1 /* $NetBSD: if_aq.c,v 1.31 2021/11/13 21:38:48 ryo Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.31 2021/11/13 21:38:48 ryo Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 #define AQ_JUMBO_MTU_REV_A 9000 120 #define AQ_JUMBO_MTU_REV_B 16338 121 122 /* 123 * TERMINOLOGY 124 * MPI = MAC PHY INTERFACE? 125 * RPO = RX Protocol Offloading 126 * TPO = TX Protocol Offloading 127 * RPF = RX Packet Filter 128 * TPB = TX Packet buffer 129 * RPB = RX Packet buffer 130 */ 131 132 /* registers */ 133 #define AQ_FW_SOFTRESET_REG 0x0000 134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 136 137 #define AQ_FW_VERSION_REG 0x0018 138 #define AQ_HW_REVISION_REG 0x001c 139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 140 141 #define AQ_FW_MBOX_CMD_REG 0x0200 142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 144 #define AQ_FW_MBOX_ADDR_REG 0x0208 145 #define AQ_FW_MBOX_VAL_REG 0x020c 146 147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 148 #define FW2X_LED_REG 0x031c 149 #define FW2X_LED_DEFAULT 0x00000000 150 #define FW2X_LED_NONE 0x0000003f 151 #define FW2X_LINKLED __BITS(0,1) 152 #define FW2X_LINKLED_ACTIVE 0 153 #define FW2X_LINKLED_ON 1 154 #define FW2X_LINKLED_BLINK 2 155 #define FW2X_LINKLED_OFF 3 156 #define FW2X_STATUSLED __BITS(2,5) 157 #define FW2X_STATUSLED_ORANGE 0 158 #define FW2X_STATUSLED_ORANGE_BLINK 2 159 #define FW2X_STATUSLED_OFF 3 160 #define FW2X_STATUSLED_GREEN 4 161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 162 #define FW2X_STATUSLED_GREEN_BLINK 10 163 164 #define FW_MPI_MBOX_ADDR_REG 0x0360 165 #define FW1X_MPI_INIT1_REG 0x0364 166 #define FW1X_MPI_CONTROL_REG 0x0368 167 #define FW1X_MPI_STATE_REG 0x036c 168 #define FW1X_MPI_STATE_MODE __BITS(7,0) 169 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 172 #define FW1X_MPI_INIT2_REG 0x0370 173 #define FW1X_MPI_EFUSEADDR_REG 0x0374 174 175 #define FW2X_MPI_EFUSEADDR_REG 0x0364 176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 178 #define FW_BOOT_EXIT_CODE_REG 0x0388 179 #define RBL_STATUS_DEAD 0x0000dead 180 #define RBL_STATUS_SUCCESS 0x0000abba 181 #define RBL_STATUS_FAILURE 0x00000bad 182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 183 184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 186 187 #define AQ_FW_GLB_CTL2_REG 0x0404 188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 189 190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 192 193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 194 195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 196 197 // msix bitmap */ 198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 202 #define AQ_INTR_AUTOMASK_REG 0x2090 203 204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 212 213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 215 #define AQ_B0_ERR_INT 8U 216 217 #define AQ_INTR_CTRL_REG 0x2300 218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 220 #define AQ_INTR_CTRL_IRQMODE_MSI 1 221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 227 228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 229 230 #define FW_MPI_RESETCTRL_REG 0x4000 231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 232 233 #define RX_SYSCONTROL_REG 0x5000 234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 236 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 237 238 #define RX_TCP_RSS_HASH_REG 0x5040 239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 241 242 /* for RPF_*_REG.ACTION */ 243 #define RPF_ACTION_DISCARD 0 244 #define RPF_ACTION_HOST 1 245 #define RPF_ACTION_MANAGEMENT 2 246 #define RPF_ACTION_HOST_MANAGEMENT 3 247 #define RPF_ACTION_WOL 4 248 249 #define RPF_L2BC_REG 0x5100 250 #define RPF_L2BC_EN __BIT(0) 251 #define RPF_L2BC_PROMISC __BIT(3) 252 #define RPF_L2BC_ACTION __BITS(12,14) 253 #define RPF_L2BC_THRESHOLD __BITS(31,16) 254 255 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 259 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 260 #define RPF_L2UC_MSW_EN __BIT(31) 261 #define AQ_HW_MAC_OWN 0 /* index of own address */ 262 #define AQ_HW_MAC_NUM 34 263 264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 266 #define RPF_MCAST_FILTER_EN __BIT(31) 267 #define RPF_MCAST_FILTER_MASK_REG 0x5270 268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 269 270 #define RPF_VLAN_MODE_REG 0x5280 271 #define RPF_VLAN_MODE_PROMISC __BIT(1) 272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 274 275 #define RPF_VLAN_TPID_REG 0x5284 276 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 277 #define RPF_VLAN_TPID_INNER __BITS(15,0) 278 279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 280 #define RPF_VLAN_MAX_FILTERS 16 281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 282 #define RPF_VLAN_FILTER_EN __BIT(31) 283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 286 #define RPF_VLAN_FILTER_ID __BITS(11,0) 287 288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 298 299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 301 #define RPF_L3_FILTER_L4_EN __BIT(31) 302 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 308 #define RPF_L3_FILTER_ARP_EN __BIT(24) 309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 314 #define RPF_L3_FILTER_L4_PROTO_TCP 0 315 #define RPF_L3_FILTER_L4_PROTO_UDP 1 316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 318 /* parameters of RPF_L3_FILTER_REG[8] */ 319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 323 324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 326 327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 329 330 #define RPF_RSS_KEY_ADDR_REG 0x54d0 331 #define RPF_RSS_KEY_ADDR __BITS(4,0) 332 #define RPF_RSS_KEY_WR_EN __BIT(5) 333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 335 336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 337 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 338 #define RPF_RSS_REDIR_WR_EN __BIT(4) 339 340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 342 343 #define RPO_HWCSUM_REG 0x5580 344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 346 347 #define RPO_LRO_ENABLE_REG 0x5590 348 349 #define RPO_LRO_CONF_REG 0x5594 350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 354 #define RPO_LRO_RSC_MAX_REG 0x5598 355 356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 359 #define RPO_LRO_TB_DIV_REG 0x5620 360 #define RPO_LRO_TB_DIV __BITS(20,31) 361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 365 366 #define RPB_RPF_RX_REG 0x5700 367 #define RPB_RPF_RX_TC_MODE __BIT(8) 368 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 369 #define RPB_RPF_RX_BUF_EN __BIT(0) 370 371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 373 #define RPB_RXB_BUFSIZE __BITS(8,0) 374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 375 #define RPB_RXB_XOFF_EN __BIT(31) 376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 378 379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 380 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 381 382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 385 386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 388 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 391 392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 397 #define RX_DMA_DESC_RESET __BIT(25) 398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 400 #define RX_DMA_DESC_EN __BIT(31) 401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 407 408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 410 #define RX_DMA_DCAD_CPUID __BITS(7,0) 411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 412 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 413 #define RX_DMA_DCAD_DESC_EN __BIT(31) 414 415 #define RX_DMA_DCA_REG 0x6180 416 #define RX_DMA_DCA_EN __BIT(31) 417 #define RX_DMA_DCA_MODE __BITS(3,0) 418 419 /* counters */ 420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 424 425 #define TX_SYSCONTROL_REG 0x7000 426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 428 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 429 430 #define TX_TPO2_REG 0x7040 431 #define TX_TPO2_EN __BIT(16) 432 433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 434 #define TPS_DESC_VM_ARB_MODE __BIT(0) 435 #define TPS_DESC_RATE_REG 0x7310 436 #define TPS_DESC_RATE_TA_RST __BIT(31) 437 #define TPS_DESC_RATE_LIM __BITS(10,0) 438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 441 #define TPS_DATA_TC_ARB_MODE __BIT(0) 442 443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 451 452 #define AQ_HW_TXBUF_MAX 160 453 #define AQ_HW_RXBUF_MAX 320 454 455 #define TPO_HWCSUM_REG 0x7800 456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 458 459 #define TDM_LSO_EN_REG 0x7810 460 461 #define THM_LSO_TCP_FLAG1_REG 0x7820 462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 464 #define THM_LSO_TCP_FLAG2_REG 0x7824 465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 466 467 #define TPB_TX_BUF_REG 0x7900 468 #define TPB_TX_BUF_EN __BIT(0) 469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 471 472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 474 #define TPB_TXB_BUFSIZE __BITS(7,0) 475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 476 #define TPB_TXB_THRESH_HI __BITS(16,28) 477 #define TPB_TXB_THRESH_LO __BITS(12,0) 478 479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 483 484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 489 #define TX_DMA_DESC_EN __BIT(31) 490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 495 496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 498 #define TDM_DCAD_CPUID __BITS(7,0) 499 #define TDM_DCAD_CPUID_EN __BIT(31) 500 501 #define TDM_DCA_REG 0x8480 502 #define TDM_DCA_EN __BIT(31) 503 #define TDM_DCA_MODE __BITS(3,0) 504 505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 507 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 510 511 #define FW1X_CTRL_10G __BIT(0) 512 #define FW1X_CTRL_5G __BIT(1) 513 #define FW1X_CTRL_5GSR __BIT(2) 514 #define FW1X_CTRL_2G5 __BIT(3) 515 #define FW1X_CTRL_1G __BIT(4) 516 #define FW1X_CTRL_100M __BIT(5) 517 518 #define FW2X_CTRL_10BASET_HD __BIT(0) 519 #define FW2X_CTRL_10BASET_FD __BIT(1) 520 #define FW2X_CTRL_100BASETX_HD __BIT(2) 521 #define FW2X_CTRL_100BASET4_HD __BIT(3) 522 #define FW2X_CTRL_100BASET2_HD __BIT(4) 523 #define FW2X_CTRL_100BASETX_FD __BIT(5) 524 #define FW2X_CTRL_100BASET2_FD __BIT(6) 525 #define FW2X_CTRL_1000BASET_HD __BIT(7) 526 #define FW2X_CTRL_1000BASET_FD __BIT(8) 527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 528 #define FW2X_CTRL_5GBASET_FD __BIT(10) 529 #define FW2X_CTRL_10GBASET_FD __BIT(11) 530 #define FW2X_CTRL_RESERVED1 __BIT(32) 531 #define FW2X_CTRL_10BASET_EEE __BIT(33) 532 #define FW2X_CTRL_RESERVED2 __BIT(34) 533 #define FW2X_CTRL_PAUSE __BIT(35) 534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 535 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 536 #define FW2X_CTRL_RESERVED3 __BIT(38) 537 #define FW2X_CTRL_RESERVED4 __BIT(39) 538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 542 #define FW2X_CTRL_RESERVED5 __BIT(44) 543 #define FW2X_CTRL_RESERVED6 __BIT(45) 544 #define FW2X_CTRL_RESERVED7 __BIT(46) 545 #define FW2X_CTRL_RESERVED8 __BIT(47) 546 #define FW2X_CTRL_RESERVED9 __BIT(48) 547 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 548 #define FW2X_CTRL_TEMPERATURE __BIT(50) 549 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 552 #define FW2X_CTRL_LINK_DROP __BIT(54) 553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 554 #define FW2X_CTRL_WOL __BIT(56) 555 #define FW2X_CTRL_MAC_STOP __BIT(57) 556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 559 #define FW2X_CTRL_WOL_TIMER __BIT(61) 560 #define FW2X_CTRL_STATISTICS __BIT(62) 561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 562 563 #define FW2X_SNPRINTB \ 564 "\177\020" \ 565 "b\x23" "PAUSE\0" \ 566 "b\x24" "ASYMMETRIC-PAUSE\0" \ 567 "b\x31" "CABLE-DIAG\0" \ 568 "b\x32" "TEMPERATURE\0" \ 569 "b\x33" "DOWNSHIFT\0" \ 570 "b\x34" "PTP-AVB\0" \ 571 "b\x35" "MEDIA-DETECT\0" \ 572 "b\x36" "LINK-DROP\0" \ 573 "b\x37" "SLEEP-PROXY\0" \ 574 "b\x38" "WOL\0" \ 575 "b\x39" "MAC-STOP\0" \ 576 "b\x3a" "EXT-LOOPBACK\0" \ 577 "b\x3b" "INT-LOOPBACK\0" \ 578 "b\x3c" "EFUSE-AGENT\0" \ 579 "b\x3d" "WOL-TIMER\0" \ 580 "b\x3e" "STATISTICS\0" \ 581 "b\x3f" "TRANSACTION-ID\0" \ 582 "\0" 583 584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 589 #define FW2X_CTRL_RATE_MASK \ 590 (FW2X_CTRL_RATE_100M | \ 591 FW2X_CTRL_RATE_1G | \ 592 FW2X_CTRL_RATE_2G5 | \ 593 FW2X_CTRL_RATE_5G | \ 594 FW2X_CTRL_RATE_10G) 595 #define FW2X_CTRL_EEE_MASK \ 596 (FW2X_CTRL_10BASET_EEE | \ 597 FW2X_CTRL_100BASETX_EEE | \ 598 FW2X_CTRL_1000BASET_FD_EEE | \ 599 FW2X_CTRL_2P5GBASET_FD_EEE | \ 600 FW2X_CTRL_5GBASET_FD_EEE | \ 601 FW2X_CTRL_10GBASET_FD_EEE) 602 603 typedef enum aq_fw_bootloader_mode { 604 FW_BOOT_MODE_UNKNOWN = 0, 605 FW_BOOT_MODE_FLB, 606 FW_BOOT_MODE_RBL_FLASH, 607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 608 } aq_fw_bootloader_mode_t; 609 610 #define AQ_WRITE_REG(sc, reg, val) \ 611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 612 613 #define AQ_READ_REG(sc, reg) \ 614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 615 616 #define AQ_READ64_REG(sc, reg) \ 617 ((uint64_t)AQ_READ_REG(sc, reg) | \ 618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 619 620 #define AQ_WRITE64_REG(sc, reg, val) \ 621 do { \ 622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 624 } while (/* CONSTCOND */0) 625 626 #define AQ_READ_REG_BIT(sc, reg, mask) \ 627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 628 629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 630 do { \ 631 uint32_t _v; \ 632 _v = AQ_READ_REG((sc), (reg)); \ 633 _v &= ~(mask); \ 634 if ((val) != 0) \ 635 _v |= __SHIFTIN((val), (mask)); \ 636 AQ_WRITE_REG((sc), (reg), _v); \ 637 } while (/* CONSTCOND */ 0) 638 639 #define WAIT_FOR(expr, us, n, errp) \ 640 do { \ 641 unsigned int _n; \ 642 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 643 delay((us)); \ 644 } \ 645 if ((errp != NULL)) { \ 646 if (_n == 0) \ 647 *(errp) = ETIMEDOUT; \ 648 else \ 649 *(errp) = 0; \ 650 } \ 651 } while (/* CONSTCOND */ 0) 652 653 #define msec_delay(x) DELAY(1000 * (x)) 654 655 typedef struct aq_mailbox_header { 656 uint32_t version; 657 uint32_t transaction_id; 658 int32_t error; 659 } __packed __aligned(4) aq_mailbox_header_t; 660 661 typedef struct aq_hw_stats_s { 662 uint32_t uprc; 663 uint32_t mprc; 664 uint32_t bprc; 665 uint32_t erpt; 666 uint32_t uptc; 667 uint32_t mptc; 668 uint32_t bptc; 669 uint32_t erpr; 670 uint32_t mbtc; 671 uint32_t bbtc; 672 uint32_t mbrc; 673 uint32_t bbrc; 674 uint32_t ubrc; 675 uint32_t ubtc; 676 uint32_t ptc; 677 uint32_t prc; 678 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 679 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 680 } __packed __aligned(4) aq_hw_stats_s_t; 681 682 typedef struct fw1x_mailbox { 683 aq_mailbox_header_t header; 684 aq_hw_stats_s_t msm; 685 } __packed __aligned(4) fw1x_mailbox_t; 686 687 typedef struct fw2x_msm_statistics { 688 uint32_t uprc; 689 uint32_t mprc; 690 uint32_t bprc; 691 uint32_t erpt; 692 uint32_t uptc; 693 uint32_t mptc; 694 uint32_t bptc; 695 uint32_t erpr; 696 uint32_t mbtc; 697 uint32_t bbtc; 698 uint32_t mbrc; 699 uint32_t bbrc; 700 uint32_t ubrc; 701 uint32_t ubtc; 702 uint32_t ptc; 703 uint32_t prc; 704 } __packed __aligned(4) fw2x_msm_statistics_t; 705 706 typedef struct fw2x_phy_cable_diag_data { 707 uint32_t lane_data[4]; 708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 709 710 typedef struct fw2x_capabilities { 711 uint32_t caps_lo; 712 uint32_t caps_hi; 713 } __packed __aligned(4) fw2x_capabilities_t; 714 715 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 716 aq_mailbox_header_t header; 717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 718 719 uint32_t phy_info1; 720 #define PHYINFO1_FAULT_CODE __BITS(31,16) 721 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 722 uint32_t phy_info2; 723 #define PHYINFO2_TEMPERATURE __BITS(15,0) 724 #define PHYINFO2_CABLE_LEN __BITS(23,16) 725 726 fw2x_phy_cable_diag_data_t diag_data; 727 uint32_t reserved[8]; 728 729 fw2x_capabilities_t caps; 730 731 /* ... */ 732 } __packed __aligned(4) fw2x_mailbox_t; 733 734 typedef enum aq_link_speed { 735 AQ_LINK_NONE = 0, 736 AQ_LINK_100M = (1 << 0), 737 AQ_LINK_1G = (1 << 1), 738 AQ_LINK_2G5 = (1 << 2), 739 AQ_LINK_5G = (1 << 3), 740 AQ_LINK_10G = (1 << 4) 741 } aq_link_speed_t; 742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 743 AQ_LINK_5G | AQ_LINK_10G ) 744 #define AQ_LINK_AUTO AQ_LINK_ALL 745 746 typedef enum aq_link_fc { 747 AQ_FC_NONE = 0, 748 AQ_FC_RX = __BIT(0), 749 AQ_FC_TX = __BIT(1), 750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 751 } aq_link_fc_t; 752 753 typedef enum aq_link_eee { 754 AQ_EEE_DISABLE = 0, 755 AQ_EEE_ENABLE = 1 756 } aq_link_eee_t; 757 758 typedef enum aq_hw_fw_mpi_state { 759 MPI_DEINIT = 0, 760 MPI_RESET = 1, 761 MPI_INIT = 2, 762 MPI_POWER = 4 763 } aq_hw_fw_mpi_state_t; 764 765 enum aq_media_type { 766 AQ_MEDIA_TYPE_UNKNOWN = 0, 767 AQ_MEDIA_TYPE_FIBRE, 768 AQ_MEDIA_TYPE_TP 769 }; 770 771 struct aq_rx_desc_read { 772 uint64_t buf_addr; 773 uint64_t hdr_addr; 774 } __packed __aligned(8); 775 776 struct aq_rx_desc_wb { 777 uint32_t type; 778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 779 #define RXDESC_TYPE_RSSTYPE_NONE 0 780 #define RXDESC_TYPE_RSSTYPE_IPV4 2 781 #define RXDESC_TYPE_RSSTYPE_IPV6 3 782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 800 #define RXDESC_TYPE_RESERVED __BITS(18,13) 801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 803 #define RXDESC_TYPE_SPH __BIT(21) 804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 805 uint32_t rss_hash; 806 uint16_t status; 807 #define RXDESC_STATUS_DD __BIT(0) 808 #define RXDESC_STATUS_EOP __BIT(1) 809 #define RXDESC_STATUS_MACERR __BIT(2) 810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 813 814 #define RXDESC_STATUS_STAT __BITS(2,5) 815 #define RXDESC_STATUS_ESTAT __BITS(6,11) 816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 817 uint16_t pkt_len; 818 uint16_t next_desc_ptr; 819 uint16_t vlan; 820 } __packed __aligned(4); 821 822 typedef union aq_rx_desc { 823 struct aq_rx_desc_read read; 824 struct aq_rx_desc_wb wb; 825 } __packed __aligned(8) aq_rx_desc_t; 826 827 typedef struct aq_tx_desc { 828 uint64_t buf_addr; 829 uint32_t ctl1; 830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 846 uint32_t ctl2; 847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 850 } __packed __aligned(8) aq_tx_desc_t; 851 852 struct aq_txring { 853 struct aq_softc *txr_sc; 854 int txr_index; 855 kmutex_t txr_mutex; 856 bool txr_active; 857 858 pcq_t *txr_pcq; 859 void *txr_softint; 860 861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 862 bus_dmamap_t txr_txdesc_dmamap; 863 bus_dma_segment_t txr_txdesc_seg[1]; 864 bus_size_t txr_txdesc_size; 865 866 struct { 867 struct mbuf *m; 868 bus_dmamap_t dmamap; 869 } txr_mbufs[AQ_TXD_NUM]; 870 unsigned int txr_prodidx; 871 unsigned int txr_considx; 872 int txr_nfree; 873 }; 874 875 struct aq_rxring { 876 struct aq_softc *rxr_sc; 877 int rxr_index; 878 kmutex_t rxr_mutex; 879 bool rxr_active; 880 bool rxr_discarding; 881 struct mbuf *rxr_receiving_m; /* receiving jumboframe */ 882 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */ 883 884 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 885 bus_dmamap_t rxr_rxdesc_dmamap; 886 bus_dma_segment_t rxr_rxdesc_seg[1]; 887 bus_size_t rxr_rxdesc_size; 888 struct { 889 struct mbuf *m; 890 bus_dmamap_t dmamap; 891 } rxr_mbufs[AQ_RXD_NUM]; 892 unsigned int rxr_readidx; 893 }; 894 895 struct aq_queue { 896 struct aq_softc *sc; 897 struct aq_txring txring; 898 struct aq_rxring rxring; 899 }; 900 901 struct aq_softc; 902 struct aq_firmware_ops { 903 int (*reset)(struct aq_softc *); 904 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 905 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 906 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 907 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 908 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 909 #if NSYSMON_ENVSYS > 0 910 int (*get_temperature)(struct aq_softc *, uint32_t *); 911 #endif 912 }; 913 914 #ifdef AQ_EVENT_COUNTERS 915 #define AQ_EVCNT_DECL(name) \ 916 char sc_evcount_##name##_name[32]; \ 917 struct evcnt sc_evcount_##name##_ev; 918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 919 do { \ 920 snprintf((sc)->sc_evcount_##name##_name, \ 921 sizeof((sc)->sc_evcount_##name##_name), \ 922 "%s", desc); \ 923 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 924 (evtype), NULL, device_xname((sc)->sc_dev), \ 925 (sc)->sc_evcount_##name##_name); \ 926 } while (/*CONSTCOND*/0) 927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 928 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 929 #define AQ_EVCNT_DETACH(sc, name) \ 930 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 931 #define AQ_EVCNT_ADD(sc, name, val) \ 932 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 933 #endif /* AQ_EVENT_COUNTERS */ 934 935 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 936 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 937 938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 939 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 940 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 941 942 943 struct aq_softc { 944 device_t sc_dev; 945 946 bus_space_tag_t sc_iot; 947 bus_space_handle_t sc_ioh; 948 bus_size_t sc_iosize; 949 bus_dma_tag_t sc_dmat; 950 951 void *sc_ihs[AQ_NINTR_MAX]; 952 pci_intr_handle_t *sc_intrs; 953 954 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 955 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 956 int sc_linkstat_irq; 957 bool sc_use_txrx_independent_intr; 958 bool sc_poll_linkstat; 959 bool sc_detect_linkstat; 960 961 #if NSYSMON_ENVSYS > 0 962 struct sysmon_envsys *sc_sme; 963 envsys_data_t sc_sensor_temp; 964 #endif 965 966 callout_t sc_tick_ch; 967 968 int sc_nintrs; 969 bool sc_msix; 970 971 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 972 int sc_nqueues; 973 974 pci_chipset_tag_t sc_pc; 975 pcitag_t sc_pcitag; 976 uint16_t sc_product; 977 uint16_t sc_revision; 978 979 kmutex_t sc_mutex; 980 kmutex_t sc_mpi_mutex; 981 982 const struct aq_firmware_ops *sc_fw_ops; 983 uint64_t sc_fw_caps; 984 enum aq_media_type sc_media_type; 985 aq_link_speed_t sc_available_rates; 986 987 aq_link_speed_t sc_link_rate; 988 aq_link_fc_t sc_link_fc; 989 aq_link_eee_t sc_link_eee; 990 991 uint32_t sc_fw_version; 992 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 993 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 994 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 995 uint32_t sc_features; 996 #define FEATURES_MIPS 0x00000001 997 #define FEATURES_TPO2 0x00000002 998 #define FEATURES_RPF2 0x00000004 999 #define FEATURES_MPI_AQ 0x00000008 1000 #define FEATURES_REV_A0 0x10000000 1001 #define FEATURES_REV_A (FEATURES_REV_A0) 1002 #define FEATURES_REV_B0 0x20000000 1003 #define FEATURES_REV_B1 0x40000000 1004 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 1005 uint32_t sc_max_mtu; 1006 uint32_t sc_mbox_addr; 1007 1008 bool sc_rbl_enabled; 1009 bool sc_fast_start_enabled; 1010 bool sc_flash_present; 1011 1012 bool sc_intr_moderation_enable; 1013 bool sc_rss_enable; 1014 1015 struct ethercom sc_ethercom; 1016 struct ether_addr sc_enaddr; 1017 struct ifmedia sc_media; 1018 int sc_ec_capenable; /* last ec_capenable */ 1019 unsigned short sc_if_flags; /* last if_flags */ 1020 1021 #ifdef AQ_EVENT_COUNTERS 1022 aq_hw_stats_s_t sc_statistics[2]; 1023 int sc_statistics_idx; 1024 bool sc_poll_statistics; 1025 1026 AQ_EVCNT_DECL(uprc); 1027 AQ_EVCNT_DECL(mprc); 1028 AQ_EVCNT_DECL(bprc); 1029 AQ_EVCNT_DECL(erpt); 1030 AQ_EVCNT_DECL(uptc); 1031 AQ_EVCNT_DECL(mptc); 1032 AQ_EVCNT_DECL(bptc); 1033 AQ_EVCNT_DECL(erpr); 1034 AQ_EVCNT_DECL(mbtc); 1035 AQ_EVCNT_DECL(bbtc); 1036 AQ_EVCNT_DECL(mbrc); 1037 AQ_EVCNT_DECL(bbrc); 1038 AQ_EVCNT_DECL(ubrc); 1039 AQ_EVCNT_DECL(ubtc); 1040 AQ_EVCNT_DECL(ptc); 1041 AQ_EVCNT_DECL(prc); 1042 AQ_EVCNT_DECL(dpc); 1043 AQ_EVCNT_DECL(cprc); 1044 #endif 1045 }; 1046 1047 static int aq_match(device_t, cfdata_t, void *); 1048 static void aq_attach(device_t, device_t, void *); 1049 static int aq_detach(device_t, int); 1050 1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1052 bool, bool); 1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1054 pci_intr_type_t); 1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1056 1057 static int aq_ifmedia_change(struct ifnet * const); 1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1060 static int aq_ifflags_cb(struct ethercom *); 1061 static int aq_init(struct ifnet *); 1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1063 struct aq_txring *, bool); 1064 static int aq_transmit(struct ifnet *, struct mbuf *); 1065 static void aq_deferred_transmit(void *); 1066 static void aq_start(struct ifnet *); 1067 static void aq_stop(struct ifnet *, int); 1068 static void aq_watchdog(struct ifnet *); 1069 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1070 1071 static int aq_txrx_rings_alloc(struct aq_softc *); 1072 static void aq_txrx_rings_free(struct aq_softc *); 1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1075 1076 static void aq_initmedia(struct aq_softc *); 1077 static void aq_enable_intr(struct aq_softc *, bool, bool); 1078 1079 #if NSYSMON_ENVSYS > 0 1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1081 #endif 1082 static void aq_tick(void *); 1083 static int aq_legacy_intr(void *); 1084 static int aq_link_intr(void *); 1085 static int aq_txrx_intr(void *); 1086 static int aq_tx_intr(void *); 1087 static int aq_rx_intr(void *); 1088 1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1090 aq_link_eee_t); 1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1092 aq_link_eee_t *); 1093 1094 static int aq_fw_reset(struct aq_softc *); 1095 static int aq_fw_version_init(struct aq_softc *); 1096 static int aq_hw_init(struct aq_softc *); 1097 static int aq_hw_init_ucp(struct aq_softc *); 1098 static int aq_hw_reset(struct aq_softc *); 1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1100 uint32_t); 1101 static int aq_get_mac_addr(struct aq_softc *); 1102 static int aq_init_rss(struct aq_softc *); 1103 static int aq_set_capability(struct aq_softc *); 1104 1105 static int fw1x_reset(struct aq_softc *); 1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1111 1112 static int fw2x_reset(struct aq_softc *); 1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1114 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1116 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1118 #if NSYSMON_ENVSYS > 0 1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1120 #endif 1121 1122 static const struct aq_firmware_ops aq_fw1x_ops = { 1123 .reset = fw1x_reset, 1124 .set_mode = fw1x_set_mode, 1125 .get_mode = fw1x_get_mode, 1126 .get_stats = fw1x_get_stats, 1127 #if NSYSMON_ENVSYS > 0 1128 .get_temperature = NULL 1129 #endif 1130 }; 1131 1132 static const struct aq_firmware_ops aq_fw2x_ops = { 1133 .reset = fw2x_reset, 1134 .set_mode = fw2x_set_mode, 1135 .get_mode = fw2x_get_mode, 1136 .get_stats = fw2x_get_stats, 1137 #if NSYSMON_ENVSYS > 0 1138 .get_temperature = fw2x_get_temperature 1139 #endif 1140 }; 1141 1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1143 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1144 1145 static const struct aq_product { 1146 pci_vendor_id_t aq_vendor; 1147 pci_product_id_t aq_product; 1148 const char *aq_name; 1149 enum aq_media_type aq_media_type; 1150 aq_link_speed_t aq_available_rates; 1151 } aq_products[] = { 1152 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1153 "Aquantia AQC100 10 Gigabit Network Adapter", 1154 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1155 }, 1156 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1157 "Aquantia AQC107 10 Gigabit Network Adapter", 1158 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1159 }, 1160 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1161 "Aquantia AQC108 5 Gigabit Network Adapter", 1162 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1163 }, 1164 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1165 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1166 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1167 }, 1168 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1169 "Aquantia AQC111 5 Gigabit Network Adapter", 1170 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1171 }, 1172 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1173 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1174 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1175 }, 1176 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1177 "Aquantia AQC100S 10 Gigabit Network Adapter", 1178 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1179 }, 1180 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1181 "Aquantia AQC107S 10 Gigabit Network Adapter", 1182 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1183 }, 1184 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1185 "Aquantia AQC108S 5 Gigabit Network Adapter", 1186 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1187 }, 1188 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1189 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1190 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1191 }, 1192 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1193 "Aquantia AQC111S 5 Gigabit Network Adapter", 1194 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1195 }, 1196 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1197 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1198 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1199 }, 1200 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1201 "Aquantia D100 10 Gigabit Network Adapter", 1202 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1203 }, 1204 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1205 "Aquantia D107 10 Gigabit Network Adapter", 1206 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1207 }, 1208 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1209 "Aquantia D108 5 Gigabit Network Adapter", 1210 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1211 }, 1212 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1213 "Aquantia D109 2.5 Gigabit Network Adapter", 1214 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1215 } 1216 }; 1217 1218 static const struct aq_product * 1219 aq_lookup(const struct pci_attach_args *pa) 1220 { 1221 unsigned int i; 1222 1223 for (i = 0; i < __arraycount(aq_products); i++) { 1224 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1225 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1226 return &aq_products[i]; 1227 } 1228 return NULL; 1229 } 1230 1231 static int 1232 aq_match(device_t parent, cfdata_t cf, void *aux) 1233 { 1234 struct pci_attach_args *pa = aux; 1235 1236 if (aq_lookup(pa) != NULL) 1237 return 1; 1238 1239 return 0; 1240 } 1241 1242 static void 1243 aq_attach(device_t parent, device_t self, void *aux) 1244 { 1245 struct aq_softc *sc = device_private(self); 1246 struct pci_attach_args *pa = aux; 1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1248 pci_chipset_tag_t pc; 1249 pcitag_t tag; 1250 pcireg_t command, memtype, bar; 1251 const struct aq_product *aqp; 1252 int error; 1253 1254 sc->sc_dev = self; 1255 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1256 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1257 1258 sc->sc_pc = pc = pa->pa_pc; 1259 sc->sc_pcitag = tag = pa->pa_tag; 1260 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1261 1262 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1263 command |= PCI_COMMAND_MASTER_ENABLE; 1264 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1265 1266 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1267 sc->sc_revision = PCI_REVISION(pa->pa_class); 1268 1269 aqp = aq_lookup(pa); 1270 KASSERT(aqp != NULL); 1271 1272 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1273 1274 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1275 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1276 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1277 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1278 return; 1279 } 1280 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1281 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1282 NULL, &sc->sc_iosize) != 0) { 1283 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1284 return; 1285 } 1286 1287 error = aq_fw_reset(sc); 1288 if (error != 0) 1289 goto attach_failure; 1290 1291 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1292 1293 /* max queue num is 8, and must be 2^n */ 1294 if (ncpu >= 8) 1295 sc->sc_nqueues = 8; 1296 else if (ncpu >= 4) 1297 sc->sc_nqueues = 4; 1298 else if (ncpu >= 2) 1299 sc->sc_nqueues = 2; 1300 else 1301 sc->sc_nqueues = 1; 1302 1303 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1304 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1305 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1306 /* TX intrs + RX intrs + LINKSTAT intrs */ 1307 sc->sc_use_txrx_independent_intr = true; 1308 sc->sc_poll_linkstat = false; 1309 sc->sc_msix = true; 1310 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1311 /* TX intrs + RX intrs */ 1312 sc->sc_use_txrx_independent_intr = true; 1313 sc->sc_poll_linkstat = true; 1314 sc->sc_msix = true; 1315 } else 1316 #endif 1317 if (msixcount >= (sc->sc_nqueues + 1)) { 1318 /* TX/RX intrs LINKSTAT intrs */ 1319 sc->sc_use_txrx_independent_intr = false; 1320 sc->sc_poll_linkstat = false; 1321 sc->sc_msix = true; 1322 } else if (msixcount >= sc->sc_nqueues) { 1323 /* TX/RX intrs */ 1324 sc->sc_use_txrx_independent_intr = false; 1325 sc->sc_poll_linkstat = true; 1326 sc->sc_msix = true; 1327 } else { 1328 /* giving up using MSI-X */ 1329 sc->sc_msix = false; 1330 } 1331 1332 /* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */ 1333 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE || 1334 FW_VERSION_MAJOR(sc) == 1) 1335 sc->sc_poll_linkstat = true; 1336 1337 #ifdef AQ_FORCE_POLL_LINKSTAT 1338 sc->sc_poll_linkstat = true; 1339 #endif 1340 1341 aprint_debug_dev(sc->sc_dev, 1342 "ncpu=%d, pci_msix_count=%d." 1343 " allocate %d interrupts for %d%s queues%s\n", 1344 ncpu, msixcount, 1345 (sc->sc_use_txrx_independent_intr ? 