xref: /netbsd-src/sys/dev/pci/if_aq.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_aq.c,v 1.31 2021/11/13 21:38:48 ryo Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.31 2021/11/13 21:38:48 ryo Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 #define AQ_JUMBO_MTU_REV_A		9000
120 #define AQ_JUMBO_MTU_REV_B		16338
121 
122 /*
123  * TERMINOLOGY
124  *	MPI = MAC PHY INTERFACE?
125  *	RPO = RX Protocol Offloading
126  *	TPO = TX Protocol Offloading
127  *	RPF = RX Packet Filter
128  *	TPB = TX Packet buffer
129  *	RPB = RX Packet buffer
130  */
131 
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG			0x0000
134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
136 
137 #define AQ_FW_VERSION_REG			0x0018
138 #define AQ_HW_REVISION_REG			0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
140 
141 #define AQ_FW_MBOX_CMD_REG			0x0200
142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
144 #define AQ_FW_MBOX_ADDR_REG			0x0208
145 #define AQ_FW_MBOX_VAL_REG			0x020c
146 
147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
148 #define FW2X_LED_REG				0x031c
149 #define  FW2X_LED_DEFAULT			0x00000000
150 #define  FW2X_LED_NONE				0x0000003f
151 #define  FW2X_LINKLED				__BITS(0,1)
152 #define   FW2X_LINKLED_ACTIVE			0
153 #define   FW2X_LINKLED_ON			1
154 #define   FW2X_LINKLED_BLINK			2
155 #define   FW2X_LINKLED_OFF			3
156 #define  FW2X_STATUSLED				__BITS(2,5)
157 #define   FW2X_STATUSLED_ORANGE			0
158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
159 #define   FW2X_STATUSLED_OFF			3
160 #define   FW2X_STATUSLED_GREEN			4
161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
162 #define   FW2X_STATUSLED_GREEN_BLINK		10
163 
164 #define FW_MPI_MBOX_ADDR_REG			0x0360
165 #define FW1X_MPI_INIT1_REG			0x0364
166 #define FW1X_MPI_CONTROL_REG			0x0368
167 #define FW1X_MPI_STATE_REG			0x036c
168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
172 #define FW1X_MPI_INIT2_REG			0x0370
173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
174 
175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG			0x0388
179 #define  RBL_STATUS_DEAD			0x0000dead
180 #define  RBL_STATUS_SUCCESS			0x0000abba
181 #define  RBL_STATUS_FAILURE			0x00000bad
182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
183 
184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
186 
187 #define AQ_FW_GLB_CTL2_REG			0x0404
188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
189 
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
192 
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
194 
195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
196 
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG			0x2090
203 
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
212 
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
215 #define  AQ_B0_ERR_INT				8U
216 
217 #define AQ_INTR_CTRL_REG			0x2300
218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
227 
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
229 
230 #define FW_MPI_RESETCTRL_REG			0x4000
231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
232 
233 #define RX_SYSCONTROL_REG			0x5000
234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
237 
238 #define RX_TCP_RSS_HASH_REG			0x5040
239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
241 
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD			0
244 #define RPF_ACTION_HOST				1
245 #define RPF_ACTION_MANAGEMENT			2
246 #define RPF_ACTION_HOST_MANAGEMENT		3
247 #define RPF_ACTION_WOL				4
248 
249 #define RPF_L2BC_REG				0x5100
250 #define  RPF_L2BC_EN				__BIT(0)
251 #define  RPF_L2BC_PROMISC			__BIT(3)
252 #define  RPF_L2BC_ACTION			__BITS(12,14)
253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
254 
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
260 #define  RPF_L2UC_MSW_EN			__BIT(31)
261 #define AQ_HW_MAC_OWN			0	/* index of own address */
262 #define AQ_HW_MAC_NUM			34
263 
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
269 
270 #define RPF_VLAN_MODE_REG			0x5280
271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
274 
275 #define RPF_VLAN_TPID_REG			0x5284
276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
278 
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS			16
281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
287 
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
298 
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
323 
324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
326 
327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
329 
330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
335 
336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
339 
340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
342 
343 #define RPO_HWCSUM_REG				0x5580
344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
346 
347 #define RPO_LRO_ENABLE_REG			0x5590
348 
349 #define RPO_LRO_CONF_REG			0x5594
350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG			0x5598
355 
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG			0x5620
360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
365 
366 #define RPB_RPF_RX_REG				0x5700
367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
370 
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
375 #define  RPB_RXB_XOFF_EN			__BIT(31)
376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
378 
379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
381 
382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
385 
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
391 
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
397 #define  RX_DMA_DESC_RESET			__BIT(25)
398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
400 #define  RX_DMA_DESC_EN				__BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
407 
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
414 
415 #define RX_DMA_DCA_REG				0x6180
416 #define  RX_DMA_DCA_EN				__BIT(31)
417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
418 
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
424 
425 #define TX_SYSCONTROL_REG			0x7000
426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
429 
430 #define TX_TPO2_REG				0x7040
431 #define  TX_TPO2_EN				__BIT(16)
432 
433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
435 #define TPS_DESC_RATE_REG			0x7310
436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
442 
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
451 
452 #define AQ_HW_TXBUF_MAX		160
453 #define AQ_HW_RXBUF_MAX		320
454 
455 #define TPO_HWCSUM_REG				0x7800
456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
458 
459 #define TDM_LSO_EN_REG				0x7810
460 
461 #define THM_LSO_TCP_FLAG1_REG			0x7820
462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG			0x7824
465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
466 
467 #define TPB_TX_BUF_REG				0x7900
468 #define  TPB_TX_BUF_EN				__BIT(0)
469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
471 
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
478 
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
483 
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
489 #define  TX_DMA_DESC_EN				__BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
495 
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
498 #define  TDM_DCAD_CPUID				__BITS(7,0)
499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
500 
501 #define TDM_DCA_REG				0x8480
502 #define  TDM_DCA_EN				__BIT(31)
503 #define  TDM_DCA_MODE				__BITS(3,0)
504 
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
510 
511 #define FW1X_CTRL_10G				__BIT(0)
512 #define FW1X_CTRL_5G				__BIT(1)
513 #define FW1X_CTRL_5GSR				__BIT(2)
514 #define FW1X_CTRL_2G5				__BIT(3)
515 #define FW1X_CTRL_1G				__BIT(4)
516 #define FW1X_CTRL_100M				__BIT(5)
517 
518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
530 #define FW2X_CTRL_RESERVED1			__BIT(32)
531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
532 #define FW2X_CTRL_RESERVED2			__BIT(34)
533 #define FW2X_CTRL_PAUSE				__BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
536 #define FW2X_CTRL_RESERVED3			__BIT(38)
537 #define FW2X_CTRL_RESERVED4			__BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
542 #define FW2X_CTRL_RESERVED5			__BIT(44)
543 #define FW2X_CTRL_RESERVED6			__BIT(45)
544 #define FW2X_CTRL_RESERVED7			__BIT(46)
545 #define FW2X_CTRL_RESERVED8			__BIT(47)
546 #define FW2X_CTRL_RESERVED9			__BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
554 #define FW2X_CTRL_WOL				__BIT(56)
555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
560 #define FW2X_CTRL_STATISTICS			__BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
562 
563 #define FW2X_SNPRINTB			\
564 	"\177\020"			\
565 	"b\x23" "PAUSE\0"		\
566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
567 	"b\x31" "CABLE-DIAG\0"		\
568 	"b\x32" "TEMPERATURE\0"		\
569 	"b\x33" "DOWNSHIFT\0"		\
570 	"b\x34" "PTP-AVB\0"		\
571 	"b\x35" "MEDIA-DETECT\0"	\
572 	"b\x36" "LINK-DROP\0"		\
573 	"b\x37" "SLEEP-PROXY\0"		\
574 	"b\x38" "WOL\0"			\
575 	"b\x39" "MAC-STOP\0"		\
576 	"b\x3a" "EXT-LOOPBACK\0"	\
577 	"b\x3b" "INT-LOOPBACK\0"	\
578 	"b\x3c" "EFUSE-AGENT\0"		\
579 	"b\x3d" "WOL-TIMER\0"		\
580 	"b\x3e" "STATISTICS\0"		\
581 	"b\x3f" "TRANSACTION-ID\0"	\
582 	"\0"
583 
584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK		\
590 	(FW2X_CTRL_RATE_100M |		\
591 	 FW2X_CTRL_RATE_1G |		\
592 	 FW2X_CTRL_RATE_2G5 |		\
593 	 FW2X_CTRL_RATE_5G |		\
594 	 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK		\
596 	(FW2X_CTRL_10BASET_EEE |	\
597 	 FW2X_CTRL_100BASETX_EEE |	\
598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
601 	 FW2X_CTRL_10GBASET_FD_EEE)
602 
603 typedef enum aq_fw_bootloader_mode {
604 	FW_BOOT_MODE_UNKNOWN = 0,
605 	FW_BOOT_MODE_FLB,
606 	FW_BOOT_MODE_RBL_FLASH,
607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609 
610 #define AQ_WRITE_REG(sc, reg, val)				\
611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612 
613 #define AQ_READ_REG(sc, reg)					\
614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615 
616 #define AQ_READ64_REG(sc, reg)					\
617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619 
620 #define AQ_WRITE64_REG(sc, reg, val)				\
621 	do {							\
622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 	} while (/* CONSTCOND */0)
625 
626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628 
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
630 	do {							\
631 		uint32_t _v;					\
632 		_v = AQ_READ_REG((sc), (reg));			\
633 		_v &= ~(mask);					\
634 		if ((val) != 0)					\
635 			_v |= __SHIFTIN((val), (mask));		\
636 		AQ_WRITE_REG((sc), (reg), _v);			\
637 	} while (/* CONSTCOND */ 0)
638 
639 #define WAIT_FOR(expr, us, n, errp)				\
640 	do {							\
641 		unsigned int _n;				\
642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
643 			delay((us));				\
644 		}						\
645 		if ((errp != NULL)) {				\
646 			if (_n == 0)				\
647 				*(errp) = ETIMEDOUT;		\
648 			else					\
649 				*(errp) = 0;			\
650 		}						\
651 	} while (/* CONSTCOND */ 0)
652 
653 #define msec_delay(x)	DELAY(1000 * (x))
654 
655 typedef struct aq_mailbox_header {
656 	uint32_t version;
657 	uint32_t transaction_id;
658 	int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660 
661 typedef struct aq_hw_stats_s {
662 	uint32_t uprc;
663 	uint32_t mprc;
664 	uint32_t bprc;
665 	uint32_t erpt;
666 	uint32_t uptc;
667 	uint32_t mptc;
668 	uint32_t bptc;
669 	uint32_t erpr;
670 	uint32_t mbtc;
671 	uint32_t bbtc;
672 	uint32_t mbrc;
673 	uint32_t bbrc;
674 	uint32_t ubrc;
675 	uint32_t ubtc;
676 	uint32_t ptc;
677 	uint32_t prc;
678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681 
682 typedef struct fw1x_mailbox {
683 	aq_mailbox_header_t header;
684 	aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686 
687 typedef struct fw2x_msm_statistics {
688 	uint32_t uprc;
689 	uint32_t mprc;
690 	uint32_t bprc;
691 	uint32_t erpt;
692 	uint32_t uptc;
693 	uint32_t mptc;
694 	uint32_t bptc;
695 	uint32_t erpr;
696 	uint32_t mbtc;
697 	uint32_t bbtc;
698 	uint32_t mbrc;
699 	uint32_t bbrc;
700 	uint32_t ubrc;
701 	uint32_t ubtc;
702 	uint32_t ptc;
703 	uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705 
706 typedef struct fw2x_phy_cable_diag_data {
707 	uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709 
710 typedef struct fw2x_capabilities {
711 	uint32_t caps_lo;
712 	uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714 
715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
716 	aq_mailbox_header_t header;
717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
718 
719 	uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
722 	uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
725 
726 	fw2x_phy_cable_diag_data_t diag_data;
727 	uint32_t reserved[8];
728 
729 	fw2x_capabilities_t caps;
730 
731 	/* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733 
734 typedef enum aq_link_speed {
735 	AQ_LINK_NONE	= 0,
736 	AQ_LINK_100M	= (1 << 0),
737 	AQ_LINK_1G	= (1 << 1),
738 	AQ_LINK_2G5	= (1 << 2),
739 	AQ_LINK_5G	= (1 << 3),
740 	AQ_LINK_10G	= (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 			 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO	AQ_LINK_ALL
745 
746 typedef enum aq_link_fc {
747 	AQ_FC_NONE = 0,
748 	AQ_FC_RX = __BIT(0),
749 	AQ_FC_TX = __BIT(1),
750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752 
753 typedef enum aq_link_eee {
754 	AQ_EEE_DISABLE = 0,
755 	AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757 
758 typedef enum aq_hw_fw_mpi_state {
759 	MPI_DEINIT	= 0,
760 	MPI_RESET	= 1,
761 	MPI_INIT	= 2,
762 	MPI_POWER	= 4
763 } aq_hw_fw_mpi_state_t;
764 
765 enum aq_media_type {
766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
767 	AQ_MEDIA_TYPE_FIBRE,
768 	AQ_MEDIA_TYPE_TP
769 };
770 
771 struct aq_rx_desc_read {
772 	uint64_t buf_addr;
773 	uint64_t hdr_addr;
774 } __packed __aligned(8);
775 
776 struct aq_rx_desc_wb {
777 	uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
803 #define RXDESC_TYPE_SPH			__BIT(21)
804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
805 	uint32_t rss_hash;
806 	uint16_t status;
807 #define RXDESC_STATUS_DD		__BIT(0)
808 #define RXDESC_STATUS_EOP		__BIT(1)
809 #define RXDESC_STATUS_MACERR		__BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
813 
814 #define RXDESC_STATUS_STAT		__BITS(2,5)
815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
817 	uint16_t pkt_len;
818 	uint16_t next_desc_ptr;
819 	uint16_t vlan;
820 } __packed __aligned(4);
821 
822 typedef union aq_rx_desc {
823 	struct aq_rx_desc_read read;
824 	struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826 
827 typedef struct aq_tx_desc {
828 	uint64_t buf_addr;
829 	uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
846 	uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851 
852 struct aq_txring {
853 	struct aq_softc *txr_sc;
854 	int txr_index;
855 	kmutex_t txr_mutex;
856 	bool txr_active;
857 
858 	pcq_t *txr_pcq;
859 	void *txr_softint;
860 
861 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
862 	bus_dmamap_t txr_txdesc_dmamap;
863 	bus_dma_segment_t txr_txdesc_seg[1];
864 	bus_size_t txr_txdesc_size;
865 
866 	struct {
867 		struct mbuf *m;
868 		bus_dmamap_t dmamap;
869 	} txr_mbufs[AQ_TXD_NUM];
870 	unsigned int txr_prodidx;
871 	unsigned int txr_considx;
872 	int txr_nfree;
873 };
874 
875 struct aq_rxring {
876 	struct aq_softc *rxr_sc;
877 	int rxr_index;
878 	kmutex_t rxr_mutex;
879 	bool rxr_active;
880 	bool rxr_discarding;
881 	struct mbuf *rxr_receiving_m;		/* receiving jumboframe */
882 	struct mbuf *rxr_receiving_m_last;	/* last mbuf of jumboframe */
883 
884 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
885 	bus_dmamap_t rxr_rxdesc_dmamap;
886 	bus_dma_segment_t rxr_rxdesc_seg[1];
887 	bus_size_t rxr_rxdesc_size;
888 	struct {
889 		struct mbuf *m;
890 		bus_dmamap_t dmamap;
891 	} rxr_mbufs[AQ_RXD_NUM];
892 	unsigned int rxr_readidx;
893 };
894 
895 struct aq_queue {
896 	struct aq_softc *sc;
897 	struct aq_txring txring;
898 	struct aq_rxring rxring;
899 };
900 
901 struct aq_softc;
902 struct aq_firmware_ops {
903 	int (*reset)(struct aq_softc *);
904 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
905 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
906 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
907 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
908 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
909 #if NSYSMON_ENVSYS > 0
910 	int (*get_temperature)(struct aq_softc *, uint32_t *);
911 #endif
912 };
913 
914 #ifdef AQ_EVENT_COUNTERS
915 #define AQ_EVCNT_DECL(name)						\
916 	char sc_evcount_##name##_name[32];				\
917 	struct evcnt sc_evcount_##name##_ev;
918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
919 	do {								\
920 		snprintf((sc)->sc_evcount_##name##_name,		\
921 		    sizeof((sc)->sc_evcount_##name##_name),		\
922 		    "%s", desc);					\
923 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
924 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
925 		    (sc)->sc_evcount_##name##_name);			\
926 	} while (/*CONSTCOND*/0)
927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
928 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
929 #define AQ_EVCNT_DETACH(sc, name)					\
930 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
931 #define AQ_EVCNT_ADD(sc, name, val)					\
932 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
933 #endif /* AQ_EVENT_COUNTERS */
934 
935 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
936 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
937 
938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
939 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
940 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
941 
942 
943 struct aq_softc {
944 	device_t sc_dev;
945 
946 	bus_space_tag_t sc_iot;
947 	bus_space_handle_t sc_ioh;
948 	bus_size_t sc_iosize;
949 	bus_dma_tag_t sc_dmat;
950 
951 	void *sc_ihs[AQ_NINTR_MAX];
952 	pci_intr_handle_t *sc_intrs;
953 
954 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
955 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
956 	int sc_linkstat_irq;
957 	bool sc_use_txrx_independent_intr;
958 	bool sc_poll_linkstat;
