1 /* $NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 #define AQ_JUMBO_MTU_REV_A 9000 120 #define AQ_JUMBO_MTU_REV_B 16338 121 122 /* 123 * TERMINOLOGY 124 * MPI = MAC PHY INTERFACE? 125 * RPO = RX Protocol Offloading 126 * TPO = TX Protocol Offloading 127 * RPF = RX Packet Filter 128 * TPB = TX Packet buffer 129 * RPB = RX Packet buffer 130 */ 131 132 /* registers */ 133 #define AQ_FW_SOFTRESET_REG 0x0000 134 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 135 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 136 137 #define AQ_FW_VERSION_REG 0x0018 138 #define AQ_HW_REVISION_REG 0x001c 139 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 140 141 #define AQ_FW_MBOX_CMD_REG 0x0200 142 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 143 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 144 #define AQ_FW_MBOX_ADDR_REG 0x0208 145 #define AQ_FW_MBOX_VAL_REG 0x020c 146 147 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 148 #define FW2X_LED_REG 0x031c 149 #define FW2X_LED_DEFAULT 0x00000000 150 #define FW2X_LED_NONE 0x0000003f 151 #define FW2X_LINKLED __BITS(0,1) 152 #define FW2X_LINKLED_ACTIVE 0 153 #define FW2X_LINKLED_ON 1 154 #define FW2X_LINKLED_BLINK 2 155 #define FW2X_LINKLED_OFF 3 156 #define FW2X_STATUSLED __BITS(2,5) 157 #define FW2X_STATUSLED_ORANGE 0 158 #define FW2X_STATUSLED_ORANGE_BLINK 2 159 #define FW2X_STATUSLED_OFF 3 160 #define FW2X_STATUSLED_GREEN 4 161 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 162 #define FW2X_STATUSLED_GREEN_BLINK 10 163 164 #define FW_MPI_MBOX_ADDR_REG 0x0360 165 #define FW1X_MPI_INIT1_REG 0x0364 166 #define FW1X_MPI_CONTROL_REG 0x0368 167 #define FW1X_MPI_STATE_REG 0x036c 168 #define FW1X_MPI_STATE_MODE __BITS(7,0) 169 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 170 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 171 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 172 #define FW1X_MPI_INIT2_REG 0x0370 173 #define FW1X_MPI_EFUSEADDR_REG 0x0374 174 175 #define FW2X_MPI_EFUSEADDR_REG 0x0364 176 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 177 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 178 #define FW_BOOT_EXIT_CODE_REG 0x0388 179 #define RBL_STATUS_DEAD 0x0000dead 180 #define RBL_STATUS_SUCCESS 0x0000abba 181 #define RBL_STATUS_FAILURE 0x00000bad 182 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 183 184 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 185 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 186 187 #define AQ_FW_GLB_CTL2_REG 0x0404 188 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 189 190 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 191 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 192 193 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 194 195 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 196 197 // msix bitmap */ 198 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 199 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 200 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 201 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 202 #define AQ_INTR_AUTOMASK_REG 0x2090 203 204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 206 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 209 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 210 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 211 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 212 213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 214 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 215 #define AQ_B0_ERR_INT 8U 216 217 #define AQ_INTR_CTRL_REG 0x2300 218 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 219 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 220 #define AQ_INTR_CTRL_IRQMODE_MSI 1 221 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 222 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 223 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 224 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 225 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 226 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 227 228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 229 230 #define FW_MPI_RESETCTRL_REG 0x4000 231 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 232 233 #define RX_SYSCONTROL_REG 0x5000 234 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 235 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 236 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 237 238 #define RX_TCP_RSS_HASH_REG 0x5040 239 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 240 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 241 242 /* for RPF_*_REG.ACTION */ 243 #define RPF_ACTION_DISCARD 