1346 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1347 (sc->sc_poll_linkstat ? 0 : 1), 1348 sc->sc_nqueues, 1349 sc->sc_use_txrx_independent_intr ? "*2" : "", 1350 sc->sc_poll_linkstat ? "" : ", and link status"); 1351 1352 if (sc->sc_msix) 1353 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1354 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1355 else 1356 error = ENODEV; 1357 1358 if (error != 0) { 1359 /* if MSI-X failed, fallback to MSI with single queue */ 1360 sc->sc_use_txrx_independent_intr = false; 1361 sc->sc_poll_linkstat = false; 1362 sc->sc_msix = false; 1363 sc->sc_nqueues = 1; 1364 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1365 } 1366 if (error != 0) { 1367 /* if MSI failed, fallback to INTx */ 1368 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1369 } 1370 if (error != 0) 1371 goto attach_failure; 1372 1373 callout_init(&sc->sc_tick_ch, 0); 1374 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1375 1376 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1377 1378 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1379 sc->sc_rss_enable = true; 1380 else 1381 sc->sc_rss_enable = false; 1382 1383 error = aq_txrx_rings_alloc(sc); 1384 if (error != 0) 1385 goto attach_failure; 1386 1387 error = aq_fw_version_init(sc); 1388 if (error != 0) 1389 goto attach_failure; 1390 1391 error = aq_hw_init_ucp(sc); 1392 if (error < 0) 1393 goto attach_failure; 1394 1395 KASSERT(sc->sc_mbox_addr != 0); 1396 error = aq_hw_reset(sc); 1397 if (error != 0) 1398 goto attach_failure; 1399 1400 aq_get_mac_addr(sc); 1401 aq_init_rss(sc); 1402 1403 error = aq_hw_init(sc); /* initialize and interrupts */ 1404 if (error != 0) 1405 goto attach_failure; 1406 1407 sc->sc_media_type = aqp->aq_media_type; 1408 sc->sc_available_rates = aqp->aq_available_rates; 1409 1410 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1411 ifmedia_init(&sc->sc_media, IFM_IMASK, 1412 aq_ifmedia_change, aq_ifmedia_status); 1413 aq_initmedia(sc); 1414 1415 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1416 ifp->if_softc = sc; 1417 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1418 ifp->if_extflags = IFEF_MPSAFE; 1419 ifp->if_baudrate = IF_Gbps(10); 1420 ifp->if_init = aq_init; 1421 ifp->if_ioctl = aq_ioctl; 1422 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1423 ifp->if_transmit = aq_transmit; 1424 ifp->if_start = aq_start; 1425 ifp->if_stop = aq_stop; 1426 ifp->if_watchdog = aq_watchdog; 1427 IFQ_SET_READY(&ifp->if_snd); 1428 1429 /* initialize capabilities */ 1430 sc->sc_ethercom.ec_capabilities = 0; 1431 sc->sc_ethercom.ec_capenable = 0; 1432 #if notyet 1433 /* TODO */ 1434 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1435 #endif 1436 sc->sc_ethercom.ec_capabilities |= 1437 ETHERCAP_JUMBO_MTU | 1438 ETHERCAP_VLAN_MTU | 1439 ETHERCAP_VLAN_HWTAGGING | 1440 ETHERCAP_VLAN_HWFILTER; 1441 sc->sc_ethercom.ec_capenable |= 1442 ETHERCAP_VLAN_HWTAGGING | 1443 ETHERCAP_VLAN_HWFILTER; 1444 1445 ifp->if_capabilities = 0; 1446 ifp->if_capenable = 0; 1447 #ifdef CONFIG_LRO_SUPPORT 1448 ifp->if_capabilities |= IFCAP_LRO; 1449 ifp->if_capenable |= IFCAP_LRO; 1450 #endif 1451 #if notyet 1452 /* TSO */ 1453 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1454 #endif 1455 1456 /* TX hardware checksum offloading */ 1457 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1458 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1459 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1460 /* RX hardware checksum offloading */ 1461 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1462 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1463 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1464 1465 if_initialize(ifp); 1466 ifp->if_percpuq = if_percpuq_create(ifp); 1467 if_deferred_start_init(ifp, NULL); 1468 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1469 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1470 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1471 if_register(ifp); 1472 1473 aq_enable_intr(sc, true, false); /* only intr about link */ 1474 1475 /* update media */ 1476 aq_ifmedia_change(ifp); 1477 1478 #if NSYSMON_ENVSYS > 0 1479 /* temperature monitoring */ 1480 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1481 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1482 1483 sc->sc_sme = sysmon_envsys_create(); 1484 sc->sc_sme->sme_name = device_xname(self); 1485 sc->sc_sme->sme_cookie = sc; 1486 sc->sc_sme->sme_flags = 0; 1487 sc->sc_sme->sme_refresh = aq_temp_refresh; 1488 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1489 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1490 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1491 1492 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1493 if (sysmon_envsys_register(sc->sc_sme)) { 1494 sysmon_envsys_destroy(sc->sc_sme); 1495 sc->sc_sme = NULL; 1496 goto attach_failure; 1497 } 1498 1499 /* 1500 * for unknown reasons, the first call of fw2x_get_temperature() 1501 * will always fail (firmware matter?), so run once now. 1502 */ 1503 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1504 } 1505 #endif 1506 1507 #ifdef AQ_EVENT_COUNTERS 1508 /* get starting statistics values */ 1509 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1510 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1511 sc->sc_poll_statistics = true; 1512 } 1513 1514 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1515 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1516 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1517 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1518 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1519 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1520 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1521 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1522 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1523 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1524 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1525 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1526 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1527 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1528 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1529 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1530 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1531 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1532 #endif 1533 1534 if (pmf_device_register(self, NULL, NULL)) 1535 pmf_class_network_register(self, ifp); 1536 else 1537 aprint_error_dev(self, "couldn't establish power handler\n"); 1538 1539 return; 1540 1541 attach_failure: 1542 aq_detach(self, 0); 1543 } 1544 1545 static int 1546 aq_detach(device_t self, int flags __unused) 1547 { 1548 struct aq_softc *sc = device_private(self); 1549 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1550 int i, s; 1551 1552 if (sc->sc_iosize != 0) { 1553 if (ifp->if_softc != NULL) { 1554 s = splnet(); 1555 aq_stop(ifp, 0); 1556 splx(s); 1557 } 1558 1559 for (i = 0; i < AQ_NINTR_MAX; i++) { 1560 if (sc->sc_ihs[i] != NULL) { 1561 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1562 sc->sc_ihs[i] = NULL; 1563 } 1564 } 1565 if (sc->sc_nintrs > 0) { 1566 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1567 sc->sc_nintrs); 1568 sc->sc_intrs = NULL; 1569 sc->sc_nintrs = 0; 1570 } 1571 1572 aq_txrx_rings_free(sc); 1573 1574 if (ifp->if_softc != NULL) { 1575 ether_ifdetach(ifp); 1576 if_detach(ifp); 1577 } 1578 1579 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1580 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1581 sc->sc_iosize = 0; 1582 } 1583 1584 callout_stop(&sc->sc_tick_ch); 1585 1586 #if NSYSMON_ENVSYS > 0 1587 if (sc->sc_sme != NULL) { 1588 /* all sensors associated with this will also be detached */ 1589 sysmon_envsys_unregister(sc->sc_sme); 1590 } 1591 #endif 1592 1593 #ifdef AQ_EVENT_COUNTERS 1594 AQ_EVCNT_DETACH(sc, uprc); 1595 AQ_EVCNT_DETACH(sc, mprc); 1596 AQ_EVCNT_DETACH(sc, bprc); 1597 AQ_EVCNT_DETACH(sc, erpt); 1598 AQ_EVCNT_DETACH(sc, uptc); 1599 AQ_EVCNT_DETACH(sc, mptc); 1600 AQ_EVCNT_DETACH(sc, bptc); 1601 AQ_EVCNT_DETACH(sc, erpr); 1602 AQ_EVCNT_DETACH(sc, mbtc); 1603 AQ_EVCNT_DETACH(sc, bbtc); 1604 AQ_EVCNT_DETACH(sc, mbrc); 1605 AQ_EVCNT_DETACH(sc, bbrc); 1606 AQ_EVCNT_DETACH(sc, ubrc); 1607 AQ_EVCNT_DETACH(sc, ubtc); 1608 AQ_EVCNT_DETACH(sc, ptc); 1609 AQ_EVCNT_DETACH(sc, prc); 1610 AQ_EVCNT_DETACH(sc, dpc); 1611 AQ_EVCNT_DETACH(sc, cprc); 1612 #endif 1613 1614 ifmedia_fini(&sc->sc_media); 1615 1616 mutex_destroy(&sc->sc_mpi_mutex); 1617 mutex_destroy(&sc->sc_mutex); 1618 1619 return 0; 1620 } 1621 1622 static int 1623 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1624 int (*func)(void *), void *arg, const char *xname) 1625 { 1626 char intrbuf[PCI_INTRSTR_LEN]; 1627 pci_chipset_tag_t pc = sc->sc_pc; 1628 void *vih; 1629 const char *intrstr = NULL; 1630 1631 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1632 sizeof(intrbuf)); 1633 1634 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1635 1636 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1637 IPL_NET, func, arg, xname); 1638 if (vih == NULL) { 1639 aprint_error_dev(sc->sc_dev, 1640 "unable to establish MSI-X%s%s for %s\n", 1641 intrstr ? " at " : "", 1642 intrstr ? intrstr : "", xname); 1643 return EIO; 1644 } 1645 sc->sc_ihs[intno] = vih; 1646 1647 if (affinity != NULL) { 1648 /* Round-robin affinity */ 1649 kcpuset_zero(affinity); 1650 kcpuset_set(affinity, intno % ncpu); 1651 interrupt_distribute(vih, affinity, NULL); 1652 } 1653 1654 return 0; 1655 } 1656 1657 static int 1658 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1659 bool linkintr) 1660 { 1661 kcpuset_t *affinity; 1662 int error, intno, i; 1663 char intr_xname[INTRDEVNAMEBUF]; 1664 1665 kcpuset_create(&affinity, false); 1666 1667 intno = 0; 1668 1669 if (txrx_independent) { 1670 for (i = 0; i < sc->sc_nqueues; i++) { 1671 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1672 device_xname(sc->sc_dev), i); 1673 sc->sc_rx_irq[i] = intno; 1674 error = aq_establish_intr(sc, intno++, affinity, 1675 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1676 if (error != 0) 1677 goto fail; 1678 } 1679 for (i = 0; i < sc->sc_nqueues; i++) { 1680 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1681 device_xname(sc->sc_dev), i); 1682 sc->sc_tx_irq[i] = intno; 1683 error = aq_establish_intr(sc, intno++, affinity, 1684 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1685 if (error != 0) 1686 goto fail; 1687 } 1688 } else { 1689 for (i = 0; i < sc->sc_nqueues; i++) { 1690 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1691 device_xname(sc->sc_dev), i); 1692 sc->sc_rx_irq[i] = intno; 1693 sc->sc_tx_irq[i] = intno; 1694 error = aq_establish_intr(sc, intno++, affinity, 1695 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1696 if (error != 0) 1697 goto fail; 1698 } 1699 } 1700 1701 if (linkintr) { 1702 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1703 device_xname(sc->sc_dev)); 1704 sc->sc_linkstat_irq = intno; 1705 error = aq_establish_intr(sc, intno++, affinity, 1706 aq_link_intr, sc, intr_xname); 1707 if (error != 0) 1708 goto fail; 1709 } 1710 1711 kcpuset_destroy(affinity); 1712 return 0; 1713 1714 fail: 1715 for (i = 0; i < AQ_NINTR_MAX; i++) { 1716 if (sc->sc_ihs[i] != NULL) { 1717 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1718 sc->sc_ihs[i] = NULL; 1719 } 1720 } 1721 1722 kcpuset_destroy(affinity); 1723 return ENOMEM; 1724 } 1725 1726 static int 1727 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1728 bool txrx_independent, bool linkintr) 1729 { 1730 int error, nintr; 1731 1732 if (txrx_independent) 1733 nintr = nqueue * 2; 1734 else 1735 nintr = nqueue; 1736 1737 if (linkintr) 1738 nintr++; 1739 1740 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1741 if (error != 0) { 1742 aprint_error_dev(sc->sc_dev, 1743 "failed to allocate MSI-X interrupts\n"); 1744 goto fail; 1745 } 1746 1747 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1748 if (error == 0) { 1749 sc->sc_nintrs = nintr; 1750 } else { 1751 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1752 sc->sc_nintrs = 0; 1753 } 1754 fail: 1755 return error; 1756 1757 } 1758 1759 static int 1760 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1761 pci_intr_type_t inttype) 1762 { 1763 int counts[PCI_INTR_TYPE_SIZE]; 1764 int error, nintr; 1765 1766 nintr = 1; 1767 1768 memset(counts, 0, sizeof(counts)); 1769 counts[inttype] = nintr; 1770 1771 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1772 if (error != 0) { 1773 aprint_error_dev(sc->sc_dev, 1774 "failed to allocate%s interrupts\n", 1775 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1776 return error; 1777 } 1778 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1779 device_xname(sc->sc_dev)); 1780 if (error == 0) { 1781 sc->sc_nintrs = nintr; 1782 } else { 1783 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1784 sc->sc_nintrs = 0; 1785 } 1786 return error; 1787 } 1788 1789 static void 1790 global_software_reset(struct aq_softc *sc) 1791 { 1792 uint32_t v; 1793 1794 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1795 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1796 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1797 FW_MPI_RESETCTRL_RESET_DIS, 0); 1798 1799 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1800 v &= ~AQ_FW_SOFTRESET_DIS; 1801 v |= AQ_FW_SOFTRESET_RESET; 1802 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1803 } 1804 1805 static int 1806 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1807 { 1808 int timo; 1809 1810 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1811 1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1813 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1814 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1815 1816 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1817 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1818 1819 global_software_reset(sc); 1820 1821 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1822 1823 /* Wait for RBL to finish boot process. */ 1824 #define RBL_TIMEOUT_MS 10000 1825 uint16_t rbl_status; 1826 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1827 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1828 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1829 break; 1830 msec_delay(1); 1831 } 1832 if (timo <= 0) { 1833 aprint_error_dev(sc->sc_dev, 1834 "RBL> RBL restart failed: timeout\n"); 1835 return EBUSY; 1836 } 1837 switch (rbl_status) { 1838 case RBL_STATUS_SUCCESS: 1839 if (mode != NULL) 1840 *mode = FW_BOOT_MODE_RBL_FLASH; 1841 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1842 break; 1843 case RBL_STATUS_HOST_BOOT: 1844 if (mode != NULL) 1845 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1846 aprint_debug_dev(sc->sc_dev, 1847 "RBL> reset complete! [Host Bootload]\n"); 1848 break; 1849 case RBL_STATUS_FAILURE: 1850 default: 1851 aprint_error_dev(sc->sc_dev, 1852 "unknown RBL status 0x%x\n", rbl_status); 1853 return EBUSY; 1854 } 1855 1856 return 0; 1857 } 1858 1859 static int 1860 mac_soft_reset_flb(struct aq_softc *sc) 1861 { 1862 uint32_t v; 1863 int timo; 1864 1865 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1866 /* 1867 * Let Felicity hardware to complete SMBUS transaction before 1868 * Global software reset. 1869 */ 1870 msec_delay(50); 1871 1872 /* 1873 * If SPI burst transaction was interrupted(before running the script), 1874 * global software reset may not clear SPI interface. 1875 * Clean it up manually before global reset. 1876 */ 1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1879 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1880 msec_delay(50); 1881 1882 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1883 v &= ~AQ_FW_SOFTRESET_DIS; 1884 v |= AQ_FW_SOFTRESET_RESET; 1885 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1886 1887 /* Kickstart. */ 1888 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1889 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1890 if (!sc->sc_fast_start_enabled) 1891 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1892 1893 /* 1894 * For the case SPI burst transaction was interrupted (by MCP reset 1895 * above), wait until it is completed by hardware. 