959 	bool sc_detect_linkstat;
960 
961 #if NSYSMON_ENVSYS > 0
962 	struct sysmon_envsys *sc_sme;
963 	envsys_data_t sc_sensor_temp;
964 #endif
965 
966 	callout_t sc_tick_ch;
967 
968 	int sc_nintrs;
969 	bool sc_msix;
970 
971 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
972 	int sc_nqueues;
973 
974 	pci_chipset_tag_t sc_pc;
975 	pcitag_t sc_pcitag;
976 	uint16_t sc_product;
977 	uint16_t sc_revision;
978 
979 	kmutex_t sc_mutex;
980 	kmutex_t sc_mpi_mutex;
981 
982 	const struct aq_firmware_ops *sc_fw_ops;
983 	uint64_t sc_fw_caps;
984 	enum aq_media_type sc_media_type;
985 	aq_link_speed_t sc_available_rates;
986 
987 	aq_link_speed_t sc_link_rate;
988 	aq_link_fc_t sc_link_fc;
989 	aq_link_eee_t sc_link_eee;
990 
991 	uint32_t sc_fw_version;
992 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
993 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
994 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
995 	uint32_t sc_features;
996 #define FEATURES_MIPS		0x00000001
997 #define FEATURES_TPO2		0x00000002
998 #define FEATURES_RPF2		0x00000004
999 #define FEATURES_MPI_AQ		0x00000008
1000 #define FEATURES_REV_A0		0x10000000
1001 #define FEATURES_REV_A		(FEATURES_REV_A0)
1002 #define FEATURES_REV_B0		0x20000000
1003 #define FEATURES_REV_B1		0x40000000
1004 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
1005 	uint32_t sc_max_mtu;
1006 	uint32_t sc_mbox_addr;
1007 
1008 	bool sc_rbl_enabled;
1009 	bool sc_fast_start_enabled;
1010 	bool sc_flash_present;
1011 
1012 	bool sc_intr_moderation_enable;
1013 	bool sc_rss_enable;
1014 
1015 	struct ethercom sc_ethercom;
1016 	struct ether_addr sc_enaddr;
1017 	struct ifmedia sc_media;
1018 	int sc_ec_capenable;		/* last ec_capenable */
1019 	unsigned short sc_if_flags;	/* last if_flags */
1020 
1021 #ifdef AQ_EVENT_COUNTERS
1022 	aq_hw_stats_s_t sc_statistics[2];
1023 	int sc_statistics_idx;
1024 	bool sc_poll_statistics;
1025 
1026 	AQ_EVCNT_DECL(uprc);
1027 	AQ_EVCNT_DECL(mprc);
1028 	AQ_EVCNT_DECL(bprc);
1029 	AQ_EVCNT_DECL(erpt);
1030 	AQ_EVCNT_DECL(uptc);
1031 	AQ_EVCNT_DECL(mptc);
1032 	AQ_EVCNT_DECL(bptc);
1033 	AQ_EVCNT_DECL(erpr);
1034 	AQ_EVCNT_DECL(mbtc);
1035 	AQ_EVCNT_DECL(bbtc);
1036 	AQ_EVCNT_DECL(mbrc);
1037 	AQ_EVCNT_DECL(bbrc);
1038 	AQ_EVCNT_DECL(ubrc);
1039 	AQ_EVCNT_DECL(ubtc);
1040 	AQ_EVCNT_DECL(ptc);
1041 	AQ_EVCNT_DECL(prc);
1042 	AQ_EVCNT_DECL(dpc);
1043 	AQ_EVCNT_DECL(cprc);
1044 #endif
1045 };
1046 
1047 static int aq_match(device_t, cfdata_t, void *);
1048 static void aq_attach(device_t, device_t, void *);
1049 static int aq_detach(device_t, int);
1050 
1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1052     bool, bool);
1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1054     pci_intr_type_t);
1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1056 
1057 static int aq_ifmedia_change(struct ifnet * const);
1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1060 static int aq_ifflags_cb(struct ethercom *);
1061 static int aq_init(struct ifnet *);
1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1063     struct aq_txring *, bool);
1064 static int aq_transmit(struct ifnet *, struct mbuf *);
1065 static void aq_deferred_transmit(void *);
1066 static void aq_start(struct ifnet *);
1067 static void aq_stop(struct ifnet *, int);
1068 static void aq_watchdog(struct ifnet *);
1069 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1070 
1071 static int aq_txrx_rings_alloc(struct aq_softc *);
1072 static void aq_txrx_rings_free(struct aq_softc *);
1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1075 
1076 static void aq_initmedia(struct aq_softc *);
1077 static void aq_enable_intr(struct aq_softc *, bool, bool);
1078 
1079 #if NSYSMON_ENVSYS > 0
1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1081 #endif
1082 static void aq_tick(void *);
1083 static int aq_legacy_intr(void *);
1084 static int aq_link_intr(void *);
1085 static int aq_txrx_intr(void *);
1086 static int aq_tx_intr(void *);
1087 static int aq_rx_intr(void *);
1088 
1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1090     aq_link_eee_t);
1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1092     aq_link_eee_t *);
1093 
1094 static int aq_fw_reset(struct aq_softc *);
1095 static int aq_fw_version_init(struct aq_softc *);
1096 static int aq_hw_init(struct aq_softc *);
1097 static int aq_hw_init_ucp(struct aq_softc *);
1098 static int aq_hw_reset(struct aq_softc *);
1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1100     uint32_t);
1101 static int aq_get_mac_addr(struct aq_softc *);
1102 static int aq_init_rss(struct aq_softc *);
1103 static int aq_set_capability(struct aq_softc *);
1104 
1105 static int fw1x_reset(struct aq_softc *);
1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 
1112 static int fw2x_reset(struct aq_softc *);
1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1114     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1116     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1118 #if NSYSMON_ENVSYS > 0
1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1120 #endif
1121 
1122 static const struct aq_firmware_ops aq_fw1x_ops = {
1123 	.reset = fw1x_reset,
1124 	.set_mode = fw1x_set_mode,
1125 	.get_mode = fw1x_get_mode,
1126 	.get_stats = fw1x_get_stats,
1127 #if NSYSMON_ENVSYS > 0
1128 	.get_temperature = NULL
1129 #endif
1130 };
1131 
1132 static const struct aq_firmware_ops aq_fw2x_ops = {
1133 	.reset = fw2x_reset,
1134 	.set_mode = fw2x_set_mode,
1135 	.get_mode = fw2x_get_mode,
1136 	.get_stats = fw2x_get_stats,
1137 #if NSYSMON_ENVSYS > 0
1138 	.get_temperature = fw2x_get_temperature
1139 #endif
1140 };
1141 
1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1143     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1144 
1145 static const struct aq_product {
1146 	pci_vendor_id_t aq_vendor;
1147 	pci_product_id_t aq_product;
1148 	const char *aq_name;
1149 	enum aq_media_type aq_media_type;
1150 	aq_link_speed_t aq_available_rates;
1151 } aq_products[] = {
1152 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1153 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1154 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1155 	},
1156 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1157 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1158 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1159 	},
1160 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1161 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1162 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1163 	},
1164 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1165 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1166 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1167 	},
1168 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1169 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1170 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1171 	},
1172 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1173 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1174 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1175 	},
1176 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1177 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1178 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1179 	},
1180 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1181 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1182 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1183 	},
1184 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1185 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1186 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1187 	},
1188 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1189 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1190 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1191 	},
1192 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1193 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1194 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1195 	},
1196 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1197 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1198 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1199 	},
1200 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1201 	  "Aquantia D100 10 Gigabit Network Adapter",
1202 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1203 	},
1204 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1205 	  "Aquantia D107 10 Gigabit Network Adapter",
1206 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1207 	},
1208 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1209 	  "Aquantia D108 5 Gigabit Network Adapter",
1210 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1211 	},
1212 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1213 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1214 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1215 	}
1216 };
1217 
1218 static const struct aq_product *
1219 aq_lookup(const struct pci_attach_args *pa)
1220 {
1221 	unsigned int i;
1222 
1223 	for (i = 0; i < __arraycount(aq_products); i++) {
1224 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1225 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1226 			return &aq_products[i];
1227 	}
1228 	return NULL;
1229 }
1230 
1231 static int
1232 aq_match(device_t parent, cfdata_t cf, void *aux)
1233 {
1234 	struct pci_attach_args *pa = aux;
1235 
1236 	if (aq_lookup(pa) != NULL)
1237 		return 1;
1238 
1239 	return 0;
1240 }
1241 
1242 static void
1243 aq_attach(device_t parent, device_t self, void *aux)
1244 {
1245 	struct aq_softc *sc = device_private(self);
1246 	struct pci_attach_args *pa = aux;
1247 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 	pci_chipset_tag_t pc;
1249 	pcitag_t tag;
1250 	pcireg_t command, memtype, bar;
1251 	const struct aq_product *aqp;
1252 	int error;
1253 
1254 	sc->sc_dev = self;
1255 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1256 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1257 
1258 	sc->sc_pc = pc = pa->pa_pc;
1259 	sc->sc_pcitag = tag = pa->pa_tag;
1260 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1261 
1262 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1263 	command |= PCI_COMMAND_MASTER_ENABLE;
1264 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1265 
1266 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1267 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1268 
1269 	aqp = aq_lookup(pa);
1270 	KASSERT(aqp != NULL);
1271 
1272 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1273 
1274 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1275 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1276 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1277 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1278 		return;
1279 	}
1280 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1281 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1282 	    NULL, &sc->sc_iosize) != 0) {
1283 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1284 		return;
1285 	}
1286 
1287 	error = aq_fw_reset(sc);
1288 	if (error != 0)
1289 		goto attach_failure;
1290 
1291 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1292 
1293 	/* max queue num is 8, and must be 2^n */
1294 	if (ncpu >= 8)
1295 		sc->sc_nqueues = 8;
1296 	else if (ncpu >= 4)
1297 		sc->sc_nqueues = 4;
1298 	else if (ncpu >= 2)
1299 		sc->sc_nqueues = 2;
1300 	else
1301 		sc->sc_nqueues = 1;
1302 
1303 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1304 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1305 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1306 		/* TX intrs + RX intrs + LINKSTAT intrs */
1307 		sc->sc_use_txrx_independent_intr = true;
1308 		sc->sc_poll_linkstat = false;
1309 		sc->sc_msix = true;
1310 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1311 		/* TX intrs + RX intrs */
1312 		sc->sc_use_txrx_independent_intr = true;
1313 		sc->sc_poll_linkstat = true;
1314 		sc->sc_msix = true;
1315 	} else
1316 #endif
1317 	if (msixcount >= (sc->sc_nqueues + 1)) {
1318 		/* TX/RX intrs LINKSTAT intrs */
1319 		sc->sc_use_txrx_independent_intr = false;
1320 		sc->sc_poll_linkstat = false;
1321 		sc->sc_msix = true;
1322 	} else if (msixcount >= sc->sc_nqueues) {
1323 		/* TX/RX intrs */
1324 		sc->sc_use_txrx_independent_intr = false;
1325 		sc->sc_poll_linkstat = true;
1326 		sc->sc_msix = true;
1327 	} else {
1328 		/* giving up using MSI-X */
1329 		sc->sc_msix = false;
1330 	}
1331 
1332 	/* on FW Ver1 or FIBRE, linkstat interrupt does not occur on boot? */
1333 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE ||
1334 	    FW_VERSION_MAJOR(sc) == 1)
1335 		sc->sc_poll_linkstat = true;
1336 
1337 #ifdef AQ_FORCE_POLL_LINKSTAT
1338 	sc->sc_poll_linkstat = true;
1339 #endif
1340 
1341 	aprint_debug_dev(sc->sc_dev,
1342 	    "ncpu=%d, pci_msix_count=%d."
1343 	    " allocate %d interrupts for %d%s queues%s\n",
1344 	    ncpu, msixcount,
1345 	    (sc->sc_use_txrx_independent_intr ?
1346 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1347 	    (sc->sc_poll_linkstat ? 0 : 1),
1348 	    sc->sc_nqueues,
1349 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1350 	    sc->sc_poll_linkstat ? "" : ", and link status");
1351 
1352 	if (sc->sc_msix)
1353 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1354 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1355 	else
1356 		error = ENODEV;
1357 
1358 	if (error != 0) {
1359 		/* if MSI-X failed, fallback to MSI with single queue */
1360 		sc->sc_use_txrx_independent_intr = false;
1361 		sc->sc_poll_linkstat = false;
1362 		sc->sc_msix = false;
1363 		sc->sc_nqueues = 1;
1364 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1365 	}
1366 	if (error != 0) {
1367 		/* if MSI failed, fallback to INTx */
1368 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1369 	}
1370 	if (error != 0)
1371 		goto attach_failure;
1372 
1373 	callout_init(&sc->sc_tick_ch, 0);
1374 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1375 
1376 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1377 
1378 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1379 		sc->sc_rss_enable = true;
1380 	else
1381 		sc->sc_rss_enable = false;
1382 
1383 	error = aq_txrx_rings_alloc(sc);
1384 	if (error != 0)
1385 		goto attach_failure;
1386 
1387 	error = aq_fw_version_init(sc);
1388 	if (error != 0)
1389 		goto attach_failure;
1390 
1391 	error = aq_hw_init_ucp(sc);
1392 	if (error < 0)
1393 		goto attach_failure;
1394 
1395 	KASSERT(sc->sc_mbox_addr != 0);
1396 	error = aq_hw_reset(sc);
1397 	if (error != 0)
1398 		goto attach_failure;
1399 
1400 	aq_get_mac_addr(sc);
1401 	aq_init_rss(sc);
1402 
1403 	error = aq_hw_init(sc);	/* initialize and interrupts */
1404 	if (error != 0)
1405 		goto attach_failure;
1406 
1407 	sc->sc_media_type = aqp->aq_media_type;
1408 	sc->sc_available_rates = aqp->aq_available_rates;
1409 
1410 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1411 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1412 	    aq_ifmedia_change, aq_ifmedia_status);
1413 	aq_initmedia(sc);
1414 
1415 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1416 	ifp->if_softc = sc;
1417 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1418 	ifp->if_extflags = IFEF_MPSAFE;
1419 	ifp->if_baudrate = IF_Gbps(10);
1420 	ifp->if_init = aq_init;
1421 	ifp->if_ioctl = aq_ioctl;
1422 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1423 		ifp->if_transmit = aq_transmit;
1424 	ifp->if_start = aq_start;
1425 	ifp->if_stop = aq_stop;
1426 	ifp->if_watchdog = aq_watchdog;
1427 	IFQ_SET_READY(&ifp->if_snd);
1428 
1429 	/* initialize capabilities */
1430 	sc->sc_ethercom.ec_capabilities = 0;
1431 	sc->sc_ethercom.ec_capenable = 0;
1432 #if notyet
1433 	/* TODO */
1434 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1435 #endif
1436 	sc->sc_ethercom.ec_capabilities |=
1437 	    ETHERCAP_JUMBO_MTU |
1438 	    ETHERCAP_VLAN_MTU |
1439 	    ETHERCAP_VLAN_HWTAGGING |
1440 	    ETHERCAP_VLAN_HWFILTER;
1441 	sc->sc_ethercom.ec_capenable |=
1442 	    ETHERCAP_VLAN_HWTAGGING |
1443 	    ETHERCAP_VLAN_HWFILTER;
1444 
1445 	ifp->if_capabilities = 0;
1446 	ifp->if_capenable = 0;
1447 #ifdef CONFIG_LRO_SUPPORT
1448 	ifp->if_capabilities |= IFCAP_LRO;
1449 	ifp->if_capenable |= IFCAP_LRO;
1450 #endif
1451 #if notyet
1452 	/* TSO */
1453 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1454 #endif
1455 
1456 	/* TX hardware checksum offloading */
1457 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1458 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1459 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1460 	/* RX hardware checksum offloading */
1461 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1462 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1463 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1464 
1465 	if_initialize(ifp);
1466 	ifp->if_percpuq = if_percpuq_create(ifp);
1467 	if_deferred_start_init(ifp, NULL);
1468 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1469 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1470 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1471 	if_register(ifp);
1472 
1473 	aq_enable_intr(sc, true, false);	/* only intr about link */
1474 
1475 	/* update media */
1476 	aq_ifmedia_change(ifp);
1477 
1478 #if NSYSMON_ENVSYS > 0
1479 	/* temperature monitoring */
1480 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1481 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1482 
1483 		sc->sc_sme = sysmon_envsys_create();
1484 		sc->sc_sme->sme_name = device_xname(self);
1485 		sc->sc_sme->sme_cookie = sc;
1486 		sc->sc_sme->sme_flags = 0;
1487 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1488 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1489 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1490 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1491 
1492 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1493 		if (sysmon_envsys_register(sc->sc_sme)) {
1494 			sysmon_envsys_destroy(sc->sc_sme);
1495 			sc->sc_sme = NULL;
1496 			goto attach_failure;
1497 		}
1498 
1499 		/*
1500 		 * for unknown reasons, the first call of fw2x_get_temperature()
1501 		 * will always fail (firmware matter?), so run once now.
