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2010 return error; 2011 } 2012 2013 switch (mode) { 2014 case FW_BOOT_MODE_FLB: 2015 aprint_debug_dev(sc->sc_dev, 2016 "FLB> F/W successfully loaded from flash.\n"); 2017 sc->sc_flash_present = true; 2018 return aq_fw_read_version(sc); 2019 case FW_BOOT_MODE_RBL_FLASH: 2020 aprint_debug_dev(sc->sc_dev, 2021 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2022 sc->sc_flash_present = true; 2023 return aq_fw_read_version(sc); 2024 case FW_BOOT_MODE_UNKNOWN: 2025 aprint_error_dev(sc->sc_dev, 2026 "F/W bootload error: unknown bootloader type\n"); 2027 return ENOTSUP; 2028 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2029 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2030 break; 2031 } 2032 2033 /* 2034 * XXX: TODO: add support Host Boot 2035 */ 2036 aprint_error_dev(sc->sc_dev, 2037 "RBL> F/W Host Bootload not implemented\n"); 2038 return ENOTSUP; 2039 } 2040 2041 static int 2042 aq_hw_reset(struct aq_softc *sc) 2043 { 2044 int error; 2045 2046 /* disable irq */ 2047 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2048 2049 /* apply */ 2050 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2051 2052 /* wait ack 10 times by 1ms */ 2053 WAIT_FOR( 2054 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2055 1000, 10, &error); 2056 if (error != 0) { 2057 aprint_error_dev(sc->sc_dev, 2058 "atlantic: IRQ reset failed: %d\n", error); 2059 return error; 2060 } 2061 2062 return sc->sc_fw_ops->reset(sc); 2063 } 2064 2065 static int 2066 aq_hw_init_ucp(struct aq_softc *sc) 2067 { 2068 int timo; 2069 2070 if (FW_VERSION_MAJOR(sc) == 1) { 2071 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) { 2072 uint32_t data; 2073 cprng_fast(&data, sizeof(data)); 2074 data &= 0xfefefefe; 2075 data |= 0x02020202; 2076 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data); 2077 } 2078 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2079 } 2080 2081 for (timo = 100; timo > 0; timo--) { 2082 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2083 if (sc->sc_mbox_addr != 0) 2084 break; 2085 delay(1000); 2086 } 2087 2088 #define AQ_FW_MIN_VERSION 0x01050006 2089 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2090 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2091 aprint_error_dev(sc->sc_dev, 2092 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2093 " or later required, this is %d.%d.%d\n", 2094 FW_VERSION_MAJOR(sc), 2095 FW_VERSION_MINOR(sc), 2096 FW_VERSION_BUILD(sc)); 2097 return ENOTSUP; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static int 2104 aq_fw_version_init(struct aq_softc *sc) 2105 { 2106 int error = 0; 2107 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2108 2109 if (FW_VERSION_MAJOR(sc) == 1) { 2110 sc->sc_fw_ops = &aq_fw1x_ops; 2111 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2112 sc->sc_fw_ops = &aq_fw2x_ops; 2113 } else { 2114 aprint_error_dev(sc->sc_dev, 2115 "Unsupported F/W version %d.%d.%d\n", 2116 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2117 FW_VERSION_BUILD(sc)); 2118 return ENOTSUP; 2119 } 2120 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2121 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2122 2123 /* detect revision */ 2124 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2125 switch (hwrev & 0x0000000f) { 2126 case 0x01: 2127 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2128 fw_vers); 2129 sc->sc_features |= FEATURES_REV_A0 | 2130 FEATURES_MPI_AQ | FEATURES_MIPS; 2131 break; 2132 case 0x02: 2133 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2134 fw_vers); 2135 sc->sc_features |= FEATURES_REV_B0 | 2136 FEATURES_MPI_AQ | FEATURES_MIPS | 2137 FEATURES_TPO2 | FEATURES_RPF2; 2138 break; 2139 case 0x0A: 2140 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2141 fw_vers); 2142 sc->sc_features |= FEATURES_REV_B1 | 2143 FEATURES_MPI_AQ | FEATURES_MIPS | 2144 FEATURES_TPO2 | FEATURES_RPF2; 2145 break; 2146 default: 2147 aprint_error_dev(sc->sc_dev, 2148 "Unknown revision (0x%08x)\n", hwrev); 2149 error = ENOTSUP; 2150 break; 2151 } 2152 return error; 2153 } 2154 2155 static int 2156 fw1x_reset(struct aq_softc *sc) 2157 { 2158 struct aq_mailbox_header mbox; 2159 const int retryCount = 1000; 2160 uint32_t tid0; 2161 int i; 2162 2163 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2164 2165 for (i = 0; i < retryCount; ++i) { 2166 /* 2167 * Read the beginning of Statistics structure to capture 2168 * the Transaction ID. 2169 */ 2170 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2171 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2172 2173 /* Successfully read the stats. */ 2174 if (tid0 == ~0U) { 2175 /* We have read the initial value. */ 2176 tid0 = mbox.transaction_id; 2177 continue; 2178 } else if (mbox.transaction_id != tid0) { 2179 /* 2180 * Compare transaction ID to initial value. 2181 * If it's different means f/w is alive. 2182 * We're done. 2183 */ 2184 return 0; 2185 } 2186 2187 /* 2188 * Transaction ID value haven't changed since last time. 2189 * Try reading the stats again. 2190 */ 2191 delay(10); 2192 } 2193 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2194 return EBUSY; 2195 } 2196 2197 static int 2198 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2199 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2200 { 2201 uint32_t mpictrl = 0; 2202 uint32_t mpispeed = 0; 2203 2204 if (speed & AQ_LINK_10G) 2205 mpispeed |= FW1X_CTRL_10G; 2206 if (speed & AQ_LINK_5G) 2207 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2208 if (speed & AQ_LINK_2G5) 2209 mpispeed |= FW1X_CTRL_2G5; 2210 if (speed & AQ_LINK_1G) 2211 mpispeed |= FW1X_CTRL_1G; 2212 if (speed & AQ_LINK_100M) 2213 mpispeed |= FW1X_CTRL_100M; 2214 2215 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2216 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2217 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2218 return 0; 2219 } 2220 2221 static int 2222 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2223 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2224 { 2225 uint32_t mpistate, mpi_speed; 2226 aq_link_speed_t speed = AQ_LINK_NONE; 2227 2228 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2229 2230 if (modep != NULL) 2231 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2232 2233 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2234 if (mpi_speed & FW1X_CTRL_10G) 2235 speed = AQ_LINK_10G; 2236 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2237 speed = AQ_LINK_5G; 2238 else if (mpi_speed & FW1X_CTRL_2G5) 2239 speed = AQ_LINK_2G5; 2240 else if (mpi_speed & FW1X_CTRL_1G) 2241 speed = AQ_LINK_1G; 2242 else if (mpi_speed & FW1X_CTRL_100M) 2243 speed = AQ_LINK_100M; 2244 2245 if (speedp != NULL) 2246 *speedp = speed; 2247 2248 if (fcp != NULL) 2249 *fcp = AQ_FC_NONE; 2250 2251 if (eeep != NULL) 2252 *eeep = AQ_EEE_DISABLE; 2253 2254 return 0; 2255 } 2256 2257 static int 2258 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2259 { 2260 int error; 2261 2262 error = aq_fw_downld_dwords(sc, 2263 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2264 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2265 if (error < 0) { 2266 device_printf(sc->sc_dev, 2267 "fw1x> download statistics data FAILED, error %d", error); 2268 return error; 2269 } 2270 2271 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2272 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2273 return 0; 2274 } 2275 2276 static int 2277 fw2x_reset(struct aq_softc *sc) 2278 { 2279 fw2x_capabilities_t caps = { 0 }; 2280 int error; 2281 2282 error = aq_fw_downld_dwords(sc, 2283 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2284 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2285 if (error != 0) { 2286 aprint_error_dev(sc->sc_dev, 2287 "fw2x> can't get F/W capabilities mask, error %d\n", 2288 error); 2289 return error; 2290 } 2291 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2292 2293 char buf[256]; 2294 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2295 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2296 2297 return 0; 2298 } 2299 2300 static int 2301 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2302 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2303 { 2304 uint64_t mpi_ctrl; 2305 int error = 0; 2306 2307 AQ_MPI_LOCK(sc); 2308 2309 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2310 2311 switch (mode) { 2312 case MPI_INIT: 2313 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2314 if (speed & AQ_LINK_10G) 2315 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2316 if (speed & AQ_LINK_5G) 2317 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2318 if (speed & AQ_LINK_2G5) 2319 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2320 if (speed & AQ_LINK_1G) 2321 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2322 if (speed & AQ_LINK_100M) 2323 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2324 2325 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2326 2327 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2328 if (eee == AQ_EEE_ENABLE) 2329 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2330 2331 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2332 if (fc & AQ_FC_RX) 2333 mpi_ctrl |= FW2X_CTRL_PAUSE; 2334 if (fc & AQ_FC_TX) 2335 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2336 break; 2337 case MPI_DEINIT: 2338 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2339 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2340 break; 2341 default: 2342 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2343 error = EINVAL; 2344 goto failure; 2345 } 2346 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2347 2348 failure: 2349 AQ_MPI_UNLOCK(sc); 2350 return error; 2351 } 2352 2353 static int 2354 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2355 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2356 { 2357 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2358 2359 if (modep != NULL) { 2360 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2361 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2362 *modep = MPI_INIT; 2363 else 2364 *modep = MPI_DEINIT; 2365 } 2366 2367 aq_link_speed_t speed = AQ_LINK_NONE; 2368 if (mpi_state & FW2X_CTRL_RATE_10G) 2369 speed = AQ_LINK_10G; 2370 else if (mpi_state & FW2X_CTRL_RATE_5G) 2371 speed = AQ_LINK_5G; 2372 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2373 speed = AQ_LINK_2G5; 2374 else if (mpi_state & FW2X_CTRL_RATE_1G) 2375 speed = AQ_LINK_1G; 2376 else if (mpi_state & FW2X_CTRL_RATE_100M) 2377 speed = AQ_LINK_100M; 2378 2379 if (speedp != NULL) 2380 *speedp = speed; 2381 2382 aq_link_fc_t fc = AQ_FC_NONE; 2383 if (mpi_state & FW2X_CTRL_PAUSE) 2384 fc |= AQ_FC_RX; 2385 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2386 fc |= AQ_FC_TX; 2387 if (fcp != NULL) 2388 *fcp = fc; 2389 2390 /* XXX: TODO: EEE */ 2391 if (eeep != NULL) 2392 *eeep = AQ_EEE_DISABLE; 2393 2394 return 0; 2395 } 2396 2397 static int 2398 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2399 uint32_t timeout_ms, uint32_t try_count) 2400 { 2401 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2402 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2403 int error; 2404 2405 /* First, check that control and state values are consistent */ 2406 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2407 device_printf(sc->sc_dev, 2408 "fw2x> MPI control (%#llx) and state (%#llx)" 2409 " are not consistent for mask %#llx!