xref: /netbsd-src/sys/dev/pci/if_aq.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*	$NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.20 2021/02/18 17:56:04 ryo Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 /*
120  * TERMINOLOGY
121  *	MPI = MAC PHY INTERFACE?
122  *	RPO = RX Protocol Offloading
123  *	TPO = TX Protocol Offloading
124  *	RPF = RX Packet Filter
125  *	TPB = TX Packet buffer
126  *	RPB = RX Packet buffer
127  */
128 
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG			0x0000
131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
133 
134 #define AQ_FW_VERSION_REG			0x0018
135 #define AQ_HW_REVISION_REG			0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
137 
138 #define AQ_FW_MBOX_CMD_REG			0x0200
139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
141 #define AQ_FW_MBOX_ADDR_REG			0x0208
142 #define AQ_FW_MBOX_VAL_REG			0x020c
143 
144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
145 #define FW2X_LED_REG				0x031c
146 #define  FW2X_LED_DEFAULT			0x00000000
147 #define  FW2X_LED_NONE				0x0000003f
148 #define  FW2X_LINKLED				__BITS(0,1)
149 #define   FW2X_LINKLED_ACTIVE			0
150 #define   FW2X_LINKLED_ON			1
151 #define   FW2X_LINKLED_BLINK			2
152 #define   FW2X_LINKLED_OFF			3
153 #define  FW2X_STATUSLED				__BITS(2,5)
154 #define   FW2X_STATUSLED_ORANGE			0
155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
156 #define   FW2X_STATUSLED_OFF			3
157 #define   FW2X_STATUSLED_GREEN			4
158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
159 #define   FW2X_STATUSLED_GREEN_BLINK		10
160 
161 #define FW_MPI_MBOX_ADDR_REG			0x0360
162 #define FW1X_MPI_INIT1_REG			0x0364
163 #define FW1X_MPI_CONTROL_REG			0x0368
164 #define FW1X_MPI_STATE_REG			0x036c
165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
169 #define FW1X_MPI_INIT2_REG			0x0370
170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
171 
172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG			0x0388
176 #define  RBL_STATUS_DEAD			0x0000dead
177 #define  RBL_STATUS_SUCCESS			0x0000abba
178 #define  RBL_STATUS_FAILURE			0x00000bad
179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
180 
181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
183 
184 #define AQ_FW_GLB_CTL2_REG			0x0404
185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
186 
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
189 
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
191 
192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
193 
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG			0x2090
200 
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
209 
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
212 #define  AQ_B0_ERR_INT				8U
213 
214 #define AQ_INTR_CTRL_REG			0x2300
215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
224 
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
226 
227 #define FW_MPI_RESETCTRL_REG			0x4000
228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
229 
230 #define RX_SYSCONTROL_REG			0x5000
231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
234 
235 #define RX_TCP_RSS_HASH_REG			0x5040
236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
238 
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD			0
241 #define RPF_ACTION_HOST				1
242 #define RPF_ACTION_MANAGEMENT			2
243 #define RPF_ACTION_HOST_MANAGEMENT		3
244 #define RPF_ACTION_WOL				4
245 
246 #define RPF_L2BC_REG				0x5100
247 #define  RPF_L2BC_EN				__BIT(0)
248 #define  RPF_L2BC_PROMISC			__BIT(3)
249 #define  RPF_L2BC_ACTION			__BITS(12,14)
250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
251 
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
257 #define  RPF_L2UC_MSW_EN			__BIT(31)
258 #define AQ_HW_MAC_OWN			0	/* index of own address */
259 #define AQ_HW_MAC_NUM			34
260 
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
266 
267 #define RPF_VLAN_MODE_REG			0x5280
268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
271 
272 #define RPF_VLAN_TPID_REG			0x5284
273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
275 
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS			16
278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
284 
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
295 
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
320 
321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
323 
324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
326 
327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
332 
333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
336 
337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
339 
340 #define RPO_HWCSUM_REG				0x5580
341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
343 
344 #define RPO_LRO_ENABLE_REG			0x5590
345 
346 #define RPO_LRO_CONF_REG			0x5594
347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG			0x5598
352 
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG			0x5620
357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
362 
363 #define RPB_RPF_RX_REG				0x5700
364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
367 
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
372 #define  RPB_RXB_XOFF_EN			__BIT(31)
373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
375 
376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
378 
379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
382 
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
388 
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
394 #define  RX_DMA_DESC_RESET			__BIT(25)
395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
397 #define  RX_DMA_DESC_EN				__BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
404 
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
411 
412 #define RX_DMA_DCA_REG				0x6180
413 #define  RX_DMA_DCA_EN				__BIT(31)
414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
415 
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
421 
422 #define TX_SYSCONTROL_REG			0x7000
423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
426 
427 #define TX_TPO2_REG				0x7040
428 #define  TX_TPO2_EN				__BIT(16)
429 
430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
432 #define TPS_DESC_RATE_REG			0x7310
433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
439 
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
448 
449 #define AQ_HW_TXBUF_MAX		160
450 #define AQ_HW_RXBUF_MAX		320
451 
452 #define TPO_HWCSUM_REG				0x7800
453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
455 
456 #define TDM_LSO_EN_REG				0x7810
457 
458 #define THM_LSO_TCP_FLAG1_REG			0x7820
459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG			0x7824
462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
463 
464 #define TPB_TX_BUF_REG				0x7900
465 #define  TPB_TX_BUF_EN				__BIT(0)
466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
468 
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
475 
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
480 
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
486 #define  TX_DMA_DESC_EN				__BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
492 
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
495 #define  TDM_DCAD_CPUID				__BITS(7,0)
496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
497 
498 #define TDM_DCA_REG				0x8480
499 #define  TDM_DCA_EN				__BIT(31)
500 #define  TDM_DCA_MODE				__BITS(3,0)
501 
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
507 
508 #define FW1X_CTRL_10G				__BIT(0)
509 #define FW1X_CTRL_5G				__BIT(1)
510 #define FW1X_CTRL_5GSR				__BIT(2)
511 #define FW1X_CTRL_2G5				__BIT(3)
512 #define FW1X_CTRL_1G				__BIT(4)
513 #define FW1X_CTRL_100M				__BIT(5)
514 
515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
527 #define FW2X_CTRL_RESERVED1			__BIT(32)
528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
529 #define FW2X_CTRL_RESERVED2			__BIT(34)
530 #define FW2X_CTRL_PAUSE				__BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
533 #define FW2X_CTRL_RESERVED3			__BIT(38)
534 #define FW2X_CTRL_RESERVED4			__BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
539 #define FW2X_CTRL_RESERVED5			__BIT(44)
540 #define FW2X_CTRL_RESERVED6			__BIT(45)
541 #define FW2X_CTRL_RESERVED7			__BIT(46)
542 #define FW2X_CTRL_RESERVED8			__BIT(47)
543 #define FW2X_CTRL_RESERVED9			__BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
551 #define FW2X_CTRL_WOL				__BIT(56)
552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
557 #define FW2X_CTRL_STATISTICS			__BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
559 
560 #define FW2X_SNPRINTB			\
561 	"\177\020"			\
562 	"b\x23" "PAUSE\0"		\
563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
564 	"b\x31" "CABLE-DIAG\0"		\
565 	"b\x32" "TEMPERATURE\0"		\
566 	"b\x33" "DOWNSHIFT\0"		\
567 	"b\x34" "PTP-AVB\0"		\
568 	"b\x35" "MEDIA-DETECT\0"	\
569 	"b\x36" "LINK-DROP\0"		\
570 	"b\x37" "SLEEP-PROXY\0"		\
571 	"b\x38" "WOL\0"			\
572 	"b\x39" "MAC-STOP\0"		\
573 	"b\x3a" "EXT-LOOPBACK\0"	\
574 	"b\x3b" "INT-LOOPBACK\0"	\
575 	"b\x3c" "EFUSE-AGENT\0"		\
576 	"b\x3d" "WOL-TIMER\0"		\
577 	"b\x3e" "STATISTICS\0"		\
578 	"b\x3f" "TRANSACTION-ID\0"	\
579 	"\0"
580 
581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK		\
587 	(FW2X_CTRL_RATE_100M |		\
588 	 FW2X_CTRL_RATE_1G |		\
589 	 FW2X_CTRL_RATE_2G5 |		\
590 	 FW2X_CTRL_RATE_5G |		\
591 	 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK		\
593 	(FW2X_CTRL_10BASET_EEE |	\
594 	 FW2X_CTRL_100BASETX_EEE |	\
595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
598 	 FW2X_CTRL_10GBASET_FD_EEE)
599 
600 typedef enum aq_fw_bootloader_mode {
601 	FW_BOOT_MODE_UNKNOWN = 0,
602 	FW_BOOT_MODE_FLB,
603 	FW_BOOT_MODE_RBL_FLASH,
604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606 
607 #define AQ_WRITE_REG(sc, reg, val)				\
608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609 
610 #define AQ_READ_REG(sc, reg)					\
611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612 
613 #define AQ_READ64_REG(sc, reg)					\
614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616 
617 #define AQ_WRITE64_REG(sc, reg, val)				\
618 	do {							\
619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 	} while (/* CONSTCOND */0)
622 
623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625 
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
627 	do {							\
628 		uint32_t _v;					\
629 		_v = AQ_READ_REG((sc), (reg));			\
630 		_v &= ~(mask);					\
631 		if ((val) != 0)					\
632 			_v |= __SHIFTIN((val), (mask));		\
633 		AQ_WRITE_REG((sc), (reg), _v);			\
634 	} while (/* CONSTCOND */ 0)
635 
636 #define WAIT_FOR(expr, us, n, errp)				\
637 	do {							\
638 		unsigned int _n;				\
639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
640 			delay((us));				\
641 		}						\
642 		if ((errp != NULL)) {				\
643 			if (_n == 0)				\
644 				*(errp) = ETIMEDOUT;		\
645 			else					\
646 				*(errp) = 0;			\
647 		}						\
648 	} while (/* CONSTCOND */ 0)
649 
650 #define msec_delay(x)	DELAY(1000 * (x))
651 
652 typedef struct aq_mailbox_header {
653 	uint32_t version;
654 	uint32_t transaction_id;
655 	int32_t error;
656 } __packed __aligned(4) aq_mailbox_header_t;
657 
658 typedef struct aq_hw_stats_s {
659 	uint32_t uprc;
660 	uint32_t mprc;
661 	uint32_t bprc;
662 	uint32_t erpt;
663 	uint32_t uptc;
664 	uint32_t mptc;
665 	uint32_t bptc;
666 	uint32_t erpr;
667 	uint32_t mbtc;
668 	uint32_t bbtc;
669 	uint32_t mbrc;
670 	uint32_t bbrc;
671 	uint32_t ubrc;
672 	uint32_t ubtc;
673 	uint32_t ptc;
674 	uint32_t prc;
675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
677 } __packed __aligned(4) aq_hw_stats_s_t;
678 
679 typedef struct fw1x_mailbox {
680 	aq_mailbox_header_t header;
681 	aq_hw_stats_s_t msm;
682 } __packed __aligned(4) fw1x_mailbox_t;
683 
684 typedef struct fw2x_msm_statistics {
685 	uint32_t uprc;
686 	uint32_t mprc;
687 	uint32_t bprc;
688 	uint32_t erpt;
689 	uint32_t uptc;
690 	uint32_t mptc;
691 	uint32_t bptc;
692 	uint32_t erpr;
693 	uint32_t mbtc;
694 	uint32_t bbtc;
695 	uint32_t mbrc;
696 	uint32_t bbrc;
697 	uint32_t ubrc;
698 	uint32_t ubtc;
699 	uint32_t ptc;
700 	uint32_t prc;
701 } __packed __aligned(4) fw2x_msm_statistics_t;
702 
703 typedef struct fw2x_phy_cable_diag_data {
704 	uint32_t lane_data[4];
705 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
706 
707 typedef struct fw2x_capabilities {
708 	uint32_t caps_lo;
709 	uint32_t caps_hi;
710 } __packed __aligned(4) fw2x_capabilities_t;
711 
712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
713 	aq_mailbox_header_t header;
714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
715 
716 	uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
719 	uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
722 
723 	fw2x_phy_cable_diag_data_t diag_data;
724 	uint32_t reserved[8];
725 
726 	fw2x_capabilities_t caps;
727 
728 	/* ... */
729 } __packed __aligned(4) fw2x_mailbox_t;
730 
731 typedef enum aq_link_speed {
732 	AQ_LINK_NONE	= 0,
733 	AQ_LINK_100M	= (1 << 0),
734 	AQ_LINK_1G	= (1 << 1),
735 	AQ_LINK_2G5	= (1 << 2),
736 	AQ_LINK_5G	= (1 << 3),
737 	AQ_LINK_10G	= (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 			 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO	AQ_LINK_ALL
742 
743 typedef enum aq_link_fc {
744 	AQ_FC_NONE = 0,
745 	AQ_FC_RX = __BIT(0),
746 	AQ_FC_TX = __BIT(1),
747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749 
750 typedef enum aq_link_eee {
751 	AQ_EEE_DISABLE = 0,
752 	AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754 
755 typedef enum aq_hw_fw_mpi_state {
756 	MPI_DEINIT	= 0,
757 	MPI_RESET	= 1,
758 	MPI_INIT	= 2,
759 	MPI_POWER	= 4
760 } aq_hw_fw_mpi_state_t;
761 
762 enum aq_media_type {
763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
764 	AQ_MEDIA_TYPE_FIBRE,
765 	AQ_MEDIA_TYPE_TP
766 };
767 
768 struct aq_rx_desc_read {
769 	uint64_t buf_addr;
770 	uint64_t hdr_addr;
771 } __packed __aligned(8);
772 
773 struct aq_rx_desc_wb {
774 	uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
800 #define RXDESC_TYPE_SPH			__BIT(21)
801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
802 	uint32_t rss_hash;
803 	uint16_t status;
804 #define RXDESC_STATUS_DD		__BIT(0)
805 #define RXDESC_STATUS_EOP		__BIT(1)
806 #define RXDESC_STATUS_MACERR		__BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
810 
811 #define RXDESC_STATUS_STAT		__BITS(2,5)
812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
814 	uint16_t pkt_len;
815 	uint16_t next_desc_ptr;
816 	uint16_t vlan;
817 } __packed __aligned(4);
818 
819 typedef union aq_rx_desc {
820 	struct aq_rx_desc_read read;
821 	struct aq_rx_desc_wb wb;
822 } __packed __aligned(8) aq_rx_desc_t;
823 
824 typedef struct aq_tx_desc {
825 	uint64_t buf_addr;
826 	uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
843 	uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
847 } __packed __aligned(8) aq_tx_desc_t;
848 
849 struct aq_txring {
850 	struct aq_softc *txr_sc;
851 	int txr_index;
852 	kmutex_t txr_mutex;
853 	bool txr_active;
854 
855 	pcq_t *txr_pcq;
856 	void *txr_softint;
857 
858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
859 	bus_dmamap_t txr_txdesc_dmamap;
860 	bus_dma_segment_t txr_txdesc_seg[1];
861 	bus_size_t txr_txdesc_size;
862 
863 	struct {
864 		struct mbuf *m;
865 		bus_dmamap_t dmamap;
866 	} txr_mbufs[AQ_TXD_NUM];
867 	unsigned int txr_prodidx;
868 	unsigned int txr_considx;
869 	int txr_nfree;
870 };
871 
872 struct aq_rxring {
873 	struct aq_softc *rxr_sc;
874 	int rxr_index;
875 	kmutex_t rxr_mutex;
876 	bool rxr_active;
877 
878 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
879 	bus_dmamap_t rxr_rxdesc_dmamap;