1502 		 */
1503 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1504 	}
1505 #endif
1506 
1507 #ifdef AQ_EVENT_COUNTERS
1508 	/* get starting statistics values */
1509 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1510 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1511 		sc->sc_poll_statistics = true;
1512 	}
1513 
1514 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1515 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1516 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1517 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1518 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1519 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1520 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1521 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1522 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1523 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1524 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1525 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1526 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1527 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1528 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1529 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1530 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1531 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1532 #endif
1533 
1534 	if (pmf_device_register(self, NULL, NULL))
1535 		pmf_class_network_register(self, ifp);
1536 	else
1537 		aprint_error_dev(self, "couldn't establish power handler\n");
1538 
1539 	return;
1540 
1541  attach_failure:
1542 	aq_detach(self, 0);
1543 }
1544 
1545 static int
1546 aq_detach(device_t self, int flags __unused)
1547 {
1548 	struct aq_softc *sc = device_private(self);
1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550 	int i, s;
1551 
1552 	if (sc->sc_iosize != 0) {
1553 		if (ifp->if_softc != NULL) {
1554 			s = splnet();
1555 			aq_stop(ifp, 0);
1556 			splx(s);
1557 		}
1558 
1559 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1560 			if (sc->sc_ihs[i] != NULL) {
1561 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1562 				sc->sc_ihs[i] = NULL;
1563 			}
1564 		}
1565 		if (sc->sc_nintrs > 0) {
1566 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1567 			    sc->sc_nintrs);
1568 			sc->sc_intrs = NULL;
1569 			sc->sc_nintrs = 0;
1570 		}
1571 
1572 		aq_txrx_rings_free(sc);
1573 
1574 		if (ifp->if_softc != NULL) {
1575 			ether_ifdetach(ifp);
1576 			if_detach(ifp);
1577 		}
1578 
1579 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1580 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1581 		sc->sc_iosize = 0;
1582 	}
1583 
1584 	callout_stop(&sc->sc_tick_ch);
1585 
1586 #if NSYSMON_ENVSYS > 0
1587 	if (sc->sc_sme != NULL) {
1588 		/* all sensors associated with this will also be detached */
1589 		sysmon_envsys_unregister(sc->sc_sme);
1590 	}
1591 #endif
1592 
1593 #ifdef AQ_EVENT_COUNTERS
1594 	AQ_EVCNT_DETACH(sc, uprc);
1595 	AQ_EVCNT_DETACH(sc, mprc);
1596 	AQ_EVCNT_DETACH(sc, bprc);
1597 	AQ_EVCNT_DETACH(sc, erpt);
1598 	AQ_EVCNT_DETACH(sc, uptc);
1599 	AQ_EVCNT_DETACH(sc, mptc);
1600 	AQ_EVCNT_DETACH(sc, bptc);
1601 	AQ_EVCNT_DETACH(sc, erpr);
1602 	AQ_EVCNT_DETACH(sc, mbtc);
1603 	AQ_EVCNT_DETACH(sc, bbtc);
1604 	AQ_EVCNT_DETACH(sc, mbrc);
1605 	AQ_EVCNT_DETACH(sc, bbrc);
1606 	AQ_EVCNT_DETACH(sc, ubrc);
1607 	AQ_EVCNT_DETACH(sc, ubtc);
1608 	AQ_EVCNT_DETACH(sc, ptc);
1609 	AQ_EVCNT_DETACH(sc, prc);
1610 	AQ_EVCNT_DETACH(sc, dpc);
1611 	AQ_EVCNT_DETACH(sc, cprc);
1612 #endif
1613 
1614 	ifmedia_fini(&sc->sc_media);
1615 
1616 	mutex_destroy(&sc->sc_mpi_mutex);
1617 	mutex_destroy(&sc->sc_mutex);
1618 
1619 	return 0;
1620 }
1621 
1622 static int
1623 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1624     int (*func)(void *), void *arg, const char *xname)
1625 {
1626 	char intrbuf[PCI_INTRSTR_LEN];
1627 	pci_chipset_tag_t pc = sc->sc_pc;
1628 	void *vih;
1629 	const char *intrstr = NULL;
1630 
1631 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1632 	    sizeof(intrbuf));
1633 
1634 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1635 
1636 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1637 	    IPL_NET, func, arg, xname);
1638 	if (vih == NULL) {
1639 		aprint_error_dev(sc->sc_dev,
1640 		    "unable to establish MSI-X%s%s for %s\n",
1641 		    intrstr ? " at " : "",
1642 		    intrstr ? intrstr : "", xname);
1643 		return EIO;
1644 	}
1645 	sc->sc_ihs[intno] = vih;
1646 
1647 	if (affinity != NULL) {
1648 		/* Round-robin affinity */
1649 		kcpuset_zero(affinity);
1650 		kcpuset_set(affinity, intno % ncpu);
1651 		interrupt_distribute(vih, affinity, NULL);
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 static int
1658 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1659     bool linkintr)
1660 {
1661 	kcpuset_t *affinity;
1662 	int error, intno, i;
1663 	char intr_xname[INTRDEVNAMEBUF];
1664 
1665 	kcpuset_create(&affinity, false);
1666 
1667 	intno = 0;
1668 
1669 	if (txrx_independent) {
1670 		for (i = 0; i < sc->sc_nqueues; i++) {
1671 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1672 			    device_xname(sc->sc_dev), i);
1673 			sc->sc_rx_irq[i] = intno;
1674 			error = aq_establish_intr(sc, intno++, affinity,
1675 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1676 			if (error != 0)
1677 				goto fail;
1678 		}
1679 		for (i = 0; i < sc->sc_nqueues; i++) {
1680 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1681 			    device_xname(sc->sc_dev), i);
1682 			sc->sc_tx_irq[i] = intno;
1683 			error = aq_establish_intr(sc, intno++, affinity,
1684 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1685 			if (error != 0)
1686 				goto fail;
1687 		}
1688 	} else {
1689 		for (i = 0; i < sc->sc_nqueues; i++) {
1690 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1691 			    device_xname(sc->sc_dev), i);
1692 			sc->sc_rx_irq[i] = intno;
1693 			sc->sc_tx_irq[i] = intno;
1694 			error = aq_establish_intr(sc, intno++, affinity,
1695 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1696 			if (error != 0)
1697 				goto fail;
1698 		}
1699 	}
1700 
1701 	if (linkintr) {
1702 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1703 		    device_xname(sc->sc_dev));
1704 		sc->sc_linkstat_irq = intno;
1705 		error = aq_establish_intr(sc, intno++, affinity,
1706 		    aq_link_intr, sc, intr_xname);
1707 		if (error != 0)
1708 			goto fail;
1709 	}
1710 
1711 	kcpuset_destroy(affinity);
1712 	return 0;
1713 
1714  fail:
1715 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1716 		if (sc->sc_ihs[i] != NULL) {
1717 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1718 			sc->sc_ihs[i] = NULL;
1719 		}
1720 	}
1721 
1722 	kcpuset_destroy(affinity);
1723 	return ENOMEM;
1724 }
1725 
1726 static int
1727 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1728     bool txrx_independent, bool linkintr)
1729 {
1730 	int error, nintr;
1731 
1732 	if (txrx_independent)
1733 		nintr = nqueue * 2;
1734 	else
1735 		nintr = nqueue;
1736 
1737 	if (linkintr)
1738 		nintr++;
1739 
1740 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1741 	if (error != 0) {
1742 		aprint_error_dev(sc->sc_dev,
1743 		    "failed to allocate MSI-X interrupts\n");
1744 		goto fail;
1745 	}
1746 
1747 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1748 	if (error == 0) {
1749 		sc->sc_nintrs = nintr;
1750 	} else {
1751 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1752 		sc->sc_nintrs = 0;
1753 	}
1754  fail:
1755 	return error;
1756 
1757 }
1758 
1759 static int
1760 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1761     pci_intr_type_t inttype)
1762 {
1763 	int counts[PCI_INTR_TYPE_SIZE];
1764 	int error, nintr;
1765 
1766 	nintr = 1;
1767 
1768 	memset(counts, 0, sizeof(counts));
1769 	counts[inttype] = nintr;
1770 
1771 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1772 	if (error != 0) {
1773 		aprint_error_dev(sc->sc_dev,
1774 		    "failed to allocate%s interrupts\n",
1775 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1776 		return error;
1777 	}
1778 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1779 	    device_xname(sc->sc_dev));
1780 	if (error == 0) {
1781 		sc->sc_nintrs = nintr;
1782 	} else {
1783 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1784 		sc->sc_nintrs = 0;
1785 	}
1786 	return error;
1787 }
1788 
1789 static void
1790 global_software_reset(struct aq_softc *sc)
1791 {
1792 	uint32_t v;
1793 
1794 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1795 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1796 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1797 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1798 
1799 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1800 	v &= ~AQ_FW_SOFTRESET_DIS;
1801 	v |= AQ_FW_SOFTRESET_RESET;
1802 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1803 }
1804 
1805 static int
1806 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1807 {
1808 	int timo;
1809 
1810 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1811 
1812 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1813 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1814 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1815 
1816 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1817 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1818 
1819 	global_software_reset(sc);
1820 
1821 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1822 
1823 	/* Wait for RBL to finish boot process. */
1824 #define RBL_TIMEOUT_MS	10000
1825 	uint16_t rbl_status;
1826 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1827 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1828 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1829 			break;
1830 		msec_delay(1);
1831 	}
1832 	if (timo <= 0) {
1833 		aprint_error_dev(sc->sc_dev,
1834 		    "RBL> RBL restart failed: timeout\n");
1835 		return EBUSY;
1836 	}
1837 	switch (rbl_status) {
1838 	case RBL_STATUS_SUCCESS:
1839 		if (mode != NULL)
1840 			*mode = FW_BOOT_MODE_RBL_FLASH;
1841 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1842 		break;
1843 	case RBL_STATUS_HOST_BOOT:
1844 		if (mode != NULL)
1845 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1846 		aprint_debug_dev(sc->sc_dev,
1847 		    "RBL> reset complete! [Host Bootload]\n");
1848 		break;
1849 	case RBL_STATUS_FAILURE:
1850 	default:
1851 		aprint_error_dev(sc->sc_dev,
1852 		    "unknown RBL status 0x%x\n", rbl_status);
1853 		return EBUSY;
1854 	}
1855 
1856 	return 0;
1857 }
1858 
1859 static int
1860 mac_soft_reset_flb(struct aq_softc *sc)
1861 {
1862 	uint32_t v;
1863 	int timo;
1864 
1865 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1866 	/*
1867 	 * Let Felicity hardware to complete SMBUS transaction before
1868 	 * Global software reset.
1869 	 */
1870 	msec_delay(50);
1871 
1872 	/*
1873 	 * If SPI burst transaction was interrupted(before running the script),
1874 	 * global software reset may not clear SPI interface.
1875 	 * Clean it up manually before global reset.
1876 	 */
1877 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1878 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1879 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1880 	msec_delay(50);
1881 
1882 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1883 	v &= ~AQ_FW_SOFTRESET_DIS;
1884 	v |= AQ_FW_SOFTRESET_RESET;
1885 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1886 
1887 	/* Kickstart. */
1888 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1889 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1890 	if (!sc->sc_fast_start_enabled)
1891 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1892 
1893 	/*
1894 	 * For the case SPI burst transaction was interrupted (by MCP reset
1895 	 * above), wait until it is completed by hardware.
1896 	 */
1897 	msec_delay(50);
1898 
1899 	/* MAC Kickstart */
1900 	if (!sc->sc_fast_start_enabled) {
1901 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1902 
1903 		uint32_t flb_status;
1904 		for (timo = 0; timo < 1000; timo++) {
1905 			flb_status = AQ_READ_REG(sc,
1906 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1907 			if (flb_status != 0)
1908 				break;
1909 			msec_delay(1);
1910 		}
1911 		if (flb_status == 0) {
1912 			aprint_error_dev(sc->sc_dev,
1913 			    "FLB> MAC kickstart failed: timed out\n");
1914 			return ETIMEDOUT;
1915 		}
1916 		aprint_debug_dev(sc->sc_dev,
1917 		    "FLB> MAC kickstart done, %d ms\n", timo);
1918 		/* FW reset */
1919 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1920 		/*
1921 		 * Let Felicity hardware complete SMBUS transaction before
1922 		 * Global software reset.
1923 		 */
1924 		msec_delay(50);
1925 		sc->sc_fast_start_enabled = true;
1926 	}
1927 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1928 
1929 	/* PHY Kickstart: #undone */
1930 	global_software_reset(sc);
1931 
1932 	for (timo = 0; timo < 1000; timo++) {
1933 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1934 			break;
1935 		msec_delay(10);
1936 	}
1937 	if (timo >= 1000) {
1938 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1939 		return ETIMEDOUT;
1940 	}
1941 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1942 	return 0;
1943 
1944 }
1945 
1946 static int
1947 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1948 {
1949 	if (sc->sc_rbl_enabled)
1950 		return mac_soft_reset_rbl(sc, mode);
1951 
1952 	if (mode != NULL)
1953 		*mode = FW_BOOT_MODE_FLB;
1954 	return mac_soft_reset_flb(sc);
1955 }
1956 
1957 static int
1958 aq_fw_read_version(struct aq_softc *sc)
1959 {
1960 	int i, error = EBUSY;
1961 #define MAC_FW_START_TIMEOUT_MS	10000
1962 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1963 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1964 		if (sc->sc_fw_version != 0) {
1965 			error = 0;
1966 			break;
1967 		}
1968 		delay(1000);
1969 	}
1970 	return error;
1971 }
1972 
1973 static int
1974 aq_fw_reset(struct aq_softc *sc)
1975 {
1976 	uint32_t ver, v, bootExitCode;
1977 	int i, error;
1978 
1979 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1980 
1981 	for (i = 1000; i > 0; i--) {
1982 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1983 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1984 		if (v != 0x06000000 || bootExitCode != 0)
1985 			break;
1986 	}
1987 	if (i <= 0) {
1988 		aprint_error_dev(sc->sc_dev,
1989 		    "F/W reset failed. Neither RBL nor FLB started\n");
1990 		return ETIMEDOUT;
1991 	}
1992 	sc->sc_rbl_enabled = (bootExitCode != 0);
1993 
1994 	/*
1995 	 * Having FW version 0 is an indicator that cold start
1996 	 * is in progress. This means two things:
1997 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1998 	 * 2) Driver may skip reset sequence and save time.