\n", 2410 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2411 (unsigned long long)mask); 2412 return EINVAL; 2413 } 2414 2415 /* Invert bits (toggle) in control register */ 2416 mpi_ctrl ^= mask; 2417 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2418 2419 /* Clear all bits except masked */ 2420 mpi_ctrl &= mask; 2421 2422 /* Wait for FW reflecting change in state register */ 2423 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2424 1000 * timeout_ms, try_count, &error); 2425 if (error != 0) { 2426 device_printf(sc->sc_dev, 2427 "f/w2x> timeout while waiting for response" 2428 " in state register for bit %#llx!", 2429 (unsigned long long)mask); 2430 return error; 2431 } 2432 return 0; 2433 } 2434 2435 static int 2436 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2437 { 2438 int error; 2439 2440 AQ_MPI_LOCK(sc); 2441 /* Say to F/W to update the statistics */ 2442 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2443 if (error != 0) { 2444 device_printf(sc->sc_dev, 2445 "fw2x> statistics update error %d\n", error); 2446 goto failure; 2447 } 2448 2449 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2450 error = aq_fw_downld_dwords(sc, 2451 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2452 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2453 if (error != 0) { 2454 device_printf(sc->sc_dev, 2455 "fw2x> download statistics data FAILED, error %d", error); 2456 goto failure; 2457 } 2458 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2459 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2460 2461 failure: 2462 AQ_MPI_UNLOCK(sc); 2463 return error; 2464 } 2465 2466 #if NSYSMON_ENVSYS > 0 2467 static int 2468 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2469 { 2470 int error; 2471 uint32_t value, celsius; 2472 2473 AQ_MPI_LOCK(sc); 2474 2475 /* Say to F/W to update the temperature */ 2476 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2477 if (error != 0) 2478 goto failure; 2479 2480 error = aq_fw_downld_dwords(sc, 2481 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2482 &value, sizeof(value) / sizeof(uint32_t)); 2483 if (error != 0) 2484 goto failure; 2485 2486 /* 1/256 decrees C to microkelvin */ 2487 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2488 if (celsius == 0) { 2489 error = EIO; 2490 goto failure; 2491 } 2492 *temp = celsius * (1000000 / 256) + 273150000; 2493 2494 failure: 2495 AQ_MPI_UNLOCK(sc); 2496 return 0; 2497 } 2498 #endif 2499 2500 static int 2501 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2502 uint32_t cnt) 2503 { 2504 uint32_t v; 2505 int error = 0; 2506 2507 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2508 if (error != 0) { 2509 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2510 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2511 if (v == 0) { 2512 device_printf(sc->sc_dev, 2513 "%s:%d: timeout\n", __func__, __LINE__); 2514 return ETIMEDOUT; 2515 } 2516 } 2517 2518 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2519 2520 error = 0; 2521 for (; cnt > 0 && error == 0; cnt--) { 2522 /* execute mailbox interface */ 2523 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2524 AQ_FW_MBOX_CMD_EXECUTE, 1); 2525 if (sc->sc_features & FEATURES_REV_B1) { 2526 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2527 1, 1000, &error); 2528 } else { 2529 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2530 AQ_FW_MBOX_CMD_BUSY) == 0, 2531 1, 1000, &error); 2532 } 2533 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2534 addr += sizeof(uint32_t); 2535 } 2536 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2537 2538 if (error != 0) 2539 device_printf(sc->sc_dev, 2540 "%s:%d: timeout\n", __func__, __LINE__); 2541 2542 return error; 2543 } 2544 2545 /* read my mac address */ 2546 static int 2547 aq_get_mac_addr(struct aq_softc *sc) 2548 { 2549 uint32_t mac_addr[2]; 2550 uint32_t efuse_shadow_addr; 2551 int err; 2552 2553 efuse_shadow_addr = 0; 2554 if (FW_VERSION_MAJOR(sc) >= 2) 2555 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2556 else 2557 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2558 2559 if (efuse_shadow_addr == 0) { 2560 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2561 return ENXIO; 2562 } 2563 2564 memset(mac_addr, 0, sizeof(mac_addr)); 2565 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2566 mac_addr, __arraycount(mac_addr)); 2567 if (err < 0) 2568 return err; 2569 2570 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2571 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2572 return ENXIO; 2573 } 2574 2575 mac_addr[0] = htobe32(mac_addr[0]); 2576 mac_addr[1] = htobe32(mac_addr[1]); 2577 2578 memcpy(sc->sc_enaddr.ether_addr_octet, 2579 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2580 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2581 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2582 2583 return 0; 2584 } 2585 2586 /* set multicast filter. index 0 for own address */ 2587 static int 2588 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2589 { 2590 uint32_t h, l; 2591 2592 if (index >= AQ_HW_MAC_NUM) 2593 return EINVAL; 2594 2595 if (enaddr == NULL) { 2596 /* disable */ 2597 AQ_WRITE_REG_BIT(sc, 2598 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2599 return 0; 2600 } 2601 2602 h = (enaddr[0] << 8) | (enaddr[1]); 2603 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2604 (enaddr[4] << 8) | (enaddr[5]); 2605 2606 /* disable, set, and enable */ 2607 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2608 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2609 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2610 RPF_L2UC_MSW_MACADDR_HI, h); 2611 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2612 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2613 2614 return 0; 2615 } 2616 2617 static int 2618 aq_set_capability(struct aq_softc *sc) 2619 { 2620 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2621 int ip4csum_tx = 2622 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2623 int ip4csum_rx = 2624 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2625 int l4csum_tx = ((ifp->if_capenable & 2626 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2627 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2628 int l4csum_rx = 2629 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2630 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2631 uint32_t lso = 2632 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2633 0 : 0xffffffff; 2634 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2635 0 : 0xffffffff; 2636 uint32_t i, v; 2637 2638 /* TX checksums offloads*/ 2639 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2640 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2641 2642 /* RX checksums offloads*/ 2643 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2644 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2645 2646 /* LSO offloads*/ 2647 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2648 2649 #define AQ_B0_LRO_RXD_MAX 16 2650 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2651 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2652 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2653 for (i = 0; i < AQ_RINGS_NUM; i++) { 2654 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2655 RPO_LRO_LDES_MAX_MASK(i), v); 2656 } 2657 2658 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2660 RPO_LRO_INACTIVE_IVAL, 0); 2661 /* 2662 * the LRO timebase divider is 5 uS (0x61a), 2663 * to get a maximum coalescing interval of 250 uS, 2664 * we need to multiply by 50(0x32) to get 2665 * the default value 250 uS 2666 */ 2667 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2668 RPO_LRO_MAX_COALESCING_IVAL, 50); 2669 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2670 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2671 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2672 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2673 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2674 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2675 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2676 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2677 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2678 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2679 2680 return 0; 2681 } 2682 2683 static int 2684 aq_set_filter(struct aq_softc *sc) 2685 { 2686 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2687 struct ethercom *ec = &sc->sc_ethercom; 2688 struct ether_multi *enm; 2689 struct ether_multistep step; 2690 int idx, error = 0; 2691 2692 if (ifp->if_flags & IFF_PROMISC) { 2693 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2694 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2695 ec->ec_flags |= ETHER_F_ALLMULTI; 2696 goto done; 2697 } 2698 2699 /* clear all table */ 2700 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2701 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2702 continue; 2703 aq_set_mac_addr(sc, idx, NULL); 2704 } 2705 2706 /* don't accept all multicast */ 2707 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2708 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2709 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2710 RPF_MCAST_FILTER_EN, 0); 2711 2712 idx = 0; 2713 ETHER_LOCK(ec); 2714 ETHER_FIRST_MULTI(step, ec, enm); 2715 while (enm != NULL) { 2716 if (idx == AQ_HW_MAC_OWN) 2717 idx++; 2718 2719 if ((idx >= AQ_HW_MAC_NUM) || 2720 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2721 /* 2722 * too many filters. 