880 	bus_dma_segment_t rxr_rxdesc_seg[1];
881 	bus_size_t rxr_rxdesc_size;
882 	struct {
883 		struct mbuf *m;
884 		bus_dmamap_t dmamap;
885 	} rxr_mbufs[AQ_RXD_NUM];
886 	unsigned int rxr_readidx;
887 };
888 
889 struct aq_queue {
890 	struct aq_softc *sc;
891 	struct aq_txring txring;
892 	struct aq_rxring rxring;
893 };
894 
895 struct aq_softc;
896 struct aq_firmware_ops {
897 	int (*reset)(struct aq_softc *);
898 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 	int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907 
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name)						\
910 	char sc_evcount_##name##_name[32];				\
911 	struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
913 	do {								\
914 		snprintf((sc)->sc_evcount_##name##_name,		\
915 		    sizeof((sc)->sc_evcount_##name##_name),		\
916 		    "%s", desc);					\
917 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
918 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
919 		    (sc)->sc_evcount_##name##_name);			\
920 	} while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
922 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name)					\
924 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val)					\
926 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928 
929 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
931 
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
935 
936 
937 struct aq_softc {
938 	device_t sc_dev;
939 
940 	bus_space_tag_t sc_iot;
941 	bus_space_handle_t sc_ioh;
942 	bus_size_t sc_iosize;
943 	bus_dma_tag_t sc_dmat;
944 
945 	void *sc_ihs[AQ_NINTR_MAX];
946 	pci_intr_handle_t *sc_intrs;
947 
948 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 	int sc_linkstat_irq;
951 	bool sc_use_txrx_independent_intr;
952 	bool sc_poll_linkstat;
953 	bool sc_detect_linkstat;
954 
955 #if NSYSMON_ENVSYS > 0
956 	struct sysmon_envsys *sc_sme;
957 	envsys_data_t sc_sensor_temp;
958 #endif
959 
960 	callout_t sc_tick_ch;
961 
962 	int sc_nintrs;
963 	bool sc_msix;
964 
965 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 	int sc_nqueues;
967 
968 	pci_chipset_tag_t sc_pc;
969 	pcitag_t sc_pcitag;
970 	uint16_t sc_product;
971 	uint16_t sc_revision;
972 
973 	kmutex_t sc_mutex;
974 	kmutex_t sc_mpi_mutex;
975 
976 	const struct aq_firmware_ops *sc_fw_ops;
977 	uint64_t sc_fw_caps;
978 	enum aq_media_type sc_media_type;
979 	aq_link_speed_t sc_available_rates;
980 
981 	aq_link_speed_t sc_link_rate;
982 	aq_link_fc_t sc_link_fc;
983 	aq_link_eee_t sc_link_eee;
984 
985 	uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
989 	uint32_t sc_features;
990 #define FEATURES_MIPS		0x00000001
991 #define FEATURES_TPO2		0x00000002
992 #define FEATURES_RPF2		0x00000004
993 #define FEATURES_MPI_AQ		0x00000008
994 #define FEATURES_REV_A0		0x10000000
995 #define FEATURES_REV_A		(FEATURES_REV_A0)
996 #define FEATURES_REV_B0		0x20000000
997 #define FEATURES_REV_B1		0x40000000
998 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
999 	uint32_t sc_mbox_addr;
1000 
1001 	bool sc_rbl_enabled;
1002 	bool sc_fast_start_enabled;
1003 	bool sc_flash_present;
1004 
1005 	bool sc_intr_moderation_enable;
1006 	bool sc_rss_enable;
1007 
1008 	struct ethercom sc_ethercom;
1009 	struct ether_addr sc_enaddr;
1010 	struct ifmedia sc_media;
1011 	int sc_ec_capenable;		/* last ec_capenable */
1012 	unsigned short sc_if_flags;	/* last if_flags */
1013 
1014 #ifdef AQ_EVENT_COUNTERS
1015 	aq_hw_stats_s_t sc_statistics[2];
1016 	int sc_statistics_idx;
1017 	bool sc_poll_statistics;
1018 
1019 	AQ_EVCNT_DECL(uprc);
1020 	AQ_EVCNT_DECL(mprc);
1021 	AQ_EVCNT_DECL(bprc);
1022 	AQ_EVCNT_DECL(erpt);
1023 	AQ_EVCNT_DECL(uptc);
1024 	AQ_EVCNT_DECL(mptc);
1025 	AQ_EVCNT_DECL(bptc);
1026 	AQ_EVCNT_DECL(erpr);
1027 	AQ_EVCNT_DECL(mbtc);
1028 	AQ_EVCNT_DECL(bbtc);
1029 	AQ_EVCNT_DECL(mbrc);
1030 	AQ_EVCNT_DECL(bbrc);
1031 	AQ_EVCNT_DECL(ubrc);
1032 	AQ_EVCNT_DECL(ubtc);
1033 	AQ_EVCNT_DECL(ptc);
1034 	AQ_EVCNT_DECL(prc);
1035 	AQ_EVCNT_DECL(dpc);
1036 	AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039 
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043 
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045     bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047     pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049 
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056     struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063 
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068 
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071 
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081 
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083     aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085     aq_link_eee_t *);
1086 
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093     uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097 
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104 
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114 
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 	.reset = fw1x_reset,
1117 	.set_mode = fw1x_set_mode,
1118 	.get_mode = fw1x_get_mode,
1119 	.get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 	.get_temperature = NULL
1122 #endif
1123 };
1124 
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 	.reset = fw2x_reset,
1127 	.set_mode = fw2x_set_mode,
1128 	.get_mode = fw2x_get_mode,
1129 	.get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 	.get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134 
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137 
1138 static const struct aq_product {
1139 	pci_vendor_id_t aq_vendor;
1140 	pci_product_id_t aq_product;
1141 	const char *aq_name;
1142 	enum aq_media_type aq_media_type;
1143 	aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1146 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1147 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1148 	},
1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1150 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1151 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1152 	},
1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1154 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1156 	},
1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1158 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1160 	},
1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1162 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1164 	},
1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1166 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1168 	},
1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1170 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1171 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1172 	},
1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1174 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1175 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1176 	},
1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1178 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 	},
1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1182 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 	},
1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1186 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1188 	},
1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1190 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1192 	},
1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1194 	  "Aquantia D100 10 Gigabit Network Adapter",
1195 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1196 	},
1197 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1198 	  "Aquantia D107 10 Gigabit Network Adapter",
1199 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1200 	},
1201 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1202 	  "Aquantia D108 5 Gigabit Network Adapter",
1203 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1204 	},
1205 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1206 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1207 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1208 	}
1209 };
1210 
1211 static const struct aq_product *
1212 aq_lookup(const struct pci_attach_args *pa)
1213 {
1214 	unsigned int i;
1215 
1216 	for (i = 0; i < __arraycount(aq_products); i++) {
1217 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1218 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1219 			return &aq_products[i];
1220 	}
1221 	return NULL;
1222 }
1223 
1224 static int
1225 aq_match(device_t parent, cfdata_t cf, void *aux)
1226 {
1227 	struct pci_attach_args *pa = aux;
1228 
1229 	if (aq_lookup(pa) != NULL)
1230 		return 1;
1231 
1232 	return 0;
1233 }
1234 
1235 static void
1236 aq_attach(device_t parent, device_t self, void *aux)
1237 {
1238 	struct aq_softc *sc = device_private(self);
1239 	struct pci_attach_args *pa = aux;
1240 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 	pci_chipset_tag_t pc;
1242 	pcitag_t tag;
1243 	pcireg_t command, memtype, bar;
1244 	const struct aq_product *aqp;
1245 	int error;
1246 
1247 	sc->sc_dev = self;
1248 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1249 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1250 
1251 	sc->sc_pc = pc = pa->pa_pc;
1252 	sc->sc_pcitag = tag = pa->pa_tag;
1253 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1254 
1255 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1256 	command |= PCI_COMMAND_MASTER_ENABLE;
1257 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1258 
1259 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1260 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1261 
1262 	aqp = aq_lookup(pa);
1263 	KASSERT(aqp != NULL);
1264 
1265 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1266 
1267 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1268 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1269 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1270 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1271 		return;
1272 	}
1273 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1274 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1275 	    NULL, &sc->sc_iosize) != 0) {
1276 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1277 		return;
1278 	}
1279 
1280 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1281 
1282 	/* max queue num is 8, and must be 2^n */
1283 	if (ncpu >= 8)
1284 		sc->sc_nqueues = 8;
1285 	else if (ncpu >= 4)
1286 		sc->sc_nqueues = 4;
1287 	else if (ncpu >= 2)
1288 		sc->sc_nqueues = 2;
1289 	else
1290 		sc->sc_nqueues = 1;
1291 
1292 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1294 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1295 		/* TX intrs + RX intrs + LINKSTAT intrs */
1296 		sc->sc_use_txrx_independent_intr = true;
1297 		sc->sc_poll_linkstat = false;
1298 		sc->sc_msix = true;
1299 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1300 		/* TX intrs + RX intrs */
1301 		sc->sc_use_txrx_independent_intr = true;
1302 		sc->sc_poll_linkstat = true;
1303 		sc->sc_msix = true;
1304 	} else
1305 #endif
1306 	if (msixcount >= (sc->sc_nqueues + 1)) {
1307 		/* TX/RX intrs LINKSTAT intrs */
1308 		sc->sc_use_txrx_independent_intr = false;
1309 		sc->sc_poll_linkstat = false;
1310 		sc->sc_msix = true;
1311 	} else if (msixcount >= sc->sc_nqueues) {
1312 		/* TX/RX intrs */
1313 		sc->sc_use_txrx_independent_intr = false;
1314 		sc->sc_poll_linkstat = true;
1315 		sc->sc_msix = true;
1316 	} else {
1317 		/* giving up using MSI-X */
1318 		sc->sc_msix = false;
1319 	}
1320 
1321 	/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1322 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1323 		sc->sc_poll_linkstat = true;
1324 
1325 #ifdef AQ_FORCE_POLL_LINKSTAT
1326 	sc->sc_poll_linkstat = true;
1327 #endif
1328 
1329 	aprint_debug_dev(sc->sc_dev,
1330 	    "ncpu=%d, pci_msix_count=%d."
1331 	    " allocate %d interrupts for %d%s queues%s\n",
1332 	    ncpu, msixcount,
1333 	    (sc->sc_use_txrx_independent_intr ?
1334 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1335 	    (sc->sc_poll_linkstat ? 0 : 1),
1336 	    sc->sc_nqueues,
1337 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1338 	    sc->sc_poll_linkstat ? "" : ", and link status");
1339 
1340 	if (sc->sc_msix)
1341 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1342 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1343 	else
1344 		error = ENODEV;
1345 
1346 	if (error != 0) {
1347 		/* if MSI-X failed, fallback to MSI with single queue */
1348 		sc->sc_use_txrx_independent_intr = false;
1349 		sc->sc_poll_linkstat = false;
1350 		sc->sc_msix = false;
1351 		sc->sc_nqueues = 1;
1352 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1353 	}
1354 	if (error != 0) {
1355 		/* if MSI failed, fallback to INTx */
1356 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1357 	}
1358 	if (error != 0)
1359 		return;
1360 
1361 	callout_init(&sc->sc_tick_ch, 0);
1362 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1363 
1364 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1365 
1366 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1367 		sc->sc_rss_enable = true;
1368 	else
1369 		sc->sc_rss_enable = false;
1370 
1371 	error = aq_txrx_rings_alloc(sc);
1372 	if (error != 0)
1373 		goto attach_failure;
1374 
1375 	error = aq_fw_reset(sc);
1376 	if (error != 0)
1377 		goto attach_failure;
1378 
1379 	error = aq_fw_version_init(sc);
1380 	if (error != 0)
1381 		goto attach_failure;
1382 
1383 	error = aq_hw_init_ucp(sc);
1384 	if (error < 0)
1385 		goto attach_failure;
1386 
1387 	KASSERT(sc->sc_mbox_addr != 0);
1388 	error = aq_hw_reset(sc);
1389 	if (error != 0)
1390 		goto attach_failure;
1391 
1392 	aq_get_mac_addr(sc);
1393 	aq_init_rss(sc);
1394 
1395 	error = aq_hw_init(sc);	/* initialize and interrupts */
1396 	if (error != 0)
1397 		goto attach_failure;
1398 
1399 	sc->sc_media_type = aqp->aq_media_type;
1400 	sc->sc_available_rates = aqp->aq_available_rates;
1401 
1402 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1403 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1404 	    aq_ifmedia_change, aq_ifmedia_status);
1405 	aq_initmedia(sc);
1406 
1407 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1408 	ifp->if_softc = sc;
1409 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 	ifp->if_extflags = IFEF_MPSAFE;
1411 	ifp->if_baudrate = IF_Gbps(10);
1412 	ifp->if_init = aq_init;
1413 	ifp->if_ioctl = aq_ioctl;
1414 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1415 		ifp->if_transmit = aq_transmit;
1416 	ifp->if_start = aq_start;
1417 	ifp->if_stop = aq_stop;
1418 	ifp->if_watchdog = aq_watchdog;
1419 	IFQ_SET_READY(&ifp->if_snd);
1420 
1421 	/* initialize capabilities */
1422 	sc->sc_ethercom.ec_capabilities = 0;
1423 	sc->sc_ethercom.ec_capenable = 0;
1424 #if notyet
1425 	/* TODO */
1426 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1427 #endif
1428 	sc->sc_ethercom.ec_capabilities |=
1429 	    ETHERCAP_JUMBO_MTU |
1430 	    ETHERCAP_VLAN_MTU |
1431 	    ETHERCAP_VLAN_HWTAGGING |
1432 	    ETHERCAP_VLAN_HWFILTER;
1433 	sc->sc_ethercom.ec_capenable |=
1434 	    ETHERCAP_VLAN_HWTAGGING |
1435 	    ETHERCAP_VLAN_HWFILTER;
1436 
1437 	ifp->if_capabilities = 0;
1438 	ifp->if_capenable = 0;
1439 #ifdef CONFIG_LRO_SUPPORT
1440 	ifp->if_capabilities |= IFCAP_LRO;
1441 	ifp->if_capenable |= IFCAP_LRO;
1442 #endif
1443 #if notyet
1444 	/* TSO */
1445 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1446 #endif
1447 
1448 #if notyet
1449 	/*
1450 	 * XXX:
1451 	 *   Rx L4 CSUM doesn't work well for fragment packet.
1452 	 *   aq marks 'CHEDKED' and 'BAD' for them.