1999 	 */
2000 	if (sc->sc_fast_start_enabled && (ver != 0)) {
2001 		error = aq_fw_read_version(sc);
2002 		/* Skip reset as it just completed */
2003 		if (error == 0)
2004 			return 0;
2005 	}
2006 
2007 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2008 	error = mac_soft_reset(sc, &mode);
2009 	if (error != 0) {
2010 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2011 		return error;
2012 	}
2013 
2014 	switch (mode) {
2015 	case FW_BOOT_MODE_FLB:
2016 		aprint_debug_dev(sc->sc_dev,
2017 		    "FLB> F/W successfully loaded from flash.\n");
2018 		sc->sc_flash_present = true;
2019 		return aq_fw_read_version(sc);
2020 	case FW_BOOT_MODE_RBL_FLASH:
2021 		aprint_debug_dev(sc->sc_dev,
2022 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2023 		sc->sc_flash_present = true;
2024 		return aq_fw_read_version(sc);
2025 	case FW_BOOT_MODE_UNKNOWN:
2026 		aprint_error_dev(sc->sc_dev,
2027 		    "F/W bootload error: unknown bootloader type\n");
2028 		return ENOTSUP;
2029 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2030 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2031 		break;
2032 	}
2033 
2034 	/*
2035 	 * XXX: TODO: add support Host Boot
2036 	 */
2037 	aprint_error_dev(sc->sc_dev,
2038 	    "RBL> F/W Host Bootload not implemented\n");
2039 	return ENOTSUP;
2040 }
2041 
2042 static int
2043 aq_hw_reset(struct aq_softc *sc)
2044 {
2045 	int error;
2046 
2047 	/* disable irq */
2048 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2049 
2050 	/* apply */
2051 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2052 
2053 	/* wait ack 10 times by 1ms */
2054 	WAIT_FOR(
2055 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2056 	    1000, 10, &error);
2057 	if (error != 0) {
2058 		aprint_error_dev(sc->sc_dev,
2059 		    "atlantic: IRQ reset failed: %d\n", error);
2060 		return error;
2061 	}
2062 
2063 	return sc->sc_fw_ops->reset(sc);
2064 }
2065 
2066 static int
2067 aq_hw_init_ucp(struct aq_softc *sc)
2068 {
2069 	int timo;
2070 
2071 	if (FW_VERSION_MAJOR(sc) == 1) {
2072 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0)
2073 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, 0xfefefefe);
2074 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2075 	}
2076 
2077 	/* Wait a maximum of 10sec. It usually takes about 5sec. */
2078 	for (timo = 10000; timo > 0; timo--) {
2079 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2080 		if (sc->sc_mbox_addr != 0)
2081 			break;
2082 		delay(1000);
2083 	}
2084 	if (sc->sc_mbox_addr == 0) {
2085 		aprint_error_dev(sc->sc_dev, "cannot get mbox addr\n");
2086 		return ETIMEDOUT;
2087 	}
2088 
2089 #define AQ_FW_MIN_VERSION	0x01050006
2090 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2091 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2092 		aprint_error_dev(sc->sc_dev,
2093 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2094 		    " or later required, this is %d.%d.%d\n",
2095 		    FW_VERSION_MAJOR(sc),
2096 		    FW_VERSION_MINOR(sc),
2097 		    FW_VERSION_BUILD(sc));
2098 		return ENOTSUP;
2099 	}
2100 
2101 	return 0;
2102 }
2103 
2104 static int
2105 aq_fw_version_init(struct aq_softc *sc)
2106 {
2107 	int error = 0;
2108 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2109 
2110 	if (FW_VERSION_MAJOR(sc) == 1) {
2111 		sc->sc_fw_ops = &aq_fw1x_ops;
2112 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2113 		sc->sc_fw_ops = &aq_fw2x_ops;
2114 	} else {
2115 		aprint_error_dev(sc->sc_dev,
2116 		    "Unsupported F/W version %d.%d.%d\n",
2117 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2118 		    FW_VERSION_BUILD(sc));
2119 		return ENOTSUP;
2120 	}
2121 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2122 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2123 
2124 	/* detect revision */
2125 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2126 	switch (hwrev & 0x0000000f) {
2127 	case 0x01:
2128 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2129 		    fw_vers);
2130 		sc->sc_features |= FEATURES_REV_A0 |
2131 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2132 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2133 		break;
2134 	case 0x02:
2135 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2136 		    fw_vers);
2137 		sc->sc_features |= FEATURES_REV_B0 |
2138 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2139 		    FEATURES_TPO2 | FEATURES_RPF2;
2140 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2141 		break;
2142 	case 0x0A:
2143 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2144 		    fw_vers);
2145 		sc->sc_features |= FEATURES_REV_B1 |
2146 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2147 		    FEATURES_TPO2 | FEATURES_RPF2;
2148 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2149 		break;
2150 	default:
2151 		aprint_error_dev(sc->sc_dev,
2152 		    "Unknown revision (0x%08x)\n", hwrev);
2153 		sc->sc_features = 0;
2154 		sc->sc_max_mtu = ETHERMTU;
2155 		error = ENOTSUP;
2156 		break;
2157 	}
2158 	return error;
2159 }
2160 
2161 static int
2162 fw1x_reset(struct aq_softc *sc)
2163 {
2164 	struct aq_mailbox_header mbox;
2165 	const int retryCount = 1000;
2166 	uint32_t tid0;
2167 	int i;
2168 
2169 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2170 
2171 	for (i = 0; i < retryCount; ++i) {
2172 		/*
2173 		 * Read the beginning of Statistics structure to capture
2174 		 * the Transaction ID.
2175 		 */
2176 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2177 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2178 
2179 		/* Successfully read the stats. */
2180 		if (tid0 == ~0U) {
2181 			/* We have read the initial value. */
2182 			tid0 = mbox.transaction_id;
2183 			continue;
2184 		} else if (mbox.transaction_id != tid0) {
2185 			/*
2186 			 * Compare transaction ID to initial value.
2187 			 * If it's different means f/w is alive.
2188 			 * We're done.
2189 			 */
2190 			return 0;
2191 		}
2192 
2193 		/*
2194 		 * Transaction ID value haven't changed since last time.
2195 		 * Try reading the stats again.
2196 		 */
2197 		delay(10);
2198 	}
2199 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2200 	return EBUSY;
2201 }
2202 
2203 static int
2204 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2205     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2206 {
2207 	uint32_t mpictrl = 0;
2208 	uint32_t mpispeed = 0;
2209 
2210 	if (speed & AQ_LINK_10G)
2211 		mpispeed |= FW1X_CTRL_10G;
2212 	if (speed & AQ_LINK_5G)
2213 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2214 	if (speed & AQ_LINK_2G5)
2215 		mpispeed |= FW1X_CTRL_2G5;
2216 	if (speed & AQ_LINK_1G)
2217 		mpispeed |= FW1X_CTRL_1G;
2218 	if (speed & AQ_LINK_100M)
2219 		mpispeed |= FW1X_CTRL_100M;
2220 
2221 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2222 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2223 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2224 	return 0;
2225 }
2226 
2227 static int
2228 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2229     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2230 {
2231 	uint32_t mpistate, mpi_speed;
2232 	aq_link_speed_t speed = AQ_LINK_NONE;
2233 
2234 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2235 
2236 	if (modep != NULL)
2237 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2238 
2239 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2240 	if (mpi_speed & FW1X_CTRL_10G)
2241 		speed = AQ_LINK_10G;
2242 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2243 		speed = AQ_LINK_5G;
2244 	else if (mpi_speed & FW1X_CTRL_2G5)
2245 		speed = AQ_LINK_2G5;
2246 	else if (mpi_speed & FW1X_CTRL_1G)
2247 		speed = AQ_LINK_1G;
2248 	else if (mpi_speed & FW1X_CTRL_100M)
2249 		speed = AQ_LINK_100M;
2250 
2251 	if (speedp != NULL)
2252 		*speedp = speed;
2253 
2254 	if (fcp != NULL)
2255 		*fcp = AQ_FC_NONE;
2256 
2257 	if (eeep != NULL)
2258 		*eeep = AQ_EEE_DISABLE;
2259 
2260 	return 0;
2261 }
2262 
2263 static int
2264 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2265 {
2266 	int error;
2267 
2268 	error = aq_fw_downld_dwords(sc,
2269 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2270 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2271 	if (error < 0) {
2272 		device_printf(sc->sc_dev,
2273 		    "fw1x> download statistics data FAILED, error %d", error);
2274 		return error;
2275 	}
2276 
2277 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2278 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2279 	return 0;
2280 }
2281 
2282 static int
2283 fw2x_reset(struct aq_softc *sc)
2284 {
2285 	fw2x_capabilities_t caps = { 0 };
2286 	int error;
2287 
2288 	error = aq_fw_downld_dwords(sc,
2289 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2290 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2291 	if (error != 0) {
2292 		aprint_error_dev(sc->sc_dev,
2293 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2294 		    error);
2295 		return error;
2296 	}
2297 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2298 
2299 	char buf[256];
2300 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2301 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2302 
2303 	return 0;
2304 }
2305 
2306 static int
2307 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2308     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2309 {
2310 	uint64_t mpi_ctrl;
2311 	int error = 0;
2312 
2313 	AQ_MPI_LOCK(sc);
2314 
2315 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2316 
2317 	switch (mode) {
2318 	case MPI_INIT:
2319 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2320 		if (speed & AQ_LINK_10G)
2321 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2322 		if (speed & AQ_LINK_5G)
2323 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2324 		if (speed & AQ_LINK_2G5)
2325 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2326 		if (speed & AQ_LINK_1G)
2327 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2328 		if (speed & AQ_LINK_100M)
2329 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2330 
2331 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2332 
2333 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2334 		if (eee == AQ_EEE_ENABLE)
2335 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2336 
2337 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2338 		if (fc & AQ_FC_RX)
2339 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2340 		if (fc & AQ_FC_TX)
2341 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2342 		break;
2343 	case MPI_DEINIT:
2344 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2345 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2346 		break;
2347 	default:
2348 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2349 		error =  EINVAL;
2350 		goto failure;
2351 	}
2352 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2353 
2354  failure:
2355 	AQ_MPI_UNLOCK(sc);
2356 	return error;
2357 }
2358 
2359 static int
2360 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2361     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2362 {
2363 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2364 
2365 	if (modep != NULL) {
2366 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2367 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2368 			*modep = MPI_INIT;
2369 		else
2370 			*modep = MPI_DEINIT;
2371 	}
2372 
2373 	aq_link_speed_t speed = AQ_LINK_NONE;
2374 	if (mpi_state & FW2X_CTRL_RATE_10G)
2375 		speed = AQ_LINK_10G;
2376 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2377 		speed = AQ_LINK_5G;
2378 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2379 		speed = AQ_LINK_2G5;
2380 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2381 		speed = AQ_LINK_1G;
2382 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2383 		speed = AQ_LINK_100M;
2384 
2385 	if (speedp != NULL)
2386 		*speedp = speed;
2387 
2388 	aq_link_fc_t fc = AQ_FC_NONE;
2389 	if (mpi_state & FW2X_CTRL_PAUSE)
2390 		fc |= AQ_FC_RX;
2391 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2392 		fc |= AQ_FC_TX;
2393 	if (fcp != NULL)
2394 		*fcp = fc;
2395 
2396 	/* XXX: TODO: EEE */
2397 	if (eeep != NULL)
2398 		*eeep = AQ_EEE_DISABLE;
2399 
2400 	return 0;
2401 }
2402 
2403 static int
2404 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2405     uint32_t timeout_ms, uint32_t try_count)
2406 {
2407 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2408 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2409 	int error;
2410 
2411 	/* First, check that control and state values are consistent */
2412 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2413 		device_printf(sc->sc_dev,
2414 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2415 		    " are not consistent for mask %#llx!\n",
2416 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2417 		    (unsigned long long)mask);
2418 		return EINVAL;
2419 	}
2420 
2421 	/* Invert bits (toggle) in control register */
2422 	mpi_ctrl ^= mask;
2423 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2424 
2425 	/* Clear all bits except masked */
2426 	mpi_ctrl &= mask;
2427 
2428 	/* Wait for FW reflecting change in state register */
2429 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2430 	    1000 * timeout_ms, try_count, &error);
2431 	if (error != 0) {
2432 		device_printf(sc->sc_dev,
2433 		    "f/w2x> timeout while waiting for response"
2434 		    " in state register for bit %#llx!",
2435 		    (unsigned long long)mask);
2436 		return error;
2437 	}
2438 	return 0;
2439 }
2440 
2441 static int
2442 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2443 {
2444 	int error;
2445 
2446 	AQ_MPI_LOCK(sc);
2447 	/* Say to F/W to update the statistics */
2448 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2449 	if (error != 0) {
2450 		device_printf(sc->sc_dev,
2451 		    "fw2x> statistics update error %d\n", error);
2452 		goto failure;
2453 	}
2454 
2455 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2456 	error = aq_fw_downld_dwords(sc,
2457 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2458 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2459 	if (error != 0) {
2460 		device_printf(sc->sc_dev,
2461 		    "fw2x> download statistics data FAILED, error %d", error);
2462 		goto failure;
2463 	}
2464 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2465 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2466 
2467  failure:
2468 	AQ_MPI_UNLOCK(sc);
2469 	return error;
2470 }
2471 
2472 #if NSYSMON_ENVSYS > 0
2473 static int
2474 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2475 {
2476 	int error;
2477 	uint32_t value, celsius;
2478 
2479 	AQ_MPI_LOCK(sc);
2480 
2481 	/* Say to F/W to update the temperature */
2482 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2483 	if (error != 0)
2484 		goto failure;
2485 
2486 	error = aq_fw_downld_dwords(sc,
2487 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2488 	    &value, sizeof(value) / sizeof(uint32_t));
2489 	if (error != 0)
2490 		goto failure;
2491 
2492 	/* 1/256 decrees C to microkelvin */
2493 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2494 	if (celsius == 0) {
2495 		error = EIO;
2496 		goto failure;
2497 	}
2498 	*temp = celsius * (1000000 / 256) + 273150000;
2499 
2500  failure:
2501 	AQ_MPI_UNLOCK(sc);
2502 	return 0;
2503 }
2504 #endif
2505 
2506 static int
2507 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2508     uint32_t cnt)
2509 {
2510 	uint32_t v;
2511 	int error = 0;
2512 
2513 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2514 	if (error != 0) {
2515 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2516 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2517 		if (v == 0) {
2518 			device_printf(sc->sc_dev,
2519 			    "%s:%d: timeout\n", __func__, __LINE__);
2520 			return ETIMEDOUT;
2521 		}
2522 	}
2523 
2524 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2525 
2526 	error = 0;
2527 	for (; cnt > 0 && error == 0; cnt--) {
2528 		/* execute mailbox interface */
2529 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2530 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2531 		if (sc->sc_features & FEATURES_REV_B1) {
2532 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2533 			    1, 1000, &error);
2534 		} else {
2535 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2536 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2537 			    1, 1000, &error);
2538 		}
2539 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2540 		addr += sizeof(uint32_t);
2541 	}
2542 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2543 
2544 	if (error != 0)
2545 		device_printf(sc->sc_dev,
2546 		    "%s:%d: timeout\n", __func__, __LINE__);
2547 
2548 	return error;
2549 }
2550 
2551 /* read my mac address */
2552 static int
2553 aq_get_mac_addr(struct aq_softc *sc)
2554 {
2555 	uint32_t mac_addr[2];
2556 	uint32_t efuse_shadow_addr;
2557 	int err;
2558 
2559 	efuse_shadow_addr = 0;
2560 	if (FW_VERSION_MAJOR(sc) >= 2)
2561 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2562 	else
2563 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2564 
2565 	if (efuse_shadow_addr == 0) {
2566 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2567 		return ENXIO;
2568 	}
2569 
2570 	memset(mac_addr, 0, sizeof(mac_addr));
2571 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2572 	    mac_addr, __arraycount(mac_addr));
2573 	if (err < 0)
2574 		return err;
2575 
2576 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2577 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2578 		return ENXIO;
2579 	}
2580 
2581 	mac_addr[0] = htobe32(mac_addr[0]);
2582 	mac_addr[1] = htobe32(mac_addr[1]);
2583 
2584 	memcpy(sc->sc_enaddr.ether_addr_octet,
2585 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2586 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2587 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2588 
2589 	return 0;
2590 }
2591 
2592 /* set multicast filter. index 0 for own address */
2593 static int
2594 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2595 {
2596 	uint32_t h, l;
2597 
2598 	if (index >= AQ_HW_MAC_NUM)
2599 		return EINVAL;
2600 
2601 	if (enaddr == NULL) {
2602 		/* disable */
2603 		AQ_WRITE_REG_BIT(sc,
2604 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2605 		return 0;
2606 	}
2607 
2608 	h = (enaddr[0] <<  8) | (enaddr[1]);
2609 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2610 	    (enaddr[4] <<  8) | (enaddr[5]);
2611 
2612 	/* disable, set, and enable */
2613 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2614 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2615 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2616 	    RPF_L2UC_MSW_MACADDR_HI, h);
2617 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2618 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2619 
2620 	return 0;
2621 }
2622 
2623 static int
2624 aq_set_capability(struct aq_softc *sc)
2625 {
2626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2627 	int ip4csum_tx =
2628 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2629 	int ip4csum_rx =
2630 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2631 	int l4csum_tx = ((ifp->if_capenable &
2632 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2633 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2634 	int l4csum_rx =
2635 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2636 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2637 	uint32_t lso =
2638 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2639 	   0 : 0xffffffff;
2640 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2641 	    0 : 0xffffffff;
2642 	uint32_t i, v;
2643 
2644 	/* TX checksums offloads*/
2645 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2646 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2647 
2648 	/* RX checksums offloads*/
2649 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2650 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2651 
2652 	/* LSO offloads*/
2653 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2654 
2655 #define AQ_B0_LRO_RXD_MAX	16
2656 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2657 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2658 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2659 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2660 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2661 		    RPO_LRO_LDES_MAX_MASK(i), v);
2662 	}
2663 
2664 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2665 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2666 	    RPO_LRO_INACTIVE_IVAL, 0);
2667 	/*
2668 	 * the LRO timebase divider is 5 uS (0x61a),
2669 	 * to get a maximum coalescing interval of 250 uS,
2670 	 * we need to multiply by 50(0x32) to get
2671 	 * the default value 250 uS
2672 	 */
2673 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2674 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2675 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2676 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2677 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2678 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2679 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2680 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2681 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2682 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2683 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2684 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2685 
2686 	return 0;
2687 }
2688 
2689 static int
2690 aq_set_filter(struct aq_softc *sc)
2691 {
2692 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2693 	struct ethercom *ec = &sc->sc_ethercom;
2694 	struct ether_multi *enm;
2695 	struct ether_multistep step;
2696 	int idx, error = 0;
2697 
2698 	if (ifp->if_flags & IFF_PROMISC) {
2699 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2700 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2701 		ec->ec_flags |= ETHER_F_ALLMULTI;
2702 		goto done;
2703 	}
2704 
2705 	/* clear all table */
2706 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2707 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2708 			continue;
2709 		aq_set_mac_addr(sc, idx, NULL);
2710 	}
2711 
2712 	/* don't accept all multicast */
2713 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2714 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2715 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2716 	    RPF_MCAST_FILTER_EN, 0);
2717 
2718 	idx = 0;
2719 	ETHER_LOCK(ec);
2720 	ETHER_FIRST_MULTI(step, ec, enm);
2721 	while (enm != NULL) {
2722 		if (idx == AQ_HW_MAC_OWN)
2723 			idx++;
2724 
2725 		if ((idx >= AQ_HW_MAC_NUM) ||
2726 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2727 			/*
2728 			 * too many filters.