1896 */ 1897 msec_delay(50); 1898 1899 /* MAC Kickstart */ 1900 if (!sc->sc_fast_start_enabled) { 1901 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1902 1903 uint32_t flb_status; 1904 for (timo = 0; timo < 1000; timo++) { 1905 flb_status = AQ_READ_REG(sc, 1906 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1907 if (flb_status != 0) 1908 break; 1909 msec_delay(1); 1910 } 1911 if (flb_status == 0) { 1912 aprint_error_dev(sc->sc_dev, 1913 "FLB> MAC kickstart failed: timed out\n"); 1914 return ETIMEDOUT; 1915 } 1916 aprint_debug_dev(sc->sc_dev, 1917 "FLB> MAC kickstart done, %d ms\n", timo); 1918 /* FW reset */ 1919 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1920 /* 1921 * Let Felicity hardware complete SMBUS transaction before 1922 * Global software reset. 1923 */ 1924 msec_delay(50); 1925 sc->sc_fast_start_enabled = true; 1926 } 1927 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1928 1929 /* PHY Kickstart: #undone */ 1930 global_software_reset(sc); 1931 1932 for (timo = 0; timo < 1000; timo++) { 1933 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1934 break; 1935 msec_delay(10); 1936 } 1937 if (timo >= 1000) { 1938 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1939 return ETIMEDOUT; 1940 } 1941 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1942 return 0; 1943 1944 } 1945 1946 static int 1947 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1948 { 1949 if (sc->sc_rbl_enabled) 1950 return mac_soft_reset_rbl(sc, mode); 1951 1952 if (mode != NULL) 1953 *mode = FW_BOOT_MODE_FLB; 1954 return mac_soft_reset_flb(sc); 1955 } 1956 1957 static int 1958 aq_fw_read_version(struct aq_softc *sc) 1959 { 1960 int i, error = EBUSY; 1961 #define MAC_FW_START_TIMEOUT_MS 10000 1962 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1963 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1964 if (sc->sc_fw_version != 0) { 1965 error = 0; 1966 break; 1967 } 1968 delay(1000); 1969 } 1970 return error; 1971 } 1972 1973 static int 1974 aq_fw_reset(struct aq_softc *sc) 1975 { 1976 uint32_t ver, v, bootExitCode; 1977 int i, error; 1978 1979 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1980 1981 for (i = 1000; i > 0; i--) { 1982 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1983 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1984 if (v != 0x06000000 || bootExitCode != 0) 1985 break; 1986 } 1987 if (i <= 0) { 1988 aprint_error_dev(sc->sc_dev, 1989 "F/W reset failed. Neither RBL nor FLB started\n"); 1990 return ETIMEDOUT; 1991 } 1992 sc->sc_rbl_enabled = (bootExitCode != 0); 1993 1994 /* 1995 * Having FW version 0 is an indicator that cold start 1996 * is in progress. This means two things: 1997 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1998 * 2) Driver may skip reset sequence and save time. 1999 */ 2000 if (sc->sc_fast_start_enabled && (ver != 0)) { 2001 error = aq_fw_read_version(sc); 2002 /* Skip reset as it just completed */ 2003 if (error == 0) 2004 return 0; 2005 } 2006 2007 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2008 error = mac_soft_reset(sc, &mode); 2009 if (error != 0) { 2010 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2011 return error; 2012 } 2013 2014 switch (mode) { 2015 case FW_BOOT_MODE_FLB: 2016 aprint_debug_dev(sc->sc_dev, 2017 "FLB> F/W successfully loaded from flash.\n"); 2018 sc->sc_flash_present = true; 2019 return aq_fw_read_version(sc); 2020 case FW_BOOT_MODE_RBL_FLASH: 2021 aprint_debug_dev(sc->sc_dev, 2022 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2023 sc->sc_flash_present = true; 2024 return aq_fw_read_version(sc); 2025 case FW_BOOT_MODE_UNKNOWN: 2026 aprint_error_dev(sc->sc_dev, 2027 "F/W bootload error: unknown bootloader type\n"); 2028 return ENOTSUP; 2029 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2030 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2031 break; 2032 } 2033 2034 /* 2035 * XXX: TODO: add support Host Boot 2036 */ 2037 aprint_error_dev(sc->sc_dev, 2038 "RBL> F/W Host Bootload not implemented\n"); 2039 return ENOTSUP; 2040 } 2041 2042 static int 2043 aq_hw_reset(struct aq_softc *sc) 2044 { 2045 int error; 2046 2047 /* disable irq */ 2048 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2049 2050 /* apply */ 2051 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2052 2053 /* wait ack 10 times by 1ms */ 2054 WAIT_FOR( 2055 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2056 1000, 10, &error); 2057 if (error != 0) { 2058 aprint_error_dev(sc->sc_dev, 2059 "atlantic: IRQ reset failed: %d\n", error); 2060 return error; 2061 } 2062 2063 return sc->sc_fw_ops->reset(sc); 2064 } 2065 2066 static int 2067 aq_hw_init_ucp(struct aq_softc *sc) 2068 { 2069 int timo; 2070 2071 if (FW_VERSION_MAJOR(sc) == 1) { 2072 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) 2073 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe); 2074 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2075 } 2076 2077 /* Wait a maximum of 10sec. It usually takes about 5sec. */ 2078 for (timo = 10000; timo > 0; timo--) { 2079 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2080 if (sc->sc_mbox_addr != 0) 2081 break; 2082 delay(1000); 2083 } 2084 if (sc->sc_mbox_addr == 0) { 2085 aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n"); 2086 return ETIMEDOUT; 2087 } 2088 2089 #define AQ_FW_MIN_VERSION 0x01050006 2090 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2091 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2092 aprint_error_dev(sc->sc_dev, 2093 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2094 " or later required, this is %d.%d.%d\n", 2095 FW_VERSION_MAJOR(sc), 2096 FW_VERSION_MINOR(sc), 2097 FW_VERSION_BUILD(sc)); 2098 return ENOTSUP; 2099 } 2100 2101 return 0; 2102 } 2103 2104 static int 2105 aq_fw_version_init(struct aq_softc *sc) 2106 { 2107 int error = 0; 2108 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2109 2110 if (FW_VERSION_MAJOR(sc) == 1) { 2111 sc->sc_fw_ops = &aq_fw1x_ops; 2112 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2113 sc->sc_fw_ops = &aq_fw2x_ops; 2114 } else { 2115 aprint_error_dev(sc->sc_dev, 2116 "Unsupported F/W version %d.%d.%d\n", 2117 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2118 FW_VERSION_BUILD(sc)); 2119 return ENOTSUP; 2120 } 2121 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2122 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2123 2124 /* detect revision */ 2125 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2126 switch (hwrev & 0x0000000f) { 2127 case 0x01: 2128 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2129 fw_vers); 2130 sc->sc_features |= FEATURES_REV_A0 | 2131 FEATURES_MPI_AQ | FEATURES_MIPS; 2132 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A; 2133 break; 2134 case 0x02: 2135 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2136 fw_vers); 2137 sc->sc_features |= FEATURES_REV_B0 | 2138 FEATURES_MPI_AQ | FEATURES_MIPS | 2139 FEATURES_TPO2 | FEATURES_RPF2; 2140 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2141 break; 2142 case 0x0A: 2143 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2144 fw_vers); 2145 sc->sc_features |= FEATURES_REV_B1 | 2146 FEATURES_MPI_AQ | FEATURES_MIPS | 2147 FEATURES_TPO2 | FEATURES_RPF2; 2148 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2149 break; 2150 default: 2151 aprint_error_dev(sc->sc_dev, 2152 "Unknown revision (0x%08x)\n", hwrev); 2153 sc->sc_features = 0; 2154 sc->sc_max_mtu = ETHERMTU; 2155 error = ENOTSUP; 2156 break; 2157 } 2158 return error; 2159 } 2160 2161 static int 2162 fw1x_reset(struct aq_softc *sc) 2163 { 2164 struct aq_mailbox_header mbox; 2165 const int retryCount = 1000; 2166 uint32_t tid0; 2167 int i; 2168 2169 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2170 2171 for (i = 0; i < retryCount; ++i) { 2172 /* 2173 * Read the beginning of Statistics structure to capture 2174 * the Transaction ID. 2175 */ 2176 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2177 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2178 2179 /* Successfully read the stats. */ 2180 if (tid0 == ~0U) { 2181 /* We have read the initial value. */ 2182 tid0 = mbox.transaction_id; 2183 continue; 2184 } else if (mbox.transaction_id != tid0) { 2185 /* 2186 * Compare transaction ID to initial value. 2187 * If it's different means f/w is alive. 2188 * We're done. 2189 */ 2190 return 0; 2191 } 2192 2193 /* 2194 * Transaction ID value haven't changed since last time. 2195 * Try reading the stats again. 2196 */ 2197 delay(10); 2198 } 2199 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2200 return EBUSY; 2201 } 2202 2203 static int 2204 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2205 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2206 { 2207 uint32_t mpictrl = 0; 2208 uint32_t mpispeed = 0; 2209 2210 if (speed & AQ_LINK_10G) 2211 mpispeed |= FW1X_CTRL_10G; 2212 if (speed & AQ_LINK_5G) 2213 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2214 if (speed & AQ_LINK_2G5) 2215 mpispeed |= FW1X_CTRL_2G5; 2216 if (speed & AQ_LINK_1G) 2217 mpispeed |= FW1X_CTRL_1G; 2218 if (speed & AQ_LINK_100M) 2219 mpispeed |= FW1X_CTRL_100M; 2220 2221 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2222 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2223 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2224 return 0; 2225 } 2226 2227 static int 2228 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2229 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2230 { 2231 uint32_t mpistate, mpi_speed; 2232 aq_link_speed_t speed = AQ_LINK_NONE; 2233 2234 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2235 2236 if (modep != NULL) 2237 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2238 2239 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2240 if (mpi_speed & FW1X_CTRL_10G) 2241 speed = AQ_LINK_10G; 2242 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2243 speed = AQ_LINK_5G; 2244 else if (mpi_speed & FW1X_CTRL_2G5) 2245 speed = AQ_LINK_2G5; 2246 else if (mpi_speed & FW1X_CTRL_1G) 2247 speed = AQ_LINK_1G; 2248 else if (mpi_speed & FW1X_CTRL_100M) 2249 speed = AQ_LINK_100M; 2250 2251 if (speedp != NULL) 2252 *speedp = speed; 2253 2254 if (fcp != NULL) 2255 *fcp = AQ_FC_NONE; 2256 2257 if (eeep != NULL) 2258 *eeep = AQ_EEE_DISABLE; 2259 2260 return 0; 2261 } 2262 2263 static int 2264 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2265 { 2266 int error; 2267 2268 error = aq_fw_downld_dwords(sc, 2269 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2270 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2271 if (error < 0) { 2272 device_printf(sc->sc_dev, 2273 "fw1x> download statistics data FAILED, error %d", error); 2274 return error; 2275 } 2276 2277 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2278 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2279 return 0; 2280 } 2281 2282 static int 2283 fw2x_reset(struct aq_softc *sc) 2284 { 2285 fw2x_capabilities_t caps = { 0 }; 2286 int error; 2287 2288 error = aq_fw_downld_dwords(sc, 2289 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2290 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2291 if (error != 0) { 2292 aprint_error_dev(sc->sc_dev, 2293 "fw2x> can't get F/W capabilities mask, error %d\n", 2294 error); 2295 return error; 2296 } 2297 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2298 2299 char buf[256]; 2300 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2301 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2302 2303 return 0; 2304 } 2305 2306 static int 2307 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2308 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2309 { 2310 uint64_t mpi_ctrl; 2311 int error = 0; 2312 2313 AQ_MPI_LOCK(sc); 2314 2315 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2316 2317 switch (mode) { 2318 case MPI_INIT: 2319 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2320 if (speed & AQ_LINK_10G) 2321 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2322 if (speed & AQ_LINK_5G) 2323 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2324 if (speed & AQ_LINK_2G5) 2325 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2326 if (speed & AQ_LINK_1G) 2327 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2328 if (speed & AQ_LINK_100M) 2329 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2330 2331 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2332 2333 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2334 if (eee == AQ_EEE_ENABLE) 2335 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2336 2337 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2338 if (fc & AQ_FC_RX) 2339 mpi_ctrl |= FW2X_CTRL_PAUSE; 2340 if (fc & AQ_FC_TX) 2341 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2342 break; 2343 case MPI_DEINIT: 2344 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2345 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2346 break; 2347 default: 2348 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2349 error = EINVAL; 2350 goto failure; 2351 } 2352 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2353 2354 failure: 2355 AQ_MPI_UNLOCK(sc); 2356 return error; 2357 } 2358 2359 static int 2360 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2361 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2362 { 2363 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2364 2365 if (modep != NULL) { 2366 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2367 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2368 *modep = MPI_INIT; 2369 else 2370 *modep = MPI_DEINIT; 2371 } 2372 2373 aq_link_speed_t speed = AQ_LINK_NONE; 2374 if (mpi_state & FW2X_CTRL_RATE_10G) 2375 speed = AQ_LINK_10G; 2376 else if (mpi_state & FW2X_CTRL_RATE_5G) 2377 speed = AQ_LINK_5G; 2378 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2379 speed = AQ_LINK_2G5; 2380 else if (mpi_state & FW2X_CTRL_RATE_1G) 2381 speed = AQ_LINK_1G; 2382 else if (mpi_state & FW2X_CTRL_RATE_100M) 2383 speed = AQ_LINK_100M; 2384 2385 if (speedp != NULL) 2386 *speedp = speed; 2387 2388 aq_link_fc_t fc = AQ_FC_NONE; 2389 if (mpi_state & FW2X_CTRL_PAUSE) 2390 fc |= AQ_FC_RX; 2391 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2392 fc |= AQ_FC_TX; 2393 if (fcp != NULL) 2394 *fcp = fc; 2395 2396 /* XXX: TODO: EEE */ 2397 if (eeep != NULL) 2398 *eeep = AQ_EEE_DISABLE; 2399 2400 return 0; 2401 } 2402 2403 static int 2404 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2405 uint32_t timeout_ms, uint32_t try_count) 2406 { 2407 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2408 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2409 int error; 2410 2411 /* First, check that control and state values are consistent */ 2412 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2413 device_printf(sc->sc_dev, 2414 "fw2x> MPI control (%#llx) and state (%#llx)" 2415 " are not consistent for mask %#llx!