1453 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
1454 	 *
1455 	 *   TODO: test with LRO enabled
1456 	 */
1457 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1458 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1459 #endif
1460 	/* TX hardware checksum offloadding */
1461 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1462 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1463 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1464 	/* RX hardware checksum offloadding */
1465 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1466 
1467 	error = if_initialize(ifp);
1468 	if (error != 0) {
1469 		aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
1470 		    error);
1471 		goto attach_failure;
1472 	}
1473 	ifp->if_percpuq = if_percpuq_create(ifp);
1474 	if_deferred_start_init(ifp, NULL);
1475 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1476 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1477 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1478 	if_register(ifp);
1479 
1480 	aq_enable_intr(sc, true, false);	/* only intr about link */
1481 
1482 	/* update media */
1483 	aq_ifmedia_change(ifp);
1484 
1485 #if NSYSMON_ENVSYS > 0
1486 	/* temperature monitoring */
1487 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1488 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1489 
1490 		sc->sc_sme = sysmon_envsys_create();
1491 		sc->sc_sme->sme_name = device_xname(self);
1492 		sc->sc_sme->sme_cookie = sc;
1493 		sc->sc_sme->sme_flags = 0;
1494 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1495 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1496 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1497 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1498 
1499 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1500 		sysmon_envsys_register(sc->sc_sme);
1501 
1502 		/*
1503 		 * for unknown reasons, the first call of fw2x_get_temperature()
1504 		 * will always fail (firmware matter?), so run once now.
1505 		 */
1506 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1507 	}
1508 #endif
1509 
1510 #ifdef AQ_EVENT_COUNTERS
1511 	/* get starting statistics values */
1512 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1513 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1514 		sc->sc_poll_statistics = true;
1515 	}
1516 
1517 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1518 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1519 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1520 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1521 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1522 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1523 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1524 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1525 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1526 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1527 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1528 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1529 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1530 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1531 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1532 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1533 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1534 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1535 #endif
1536 
1537 	return;
1538 
1539  attach_failure:
1540 	aq_detach(self, 0);
1541 }
1542 
1543 static int
1544 aq_detach(device_t self, int flags __unused)
1545 {
1546 	struct aq_softc *sc = device_private(self);
1547 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1548 	int i, s;
1549 
1550 	if (sc->sc_iosize != 0) {
1551 		if (ifp->if_softc != NULL) {
1552 			s = splnet();
1553 			aq_stop(ifp, 0);
1554 			splx(s);
1555 		}
1556 
1557 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1558 			if (sc->sc_ihs[i] != NULL) {
1559 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1560 				sc->sc_ihs[i] = NULL;
1561 			}
1562 		}
1563 		if (sc->sc_nintrs > 0) {
1564 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1565 			    sc->sc_nintrs);
1566 			sc->sc_intrs = NULL;
1567 			sc->sc_nintrs = 0;
1568 		}
1569 
1570 		aq_txrx_rings_free(sc);
1571 
1572 		if (ifp->if_softc != NULL) {
1573 			ether_ifdetach(ifp);
1574 			if_detach(ifp);
1575 		}
1576 
1577 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1578 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1579 		sc->sc_iosize = 0;
1580 	}
1581 
1582 	callout_stop(&sc->sc_tick_ch);
1583 
1584 #if NSYSMON_ENVSYS > 0
1585 	if (sc->sc_sme != NULL) {
1586 		/* all sensors associated with this will also be detached */
1587 		sysmon_envsys_unregister(sc->sc_sme);
1588 		sc->sc_sme = NULL;
1589 	}
1590 #endif
1591 
1592 #ifdef AQ_EVENT_COUNTERS
1593 	AQ_EVCNT_DETACH(sc, uprc);
1594 	AQ_EVCNT_DETACH(sc, mprc);
1595 	AQ_EVCNT_DETACH(sc, bprc);
1596 	AQ_EVCNT_DETACH(sc, erpt);
1597 	AQ_EVCNT_DETACH(sc, uptc);
1598 	AQ_EVCNT_DETACH(sc, mptc);
1599 	AQ_EVCNT_DETACH(sc, bptc);
1600 	AQ_EVCNT_DETACH(sc, erpr);
1601 	AQ_EVCNT_DETACH(sc, mbtc);
1602 	AQ_EVCNT_DETACH(sc, bbtc);
1603 	AQ_EVCNT_DETACH(sc, mbrc);
1604 	AQ_EVCNT_DETACH(sc, bbrc);
1605 	AQ_EVCNT_DETACH(sc, ubrc);
1606 	AQ_EVCNT_DETACH(sc, ubtc);
1607 	AQ_EVCNT_DETACH(sc, ptc);
1608 	AQ_EVCNT_DETACH(sc, prc);
1609 	AQ_EVCNT_DETACH(sc, dpc);
1610 	AQ_EVCNT_DETACH(sc, cprc);
1611 #endif
1612 
1613 	ifmedia_fini(&sc->sc_media);
1614 
1615 	mutex_destroy(&sc->sc_mpi_mutex);
1616 	mutex_destroy(&sc->sc_mutex);
1617 
1618 	return 0;
1619 }
1620 
1621 static int
1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1623     int (*func)(void *), void *arg, const char *xname)
1624 {
1625 	char intrbuf[PCI_INTRSTR_LEN];
1626 	pci_chipset_tag_t pc = sc->sc_pc;
1627 	void *vih;
1628 	const char *intrstr = NULL;
1629 
1630 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1631 	    sizeof(intrbuf));
1632 
1633 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1634 
1635 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1636 	    IPL_NET, func, arg, xname);
1637 	if (vih == NULL) {
1638 		aprint_error_dev(sc->sc_dev,
1639 		    "unable to establish MSI-X%s%s for %s\n",
1640 		    intrstr ? " at " : "",
1641 		    intrstr ? intrstr : "", xname);
1642 		return EIO;
1643 	}
1644 	sc->sc_ihs[intno] = vih;
1645 
1646 	if (affinity != NULL) {
1647 		/* Round-robin affinity */
1648 		kcpuset_zero(affinity);
1649 		kcpuset_set(affinity, intno % ncpu);
1650 		interrupt_distribute(vih, affinity, NULL);
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 static int
1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1658     bool linkintr)
1659 {
1660 	kcpuset_t *affinity;
1661 	int error, intno, i;
1662 	char intr_xname[INTRDEVNAMEBUF];
1663 
1664 	kcpuset_create(&affinity, false);
1665 
1666 	intno = 0;
1667 
1668 	if (txrx_independent) {
1669 		for (i = 0; i < sc->sc_nqueues; i++) {
1670 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1671 			    device_xname(sc->sc_dev), i);
1672 			sc->sc_rx_irq[i] = intno;
1673 			error = aq_establish_intr(sc, intno++, affinity,
1674 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1675 			if (error != 0)
1676 				goto fail;
1677 		}
1678 		for (i = 0; i < sc->sc_nqueues; i++) {
1679 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1680 			    device_xname(sc->sc_dev), i);
1681 			sc->sc_tx_irq[i] = intno;
1682 			error = aq_establish_intr(sc, intno++, affinity,
1683 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1684 			if (error != 0)
1685 				goto fail;
1686 		}
1687 	} else {
1688 		for (i = 0; i < sc->sc_nqueues; i++) {
1689 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1690 			    device_xname(sc->sc_dev), i);
1691 			sc->sc_rx_irq[i] = intno;
1692 			sc->sc_tx_irq[i] = intno;
1693 			error = aq_establish_intr(sc, intno++, affinity,
1694 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1695 			if (error != 0)
1696 				goto fail;
1697 		}
1698 	}
1699 
1700 	if (linkintr) {
1701 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1702 		    device_xname(sc->sc_dev));
1703 		sc->sc_linkstat_irq = intno;
1704 		error = aq_establish_intr(sc, intno++, affinity,
1705 		    aq_link_intr, sc, intr_xname);
1706 		if (error != 0)
1707 			goto fail;
1708 	}
1709 
1710 	kcpuset_destroy(affinity);
1711 	return 0;
1712 
1713  fail:
1714 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1715 		if (sc->sc_ihs[i] != NULL) {
1716 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1717 			sc->sc_ihs[i] = NULL;
1718 		}
1719 	}
1720 
1721 	kcpuset_destroy(affinity);
1722 	return ENOMEM;
1723 }
1724 
1725 static int
1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1727     bool txrx_independent, bool linkintr)
1728 {
1729 	int error, nintr;
1730 
1731 	if (txrx_independent)
1732 		nintr = nqueue * 2;
1733 	else
1734 		nintr = nqueue;
1735 
1736 	if (linkintr)
1737 		nintr++;
1738 
1739 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1740 	if (error != 0) {
1741 		aprint_error_dev(sc->sc_dev,
1742 		    "failed to allocate MSI-X interrupts\n");
1743 		goto fail;
1744 	}
1745 
1746 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1747 	if (error == 0) {
1748 		sc->sc_nintrs = nintr;
1749 	} else {
1750 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1751 		sc->sc_nintrs = 0;
1752 	}
1753  fail:
1754 	return error;
1755 
1756 }
1757 
1758 static int
1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1760     pci_intr_type_t inttype)
1761 {
1762 	int counts[PCI_INTR_TYPE_SIZE];
1763 	int error, nintr;
1764 
1765 	nintr = 1;
1766 
1767 	memset(counts, 0, sizeof(counts));
1768 	counts[inttype] = nintr;
1769 
1770 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1771 	if (error != 0) {
1772 		aprint_error_dev(sc->sc_dev,
1773 		    "failed to allocate%s interrupts\n",
1774 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1775 		return error;
1776 	}
1777 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1778 	    device_xname(sc->sc_dev));
1779 	if (error == 0) {
1780 		sc->sc_nintrs = nintr;
1781 	} else {
1782 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1783 		sc->sc_nintrs = 0;
1784 	}
1785 	return error;
1786 }
1787 
1788 static void
1789 global_software_reset(struct aq_softc *sc)
1790 {
1791 	uint32_t v;
1792 
1793 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1794 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1795 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1796 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1797 
1798 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1799 	v &= ~AQ_FW_SOFTRESET_DIS;
1800 	v |= AQ_FW_SOFTRESET_RESET;
1801 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1802 }
1803 
1804 static int
1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1806 {
1807 	int timo;
1808 
1809 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1810 
1811 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1812 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1813 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1814 
1815 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1816 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1817 
1818 	global_software_reset(sc);
1819 
1820 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1821 
1822 	/* Wait for RBL to finish boot process. */
1823 #define RBL_TIMEOUT_MS	10000
1824 	uint16_t rbl_status;
1825 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1826 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1827 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1828 			break;
1829 		msec_delay(1);
1830 	}
1831 	if (timo <= 0) {
1832 		aprint_error_dev(sc->sc_dev,
1833 		    "RBL> RBL restart failed: timeout\n");
1834 		return EBUSY;
1835 	}
1836 	switch (rbl_status) {
1837 	case RBL_STATUS_SUCCESS:
1838 		if (mode != NULL)
1839 			*mode = FW_BOOT_MODE_RBL_FLASH;
1840 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1841 		break;
1842 	case RBL_STATUS_HOST_BOOT:
1843 		if (mode != NULL)
1844 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1845 		aprint_debug_dev(sc->sc_dev,
1846 		    "RBL> reset complete! [Host Bootload]\n");
1847 		break;
1848 	case RBL_STATUS_FAILURE:
1849 	default:
1850 		aprint_error_dev(sc->sc_dev,
1851 		    "unknown RBL status 0x%x\n", rbl_status);
1852 		return EBUSY;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static int
1859 mac_soft_reset_flb(struct aq_softc *sc)
1860 {
1861 	uint32_t v;
1862 	int timo;
1863 
1864 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1865 	/*
1866 	 * Let Felicity hardware to complete SMBUS transaction before
1867 	 * Global software reset.
1868 	 */
1869 	msec_delay(50);
1870 
1871 	/*
1872 	 * If SPI burst transaction was interrupted(before running the script),
1873 	 * global software reset may not clear SPI interface.
1874 	 * Clean it up manually before global reset.
1875 	 */
1876 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1877 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1878 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1879 	msec_delay(50);
1880 
1881 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1882 	v &= ~AQ_FW_SOFTRESET_DIS;
1883 	v |= AQ_FW_SOFTRESET_RESET;
1884 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1885 
1886 	/* Kickstart. */
1887 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1888 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1889 	if (!sc->sc_fast_start_enabled)
1890 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1891 
1892 	/*
1893 	 * For the case SPI burst transaction was interrupted (by MCP reset
1894 	 * above), wait until it is completed by hardware.
1895 	 */
1896 	msec_delay(50);
1897 
1898 	/* MAC Kickstart */
1899 	if (!sc->sc_fast_start_enabled) {
1900 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1901 
1902 		uint32_t flb_status;
1903 		for (timo = 0; timo < 1000; timo++) {
1904 			flb_status = AQ_READ_REG(sc,
1905 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1906 			if (flb_status != 0)
1907 				break;
1908 			msec_delay(1);
1909 		}
1910 		if (flb_status == 0) {
1911 			aprint_error_dev(sc->sc_dev,
1912 			    "FLB> MAC kickstart failed: timed out\n");
1913 			return ETIMEDOUT;
1914 		}
1915 		aprint_debug_dev(sc->sc_dev,
1916 		    "FLB> MAC kickstart done, %d ms\n", timo);
1917 		/* FW reset */
1918 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1919 		/*
1920 		 * Let Felicity hardware complete SMBUS transaction before
1921 		 * Global software reset.
1922 		 */
1923 		msec_delay(50);
1924 		sc->sc_fast_start_enabled = true;
1925 	}
1926 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1927 
1928 	/* PHY Kickstart: #undone */
1929 	global_software_reset(sc);
1930 
1931 	for (timo = 0; timo < 1000; timo++) {
1932 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1933 			break;
1934 		msec_delay(10);
1935 	}
1936 	if (timo >= 1000) {
1937 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1938 		return ETIMEDOUT;
1939 	}
1940 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1941 	return 0;
1942 
1943 }
1944 
1945 static int
1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1947 {
1948 	if (sc->sc_rbl_enabled)
1949 		return mac_soft_reset_rbl(sc, mode);
1950 
1951 	if (mode != NULL)
1952 		*mode = FW_BOOT_MODE_FLB;
1953 	return mac_soft_reset_flb(sc);
1954 }
1955 
1956 static int
1957 aq_fw_read_version(struct aq_softc *sc)
1958 {
1959 	int i, error = EBUSY;
1960 #define MAC_FW_START_TIMEOUT_MS	10000
1961 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1962 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1963 		if (sc->sc_fw_version != 0) {
1964 			error = 0;
1965 			break;
1966 		}
1967 		delay(1000);
1968 	}
1969 	return error;
1970 }
1971 
1972 static int
1973 aq_fw_reset(struct aq_softc *sc)
1974 {
1975 	uint32_t ver, v, bootExitCode;
1976 	int i, error;
1977 
1978 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1979 
1980 	for (i = 1000; i > 0; i--) {
1981 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1982 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1983 		if (v != 0x06000000 || bootExitCode != 0)
1984 			break;
1985 	}
1986 	if (i <= 0) {
1987 		aprint_error_dev(sc->sc_dev,
1988 		    "F/W reset failed. Neither RBL nor FLB started\n");
1989 		return ETIMEDOUT;
1990 	}
1991 	sc->sc_rbl_enabled = (bootExitCode != 0);
1992 
1993 	/*
1994 	 * Having FW version 0 is an indicator that cold start
1995 	 * is in progress. This means two things:
1996 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1997 	 * 2) Driver may skip reset sequence and save time.