0 244 #define RPF_ACTION_HOST 1 245 #define RPF_ACTION_MANAGEMENT 2 246 #define RPF_ACTION_HOST_MANAGEMENT 3 247 #define RPF_ACTION_WOL 4 248 249 #define RPF_L2BC_REG 0x5100 250 #define RPF_L2BC_EN __BIT(0) 251 #define RPF_L2BC_PROMISC __BIT(3) 252 #define RPF_L2BC_ACTION __BITS(12,14) 253 #define RPF_L2BC_THRESHOLD __BITS(31,16) 254 255 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 256 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 257 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 258 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 259 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 260 #define RPF_L2UC_MSW_EN __BIT(31) 261 #define AQ_HW_MAC_OWN 0 /* index of own address */ 262 #define AQ_HW_MAC_NUM 34 263 264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 265 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 266 #define RPF_MCAST_FILTER_EN __BIT(31) 267 #define RPF_MCAST_FILTER_MASK_REG 0x5270 268 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 269 270 #define RPF_VLAN_MODE_REG 0x5280 271 #define RPF_VLAN_MODE_PROMISC __BIT(1) 272 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 273 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 274 275 #define RPF_VLAN_TPID_REG 0x5284 276 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 277 #define RPF_VLAN_TPID_INNER __BITS(15,0) 278 279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 280 #define RPF_VLAN_MAX_FILTERS 16 281 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 282 #define RPF_VLAN_FILTER_EN __BIT(31) 283 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 284 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 285 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 286 #define RPF_VLAN_FILTER_ID __BITS(11,0) 287 288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 289 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 290 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 291 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 292 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 293 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 294 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 295 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 296 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 297 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 298 299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 300 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 301 #define RPF_L3_FILTER_L4_EN __BIT(31) 302 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 303 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 304 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 305 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 306 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 307 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 308 #define RPF_L3_FILTER_ARP_EN __BIT(24) 309 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 310 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 311 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 312 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 313 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 314 #define RPF_L3_FILTER_L4_PROTO_TCP 0 315 #define RPF_L3_FILTER_L4_PROTO_UDP 1 316 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 317 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 318 /* parameters of RPF_L3_FILTER_REG[8] */ 319 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 320 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 323 324 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 325 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 326 327 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 328 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 329 330 #define RPF_RSS_KEY_ADDR_REG 0x54d0 331 #define RPF_RSS_KEY_ADDR __BITS(4,0) 332 #define RPF_RSS_KEY_WR_EN __BIT(5) 333 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 334 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 335 336 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 337 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 338 #define RPF_RSS_REDIR_WR_EN __BIT(4) 339 340 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 341 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 342 343 #define RPO_HWCSUM_REG 0x5580 344 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 345 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 346 347 #define RPO_LRO_ENABLE_REG 0x5590 348 349 #define RPO_LRO_CONF_REG 0x5594 350 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 351 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 352 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 