\n", 2416 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2417 (unsigned long long)mask); 2418 return EINVAL; 2419 } 2420 2421 /* Invert bits (toggle) in control register */ 2422 mpi_ctrl ^= mask; 2423 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2424 2425 /* Clear all bits except masked */ 2426 mpi_ctrl &= mask; 2427 2428 /* Wait for FW reflecting change in state register */ 2429 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2430 1000 * timeout_ms, try_count, &error); 2431 if (error != 0) { 2432 device_printf(sc->sc_dev, 2433 "f/w2x> timeout while waiting for response" 2434 " in state register for bit %#llx!", 2435 (unsigned long long)mask); 2436 return error; 2437 } 2438 return 0; 2439 } 2440 2441 static int 2442 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2443 { 2444 int error; 2445 2446 AQ_MPI_LOCK(sc); 2447 /* Say to F/W to update the statistics */ 2448 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2449 if (error != 0) { 2450 device_printf(sc->sc_dev, 2451 "fw2x> statistics update error %d\n", error); 2452 goto failure; 2453 } 2454 2455 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2456 error = aq_fw_downld_dwords(sc, 2457 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2458 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2459 if (error != 0) { 2460 device_printf(sc->sc_dev, 2461 "fw2x> download statistics data FAILED, error %d", error); 2462 goto failure; 2463 } 2464 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2465 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2466 2467 failure: 2468 AQ_MPI_UNLOCK(sc); 2469 return error; 2470 } 2471 2472 #if NSYSMON_ENVSYS > 0 2473 static int 2474 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2475 { 2476 int error; 2477 uint32_t value, celsius; 2478 2479 AQ_MPI_LOCK(sc); 2480 2481 /* Say to F/W to update the temperature */ 2482 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2483 if (error != 0) 2484 goto failure; 2485 2486 error = aq_fw_downld_dwords(sc, 2487 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2488 &value, sizeof(value) / sizeof(uint32_t)); 2489 if (error != 0) 2490 goto failure; 2491 2492 /* 1/256 decrees C to microkelvin */ 2493 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2494 if (celsius == 0) { 2495 error = EIO; 2496 goto failure; 2497 } 2498 *temp = celsius * (1000000 / 256) + 273150000; 2499 2500 failure: 2501 AQ_MPI_UNLOCK(sc); 2502 return 0; 2503 } 2504 #endif 2505 2506 static int 2507 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2508 uint32_t cnt) 2509 { 2510 uint32_t v; 2511 int error = 0; 2512 2513 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2514 if (error != 0) { 2515 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2516 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2517 if (v == 0) { 2518 device_printf(sc->sc_dev, 2519 "%s:%d: timeout\n", __func__, __LINE__); 2520 return ETIMEDOUT; 2521 } 2522 } 2523 2524 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2525 2526 error = 0; 2527 for (; cnt > 0 && error == 0; cnt--) { 2528 /* execute mailbox interface */ 2529 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2530 AQ_FW_MBOX_CMD_EXECUTE, 1); 2531 if (sc->sc_features & FEATURES_REV_B1) { 2532 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2533 1, 1000, &error); 2534 } else { 2535 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2536 AQ_FW_MBOX_CMD_BUSY) == 0, 2537 1, 1000, &error); 2538 } 2539 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2540 addr += sizeof(uint32_t); 2541 } 2542 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2543 2544 if (error != 0) 2545 device_printf(sc->sc_dev, 2546 "%s:%d: timeout\n", __func__, __LINE__); 2547 2548 return error; 2549 } 2550 2551 /* read my mac address */ 2552 static int 2553 aq_get_mac_addr(struct aq_softc *sc) 2554 { 2555 uint32_t mac_addr[2]; 2556 uint32_t efuse_shadow_addr; 2557 int err; 2558 2559 efuse_shadow_addr = 0; 2560 if (FW_VERSION_MAJOR(sc) >= 2) 2561 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2562 else 2563 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2564 2565 if (efuse_shadow_addr == 0) { 2566 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2567 return ENXIO; 2568 } 2569 2570 memset(mac_addr, 0, sizeof(mac_addr)); 2571 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2572 mac_addr, __arraycount(mac_addr)); 2573 if (err < 0) 2574 return err; 2575 2576 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2577 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2578 return ENXIO; 2579 } 2580 2581 mac_addr[0] = htobe32(mac_addr[0]); 2582 mac_addr[1] = htobe32(mac_addr[1]); 2583 2584 memcpy(sc->sc_enaddr.ether_addr_octet, 2585 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2586 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2587 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2588 2589 return 0; 2590 } 2591 2592 /* set multicast filter. index 0 for own address */ 2593 static int 2594 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2595 { 2596 uint32_t h, l; 2597 2598 if (index >= AQ_HW_MAC_NUM) 2599 return EINVAL; 2600 2601 if (enaddr == NULL) { 2602 /* disable */ 2603 AQ_WRITE_REG_BIT(sc, 2604 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2605 return 0; 2606 } 2607 2608 h = (enaddr[0] << 8) | (enaddr[1]); 2609 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2610 (enaddr[4] << 8) | (enaddr[5]); 2611 2612 /* disable, set, and enable */ 2613 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2614 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2615 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2616 RPF_L2UC_MSW_MACADDR_HI, h); 2617 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2618 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2619 2620 return 0; 2621 } 2622 2623 static int 2624 aq_set_capability(struct aq_softc *sc) 2625 { 2626 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2627 int ip4csum_tx = 2628 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2629 int ip4csum_rx = 2630 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2631 int l4csum_tx = ((ifp->if_capenable & 2632 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2633 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2634 int l4csum_rx = 2635 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2636 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2637 uint32_t lso = 2638 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2639 0 : 0xffffffff; 2640 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2641 0 : 0xffffffff; 2642 uint32_t i, v; 2643 2644 /* TX checksums offloads*/ 2645 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2646 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2647 2648 /* RX checksums offloads*/ 2649 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2650 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2651 2652 /* LSO offloads*/ 2653 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2654 2655 #define AQ_B0_LRO_RXD_MAX 16 2656 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2657 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2658 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2659 for (i = 0; i < AQ_RINGS_NUM; i++) { 2660 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2661 RPO_LRO_LDES_MAX_MASK(i), v); 2662 } 2663 2664 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2665 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2666 RPO_LRO_INACTIVE_IVAL, 0); 2667 /* 2668 * the LRO timebase divider is 5 uS (0x61a), 2669 * to get a maximum coalescing interval of 250 uS, 2670 * we need to multiply by 50(0x32) to get 2671 * the default value 250 uS 2672 */ 2673 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2674 RPO_LRO_MAX_COALESCING_IVAL, 50); 2675 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2676 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2677 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2678 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2679 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2680 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2681 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2682 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2683 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2684 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2685 2686 return 0; 2687 } 2688 2689 static int 2690 aq_set_filter(struct aq_softc *sc) 2691 { 2692 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2693 struct ethercom *ec = &sc->sc_ethercom; 2694 struct ether_multi *enm; 2695 struct ether_multistep step; 2696 int idx, error = 0; 2697 2698 if (ifp->if_flags & IFF_PROMISC) { 2699 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2700 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2701 ec->ec_flags |= ETHER_F_ALLMULTI; 2702 goto done; 2703 } 2704 2705 /* clear all table */ 2706 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2707 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2708 continue; 2709 aq_set_mac_addr(sc, idx, NULL); 2710 } 2711 2712 /* don't accept all multicast */ 2713 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2714 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2715 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2716 RPF_MCAST_FILTER_EN, 0); 2717 2718 idx = 0; 2719 ETHER_LOCK(ec); 2720 ETHER_FIRST_MULTI(step, ec, enm); 2721 while (enm != NULL) { 2722 if (idx == AQ_HW_MAC_OWN) 2723 idx++; 2724 2725 if ((idx >= AQ_HW_MAC_NUM) || 2726 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2727 /* 2728 * too many filters. 2729 * fallback to accept all multicast addresses. 2730 */ 2731 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2732 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2733 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2734 RPF_MCAST_FILTER_EN, 1); 2735 ec->ec_flags |= ETHER_F_ALLMULTI; 2736 ETHER_UNLOCK(ec); 2737 goto done; 2738 } 2739 2740 /* add a filter */ 2741 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2742 2743 ETHER_NEXT_MULTI(step, enm); 2744 } 2745 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2746 ETHER_UNLOCK(ec); 2747 2748 done: 2749 return error; 2750 } 2751 2752 static int 2753 aq_ifmedia_change(struct ifnet * const ifp) 2754 { 2755 struct aq_softc *sc = ifp->if_softc; 2756 aq_link_speed_t rate = AQ_LINK_NONE; 2757 aq_link_fc_t fc = AQ_FC_NONE; 2758 aq_link_eee_t eee = AQ_EEE_DISABLE; 2759 2760 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2761 return EINVAL; 2762 2763 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2764 case IFM_AUTO: 2765 rate = AQ_LINK_AUTO; 2766 break; 2767 case IFM_NONE: 2768 rate = AQ_LINK_NONE; 2769 break; 2770 case IFM_100_TX: 2771 rate = AQ_LINK_100M; 2772 break; 2773 case IFM_1000_T: 2774 rate = AQ_LINK_1G; 2775 break; 2776 case IFM_2500_T: 2777 rate = AQ_LINK_2G5; 2778 break; 2779 case IFM_5000_T: 2780 rate = AQ_LINK_5G; 2781 break; 2782 case IFM_10G_T: 2783 rate = AQ_LINK_10G; 2784 break; 2785 default: 2786 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2787 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2788 return ENODEV; 2789 } 2790 2791 if (sc->sc_media.ifm_media & IFM_FLOW) 2792 fc = AQ_FC_ALL; 2793 2794 /* XXX: todo EEE */ 2795 2796 /* re-initialize hardware with new parameters */ 2797 aq_set_linkmode(sc, rate, fc, eee); 2798 2799 return 0; 2800 } 2801 2802 static void 2803 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2804 { 2805 struct aq_softc *sc = ifp->if_softc; 2806 2807 /* update ifm_active */ 2808 ifmr->ifm_active = IFM_ETHER; 2809 if (sc->sc_link_fc & AQ_FC_RX) 2810 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2811 if (sc->sc_link_fc & AQ_FC_TX) 2812 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2813 2814 switch (sc->sc_link_rate) { 2815 case AQ_LINK_100M: 2816 /* XXX: need to detect fulldup or halfdup */ 2817 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2818 break; 2819 case AQ_LINK_1G: 2820 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2821 break; 2822 case AQ_LINK_2G5: 2823 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2824 break; 2825 case AQ_LINK_5G: 2826 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2827 break; 2828 case AQ_LINK_10G: 2829 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2830 break; 2831 default: 2832 ifmr->ifm_active |= IFM_NONE; 2833 break; 2834 } 2835 2836 /* update ifm_status */ 2837 ifmr->ifm_status = IFM_AVALID; 2838 if (sc->sc_link_rate != AQ_LINK_NONE) 2839 ifmr->ifm_status |= IFM_ACTIVE; 2840 } 2841 2842 static void 2843 aq_initmedia(struct aq_softc *sc) 2844 { 2845 #define IFMEDIA_ETHER_ADD(sc, media) \ 2846 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2847 2848 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2849 if (sc->sc_available_rates & AQ_LINK_100M) { 2850 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2851 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2852 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2853 } 2854 if (sc->sc_available_rates & AQ_LINK_1G) { 2855 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2856 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2857 } 2858 if (sc->sc_available_rates & AQ_LINK_2G5) { 2859 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2860 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2861 } 2862 if (sc->sc_available_rates & AQ_LINK_5G) { 2863 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2864 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2865 } 2866 if (sc->sc_available_rates & AQ_LINK_10G) { 2867 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2868 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2869 } 2870 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2871 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2872 2873 /* default: auto without flowcontrol */ 2874 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2875 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2876 } 2877 2878 static int 2879 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2880 aq_link_eee_t eee) 2881 { 2882 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2883 } 2884 2885 static int 2886 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2887 aq_link_eee_t *eee) 2888 { 2889 aq_hw_fw_mpi_state_t mode; 2890 int error; 2891 2892 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2893 if (error != 0) 2894 return error; 2895 if (mode != MPI_INIT) 2896 return ENXIO; 2897 2898 return 0; 2899 } 2900 2901 static void 2902 aq_hw_init_tx_path(struct aq_softc *sc) 2903 { 2904 /* Tx TC/RSS number config */ 2905 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2906 2907 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2908 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2909 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2910 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2911 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2912 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2913 2914 /* misc */ 2915 AQ_WRITE_REG(sc, TX_TPO2_REG, 2916 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2917 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2918 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2919 2920 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2921 } 2922 2923 static void 2924 aq_hw_init_rx_path(struct aq_softc *sc) 2925 { 2926 int i; 2927 2928 /* clear setting */ 2929 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2930 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2931 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2932 for (i = 0; i < 32; i++) { 2933 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2934 RPF_ETHERTYPE_FILTER_EN, 0); 2935 } 2936 2937 if (sc->sc_rss_enable) { 2938 /* Rx TC/RSS number config */ 2939 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2940 2941 /* Rx flow control */ 2942 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2943 2944 /* RSS Ring selection */ 2945 switch (sc->sc_nqueues) { 2946 case 2: 2947 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2948 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2949 break; 2950 case 4: 2951 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2952 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2953 break; 2954 case 8: 2955 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2956 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2957 break; 2958 } 2959 } 2960 2961 /* L2 and Multicast filters */ 2962 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2963 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2964 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2965 RPF_ACTION_HOST); 2966 } 2967 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2968 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2969 2970 /* Vlan filters */ 2971 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2972 ETHERTYPE_QINQ); 2973 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2974 ETHERTYPE_VLAN); 2975 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2976 2977 if (sc->sc_features & FEATURES_REV_B) { 2978 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2979 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2980 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2981 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2982 } 2983 2984 /* misc */ 2985 if (sc->sc_features & FEATURES_RPF2) 2986 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2987 else 2988 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2989 2990 /* 2991 * XXX: RX_TCP_RSS_HASH_REG: 2992 * linux set 0x000f0000 2993 * freebsd set 0x000f001e 2994 */ 2995 /* RSS hash type set for IP/TCP */ 2996 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2997 RX_TCP_RSS_HASH_TYPE, 0x001e); 2998 2999 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 3000 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 3001 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 3002 3003 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 3004 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 3005 } 3006 3007 static void 3008 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3009 { 3010 int i; 3011 3012 if (sc->sc_intr_moderation_enable) { 3013 unsigned int tx_min, rx_min; /* 0-255 */ 3014 unsigned int tx_max, rx_max; /* 0-511? */ 3015 3016 switch (sc->sc_link_rate) { 3017 case AQ_LINK_100M: 3018 tx_min = 0x4f; 3019 tx_max = 0xff; 3020 rx_min = 0x04; 3021 rx_max = 0x50; 3022 break; 3023 case AQ_LINK_1G: 3024 default: 3025 tx_min = 0x4f; 3026 tx_max = 0xff; 3027 rx_min = 0x30; 3028 rx_max = 0x80; 3029 break; 3030 case AQ_LINK_2G5: 3031 tx_min = 0x4f; 3032 tx_max = 0xff; 3033 rx_min = 0x18; 3034 rx_max = 0xe0; 3035 break; 3036 case AQ_LINK_5G: 3037 tx_min = 0x4f; 3038 tx_max = 0xff; 3039 rx_min = 0x0c; 3040 rx_max = 0x70; 3041 break; 3042 case AQ_LINK_10G: 3043 tx_min = 0x4f; 3044 tx_max = 0x1ff; 3045 rx_min = 0x06; /* freebsd use 80 */ 3046 rx_max = 0x38; /* freebsd use 120 */ 3047 break; 3048 } 3049 3050 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3051 TX_DMA_INT_DESC_WRWB_EN, 0); 3052 