2729 			 * fallback to accept all multicast addresses.
2730 			 */
2731 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2732 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2733 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2734 			    RPF_MCAST_FILTER_EN, 1);
2735 			ec->ec_flags |= ETHER_F_ALLMULTI;
2736 			ETHER_UNLOCK(ec);
2737 			goto done;
2738 		}
2739 
2740 		/* add a filter */
2741 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2742 
2743 		ETHER_NEXT_MULTI(step, enm);
2744 	}
2745 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2746 	ETHER_UNLOCK(ec);
2747 
2748  done:
2749 	return error;
2750 }
2751 
2752 static int
2753 aq_ifmedia_change(struct ifnet * const ifp)
2754 {
2755 	struct aq_softc *sc = ifp->if_softc;
2756 	aq_link_speed_t rate = AQ_LINK_NONE;
2757 	aq_link_fc_t fc = AQ_FC_NONE;
2758 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2759 
2760 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2761 		return EINVAL;
2762 
2763 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2764 	case IFM_AUTO:
2765 		rate = AQ_LINK_AUTO;
2766 		break;
2767 	case IFM_NONE:
2768 		rate = AQ_LINK_NONE;
2769 		break;
2770 	case IFM_100_TX:
2771 		rate = AQ_LINK_100M;
2772 		break;
2773 	case IFM_1000_T:
2774 		rate = AQ_LINK_1G;
2775 		break;
2776 	case IFM_2500_T:
2777 		rate = AQ_LINK_2G5;
2778 		break;
2779 	case IFM_5000_T:
2780 		rate = AQ_LINK_5G;
2781 		break;
2782 	case IFM_10G_T:
2783 		rate = AQ_LINK_10G;
2784 		break;
2785 	default:
2786 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2787 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2788 		return ENODEV;
2789 	}
2790 
2791 	if (sc->sc_media.ifm_media & IFM_FLOW)
2792 		fc = AQ_FC_ALL;
2793 
2794 	/* XXX: todo EEE */
2795 
2796 	/* re-initialize hardware with new parameters */
2797 	aq_set_linkmode(sc, rate, fc, eee);
2798 
2799 	return 0;
2800 }
2801 
2802 static void
2803 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2804 {
2805 	struct aq_softc *sc = ifp->if_softc;
2806 
2807 	/* update ifm_active */
2808 	ifmr->ifm_active = IFM_ETHER;
2809 	if (sc->sc_link_fc & AQ_FC_RX)
2810 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2811 	if (sc->sc_link_fc & AQ_FC_TX)
2812 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2813 
2814 	switch (sc->sc_link_rate) {
2815 	case AQ_LINK_100M:
2816 		/* XXX: need to detect fulldup or halfdup */
2817 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2818 		break;
2819 	case AQ_LINK_1G:
2820 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2821 		break;
2822 	case AQ_LINK_2G5:
2823 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2824 		break;
2825 	case AQ_LINK_5G:
2826 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2827 		break;
2828 	case AQ_LINK_10G:
2829 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2830 		break;
2831 	default:
2832 		ifmr->ifm_active |= IFM_NONE;
2833 		break;
2834 	}
2835 
2836 	/* update ifm_status */
2837 	ifmr->ifm_status = IFM_AVALID;
2838 	if (sc->sc_link_rate != AQ_LINK_NONE)
2839 		ifmr->ifm_status |= IFM_ACTIVE;
2840 }
2841 
2842 static void
2843 aq_initmedia(struct aq_softc *sc)
2844 {
2845 #define IFMEDIA_ETHER_ADD(sc, media)	\
2846 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2847 
2848 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2849 	if (sc->sc_available_rates & AQ_LINK_100M) {
2850 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2851 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2852 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2853 	}
2854 	if (sc->sc_available_rates & AQ_LINK_1G) {
2855 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2856 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2857 	}
2858 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2859 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2860 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2861 	}
2862 	if (sc->sc_available_rates & AQ_LINK_5G) {
2863 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2864 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2865 	}
2866 	if (sc->sc_available_rates & AQ_LINK_10G) {
2867 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2868 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2869 	}
2870 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2871 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2872 
2873 	/* default: auto without flowcontrol */
2874 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2875 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2876 }
2877 
2878 static int
2879 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2880     aq_link_eee_t eee)
2881 {
2882 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2883 }
2884 
2885 static int
2886 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2887    aq_link_eee_t *eee)
2888 {
2889 	aq_hw_fw_mpi_state_t mode;
2890 	int error;
2891 
2892 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2893 	if (error != 0)
2894 		return error;
2895 	if (mode != MPI_INIT)
2896 		return ENXIO;
2897 
2898 	return 0;
2899 }
2900 
2901 static void
2902 aq_hw_init_tx_path(struct aq_softc *sc)
2903 {
2904 	/* Tx TC/RSS number config */
2905 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2906 
2907 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2908 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2909 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2910 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2911 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2912 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2913 
2914 	/* misc */
2915 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2916 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2917 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2918 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2919 
2920 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2921 }
2922 
2923 static void
2924 aq_hw_init_rx_path(struct aq_softc *sc)
2925 {
2926 	int i;
2927 
2928 	/* clear setting */
2929 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2930 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2931 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2932 	for (i = 0; i < 32; i++) {
2933 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2934 		   RPF_ETHERTYPE_FILTER_EN, 0);
2935 	}
2936 
2937 	if (sc->sc_rss_enable) {
2938 		/* Rx TC/RSS number config */
2939 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2940 
2941 		/* Rx flow control */
2942 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2943 
2944 		/* RSS Ring selection */
2945 		switch (sc->sc_nqueues) {
2946 		case 2:
2947 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2948 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2949 			break;
2950 		case 4:
2951 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2952 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2953 			break;
2954 		case 8:
2955 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2956 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2957 			break;
2958 		}
2959 	}
2960 
2961 	/* L2 and Multicast filters */
2962 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2963 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2964 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2965 		    RPF_ACTION_HOST);
2966 	}
2967 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2968 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2969 
2970 	/* Vlan filters */
2971 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2972 	    ETHERTYPE_QINQ);
2973 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2974 	    ETHERTYPE_VLAN);
2975 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2976 
2977 	if (sc->sc_features & FEATURES_REV_B) {
2978 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2979 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2980 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2981 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2982 	}
2983 
2984 	/* misc */
2985 	if (sc->sc_features & FEATURES_RPF2)
2986 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2987 	else
2988 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2989 
2990 	/*
2991 	 * XXX: RX_TCP_RSS_HASH_REG:
2992 	 *  linux   set 0x000f0000
2993 	 *  freebsd set 0x000f001e
2994 	 */
2995 	/* RSS hash type set for IP/TCP */
2996 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2997 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2998 
2999 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
3000 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3001 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3002 
3003 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3004 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3005 }
3006 
3007 static void
3008 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3009 {
3010 	int i;
3011 
3012 	if (sc->sc_intr_moderation_enable) {
3013 		unsigned int tx_min, rx_min;	/* 0-255 */
3014 		unsigned int tx_max, rx_max;	/* 0-511? */
3015 
3016 		switch (sc->sc_link_rate) {
3017 		case AQ_LINK_100M:
3018 			tx_min = 0x4f;
3019 			tx_max = 0xff;
3020 			rx_min = 0x04;
3021 			rx_max = 0x50;
3022 			break;
3023 		case AQ_LINK_1G:
3024 		default:
3025 			tx_min = 0x4f;
3026 			tx_max = 0xff;
3027 			rx_min = 0x30;
3028 			rx_max = 0x80;
3029 			break;
3030 		case AQ_LINK_2G5:
3031 			tx_min = 0x4f;
3032 			tx_max = 0xff;
3033 			rx_min = 0x18;
3034 			rx_max = 0xe0;
3035 			break;
3036 		case AQ_LINK_5G:
3037 			tx_min = 0x4f;
3038 			tx_max = 0xff;
3039 			rx_min = 0x0c;
3040 			rx_max = 0x70;
3041 			break;
3042 		case AQ_LINK_10G:
3043 			tx_min = 0x4f;
3044 			tx_max = 0x1ff;
3045 			rx_min = 0x06;	/* freebsd use 80 */
3046 			rx_max = 0x38;	/* freebsd use 120 */
3047 			break;
3048 		}
3049 
3050 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3051 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3052 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3053 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3054 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3055 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3056 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3057 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3058 
3059 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3060 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3061 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3062 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3063 			    TX_INTR_MODERATION_CTL_EN);
3064 		}
3065 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3066 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3067 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3068 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3069 			    RX_INTR_MODERATION_CTL_EN);
3070 		}
3071 
3072 	} else {
3073 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3074 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3075 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3076 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3077 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3078 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3079 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3080 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3081 
3082 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3083 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3084 		}
3085 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3086 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3087 		}
3088 	}
3089 }
3090 
3091 static void
3092 aq_hw_qos_set(struct aq_softc *sc)
3093 {
3094 	uint32_t tc = 0;
3095 	uint32_t buff_size;
3096 
3097 	/* TPS Descriptor rate init */
3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3099 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3100 
3101 	/* TPS VM init */
3102 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3103 
3104 	/* TPS TC credits init */
3105 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3106 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3107 
3108 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3109 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3110 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3111 	    TPS_DATA_TCT_WEIGHT, 0x64);
3112 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3113 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3114 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3115 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3116 
3117 	/* Tx buf size */
3118 	tc = 0;
3119 	buff_size = AQ_HW_TXBUF_MAX;
3120 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3121 	    buff_size);
3122 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3123 	    (buff_size * (1024 / 32) * 66) / 100);
3124 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3125 	    (buff_size * (1024 / 32) * 50) / 100);
3126 
3127 	/* QoS Rx buf size per TC */
3128 	tc = 0;
3129 	buff_size = AQ_HW_RXBUF_MAX;
3130 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3131 	    buff_size);
3132 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3133 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3134 	    (buff_size * (1024 / 32) * 66) / 100);
3135 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3136 	    (buff_size * (1024 / 32) * 50) / 100);
3137 
3138 	/* QoS 802.1p priority -> TC mapping */
3139 	int i_priority;
3140 	for (i_priority = 0; i_priority < 8; i_priority++) {
3141 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3142 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3143 	}
3144 }
3145 
3146 /* called once from aq_attach */
3147 static int
3148 aq_init_rss(struct aq_softc *sc)
3149 {
3150 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3151 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3152 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3153 	unsigned int i;
3154 	int error;
3155 
3156 	/* initialize rss key */
3157 	rss_getkey((uint8_t *)rss_key);
3158 
3159 	/* hash to ring table */
3160 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3161 		rss_table[i] = i % sc->sc_nqueues;
3162 	}
3163 
3164 	/*
3165 	 * set rss key
3166 	 */
3167 	for (i = 0; i < __arraycount(rss_key); i++) {
3168 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3169 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3170 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3171 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3172 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3173 		    RPF_RSS_KEY_WR_EN, 1);
3174 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3175 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3176 		if (error != 0) {
3177 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3178 			    __func__);
3179 			goto rss_set_timeout;
3180 		}
3181 	}
3182 
3183 	/*
3184 	 * set rss indirection table
3185 	 *
3186 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3187 	 * we'll make it by __BITMAP(3) macros.