353 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 354 #define RPO_LRO_RSC_MAX_REG 0x5598 355 356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 357 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 358 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 359 #define RPO_LRO_TB_DIV_REG 0x5620 360 #define RPO_LRO_TB_DIV __BITS(20,31) 361 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 362 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 363 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 364 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 365 366 #define RPB_RPF_RX_REG 0x5700 367 #define RPB_RPF_RX_TC_MODE __BIT(8) 368 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 369 #define RPB_RPF_RX_BUF_EN __BIT(0) 370 371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 372 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 373 #define RPB_RXB_BUFSIZE __BITS(8,0) 374 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 375 #define RPB_RXB_XOFF_EN __BIT(31) 376 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 377 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 378 379 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 380 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 381 382 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 383 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 384 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 385 386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 387 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 388 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 389 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 390 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 391 392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 395 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 396 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 397 #define RX_DMA_DESC_RESET __BIT(25) 398 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 399 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 400 #define RX_DMA_DESC_EN __BIT(31) 401 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 402 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 403 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 404 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 405 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 406 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 407 408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 409 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 410 #define RX_DMA_DCAD_CPUID __BITS(7,0) 411 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 412 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 413 #define RX_DMA_DCAD_DESC_EN __BIT(31) 414 415 #define RX_DMA_DCA_REG 0x6180 416 #define RX_DMA_DCA_EN __BIT(31) 417 #define RX_DMA_DCA_MODE __BITS(3,0) 418 419 /* counters */ 420 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 421 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 422 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 423 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 424 425 #define TX_SYSCONTROL_REG 0x7000 426 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 427 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 428 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 429 430 #define TX_TPO2_REG 0x7040 431 #define TX_TPO2_EN __BIT(16) 432 433 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 434 #define TPS_DESC_VM_ARB_MODE __BIT(0) 435 #define TPS_DESC_RATE_REG 0x7310 436 #define TPS_DESC_RATE_TA_RST __BIT(31) 437 #define TPS_DESC_RATE_LIM __BITS(10,0) 438 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 439 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 440 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 441 #define TPS_DATA_TC_ARB_MODE __BIT(0) 442 443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 444 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 445 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 446 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 448 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 449 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 450 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 451 452 #define AQ_HW_TXBUF_MAX 160 453 #define AQ_HW_RXBUF_MAX 320 454 455 #define TPO_HWCSUM_REG 0x7800 456 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 457 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 458 459 #define TDM_LSO_EN_REG 0x7810 460 461 #define THM_LSO_TCP_FLAG1_REG 0x7820 462 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 463 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 