1998 	 */
1999 	if (sc->sc_fast_start_enabled && (ver != 0)) {
2000 		error = aq_fw_read_version(sc);
2001 		/* Skip reset as it just completed */
2002 		if (error == 0)
2003 			return 0;
2004 	}
2005 
2006 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2007 	error = mac_soft_reset(sc, &mode);
2008 	if (error != 0) {
2009 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2010 		return error;
2011 	}
2012 
2013 	switch (mode) {
2014 	case FW_BOOT_MODE_FLB:
2015 		aprint_debug_dev(sc->sc_dev,
2016 		    "FLB> F/W successfully loaded from flash.\n");
2017 		sc->sc_flash_present = true;
2018 		return aq_fw_read_version(sc);
2019 	case FW_BOOT_MODE_RBL_FLASH:
2020 		aprint_debug_dev(sc->sc_dev,
2021 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2022 		sc->sc_flash_present = true;
2023 		return aq_fw_read_version(sc);
2024 	case FW_BOOT_MODE_UNKNOWN:
2025 		aprint_error_dev(sc->sc_dev,
2026 		    "F/W bootload error: unknown bootloader type\n");
2027 		return ENOTSUP;
2028 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2029 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2030 		break;
2031 	}
2032 
2033 	/*
2034 	 * XXX: TODO: add support Host Boot
2035 	 */
2036 	aprint_error_dev(sc->sc_dev,
2037 	    "RBL> F/W Host Bootload not implemented\n");
2038 	return ENOTSUP;
2039 }
2040 
2041 static int
2042 aq_hw_reset(struct aq_softc *sc)
2043 {
2044 	int error;
2045 
2046 	/* disable irq */
2047 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2048 
2049 	/* apply */
2050 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2051 
2052 	/* wait ack 10 times by 1ms */
2053 	WAIT_FOR(
2054 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2055 	    1000, 10, &error);
2056 	if (error != 0) {
2057 		aprint_error_dev(sc->sc_dev,
2058 		    "atlantic: IRQ reset failed: %d\n", error);
2059 		return error;
2060 	}
2061 
2062 	return sc->sc_fw_ops->reset(sc);
2063 }
2064 
2065 static int
2066 aq_hw_init_ucp(struct aq_softc *sc)
2067 {
2068 	int timo;
2069 
2070 	if (FW_VERSION_MAJOR(sc) == 1) {
2071 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2072 			uint32_t data;
2073 			cprng_fast(&data, sizeof(data));
2074 			data &= 0xfefefefe;
2075 			data |= 0x02020202;
2076 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2077 		}
2078 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2079 	}
2080 
2081 	for (timo = 100; timo > 0; timo--) {
2082 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2083 		if (sc->sc_mbox_addr != 0)
2084 			break;
2085 		delay(1000);
2086 	}
2087 
2088 #define AQ_FW_MIN_VERSION	0x01050006
2089 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2090 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2091 		aprint_error_dev(sc->sc_dev,
2092 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2093 		    " or later required, this is %d.%d.%d\n",
2094 		    FW_VERSION_MAJOR(sc),
2095 		    FW_VERSION_MINOR(sc),
2096 		    FW_VERSION_BUILD(sc));
2097 		return ENOTSUP;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 static int
2104 aq_fw_version_init(struct aq_softc *sc)
2105 {
2106 	int error = 0;
2107 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2108 
2109 	if (FW_VERSION_MAJOR(sc) == 1) {
2110 		sc->sc_fw_ops = &aq_fw1x_ops;
2111 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2112 		sc->sc_fw_ops = &aq_fw2x_ops;
2113 	} else {
2114 		aprint_error_dev(sc->sc_dev,
2115 		    "Unsupported F/W version %d.%d.%d\n",
2116 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2117 		    FW_VERSION_BUILD(sc));
2118 		return ENOTSUP;
2119 	}
2120 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2121 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2122 
2123 	/* detect revision */
2124 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2125 	switch (hwrev & 0x0000000f) {
2126 	case 0x01:
2127 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2128 		    fw_vers);
2129 		sc->sc_features |= FEATURES_REV_A0 |
2130 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2131 		break;
2132 	case 0x02:
2133 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2134 		    fw_vers);
2135 		sc->sc_features |= FEATURES_REV_B0 |
2136 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2137 		    FEATURES_TPO2 | FEATURES_RPF2;
2138 		break;
2139 	case 0x0A:
2140 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2141 		    fw_vers);
2142 		sc->sc_features |= FEATURES_REV_B1 |
2143 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2144 		    FEATURES_TPO2 | FEATURES_RPF2;
2145 		break;
2146 	default:
2147 		aprint_error_dev(sc->sc_dev,
2148 		    "Unknown revision (0x%08x)\n", hwrev);
2149 		error = ENOTSUP;
2150 		break;
2151 	}
2152 	return error;
2153 }
2154 
2155 static int
2156 fw1x_reset(struct aq_softc *sc)
2157 {
2158 	struct aq_mailbox_header mbox;
2159 	const int retryCount = 1000;
2160 	uint32_t tid0;
2161 	int i;
2162 
2163 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2164 
2165 	for (i = 0; i < retryCount; ++i) {
2166 		/*
2167 		 * Read the beginning of Statistics structure to capture
2168 		 * the Transaction ID.
2169 		 */
2170 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2171 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2172 
2173 		/* Successfully read the stats. */
2174 		if (tid0 == ~0U) {
2175 			/* We have read the initial value. */
2176 			tid0 = mbox.transaction_id;
2177 			continue;
2178 		} else if (mbox.transaction_id != tid0) {
2179 			/*
2180 			 * Compare transaction ID to initial value.
2181 			 * If it's different means f/w is alive.
2182 			 * We're done.
2183 			 */
2184 			return 0;
2185 		}
2186 
2187 		/*
2188 		 * Transaction ID value haven't changed since last time.
2189 		 * Try reading the stats again.
2190 		 */
2191 		delay(10);
2192 	}
2193 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2194 	return EBUSY;
2195 }
2196 
2197 static int
2198 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2199     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2200 {
2201 	uint32_t mpictrl = 0;
2202 	uint32_t mpispeed = 0;
2203 
2204 	if (speed & AQ_LINK_10G)
2205 		mpispeed |= FW1X_CTRL_10G;
2206 	if (speed & AQ_LINK_5G)
2207 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2208 	if (speed & AQ_LINK_2G5)
2209 		mpispeed |= FW1X_CTRL_2G5;
2210 	if (speed & AQ_LINK_1G)
2211 		mpispeed |= FW1X_CTRL_1G;
2212 	if (speed & AQ_LINK_100M)
2213 		mpispeed |= FW1X_CTRL_100M;
2214 
2215 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2216 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2217 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2218 	return 0;
2219 }
2220 
2221 static int
2222 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2223     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2224 {
2225 	uint32_t mpistate, mpi_speed;
2226 	aq_link_speed_t speed = AQ_LINK_NONE;
2227 
2228 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2229 
2230 	if (modep != NULL)
2231 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2232 
2233 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2234 	if (mpi_speed & FW1X_CTRL_10G)
2235 		speed = AQ_LINK_10G;
2236 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2237 		speed = AQ_LINK_5G;
2238 	else if (mpi_speed & FW1X_CTRL_2G5)
2239 		speed = AQ_LINK_2G5;
2240 	else if (mpi_speed & FW1X_CTRL_1G)
2241 		speed = AQ_LINK_1G;
2242 	else if (mpi_speed & FW1X_CTRL_100M)
2243 		speed = AQ_LINK_100M;
2244 
2245 	if (speedp != NULL)
2246 		*speedp = speed;
2247 
2248 	if (fcp != NULL)
2249 		*fcp = AQ_FC_NONE;
2250 
2251 	if (eeep != NULL)
2252 		*eeep = AQ_EEE_DISABLE;
2253 
2254 	return 0;
2255 }
2256 
2257 static int
2258 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2259 {
2260 	int error;
2261 
2262 	error = aq_fw_downld_dwords(sc,
2263 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2264 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2265 	if (error < 0) {
2266 		device_printf(sc->sc_dev,
2267 		    "fw1x> download statistics data FAILED, error %d", error);
2268 		return error;
2269 	}
2270 
2271 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2272 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2273 	return 0;
2274 }
2275 
2276 static int
2277 fw2x_reset(struct aq_softc *sc)
2278 {
2279 	fw2x_capabilities_t caps = { 0 };
2280 	int error;
2281 
2282 	error = aq_fw_downld_dwords(sc,
2283 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2284 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2285 	if (error != 0) {
2286 		aprint_error_dev(sc->sc_dev,
2287 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2288 		    error);
2289 		return error;
2290 	}
2291 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2292 
2293 	char buf[256];
2294 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2295 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2296 
2297 	return 0;
2298 }
2299 
2300 static int
2301 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2302     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2303 {
2304 	uint64_t mpi_ctrl;
2305 	int error = 0;
2306 
2307 	AQ_MPI_LOCK(sc);
2308 
2309 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2310 
2311 	switch (mode) {
2312 	case MPI_INIT:
2313 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2314 		if (speed & AQ_LINK_10G)
2315 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2316 		if (speed & AQ_LINK_5G)
2317 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2318 		if (speed & AQ_LINK_2G5)
2319 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2320 		if (speed & AQ_LINK_1G)
2321 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2322 		if (speed & AQ_LINK_100M)
2323 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2324 
2325 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2326 
2327 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2328 		if (eee == AQ_EEE_ENABLE)
2329 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2330 
2331 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2332 		if (fc & AQ_FC_RX)
2333 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2334 		if (fc & AQ_FC_TX)
2335 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2336 		break;
2337 	case MPI_DEINIT:
2338 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2339 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2340 		break;
2341 	default:
2342 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2343 		error =  EINVAL;
2344 		goto failure;
2345 	}
2346 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2347 
2348  failure:
2349 	AQ_MPI_UNLOCK(sc);
2350 	return error;
2351 }
2352 
2353 static int
2354 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2355     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2356 {
2357 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2358 
2359 	if (modep != NULL) {
2360 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2361 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2362 			*modep = MPI_INIT;
2363 		else
2364 			*modep = MPI_DEINIT;
2365 	}
2366 
2367 	aq_link_speed_t speed = AQ_LINK_NONE;
2368 	if (mpi_state & FW2X_CTRL_RATE_10G)
2369 		speed = AQ_LINK_10G;
2370 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2371 		speed = AQ_LINK_5G;
2372 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2373 		speed = AQ_LINK_2G5;
2374 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2375 		speed = AQ_LINK_1G;
2376 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2377 		speed = AQ_LINK_100M;
2378 
2379 	if (speedp != NULL)
2380 		*speedp = speed;
2381 
2382 	aq_link_fc_t fc = AQ_FC_NONE;
2383 	if (mpi_state & FW2X_CTRL_PAUSE)
2384 		fc |= AQ_FC_RX;
2385 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2386 		fc |= AQ_FC_TX;
2387 	if (fcp != NULL)
2388 		*fcp = fc;
2389 
2390 	/* XXX: TODO: EEE */
2391 	if (eeep != NULL)
2392 		*eeep = AQ_EEE_DISABLE;
2393 
2394 	return 0;
2395 }
2396 
2397 static int
2398 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2399     uint32_t timeout_ms, uint32_t try_count)
2400 {
2401 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2402 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2403 	int error;
2404 
2405 	/* First, check that control and state values are consistent */
2406 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2407 		device_printf(sc->sc_dev,
2408 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2409 		    " are not consistent for mask %#llx!\n",
2410 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2411 		    (unsigned long long)mask);
2412 		return EINVAL;
2413 	}
2414 
2415 	/* Invert bits (toggle) in control register */
2416 	mpi_ctrl ^= mask;
2417 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2418 
2419 	/* Clear all bits except masked */
2420 	mpi_ctrl &= mask;
2421 
2422 	/* Wait for FW reflecting change in state register */
2423 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2424 	    1000 * timeout_ms, try_count, &error);
2425 	if (error != 0) {
2426 		device_printf(sc->sc_dev,
2427 		    "f/w2x> timeout while waiting for response"
2428 		    " in state register for bit %#llx!",
2429 		    (unsigned long long)mask);
2430 		return error;
2431 	}
2432 	return 0;
2433 }
2434 
2435 static int
2436 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2437 {
2438 	int error;
2439 
2440 	AQ_MPI_LOCK(sc);
2441 	/* Say to F/W to update the statistics */
2442 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2443 	if (error != 0) {
2444 		device_printf(sc->sc_dev,
2445 		    "fw2x> statistics update error %d\n", error);
2446 		goto failure;
2447 	}
2448 
2449 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2450 	error = aq_fw_downld_dwords(sc,
2451 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2452 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2453 	if (error != 0) {
2454 		device_printf(sc->sc_dev,
2455 		    "fw2x> download statistics data FAILED, error %d", error);
2456 		goto failure;
2457 	}
2458 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2459 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2460 
2461  failure:
2462 	AQ_MPI_UNLOCK(sc);
2463 	return error;
2464 }
2465 
2466 #if NSYSMON_ENVSYS > 0
2467 static int
2468 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2469 {
2470 	int error;
2471 	uint32_t value, celsius;
2472 
2473 	AQ_MPI_LOCK(sc);
2474 
2475 	/* Say to F/W to update the temperature */
2476 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2477 	if (error != 0)
2478 		goto failure;
2479 
2480 	error = aq_fw_downld_dwords(sc,
2481 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2482 	    &value, sizeof(value) / sizeof(uint32_t));
2483 	if (error != 0)
2484 		goto failure;
2485 
2486 	/* 1/256 decrees C to microkelvin */
2487 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2488 	if (celsius == 0) {
2489 		error = EIO;
2490 		goto failure;
2491 	}
2492 	*temp = celsius * (1000000 / 256) + 273150000;
2493 
2494  failure:
2495 	AQ_MPI_UNLOCK(sc);
2496 	return 0;
2497 }
2498 #endif
2499 
2500 static int
2501 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2502     uint32_t cnt)
2503 {
2504 	uint32_t v;
2505 	int error = 0;
2506 
2507 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2508 	if (error != 0) {
2509 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2510 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2511 		if (v == 0) {
2512 			device_printf(sc->sc_dev,
2513 			    "%s:%d: timeout\n", __func__, __LINE__);
2514 			return ETIMEDOUT;
2515 		}
2516 	}
2517 
2518 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2519 
2520 	error = 0;
2521 	for (; cnt > 0 && error == 0; cnt--) {
2522 		/* execute mailbox interface */
2523 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2524 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2525 		if (sc->sc_features & FEATURES_REV_B1) {
2526 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2527 			    1, 1000, &error);
2528 		} else {
2529 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2530 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2531 			    1, 1000, &error);
2532 		}
2533 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2534 		addr += sizeof(uint32_t);
2535 	}
2536 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2537 
2538 	if (error != 0)
2539 		device_printf(sc->sc_dev,
2540 		    "%s:%d: timeout\n", __func__, __LINE__);
2541 
2542 	return error;
2543 }
2544 
2545 /* read my mac address */
2546 static int
2547 aq_get_mac_addr(struct aq_softc *sc)
2548 {
2549 	uint32_t mac_addr[2];
2550 	uint32_t efuse_shadow_addr;
2551 	int err;
2552 
2553 	efuse_shadow_addr = 0;
2554 	if (FW_VERSION_MAJOR(sc) >= 2)
2555 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2556 	else
2557 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2558 
2559 	if (efuse_shadow_addr == 0) {
2560 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2561 		return ENXIO;
2562 	}
2563 
2564 	memset(mac_addr, 0, sizeof(mac_addr));
2565 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2566 	    mac_addr, __arraycount(mac_addr));
2567 	if (err < 0)
2568 		return err;
2569 
2570 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2571 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2572 		return ENXIO;
2573 	}
2574 
2575 	mac_addr[0] = htobe32(mac_addr[0]);
2576 	mac_addr[1] = htobe32(mac_addr[1]);
2577 
2578 	memcpy(sc->sc_enaddr.ether_addr_octet,
2579 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2580 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2581 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2582 
2583 	return 0;
2584 }
2585 
2586 /* set multicast filter. index 0 for own address */
2587 static int
2588 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2589 {
2590 	uint32_t h, l;
2591 
2592 	if (index >= AQ_HW_MAC_NUM)
2593 		return EINVAL;
2594 
2595 	if (enaddr == NULL) {
2596 		/* disable */
2597 		AQ_WRITE_REG_BIT(sc,
2598 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2599 		return 0;
2600 	}
2601 
2602 	h = (enaddr[0] <<  8) | (enaddr[1]);
2603 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2604 	    (enaddr[4] <<  8) | (enaddr[5]);
2605 
2606 	/* disable, set, and enable */
2607 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2608 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2609 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2610 	    RPF_L2UC_MSW_MACADDR_HI, h);
2611 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2612 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2613 
2614 	return 0;
2615 }
2616 
2617 static int
2618 aq_set_capability(struct aq_softc *sc)
2619 {
2620 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2621 	int ip4csum_tx =
2622 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2623 	int ip4csum_rx =
2624 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2625 	int l4csum_tx = ((ifp->if_capenable &
2626 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2627 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2628 	int l4csum_rx =
2629 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2630 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2631 	uint32_t lso =
2632 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2633 	   0 : 0xffffffff;
2634 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2635 	    0 : 0xffffffff;
2636 	uint32_t i, v;
2637 
2638 	/* TX checksums offloads*/
2639 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2640 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2641 
2642 	/* RX checksums offloads*/
2643 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2644 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2645 
2646 	/* LSO offloads*/
2647 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2648 
2649 #define AQ_B0_LRO_RXD_MAX	16
2650 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2651 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2652 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2653 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2654 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2655 		    RPO_LRO_LDES_MAX_MASK(i), v);
2656 	}
2657 
2658 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2659 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2660 	    RPO_LRO_INACTIVE_IVAL, 0);
2661 	/*
2662 	 * the LRO timebase divider is 5 uS (0x61a),
2663 	 * to get a maximum coalescing interval of 250 uS,
2664 	 * we need to multiply by 50(0x32) to get
2665 	 * the default value 250 uS
2666 	 */
2667 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2668 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2669 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2670 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2671 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2672 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2673 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2674 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2675 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2676 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2677 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2678 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2679 
2680 	return 0;
2681 }
2682 
2683 static int
2684 aq_set_filter(struct aq_softc *sc)
2685 {
2686 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2687 	struct ethercom *ec = &sc->sc_ethercom;
2688 	struct ether_multi *enm;
2689 	struct ether_multistep step;
2690 	int idx, error = 0;
2691 
2692 	if (ifp->if_flags & IFF_PROMISC) {
2693 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2694 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2695 		ec->ec_flags |= ETHER_F_ALLMULTI;
2696 		goto done;
2697 	}
2698 
2699 	/* clear all table */
2700 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2701 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2702 			continue;
2703 		aq_set_mac_addr(sc, idx, NULL);
2704 	}
2705 
2706 	/* don't accept all multicast */
2707 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2708 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2709 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2710 	    RPF_MCAST_FILTER_EN, 0);
2711 
2712 	idx = 0;
2713 	ETHER_LOCK(ec);
2714 	ETHER_FIRST_MULTI(step, ec, enm);
2715 	while (enm != NULL) {
2716 		if (idx == AQ_HW_MAC_OWN)
2717 			idx++;
2718 
2719 		if ((idx >= AQ_HW_MAC_NUM) ||
2720 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2721 			/*
2722 			 * too many filters.