2723 * fallback to accept all multicast addresses. 2724 */ 2725 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2726 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2727 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2728 RPF_MCAST_FILTER_EN, 1); 2729 ec->ec_flags |= ETHER_F_ALLMULTI; 2730 ETHER_UNLOCK(ec); 2731 goto done; 2732 } 2733 2734 /* add a filter */ 2735 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2736 2737 ETHER_NEXT_MULTI(step, enm); 2738 } 2739 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2740 ETHER_UNLOCK(ec); 2741 2742 done: 2743 return error; 2744 } 2745 2746 static int 2747 aq_ifmedia_change(struct ifnet * const ifp) 2748 { 2749 struct aq_softc *sc = ifp->if_softc; 2750 aq_link_speed_t rate = AQ_LINK_NONE; 2751 aq_link_fc_t fc = AQ_FC_NONE; 2752 aq_link_eee_t eee = AQ_EEE_DISABLE; 2753 2754 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2755 return EINVAL; 2756 2757 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2758 case IFM_AUTO: 2759 rate = AQ_LINK_AUTO; 2760 break; 2761 case IFM_NONE: 2762 rate = AQ_LINK_NONE; 2763 break; 2764 case IFM_100_TX: 2765 rate = AQ_LINK_100M; 2766 break; 2767 case IFM_1000_T: 2768 rate = AQ_LINK_1G; 2769 break; 2770 case IFM_2500_T: 2771 rate = AQ_LINK_2G5; 2772 break; 2773 case IFM_5000_T: 2774 rate = AQ_LINK_5G; 2775 break; 2776 case IFM_10G_T: 2777 rate = AQ_LINK_10G; 2778 break; 2779 default: 2780 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2781 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2782 return ENODEV; 2783 } 2784 2785 if (sc->sc_media.ifm_media & IFM_FLOW) 2786 fc = AQ_FC_ALL; 2787 2788 /* XXX: todo EEE */ 2789 2790 /* re-initialize hardware with new parameters */ 2791 aq_set_linkmode(sc, rate, fc, eee); 2792 2793 return 0; 2794 } 2795 2796 static void 2797 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2798 { 2799 struct aq_softc *sc = ifp->if_softc; 2800 2801 /* update ifm_active */ 2802 ifmr->ifm_active = IFM_ETHER; 2803 if (sc->sc_link_fc & AQ_FC_RX) 2804 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2805 if (sc->sc_link_fc & AQ_FC_TX) 2806 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2807 2808 switch (sc->sc_link_rate) { 2809 case AQ_LINK_100M: 2810 /* XXX: need to detect fulldup or halfdup */ 2811 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2812 break; 2813 case AQ_LINK_1G: 2814 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2815 break; 2816 case AQ_LINK_2G5: 2817 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2818 break; 2819 case AQ_LINK_5G: 2820 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2821 break; 2822 case AQ_LINK_10G: 2823 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2824 break; 2825 default: 2826 ifmr->ifm_active |= IFM_NONE; 2827 break; 2828 } 2829 2830 /* update ifm_status */ 2831 ifmr->ifm_status = IFM_AVALID; 2832 if (sc->sc_link_rate != AQ_LINK_NONE) 2833 ifmr->ifm_status |= IFM_ACTIVE; 2834 } 2835 2836 static void 2837 aq_initmedia(struct aq_softc *sc) 2838 { 2839 #define IFMEDIA_ETHER_ADD(sc, media) \ 2840 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2841 2842 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2843 if (sc->sc_available_rates & AQ_LINK_100M) { 2844 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2845 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2846 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2847 } 2848 if (sc->sc_available_rates & AQ_LINK_1G) { 2849 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2850 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2851 } 2852 if (sc->sc_available_rates & AQ_LINK_2G5) { 2853 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2854 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2855 } 2856 if (sc->sc_available_rates & AQ_LINK_5G) { 2857 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2858 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2859 } 2860 if (sc->sc_available_rates & AQ_LINK_10G) { 2861 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2862 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2863 } 2864 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2865 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2866 2867 /* default: auto without flowcontrol */ 2868 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2869 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2870 } 2871 2872 static int 2873 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2874 aq_link_eee_t eee) 2875 { 2876 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2877 } 2878 2879 static int 2880 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2881 aq_link_eee_t *eee) 2882 { 2883 aq_hw_fw_mpi_state_t mode; 2884 int error; 2885 2886 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2887 if (error != 0) 2888 return error; 2889 if (mode != MPI_INIT) 2890 return ENXIO; 2891 2892 return 0; 2893 } 2894 2895 static void 2896 aq_hw_init_tx_path(struct aq_softc *sc) 2897 { 2898 /* Tx TC/RSS number config */ 2899 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2900 2901 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2902 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2903 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2904 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2905 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2906 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2907 2908 /* misc */ 2909 AQ_WRITE_REG(sc, TX_TPO2_REG, 2910 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2911 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2912 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2913 2914 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2915 } 2916 2917 static void 2918 aq_hw_init_rx_path(struct aq_softc *sc) 2919 { 2920 int i; 2921 2922 /* clear setting */ 2923 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2924 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2925 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2926 for (i = 0; i < 32; i++) { 2927 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2928 RPF_ETHERTYPE_FILTER_EN, 0); 2929 } 2930 2931 if (sc->sc_rss_enable) { 2932 /* Rx TC/RSS number config */ 2933 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2934 2935 /* Rx flow control */ 2936 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2937 2938 /* RSS Ring selection */ 2939 switch (sc->sc_nqueues) { 2940 case 2: 2941 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2942 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2943 break; 2944 case 4: 2945 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2946 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2947 break; 2948 case 8: 2949 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2950 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2951 break; 2952 } 2953 } 2954 2955 /* L2 and Multicast filters */ 2956 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2957 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2958 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2959 RPF_ACTION_HOST); 2960 } 2961 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2962 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2963 2964 /* Vlan filters */ 2965 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2966 ETHERTYPE_QINQ); 2967 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2968 ETHERTYPE_VLAN); 2969 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2970 2971 if (sc->sc_features & FEATURES_REV_B) { 2972 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2973 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2974 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2975 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2976 } 2977 2978 /* misc */ 2979 if (sc->sc_features & FEATURES_RPF2) 2980 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2981 else 2982 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2983 2984 /* 2985 * XXX: RX_TCP_RSS_HASH_REG: 2986 * linux set 0x000f0000 2987 * freebsd set 0x000f001e 2988 */ 2989 /* RSS hash type set for IP/TCP */ 2990 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2991 RX_TCP_RSS_HASH_TYPE, 0x001e); 2992 2993 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 2994 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 2995 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 2996 2997 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 2998 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 2999 } 3000 3001 static void 3002 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3003 { 3004 int i; 3005 3006 if (sc->sc_intr_moderation_enable) { 3007 unsigned int tx_min, rx_min; /* 0-255 */ 3008 unsigned int tx_max, rx_max; /* 0-511? */ 3009 3010 switch (sc->sc_link_rate) { 3011 case AQ_LINK_100M: 3012 tx_min = 0x4f; 3013 tx_max = 0xff; 3014 rx_min = 0x04; 3015 rx_max = 0x50; 3016 break; 3017 case AQ_LINK_1G: 3018 default: 3019 tx_min = 0x4f; 3020 tx_max = 0xff; 