464 #define THM_LSO_TCP_FLAG2_REG 0x7824 465 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 466 467 #define TPB_TX_BUF_REG 0x7900 468 #define TPB_TX_BUF_EN __BIT(0) 469 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 470 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 471 472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 473 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 474 #define TPB_TXB_BUFSIZE __BITS(7,0) 475 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 476 #define TPB_TXB_THRESH_HI __BITS(16,28) 477 #define TPB_TXB_THRESH_LO __BITS(12,0) 478 479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 480 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 481 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 482 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 483 484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 487 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 488 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 489 #define TX_DMA_DESC_EN __BIT(31) 490 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 491 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 492 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 493 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 494 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 495 496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 497 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 498 #define TDM_DCAD_CPUID __BITS(7,0) 499 #define TDM_DCAD_CPUID_EN __BIT(31) 500 501 #define TDM_DCA_REG 0x8480 502 #define TDM_DCA_EN __BIT(31) 503 #define TDM_DCA_MODE __BITS(3,0) 504 505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 506 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 507 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 508 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 509 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 510 511 #define FW1X_CTRL_10G __BIT(0) 512 #define FW1X_CTRL_5G __BIT(1) 513 #define FW1X_CTRL_5GSR __BIT(2) 514 #define FW1X_CTRL_2G5 __BIT(3) 515 #define FW1X_CTRL_1G __BIT(4) 516 #define FW1X_CTRL_100M __BIT(5) 517 518 #define FW2X_CTRL_10BASET_HD __BIT(0) 519 #define FW2X_CTRL_10BASET_FD __BIT(1) 520 #define FW2X_CTRL_100BASETX_HD __BIT(2) 521 #define FW2X_CTRL_100BASET4_HD __BIT(3) 522 #define FW2X_CTRL_100BASET2_HD __BIT(4) 523 #define FW2X_CTRL_100BASETX_FD __BIT(5) 524 #define FW2X_CTRL_100BASET2_FD __BIT(6) 525 #define FW2X_CTRL_1000BASET_HD __BIT(7) 526 #define FW2X_CTRL_1000BASET_FD __BIT(8) 527 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 528 #define FW2X_CTRL_5GBASET_FD __BIT(10) 529 #define FW2X_CTRL_10GBASET_FD __BIT(11) 530 #define FW2X_CTRL_RESERVED1 __BIT(32) 531 #define FW2X_CTRL_10BASET_EEE __BIT(33) 532 #define FW2X_CTRL_RESERVED2 __BIT(34) 533 #define FW2X_CTRL_PAUSE __BIT(35) 534 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 535 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 536 #define FW2X_CTRL_RESERVED3 __BIT(38) 537 #define FW2X_CTRL_RESERVED4 __BIT(39) 538 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 539 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 540 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 541 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 542 #define FW2X_CTRL_RESERVED5 __BIT(44) 543 #define FW2X_CTRL_RESERVED6 __BIT(45) 544 #define FW2X_CTRL_RESERVED7 __BIT(46) 545 #define FW2X_CTRL_RESERVED8 __BIT(47) 546 #define FW2X_CTRL_RESERVED9 __BIT(48) 547 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 548 #define FW2X_CTRL_TEMPERATURE __BIT(50) 549 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 550 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 551 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 552 #define FW2X_CTRL_LINK_DROP __BIT(54) 553 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 554 #define FW2X_CTRL_WOL __BIT(56) 555 #define FW2X_CTRL_MAC_STOP __BIT(57) 556 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 557 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 558 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 559 #define FW2X_CTRL_WOL_TIMER __BIT(61) 560 #define FW2X_CTRL_STATISTICS __BIT(62) 561 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 562 563 #define FW2X_SNPRINTB \ 564 "\177\020" \ 565 "b\x23" "PAUSE\0" \ 566 "b\x24" "ASYMMETRIC-PAUSE\0" \ 567 "b\x31" "CABLE-DIAG\0" \ 568 "b\x32" "TEMPERATURE\0" \ 569 "b\x33" "DOWNSHIFT\0" \ 570 "b\x34" "PTP-AVB\0" \ 571 "b\x35" "MEDIA-DETECT\0" \ 572 "b\x36" "LINK-DROP\0" \ 573 "b\x37" "SLEEP-PROXY\0" \ 574 "b\x38" "WOL\0" \ 575 "b\x39" "MAC-STOP\0" \ 576 "b\x3a" "EXT-LOOPBACK\0" \ 577 "b\x3b" "INT-LOOPBACK\0" \ 578 "b\x3c" "EFUSE-AGENT\0" \ 