3188 	 */
3189 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3190 	__BITMAP_ZERO(&bit3x64);
3191 
3192 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3193 	do {							\
3194 		if (val & 1) {					\
3195 			__BITMAP_SET((idx) * 3, (bitmap));	\
3196 		} else {					\
3197 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3198 		}						\
3199 		if (val & 2) {					\
3200 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3201 		} else {					\
3202 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3203 		}						\
3204 		if (val & 4) {					\
3205 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3206 		} else {					\
3207 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3208 		}						\
3209 	} while (0 /* CONSTCOND */)
3210 
3211 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3212 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3213 	}
3214 
3215 	/* write 192bit data in steps of 16bit */
3216 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3217 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3218 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3219 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3220 		    RPF_RSS_REDIR_ADDR, i);
3221 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3222 		    RPF_RSS_REDIR_WR_EN, 1);
3223 
3224 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3225 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3226 		if (error != 0)
3227 			break;
3228 	}
3229 
3230  rss_set_timeout:
3231 	return error;
3232 }
3233 
3234 static void
3235 aq_hw_l3_filter_set(struct aq_softc *sc)
3236 {
3237 	int i;
3238 
3239 	/* clear all filter */
3240 	for (i = 0; i < 8; i++) {
3241 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3242 		    RPF_L3_FILTER_L4_EN, 0);
3243 	}
3244 }
3245 
3246 static void
3247 aq_set_vlan_filters(struct aq_softc *sc)
3248 {
3249 	struct ethercom *ec = &sc->sc_ethercom;
3250 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3251 	struct vlanid_list *vlanidp;
3252 	int i;
3253 
3254 	ETHER_LOCK(ec);
3255 
3256 	/* disable all vlan filters */
3257 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3258 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3259 
3260 	/* count VID */
3261 	i = 0;
3262 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3263 		i++;
3264 
3265 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3266 	    (ifp->if_flags & IFF_PROMISC) ||
3267 	    (i > RPF_VLAN_MAX_FILTERS)) {
3268 		/*
3269 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3270 		 * must receive all VID
3271 		 */
3272 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3273 		    RPF_VLAN_MODE_PROMISC, 1);
3274 		goto done;
3275 	}
3276 
3277 	/* receive only selected VID */
3278 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3279 	i = 0;
3280 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3281 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3282 		    RPF_VLAN_FILTER_EN, 1);
3283 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3284 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3285 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3286 		    RPF_VLAN_FILTER_RXQ, 0);
3287 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3288 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3289 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3290 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3291 		i++;
3292 	}
3293 
3294  done:
3295 	ETHER_UNLOCK(ec);
3296 }
3297 
3298 static int
3299 aq_hw_init(struct aq_softc *sc)
3300 {
3301 	uint32_t v;
3302 
3303 	/* Force limit MRRS on RDM/TDM to 2K */
3304 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3305 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3306 
3307 	/*
3308 	 * TX DMA total request limit. B0 hardware is not capable to
3309 	 * handle more than (8K-MRRS) incoming DMA data.
3310 	 * Value 24 in 256byte units
3311 	 */
3312 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3313 
3314 	aq_hw_init_tx_path(sc);
3315 	aq_hw_init_rx_path(sc);
3316 
3317 	aq_hw_interrupt_moderation_set(sc);
3318 
3319 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3320 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3321 
3322 	aq_hw_qos_set(sc);
3323 
3324 	/* Enable interrupt */
3325 	int irqmode;
3326 	if (sc->sc_msix)
3327 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3328 	else
3329 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3330 
3331 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3332 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3333 	    sc->sc_msix ? 1 : 0);
3334 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3335 
3336 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3337 
3338 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3339 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3340 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3341 	);
3342 
3343 	/* link interrupt */
3344 	if (!sc->sc_msix)
3345 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3346 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3347 	    __BIT(7) | sc->sc_linkstat_irq);
3348 
3349 	return 0;
3350 }
3351 
3352 static int
3353 aq_update_link_status(struct aq_softc *sc)
3354 {
3355 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3356 	aq_link_speed_t rate = AQ_LINK_NONE;
3357 	aq_link_fc_t fc = AQ_FC_NONE;
3358 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3359 	unsigned int speed;
3360 	int changed = 0;
3361 
3362 	aq_get_linkmode(sc, &rate, &fc, &eee);
3363 
3364 	if (sc->sc_link_rate != rate)
3365 		changed = 1;
3366 	if (sc->sc_link_fc != fc)
3367 		changed = 1;
3368 	if (sc->sc_link_eee != eee)
3369 		changed = 1;
3370 
3371 	if (changed) {
3372 		switch (rate) {
3373 		case AQ_LINK_100M:
3374 			speed = 100;
3375 			break;
3376 		case AQ_LINK_1G:
3377 			speed = 1000;
3378 			break;
3379 		case AQ_LINK_2G5:
3380 			speed = 2500;
3381 			break;
3382 		case AQ_LINK_5G:
3383 			speed = 5000;
3384 			break;
3385 		case AQ_LINK_10G:
3386 			speed = 10000;
3387 			break;
3388 		case AQ_LINK_NONE:
3389 		default:
3390 			speed = 0;
3391 			break;
3392 		}
3393 
3394 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3395 			/* link DOWN -> UP */
3396 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3397 			    speed);
3398 			if_link_state_change(ifp, LINK_STATE_UP);
3399 		} else if (rate == AQ_LINK_NONE) {
3400 			/* link UP -> DOWN */
3401 			device_printf(sc->sc_dev, "link is DOWN\n");
3402 			if_link_state_change(ifp, LINK_STATE_DOWN);
3403 		} else {
3404 			device_printf(sc->sc_dev,
3405 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3406 			    speed, fc, eee);
3407 		}
3408 
3409 		sc->sc_link_rate = rate;
3410 		sc->sc_link_fc = fc;
3411 		sc->sc_link_eee = eee;
3412 
3413 		/* update interrupt timing according to new link speed */
3414 		aq_hw_interrupt_moderation_set(sc);
3415 	}
3416 
3417 	return changed;
3418 }
3419 
3420 #ifdef AQ_EVENT_COUNTERS
3421 static void
3422 aq_update_statistics(struct aq_softc *sc)
3423 {
3424 	int prev = sc->sc_statistics_idx;
3425 	int cur = prev ^ 1;
3426 
3427 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3428 
3429 	/*
3430 	 * aq's internal statistics counter is 32bit.
3431 	 * cauculate delta, and add to evcount
3432 	 */
3433 #define ADD_DELTA(cur, prev, name)				\
3434 	do {							\
3435 		uint32_t n;					\
3436 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3437 		    sc->sc_statistics[prev].name);		\
3438 		if (n != 0) {					\
3439 			AQ_EVCNT_ADD(sc, name, n);		\
3440 		}						\
3441 	} while (/*CONSTCOND*/0);
3442 
3443 	ADD_DELTA(cur, prev, uprc);
3444 	ADD_DELTA(cur, prev, mprc);
3445 	ADD_DELTA(cur, prev, bprc);
3446 	ADD_DELTA(cur, prev, prc);
3447 	ADD_DELTA(cur, prev, erpr);
3448 	ADD_DELTA(cur, prev, uptc);
3449 	ADD_DELTA(cur, prev, mptc);
3450 	ADD_DELTA(cur, prev, bptc);
3451 	ADD_DELTA(cur, prev, ptc);
3452 	ADD_DELTA(cur, prev, erpt);
3453 	ADD_DELTA(cur, prev, mbtc);
3454 	ADD_DELTA(cur, prev, bbtc);
3455 	ADD_DELTA(cur, prev, mbrc);
3456 	ADD_DELTA(cur, prev, bbrc);
3457 	ADD_DELTA(cur, prev, ubrc);
3458 	ADD_DELTA(cur, prev, ubtc);
3459 	ADD_DELTA(cur, prev, dpc);
3460 	ADD_DELTA(cur, prev, cprc);
3461 
3462 	sc->sc_statistics_idx = cur;
3463 }
3464 #endif /* AQ_EVENT_COUNTERS */
3465 
3466 /* allocate and map one DMA block */
3467 static int
3468 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3469     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3470 {
3471 	int nsegs, error;
3472 
3473 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3474 	    1, &nsegs, 0)) != 0) {
3475 		aprint_error_dev(sc->sc_dev,
3476 		    "unable to allocate DMA buffer, error=%d\n", error);
3477 		goto fail_alloc;
3478 	}
3479 
3480 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3481 	    BUS_DMA_COHERENT)) != 0) {
3482 		aprint_error_dev(sc->sc_dev,
3483 		    "unable to map DMA buffer, error=%d\n", error);
3484 		goto fail_map;
3485 	}
3486 
3487 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3488 	    0, mapp)) != 0) {
3489 		aprint_error_dev(sc->sc_dev,
3490 		    "unable to create DMA map, error=%d\n", error);
3491 		goto fail_create;
3492 	}
3493 
3494 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3495 	    0)) != 0) {
3496 		aprint_error_dev(sc->sc_dev,
3497 		    "unable to load DMA map, error=%d\n", error);
3498 		goto fail_load;
3499 	}
3500 
3501 	*sizep = size;
3502 	return 0;
3503 
3504  fail_load:
3505 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3506 	*mapp = NULL;
3507  fail_create:
3508 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3509 	*addrp = NULL;
3510  fail_map:
3511 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3512 	memset(seg, 0, sizeof(*seg));
3513  fail_alloc:
3514 	*sizep = 0;
3515 	return error;
3516 }
3517 
3518 static void
3519 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3520     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3521 {
3522 	if (*mapp != NULL) {
3523 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3524 		*mapp = NULL;
3525 	}
3526 	if (*addrp != NULL) {
3527 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3528 		*addrp = NULL;
3529 	}
3530 	if (*sizep != 0) {
3531 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3532 		memset(seg, 0, sizeof(*seg));
3533 		*sizep = 0;
3534 	}
3535 }
3536 
3537 static int
3538 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3539 {
3540 	int i, error;
3541 
3542 	/* allocate tx descriptors */
3543 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3544 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3545 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3546 	if (error != 0)
3547 		return error;
3548 
3549 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3550 
3551 	/* fill tx ring with dmamap */
3552 	for (i = 0; i < AQ_TXD_NUM; i++) {
3553 #define AQ_MAXDMASIZE	(16 * 1024)
3554 #define AQ_NTXSEGS	32
3555 		/* XXX: TODO: error check */
3556 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3557 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3558 	}
3559 	return 0;
3560 }
3561 
3562 static void
3563 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3564 {
3565 	int i;
3566 
3567 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3568 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3569 
3570 	for (i = 0; i < AQ_TXD_NUM; i++) {
3571 		if (txring->txr_mbufs[i].dmamap != NULL) {
3572 			if (txring->txr_mbufs[i].m != NULL) {
3573 				bus_dmamap_unload(sc->sc_dmat,
3574 				    txring->txr_mbufs[i].dmamap);
3575 				m_freem(txring->txr_mbufs[i].m);
3576 				txring->txr_mbufs[i].m = NULL;
3577 			}
3578 			bus_dmamap_destroy(sc->sc_dmat,
3579 			    txring->txr_mbufs[i].dmamap);
3580 			txring->txr_mbufs[i].dmamap = NULL;
3581 		}
3582 	}
3583 }
3584 
3585 static int
3586 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3587 {
3588 	int i, error;
3589 
3590 	/* allocate rx descriptors */
3591 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3592 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3593 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3594 	if (error != 0)
3595 		return error;
3596 
3597 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3598 
3599 	/* fill rxring with dmamaps */
3600 	for (i = 0; i < AQ_RXD_NUM; i++) {
3601 		rxring->rxr_mbufs[i].m = NULL;
3602 		/* XXX: TODO: error check */
3603 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3604 		    &rxring->rxr_mbufs[i].dmamap);
3605 	}
3606 	return 0;
3607 }
3608 
3609 static void
3610 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3611 {
3612 	int i;
3613 
3614 	/* free all mbufs allocated for RX */
3615 	for (i = 0; i < AQ_RXD_NUM; i++) {
3616 		if (rxring->rxr_mbufs[i].m != NULL) {
3617 			bus_dmamap_unload(sc->sc_dmat,
3618 			    rxring->rxr_mbufs[i].dmamap);
3619 			m_freem(rxring->rxr_mbufs[i].m);
3620 			rxring->rxr_mbufs[i].m = NULL;
3621 		}
3622 	}
3623 }
3624 
3625 static void
3626 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3627 {
3628 	int i;
3629 
3630 	/* free all mbufs and dmamaps */
3631 	aq_rxdrain(sc, rxring);
3632 	for (i = 0; i < AQ_RXD_NUM; i++) {
3633 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3634 			bus_dmamap_destroy(sc->sc_dmat,
3635 			    rxring->rxr_mbufs[i].dmamap);
3636 			rxring->rxr_mbufs[i].dmamap = NULL;
3637 		}
3638 	}
3639 
3640 	/* free RX descriptor */
3641 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3642 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3643 }
3644 
3645 static void
3646 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3647     struct mbuf *m)
3648 {
3649 	int error;
3650 
3651 	/* if mbuf already exists, unload and free */
3652 	if (rxring->rxr_mbufs[idx].m != NULL) {
3653 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3654 		m_freem(rxring->rxr_mbufs[idx].m);
3655 		rxring->rxr_mbufs[idx].m = NULL;
3656 	}
3657 
3658 	rxring->rxr_mbufs[idx].m = m;
3659 
3660 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3661 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3662 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3663 	if (error) {
3664 		device_printf(sc->sc_dev,
3665 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3666 		panic("%s: unable to load rx DMA map. error=%d",
3667 		    __func__, error);
3668 	}
3669 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3670 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3671 }
3672 
3673 static inline void
3674 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3675 {
3676 	/* refill rxdesc, and sync */
3677 	rxring->rxr_rxdesc[idx].read.buf_addr =
3678 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3679 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3680 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3681 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3682 	    BUS_DMASYNC_PREWRITE);
3683 }
3684 
3685 static struct mbuf *
3686 aq_alloc_mbuf(void)
3687 {
3688 	struct mbuf *m;
3689 
3690 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3691 	if (m == NULL)
3692 		return NULL;
3693 
3694 	MCLGET(m, M_DONTWAIT);
3695 	if ((m->m_flags & M_EXT) == 0) {
3696 		m_freem(m);
3697 		return NULL;
3698 	}
3699 
3700 	return m;
3701 }
3702 
3703 /* allocate mbuf and unload dmamap */
3704 static int
3705 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3706 {
3707 	struct mbuf *m;
3708 
3709 	m = aq_alloc_mbuf();
3710 	if (m == NULL)
3711 		return ENOBUFS;
3712 
3713 	aq_rxring_setmbuf(sc, rxring, idx, m);
3714 	return 0;
3715 }
3716 
3717 static int
3718 aq_txrx_rings_alloc(struct aq_softc *sc)
3719 {
3720 	int n, error;
3721 
3722 	for (n = 0; n < sc->sc_nqueues; n++) {
3723 		sc->sc_queue[n].sc = sc;
3724 		sc->sc_queue[n].txring.txr_sc = sc;
3725 		sc->sc_queue[n].txring.txr_index = n;
3726 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3727 		    IPL_NET);
3728 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3729 		if (error != 0)
3730 			goto failure;
3731 
3732 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3733 		if (error != 0)
3734 			goto failure;
3735 
3736 		sc->sc_queue[n].rxring.rxr_sc = sc;
3737 		sc->sc_queue[n].rxring.rxr_index = n;
3738 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3739 		   IPL_NET);
3740 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3741 		if (error != 0)
3742 			break;
3743 	}
3744 
3745  failure:
3746 	return error;
3747 }
3748 
3749 static void
3750 aq_txrx_rings_free(struct aq_softc *sc)
3751 {
3752 	int n;
3753 
3754 	for (n = 0; n < sc->sc_nqueues; n++) {
3755 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3756 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3757 
3758 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3759 
3760 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3761 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3762 	}
3763 }
3764 
3765 static int