3021 rx_min = 0x30; 3022 rx_max = 0x80; 3023 break; 3024 case AQ_LINK_2G5: 3025 tx_min = 0x4f; 3026 tx_max = 0xff; 3027 rx_min = 0x18; 3028 rx_max = 0xe0; 3029 break; 3030 case AQ_LINK_5G: 3031 tx_min = 0x4f; 3032 tx_max = 0xff; 3033 rx_min = 0x0c; 3034 rx_max = 0x70; 3035 break; 3036 case AQ_LINK_10G: 3037 tx_min = 0x4f; 3038 tx_max = 0x1ff; 3039 rx_min = 0x06; /* freebsd use 80 */ 3040 rx_max = 0x38; /* freebsd use 120 */ 3041 break; 3042 } 3043 3044 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3045 TX_DMA_INT_DESC_WRWB_EN, 0); 3046 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3047 TX_DMA_INT_DESC_MODERATE_EN, 1); 3048 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3049 RX_DMA_INT_DESC_WRWB_EN, 0); 3050 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3051 RX_DMA_INT_DESC_MODERATE_EN, 1); 3052 3053 for (i = 0; i < AQ_RINGS_NUM; i++) { 3054 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3055 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3056 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3057 TX_INTR_MODERATION_CTL_EN); 3058 } 3059 for (i = 0; i < AQ_RINGS_NUM; i++) { 3060 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3061 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3062 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3063 RX_INTR_MODERATION_CTL_EN); 3064 } 3065 3066 } else { 3067 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3068 TX_DMA_INT_DESC_WRWB_EN, 1); 3069 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3070 TX_DMA_INT_DESC_MODERATE_EN, 0); 3071 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3072 RX_DMA_INT_DESC_WRWB_EN, 1); 3073 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3074 RX_DMA_INT_DESC_MODERATE_EN, 0); 3075 3076 for (i = 0; i < AQ_RINGS_NUM; i++) { 3077 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3078 } 3079 for (i = 0; i < AQ_RINGS_NUM; i++) { 3080 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3081 } 3082 } 3083 } 3084 3085 static void 3086 aq_hw_qos_set(struct aq_softc *sc) 3087 { 3088 uint32_t tc = 0; 3089 uint32_t buff_size; 3090 3091 /* TPS Descriptor rate init */ 3092 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3093 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3094 3095 /* TPS VM init */ 3096 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3097 3098 /* TPS TC credits init */ 3099 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3100 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3101 3102 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3103 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3104 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3105 TPS_DATA_TCT_WEIGHT, 0x64); 3106 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3107 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3108 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3109 TPS_DESC_TCT_WEIGHT, 0x1e); 3110 3111 /* Tx buf size */ 3112 tc = 0; 3113 buff_size = AQ_HW_TXBUF_MAX; 3114 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3115 buff_size); 3116 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3117 (buff_size * (1024 / 32) * 66) / 100); 3118 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3119 (buff_size * (1024 / 32) * 50) / 100); 3120 3121 /* QoS Rx buf size per TC */ 3122 tc = 0; 3123 buff_size = AQ_HW_RXBUF_MAX; 3124 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3125 buff_size); 3126 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3127 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3128 (buff_size * (1024 / 32) * 66) / 100); 3129 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3130 (buff_size * (1024 / 32) * 50) / 100); 3131 3132 /* QoS 802.1p priority -> TC mapping */ 3133 int i_priority; 3134 for (i_priority = 0; i_priority < 8; i_priority++) { 3135 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3136 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3137 } 3138 } 3139 3140 /* called once from aq_attach */ 3141 static int 3142 aq_init_rss(struct aq_softc *sc) 3143 { 3144 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3145 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3146 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3147 unsigned int i; 3148 int error; 3149 3150 /* initialize rss key */ 3151 rss_getkey((uint8_t *)rss_key); 3152 3153 /* hash to ring table */ 3154 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3155 rss_table[i] = i % sc->sc_nqueues; 3156 } 3157 3158 /* 3159 * set rss key 3160 */ 3161 for (i = 0; i < __arraycount(rss_key); i++) { 3162 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3163 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3164 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3165 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3166 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3167 RPF_RSS_KEY_WR_EN, 1); 3168 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3169 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3170 if (error != 0) { 3171 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3172 __func__); 3173 goto rss_set_timeout; 3174 } 3175 } 3176 3177 /* 3178 * set rss indirection table 3179 * 3180 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3181 * we'll make it by __BITMAP(3) macros. 3182 */ 3183 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3184 __BITMAP_ZERO(&bit3x64); 3185 3186 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3187 do { \ 3188 if (val & 1) { \ 3189 __BITMAP_SET((idx) * 3, (bitmap)); \ 3190 } else { \ 3191 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3192 } \ 3193 if (val & 2) { \ 3194 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3195 } else { \ 3196 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3197 } \ 3198 if (val & 4) { \ 3199 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3200 } else { \ 3201 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3202 } \ 3203 } while (0 /* CONSTCOND */) 3204 3205 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3206 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3207 } 3208 3209 /* write 192bit data in steps of 16bit */ 3210 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3211 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3212 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3213 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3214 RPF_RSS_REDIR_ADDR, i); 3215 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3216 RPF_RSS_REDIR_WR_EN, 1); 3217 3218 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3219 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3220 if (error != 0) 3221 break; 3222 } 3223 3224 rss_set_timeout: 3225 return error; 3226 } 3227 3228 static void 3229 aq_hw_l3_filter_set(struct aq_softc *sc) 3230 { 3231 int i; 3232 3233 /* clear all filter */ 3234 for (i = 0; i < 8; i++) { 3235 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3236 RPF_L3_FILTER_L4_EN, 0); 3237 } 3238 } 3239 3240 static void 3241 aq_set_vlan_filters(struct aq_softc *sc) 3242 { 3243 struct ethercom *ec = &sc->sc_ethercom; 3244 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3245 struct vlanid_list *vlanidp; 3246 int i; 3247 3248 ETHER_LOCK(ec); 3249 3250 /* disable all vlan filters */ 3251 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3252 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3253 3254 /* count VID */ 3255 i = 0; 3256 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3257 i++; 3258 3259 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3260 (ifp->if_flags & IFF_PROMISC) || 3261 (i > RPF_VLAN_MAX_FILTERS)) { 3262 /* 3263 * no vlan hwfilter, in promiscuous mode, or too many VID? 3264 * must receive all VID 3265 */ 3266 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3267 RPF_VLAN_MODE_PROMISC, 1); 3268 goto done; 3269 } 3270 3271 /* receive only selected VID */ 3272 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3273 i = 0; 3274 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3275 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3276 RPF_VLAN_FILTER_EN, 1); 3277 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3278 RPF_VLAN_FILTER_RXQ_EN, 0); 3279 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3280 RPF_VLAN_FILTER_RXQ, 0); 3281 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3282 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3283 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3284 RPF_VLAN_FILTER_ID, vlanidp->vid); 3285 i++; 3286 } 3287 3288 done: 3289 ETHER_UNLOCK(ec); 3290 } 3291 3292 static int 3293 aq_hw_init(struct aq_softc *sc) 3294 { 3295 uint32_t v; 3296 3297 /* Force limit MRRS on RDM/TDM to 2K */ 3298 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3299 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3300 3301 /* 3302 * TX DMA total request limit. B0 hardware is not capable to 3303 * handle more than (8K-MRRS) incoming DMA data. 3304 * Value 24 in 256byte units 3305 */ 3306 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3307 3308 aq_hw_init_tx_path(sc); 3309 aq_hw_init_rx_path(sc); 3310 3311 aq_hw_interrupt_moderation_set(sc); 3312 3313 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3314 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3315 3316 aq_hw_qos_set(sc); 3317 3318 /* Enable interrupt */ 3319 int irqmode; 3320 if (sc->sc_msix) 3321 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3322 else 3323 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3324 3325 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3326 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3327 sc->sc_msix ? 