579 "b\x3d" "WOL-TIMER\0" \ 580 "b\x3e" "STATISTICS\0" \ 581 "b\x3f" "TRANSACTION-ID\0" \ 582 "\0" 583 584 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 585 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 586 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 587 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 588 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 589 #define FW2X_CTRL_RATE_MASK \ 590 (FW2X_CTRL_RATE_100M | \ 591 FW2X_CTRL_RATE_1G | \ 592 FW2X_CTRL_RATE_2G5 | \ 593 FW2X_CTRL_RATE_5G | \ 594 FW2X_CTRL_RATE_10G) 595 #define FW2X_CTRL_EEE_MASK \ 596 (FW2X_CTRL_10BASET_EEE | \ 597 FW2X_CTRL_100BASETX_EEE | \ 598 FW2X_CTRL_1000BASET_FD_EEE | \ 599 FW2X_CTRL_2P5GBASET_FD_EEE | \ 600 FW2X_CTRL_5GBASET_FD_EEE | \ 601 FW2X_CTRL_10GBASET_FD_EEE) 602 603 typedef enum aq_fw_bootloader_mode { 604 FW_BOOT_MODE_UNKNOWN = 0, 605 FW_BOOT_MODE_FLB, 606 FW_BOOT_MODE_RBL_FLASH, 607 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 608 } aq_fw_bootloader_mode_t; 609 610 #define AQ_WRITE_REG(sc, reg, val) \ 611 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 612 613 #define AQ_READ_REG(sc, reg) \ 614 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 615 616 #define AQ_READ64_REG(sc, reg) \ 617 ((uint64_t)AQ_READ_REG(sc, reg) | \ 618 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 619 620 #define AQ_WRITE64_REG(sc, reg, val) \ 621 do { \ 622 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 623 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 624 } while (/* CONSTCOND */0) 625 626 #define AQ_READ_REG_BIT(sc, reg, mask) \ 627 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 628 629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 630 do { \ 631 uint32_t _v; \ 632 _v = AQ_READ_REG((sc), (reg)); \ 633 _v &= ~(mask); \ 634 if ((val) != 0) \ 635 _v |= __SHIFTIN((val), (mask)); \ 636 AQ_WRITE_REG((sc), (reg), _v); \ 637 } while (/* CONSTCOND */ 0) 638 639 #define WAIT_FOR(expr, us, n, errp) \ 640 do { \ 641 unsigned int _n; \ 642 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 643 delay((us)); \ 644 } \ 645 if ((errp != NULL)) { \ 646 if (_n == 0) \ 647 *(errp) = ETIMEDOUT; \ 648 else \ 649 *(errp) = 0; \ 650 } \ 651 } while (/* CONSTCOND */ 0) 652 653 #define msec_delay(x) DELAY(1000 * (x)) 654 655 typedef struct aq_mailbox_header { 656 uint32_t version; 657 uint32_t transaction_id; 658 int32_t error; 659 } __packed __aligned(4) aq_mailbox_header_t; 660 661 typedef struct aq_hw_stats_s { 662 uint32_t uprc; 663 uint32_t mprc; 664 uint32_t bprc; 665 uint32_t erpt; 666 uint32_t uptc; 667 uint32_t mptc; 668 uint32_t bptc; 669 uint32_t erpr; 670 uint32_t mbtc; 671 uint32_t bbtc; 672 uint32_t mbrc; 673 uint32_t bbrc; 674 uint32_t ubrc; 675 uint32_t ubtc; 676 uint32_t ptc; 677 uint32_t prc; 678 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 679 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 680 } __packed __aligned(4) aq_hw_stats_s_t; 681 682 typedef struct fw1x_mailbox { 683 aq_mailbox_header_t header; 684 aq_hw_stats_s_t msm; 685 } __packed __aligned(4) fw1x_mailbox_t; 686 687 typedef struct fw2x_msm_statistics { 688 uint32_t uprc; 689 uint32_t mprc; 690 uint32_t bprc; 691 uint32_t erpt; 692 uint32_t uptc; 693 uint32_t mptc; 694 uint32_t bptc; 695 uint32_t erpr; 696 uint32_t mbtc; 697 uint32_t bbtc; 698 uint32_t mbrc; 699 uint32_t bbrc; 700 uint32_t ubrc; 701 uint32_t ubtc; 702 uint32_t ptc; 703 uint32_t prc; 704 } __packed __aligned(4) fw2x_msm_statistics_t; 705 706 typedef struct fw2x_phy_cable_diag_data { 707 uint32_t lane_data[4]; 708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t; 709 710 typedef struct fw2x_capabilities { 711 uint32_t caps_lo; 712 uint32_t caps_hi; 713 } __packed __aligned(4) fw2x_capabilities_t; 714 715 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 716 aq_mailbox_header_t header; 717 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 718 719 uint32_t phy_info1; 720 #define PHYINFO1_FAULT_CODE __BITS(31,16) 721 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 722 uint32_t phy_info2; 723 #define PHYINFO2_TEMPERATURE __BITS(15,0) 724 #define PHYINFO2_CABLE_LEN __BITS(23,16) 725 726 fw2x_phy_cable_diag_data_t diag_data; 727 uint32_t reserved[8]; 728 729 fw2x_capabilities_t caps; 730 731 /* ... */ 732 } __packed __aligned(4) fw2x_mailbox_t; 733 734 typedef enum aq_link_speed { 735 AQ_LINK_NONE = 0, 736 AQ_LINK_100M = (1 << 0), 737 AQ_LINK_1G = (1 << 1), 738 AQ_LINK_2G5 = (1 << 2), 739 AQ_LINK_5G = (1 << 3), 740 AQ_LINK_10G = (1 << 4) 741 } aq_link_speed_t; 742 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 743 AQ_LINK_5G | AQ_LINK_10G ) 744 #define AQ_LINK_AUTO AQ_LINK_ALL 745 746 typedef enum