2723 			 * fallback to accept all multicast addresses.
2724 			 */
2725 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2726 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2727 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2728 			    RPF_MCAST_FILTER_EN, 1);
2729 			ec->ec_flags |= ETHER_F_ALLMULTI;
2730 			ETHER_UNLOCK(ec);
2731 			goto done;
2732 		}
2733 
2734 		/* add a filter */
2735 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2736 
2737 		ETHER_NEXT_MULTI(step, enm);
2738 	}
2739 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2740 	ETHER_UNLOCK(ec);
2741 
2742  done:
2743 	return error;
2744 }
2745 
2746 static int
2747 aq_ifmedia_change(struct ifnet * const ifp)
2748 {
2749 	struct aq_softc *sc = ifp->if_softc;
2750 	aq_link_speed_t rate = AQ_LINK_NONE;
2751 	aq_link_fc_t fc = AQ_FC_NONE;
2752 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2753 
2754 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2755 		return EINVAL;
2756 
2757 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2758 	case IFM_AUTO:
2759 		rate = AQ_LINK_AUTO;
2760 		break;
2761 	case IFM_NONE:
2762 		rate = AQ_LINK_NONE;
2763 		break;
2764 	case IFM_100_TX:
2765 		rate = AQ_LINK_100M;
2766 		break;
2767 	case IFM_1000_T:
2768 		rate = AQ_LINK_1G;
2769 		break;
2770 	case IFM_2500_T:
2771 		rate = AQ_LINK_2G5;
2772 		break;
2773 	case IFM_5000_T:
2774 		rate = AQ_LINK_5G;
2775 		break;
2776 	case IFM_10G_T:
2777 		rate = AQ_LINK_10G;
2778 		break;
2779 	default:
2780 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2781 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2782 		return ENODEV;
2783 	}
2784 
2785 	if (sc->sc_media.ifm_media & IFM_FLOW)
2786 		fc = AQ_FC_ALL;
2787 
2788 	/* XXX: todo EEE */
2789 
2790 	/* re-initialize hardware with new parameters */
2791 	aq_set_linkmode(sc, rate, fc, eee);
2792 
2793 	return 0;
2794 }
2795 
2796 static void
2797 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2798 {
2799 	struct aq_softc *sc = ifp->if_softc;
2800 
2801 	/* update ifm_active */
2802 	ifmr->ifm_active = IFM_ETHER;
2803 	if (sc->sc_link_fc & AQ_FC_RX)
2804 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2805 	if (sc->sc_link_fc & AQ_FC_TX)
2806 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2807 
2808 	switch (sc->sc_link_rate) {
2809 	case AQ_LINK_100M:
2810 		/* XXX: need to detect fulldup or halfdup */
2811 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2812 		break;
2813 	case AQ_LINK_1G:
2814 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2815 		break;
2816 	case AQ_LINK_2G5:
2817 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2818 		break;
2819 	case AQ_LINK_5G:
2820 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2821 		break;
2822 	case AQ_LINK_10G:
2823 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2824 		break;
2825 	default:
2826 		ifmr->ifm_active |= IFM_NONE;
2827 		break;
2828 	}
2829 
2830 	/* update ifm_status */
2831 	ifmr->ifm_status = IFM_AVALID;
2832 	if (sc->sc_link_rate != AQ_LINK_NONE)
2833 		ifmr->ifm_status |= IFM_ACTIVE;
2834 }
2835 
2836 static void
2837 aq_initmedia(struct aq_softc *sc)
2838 {
2839 #define IFMEDIA_ETHER_ADD(sc, media)	\
2840 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2841 
2842 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2843 	if (sc->sc_available_rates & AQ_LINK_100M) {
2844 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2845 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2846 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2847 	}
2848 	if (sc->sc_available_rates & AQ_LINK_1G) {
2849 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2850 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2851 	}
2852 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2853 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2854 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2855 	}
2856 	if (sc->sc_available_rates & AQ_LINK_5G) {
2857 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2858 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2859 	}
2860 	if (sc->sc_available_rates & AQ_LINK_10G) {
2861 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2862 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2863 	}
2864 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2865 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2866 
2867 	/* default: auto without flowcontrol */
2868 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2869 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2870 }
2871 
2872 static int
2873 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2874     aq_link_eee_t eee)
2875 {
2876 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2877 }
2878 
2879 static int
2880 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2881    aq_link_eee_t *eee)
2882 {
2883 	aq_hw_fw_mpi_state_t mode;
2884 	int error;
2885 
2886 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2887 	if (error != 0)
2888 		return error;
2889 	if (mode != MPI_INIT)
2890 		return ENXIO;
2891 
2892 	return 0;
2893 }
2894 
2895 static void
2896 aq_hw_init_tx_path(struct aq_softc *sc)
2897 {
2898 	/* Tx TC/RSS number config */
2899 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2900 
2901 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2902 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2903 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2904 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2905 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2906 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2907 
2908 	/* misc */
2909 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2910 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2911 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2912 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2913 
2914 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2915 }
2916 
2917 static void
2918 aq_hw_init_rx_path(struct aq_softc *sc)
2919 {
2920 	int i;
2921 
2922 	/* clear setting */
2923 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2924 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2925 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2926 	for (i = 0; i < 32; i++) {
2927 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2928 		   RPF_ETHERTYPE_FILTER_EN, 0);
2929 	}
2930 
2931 	if (sc->sc_rss_enable) {
2932 		/* Rx TC/RSS number config */
2933 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2934 
2935 		/* Rx flow control */
2936 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2937 
2938 		/* RSS Ring selection */
2939 		switch (sc->sc_nqueues) {
2940 		case 2:
2941 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2942 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2943 			break;
2944 		case 4:
2945 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2946 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2947 			break;
2948 		case 8:
2949 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2950 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2951 			break;
2952 		}
2953 	}
2954 
2955 	/* L2 and Multicast filters */
2956 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2957 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2958 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2959 		    RPF_ACTION_HOST);
2960 	}
2961 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2962 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2963 
2964 	/* Vlan filters */
2965 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2966 	    ETHERTYPE_QINQ);
2967 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2968 	    ETHERTYPE_VLAN);
2969 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2970 
2971 	if (sc->sc_features & FEATURES_REV_B) {
2972 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2973 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2974 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2975 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2976 	}
2977 
2978 	/* misc */
2979 	if (sc->sc_features & FEATURES_RPF2)
2980 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2981 	else
2982 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2983 
2984 	/*
2985 	 * XXX: RX_TCP_RSS_HASH_REG:
2986 	 *  linux   set 0x000f0000
2987 	 *  freebsd set 0x000f001e
2988 	 */
2989 	/* RSS hash type set for IP/TCP */
2990 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2991 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2992 
2993 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2994 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2995 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2996 
2997 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2998 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2999 }
3000 
3001 static void
3002 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3003 {
3004 	int i;
3005 
3006 	if (sc->sc_intr_moderation_enable) {
3007 		unsigned int tx_min, rx_min;	/* 0-255 */
3008 		unsigned int tx_max, rx_max;	/* 0-511? */
3009 
3010 		switch (sc->sc_link_rate) {
3011 		case AQ_LINK_100M:
3012 			tx_min = 0x4f;
3013 			tx_max = 0xff;
3014 			rx_min = 0x04;
3015 			rx_max = 0x50;
3016 			break;
3017 		case AQ_LINK_1G:
3018 		default:
3019 			tx_min = 0x4f;
3020 			tx_max = 0xff;
3021 			rx_min = 0x30;
3022 			rx_max = 0x80;
3023 			break;
3024 		case AQ_LINK_2G5:
3025 			tx_min = 0x4f;
3026 			tx_max = 0xff;
3027 			rx_min = 0x18;
3028 			rx_max = 0xe0;
3029 			break;
3030 		case AQ_LINK_5G:
3031 			tx_min = 0x4f;
3032 			tx_max = 0xff;
3033 			rx_min = 0x0c;
3034 			rx_max = 0x70;
3035 			break;
3036 		case AQ_LINK_10G:
3037 			tx_min = 0x4f;
3038 			tx_max = 0x1ff;
3039 			rx_min = 0x06;	/* freebsd use 80 */
3040 			rx_max = 0x38;	/* freebsd use 120 */
3041 			break;
3042 		}
3043 
3044 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3045 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3046 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3047 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3048 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3049 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3050 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3051 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3052 
3053 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3054 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3055 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3056 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3057 			    TX_INTR_MODERATION_CTL_EN);
3058 		}
3059 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3060 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3061 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3062 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3063 			    RX_INTR_MODERATION_CTL_EN);
3064 		}
3065 
3066 	} else {
3067 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3068 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3069 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3070 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3071 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3072 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3073 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3074 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3075 
3076 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3077 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3078 		}
3079 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3080 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3081 		}
3082 	}
3083 }
3084 
3085 static void
3086 aq_hw_qos_set(struct aq_softc *sc)
3087 {
3088 	uint32_t tc = 0;
3089 	uint32_t buff_size;
3090 
3091 	/* TPS Descriptor rate init */
3092 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3093 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3094 
3095 	/* TPS VM init */
3096 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3097 
3098 	/* TPS TC credits init */
3099 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3100 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3101 
3102 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3103 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3104 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3105 	    TPS_DATA_TCT_WEIGHT, 0x64);
3106 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3107 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3108 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3109 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3110 
3111 	/* Tx buf size */
3112 	tc = 0;
3113 	buff_size = AQ_HW_TXBUF_MAX;
3114 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3115 	    buff_size);
3116 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3117 	    (buff_size * (1024 / 32) * 66) / 100);
3118 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3119 	    (buff_size * (1024 / 32) * 50) / 100);
3120 
3121 	/* QoS Rx buf size per TC */
3122 	tc = 0;
3123 	buff_size = AQ_HW_RXBUF_MAX;
3124 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3125 	    buff_size);
3126 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3127 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3128 	    (buff_size * (1024 / 32) * 66) / 100);
3129 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3130 	    (buff_size * (1024 / 32) * 50) / 100);
3131 
3132 	/* QoS 802.1p priority -> TC mapping */
3133 	int i_priority;
3134 	for (i_priority = 0; i_priority < 8; i_priority++) {
3135 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3136 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3137 	}
3138 }
3139 
3140 /* called once from aq_attach */
3141 static int
3142 aq_init_rss(struct aq_softc *sc)
3143 {
3144 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3145 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3146 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3147 	unsigned int i;
3148 	int error;
3149 
3150 	/* initialize rss key */
3151 	rss_getkey((uint8_t *)rss_key);
3152 
3153 	/* hash to ring table */
3154 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3155 		rss_table[i] = i % sc->sc_nqueues;
3156 	}
3157 
3158 	/*
3159 	 * set rss key
3160 	 */
3161 	for (i = 0; i < __arraycount(rss_key); i++) {
3162 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3163 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3164 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3165 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3166 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3167 		    RPF_RSS_KEY_WR_EN, 1);
3168 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3169 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3170 		if (error != 0) {
3171 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3172 			    __func__);
3173 			goto rss_set_timeout;
3174 		}
3175 	}
3176 
3177 	/*
3178 	 * set rss indirection table
3179 	 *
3180 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3181 	 * we'll make it by __BITMAP(3) macros.