1 : 0); 3328 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3329 3330 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3331 3332 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3333 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3334 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3335 ); 3336 3337 /* link interrupt */ 3338 if (!sc->sc_msix) 3339 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3340 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3341 __BIT(7) | sc->sc_linkstat_irq); 3342 3343 return 0; 3344 } 3345 3346 static int 3347 aq_update_link_status(struct aq_softc *sc) 3348 { 3349 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3350 aq_link_speed_t rate = AQ_LINK_NONE; 3351 aq_link_fc_t fc = AQ_FC_NONE; 3352 aq_link_eee_t eee = AQ_EEE_DISABLE; 3353 unsigned int speed; 3354 int changed = 0; 3355 3356 aq_get_linkmode(sc, &rate, &fc, &eee); 3357 3358 if (sc->sc_link_rate != rate) 3359 changed = 1; 3360 if (sc->sc_link_fc != fc) 3361 changed = 1; 3362 if (sc->sc_link_eee != eee) 3363 changed = 1; 3364 3365 if (changed) { 3366 switch (rate) { 3367 case AQ_LINK_100M: 3368 speed = 100; 3369 break; 3370 case AQ_LINK_1G: 3371 speed = 1000; 3372 break; 3373 case AQ_LINK_2G5: 3374 speed = 2500; 3375 break; 3376 case AQ_LINK_5G: 3377 speed = 5000; 3378 break; 3379 case AQ_LINK_10G: 3380 speed = 10000; 3381 break; 3382 case AQ_LINK_NONE: 3383 default: 3384 speed = 0; 3385 break; 3386 } 3387 3388 if (sc->sc_link_rate == AQ_LINK_NONE) { 3389 /* link DOWN -> UP */ 3390 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3391 speed); 3392 if_link_state_change(ifp, LINK_STATE_UP); 3393 } else if (rate == AQ_LINK_NONE) { 3394 /* link UP -> DOWN */ 3395 device_printf(sc->sc_dev, "link is DOWN\n"); 3396 if_link_state_change(ifp, LINK_STATE_DOWN); 3397 } else { 3398 device_printf(sc->sc_dev, 3399 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3400 speed, fc, eee); 3401 } 3402 3403 sc->sc_link_rate = rate; 3404 sc->sc_link_fc = fc; 3405 sc->sc_link_eee = eee; 3406 3407 /* update interrupt timing according to new link speed */ 3408 aq_hw_interrupt_moderation_set(sc); 3409 } 3410 3411 return changed; 3412 } 3413 3414 #ifdef AQ_EVENT_COUNTERS 3415 static void 3416 aq_update_statistics(struct aq_softc *sc) 3417 { 3418 int prev = sc->sc_statistics_idx; 3419 int cur = prev ^ 1; 3420 3421 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3422 3423 /* 3424 * aq's internal statistics counter is 32bit. 3425 * cauculate delta, and add to evcount 3426 */ 3427 #define ADD_DELTA(cur, prev, name) \ 3428 do { \ 3429 uint32_t n; \ 3430 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3431 sc->sc_statistics[prev].name); \ 3432 if (n != 0) { \ 3433 AQ_EVCNT_ADD(sc, name, n); \ 3434 } \ 3435 } while (/*CONSTCOND*/0); 3436 3437 ADD_DELTA(cur, prev, uprc); 3438 ADD_DELTA(cur, prev, mprc); 3439 ADD_DELTA(cur, prev, bprc); 3440 ADD_DELTA(cur, prev, prc); 3441 ADD_DELTA(cur, prev, erpr); 3442 ADD_DELTA(cur, prev, uptc); 3443 ADD_DELTA(cur, prev, mptc); 3444 ADD_DELTA(cur, prev, bptc); 3445 ADD_DELTA(cur, prev, ptc); 3446 ADD_DELTA(cur, prev, erpt); 3447 ADD_DELTA(cur, prev, mbtc); 3448 ADD_DELTA(cur, prev, bbtc); 3449 ADD_DELTA(cur, prev, mbrc); 3450 ADD_DELTA(cur, prev, bbrc); 3451 ADD_DELTA(cur, prev, ubrc); 3452 ADD_DELTA(cur, prev, ubtc); 3453 ADD_DELTA(cur, prev, dpc); 3454 ADD_DELTA(cur, prev, cprc); 3455 3456 sc->sc_statistics_idx = cur; 3457 } 3458 #endif /* AQ_EVENT_COUNTERS */ 3459 3460 /* allocate and map one DMA block */ 3461 static int 3462 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3463 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3464 { 3465 int nsegs, error; 3466 3467 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3468 1, &nsegs, 0)) != 0) { 3469 aprint_error_dev(sc->sc_dev, 3470 "unable to allocate DMA buffer, error=%d\n", error); 3471 goto fail_alloc; 3472 } 3473 3474 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3475 BUS_DMA_COHERENT)) != 0) { 3476 aprint_error_dev(sc->sc_dev, 3477 "unable to map DMA buffer, error=%d\n", error); 3478 goto fail_map; 3479 } 3480 3481 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3482 0, mapp)) != 0) { 3483 aprint_error_dev(sc->sc_dev, 3484 "unable to create DMA map, error=%d\n", error); 3485 goto fail_create; 3486 } 3487 3488 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3489 0)) != 0) { 3490 aprint_error_dev(sc->sc_dev, 3491 "unable to load DMA map, error=%d\n", error); 3492 goto fail_load; 3493 } 3494 3495 *sizep = size; 3496 return 0; 3497 3498 fail_load: 3499 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3500 *mapp = NULL; 3501 fail_create: 3502 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3503 *addrp = NULL; 3504 fail_map: 3505 bus_dmamem_free(sc->sc_dmat, seg, 1); 3506 memset(seg, 0, sizeof(*seg)); 3507 fail_alloc: 3508 *sizep = 0; 3509 return error; 3510 } 3511 3512 static void 3513 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3514 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3515 { 3516 if (*mapp != NULL) { 3517 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3518 *mapp = NULL; 3519 } 3520 if (*addrp != NULL) { 3521 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3522 *addrp = NULL; 3523 } 3524 if (*sizep != 0) { 3525 bus_dmamem_free(sc->sc_dmat, seg, 1); 3526 memset(seg, 0, sizeof(*seg)); 3527 *sizep = 0; 3528 } 3529 } 3530 3531 static int 3532 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3533 { 3534 int i, error; 3535 3536 /* allocate tx descriptors */ 3537 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3538 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3539 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3540 if (error != 0) 3541 return error; 3542 3543 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3544 3545 /* fill tx ring with dmamap */ 3546 for (i = 0; i < AQ_TXD_NUM; i++) { 3547 #define AQ_MAXDMASIZE (16 * 1024) 3548 #define AQ_NTXSEGS 32 3549 /* XXX: TODO: error check */ 3550 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3551 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3552 } 3553 return 0; 3554 } 3555 3556 static void 3557 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3558 { 3559 int i; 3560 3561 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3562 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3563 3564 for (i = 0; i < AQ_TXD_NUM; i++) { 3565 if (txring->txr_mbufs[i].dmamap != NULL) { 3566 if (txring->txr_mbufs[i].m != NULL) { 3567 bus_dmamap_unload(sc->sc_dmat, 3568 txring->txr_mbufs[i].dmamap); 3569 m_freem(txring->txr_mbufs[i].m); 3570 txring->txr_mbufs[i].m = NULL; 3571 } 3572 bus_dmamap_destroy(sc->sc_dmat, 3573 txring->txr_mbufs[i].dmamap); 3574 txring->txr_mbufs[i].dmamap = NULL; 3575 } 3576 } 3577 } 3578 3579 static int 3580 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3581 { 3582 int i, error; 3583 3584 /* allocate rx descriptors */ 3585 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3586 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3587 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3588 if (error != 0) 3589 return error; 3590 3591 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3592 3593 /* fill rxring with dmamaps */ 3594 for (i = 0; i < AQ_RXD_NUM; i++) { 3595 rxring->rxr_mbufs[i].m = NULL; 3596 /* XXX: TODO: error check */ 3597 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3598 &rxring->rxr_mbufs[i].dmamap); 3599 } 3600 return 0; 3601 } 3602 3603 static void 3604 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3605 { 3606 int i; 3607 3608 /* free all mbufs allocated for RX */ 3609 for (i = 0; i < AQ_RXD_NUM; i++) { 3610 if (rxring->rxr_mbufs[i].m != NULL) { 3611 bus_dmamap_unload(sc->sc_dmat, 3612 rxring->rxr_mbufs[i].dmamap); 3613 m_freem(rxring->rxr_mbufs[i].m); 3614 rxring->rxr_mbufs[i].m = NULL; 3615 } 3616 } 3617 } 3618 3619 static void 3620 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3621 { 3622 int i; 3623 3624 /* free all mbufs and dmamaps */ 3625 aq_rxdrain(sc, rxring); 3626 for (i = 0; i < AQ_RXD_NUM; i++) { 3627 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3628 bus_dmamap_destroy(sc->sc_dmat, 3629 rxring->rxr_mbufs[i].dmamap); 3630 rxring->rxr_mbufs[i].dmamap = NULL; 3631 } 3632 } 3633 3634 /* free RX descriptor */ 3635 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3636 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3637 } 3638 3639 static void 3640 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3641 struct mbuf *m) 3642 { 3643 int error; 3644 3645 /* if mbuf already exists, unload and free */ 3646 if (rxring->rxr_mbufs[idx].m != NULL) { 3647 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3648 m_freem(rxring->rxr_mbufs[idx].m); 3649 rxring->rxr_mbufs[idx].m = NULL; 3650 } 3651 3652 rxring->rxr_mbufs[idx].m = m; 3653 3654 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3655 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3656 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3657 if (error) { 3658 device_printf(sc->sc_dev, 3659 "unable to load rx DMA map %d, error = %d\n", idx, error); 3660 panic("%s: unable to load rx DMA map. error=%d", 3661 __func__, error); 3662 } 3663 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3664 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3665 } 3666 3667 static inline void 3668 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3669 { 3670 /* refill rxdesc, and sync */ 3671 rxring->rxr_rxdesc[idx].read.buf_addr = 3672 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3673 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3674 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3675 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3676 BUS_DMASYNC_PREWRITE); 3677 } 3678 3679 static struct mbuf * 3680 aq_alloc_mbuf(void) 3681 { 3682 struct mbuf *m; 3683 3684 MGETHDR(m, M_DONTWAIT, MT_DATA); 3685 if (m == NULL) 3686 return NULL; 3687 3688 MCLGET(m, M_DONTWAIT); 3689 if ((m->m_flags & M_EXT) == 0) { 3690 m_freem(m); 3691 return NULL; 3692 } 3693 3694 return m; 3695 } 3696 3697 /* allocate mbuf and unload dmamap */ 3698 static int 3699 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3700 { 3701 struct mbuf *m; 3702 3703 m = aq_alloc_mbuf(); 3704 if (m == NULL) 3705 return ENOBUFS; 3706 3707 aq_rxring_setmbuf(sc, rxring, idx, m); 3708 return 0; 3709 } 3710 3711 static