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3053 TX_DMA_INT_DESC_MODERATE_EN, 1); 3054 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3055 RX_DMA_INT_DESC_WRWB_EN, 0); 3056 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3057 RX_DMA_INT_DESC_MODERATE_EN, 1); 3058 3059 for (i = 0; i < AQ_RINGS_NUM; i++) { 3060 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3061 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3062 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3063 TX_INTR_MODERATION_CTL_EN); 3064 } 3065 for (i = 0; i < AQ_RINGS_NUM; i++) { 3066 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3067 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3068 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3069 RX_INTR_MODERATION_CTL_EN); 3070 } 3071 3072 } else { 3073 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3074 TX_DMA_INT_DESC_WRWB_EN, 1); 3075 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3076 TX_DMA_INT_DESC_MODERATE_EN, 0); 3077 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3078 RX_DMA_INT_DESC_WRWB_EN, 1); 3079 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3080 RX_DMA_INT_DESC_MODERATE_EN, 0); 3081 3082 for (i = 0; i < AQ_RINGS_NUM; i++) { 3083 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3084 } 3085 for (i = 0; i < AQ_RINGS_NUM; i++) { 3086 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3087 } 3088 } 3089 } 3090 3091 static void 3092 aq_hw_qos_set(struct aq_softc *sc) 3093 { 3094 uint32_t tc = 0; 3095 uint32_t buff_size; 3096 3097 /* TPS Descriptor rate init */ 3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3099 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3100 3101 /* TPS VM init */ 3102 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3103 3104 /* TPS TC credits init */ 3105 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3106 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3107 3108 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3109 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3110 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3111 TPS_DATA_TCT_WEIGHT, 0x64); 3112 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3113 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3114 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3115 TPS_DESC_TCT_WEIGHT, 0x1e); 3116 3117 /* Tx buf size */ 3118 tc = 0; 3119 buff_size = AQ_HW_TXBUF_MAX; 3120 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3121 buff_size); 3122 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3123 (buff_size * (1024 / 32) * 66) / 100); 3124 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3125 (buff_size * (1024 / 32) * 50) / 100); 3126 3127 /* QoS Rx buf size per TC */ 3128 tc = 0; 3129 buff_size = AQ_HW_RXBUF_MAX; 3130 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3131 buff_size); 3132 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3133 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3134 (buff_size * (1024 / 32) * 66) / 100); 3135 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3136 (buff_size * (1024 / 32) * 50) / 100); 3137 3138 /* QoS 802.1p priority -> TC mapping */ 3139 int i_priority; 3140 for (i_priority = 0; i_priority < 8; i_priority++) { 3141 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3142 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3143 } 3144 } 3145 3146 /* called once from aq_attach */ 3147 static int 3148 aq_init_rss(struct aq_softc *sc) 3149 { 3150 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3151 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3152 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3153 unsigned int i; 3154 int error; 3155 3156 /* initialize rss key */ 3157 rss_getkey((uint8_t *)rss_key); 3158 3159 /* hash to ring table */ 3160 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3161 rss_table[i] = i % sc->sc_nqueues; 3162 } 3163 3164 /* 3165 * set rss key 3166 */ 3167 for (i = 0; i < __arraycount(rss_key); i++) { 3168 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3169 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3170 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3171 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3172 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3173 RPF_RSS_KEY_WR_EN, 1); 3174 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3175 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3176 if (error != 0) { 3177 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3178 __func__); 3179 goto rss_set_timeout; 3180 } 3181 } 3182 3183 /* 3184 * set rss indirection table 3185 * 3186 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3187 * we'll make it by __BITMAP(3) macros. 3188 */ 3189 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3190 __BITMAP_ZERO(&bit3x64); 3191 3192 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3193 do { \ 3194 if (val & 1) { \ 3195 __BITMAP_SET((idx) * 3, (bitmap)); \ 3196 } else { \ 3197 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3198 } \ 3199 if (val & 2) { \ 3200 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3201 } else { \ 3202 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3203 } \ 3204 if (val & 4) { \ 3205 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3206 } else { \ 3207 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3208 } \ 3209 } while (0 /* CONSTCOND */) 3210 3211 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3212 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3213 } 3214 3215 /* write 192bit data in steps of 16bit */ 3216 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3217 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3218 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3219 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3220 RPF_RSS_REDIR_ADDR, i); 3221 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3222 RPF_RSS_REDIR_WR_EN, 1); 3223 3224 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3225 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3226 if (error != 0) 3227 break; 3228 } 3229 3230 rss_set_timeout: 3231 return error; 3232 } 3233 3234 static void 3235 aq_hw_l3_filter_set(struct aq_softc *sc) 3236 { 3237 int i; 3238 3239 /* clear all filter */ 3240 for (i = 0; i < 8; i++) { 3241 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3242 RPF_L3_FILTER_L4_EN, 0); 3243 } 3244 } 3245 3246 static void 3247 aq_set_vlan_filters(struct aq_softc *sc) 3248 { 3249 struct ethercom *ec = &sc->sc_ethercom; 3250 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3251 struct vlanid_list *vlanidp; 3252 int i; 3253 3254 ETHER_LOCK(ec); 3255 3256 /* disable all vlan filters */ 3257 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3258 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3259 3260 /* count VID */ 3261 i = 0; 3262 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3263 i++; 3264 3265 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3266 (ifp->if_flags & IFF_PROMISC) || 3267 (i > RPF_VLAN_MAX_FILTERS)) { 3268 /* 3269 * no vlan hwfilter, in promiscuous mode, or too many VID? 3270 * must receive all VID 3271 */ 3272 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3273 RPF_VLAN_MODE_PROMISC, 1); 3274 goto done; 3275 } 3276 3277 /* receive only selected VID */ 3278 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3279 i = 0; 3280 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3281 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3282 RPF_VLAN_FILTER_EN, 1); 3283 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3284 RPF_VLAN_FILTER_RXQ_EN, 0); 3285 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3286 RPF_VLAN_FILTER_RXQ, 0); 3287 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3288 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3289 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3290 RPF_VLAN_FILTER_ID, vlanidp->vid); 3291 i++; 3292 } 3293 3294 done: 3295 ETHER_UNLOCK(ec); 3296 } 3297 3298 static int 3299 aq_hw_init(struct aq_softc *sc) 3300 { 3301 uint32_t v; 3302 3303 /* Force limit MRRS on RDM/TDM to 2K */ 3304 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3305 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3306 3307 /* 3308 * TX DMA total request limit. B0 hardware is not capable to 3309 * handle more than (8K-MRRS) incoming DMA data. 3310 * Value 24 in 256byte units 3311 */ 3312 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3313 3314 aq_hw_init_tx_path(sc); 3315 aq_hw_init_rx_path(sc); 3316 3317 aq_hw_interrupt_moderation_set(sc); 3318 3319 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3320 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3321 3322 aq_hw_qos_set(sc); 3323 3324 /* Enable interrupt */ 3325 int irqmode; 3326 if (sc->sc_msix) 3327 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3328 else 3329 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3330 3331 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3332 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3333 sc->sc_msix ? 1 : 0); 3334 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3335 3336 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3337 3338 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3339 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3340 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3341 ); 3342 3343 /* link interrupt */ 3344 if (!sc->sc_msix) 3345 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3346 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3347 __BIT(7) | sc->sc_linkstat_irq); 3348 3349 return 0; 3350 } 3351 3352 static int 3353 aq_update_link_status(struct aq_softc *sc) 3354 { 3355 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3356 aq_link_speed_t rate = AQ_LINK_NONE; 3357 aq_link_fc_t fc = AQ_FC_NONE; 3358 aq_link_eee_t eee = AQ_EEE_DISABLE; 3359 unsigned int speed; 3360 int changed = 0; 3361 3362 aq_get_linkmode(sc, &rate, &fc, &eee); 3363 3364 if (sc->sc_link_rate != rate) 3365 changed = 1; 3366 if (sc->sc_link_fc != fc) 3367 changed = 1; 3368 if (sc->sc_link_eee != eee) 3369 changed = 1; 3370 3371 if (changed) { 3372 switch (rate) { 3373 case AQ_LINK_100M: 3374 speed = 100; 3375 break; 3376 case AQ_LINK_1G: 3377 speed = 1000; 3378 break; 3379 case AQ_LINK_2G5: 3380 speed = 2500; 3381 break; 3382 case AQ_LINK_5G: 3383 speed = 5000; 3384 break; 3385 case AQ_LINK_10G: 3386 speed = 10000; 3387 break; 3388 case AQ_LINK_NONE: 3389 default: 3390 speed = 0; 3391 break; 3392 } 3393 3394 if (sc->sc_link_rate == AQ_LINK_NONE) { 3395 /* link DOWN -> UP */ 3396 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3397 speed); 3398 if_link_state_change(ifp, LINK_STATE_UP); 3399 } else if (rate == AQ_LINK_NONE) { 3400 /* link UP -> DOWN */ 3401 device_printf(sc->sc_dev, "link is DOWN\n"); 3402 if_link_state_change(ifp, LINK_STATE_DOWN); 3403 } else { 3404 device_printf(sc->sc_dev, 3405 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3406 speed, fc, eee); 3407 } 3408 3409 sc->sc_link_rate = rate; 3410 sc->sc_link_fc = fc; 3411 sc->sc_link_eee = eee; 3412 3413 /* update interrupt timing according to new link speed */ 3414 aq_hw_interrupt_moderation_set(sc); 3415 } 3416 3417 return changed; 3418 } 3419 3420 #ifdef AQ_EVENT_COUNTERS 3421 static void 3422 aq_update_statistics(struct aq_softc *sc) 3423 { 3424 int prev = sc->sc_statistics_idx; 3425 int cur = prev ^ 1; 3426 3427 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3428 3429 /* 3430 * aq's internal statistics counter is 32bit. 3431 * cauculate delta, and add to evcount 3432 */ 3433 #define ADD_DELTA(cur, prev, name) \ 3434 do { \ 3435 uint32_t n; \ 3436 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3437 sc->sc_statistics[prev].name); \ 3438 if (n != 0) { \ 3439 AQ_EVCNT_ADD(sc, name, n); \ 3440 } \ 3441 } while (/*CONSTCOND*/0); 3442 3443 ADD_DELTA(cur, prev, uprc); 3444 ADD_DELTA(cur, prev, mprc); 3445 ADD_DELTA(cur, prev, bprc); 3446 ADD_DELTA(cur, prev, prc); 3447 ADD_DELTA(cur, prev, erpr); 3448 ADD_DELTA(cur, prev, uptc); 3449 ADD_DELTA(cur, prev, mptc); 3450 ADD_DELTA(cur, prev, bptc); 3451 ADD_DELTA(cur, prev, ptc); 3452 ADD_DELTA(cur, prev, erpt); 3453 ADD_DELTA(cur, prev, mbtc); 3454 ADD_DELTA(cur, prev, bbtc); 3455 ADD_DELTA(cur, prev, mbrc); 3456 ADD_DELTA(cur, prev, bbrc); 3457 ADD_DELTA(cur, prev, ubrc); 3458 ADD_DELTA(cur, prev, ubtc); 3459 ADD_DELTA(cur, prev, dpc); 3460 ADD_DELTA(cur, prev, cprc); 3461 3462 sc->sc_statistics_idx = cur; 3463 } 3464 #endif /* AQ_EVENT_COUNTERS */ 3465 3466 /* allocate and map one DMA block */ 3467 static int 3468 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3469 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3470 { 3471 int nsegs, error; 3472 3473 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3474 1, &nsegs, 0)) != 0) { 3475 aprint_error_dev(sc->sc_dev, 3476 "unable to allocate DMA buffer, error=%d\n", error); 3477 goto fail_alloc; 3478 } 3479 3480 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3481 BUS_DMA_COHERENT)) != 0) { 3482 aprint_error_dev(sc->sc_dev, 3483 "unable to map DMA buffer, error=%d\n", error); 3484 goto fail_map; 3485 } 3486 3487 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3488 0, mapp)) != 0) { 3489 aprint_error_dev(sc->sc_dev, 3490 "unable to create DMA map, error=%d\n", error); 3491 goto fail_create; 3492 } 3493 3494 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3495 0)) != 0) { 3496 aprint_error_dev(sc->sc_dev, 3497 "unable to load DMA map, error=%d\n", error); 3498 goto fail_load; 3499 } 3500 3501 *sizep = size; 3502 return 0; 3503 3504 fail_load: 3505 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3506 *mapp = NULL; 3507 fail_create: 3508 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3509 *addrp = NULL; 3510 fail_map: 3511 bus_dmamem_free(sc->sc_dmat, seg, 1); 3512 memset(seg, 0, sizeof(*seg)); 3513 fail_alloc: 3514 *sizep = 0; 3515 return error; 3516 } 3517 3518 static void 3519 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3520 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3521 { 3522 if (*mapp != NULL) { 3523 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3524 *mapp = NULL; 3525 } 3526 if (*addrp != NULL) { 3527 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3528 *addrp = NULL; 3529 } 3530 if (*sizep != 0) { 3531 bus_dmamem_free(sc->sc_dmat, seg, 1); 3532 memset(seg, 0, sizeof(*seg)); 3533 *sizep = 0; 3534 } 3535 } 3536 3537 static int 3538 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3539 { 3540 int i, error; 3541 3542 /* allocate tx descriptors */ 3543 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3544 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3545 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3546 if (error != 0) 3547 return error; 3548 3549 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3550 3551 /* fill tx ring with dmamap */ 3552 for (i = 0; i < AQ_TXD_NUM; i++) { 3553 #define AQ_MAXDMASIZE (16 * 1024) 3554 #define AQ_NTXSEGS 32 3555 /* XXX: TODO: error check */ 3556 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3557 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3558 } 3559 return 0; 3560 } 3561 3562 static void 3563 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3564 { 3565 int i; 3566 3567 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3568 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3569 3570 for (i = 0; i < AQ_TXD_NUM; i++) { 3571 if (txring->txr_mbufs[i].dmamap != NULL) { 3572 if (txring->txr_mbufs[i].m != NULL) { 3573 bus_dmamap_unload(sc->sc_dmat, 3574 txring->txr_mbufs[i].dmamap); 3575 m_freem(txring->txr_mbufs[i].m); 3576 txring->txr_mbufs[i].m = NULL; 3577 } 3578 bus_dmamap_destroy(sc->sc_dmat, 3579 txring->txr_mbufs[i].dmamap); 3580 txring->txr_mbufs[i].dmamap = NULL; 3581 } 3582 } 3583 } 3584 3585 static int 3586 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3587 { 3588 int i, error; 3589 3590 /* allocate rx descriptors */ 3591 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3592 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3593 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3594 if (error != 0) 3595 return error; 3596 3597 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3598 3599 /* fill rxring with dmamaps */ 3600 for (i = 0; i < AQ_RXD_NUM; i++) { 3601 rxring->rxr_mbufs[i].m = NULL; 3602 /* XXX: TODO: error check */ 3603 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3604 &rxring->rxr_mbufs[i].dmamap); 3605 } 3606 return 0; 3607 } 3608 3609 static void 3610 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3611 { 3612 int i; 3613 3614 /* free all mbufs allocated for RX */ 3615 for (i = 0; i < AQ_RXD_NUM; i++) { 3616 if (rxring->rxr_mbufs[i].m != NULL) { 3617 bus_dmamap_unload(sc->sc_dmat, 3618 rxring->rxr_mbufs[i].dmamap); 3619 m_freem(rxring->rxr_mbufs[i].m); 3620 rxring->rxr_mbufs[i].m = NULL; 3621 } 3622 } 3623 } 3624 3625 static void 3626 