3182 	 */
3183 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3184 	__BITMAP_ZERO(&bit3x64);
3185 
3186 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3187 	do {							\
3188 		if (val & 1) {					\
3189 			__BITMAP_SET((idx) * 3, (bitmap));	\
3190 		} else {					\
3191 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3192 		}						\
3193 		if (val & 2) {					\
3194 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3195 		} else {					\
3196 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3197 		}						\
3198 		if (val & 4) {					\
3199 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3200 		} else {					\
3201 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3202 		}						\
3203 	} while (0 /* CONSTCOND */)
3204 
3205 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3206 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3207 	}
3208 
3209 	/* write 192bit data in steps of 16bit */
3210 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3211 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3212 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3213 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3214 		    RPF_RSS_REDIR_ADDR, i);
3215 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3216 		    RPF_RSS_REDIR_WR_EN, 1);
3217 
3218 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3219 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3220 		if (error != 0)
3221 			break;
3222 	}
3223 
3224  rss_set_timeout:
3225 	return error;
3226 }
3227 
3228 static void
3229 aq_hw_l3_filter_set(struct aq_softc *sc)
3230 {
3231 	int i;
3232 
3233 	/* clear all filter */
3234 	for (i = 0; i < 8; i++) {
3235 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3236 		    RPF_L3_FILTER_L4_EN, 0);
3237 	}
3238 }
3239 
3240 static void
3241 aq_set_vlan_filters(struct aq_softc *sc)
3242 {
3243 	struct ethercom *ec = &sc->sc_ethercom;
3244 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3245 	struct vlanid_list *vlanidp;
3246 	int i;
3247 
3248 	ETHER_LOCK(ec);
3249 
3250 	/* disable all vlan filters */
3251 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3252 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3253 
3254 	/* count VID */
3255 	i = 0;
3256 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3257 		i++;
3258 
3259 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3260 	    (ifp->if_flags & IFF_PROMISC) ||
3261 	    (i > RPF_VLAN_MAX_FILTERS)) {
3262 		/*
3263 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3264 		 * must receive all VID
3265 		 */
3266 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3267 		    RPF_VLAN_MODE_PROMISC, 1);
3268 		goto done;
3269 	}
3270 
3271 	/* receive only selected VID */
3272 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3273 	i = 0;
3274 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3275 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3276 		    RPF_VLAN_FILTER_EN, 1);
3277 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3278 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3279 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3280 		    RPF_VLAN_FILTER_RXQ, 0);
3281 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3282 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3283 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3284 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3285 		i++;
3286 	}
3287 
3288  done:
3289 	ETHER_UNLOCK(ec);
3290 }
3291 
3292 static int
3293 aq_hw_init(struct aq_softc *sc)
3294 {
3295 	uint32_t v;
3296 
3297 	/* Force limit MRRS on RDM/TDM to 2K */
3298 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3299 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3300 
3301 	/*
3302 	 * TX DMA total request limit. B0 hardware is not capable to
3303 	 * handle more than (8K-MRRS) incoming DMA data.
3304 	 * Value 24 in 256byte units
3305 	 */
3306 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3307 
3308 	aq_hw_init_tx_path(sc);
3309 	aq_hw_init_rx_path(sc);
3310 
3311 	aq_hw_interrupt_moderation_set(sc);
3312 
3313 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3314 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3315 
3316 	aq_hw_qos_set(sc);
3317 
3318 	/* Enable interrupt */
3319 	int irqmode;
3320 	if (sc->sc_msix)
3321 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3322 	else
3323 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3324 
3325 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3326 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3327 	    sc->sc_msix ? 1 : 0);
3328 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3329 
3330 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3331 
3332 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3333 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3334 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3335 	);
3336 
3337 	/* link interrupt */
3338 	if (!sc->sc_msix)
3339 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3340 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3341 	    __BIT(7) | sc->sc_linkstat_irq);
3342 
3343 	return 0;
3344 }
3345 
3346 static int
3347 aq_update_link_status(struct aq_softc *sc)
3348 {
3349 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3350 	aq_link_speed_t rate = AQ_LINK_NONE;
3351 	aq_link_fc_t fc = AQ_FC_NONE;
3352 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3353 	unsigned int speed;
3354 	int changed = 0;
3355 
3356 	aq_get_linkmode(sc, &rate, &fc, &eee);
3357 
3358 	if (sc->sc_link_rate != rate)
3359 		changed = 1;
3360 	if (sc->sc_link_fc != fc)
3361 		changed = 1;
3362 	if (sc->sc_link_eee != eee)
3363 		changed = 1;
3364 
3365 	if (changed) {
3366 		switch (rate) {
3367 		case AQ_LINK_100M:
3368 			speed = 100;
3369 			break;
3370 		case AQ_LINK_1G:
3371 			speed = 1000;
3372 			break;
3373 		case AQ_LINK_2G5:
3374 			speed = 2500;
3375 			break;
3376 		case AQ_LINK_5G:
3377 			speed = 5000;
3378 			break;
3379 		case AQ_LINK_10G:
3380 			speed = 10000;
3381 			break;
3382 		case AQ_LINK_NONE:
3383 		default:
3384 			speed = 0;
3385 			break;
3386 		}
3387 
3388 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3389 			/* link DOWN -> UP */
3390 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3391 			    speed);
3392 			if_link_state_change(ifp, LINK_STATE_UP);
3393 		} else if (rate == AQ_LINK_NONE) {
3394 			/* link UP -> DOWN */
3395 			device_printf(sc->sc_dev, "link is DOWN\n");
3396 			if_link_state_change(ifp, LINK_STATE_DOWN);
3397 		} else {
3398 			device_printf(sc->sc_dev,
3399 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3400 			    speed, fc, eee);
3401 		}
3402 
3403 		sc->sc_link_rate = rate;
3404 		sc->sc_link_fc = fc;
3405 		sc->sc_link_eee = eee;
3406 
3407 		/* update interrupt timing according to new link speed */
3408 		aq_hw_interrupt_moderation_set(sc);
3409 	}
3410 
3411 	return changed;
3412 }
3413 
3414 #ifdef AQ_EVENT_COUNTERS
3415 static void
3416 aq_update_statistics(struct aq_softc *sc)
3417 {
3418 	int prev = sc->sc_statistics_idx;
3419 	int cur = prev ^ 1;
3420 
3421 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3422 
3423 	/*
3424 	 * aq's internal statistics counter is 32bit.
3425 	 * cauculate delta, and add to evcount
3426 	 */
3427 #define ADD_DELTA(cur, prev, name)				\
3428 	do {							\
3429 		uint32_t n;					\
3430 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3431 		    sc->sc_statistics[prev].name);		\
3432 		if (n != 0) {					\
3433 			AQ_EVCNT_ADD(sc, name, n);		\
3434 		}						\
3435 	} while (/*CONSTCOND*/0);
3436 
3437 	ADD_DELTA(cur, prev, uprc);
3438 	ADD_DELTA(cur, prev, mprc);
3439 	ADD_DELTA(cur, prev, bprc);
3440 	ADD_DELTA(cur, prev, prc);
3441 	ADD_DELTA(cur, prev, erpr);
3442 	ADD_DELTA(cur, prev, uptc);
3443 	ADD_DELTA(cur, prev, mptc);
3444 	ADD_DELTA(cur, prev, bptc);
3445 	ADD_DELTA(cur, prev, ptc);
3446 	ADD_DELTA(cur, prev, erpt);
3447 	ADD_DELTA(cur, prev, mbtc);
3448 	ADD_DELTA(cur, prev, bbtc);
3449 	ADD_DELTA(cur, prev, mbrc);
3450 	ADD_DELTA(cur, prev, bbrc);
3451 	ADD_DELTA(cur, prev, ubrc);
3452 	ADD_DELTA(cur, prev, ubtc);
3453 	ADD_DELTA(cur, prev, dpc);
3454 	ADD_DELTA(cur, prev, cprc);
3455 
3456 	sc->sc_statistics_idx = cur;
3457 }
3458 #endif /* AQ_EVENT_COUNTERS */
3459 
3460 /* allocate and map one DMA block */
3461 static int
3462 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3463     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3464 {
3465 	int nsegs, error;
3466 
3467 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3468 	    1, &nsegs, 0)) != 0) {
3469 		aprint_error_dev(sc->sc_dev,
3470 		    "unable to allocate DMA buffer, error=%d\n", error);
3471 		goto fail_alloc;
3472 	}
3473 
3474 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3475 	    BUS_DMA_COHERENT)) != 0) {
3476 		aprint_error_dev(sc->sc_dev,
3477 		    "unable to map DMA buffer, error=%d\n", error);
3478 		goto fail_map;
3479 	}
3480 
3481 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3482 	    0, mapp)) != 0) {
3483 		aprint_error_dev(sc->sc_dev,
3484 		    "unable to create DMA map, error=%d\n", error);
3485 		goto fail_create;
3486 	}
3487 
3488 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3489 	    0)) != 0) {
3490 		aprint_error_dev(sc->sc_dev,
3491 		    "unable to load DMA map, error=%d\n", error);
3492 		goto fail_load;
3493 	}
3494 
3495 	*sizep = size;
3496 	return 0;
3497 
3498  fail_load:
3499 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3500 	*mapp = NULL;
3501  fail_create:
3502 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3503 	*addrp = NULL;
3504  fail_map:
3505 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3506 	memset(seg, 0, sizeof(*seg));
3507  fail_alloc:
3508 	*sizep = 0;
3509 	return error;
3510 }
3511 
3512 static void
3513 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3514     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3515 {
3516 	if (*mapp != NULL) {
3517 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3518 		*mapp = NULL;
3519 	}
3520 	if (*addrp != NULL) {
3521 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3522 		*addrp = NULL;
3523 	}
3524 	if (*sizep != 0) {
3525 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3526 		memset(seg, 0, sizeof(*seg));
3527 		*sizep = 0;
3528 	}
3529 }
3530 
3531 static int
3532 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3533 {
3534 	int i, error;
3535 
3536 	/* allocate tx descriptors */
3537 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3538 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3539 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3540 	if (error != 0)
3541 		return error;
3542 
3543 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3544 
3545 	/* fill tx ring with dmamap */
3546 	for (i = 0; i < AQ_TXD_NUM; i++) {
3547 #define AQ_MAXDMASIZE	(16 * 1024)
3548 #define AQ_NTXSEGS	32
3549 		/* XXX: TODO: error check */
3550 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3551 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3552 	}
3553 	return 0;
3554 }
3555 
3556 static void
3557 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3558 {
3559 	int i;
3560 
3561 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3562 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3563 
3564 	for (i = 0; i < AQ_TXD_NUM; i++) {
3565 		if (txring->txr_mbufs[i].dmamap != NULL) {
3566 			if (txring->txr_mbufs[i].m != NULL) {
3567 				bus_dmamap_unload(sc->sc_dmat,
3568 				    txring->txr_mbufs[i].dmamap);
3569 				m_freem(txring->txr_mbufs[i].m);
3570 				txring->txr_mbufs[i].m = NULL;
3571 			}
3572 			bus_dmamap_destroy(sc->sc_dmat,
3573 			    txring->txr_mbufs[i].dmamap);
3574 			txring->txr_mbufs[i].dmamap = NULL;
3575 		}
3576 	}
3577 }
3578 
3579 static int
3580 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3581 {
3582 	int i, error;
3583 
3584 	/* allocate rx descriptors */
3585 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3586 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3587 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3588 	if (error != 0)
3589 		return error;
3590 
3591 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3592 
3593 	/* fill rxring with dmamaps */
3594 	for (i = 0; i < AQ_RXD_NUM; i++) {
3595 		rxring->rxr_mbufs[i].m = NULL;
3596 		/* XXX: TODO: error check */
3597 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3598 		    &rxring->rxr_mbufs[i].dmamap);
3599 	}
3600 	return 0;
3601 }
3602 
3603 static void
3604 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3605 {
3606 	int i;
3607 
3608 	/* free all mbufs allocated for RX */
3609 	for (i = 0; i < AQ_RXD_NUM; i++) {
3610 		if (rxring->rxr_mbufs[i].m != NULL) {
3611 			bus_dmamap_unload(sc->sc_dmat,
3612 			    rxring->rxr_mbufs[i].dmamap);
3613 			m_freem(rxring->rxr_mbufs[i].m);
3614 			rxring->rxr_mbufs[i].m = NULL;
3615 		}
3616 	}
3617 }
3618 
3619 static void
3620 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3621 {
3622 	int i;
3623 
3624 	/* free all mbufs and dmamaps */
3625 	aq_rxdrain(sc, rxring);
3626 	for (i = 0; i < AQ_RXD_NUM; i++) {
3627 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3628 			bus_dmamap_destroy(sc->sc_dmat,
3629 			    rxring->rxr_mbufs[i].dmamap);
3630 			rxring->rxr_mbufs[i].dmamap = NULL;
3631 		}
3632 	}
3633 
3634 	/* free RX descriptor */
3635 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3636 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3637 }
3638 
3639 static void
3640 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3641     struct mbuf *m)
3642 {
3643 	int error;
3644 
3645 	/* if mbuf already exists, unload and free */
3646 	if (rxring->rxr_mbufs[idx].m != NULL) {
3647 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3648 		m_freem(rxring->rxr_mbufs[idx].m);
3649 		rxring->rxr_mbufs[idx].m = NULL;
3650 	}
3651 
3652 	rxring->rxr_mbufs[idx].m = m;
3653 
3654 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3655 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3656 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3657 	if (error) {
3658 		device_printf(sc->sc_dev,
3659 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3660 		panic("%s: unable to load rx DMA map. error=%d",
3661 		    __func__, error);
3662 	}
3663 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3664 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3665 }
3666 
3667 static inline void
3668 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3669 {
3670 	/* refill rxdesc, and sync */
3671 	rxring->rxr_rxdesc[idx].read.buf_addr =
3672 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3673 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3674 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3675 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3676 	    BUS_DMASYNC_PREWRITE);
3677 }
3678 
3679 static struct mbuf *
3680 aq_alloc_mbuf(void)
3681 {
3682 	struct mbuf *m;
3683 
3684 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3685 	if (m == NULL)
3686 		return NULL;
3687 
3688 	MCLGET(m, M_DONTWAIT);
3689 	if ((m->m_flags & M_EXT) == 0) {
3690 		m_freem(m);
3691 		return NULL;
3692 	}
3693 
3694 	return m;
3695 }
3696 
3697 /* allocate mbuf and unload dmamap */
3698 static int
3699 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3700 {
3701 	struct mbuf *m;
3702 
3703 	m = aq_alloc_mbuf();
3704 	if (m == NULL)
3705 		return ENOBUFS;
3706 
3707 	aq_rxring_setmbuf(sc, rxring, idx, m);
3708 	return 0;
3709 }
3710 
3711 static int
3712 aq_txrx_rings_alloc(struct aq_softc *sc)
3713 {
3714 	int n, error;
3715 
3716 	for (n = 0; n < sc->sc_nqueues; n++) {
3717 		sc->sc_queue[n].sc = sc;
3718 		sc->sc_queue[n].txring.txr_sc = sc;
3719 		sc->sc_queue[n].txring.txr_index = n;
3720 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3721 		    IPL_NET);
3722 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3723 		if (error != 0)
3724 			goto failure;
3725 
3726 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3727 		if (error != 0)
3728 			goto failure;
3729 
3730 		sc->sc_queue[n].rxring.rxr_sc = sc;
3731 		sc->sc_queue[n].rxring.rxr_index = n;
3732 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3733 		   IPL_NET);
3734 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3735 		if (error != 0)
3736 			break;
3737 	}
3738 
3739  failure:
3740 	return error;
3741 }
3742 
3743 static void
3744 aq_txrx_rings_free(struct aq_softc *sc)
3745 {
3746 	int n;
3747 
3748 	for (n = 0; n < sc->sc_nqueues; n++) {
3749 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3750 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3751 
3752 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3753 
3754 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3755 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3756 	}
3757 }
3758 
3759 static int