int 3712 aq_txrx_rings_alloc(struct aq_softc *sc) 3713 { 3714 int n, error; 3715 3716 for (n = 0; n < sc->sc_nqueues; n++) { 3717 sc->sc_queue[n].sc = sc; 3718 sc->sc_queue[n].txring.txr_sc = sc; 3719 sc->sc_queue[n].txring.txr_index = n; 3720 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3721 IPL_NET); 3722 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3723 if (error != 0) 3724 goto failure; 3725 3726 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3727 if (error != 0) 3728 goto failure; 3729 3730 sc->sc_queue[n].rxring.rxr_sc = sc; 3731 sc->sc_queue[n].rxring.rxr_index = n; 3732 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3733 IPL_NET); 3734 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3735 if (error != 0) 3736 break; 3737 } 3738 3739 failure: 3740 return error; 3741 } 3742 3743 static void 3744 aq_txrx_rings_free(struct aq_softc *sc) 3745 { 3746 int n; 3747 3748 for (n = 0; n < sc->sc_nqueues; n++) { 3749 aq_txring_free(sc, &sc->sc_queue[n].txring); 3750 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3751 3752 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3753 3754 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3755 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3756 } 3757 } 3758 3759 static int 3760 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3761 { 3762 int error = 0; 3763 txring->txr_softint = NULL; 3764 3765 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3766 if (txring->txr_pcq == NULL) { 3767 aprint_error_dev(sc->sc_dev, 3768 "unable to allocate pcq for TXring[%d]\n", 3769 txring->txr_index); 3770 error = ENOMEM; 3771 goto done; 3772 } 3773 3774 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3775 aq_deferred_transmit, txring); 3776 if (txring->txr_softint == NULL) { 3777 aprint_error_dev(sc->sc_dev, 3778 "unable to establish softint for TXring[%d]\n", 3779 txring->txr_index); 3780 error = ENOENT; 3781 } 3782 3783 done: 3784 return error; 3785 } 3786 3787 static void 3788 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3789 { 3790 struct mbuf *m; 3791 3792 if (txring->txr_softint != NULL) { 3793 softint_disestablish(txring->txr_softint); 3794 txring->txr_softint = NULL; 3795 } 3796 3797 if (txring->txr_pcq != NULL) { 3798 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3799 m_freem(m); 3800 pcq_destroy(txring->txr_pcq); 3801 txring->txr_pcq = NULL; 3802 } 3803 } 3804 3805 #if NSYSMON_ENVSYS > 0 3806 static void 3807 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3808 { 3809 struct aq_softc *sc; 3810 uint32_t temp; 3811 int error; 3812 3813 sc = sme->sme_cookie; 3814 3815 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3816 if (error == 0) { 3817 edata->value_cur = temp; 3818 edata->state = ENVSYS_SVALID; 3819 } else { 3820 edata->state = ENVSYS_SINVALID; 3821 } 3822 } 3823 #endif 3824 3825 static void 3826 aq_tick(void *arg) 3827 { 3828 struct aq_softc *sc = arg; 3829 3830 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3831 sc->sc_detect_linkstat = false; 3832 aq_update_link_status(sc); 3833 } 3834 3835 #ifdef AQ_EVENT_COUNTERS 3836 if (sc->sc_poll_statistics) 3837 aq_update_statistics(sc); 3838 #endif 3839 3840 if (sc->sc_poll_linkstat 3841 #ifdef AQ_EVENT_COUNTERS 3842 || sc->sc_poll_statistics 3843 #endif 3844 ) { 3845 callout_schedule(&sc->sc_tick_ch, hz); 3846 } 3847 } 3848 3849 /* interrupt enable/disable */ 3850 static void 3851 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3852 { 3853 uint32_t imask = 0; 3854 int i; 3855 3856 if (txrx) { 3857 for (i = 0; i < sc->sc_nqueues; i++) { 3858 imask |= __BIT(sc->sc_tx_irq[i]); 3859 imask |= __BIT(sc->sc_rx_irq[i]); 3860 } 3861 } 3862 3863 if (link) 3864 imask |= __BIT(sc->sc_linkstat_irq); 3865 3866 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3867 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3868 } 3869 3870 static int 3871 aq_legacy_intr(void *arg) 3872 { 3873 struct aq_softc *sc = arg; 3874 uint32_t status; 3875 int nintr = 0; 3876 3877 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3878 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3879 3880 if (status & __BIT(sc->sc_linkstat_irq)) { 3881 sc->sc_detect_linkstat = true; 3882 callout_schedule(&sc->sc_tick_ch, 0); 3883 nintr++; 3884 } 3885 3886 if (status & __BIT(sc->sc_rx_irq[0])) { 3887 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3888 } 3889 3890 if (status & __BIT(sc->sc_tx_irq[0])) { 3891 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3892 } 3893 3894 return nintr; 3895 } 3896 3897 static int 3898 aq_txrx_intr(void *arg) 3899 { 3900 struct aq_queue *queue = arg; 3901 struct aq_softc *sc = queue->sc; 3902 struct aq_txring *txring = &queue->txring; 3903 struct aq_rxring *rxring = &queue->rxring; 3904 uint32_t status; 3905 int nintr = 0; 3906 int txringidx, rxringidx, txirq, rxirq; 3907 3908 txringidx = txring->txr_index; 3909 rxringidx = rxring->rxr_index; 3910 txirq = sc->sc_tx_irq[txringidx]; 3911 rxirq = sc->sc_rx_irq[rxringidx]; 3912 3913 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3914 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3915 /* stray interrupt? */ 3916 return 0; 3917 } 3918 3919 nintr += aq_rx_intr(rxring); 3920 nintr += aq_tx_intr(txring); 3921 3922 return nintr; 3923 } 3924 3925 static int 3926 aq_link_intr(void *arg) 3927 { 3928 struct aq_softc *sc = arg; 3929 uint32_t status; 3930 int nintr = 0; 3931 3932 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3933 if (status & __BIT(sc->sc_linkstat_irq)) { 3934 sc->sc_detect_linkstat = true; 3935 callout_schedule(&sc->sc_tick_ch, 0); 3936 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3937 __BIT(sc->sc_linkstat_irq)); 3938 nintr++; 3939 } 3940 3941 return nintr; 3942 } 3943 3944 static void 3945 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3946 { 3947 const int ringidx = txring->txr_index; 3948 int i; 3949 3950 mutex_enter(&txring->txr_mutex); 3951 3952 txring->txr_prodidx = 0; 3953 txring->txr_considx = 0; 3954 txring->txr_nfree = AQ_TXD_NUM; 3955 txring->txr_active = false; 3956 3957 /* free mbufs untransmitted */ 3958 for (i = 0; i < AQ_TXD_NUM; i++) { 3959 if (txring->txr_mbufs[i].m != NULL) { 3960 m_freem(txring->txr_mbufs[i].m); 3961 txring->txr_mbufs[i].m = NULL; 3962 } 3963 } 3964 3965 /* disable DMA */ 3966 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3967 3968 if (start) { 3969 /* TX descriptor physical address */ 3970 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3971 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3972 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3973 (uint32_t)((uint64_t)paddr >> 32)); 3974 3975 /* TX descriptor size */ 3976 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3977 AQ_TXD_NUM / 8); 3978 3979 /* reload TAIL pointer */ 3980 txring->txr_prodidx = txring->txr_considx = 3981 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3982 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3983 3984 /* Mapping interrupt vector */ 3985 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3986 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3987 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3988 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3989 3990 /* enable DMA */ 3991 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3992 TX_DMA_DESC_EN, 1); 3993 3994 const int cpuid = 0; /* XXX? */ 3995 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3996 TDM_DCAD_CPUID, cpuid); 3997 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3998 TDM_DCAD_CPUID_EN, 0); 3999 4000 txring->txr_active = true; 4001 } 4002 4003 mutex_exit(&txring->txr_mutex); 4004 } 4005 4006 static int 4007 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4008 { 4009 const int ringidx = rxring->rxr_index; 4010 int i; 4011 int error = 0; 4012 4013 mutex_enter(&rxring->rxr_mutex); 4014 rxring->rxr_active = false; 4015 4016 /* disable DMA */ 4017 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4018 4019 /* free all RX mbufs */ 4020 aq_rxdrain(sc, rxring); 4021 4022 if (start) { 4023 for (i = 0; i < AQ_RXD_NUM; i++) { 4024 error = aq_rxring_add(sc, rxring, i); 4025 if (error != 0) { 4026 aq_rxdrain(sc, rxring); 4027 return error; 4028 } 4029 aq_rxring_reset_desc(sc, rxring, i); 4030 } 4031 4032 /* RX descriptor physical address */ 4033 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4034 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4035 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4036 (uint32_t)((uint64_t)paddr >> 32)); 4037 4038 /* RX descriptor size */ 4039 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4040 AQ_RXD_NUM / 8); 4041 4042 /* maximum receive frame size */ 4043 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4044 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4045 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4046 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4047 4048 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4049 RX_DMA_DESC_HEADER_SPLIT, 0); 4050 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4051 RX_DMA_DESC_VLAN_STRIP, 4052 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4053 1 : 0); 4054 4055 /* 4056 * reload TAIL pointer, and update readidx 4057 * (HEAD pointer cannot write) 4058 */ 4059 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4060 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4061 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4062 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4063 4064 /* Rx ring set mode */ 4065 4066 /* Mapping interrupt vector */ 4067 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4068 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4069 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4070 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4071 4072 const int cpuid = 0; /* XXX? */ 4073 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4074 RX_DMA_DCAD_CPUID, cpuid); 4075 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4076 RX_DMA_DCAD_DESC_EN, 0); 4077 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4078 RX_DMA_DCAD_HEADER_EN, 0); 4079 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4080 RX_DMA_DCAD_PAYLOAD_EN, 0); 4081 4082 /* enable DMA. start receiving */ 4083 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4084 RX_DMA_DESC_EN, 1); 4085 4086 rxring->rxr_active = true; 4087 } 4088 4089 mutex_exit(&rxring->rxr_mutex); 4090 return error; 4091 } 4092 4093 #define TXRING_NEXTIDX(idx) \ 4094 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4095 #define RXRING_NEXTIDX(idx) \ 4096 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4097 4098 static int 4099 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4100 { 4101 bus_dmamap_t map; 4102 struct mbuf *m = *mp; 4103 uint32_t ctl1, ctl1_ctx, ctl2; 4104 int idx, i, error; 4105 4106 idx = txring->txr_prodidx; 4107 map = txring->txr_mbufs[idx].dmamap; 4108 4109 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4110 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4111 if (error == EFBIG) { 4112 struct mbuf *n; 4113 n = m_defrag(m, M_DONTWAIT); 4114 if (n == NULL) 4115 return EFBIG; 4116 /* m_defrag() preserve m */ 4117 KASSERT(n == m); 4118 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4119 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4120 } 4121 if (error != 0) 4122 return error; 4123 4124 /* 4125 * check spaces of free descriptors. 