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3627 { 3628 int i; 3629 3630 /* free all mbufs and dmamaps */ 3631 aq_rxdrain(sc, rxring); 3632 for (i = 0; i < AQ_RXD_NUM; i++) { 3633 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3634 bus_dmamap_destroy(sc->sc_dmat, 3635 rxring->rxr_mbufs[i].dmamap); 3636 rxring->rxr_mbufs[i].dmamap = NULL; 3637 } 3638 } 3639 3640 /* free RX descriptor */ 3641 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3642 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3643 } 3644 3645 static void 3646 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3647 struct mbuf *m) 3648 { 3649 int error; 3650 3651 /* if mbuf already exists, unload and free */ 3652 if (rxring->rxr_mbufs[idx].m != NULL) { 3653 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3654 m_freem(rxring->rxr_mbufs[idx].m); 3655 rxring->rxr_mbufs[idx].m = NULL; 3656 } 3657 3658 rxring->rxr_mbufs[idx].m = m; 3659 3660 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3661 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3662 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3663 if (error) { 3664 device_printf(sc->sc_dev, 3665 "unable to load rx DMA map %d, error = %d\n", idx, error); 3666 panic("%s: unable to load rx DMA map. error=%d", 3667 __func__, error); 3668 } 3669 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3670 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3671 } 3672 3673 static inline void 3674 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3675 { 3676 /* refill rxdesc, and sync */ 3677 rxring->rxr_rxdesc[idx].read.buf_addr = 3678 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3679 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3680 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3681 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3682 BUS_DMASYNC_PREWRITE); 3683 } 3684 3685 static struct mbuf * 3686 aq_alloc_mbuf(void) 3687 { 3688 struct mbuf *m; 3689 3690 MGETHDR(m, M_DONTWAIT, MT_DATA); 3691 if (m == NULL) 3692 return NULL; 3693 3694 MCLGET(m, M_DONTWAIT); 3695 if ((m->m_flags & M_EXT) == 0) { 3696 m_freem(m); 3697 return NULL; 3698 } 3699 3700 return m; 3701 } 3702 3703 /* allocate mbuf and unload dmamap */ 3704 static int 3705 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3706 { 3707 struct mbuf *m; 3708 3709 m = aq_alloc_mbuf(); 3710 if (m == NULL) 3711 return ENOBUFS; 3712 3713 aq_rxring_setmbuf(sc, rxring, idx, m); 3714 return 0; 3715 } 3716 3717 static int 3718 aq_txrx_rings_alloc(struct aq_softc *sc) 3719 { 3720 int n, error; 3721 3722 for (n = 0; n < sc->sc_nqueues; n++) { 3723 sc->sc_queue[n].sc = sc; 3724 sc->sc_queue[n].txring.txr_sc = sc; 3725 sc->sc_queue[n].txring.txr_index = n; 3726 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3727 IPL_NET); 3728 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3729 if (error != 0) 3730 goto failure; 3731 3732 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3733 if (error != 0) 3734 goto failure; 3735 3736 sc->sc_queue[n].rxring.rxr_sc = sc; 3737 sc->sc_queue[n].rxring.rxr_index = n; 3738 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3739 IPL_NET); 3740 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3741 if (error != 0) 3742 break; 3743 } 3744 3745 failure: 3746 return error; 3747 } 3748 3749 static void 3750 aq_txrx_rings_free(struct aq_softc *sc) 3751 { 3752 int n; 3753 3754 for (n = 0; n < sc->sc_nqueues; n++) { 3755 aq_txring_free(sc, &sc->sc_queue[n].txring); 3756 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3757 3758 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3759 3760 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3761 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3762 } 3763 } 3764 3765 static int 3766 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3767 { 3768 int error = 0; 3769 txring->txr_softint = NULL; 3770 3771 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3772 if (txring->txr_pcq == NULL) { 3773 aprint_error_dev(sc->sc_dev, 3774 "unable to allocate pcq for TXring[%d]\n", 3775 txring->txr_index); 3776 error = ENOMEM; 3777 goto done; 3778 } 3779 3780 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3781 aq_deferred_transmit, txring); 3782 if (txring->txr_softint == NULL) { 3783 aprint_error_dev(sc->sc_dev, 3784 "unable to establish softint for TXring[%d]\n", 3785 txring->txr_index); 3786 error = ENOENT; 3787 } 3788 3789 done: 3790 return error; 3791 } 3792 3793 static void 3794 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3795 { 3796 struct mbuf *m; 3797 3798 if (txring->txr_softint != NULL) { 3799 softint_disestablish(txring->txr_softint); 3800 txring->txr_softint = NULL; 3801 } 3802 3803 if (txring->txr_pcq != NULL) { 3804 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3805 m_freem(m); 3806 pcq_destroy(txring->txr_pcq); 3807 txring->txr_pcq = NULL; 3808 } 3809 } 3810 3811 #if NSYSMON_ENVSYS > 0 3812 static void 3813 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3814 { 3815 struct aq_softc *sc; 3816 uint32_t temp; 3817 int error; 3818 3819 sc = sme->sme_cookie; 3820 3821 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3822 if (error == 0) { 3823 edata->value_cur = temp; 3824 edata->state = ENVSYS_SVALID; 3825 } else { 3826 edata->state = ENVSYS_SINVALID; 3827 } 3828 } 3829 #endif 3830 3831 static void 3832 aq_tick(void *arg) 3833 { 3834 struct aq_softc *sc = arg; 3835 3836 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3837 sc->sc_detect_linkstat = false; 3838 aq_update_link_status(sc); 3839 } 3840 3841 #ifdef AQ_EVENT_COUNTERS 3842 if (sc->sc_poll_statistics) 3843 aq_update_statistics(sc); 3844 #endif 3845 3846 if (sc->sc_poll_linkstat 3847 #ifdef AQ_EVENT_COUNTERS 3848 || sc->sc_poll_statistics 3849 #endif 3850 ) { 3851 callout_schedule(&sc->sc_tick_ch, hz); 3852 } 3853 } 3854 3855 /* interrupt enable/disable */ 3856 static void 3857 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3858 { 3859 uint32_t imask = 0; 3860 int i; 3861 3862 if (txrx) { 3863 for (i = 0; i < sc->sc_nqueues; i++) { 3864 imask |= __BIT(sc->sc_tx_irq[i]); 3865 imask |= __BIT(sc->sc_rx_irq[i]); 3866 } 3867 } 3868 3869 if (link) 3870 imask |= __BIT(sc->sc_linkstat_irq); 3871 3872 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3873 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3874 } 3875 3876 static int 3877 aq_legacy_intr(void *arg) 3878 { 3879 struct aq_softc *sc = arg; 3880 uint32_t status; 3881 int nintr = 0; 3882 3883 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3884 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3885 3886 if (status & __BIT(sc->sc_linkstat_irq)) { 3887 sc->sc_detect_linkstat = true; 3888 callout_schedule(&sc->sc_tick_ch, 0); 3889 nintr++; 3890 } 3891 3892 if (status & __BIT(sc->sc_rx_irq[0])) { 3893 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3894 } 3895 3896 if (status & __BIT(sc->sc_tx_irq[0])) { 3897 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3898 } 3899 3900 return nintr; 3901 } 3902 3903 static int 3904 aq_txrx_intr(void *arg) 3905 { 3906 struct aq_queue *queue = arg; 3907 struct aq_softc *sc = queue->sc; 3908 struct aq_txring *txring = &queue->txring; 3909 struct aq_rxring *rxring = &queue->rxring; 3910 uint32_t status; 3911 int nintr = 0; 3912 int txringidx, rxringidx, txirq, rxirq; 3913 3914 txringidx = txring->txr_index; 3915 rxringidx = rxring->rxr_index; 3916 txirq = sc->sc_tx_irq[txringidx]; 3917 rxirq = sc->sc_rx_irq[rxringidx]; 3918 3919 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3920 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3921 /* stray interrupt? */ 3922 return 0; 3923 } 3924 3925 nintr += aq_rx_intr(rxring); 3926 nintr += aq_tx_intr(txring); 3927 3928 return nintr; 3929 } 3930 3931 static int 3932 aq_link_intr(void *arg) 3933 { 3934 struct aq_softc *sc = arg; 3935 uint32_t status; 3936 int nintr = 0; 3937 3938 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3939 if (status & __BIT(sc->sc_linkstat_irq)) { 3940 sc->sc_detect_linkstat = true; 3941 callout_schedule(&sc->sc_tick_ch, 0); 3942 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3943 __BIT(sc->sc_linkstat_irq)); 3944 nintr++; 3945 } 3946 3947 return nintr; 3948 } 3949 3950 static void 3951 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3952 { 3953 const int ringidx = txring->txr_index; 3954 int i; 3955 3956 mutex_enter(&txring->txr_mutex); 3957 3958 txring->txr_prodidx = 0; 3959 txring->txr_considx = 0; 3960 txring->txr_nfree = AQ_TXD_NUM; 3961 txring->txr_active = false; 3962 3963 /* free mbufs untransmitted */ 3964 for (i = 0; i < AQ_TXD_NUM; i++) { 3965 if (txring->txr_mbufs[i].m != NULL) { 3966 m_freem(txring->txr_mbufs[i].m); 3967 txring->txr_mbufs[i].m = NULL; 3968 } 3969 } 3970 3971 /* disable DMA */ 3972 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3973 3974 if (start) { 3975 /* TX descriptor physical address */ 3976 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3977 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3978 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3979 (uint32_t)((uint64_t)paddr >> 32)); 3980 3981 /* TX descriptor size */ 3982 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3983 AQ_TXD_NUM / 8); 3984 3985 /* reload TAIL pointer */ 3986 txring->txr_prodidx = txring->txr_considx = 3987 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3988 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3989 3990 /* Mapping interrupt vector */ 3991 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3992 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3993 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3994 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3995 3996 /* enable DMA */ 3997 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3998 TX_DMA_DESC_EN, 1); 3999 4000 const int cpuid = 0; /* XXX? */ 4001 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4002 TDM_DCAD_CPUID, cpuid); 4003 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4004 TDM_DCAD_CPUID_EN, 0); 4005 4006 txring->txr_active = true; 4007 } 4008 4009 mutex_exit(&txring->txr_mutex); 4010 } 4011 4012 static int 4013 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4014 { 4015 const int ringidx = rxring->rxr_index; 4016 int i; 4017 int error = 0; 4018 4019 mutex_enter(&rxring->rxr_mutex); 4020 rxring->rxr_active = false; 4021 rxring->rxr_discarding = false; 4022 if (rxring->rxr_receiving_m != NULL) { 4023 m_freem(rxring->rxr_receiving_m); 4024 rxring->rxr_receiving_m = NULL; 4025 rxring->rxr_receiving_m_last = NULL; 4026 } 4027 4028 /* disable DMA */ 4029 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4030 4031 /* free all RX mbufs */ 4032 aq_rxdrain(sc, rxring); 4033 4034 if (start) { 4035 for (i = 0; i < AQ_RXD_NUM; i++) { 4036 error = aq_rxring_add(sc, rxring, i); 4037 if (error != 0) { 4038 aq_rxdrain(sc, rxring); 4039 return error; 4040 } 4041 aq_rxring_reset_desc(sc, rxring, i); 4042 } 4043 4044 /* RX descriptor physical address */ 4045 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4046 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4047 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4048 (uint32_t)((uint64_t)paddr >> 32)); 4049 4050 /* RX descriptor size */ 4051 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4052 AQ_RXD_NUM / 8); 4053 4054 /* maximum receive frame size */ 4055 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4056 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4057 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4058 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4059 4060 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4061 RX_DMA_DESC_HEADER_SPLIT, 0); 4062 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4063 RX_DMA_DESC_VLAN_STRIP, 4064 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4065 1 : 0); 4066 4067 /* 4068 * reload TAIL pointer, and update readidx 4069 * (HEAD pointer cannot write) 4070 */ 4071 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4072 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4073 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4074 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4075 4076 /* Rx ring set mode */ 4077 4078 /* Mapping interrupt vector */ 4079 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4080 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4081 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4082 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4083 4084 const int cpuid = 0; /* XXX? */ 4085 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4086 RX_DMA_DCAD_CPUID, cpuid); 4087 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4088 RX_DMA_DCAD_DESC_EN, 0); 4089 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4090 RX_DMA_DCAD_HEADER_EN, 0); 4091 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4092 RX_DMA_DCAD_PAYLOAD_EN, 0); 4093 4094 /* enable DMA. start receiving */ 4095 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4096 RX_DMA_DESC_EN, 1); 4097 4098 rxring->rxr_active = true; 4099 } 4100 4101 mutex_exit(&rxring->rxr_mutex); 4102 return error; 4103 } 4104 4105 #define TXRING_NEXTIDX(idx) \ 4106 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4107 #define RXRING_NEXTIDX(idx) \ 4108 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4109 4110 static int 4111 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4112 { 4113 bus_dmamap_t map; 4114 struct mbuf *m = *mp; 4115 uint32_t ctl1, ctl1_ctx, ctl2; 4116 int idx, i, error; 4117 4118 idx = txring->txr_prodidx; 4119 map = txring->txr_mbufs[idx].dmamap; 4120 4121 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4122 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4123 if (error == EFBIG) { 4124 struct mbuf *n; 4125 n = m_defrag(m, M_DONTWAIT); 4126 if (n == NULL) 4127 return EFBIG; 4128 /* m_defrag() preserve m */ 4129 KASSERT(n == m); 4130 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4131 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4132 } 4133 if (error != 0) 4134 return error; 4135 4136 /* 4137 * check spaces of free descriptors. 4138 * +1 is additional descriptor for context (vlan, etc,.) 4139 */ 4140 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4141 device_printf(sc->sc_dev, 4142 "TX: not enough descriptors left %d for %d segs\n", 4143 txring->txr_nfree, map->dm_nsegs + 1); 4144 bus_dmamap_unload(sc->sc_dmat, map); 4145 return ENOBUFS; 4146 } 4147 4148 /* sync dma for mbuf */ 4149 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4150 BUS_DMASYNC_PREWRITE); 4151 4152 ctl1_ctx = 0; 4153 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4154 4155 if (vlan_has_tag(m)) { 4156 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4157 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4158 4159 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4160 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4161 4162 /* fill context descriptor and forward index */ 4163 txring->txr_txdesc[idx].buf_addr = 0; 4164 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4165 txring->txr_txdesc[idx].ctl2 = 0; 4166 4167 idx = TXRING_NEXTIDX(idx); 4168 txring->txr_nfree--; 4169 } 4170 4171 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4172 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4173 if (m->m_pkthdr.csum_flags & 4174 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4175 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4176 } 4177 4178 /* fill descriptor(s) */ 4179 for (i = 0; i < map->dm_nsegs; i++) { 4180 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4181 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4182 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4183 4184 if (i == 0) { 4185 /* remember mbuf of these descriptors */ 4186 txring->txr_mbufs[idx].m = m; 4187 } else { 4188 txring->txr_mbufs[idx].m = NULL; 4189 } 4190 4191 if (i == map->dm_nsegs - 1) { 4192 /* last segment, mark an EndOfPacket, and cause intr */ 4193 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4194 } 4195 4196 txring->txr_txdesc[idx].buf_addr = 4197 htole64(map->dm_segs[i].ds_addr); 4198 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4199 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4200 4201 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4202 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4203 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4204 4205 idx = TXRING_NEXTIDX(idx); 4206 txring->txr_nfree--; 4207 } 4208 4209 txring->txr_prodidx = idx; 4210 4211 return 0; 4212 } 4213 4214 static int 4215 aq_tx_intr(void *arg) 4216 { 4217 struct aq_txring *txring = arg; 4218 struct aq_softc *sc = txring->txr_sc; 4219 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4220 struct mbuf *m; 4221 const int ringidx = txring->txr_index; 4222 unsigned int idx, hw_head, n = 0; 4223 4224 mutex_enter(&txring->txr_mutex); 4225 4226 if (!txring->txr_active) 4227 goto tx_intr_done; 4228 4229 