3760 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3761 {
3762 	int error = 0;
3763 	txring->txr_softint = NULL;
3764 
3765 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3766 	if (txring->txr_pcq == NULL) {
3767 		aprint_error_dev(sc->sc_dev,
3768 		    "unable to allocate pcq for TXring[%d]\n",
3769 		    txring->txr_index);
3770 		error = ENOMEM;
3771 		goto done;
3772 	}
3773 
3774 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3775 	    aq_deferred_transmit, txring);
3776 	if (txring->txr_softint == NULL) {
3777 		aprint_error_dev(sc->sc_dev,
3778 		    "unable to establish softint for TXring[%d]\n",
3779 		    txring->txr_index);
3780 		error = ENOENT;
3781 	}
3782 
3783  done:
3784 	return error;
3785 }
3786 
3787 static void
3788 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3789 {
3790 	struct mbuf *m;
3791 
3792 	if (txring->txr_softint != NULL) {
3793 		softint_disestablish(txring->txr_softint);
3794 		txring->txr_softint = NULL;
3795 	}
3796 
3797 	if (txring->txr_pcq != NULL) {
3798 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3799 			m_freem(m);
3800 		pcq_destroy(txring->txr_pcq);
3801 		txring->txr_pcq = NULL;
3802 	}
3803 }
3804 
3805 #if NSYSMON_ENVSYS > 0
3806 static void
3807 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3808 {
3809 	struct aq_softc *sc;
3810 	uint32_t temp;
3811 	int error;
3812 
3813 	sc = sme->sme_cookie;
3814 
3815 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3816 	if (error == 0) {
3817 		edata->value_cur = temp;
3818 		edata->state = ENVSYS_SVALID;
3819 	} else {
3820 		edata->state = ENVSYS_SINVALID;
3821 	}
3822 }
3823 #endif
3824 
3825 static void
3826 aq_tick(void *arg)
3827 {
3828 	struct aq_softc *sc = arg;
3829 
3830 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3831 		sc->sc_detect_linkstat = false;
3832 		aq_update_link_status(sc);
3833 	}
3834 
3835 #ifdef AQ_EVENT_COUNTERS
3836 	if (sc->sc_poll_statistics)
3837 		aq_update_statistics(sc);
3838 #endif
3839 
3840 	if (sc->sc_poll_linkstat
3841 #ifdef AQ_EVENT_COUNTERS
3842 	    || sc->sc_poll_statistics
3843 #endif
3844 	    ) {
3845 		callout_schedule(&sc->sc_tick_ch, hz);
3846 	}
3847 }
3848 
3849 /* interrupt enable/disable */
3850 static void
3851 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3852 {
3853 	uint32_t imask = 0;
3854 	int i;
3855 
3856 	if (txrx) {
3857 		for (i = 0; i < sc->sc_nqueues; i++) {
3858 			imask |= __BIT(sc->sc_tx_irq[i]);
3859 			imask |= __BIT(sc->sc_rx_irq[i]);
3860 		}
3861 	}
3862 
3863 	if (link)
3864 		imask |= __BIT(sc->sc_linkstat_irq);
3865 
3866 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3867 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3868 }
3869 
3870 static int
3871 aq_legacy_intr(void *arg)
3872 {
3873 	struct aq_softc *sc = arg;
3874 	uint32_t status;
3875 	int nintr = 0;
3876 
3877 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3878 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3879 
3880 	if (status & __BIT(sc->sc_linkstat_irq)) {
3881 		sc->sc_detect_linkstat = true;
3882 		callout_schedule(&sc->sc_tick_ch, 0);
3883 		nintr++;
3884 	}
3885 
3886 	if (status & __BIT(sc->sc_rx_irq[0])) {
3887 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3888 	}
3889 
3890 	if (status & __BIT(sc->sc_tx_irq[0])) {
3891 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3892 	}
3893 
3894 	return nintr;
3895 }
3896 
3897 static int
3898 aq_txrx_intr(void *arg)
3899 {
3900 	struct aq_queue *queue = arg;
3901 	struct aq_softc *sc = queue->sc;
3902 	struct aq_txring *txring = &queue->txring;
3903 	struct aq_rxring *rxring = &queue->rxring;
3904 	uint32_t status;
3905 	int nintr = 0;
3906 	int txringidx, rxringidx, txirq, rxirq;
3907 
3908 	txringidx = txring->txr_index;
3909 	rxringidx = rxring->rxr_index;
3910 	txirq = sc->sc_tx_irq[txringidx];
3911 	rxirq = sc->sc_rx_irq[rxringidx];
3912 
3913 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3914 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3915 		/* stray interrupt? */
3916 		return 0;
3917 	}
3918 
3919 	nintr += aq_rx_intr(rxring);
3920 	nintr += aq_tx_intr(txring);
3921 
3922 	return nintr;
3923 }
3924 
3925 static int
3926 aq_link_intr(void *arg)
3927 {
3928 	struct aq_softc *sc = arg;
3929 	uint32_t status;
3930 	int nintr = 0;
3931 
3932 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3933 	if (status & __BIT(sc->sc_linkstat_irq)) {
3934 		sc->sc_detect_linkstat = true;
3935 		callout_schedule(&sc->sc_tick_ch, 0);
3936 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3937 		    __BIT(sc->sc_linkstat_irq));
3938 		nintr++;
3939 	}
3940 
3941 	return nintr;
3942 }
3943 
3944 static void
3945 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3946 {
3947 	const int ringidx = txring->txr_index;
3948 	int i;
3949 
3950 	mutex_enter(&txring->txr_mutex);
3951 
3952 	txring->txr_prodidx = 0;
3953 	txring->txr_considx = 0;
3954 	txring->txr_nfree = AQ_TXD_NUM;
3955 	txring->txr_active = false;
3956 
3957 	/* free mbufs untransmitted */
3958 	for (i = 0; i < AQ_TXD_NUM; i++) {
3959 		if (txring->txr_mbufs[i].m != NULL) {
3960 			m_freem(txring->txr_mbufs[i].m);
3961 			txring->txr_mbufs[i].m = NULL;
3962 		}
3963 	}
3964 
3965 	/* disable DMA */
3966 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3967 
3968 	if (start) {
3969 		/* TX descriptor physical address */
3970 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3971 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3972 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3973 		    (uint32_t)((uint64_t)paddr >> 32));
3974 
3975 		/* TX descriptor size */
3976 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3977 		    AQ_TXD_NUM / 8);
3978 
3979 		/* reload TAIL pointer */
3980 		txring->txr_prodidx = txring->txr_considx =
3981 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3982 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3983 
3984 		/* Mapping interrupt vector */
3985 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3986 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3987 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3988 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3989 
3990 		/* enable DMA */
3991 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3992 		    TX_DMA_DESC_EN, 1);
3993 
3994 		const int cpuid = 0;	/* XXX? */
3995 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3996 		    TDM_DCAD_CPUID, cpuid);
3997 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3998 		    TDM_DCAD_CPUID_EN, 0);
3999 
4000 		txring->txr_active = true;
4001 	}
4002 
4003 	mutex_exit(&txring->txr_mutex);
4004 }
4005 
4006 static int
4007 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4008 {
4009 	const int ringidx = rxring->rxr_index;
4010 	int i;
4011 	int error = 0;
4012 
4013 	mutex_enter(&rxring->rxr_mutex);
4014 	rxring->rxr_active = false;
4015 
4016 	/* disable DMA */
4017 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4018 
4019 	/* free all RX mbufs */
4020 	aq_rxdrain(sc, rxring);
4021 
4022 	if (start) {
4023 		for (i = 0; i < AQ_RXD_NUM; i++) {
4024 			error = aq_rxring_add(sc, rxring, i);
4025 			if (error != 0) {
4026 				aq_rxdrain(sc, rxring);
4027 				return error;
4028 			}
4029 			aq_rxring_reset_desc(sc, rxring, i);
4030 		}
4031 
4032 		/* RX descriptor physical address */
4033 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4034 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4035 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4036 		    (uint32_t)((uint64_t)paddr >> 32));
4037 
4038 		/* RX descriptor size */
4039 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4040 		    AQ_RXD_NUM / 8);
4041 
4042 		/* maximum receive frame size */
4043 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4044 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4045 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4046 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4047 
4048 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4049 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4050 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4051 		    RX_DMA_DESC_VLAN_STRIP,
4052 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4053 		    1 : 0);
4054 
4055 		/*
4056 		 * reload TAIL pointer, and update readidx
4057 		 * (HEAD pointer cannot write)
4058 		 */
4059 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4060 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4061 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4062 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4063 
4064 		/* Rx ring set mode */
4065 
4066 		/* Mapping interrupt vector */
4067 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4068 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4069 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4070 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4071 
4072 		const int cpuid = 0;	/* XXX? */
4073 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4074 		    RX_DMA_DCAD_CPUID, cpuid);
4075 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4076 		    RX_DMA_DCAD_DESC_EN, 0);
4077 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4078 		    RX_DMA_DCAD_HEADER_EN, 0);
4079 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4080 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4081 
4082 		/* enable DMA. start receiving */
4083 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4084 		    RX_DMA_DESC_EN, 1);
4085 
4086 		rxring->rxr_active = true;
4087 	}
4088 
4089 	mutex_exit(&rxring->rxr_mutex);
4090 	return error;
4091 }
4092 
4093 #define TXRING_NEXTIDX(idx)	\
4094 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4095 #define RXRING_NEXTIDX(idx)	\
4096 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4097 
4098 static int
4099 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4100 {
4101 	bus_dmamap_t map;
4102 	struct mbuf *m = *mp;
4103 	uint32_t ctl1, ctl1_ctx, ctl2;
4104 	int idx, i, error;
4105 
4106 	idx = txring->txr_prodidx;
4107 	map = txring->txr_mbufs[idx].dmamap;
4108 
4109 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4110 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4111 	if (error == EFBIG) {
4112 		struct mbuf *n;
4113 		n = m_defrag(m, M_DONTWAIT);
4114 		if (n == NULL)
4115 			return EFBIG;
4116 		/* m_defrag() preserve m */
4117 		KASSERT(n == m);
4118 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4119 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4120 	}
4121 	if (error != 0)
4122 		return error;
4123 
4124 	/*
4125 	 * check spaces of free descriptors.
4126 	 * +1 is additional descriptor for context (vlan, etc,.)
4127 	 */
4128 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4129 		device_printf(sc->sc_dev,
4130 		    "TX: not enough descriptors left %d for %d segs\n",
4131 		    txring->txr_nfree, map->dm_nsegs + 1);
4132 		bus_dmamap_unload(sc->sc_dmat, map);
4133 		return ENOBUFS;
4134 	}
4135 
4136 	/* sync dma for mbuf */
4137 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4138 	    BUS_DMASYNC_PREWRITE);
4139 
4140 	ctl1_ctx = 0;
4141 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4142 
4143 	if (vlan_has_tag(m)) {
4144 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4145 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4146 
4147 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4148 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4149 
4150 		/* fill context descriptor and forward index */
4151 		txring->txr_txdesc[idx].buf_addr = 0;
4152 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4153 		txring->txr_txdesc[idx].ctl2 = 0;
4154 
4155 		idx = TXRING_NEXTIDX(idx);
4156 		txring->txr_nfree--;
4157 	}
4158 
4159 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4160 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4161 	if (m->m_pkthdr.csum_flags &
4162 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4163 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4164 	}
4165 
4166 	/* fill descriptor(s) */
4167 	for (i = 0; i < map->dm_nsegs; i++) {
4168 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4169 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4170 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4171 
4172 		if (i == 0) {
4173 			/* remember mbuf of these descriptors */
4174 			txring->txr_mbufs[idx].m = m;
4175 		} else {
4176 			txring->txr_mbufs[idx].m = NULL;
4177 		}
4178 
4179 		if (i == map->dm_nsegs - 1) {
4180 			/* last segment, mark an EndOfPacket, and cause intr */
4181 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4182 		}
4183 
4184 		txring->txr_txdesc[idx].buf_addr =
4185 		    htole64(map->dm_segs[i].ds_addr);
4186 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4187 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4188 
4189 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4190 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4191 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4192 
4193 		idx = TXRING_NEXTIDX(idx);
4194 		txring->txr_nfree--;
4195 	}
4196 
4197 	txring->txr_prodidx = idx;
4198 
4199 	return 0;
4200 }
4201 
4202 static int
4203 aq_tx_intr(void *arg)
4204 {
4205 	struct aq_txring *txring = arg;
4206 	struct aq_softc *sc = txring->txr_sc;
4207 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4208 	struct mbuf *m;
4209 	const int ringidx = txring->txr_index;
4210 	unsigned int idx, hw_head, n = 0;
4211 
4212 	mutex_enter(&txring->txr_mutex);
4213 
4214 	if (!txring->txr_active)
4215 		goto tx_intr_done;
4216 
4217 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4218 	    TX_DMA_DESC_HEAD_PTR);
4219 	if (hw_head == txring->txr_considx) {
4220 		goto tx_intr_done;
4221 	}
4222 
4223 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4224 
4225 	for (idx = txring->txr_considx; idx != hw_head;
4226 	    idx = TXRING_NEXTIDX(idx), n++) {
4227 
4228 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4229 			bus_dmamap_unload(sc->sc_dmat,
4230 			    txring->txr_mbufs[idx].dmamap);
4231 
4232 			if_statinc_ref(nsr, if_opackets);
4233 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4234 			if (m->m_flags & M_MCAST)
4235 				if_statinc_ref(nsr, if_omcasts);
4236 
4237 			m_freem(m);
4238 			txring->txr_mbufs[idx].m = NULL;
4239 		}
4240 
4241 		txring->txr_nfree++;
4242 	}
4243 	txring->txr_considx = idx;
4244 
4245 	IF_STAT_PUTREF(ifp);
4246 
4247 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4248 		ifp->if_flags &= ~IFF_OACTIVE;
4249 
4250 	/* no more pending TX packet, cancel watchdog */
4251 	if (txring->txr_nfree >= AQ_TXD_NUM)
4252 		ifp->if_timer = 0;
4253 
4254  tx_intr_done:
4255 	mutex_exit(&txring->txr_mutex);
4256 
4257 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4258 	return n;
4259 }
4260 
4261 static int
4262 aq_rx_intr(void *arg)
4263 {
4264 	struct aq_rxring *rxring = arg;
4265 	struct aq_softc *sc = rxring->rxr_sc;
4266 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4267 	const int ringidx = rxring->rxr_index;
4268 	aq_rx_desc_t *rxd;
4269 	struct mbuf *m, *m0, *mprev, *new_m;
4270 	uint32_t rxd_type, rxd_hash __unused;
4271 	uint16_t rxd_status, rxd_pktlen;
4272 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4273 	unsigned int idx, n = 0;
4274 
4275 	mutex_enter(&rxring->rxr_mutex);
4276 
4277 	if (!rxring->rxr_active)
4278 		goto rx_intr_done;
4279 
4280 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4281 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4282 		goto rx_intr_done;
4283 	}
4284 
4285 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4286 
4287 	m0 = mprev = NULL;
4288 	for (idx = rxring->rxr_readidx;
4289 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4290 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4291 
4292 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4293 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4294 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4295 
4296 		rxd = &rxring->rxr_rxdesc[idx];
4297 		rxd_status = le16toh(rxd->wb.status);
4298 
4299 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4300 			break;	/* not yet done */
4301 
4302 		rxd_type = le32toh(rxd->wb.type);
4303 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4304 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4305 		rxd_hash = le32toh(rxd->wb.rss_hash);
4306 		rxd_vlan = le16toh(rxd->wb.vlan);
4307 
4308 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4309 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4310 			if_statinc_ref(nsr, if_ierrors);
4311 			goto rx_next;
4312 		}
4313 
4314 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4315 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4316 		    BUS_DMASYNC_POSTREAD);
4317 		m = rxring->rxr_mbufs[idx].m;
4318 
4319 		new_m = aq_alloc_mbuf();
4320 		if (new_m == NULL) {
4321 			/*
4322 			 * cannot allocate new mbuf.