3766 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3767 {
3768 	int error = 0;
3769 	txring->txr_softint = NULL;
3770 
3771 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3772 	if (txring->txr_pcq == NULL) {
3773 		aprint_error_dev(sc->sc_dev,
3774 		    "unable to allocate pcq for TXring[%d]\n",
3775 		    txring->txr_index);
3776 		error = ENOMEM;
3777 		goto done;
3778 	}
3779 
3780 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3781 	    aq_deferred_transmit, txring);
3782 	if (txring->txr_softint == NULL) {
3783 		aprint_error_dev(sc->sc_dev,
3784 		    "unable to establish softint for TXring[%d]\n",
3785 		    txring->txr_index);
3786 		error = ENOENT;
3787 	}
3788 
3789  done:
3790 	return error;
3791 }
3792 
3793 static void
3794 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3795 {
3796 	struct mbuf *m;
3797 
3798 	if (txring->txr_softint != NULL) {
3799 		softint_disestablish(txring->txr_softint);
3800 		txring->txr_softint = NULL;
3801 	}
3802 
3803 	if (txring->txr_pcq != NULL) {
3804 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3805 			m_freem(m);
3806 		pcq_destroy(txring->txr_pcq);
3807 		txring->txr_pcq = NULL;
3808 	}
3809 }
3810 
3811 #if NSYSMON_ENVSYS > 0
3812 static void
3813 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3814 {
3815 	struct aq_softc *sc;
3816 	uint32_t temp;
3817 	int error;
3818 
3819 	sc = sme->sme_cookie;
3820 
3821 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3822 	if (error == 0) {
3823 		edata->value_cur = temp;
3824 		edata->state = ENVSYS_SVALID;
3825 	} else {
3826 		edata->state = ENVSYS_SINVALID;
3827 	}
3828 }
3829 #endif
3830 
3831 static void
3832 aq_tick(void *arg)
3833 {
3834 	struct aq_softc *sc = arg;
3835 
3836 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3837 		sc->sc_detect_linkstat = false;
3838 		aq_update_link_status(sc);
3839 	}
3840 
3841 #ifdef AQ_EVENT_COUNTERS
3842 	if (sc->sc_poll_statistics)
3843 		aq_update_statistics(sc);
3844 #endif
3845 
3846 	if (sc->sc_poll_linkstat
3847 #ifdef AQ_EVENT_COUNTERS
3848 	    || sc->sc_poll_statistics
3849 #endif
3850 	    ) {
3851 		callout_schedule(&sc->sc_tick_ch, hz);
3852 	}
3853 }
3854 
3855 /* interrupt enable/disable */
3856 static void
3857 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3858 {
3859 	uint32_t imask = 0;
3860 	int i;
3861 
3862 	if (txrx) {
3863 		for (i = 0; i < sc->sc_nqueues; i++) {
3864 			imask |= __BIT(sc->sc_tx_irq[i]);
3865 			imask |= __BIT(sc->sc_rx_irq[i]);
3866 		}
3867 	}
3868 
3869 	if (link)
3870 		imask |= __BIT(sc->sc_linkstat_irq);
3871 
3872 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3873 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3874 }
3875 
3876 static int
3877 aq_legacy_intr(void *arg)
3878 {
3879 	struct aq_softc *sc = arg;
3880 	uint32_t status;
3881 	int nintr = 0;
3882 
3883 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3884 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3885 
3886 	if (status & __BIT(sc->sc_linkstat_irq)) {
3887 		sc->sc_detect_linkstat = true;
3888 		callout_schedule(&sc->sc_tick_ch, 0);
3889 		nintr++;
3890 	}
3891 
3892 	if (status & __BIT(sc->sc_rx_irq[0])) {
3893 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3894 	}
3895 
3896 	if (status & __BIT(sc->sc_tx_irq[0])) {
3897 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3898 	}
3899 
3900 	return nintr;
3901 }
3902 
3903 static int
3904 aq_txrx_intr(void *arg)
3905 {
3906 	struct aq_queue *queue = arg;
3907 	struct aq_softc *sc = queue->sc;
3908 	struct aq_txring *txring = &queue->txring;
3909 	struct aq_rxring *rxring = &queue->rxring;
3910 	uint32_t status;
3911 	int nintr = 0;
3912 	int txringidx, rxringidx, txirq, rxirq;
3913 
3914 	txringidx = txring->txr_index;
3915 	rxringidx = rxring->rxr_index;
3916 	txirq = sc->sc_tx_irq[txringidx];
3917 	rxirq = sc->sc_rx_irq[rxringidx];
3918 
3919 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3920 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3921 		/* stray interrupt? */
3922 		return 0;
3923 	}
3924 
3925 	nintr += aq_rx_intr(rxring);
3926 	nintr += aq_tx_intr(txring);
3927 
3928 	return nintr;
3929 }
3930 
3931 static int
3932 aq_link_intr(void *arg)
3933 {
3934 	struct aq_softc *sc = arg;
3935 	uint32_t status;
3936 	int nintr = 0;
3937 
3938 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3939 	if (status & __BIT(sc->sc_linkstat_irq)) {
3940 		sc->sc_detect_linkstat = true;
3941 		callout_schedule(&sc->sc_tick_ch, 0);
3942 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3943 		    __BIT(sc->sc_linkstat_irq));
3944 		nintr++;
3945 	}
3946 
3947 	return nintr;
3948 }
3949 
3950 static void
3951 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3952 {
3953 	const int ringidx = txring->txr_index;
3954 	int i;
3955 
3956 	mutex_enter(&txring->txr_mutex);
3957 
3958 	txring->txr_prodidx = 0;
3959 	txring->txr_considx = 0;
3960 	txring->txr_nfree = AQ_TXD_NUM;
3961 	txring->txr_active = false;
3962 
3963 	/* free mbufs untransmitted */
3964 	for (i = 0; i < AQ_TXD_NUM; i++) {
3965 		if (txring->txr_mbufs[i].m != NULL) {
3966 			m_freem(txring->txr_mbufs[i].m);
3967 			txring->txr_mbufs[i].m = NULL;
3968 		}
3969 	}
3970 
3971 	/* disable DMA */
3972 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3973 
3974 	if (start) {
3975 		/* TX descriptor physical address */
3976 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3977 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3978 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3979 		    (uint32_t)((uint64_t)paddr >> 32));
3980 
3981 		/* TX descriptor size */
3982 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3983 		    AQ_TXD_NUM / 8);
3984 
3985 		/* reload TAIL pointer */
3986 		txring->txr_prodidx = txring->txr_considx =
3987 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3988 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3989 
3990 		/* Mapping interrupt vector */
3991 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3992 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3993 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3994 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3995 
3996 		/* enable DMA */
3997 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3998 		    TX_DMA_DESC_EN, 1);
3999 
4000 		const int cpuid = 0;	/* XXX? */
4001 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4002 		    TDM_DCAD_CPUID, cpuid);
4003 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4004 		    TDM_DCAD_CPUID_EN, 0);
4005 
4006 		txring->txr_active = true;
4007 	}
4008 
4009 	mutex_exit(&txring->txr_mutex);
4010 }
4011 
4012 static int
4013 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4014 {
4015 	const int ringidx = rxring->rxr_index;
4016 	int i;
4017 	int error = 0;
4018 
4019 	mutex_enter(&rxring->rxr_mutex);
4020 	rxring->rxr_active = false;
4021 	rxring->rxr_discarding = false;
4022 	if (rxring->rxr_receiving_m != NULL) {
4023 		m_freem(rxring->rxr_receiving_m);
4024 		rxring->rxr_receiving_m = NULL;
4025 		rxring->rxr_receiving_m_last = NULL;
4026 	}
4027 
4028 	/* disable DMA */
4029 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4030 
4031 	/* free all RX mbufs */
4032 	aq_rxdrain(sc, rxring);
4033 
4034 	if (start) {
4035 		for (i = 0; i < AQ_RXD_NUM; i++) {
4036 			error = aq_rxring_add(sc, rxring, i);
4037 			if (error != 0) {
4038 				aq_rxdrain(sc, rxring);
4039 				return error;
4040 			}
4041 			aq_rxring_reset_desc(sc, rxring, i);
4042 		}
4043 
4044 		/* RX descriptor physical address */
4045 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4046 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4047 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4048 		    (uint32_t)((uint64_t)paddr >> 32));
4049 
4050 		/* RX descriptor size */
4051 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4052 		    AQ_RXD_NUM / 8);
4053 
4054 		/* maximum receive frame size */
4055 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4056 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4057 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4058 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4059 
4060 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4061 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4062 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4063 		    RX_DMA_DESC_VLAN_STRIP,
4064 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4065 		    1 : 0);
4066 
4067 		/*
4068 		 * reload TAIL pointer, and update readidx
4069 		 * (HEAD pointer cannot write)
4070 		 */
4071 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4072 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4073 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4074 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4075 
4076 		/* Rx ring set mode */
4077 
4078 		/* Mapping interrupt vector */
4079 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4080 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4081 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4082 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4083 
4084 		const int cpuid = 0;	/* XXX? */
4085 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4086 		    RX_DMA_DCAD_CPUID, cpuid);
4087 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4088 		    RX_DMA_DCAD_DESC_EN, 0);
4089 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4090 		    RX_DMA_DCAD_HEADER_EN, 0);
4091 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4092 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4093 
4094 		/* enable DMA. start receiving */
4095 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4096 		    RX_DMA_DESC_EN, 1);
4097 
4098 		rxring->rxr_active = true;
4099 	}
4100 
4101 	mutex_exit(&rxring->rxr_mutex);
4102 	return error;
4103 }
4104 
4105 #define TXRING_NEXTIDX(idx)	\
4106 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4107 #define RXRING_NEXTIDX(idx)	\
4108 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4109 
4110 static int
4111 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4112 {
4113 	bus_dmamap_t map;
4114 	struct mbuf *m = *mp;
4115 	uint32_t ctl1, ctl1_ctx, ctl2;
4116 	int idx, i, error;
4117 
4118 	idx = txring->txr_prodidx;
4119 	map = txring->txr_mbufs[idx].dmamap;
4120 
4121 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4122 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4123 	if (error == EFBIG) {
4124 		struct mbuf *n;
4125 		n = m_defrag(m, M_DONTWAIT);
4126 		if (n == NULL)
4127 			return EFBIG;
4128 		/* m_defrag() preserve m */
4129 		KASSERT(n == m);
4130 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4131 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4132 	}
4133 	if (error != 0)
4134 		return error;
4135 
4136 	/*
4137 	 * check spaces of free descriptors.
4138 	 * +1 is additional descriptor for context (vlan, etc,.)
4139 	 */
4140 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4141 		device_printf(sc->sc_dev,
4142 		    "TX: not enough descriptors left %d for %d segs\n",
4143 		    txring->txr_nfree, map->dm_nsegs + 1);
4144 		bus_dmamap_unload(sc->sc_dmat, map);
4145 		return ENOBUFS;
4146 	}
4147 
4148 	/* sync dma for mbuf */
4149 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4150 	    BUS_DMASYNC_PREWRITE);
4151 
4152 	ctl1_ctx = 0;
4153 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4154 
4155 	if (vlan_has_tag(m)) {
4156 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4157 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4158 
4159 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4160 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4161 
4162 		/* fill context descriptor and forward index */
4163 		txring->txr_txdesc[idx].buf_addr = 0;
4164 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4165 		txring->txr_txdesc[idx].ctl2 = 0;
4166 
4167 		idx = TXRING_NEXTIDX(idx);
4168 		txring->txr_nfree--;
4169 	}
4170 
4171 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4172 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4173 	if (m->m_pkthdr.csum_flags &
4174 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4175 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4176 	}
4177 
4178 	/* fill descriptor(s) */
4179 	for (i = 0; i < map->dm_nsegs; i++) {
4180 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4181 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4182 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4183 
4184 		if (i == 0) {
4185 			/* remember mbuf of these descriptors */
4186 			txring->txr_mbufs[idx].m = m;
4187 		} else {
4188 			txring->txr_mbufs[idx].m = NULL;
4189 		}
4190 
4191 		if (i == map->dm_nsegs - 1) {
4192 			/* last segment, mark an EndOfPacket, and cause intr */
4193 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4194 		}
4195 
4196 		txring->txr_txdesc[idx].buf_addr =
4197 		    htole64(map->dm_segs[i].ds_addr);
4198 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4199 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4200 
4201 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4202 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4203 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4204 
4205 		idx = TXRING_NEXTIDX(idx);
4206 		txring->txr_nfree--;
4207 	}
4208 
4209 	txring->txr_prodidx = idx;
4210 
4211 	return 0;
4212 }
4213 
4214 static int
4215 aq_tx_intr(void *arg)
4216 {
4217 	struct aq_txring *txring = arg;
4218 	struct aq_softc *sc = txring->txr_sc;
4219 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4220 	struct mbuf *m;
4221 	const int ringidx = txring->txr_index;
4222 	unsigned int idx, hw_head, n = 0;
4223 
4224 	mutex_enter(&txring->txr_mutex);
4225 
4226 	if (!txring->txr_active)
4227 		goto tx_intr_done;
4228 
4229 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4230 	    TX_DMA_DESC_HEAD_PTR);
4231 	if (hw_head == txring->txr_considx) {
4232 		goto tx_intr_done;
4233 	}
4234 
4235 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4236 
4237 	for (idx = txring->txr_considx; idx != hw_head;
4238 	    idx = TXRING_NEXTIDX(idx), n++) {
4239 
4240 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4241 			bus_dmamap_unload(sc->sc_dmat,
4242 			    txring->txr_mbufs[idx].dmamap);
4243 
4244 			if_statinc_ref(nsr, if_opackets);
4245 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4246 			if (m->m_flags & M_MCAST)
4247 				if_statinc_ref(nsr, if_omcasts);
4248 
4249 			m_freem(m);
4250 			txring->txr_mbufs[idx].m = NULL;
4251 		}
4252 
4253 		txring->txr_nfree++;
4254 	}
4255 	txring->txr_considx = idx;
4256 
4257 	IF_STAT_PUTREF(ifp);
4258 
4259 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4260 		ifp->if_flags &= ~IFF_OACTIVE;
4261 
4262 	/* no more pending TX packet, cancel watchdog */
4263 	if (txring->txr_nfree >= AQ_TXD_NUM)
4264 		ifp->if_timer = 0;
4265 
4266  tx_intr_done:
4267 	mutex_exit(&txring->txr_mutex);
4268 
4269 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4270 	return n;
4271 }
4272 
4273 static int
4274 aq_rx_intr(void *arg)
4275 {
4276 	struct aq_rxring *rxring = arg;
4277 	struct aq_softc *sc = rxring->rxr_sc;
4278 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4279 	const int ringidx = rxring->rxr_index;
4280 	aq_rx_desc_t *rxd;
4281 	struct mbuf *m, *m0, *mprev, *new_m;
4282 	uint32_t rxd_type, rxd_hash __unused;
4283 	uint16_t rxd_status, rxd_pktlen;
4284 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4285 	unsigned int idx, n = 0;
4286 	bool discarding;
4287 
4288 	mutex_enter(&rxring->rxr_mutex);
4289 
4290 	if (!rxring->rxr_active)
4291 		goto rx_intr_done;
4292 
4293 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4294 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4295 		goto rx_intr_done;
4296 	}
4297 
4298 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4299 
4300 	/* restore ring context */
4301 	discarding = rxring->rxr_discarding;
4302 	m0 = rxring->rxr_receiving_m;
4303 	mprev = rxring->rxr_receiving_m_last;
4304 
4305 	for (idx = rxring->rxr_readidx;
4306 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4307 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4308 
4309 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4310 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4311 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4312 
4313 		rxd = &rxring->rxr_rxdesc[idx];
4314 		rxd_status = le16toh(rxd->wb.status);
4315 
4316 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4317 			break;	/* not yet done */
4318 
4319 		rxd_type = le32toh(rxd->wb.type);
4320 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4321 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4322 		rxd_hash = le32toh(rxd->wb.rss_hash);
4323 		rxd_vlan = le16toh(rxd->wb.vlan);
4324 
4325 		/*
4326 		 * Some segments are being dropped while receiving jumboframe.
4327 		 * Discard until EOP.