4126 * +1 is additional descriptor for context (vlan, etc,.) 4127 */ 4128 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4129 device_printf(sc->sc_dev, 4130 "TX: not enough descriptors left %d for %d segs\n", 4131 txring->txr_nfree, map->dm_nsegs + 1); 4132 bus_dmamap_unload(sc->sc_dmat, map); 4133 return ENOBUFS; 4134 } 4135 4136 /* sync dma for mbuf */ 4137 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4138 BUS_DMASYNC_PREWRITE); 4139 4140 ctl1_ctx = 0; 4141 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4142 4143 if (vlan_has_tag(m)) { 4144 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4145 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4146 4147 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4148 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4149 4150 /* fill context descriptor and forward index */ 4151 txring->txr_txdesc[idx].buf_addr = 0; 4152 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4153 txring->txr_txdesc[idx].ctl2 = 0; 4154 4155 idx = TXRING_NEXTIDX(idx); 4156 txring->txr_nfree--; 4157 } 4158 4159 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4160 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4161 if (m->m_pkthdr.csum_flags & 4162 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4163 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4164 } 4165 4166 /* fill descriptor(s) */ 4167 for (i = 0; i < map->dm_nsegs; i++) { 4168 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4169 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4170 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4171 4172 if (i == 0) { 4173 /* remember mbuf of these descriptors */ 4174 txring->txr_mbufs[idx].m = m; 4175 } else { 4176 txring->txr_mbufs[idx].m = NULL; 4177 } 4178 4179 if (i == map->dm_nsegs - 1) { 4180 /* last segment, mark an EndOfPacket, and cause intr */ 4181 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4182 } 4183 4184 txring->txr_txdesc[idx].buf_addr = 4185 htole64(map->dm_segs[i].ds_addr); 4186 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4187 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4188 4189 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4190 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4191 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4192 4193 idx = TXRING_NEXTIDX(idx); 4194 txring->txr_nfree--; 4195 } 4196 4197 txring->txr_prodidx = idx; 4198 4199 return 0; 4200 } 4201 4202 static int 4203 aq_tx_intr(void *arg) 4204 { 4205 struct aq_txring *txring = arg; 4206 struct aq_softc *sc = txring->txr_sc; 4207 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4208 struct mbuf *m; 4209 const int ringidx = txring->txr_index; 4210 unsigned int idx, hw_head, n = 0; 4211 4212 mutex_enter(&txring->txr_mutex); 4213 4214 if (!txring->txr_active) 4215 goto tx_intr_done; 4216 4217 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4218 TX_DMA_DESC_HEAD_PTR); 4219 if (hw_head == txring->txr_considx) { 4220 goto tx_intr_done; 4221 } 4222 4223 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4224 4225 for (idx = txring->txr_considx; idx != hw_head; 4226 idx = TXRING_NEXTIDX(idx), n++) { 4227 4228 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4229 bus_dmamap_unload(sc->sc_dmat, 4230 txring->txr_mbufs[idx].dmamap); 4231 4232 if_statinc_ref(nsr, if_opackets); 4233 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4234 if (m->m_flags & M_MCAST) 4235 if_statinc_ref(nsr, if_omcasts); 4236 4237 m_freem(m); 4238 txring->txr_mbufs[idx].m = NULL; 4239 } 4240 4241 txring->txr_nfree++; 4242 } 4243 txring->txr_considx = idx; 4244 4245 IF_STAT_PUTREF(ifp); 4246 4247 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4248 ifp->if_flags &= ~IFF_OACTIVE; 4249 4250 /* no more pending TX packet, cancel watchdog */ 4251 if (txring->txr_nfree >= AQ_TXD_NUM) 4252 ifp->if_timer = 0; 4253 4254 tx_intr_done: 4255 mutex_exit(&txring->txr_mutex); 4256 4257 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4258 return n; 4259 } 4260 4261 static int 4262 aq_rx_intr(void *arg) 4263 { 4264 struct aq_rxring *rxring = arg; 4265 struct aq_softc *sc = rxring->rxr_sc; 4266 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4267 const int ringidx = rxring->rxr_index; 4268 aq_rx_desc_t *rxd; 4269 struct mbuf *m, *m0, *mprev, *new_m; 4270 uint32_t rxd_type, rxd_hash __unused; 4271 uint16_t rxd_status, rxd_pktlen; 4272 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4273 unsigned int idx, n = 0; 4274 4275 mutex_enter(&rxring->rxr_mutex); 4276 4277 if (!rxring->rxr_active) 4278 goto rx_intr_done; 4279 4280 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4281 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4282 goto rx_intr_done; 4283 } 4284 4285 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4286 4287 m0 = mprev = NULL; 4288 for (idx = rxring->rxr_readidx; 4289 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4290 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4291 4292 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4293 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4294 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4295 4296 rxd = &rxring->rxr_rxdesc[idx]; 4297 rxd_status = le16toh(rxd->wb.status); 4298 4299 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4300 break; /* not yet done */ 4301 4302 rxd_type = le32toh(rxd->wb.type); 4303 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4304 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4305 rxd_hash = le32toh(rxd->wb.rss_hash); 4306 rxd_vlan = le16toh(rxd->wb.vlan); 4307 4308 if ((rxd_status & RXDESC_STATUS_MACERR) || 4309 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4310 if_statinc_ref(nsr, if_ierrors); 4311 goto rx_next; 4312 } 4313 4314 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4315 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4316 BUS_DMASYNC_POSTREAD); 4317 m = rxring->rxr_mbufs[idx].m; 4318 4319 new_m = aq_alloc_mbuf(); 4320 if (new_m == NULL) { 4321 /* 4322 * cannot allocate new mbuf. 4323 * discard this packet, and reuse mbuf for next. 4324 */ 4325 if_statinc_ref(nsr, if_iqdrops); 4326 goto rx_next; 4327 } 4328 rxring->rxr_mbufs[idx].m = NULL; 4329 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4330 4331 if (m0 == NULL) { 4332 m0 = m; 4333 } else { 4334 if (m->m_flags & M_PKTHDR) 4335 m_remove_pkthdr(m); 4336 mprev->m_next = m; 4337 } 4338 mprev = m; 4339 4340 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4341 m->m_len = MCLBYTES; 4342 } else { 4343 /* last buffer */ 4344 m->m_len = rxd_pktlen % MCLBYTES; 4345 m0->m_pkthdr.len = rxd_pktlen; 4346 /* VLAN offloading */ 4347 if ((sc->sc_ethercom.ec_capenable & 4348 ETHERCAP_VLAN_HWTAGGING) && 4349 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4350 __SHIFTOUT(rxd_type, 4351 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4352 vlan_set_tag(m0, rxd_vlan); 4353 } 4354 4355 /* Checksum offloading */ 4356 unsigned int pkttype_eth = 4357 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4358 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4359 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4360 __SHIFTOUT(rxd_type, 4361 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4362 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4363 if (__SHIFTOUT(rxd_status, 4364 RXDESC_STATUS_IPV4_CSUM_NG)) 4365 m0->m_pkthdr.csum_flags |= 4366 M_CSUM_IPv4_BAD; 4367 } 4368 #if notyet 4369 /* 4370 * XXX: aq always marks BAD for fragmented packet. 4371 * we should peek L3 header, and ignore cksum flags 4372 * if the packet is fragmented. 4373 */ 4374 if (__SHIFTOUT(rxd_type, 4375 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4376 bool checked = false; 4377 unsigned int pkttype_proto = 4378 __SHIFTOUT(rxd_type, 4379 RXDESC_TYPE_PKTTYPE_PROTO); 4380 4381 if (pkttype_proto == 4382 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4383 if ((pkttype_eth == 4384 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4385 (ifp->if_capabilities & 4386 IFCAP_CSUM_TCPv4_Rx)) { 4387 m0->m_pkthdr.csum_flags |= 4388 M_CSUM_TCPv4; 4389 checked = true; 4390 } else if ((pkttype_eth == 4391 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4392 (ifp->if_capabilities & 4393 IFCAP_CSUM_TCPv6_Rx)) { 4394 m0->m_pkthdr.csum_flags |= 4395 M_CSUM_TCPv6; 4396 checked = true; 4397 } 4398 } else if (pkttype_proto == 4399 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4400 if ((pkttype_eth == 4401 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4402 (ifp->if_capabilities & 4403 IFCAP_CSUM_UDPv4_Rx)) { 4404 m0->m_pkthdr.csum_flags |= 4405 M_CSUM_UDPv4; 4406 checked = true; 4407 } else if ((pkttype_eth == 4408 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4409 (ifp->if_capabilities & 4410 IFCAP_CSUM_UDPv6_Rx)) { 4411 m0->m_pkthdr.csum_flags |= 4412 M_CSUM_UDPv6; 4413 checked = true; 4414 } 4415 } 4416 if (checked && 4417 (__SHIFTOUT(rxd_status, 4418 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4419 !