4323 			 * discard this packet, and reuse mbuf for next.
4324 			 */
4325 			if_statinc_ref(nsr, if_iqdrops);
4326 			goto rx_next;
4327 		}
4328 		rxring->rxr_mbufs[idx].m = NULL;
4329 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4330 
4331 		if (m0 == NULL) {
4332 			m0 = m;
4333 		} else {
4334 			if (m->m_flags & M_PKTHDR)
4335 				m_remove_pkthdr(m);
4336 			mprev->m_next = m;
4337 		}
4338 		mprev = m;
4339 
4340 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4341 			m->m_len = MCLBYTES;
4342 		} else {
4343 			/* last buffer */
4344 			m->m_len = rxd_pktlen % MCLBYTES;
4345 			m0->m_pkthdr.len = rxd_pktlen;
4346 			/* VLAN offloading */
4347 			if ((sc->sc_ethercom.ec_capenable &
4348 			    ETHERCAP_VLAN_HWTAGGING) &&
4349 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4350 			    __SHIFTOUT(rxd_type,
4351 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4352 				vlan_set_tag(m0, rxd_vlan);
4353 			}
4354 
4355 			/* Checksum offloading */
4356 			unsigned int pkttype_eth =
4357 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4358 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4359 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4360 			    __SHIFTOUT(rxd_type,
4361 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4362 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4363 				if (__SHIFTOUT(rxd_status,
4364 				    RXDESC_STATUS_IPV4_CSUM_NG))
4365 					m0->m_pkthdr.csum_flags |=
4366 					    M_CSUM_IPv4_BAD;
4367 			}
4368 #if notyet
4369 			/*
4370 			 * XXX: aq always marks BAD for fragmented packet.
4371 			 * we should peek L3 header, and ignore cksum flags
4372 			 * if the packet is fragmented.
4373 			 */
4374 			if (__SHIFTOUT(rxd_type,
4375 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4376 				bool checked = false;
4377 				unsigned int pkttype_proto =
4378 				    __SHIFTOUT(rxd_type,
4379 				    RXDESC_TYPE_PKTTYPE_PROTO);
4380 
4381 				if (pkttype_proto ==
4382 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4383 					if ((pkttype_eth ==
4384 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4385 					    (ifp->if_capabilities &
4386 					    IFCAP_CSUM_TCPv4_Rx)) {
4387 						m0->m_pkthdr.csum_flags |=
4388 						    M_CSUM_TCPv4;
4389 						checked = true;
4390 					} else if ((pkttype_eth ==
4391 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4392 					    (ifp->if_capabilities &
4393 					    IFCAP_CSUM_TCPv6_Rx)) {
4394 						m0->m_pkthdr.csum_flags |=
4395 						    M_CSUM_TCPv6;
4396 						checked = true;
4397 					}
4398 				} else if (pkttype_proto ==
4399 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4400 					if ((pkttype_eth ==
4401 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4402 					    (ifp->if_capabilities &
4403 					    IFCAP_CSUM_UDPv4_Rx)) {
4404 						m0->m_pkthdr.csum_flags |=
4405 						    M_CSUM_UDPv4;
4406 						checked = true;
4407 					} else if ((pkttype_eth ==
4408 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4409 					    (ifp->if_capabilities &
4410 					    IFCAP_CSUM_UDPv6_Rx)) {
4411 						m0->m_pkthdr.csum_flags |=
4412 						    M_CSUM_UDPv6;
4413 						checked = true;
4414 					}
4415 				}
4416 				if (checked &&
4417 				    (__SHIFTOUT(rxd_status,
4418 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4419 				    !__SHIFTOUT(rxd_status,
4420 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4421 					m0->m_pkthdr.csum_flags |=
4422 					    M_CSUM_TCP_UDP_BAD;
4423 				}
4424 			}
4425 #endif
4426 			m_set_rcvif(m0, ifp);
4427 			if_statinc_ref(nsr, if_ipackets);
4428 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4429 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4430 			m0 = mprev = NULL;
4431 		}
4432 
4433  rx_next:
4434 		aq_rxring_reset_desc(sc, rxring, idx);
4435 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4436 	}
4437 	rxring->rxr_readidx = idx;
4438 
4439 	IF_STAT_PUTREF(ifp);
4440 
4441  rx_intr_done:
4442 	mutex_exit(&rxring->rxr_mutex);
4443 
4444 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4445 	return n;
4446 }
4447 
4448 static int
4449 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4450 {
4451 	struct ifnet *ifp = &ec->ec_if;
4452 	struct aq_softc *sc = ifp->if_softc;
4453 
4454 	aq_set_vlan_filters(sc);
4455 	return 0;
4456 }
4457 
4458 static int
4459 aq_ifflags_cb(struct ethercom *ec)
4460 {
4461 	struct ifnet *ifp = &ec->ec_if;
4462 	struct aq_softc *sc = ifp->if_softc;
4463 	int i, ecchange, error = 0;
4464 	unsigned short iffchange;
4465 
4466 	AQ_LOCK(sc);
4467 
4468 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4469 	if ((iffchange & IFF_PROMISC) != 0)
4470 		error = aq_set_filter(sc);
4471 
4472 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4473 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4474 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4475 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4476 			    RX_DMA_DESC_VLAN_STRIP,
4477 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4478 			    1 : 0);
4479 		}
4480 	}
4481 
4482 	/* vlan configuration depends on also interface promiscuous mode */
4483 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4484 		aq_set_vlan_filters(sc);
4485 
4486 	sc->sc_ec_capenable = ec->ec_capenable;
4487 	sc->sc_if_flags = ifp->if_flags;
4488 
4489 	AQ_UNLOCK(sc);
4490 
4491 	return error;
4492 }
4493 
4494 static int
4495 aq_init(struct ifnet *ifp)
4496 {
4497 	struct aq_softc *sc = ifp->if_softc;
4498 	int i, error = 0;
4499 
4500 	AQ_LOCK(sc);
4501 
4502 	aq_set_vlan_filters(sc);
4503 	aq_set_capability(sc);
4504 
4505 	for (i = 0; i < sc->sc_nqueues; i++) {
4506 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4507 	}
4508 
4509 	/* invalidate RX descriptor cache */
4510 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4511 	    AQ_READ_REG_BIT(sc,
4512 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4513 
4514 	/* start RX */
4515 	for (i = 0; i < sc->sc_nqueues; i++) {
4516 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4517 		if (error != 0) {
4518 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4519 			    __func__);
4520 			goto aq_init_failure;
4521 		}
4522 	}
4523 	aq_init_rss(sc);
4524 	aq_hw_l3_filter_set(sc);
4525 
4526 	/* need to start callout? */
4527 	if (sc->sc_poll_linkstat
4528 #ifdef AQ_EVENT_COUNTERS
4529 	    || sc->sc_poll_statistics
4530 #endif
4531 	    ) {
4532 		callout_schedule(&sc->sc_tick_ch, hz);
4533 	}
4534 
4535 	/* ready */
4536 	ifp->if_flags |= IFF_RUNNING;
4537 	ifp->if_flags &= ~IFF_OACTIVE;
4538 
4539 	/* start TX and RX */
4540 	aq_enable_intr(sc, true, true);
4541 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4542 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4543 
4544  aq_init_failure:
4545 	sc->sc_if_flags = ifp->if_flags;
4546 
4547 	AQ_UNLOCK(sc);
4548 
4549 	return error;
4550 }
4551 
4552 static void
4553 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4554     struct aq_txring *txring, bool is_transmit)
4555 {
4556 	struct mbuf *m;
4557 	int npkt, error;
4558 
4559 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4560 		return;
4561 
4562 	for (npkt = 0; ; npkt++) {
4563 		if (is_transmit)
4564 			m = pcq_peek(txring->txr_pcq);
4565 		else
4566 			IFQ_POLL(&ifp->if_snd, m);
4567 
4568 		if (m == NULL)
4569 			break;
4570 
4571 		if (txring->txr_nfree < AQ_TXD_MIN)
4572 			break;
4573 
4574 		if (is_transmit)
4575 			pcq_get(txring->txr_pcq);
4576 		else
4577 			IFQ_DEQUEUE(&ifp->if_snd, m);
4578 
4579 		error = aq_encap_txring(sc, txring, &m);
4580 		if (error != 0) {
4581 			/* too many mbuf chains? or not enough descriptors? */
4582 			m_freem(m);
4583 			if_statinc(ifp, if_oerrors);
4584 			if (txring->txr_index == 0 && error == ENOBUFS)
4585 				ifp->if_flags |= IFF_OACTIVE;
4586 			break;
4587 		}
4588 
4589 		/* update tail ptr */
4590 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4591 		    txring->txr_prodidx);
4592 
4593 		/* Pass the packet to any BPF listeners */
4594 		bpf_mtap(ifp, m, BPF_D_OUT);
4595 	}
4596 
4597 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4598 		ifp->if_flags |= IFF_OACTIVE;
4599 
4600 	if (npkt)
4601 		ifp->if_timer = 5;
4602 }
4603 
4604 static void
4605 aq_start(struct ifnet *ifp)
4606 {
4607 	struct aq_softc *sc;
4608 	struct aq_txring *txring;
4609 
4610 	sc = ifp->if_softc;
4611 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4612 
4613 	mutex_enter(&txring->txr_mutex);
4614 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4615 		aq_send_common_locked(ifp, sc, txring, false);
4616 	mutex_exit(&txring->txr_mutex);
4617 }
4618 
4619 static inline unsigned int
4620 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4621 {
4622 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4623 }
4624 
4625 static int
4626 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4627 {
4628 	struct aq_softc *sc = ifp->if_softc;
4629 	struct aq_txring *txring;
4630 	int ringidx;
4631 
4632 	ringidx = aq_select_txqueue(sc, m);
4633 	txring = &sc->sc_queue[ringidx].txring;
4634 
4635 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4636 		m_freem(m);
4637 		return ENOBUFS;
4638 	}
4639 
4640 	if (mutex_tryenter(&txring->txr_mutex)) {
4641 		aq_send_common_locked(ifp, sc, txring, true);
4642 		mutex_exit(&txring->txr_mutex);
4643 	} else {
4644 		softint_schedule(txring->txr_softint);
4645 	}
4646 	return 0;
4647 }
4648 
4649 static void
4650 aq_deferred_transmit(void *arg)
4651 {
4652 	struct aq_txring *txring = arg;
4653 	struct aq_softc *sc = txring->txr_sc;
4654 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4655 
4656 	mutex_enter(&txring->txr_mutex);
4657 	if (pcq_peek(txring->txr_pcq) != NULL)
4658 		aq_send_common_locked(ifp, sc, txring, true);
4659 	mutex_exit(&txring->txr_mutex);
4660 }
4661 
4662 static void
4663 aq_stop(struct ifnet *ifp, int disable)
4664 {
4665 	struct aq_softc *sc = ifp->if_softc;
4666 	int i;
4667 
4668 	AQ_LOCK(sc);
4669 
4670 	ifp->if_timer = 0;
4671 
4672 	/* disable tx/rx interrupts */
4673 	aq_enable_intr(sc, true, false);
4674 
4675 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4676 	for (i = 0; i < sc->sc_nqueues; i++) {
4677 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4678 	}
4679 
4680 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4681 	for (i = 0; i < sc->sc_nqueues; i++) {
4682 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4683 	}
4684 
4685 	/* invalidate RX descriptor cache */
4686 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4687 	    AQ_READ_REG_BIT(sc,
4688 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4689 
4690 	ifp->if_timer = 0;
4691 
4692 	if (!disable) {
4693 		/* when pmf stop, disable link status intr and callout */
4694 		aq_enable_intr(sc, false, false);
4695 		callout_stop(&sc->sc_tick_ch);
4696 	}
4697 
4698 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4699 
4700 	AQ_UNLOCK(sc);
4701 }
4702 
4703 static void
4704 aq_watchdog(struct ifnet *ifp)
4705 {
4706 	struct aq_softc *sc = ifp->if_softc;
4707 	struct aq_txring *txring;
4708 	int n, head, tail;
4709 
4710 	AQ_LOCK(sc);
4711 
4712 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4713 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4714 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4715 
4716 	for (n = 0; n < sc->sc_nqueues; n++) {
4717 		txring = &sc->sc_queue[n].txring;
4718 		head = AQ_READ_REG_BIT(sc,
4719 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4720 		    TX_DMA_DESC_HEAD_PTR),
4721 		tail = AQ_READ_REG(sc,
4722 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4723 
4724 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4725 		    __func__, txring->txr_index, head, tail);
4726 
4727 		aq_tx_intr(txring);
4728 	}
4729 
4730 	AQ_UNLOCK(sc);
4731 
4732 	aq_init(ifp);
4733 }
4734 
4735 static int
4736 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4737 {
4738 	struct aq_softc *sc __unused;
4739 	struct ifreq *ifr __unused;
4740 	int error, s;
4741 
4742 	sc = (struct aq_softc *)ifp->if_softc;
4743 	ifr = (struct ifreq *)data;
4744 	error = 0;
4745 
4746 	s = splnet();
4747 	error = ether_ioctl(ifp, cmd, data);
4748 	splx(s);
4749 
4750 	if (error != ENETRESET)
4751 		return error;
4752 
4753 	switch (cmd) {
4754 	case SIOCSIFCAP:
4755 		error = aq_set_capability(sc);
4756 		break;
4757 	case SIOCADDMULTI:
4758 	case SIOCDELMULTI:
4759 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4760 			break;
4761 
4762 		/*
4763 		 * Multicast list has changed; set the hardware filter
4764 		 * accordingly.
4765 		 */
4766 		error = aq_set_filter(sc);
4767 		break;
4768 	}
4769 
4770 	return error;
4771 }
4772 
4773 
4774 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4775 
4776 #ifdef _MODULE
4777 #include "ioconf.c"
4778 #endif
4779 
4780 static int
4781 if_aq_modcmd(modcmd_t cmd, void *opaque)
4782 {
4783 	int error = 0;
4784 
4785 	switch (cmd) {
4786 	case MODULE_CMD_INIT:
4787 #ifdef _MODULE
4788 		error = config_init_component(cfdriver_ioconf_if_aq,
4789 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4790 #endif
4791 		return error;
4792 	case MODULE_CMD_FINI:
4793 #ifdef _MODULE
4794 		error = config_fini_component(cfdriver_ioconf_if_aq,
4795 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4796 #endif
4797 		return error;
4798 	default:
4799 		return ENOTTY;
4800 	}
4801 }
4802