4328 		 */
4329 		if (discarding)
4330 			goto rx_next;
4331 
4332 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4333 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4334 			if_statinc_ref(nsr, if_ierrors);
4335 			if (m0 != NULL) {
4336 				m_freem(m0);
4337 				m0 = mprev = NULL;
4338 			}
4339 			discarding = true;
4340 			goto rx_next;
4341 		}
4342 
4343 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4344 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4345 		    BUS_DMASYNC_POSTREAD);
4346 		m = rxring->rxr_mbufs[idx].m;
4347 
4348 		new_m = aq_alloc_mbuf();
4349 		if (new_m == NULL) {
4350 			/*
4351 			 * cannot allocate new mbuf.
4352 			 * discard this packet, and reuse mbuf for next.
4353 			 */
4354 			if_statinc_ref(nsr, if_iqdrops);
4355 			if (m0 != NULL) {
4356 				m_freem(m0);
4357 				m0 = mprev = NULL;
4358 			}
4359 			discarding = true;
4360 			goto rx_next;
4361 		}
4362 		rxring->rxr_mbufs[idx].m = NULL;
4363 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4364 
4365 		if (m0 == NULL) {
4366 			m0 = m;
4367 		} else {
4368 			if (m->m_flags & M_PKTHDR)
4369 				m_remove_pkthdr(m);
4370 			mprev->m_next = m;
4371 		}
4372 		mprev = m;
4373 
4374 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4375 			/* to be continued in the next segment */
4376 			m->m_len = MCLBYTES;
4377 		} else {
4378 			/* the last segment */
4379 			int mlen = rxd_pktlen % MCLBYTES;
4380 			if (mlen == 0)
4381 				mlen = MCLBYTES;
4382 			m->m_len = mlen;
4383 			m0->m_pkthdr.len = rxd_pktlen;
4384 			/* VLAN offloading */
4385 			if ((sc->sc_ethercom.ec_capenable &
4386 			    ETHERCAP_VLAN_HWTAGGING) &&
4387 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4388 			    __SHIFTOUT(rxd_type,
4389 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4390 				vlan_set_tag(m0, rxd_vlan);
4391 			}
4392 
4393 			/* Checksum offloading */
4394 			unsigned int pkttype_eth =
4395 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4396 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4397 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4398 			    __SHIFTOUT(rxd_type,
4399 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4400 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4401 				if (__SHIFTOUT(rxd_status,
4402 				    RXDESC_STATUS_IPV4_CSUM_NG))
4403 					m0->m_pkthdr.csum_flags |=
4404 					    M_CSUM_IPv4_BAD;
4405 			}
4406 
4407 			/*
4408 			 * aq will always mark BAD for fragment packets,
4409 			 * but this is not a problem because the IP stack
4410 			 * ignores the CSUM flag in fragment packets.
4411 			 */
4412 			if (__SHIFTOUT(rxd_type,
4413 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4414 				bool checked = false;
4415 				unsigned int pkttype_proto =
4416 				    __SHIFTOUT(rxd_type,
4417 				    RXDESC_TYPE_PKTTYPE_PROTO);
4418 
4419 				if (pkttype_proto ==
4420 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4421 					if ((pkttype_eth ==
4422 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4423 					    (ifp->if_capabilities &
4424 					    IFCAP_CSUM_TCPv4_Rx)) {
4425 						m0->m_pkthdr.csum_flags |=
4426 						    M_CSUM_TCPv4;
4427 						checked = true;
4428 					} else if ((pkttype_eth ==
4429 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4430 					    (ifp->if_capabilities &
4431 					    IFCAP_CSUM_TCPv6_Rx)) {
4432 						m0->m_pkthdr.csum_flags |=
4433 						    M_CSUM_TCPv6;
4434 						checked = true;
4435 					}
4436 				} else if (pkttype_proto ==
4437 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4438 					if ((pkttype_eth ==
4439 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4440 					    (ifp->if_capabilities &
4441 					    IFCAP_CSUM_UDPv4_Rx)) {
4442 						m0->m_pkthdr.csum_flags |=
4443 						    M_CSUM_UDPv4;
4444 						checked = true;
4445 					} else if ((pkttype_eth ==
4446 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4447 					    (ifp->if_capabilities &
4448 					    IFCAP_CSUM_UDPv6_Rx)) {
4449 						m0->m_pkthdr.csum_flags |=
4450 						    M_CSUM_UDPv6;
4451 						checked = true;
4452 					}
4453 				}
4454 				if (checked &&
4455 				    (__SHIFTOUT(rxd_status,
4456 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4457 				    !__SHIFTOUT(rxd_status,
4458 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4459 					m0->m_pkthdr.csum_flags |=
4460 					    M_CSUM_TCP_UDP_BAD;
4461 				}
4462 			}
4463 
4464 			m_set_rcvif(m0, ifp);
4465 			if_statinc_ref(nsr, if_ipackets);
4466 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4467 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4468 			m0 = mprev = NULL;
4469 		}
4470 
4471  rx_next:
4472 		if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4473 			discarding = false;
4474 
4475 		aq_rxring_reset_desc(sc, rxring, idx);
4476 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4477 	}
4478 	/* save ring context */
4479 	rxring->rxr_readidx = idx;
4480 	rxring->rxr_discarding = discarding;
4481 	rxring->rxr_receiving_m = m0;
4482 	rxring->rxr_receiving_m_last = mprev;
4483 
4484 	IF_STAT_PUTREF(ifp);
4485 
4486  rx_intr_done:
4487 	mutex_exit(&rxring->rxr_mutex);
4488 
4489 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4490 	return n;
4491 }
4492 
4493 static int
4494 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4495 {
4496 	struct ifnet *ifp = &ec->ec_if;
4497 	struct aq_softc *sc = ifp->if_softc;
4498 
4499 	aq_set_vlan_filters(sc);
4500 	return 0;
4501 }
4502 
4503 static int
4504 aq_ifflags_cb(struct ethercom *ec)
4505 {
4506 	struct ifnet *ifp = &ec->ec_if;
4507 	struct aq_softc *sc = ifp->if_softc;
4508 	int i, ecchange, error = 0;
4509 	unsigned short iffchange;
4510 
4511 	AQ_LOCK(sc);
4512 
4513 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4514 	if ((iffchange & IFF_PROMISC) != 0)
4515 		error = aq_set_filter(sc);
4516 
4517 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4518 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4519 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4520 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4521 			    RX_DMA_DESC_VLAN_STRIP,
4522 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4523 			    1 : 0);
4524 		}
4525 	}
4526 
4527 	/* vlan configuration depends on also interface promiscuous mode */
4528 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4529 		aq_set_vlan_filters(sc);
4530 
4531 	sc->sc_ec_capenable = ec->ec_capenable;
4532 	sc->sc_if_flags = ifp->if_flags;
4533 
4534 	AQ_UNLOCK(sc);
4535 
4536 	return error;
4537 }
4538 
4539 static int
4540 aq_init(struct ifnet *ifp)
4541 {
4542 	struct aq_softc *sc = ifp->if_softc;
4543 	int i, error = 0;
4544 
4545 	aq_stop(ifp, false);
4546 
4547 	AQ_LOCK(sc);
4548 
4549 	aq_set_vlan_filters(sc);
4550 	aq_set_capability(sc);
4551 
4552 	for (i = 0; i < sc->sc_nqueues; i++) {
4553 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4554 	}
4555 
4556 	/* invalidate RX descriptor cache */
4557 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4558 	    AQ_READ_REG_BIT(sc,
4559 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4560 
4561 	/* start RX */
4562 	for (i = 0; i < sc->sc_nqueues; i++) {
4563 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4564 		if (error != 0) {
4565 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4566 			    __func__);
4567 			goto aq_init_failure;
4568 		}
4569 	}
4570 	aq_init_rss(sc);
4571 	aq_hw_l3_filter_set(sc);
4572 
4573 	/* need to start callout? */
4574 	if (sc->sc_poll_linkstat
4575 #ifdef AQ_EVENT_COUNTERS
4576 	    || sc->sc_poll_statistics
4577 #endif
4578 	    ) {
4579 		callout_schedule(&sc->sc_tick_ch, hz);
4580 	}
4581 
4582 	/* ready */
4583 	ifp->if_flags |= IFF_RUNNING;
4584 	ifp->if_flags &= ~IFF_OACTIVE;
4585 
4586 	/* start TX and RX */
4587 	aq_enable_intr(sc, true, true);
4588 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4589 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4590 
4591  aq_init_failure:
4592 	sc->sc_if_flags = ifp->if_flags;
4593 
4594 	AQ_UNLOCK(sc);
4595 
4596 	return error;
4597 }
4598 
4599 static void
4600 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4601     struct aq_txring *txring, bool is_transmit)
4602 {
4603 	struct mbuf *m;
4604 	int npkt, error;
4605 
4606 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4607 		return;
4608 
4609 	for (npkt = 0; ; npkt++) {
4610 		if (is_transmit)
4611 			m = pcq_peek(txring->txr_pcq);
4612 		else
4613 			IFQ_POLL(&ifp->if_snd, m);
4614 
4615 		if (m == NULL)
4616 			break;
4617 
4618 		if (txring->txr_nfree < AQ_TXD_MIN)
4619 			break;
4620 
4621 		if (is_transmit)
4622 			pcq_get(txring->txr_pcq);
4623 		else
4624 			IFQ_DEQUEUE(&ifp->if_snd, m);
4625 
4626 		error = aq_encap_txring(sc, txring, &m);
4627 		if (error != 0) {
4628 			/* too many mbuf chains? or not enough descriptors? */
4629 			m_freem(m);
4630 			if_statinc(ifp, if_oerrors);
4631 			if (txring->txr_index == 0 && error == ENOBUFS)
4632 				ifp->if_flags |= IFF_OACTIVE;
4633 			break;
4634 		}
4635 
4636 		/* update tail ptr */
4637 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4638 		    txring->txr_prodidx);
4639 
4640 		/* Pass the packet to any BPF listeners */
4641 		bpf_mtap(ifp, m, BPF_D_OUT);
4642 	}
4643 
4644 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4645 		ifp->if_flags |= IFF_OACTIVE;
4646 
4647 	if (npkt)
4648 		ifp->if_timer = 5;
4649 }
4650 
4651 static void
4652 aq_start(struct ifnet *ifp)
4653 {
4654 	struct aq_softc *sc;
4655 	struct aq_txring *txring;
4656 
4657 	sc = ifp->if_softc;
4658 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4659 
4660 	mutex_enter(&txring->txr_mutex);
4661 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4662 		aq_send_common_locked(ifp, sc, txring, false);
4663 	mutex_exit(&txring->txr_mutex);
4664 }
4665 
4666 static inline unsigned int
4667 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4668 {
4669 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4670 }
4671 
4672 static int
4673 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4674 {
4675 	struct aq_softc *sc = ifp->if_softc;
4676 	struct aq_txring *txring;
4677 	int ringidx;
4678 
4679 	ringidx = aq_select_txqueue(sc, m);
4680 	txring = &sc->sc_queue[ringidx].txring;
4681 
4682 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4683 		m_freem(m);
4684 		return ENOBUFS;
4685 	}
4686 
4687 	if (mutex_tryenter(&txring->txr_mutex)) {
4688 		aq_send_common_locked(ifp, sc, txring, true);
4689 		mutex_exit(&txring->txr_mutex);
4690 	} else {
4691 		softint_schedule(txring->txr_softint);
4692 	}
4693 	return 0;
4694 }
4695 
4696 static void
4697 aq_deferred_transmit(void *arg)
4698 {
4699 	struct aq_txring *txring = arg;
4700 	struct aq_softc *sc = txring->txr_sc;
4701 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4702 
4703 	mutex_enter(&txring->txr_mutex);
4704 	if (pcq_peek(txring->txr_pcq) != NULL)
4705 		aq_send_common_locked(ifp, sc, txring, true);
4706 	mutex_exit(&txring->txr_mutex);
4707 }
4708 
4709 static void
4710 aq_stop(struct ifnet *ifp, int disable)
4711 {
4712 	struct aq_softc *sc = ifp->if_softc;
4713 	int i;
4714 
4715 	AQ_LOCK(sc);
4716 
4717 	ifp->if_timer = 0;
4718 
4719 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4720 		goto already_stopped;
4721 
4722 	/* disable tx/rx interrupts */
4723 	aq_enable_intr(sc, true, false);
4724 
4725 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4726 	for (i = 0; i < sc->sc_nqueues; i++) {
4727 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4728 	}
4729 
4730 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4731 	for (i = 0; i < sc->sc_nqueues; i++) {
4732 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4733 	}
4734 
4735 	/* invalidate RX descriptor cache */
4736 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4737 	    AQ_READ_REG_BIT(sc,
4738 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4739 
4740 	ifp->if_timer = 0;
4741 
4742  already_stopped:
4743 	if (!disable) {
4744 		/* when pmf stop, disable link status intr and callout */
4745 		aq_enable_intr(sc, false, false);
4746 		callout_stop(&sc->sc_tick_ch);
4747 	}
4748 
4749 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4750 
4751 	AQ_UNLOCK(sc);
4752 }
4753 
4754 static void
4755 aq_watchdog(struct ifnet *ifp)
4756 {
4757 	struct aq_softc *sc = ifp->if_softc;
4758 	struct aq_txring *txring;
4759 	int n, head, tail;
4760 
4761 	AQ_LOCK(sc);
4762 
4763 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4764 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4765 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4766 
4767 	for (n = 0; n < sc->sc_nqueues; n++) {
4768 		txring = &sc->sc_queue[n].txring;
4769 		head = AQ_READ_REG_BIT(sc,
4770 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4771 		    TX_DMA_DESC_HEAD_PTR),
4772 		tail = AQ_READ_REG(sc,
4773 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4774 
4775 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4776 		    __func__, txring->txr_index, head, tail);
4777 
4778 		aq_tx_intr(txring);
4779 	}
4780 
4781 	AQ_UNLOCK(sc);
4782 
4783 	aq_init(ifp);
4784 }
4785 
4786 static int
4787 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4788 {
4789 	struct aq_softc *sc __unused;
4790 	struct ifreq *ifr __unused;
4791 	int error, s;
4792 
4793 	sc = (struct aq_softc *)ifp->if_softc;
4794 	ifr = (struct ifreq *)data;
4795 	error = 0;
4796 
4797 	s = splnet();
4798 	switch (cmd) {
4799 	case SIOCSIFMTU:
4800 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4801 			error = EINVAL;
4802 		} else {
4803 			ifp->if_mtu = ifr->ifr_mtu;
4804 			error = 0;	/* no need to reset (no ENETRESET) */
4805 		}
4806 		break;
4807 	default:
4808 		error = ether_ioctl(ifp, cmd, data);
4809 		break;
4810 	}
4811 	splx(s);
4812 
4813 	if (error != ENETRESET)
4814 		return error;
4815 
4816 	switch (cmd) {
4817 	case SIOCSIFCAP:
4818 		error = aq_set_capability(sc);
4819 		break;
4820 	case SIOCADDMULTI:
4821 	case SIOCDELMULTI:
4822 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4823 			break;
4824 
4825 		/*
4826 		 * Multicast list has changed; set the hardware filter
4827 		 * accordingly.
4828 		 */
4829 		error = aq_set_filter(sc);
4830 		break;
4831 	}
4832 
4833 	return error;
4834 }
4835 
4836 
4837 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4838 
4839 #ifdef _MODULE
4840 #include "ioconf.c"
4841 #endif
4842 
4843 static int
4844 if_aq_modcmd(modcmd_t cmd, void *opaque)
4845 {
4846 	int error = 0;
4847 
4848 	switch (cmd) {
4849 	case MODULE_CMD_INIT:
4850 #ifdef _MODULE
4851 		error = config_init_component(cfdriver_ioconf_if_aq,
4852 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4853 #endif
4854 		return error;
4855 	case MODULE_CMD_FINI:
4856 #ifdef _MODULE
4857 		error = config_fini_component(cfdriver_ioconf_if_aq,
4858 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4859 #endif
4860 		return error;
4861 	default:
4862 		return ENOTTY;
4863 	}
4864 }
4865