__SHIFTOUT(rxd_status, 4420 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4421 m0->m_pkthdr.csum_flags |= 4422 M_CSUM_TCP_UDP_BAD; 4423 } 4424 } 4425 #endif 4426 m_set_rcvif(m0, ifp); 4427 if_statinc_ref(nsr, if_ipackets); 4428 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4429 if_percpuq_enqueue(ifp->if_percpuq, m0); 4430 m0 = mprev = NULL; 4431 } 4432 4433 rx_next: 4434 aq_rxring_reset_desc(sc, rxring, idx); 4435 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4436 } 4437 rxring->rxr_readidx = idx; 4438 4439 IF_STAT_PUTREF(ifp); 4440 4441 rx_intr_done: 4442 mutex_exit(&rxring->rxr_mutex); 4443 4444 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4445 return n; 4446 } 4447 4448 static int 4449 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4450 { 4451 struct ifnet *ifp = &ec->ec_if; 4452 struct aq_softc *sc = ifp->if_softc; 4453 4454 aq_set_vlan_filters(sc); 4455 return 0; 4456 } 4457 4458 static int 4459 aq_ifflags_cb(struct ethercom *ec) 4460 { 4461 struct ifnet *ifp = &ec->ec_if; 4462 struct aq_softc *sc = ifp->if_softc; 4463 int i, ecchange, error = 0; 4464 unsigned short iffchange; 4465 4466 AQ_LOCK(sc); 4467 4468 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4469 if ((iffchange & IFF_PROMISC) != 0) 4470 error = aq_set_filter(sc); 4471 4472 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4473 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4474 for (i = 0; i < AQ_RINGS_NUM; i++) { 4475 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4476 RX_DMA_DESC_VLAN_STRIP, 4477 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4478 1 : 0); 4479 } 4480 } 4481 4482 /* vlan configuration depends on also interface promiscuous mode */ 4483 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4484 aq_set_vlan_filters(sc); 4485 4486 sc->sc_ec_capenable = ec->ec_capenable; 4487 sc->sc_if_flags = ifp->if_flags; 4488 4489 AQ_UNLOCK(sc); 4490 4491 return error; 4492 } 4493 4494 static int 4495 aq_init(struct ifnet *ifp) 4496 { 4497 struct aq_softc *sc = ifp->if_softc; 4498 int i, error = 0; 4499 4500 AQ_LOCK(sc); 4501 4502 aq_set_vlan_filters(sc); 4503 aq_set_capability(sc); 4504 4505 for (i = 0; i < sc->sc_nqueues; i++) { 4506 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4507 } 4508 4509 /* invalidate RX descriptor cache */ 4510 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4511 AQ_READ_REG_BIT(sc, 4512 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4513 4514 /* start RX */ 4515 for (i = 0; i < sc->sc_nqueues; i++) { 4516 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4517 if (error != 0) { 4518 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4519 __func__); 4520 goto aq_init_failure; 4521 } 4522 } 4523 aq_init_rss(sc); 4524 aq_hw_l3_filter_set(sc); 4525 4526 /* need to start callout? */ 4527 if (sc->sc_poll_linkstat 4528 #ifdef AQ_EVENT_COUNTERS 4529 || sc->sc_poll_statistics 4530 #endif 4531 ) { 4532 callout_schedule(&sc->sc_tick_ch, hz); 4533 } 4534 4535 /* ready */ 4536 ifp->if_flags |= IFF_RUNNING; 4537 ifp->if_flags &= ~IFF_OACTIVE; 4538 4539 /* start TX and RX */ 4540 aq_enable_intr(sc, true, true); 4541 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4542 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4543 4544 aq_init_failure: 4545 sc->sc_if_flags = ifp->if_flags; 4546 4547 AQ_UNLOCK(sc); 4548 4549 return error; 4550 } 4551 4552 static void 4553 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4554 struct aq_txring *txring, bool is_transmit) 4555 { 4556 struct mbuf *m; 4557 int npkt, error; 4558 4559 if ((ifp->if_flags & IFF_RUNNING) == 0) 4560 return; 4561 4562 for (npkt = 0; ; npkt++) { 4563 if (is_transmit) 4564 m = pcq_peek(txring->txr_pcq); 4565 else 4566 IFQ_POLL(&ifp->if_snd, m); 4567 4568 if (m == NULL) 4569 break; 4570 4571 if (txring->txr_nfree < AQ_TXD_MIN) 4572 break; 4573 4574 if (is_transmit) 4575 pcq_get(txring->txr_pcq); 4576 else 4577 IFQ_DEQUEUE(&ifp->if_snd, m); 4578 4579 error = aq_encap_txring(sc, txring, &m); 4580 if (error != 0) { 4581 /* too many mbuf chains? or not enough descriptors? */ 4582 m_freem(m); 4583 if_statinc(ifp, if_oerrors); 4584 if (txring->txr_index == 0 && error == ENOBUFS) 4585 ifp->if_flags |= IFF_OACTIVE; 4586 break; 4587 } 4588 4589 /* update tail ptr */ 4590 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4591 txring->txr_prodidx); 4592 4593 /* Pass the packet to any BPF listeners */ 4594 bpf_mtap(ifp, m, BPF_D_OUT); 4595 } 4596 4597 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4598 ifp->if_flags |= IFF_OACTIVE; 4599 4600 if (npkt) 4601 ifp->if_timer = 5; 4602 } 4603 4604 static void 4605 aq_start(struct ifnet *ifp) 4606 { 4607 struct aq_softc *sc; 4608 struct aq_txring *txring; 4609 4610 sc = ifp->if_softc; 4611 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4612 4613 mutex_enter(&txring->txr_mutex); 4614 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4615 aq_send_common_locked(ifp, sc, txring, false); 4616 mutex_exit(&txring->txr_mutex); 4617 } 4618 4619 static inline unsigned int 4620 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4621 { 4622 return (cpu_index(curcpu()) % sc->sc_nqueues); 4623 } 4624 4625 static int 4626 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4627 { 4628 struct aq_softc *sc = ifp->if_softc; 4629 struct aq_txring *txring; 4630 int ringidx; 4631 4632 ringidx = aq_select_txqueue(sc, m); 4633 txring = &sc->sc_queue[ringidx].txring; 4634 4635 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4636 m_freem(m); 4637 return ENOBUFS; 4638 } 4639 4640 if (mutex_tryenter(&txring->txr_mutex)) { 4641 aq_send_common_locked(ifp, sc, txring, true); 4642 mutex_exit(&txring->txr_mutex); 4643 } else { 4644 softint_schedule(txring->txr_softint); 4645 } 4646 return 0; 4647 } 4648 4649 static void 4650 aq_deferred_transmit(void *arg) 4651 { 4652 struct aq_txring *txring = arg; 4653 struct aq_softc *sc = txring->txr_sc; 4654 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4655 4656 mutex_enter(&txring->txr_mutex); 4657 if (pcq_peek(txring->txr_pcq) != NULL) 4658 aq_send_common_locked(ifp, sc, txring, true); 4659 mutex_exit(&txring->txr_mutex); 4660 } 4661 4662 static void 4663 aq_stop(struct ifnet *ifp, int disable) 4664 { 4665 struct aq_softc *sc = ifp->if_softc; 4666 int i; 4667 4668 AQ_LOCK(sc); 4669 4670 ifp->if_timer = 0; 4671 4672 /* disable tx/rx interrupts */ 4673 aq_enable_intr(sc, true, false); 4674 4675 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4676 for (i = 0; i < sc->sc_nqueues; i++) { 4677 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4678 } 4679 4680 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4681 for (i = 0; i < sc->sc_nqueues; i++) { 4682 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4683 } 4684 4685 /* invalidate RX descriptor cache */ 4686 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4687 AQ_READ_REG_BIT(sc, 4688 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4689 4690 ifp->if_timer = 0; 4691 4692 if (!disable) { 4693 /* when pmf stop, disable link status intr and callout */ 4694 aq_enable_intr(sc, false, false); 4695 callout_stop(&sc->sc_tick_ch); 4696 } 4697 4698 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4699 4700 AQ_UNLOCK(sc); 4701 } 4702 4703 static void 4704 aq_watchdog(struct ifnet *ifp) 4705 { 4706 struct aq_softc *sc = ifp->if_softc; 4707 struct aq_txring *txring; 4708 int n, head, tail; 4709 4710 AQ_LOCK(sc); 4711 4712 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4713 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4714 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4715 4716 for (n = 0; n < sc->sc_nqueues; n++) { 4717 txring = &sc->sc_queue[n].txring; 4718 head = AQ_READ_REG_BIT(sc, 4719 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4720 TX_DMA_DESC_HEAD_PTR), 4721 tail = AQ_READ_REG(sc, 4722 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4723 4724 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4725 __func__, txring->txr_index, head, tail); 4726 4727 aq_tx_intr(txring); 4728 } 4729 4730 AQ_UNLOCK(sc); 4731 4732 aq_init(ifp); 4733 } 4734 4735 static int 4736 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4737 { 4738 struct aq_softc *sc __unused; 4739 struct ifreq *ifr __unused; 4740 int error, s; 4741 4742 sc = (struct aq_softc *)ifp->if_softc; 4743 ifr = (struct ifreq *)data; 4744 error = 0; 4745 4746 s = splnet(); 4747 error = ether_ioctl(ifp, cmd, data); 4748 splx(s); 4749 4750 if (error != ENETRESET) 4751 return error; 4752 4753 switch (cmd) { 4754 case SIOCSIFCAP: 4755 error = aq_set_capability(sc); 4756 break; 4757 case SIOCADDMULTI: 4758 case SIOCDELMULTI: 4759 if ((ifp->if_flags & IFF_RUNNING) == 0) 4760 break; 4761 4762 /* 4763 * Multicast list has changed; set the hardware filter 4764 * accordingly. 4765 */ 4766 error = aq_set_filter(sc); 4767 break; 4768 } 4769 4770 return error; 4771 } 4772 4773 4774 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4775 4776 #ifdef _MODULE 4777 #include "ioconf.c" 4778 #endif 4779 4780 static int 4781 if_aq_modcmd(modcmd_t cmd, void *opaque) 4782 { 4783 int error = 0; 4784 4785 switch (cmd) { 4786 case MODULE_CMD_INIT: 4787 #ifdef _MODULE 4788 error = config_init_component(cfdriver_ioconf_if_aq, 4789 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4790 #endif 4791 return error; 4792 case MODULE_CMD_FINI: 4793 #ifdef _MODULE 4794 error = config_fini_component(cfdriver_ioconf_if_aq, 4795 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4796 #endif 4797 return error; 4798 default: 4799 return ENOTTY; 4800 } 4801 } 4802