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4230 TX_DMA_DESC_HEAD_PTR); 4231 if (hw_head == txring->txr_considx) { 4232 goto tx_intr_done; 4233 } 4234 4235 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4236 4237 for (idx = txring->txr_considx; idx != hw_head; 4238 idx = TXRING_NEXTIDX(idx), n++) { 4239 4240 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4241 bus_dmamap_unload(sc->sc_dmat, 4242 txring->txr_mbufs[idx].dmamap); 4243 4244 if_statinc_ref(nsr, if_opackets); 4245 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4246 if (m->m_flags & M_MCAST) 4247 if_statinc_ref(nsr, if_omcasts); 4248 4249 m_freem(m); 4250 txring->txr_mbufs[idx].m = NULL; 4251 } 4252 4253 txring->txr_nfree++; 4254 } 4255 txring->txr_considx = idx; 4256 4257 IF_STAT_PUTREF(ifp); 4258 4259 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4260 ifp->if_flags &= ~IFF_OACTIVE; 4261 4262 /* no more pending TX packet, cancel watchdog */ 4263 if (txring->txr_nfree >= AQ_TXD_NUM) 4264 ifp->if_timer = 0; 4265 4266 tx_intr_done: 4267 mutex_exit(&txring->txr_mutex); 4268 4269 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4270 return n; 4271 } 4272 4273 static int 4274 aq_rx_intr(void *arg) 4275 { 4276 struct aq_rxring *rxring = arg; 4277 struct aq_softc *sc = rxring->rxr_sc; 4278 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4279 const int ringidx = rxring->rxr_index; 4280 aq_rx_desc_t *rxd; 4281 struct mbuf *m, *m0, *mprev, *new_m; 4282 uint32_t rxd_type, rxd_hash __unused; 4283 uint16_t rxd_status, rxd_pktlen; 4284 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4285 unsigned int idx, n = 0; 4286 bool discarding; 4287 4288 mutex_enter(&rxring->rxr_mutex); 4289 4290 if (!rxring->rxr_active) 4291 goto rx_intr_done; 4292 4293 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4294 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4295 goto rx_intr_done; 4296 } 4297 4298 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4299 4300 /* restore ring context */ 4301 discarding = rxring->rxr_discarding; 4302 m0 = rxring->rxr_receiving_m; 4303 mprev = rxring->rxr_receiving_m_last; 4304 4305 for (idx = rxring->rxr_readidx; 4306 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4307 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4308 4309 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4310 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4311 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4312 4313 rxd = &rxring->rxr_rxdesc[idx]; 4314 rxd_status = le16toh(rxd->wb.status); 4315 4316 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4317 break; /* not yet done */ 4318 4319 rxd_type = le32toh(rxd->wb.type); 4320 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4321 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4322 rxd_hash = le32toh(rxd->wb.rss_hash); 4323 rxd_vlan = le16toh(rxd->wb.vlan); 4324 4325 /* 4326 * Some segments are being dropped while receiving jumboframe. 4327 * Discard until EOP. 4328 */ 4329 if (discarding) 4330 goto rx_next; 4331 4332 if ((rxd_status & RXDESC_STATUS_MACERR) || 4333 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4334 if_statinc_ref(nsr, if_ierrors); 4335 if (m0 != NULL) { 4336 m_freem(m0); 4337 m0 = mprev = NULL; 4338 } 4339 discarding = true; 4340 goto rx_next; 4341 } 4342 4343 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4344 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4345 BUS_DMASYNC_POSTREAD); 4346 m = rxring->rxr_mbufs[idx].m; 4347 4348 new_m = aq_alloc_mbuf(); 4349 if (new_m == NULL) { 4350 /* 4351 * cannot allocate new mbuf. 4352 * discard this packet, and reuse mbuf for next. 4353 */ 4354 if_statinc_ref(nsr, if_iqdrops); 4355 if (m0 != NULL) { 4356 m_freem(m0); 4357 m0 = mprev = NULL; 4358 } 4359 discarding = true; 4360 goto rx_next; 4361 } 4362 rxring->rxr_mbufs[idx].m = NULL; 4363 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4364 4365 if (m0 == NULL) { 4366 m0 = m; 4367 } else { 4368 if (m->m_flags & M_PKTHDR) 4369 m_remove_pkthdr(m); 4370 mprev->m_next = m; 4371 } 4372 mprev = m; 4373 4374 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4375 /* to be continued in the next segment */ 4376 m->m_len = MCLBYTES; 4377 } else { 4378 /* the last segment */ 4379 int mlen = rxd_pktlen % MCLBYTES; 4380 if (mlen == 0) 4381 mlen = MCLBYTES; 4382 m->m_len = mlen; 4383 m0->m_pkthdr.len = rxd_pktlen; 4384 /* VLAN offloading */ 4385 if ((sc->sc_ethercom.ec_capenable & 4386 ETHERCAP_VLAN_HWTAGGING) && 4387 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4388 __SHIFTOUT(rxd_type, 4389 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4390 vlan_set_tag(m0, rxd_vlan); 4391 } 4392 4393 /* Checksum offloading */ 4394 unsigned int pkttype_eth = 4395 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4396 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4397 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4398 __SHIFTOUT(rxd_type, 4399 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4400 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4401 if (__SHIFTOUT(rxd_status, 4402 RXDESC_STATUS_IPV4_CSUM_NG)) 4403 m0->m_pkthdr.csum_flags |= 4404 M_CSUM_IPv4_BAD; 4405 } 4406 4407 /* 4408 * aq will always mark BAD for fragment packets, 4409 * but this is not a problem because the IP stack 4410 * ignores the CSUM flag in fragment packets. 4411 */ 4412 if (__SHIFTOUT(rxd_type, 4413 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4414 bool checked = false; 4415 unsigned int pkttype_proto = 4416 __SHIFTOUT(rxd_type, 4417 RXDESC_TYPE_PKTTYPE_PROTO); 4418 4419 if (pkttype_proto == 4420 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4421 if ((pkttype_eth == 4422 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4423 (ifp->if_capabilities & 4424 IFCAP_CSUM_TCPv4_Rx)) { 4425 m0->m_pkthdr.csum_flags |= 4426 M_CSUM_TCPv4; 4427 checked = true; 4428 } else if ((pkttype_eth == 4429 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4430 (ifp->if_capabilities & 4431 IFCAP_CSUM_TCPv6_Rx)) { 4432 m0->m_pkthdr.csum_flags |= 4433 M_CSUM_TCPv6; 4434 checked = true; 4435 } 4436 } else if (pkttype_proto == 4437 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4438 if ((pkttype_eth == 4439 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4440 (ifp->if_capabilities & 4441 IFCAP_CSUM_UDPv4_Rx)) { 4442 m0->m_pkthdr.csum_flags |= 4443 M_CSUM_UDPv4; 4444 checked = true; 4445 } else if ((pkttype_eth == 4446 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4447 (ifp->if_capabilities & 4448 IFCAP_CSUM_UDPv6_Rx)) { 4449 m0->m_pkthdr.csum_flags |= 4450 M_CSUM_UDPv6; 4451 checked = true; 4452 } 4453 } 4454 if (checked && 4455 (__SHIFTOUT(rxd_status, 4456 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4457 !__SHIFTOUT(rxd_status, 4458 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4459 m0->m_pkthdr.csum_flags |= 4460 M_CSUM_TCP_UDP_BAD; 4461 } 4462 } 4463 4464 m_set_rcvif(m0, ifp); 4465 if_statinc_ref(nsr, if_ipackets); 4466 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4467 if_percpuq_enqueue(ifp->if_percpuq, m0); 4468 m0 = mprev = NULL; 4469 } 4470 4471 rx_next: 4472 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0) 4473 discarding = false; 4474 4475 aq_rxring_reset_desc(sc, rxring, idx); 4476 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4477 } 4478 /* save ring context */ 4479 rxring->rxr_readidx = idx; 4480 rxring->rxr_discarding = discarding; 4481 rxring->rxr_receiving_m = m0; 4482 rxring->rxr_receiving_m_last = mprev; 4483 4484 IF_STAT_PUTREF(ifp); 4485 4486 rx_intr_done: 4487 mutex_exit(&rxring->rxr_mutex); 4488 4489 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4490 return n; 4491 } 4492 4493 static int 4494 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4495 { 4496 struct ifnet *ifp = &ec->ec_if; 4497 struct aq_softc *sc = ifp->if_softc; 4498 4499 aq_set_vlan_filters(sc); 4500 return 0; 4501 } 4502 4503 static int 4504 aq_ifflags_cb(struct ethercom *ec) 4505 { 4506 struct ifnet *ifp = &ec->ec_if; 4507 struct aq_softc *sc = ifp->if_softc; 4508 int i, ecchange, error = 0; 4509 unsigned short iffchange; 4510 4511 AQ_LOCK(sc); 4512 4513 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4514 if ((iffchange & IFF_PROMISC) != 0) 4515 error = aq_set_filter(sc); 4516 4517 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4518 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4519 for (i = 0; i < AQ_RINGS_NUM; i++) { 4520 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4521 RX_DMA_DESC_VLAN_STRIP, 4522 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4523 1 : 0); 4524 } 4525 } 4526 4527 /* vlan configuration depends on also interface promiscuous mode */ 4528 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4529 aq_set_vlan_filters(sc); 4530 4531 sc->sc_ec_capenable = ec->ec_capenable; 4532 sc->sc_if_flags = ifp->if_flags; 4533 4534 AQ_UNLOCK(sc); 4535 4536 return error; 4537 } 4538 4539 static int 4540 aq_init(struct ifnet *ifp) 4541 { 4542 struct aq_softc *sc = ifp->if_softc; 4543 int i, error = 0; 4544 4545 aq_stop(ifp, false); 4546 4547 AQ_LOCK(sc); 4548 4549 aq_set_vlan_filters(sc); 4550 aq_set_capability(sc); 4551 4552 for (i = 0; i < sc->sc_nqueues; i++) { 4553 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4554 } 4555 4556 /* invalidate RX descriptor cache */ 4557 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4558 AQ_READ_REG_BIT(sc, 4559 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4560 4561 /* start RX */ 4562 for (i = 0; i < sc->sc_nqueues; i++) { 4563 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4564 if (error != 0) { 4565 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4566 __func__); 4567 goto aq_init_failure; 4568 } 4569 } 4570 aq_init_rss(sc); 4571 aq_hw_l3_filter_set(sc); 4572 4573 /* need to start callout? */ 4574 if (sc->sc_poll_linkstat 4575 #ifdef AQ_EVENT_COUNTERS 4576 || sc->sc_poll_statistics 4577 #endif 4578 ) { 4579 callout_schedule(&sc->sc_tick_ch, hz); 4580 } 4581 4582 /* ready */ 4583 ifp->if_flags |= IFF_RUNNING; 4584 ifp->if_flags &= ~IFF_OACTIVE; 4585 4586 /* start TX and RX */ 4587 aq_enable_intr(sc, true, true); 4588 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4589 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4590 4591 aq_init_failure: 4592 sc->sc_if_flags = ifp->if_flags; 4593 4594 AQ_UNLOCK(sc); 4595 4596 return error; 4597 } 4598 4599 static void 4600 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4601 struct aq_txring *txring, bool is_transmit) 4602 { 4603 struct mbuf *m; 4604 int npkt, error; 4605 4606 if ((ifp->if_flags & IFF_RUNNING) == 0) 4607 return; 4608 4609 for (npkt = 0; ; npkt++) { 4610 if (is_transmit) 4611 m = pcq_peek(txring->txr_pcq); 4612 else 4613 IFQ_POLL(&ifp->if_snd, m); 4614 4615 if (m == NULL) 4616 break; 4617 4618 if (txring->txr_nfree < AQ_TXD_MIN) 4619 break; 4620 4621 if (is_transmit) 4622 pcq_get(txring->txr_pcq); 4623 else 4624 IFQ_DEQUEUE(&ifp->if_snd, m); 4625 4626 error = aq_encap_txring(sc, txring, &m); 4627 if (error != 0) { 4628 /* too many mbuf chains? or not enough descriptors? */ 4629 m_freem(m); 4630 if_statinc(ifp, if_oerrors); 4631 if (txring->txr_index == 0 && error == ENOBUFS) 4632 ifp->if_flags |= IFF_OACTIVE; 4633 break; 4634 } 4635 4636 /* update tail ptr */ 4637 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4638 txring->txr_prodidx); 4639 4640 /* Pass the packet to any BPF listeners */ 4641 bpf_mtap(ifp, m, BPF_D_OUT); 4642 } 4643 4644 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4645 ifp->if_flags |= IFF_OACTIVE; 4646 4647 if (npkt) 4648 ifp->if_timer = 5; 4649 } 4650 4651 static void 4652 aq_start(struct ifnet *ifp) 4653 { 4654 struct aq_softc *sc; 4655 struct aq_txring *txring; 4656 4657 sc = ifp->if_softc; 4658 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4659 4660 mutex_enter(&txring->txr_mutex); 4661 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4662 aq_send_common_locked(ifp, sc, txring, false); 4663 mutex_exit(&txring->txr_mutex); 4664 } 4665 4666 static inline unsigned int 4667 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4668 { 4669 return (cpu_index(curcpu()) % sc->sc_nqueues); 4670 } 4671 4672 static int 4673 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4674 { 4675 struct aq_softc *sc = ifp->if_softc; 4676 struct aq_txring *txring; 4677 int ringidx; 4678 4679 ringidx = aq_select_txqueue(sc, m); 4680 txring = &sc->sc_queue[ringidx].txring; 4681 4682 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4683 m_freem(m); 4684 return ENOBUFS; 4685 } 4686 4687 if (mutex_tryenter(&txring->txr_mutex)) { 4688 aq_send_common_locked(ifp, sc, txring, true); 4689 mutex_exit(&txring->txr_mutex); 4690 } else { 4691 softint_schedule(txring->txr_softint); 4692 } 4693 return 0; 4694 } 4695 4696 static void 4697 aq_deferred_transmit(void *arg) 4698 { 4699 struct aq_txring *txring = arg; 4700 struct aq_softc *sc = txring->txr_sc; 4701 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4702 4703 mutex_enter(&txring->txr_mutex); 4704 if (pcq_peek(txring->txr_pcq) != NULL) 4705 aq_send_common_locked(ifp, sc, txring, true); 4706 mutex_exit(&txring->txr_mutex); 4707 } 4708 4709 static void 4710 aq_stop(struct ifnet *ifp, int disable) 4711 { 4712 struct aq_softc *sc = ifp->if_softc; 4713 int i; 4714 4715 AQ_LOCK(sc); 4716 4717 ifp->if_timer = 0; 4718 4719 if ((ifp->if_flags & IFF_RUNNING) == 0) 4720 goto already_stopped; 4721 4722 /* disable tx/rx interrupts */ 4723 aq_enable_intr(sc, true, false); 4724 4725 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4726 for (i = 0; i < sc->sc_nqueues; i++) { 4727 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4728 } 4729 4730 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4731 for (i = 0; i < sc->sc_nqueues; i++) { 4732 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4733 } 4734 4735 /* invalidate RX descriptor cache */ 4736 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4737 AQ_READ_REG_BIT(sc, 4738 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4739 4740 ifp->if_timer = 0; 4741 4742 already_stopped: 4743 if (!disable) { 4744 /* when pmf stop, disable link status intr and callout */ 4745 aq_enable_intr(sc, false, false); 4746 callout_stop(&sc->sc_tick_ch); 4747 } 4748 4749 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4750 4751 AQ_UNLOCK(sc); 4752 } 4753 4754 static void 4755 aq_watchdog(struct ifnet *ifp) 4756 { 4757 struct aq_softc *sc = ifp->if_softc; 4758 struct aq_txring *txring; 4759 int n, head, tail; 4760 4761 AQ_LOCK(sc); 4762 4763 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4764 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4765 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4766 4767 for (n = 0; n < sc->sc_nqueues; n++) { 4768 txring = &sc->sc_queue[n].txring; 4769 head = AQ_READ_REG_BIT(sc, 4770 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4771 TX_DMA_DESC_HEAD_PTR), 4772 tail = AQ_READ_REG(sc, 4773 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4774 4775 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4776 __func__, txring->txr_index, head, tail); 4777 4778 aq_tx_intr(txring); 4779 } 4780 4781 AQ_UNLOCK(sc); 4782 4783 aq_init(ifp); 4784 } 4785 4786 static int 4787 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4788 { 4789 struct aq_softc *sc __unused; 4790 struct ifreq *ifr __unused; 4791 int error, s; 4792 4793 sc = (struct aq_softc *)ifp->if_softc; 4794 ifr = (struct ifreq *)data; 4795 error = 0; 4796 4797 s = splnet(); 4798 switch (cmd) { 4799 case SIOCSIFMTU: 4800 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) { 4801 error = EINVAL; 4802 } else { 4803 ifp->if_mtu = ifr->ifr_mtu; 4804 error = 0; /* no need to reset (no ENETRESET) */ 4805 } 4806 break; 4807 default: 4808 error = ether_ioctl(ifp, cmd, data); 4809 break; 4810 } 4811 splx(s); 4812 4813 if (error != ENETRESET) 4814 return error; 4815 4816 switch (cmd) { 4817 case SIOCSIFCAP: 4818 error = aq_set_capability(sc); 4819 break; 4820 case SIOCADDMULTI: 4821 case SIOCDELMULTI: 4822 if ((ifp->if_flags & IFF_RUNNING) == 0) 4823 break; 4824 4825 /* 4826 * Multicast list has changed; set the hardware filter 4827 * accordingly. 4828 */ 4829 error = aq_set_filter(sc); 4830 break; 4831 } 4832 4833 return error; 4834 } 4835 4836 4837 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4838 4839 #ifdef _MODULE 4840 #include "ioconf.c" 4841 #endif 4842 4843 static int 4844 if_aq_modcmd(modcmd_t cmd, void *opaque) 4845 { 4846 int error = 0; 4847 4848 switch (cmd) { 4849 case MODULE_CMD_INIT: 4850 #ifdef _MODULE 4851 error = config_init_component(cfdriver_ioconf_if_aq, 4852 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4853 #endif 4854 return error; 4855 case MODULE_CMD_FINI: 4856 #ifdef _MODULE 4857 error = config_fini_component(cfdriver_ioconf_if_aq, 4858 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4859 #endif 4860 return error; 4861 default: 4862 return ENOTTY; 4863 } 4864 } 4865