aq_link_fc { 747 AQ_FC_NONE = 0, 748 AQ_FC_RX = __BIT(0), 749 AQ_FC_TX = __BIT(1), 750 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 751 } aq_link_fc_t; 752 753 typedef enum aq_link_eee { 754 AQ_EEE_DISABLE = 0, 755 AQ_EEE_ENABLE = 1 756 } aq_link_eee_t; 757 758 typedef enum aq_hw_fw_mpi_state { 759 MPI_DEINIT = 0, 760 MPI_RESET = 1, 761 MPI_INIT = 2, 762 MPI_POWER = 4 763 } aq_hw_fw_mpi_state_t; 764 765 enum aq_media_type { 766 AQ_MEDIA_TYPE_UNKNOWN = 0, 767 AQ_MEDIA_TYPE_FIBRE, 768 AQ_MEDIA_TYPE_TP 769 }; 770 771 struct aq_rx_desc_read { 772 uint64_t buf_addr; 773 uint64_t hdr_addr; 774 } __packed __aligned(8); 775 776 struct aq_rx_desc_wb { 777 uint32_t type; 778 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 779 #define RXDESC_TYPE_RSSTYPE_NONE 0 780 #define RXDESC_TYPE_RSSTYPE_IPV4 2 781 #define RXDESC_TYPE_RSSTYPE_IPV6 3 782 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 783 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 784 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 785 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 786 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 787 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 788 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 789 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 790 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 791 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 792 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 793 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 794 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 795 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 796 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 797 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 799 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 800 #define RXDESC_TYPE_RESERVED __BITS(18,13) 801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 803 #define RXDESC_TYPE_SPH __BIT(21) 804 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 805 uint32_t rss_hash; 806 uint16_t status; 807 #define RXDESC_STATUS_DD __BIT(0) 808 #define RXDESC_STATUS_EOP __BIT(1) 809 #define RXDESC_STATUS_MACERR __BIT(2) 810 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 812 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 813 814 #define RXDESC_STATUS_STAT __BITS(2,5) 815 #define RXDESC_STATUS_ESTAT __BITS(6,11) 816 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 817 uint16_t pkt_len; 818 uint16_t next_desc_ptr; 819 uint16_t vlan; 820 } __packed __aligned(4); 821 822 typedef union aq_rx_desc { 823 struct aq_rx_desc_read read; 824 struct aq_rx_desc_wb wb; 825 } __packed __aligned(8) aq_rx_desc_t; 826 827 typedef struct aq_tx_desc { 828 uint64_t buf_addr; 829 uint32_t ctl1; 830 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 831 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 832 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 833 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 834 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 835 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 840 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 841 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 842 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 843 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 844 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 845 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 846 uint32_t ctl2; 847 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 848 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 849 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 850 } __packed __aligned(8) aq_tx_desc_t; 851 852 struct aq_txring { 853 struct aq_softc *txr_sc; 854 int txr_index; 855 kmutex_t txr_mutex; 856 bool txr_active; 857 858 pcq_t *txr_pcq; 859 void *txr_softint; 860 861 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 862 bus_dmamap_t txr_txdesc_dmamap; 863 bus_dma_segment_t txr_txdesc_seg[1]; 864 bus_size_t txr_txdesc_size; 865 866 struct { 867 struct mbuf *m; 868 bus_dmamap_t dmamap; 869 } txr_mbufs[AQ_TXD_NUM]; 870 unsigned int txr_prodidx; 871 unsigned int txr_considx; 872 int txr_nfree; 873 }; 874 875 struct aq_rxring { 876 struct aq_softc *rxr_sc; 877 int rxr_index; 878 kmutex_t rxr_mutex; 879 bool rxr_active; 880 bool rxr_discarding; 881 struct mbuf *rxr_receiving_m; /* receiving jumboframe */ 882 struct mbuf *rxr_receiving_m_last; /* last mbuf of jumboframe */ 883 884 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 885 bus_dmamap_t rxr_rxdesc_dmamap; 886 bus_dma_segment_t rxr_rxdesc_seg[1]; 887 bus_size_t rxr_rxdesc_size; 888 struct { 889 struct mbuf *m; 890 bus_dmamap_t dmamap; 891 } rxr_mbufs[AQ_RXD_NUM]; 892 unsigned int rxr_readidx; 893 }; 894 895 struct aq_queue { 896 struct aq_softc *sc; 897 struct aq_txring txring; 898 struct aq_rxring rxring; 899 }; 900 901 struct aq_softc; 902 struct aq_firmware_ops { 903 int (*reset)(struct aq_softc *); 904 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 905 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 906 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 907 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 908 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 909 #if NSYSMON_ENVSYS > 0 910 int (*get_temperature)(struct aq_softc *, uint32_t *); 911 #endif 912 }; 913 914 #ifdef AQ_EVENT_COUNTERS 915 #define AQ_EVCNT_DECL(name) \ 916 char sc_evcount_##name##_name[32]; \ 917 struct evcnt sc_evcount_##name##_ev; 918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 919 do { \ 920 snprintf((sc)->sc_evcount_##name##_name, \ 921 sizeof((sc)->sc_evcount_##name##_name), \ 922 "%s", desc); \ 923 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 924 (evtype), NULL, device_xname((sc)->sc_dev), \ 925 (sc)->sc_evcount_##name##_name); \ 926 } while (/*CONSTCOND*/0) 927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 928 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 929 #define AQ_EVCNT_DETACH(sc, name) \ 930 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 931 #define AQ_EVCNT_ADD(sc, name, val) \ 932 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 933 #endif /* AQ_EVENT_COUNTERS */ 934 935 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 936 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 937 938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 939 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 940 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 941 942 943 struct aq_softc { 944 device_t sc_dev; 945 946 bus_space_tag_t sc_iot; 947 bus_space_handle_t sc_ioh; 948 bus_size_t sc_iosize; 949 bus_dma_tag_t sc_dmat; 950 951 void *sc_ihs[AQ_NINTR_MAX]; 952 pci_intr_handle_t *sc_intrs; 953 954 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 955 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 956 int sc_linkstat_irq; 957 bool sc_use_txrx_independent_intr; 958 bool sc_poll_linkstat; 959 bool sc_detect_linkstat; 960 961 #if NSYSMON_ENVSYS > 0 962 struct sysmon_envsys *sc_sme; 963 envsys_data_t sc_sensor_temp; 964 #endif 965 966 callout_t sc_tick_ch; 967 968 int sc_nintrs; 969 bool sc_msix; 970 971 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 972 int sc_nqueues; 973 974 pci_chipset_tag_t sc_pc; 975 pcitag_t sc_pcitag; 976 uint16_t sc_product; 977 uint16_t sc_revision; 978 979 kmutex_t sc_mutex; 980 kmutex_t sc_mpi_mutex; 981 982 const struct aq_firmware_ops *sc_fw_ops; 983 uint64_t sc_fw_caps; 984 enum aq_media_type sc_media_type; 985 aq_link_speed_t sc_available_rates; 986 987 aq_link_speed_t sc_link_rate; 988 aq_link_fc_t sc_link_fc; 989 aq_link_eee_t sc_link_eee; 990 991 uint32_t sc_fw_version; 992 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 993 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 994 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 995 uint32_t sc_features; 996 #define FEATURES_MIPS 0x00000001 997 #define FEATURES_TPO2 0x00000002 998 #define FEATURES_RPF2 0x00000004 999 #define FEATURES_MPI_AQ 0x00000008 1000 #define FEATURES_REV_A0 0x10000000 1001 #define FEATURES_REV_A (FEATURES_REV_A0) 1002 #define FEATURES_REV_B0 0x20000000 1003 #define FEATURES_REV_B1 0x40000000 1004 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 1005 uint32_t sc_max_mtu; 1006 uint32_t sc_mbox_addr; 1007 1008 bool sc_rbl_enabled; 1009 bool sc_fast_start_enabled; 1010 bool sc_flash_present; 1011 1012 bool sc_intr_moderation_enable; 1013 bool sc_rss_enable; 1014 1015 struct ethercom sc_ethercom; 1016 struct ether_addr sc_enaddr; 1017 struct ifmedia sc_media; 1018 int sc_ec_capenable; /* last ec_capenable */ 1019 unsigned short sc_if_flags; /* last if_flags */ 1020 1021 #ifdef AQ_EVENT_COUNTERS 1022 aq_hw_stats_s_t sc_statistics[2]; 1023 int sc_statistics_idx; 1024 bool sc_poll_statistics; 1025 1026 AQ_EVCNT_DECL(uprc); 1027 AQ_EVCNT_DECL(mprc); 1028 AQ_EVCNT_DECL(bprc); 1029 AQ_EVCNT_DECL(erpt); 1030 AQ_EVCNT_DECL(uptc); 1031 AQ_EVCNT_DECL(mptc); 1032 AQ_EVCNT_DECL(bptc); 1033 AQ_EVCNT_DECL(erpr); 1034 AQ_EVCNT_DECL(mbtc); 1035 AQ_EVCNT_DECL(bbtc); 1036 AQ_EVCNT_DECL(mbrc); 1037 AQ_EVCNT_DECL(bbrc); 1038 AQ_EVCNT_DECL(ubrc); 1039 AQ_EVCNT_DECL(ubtc); 1040 AQ_EVCNT_DECL(ptc); 1041 AQ_EVCNT_DECL(prc); 1042 AQ_EVCNT_DECL(dpc); 1043 AQ_EVCNT_DECL(cprc); 1044 #endif 1045 }; 1046 1047 static int aq_match(device_t, cfdata_t, void *); 1048 static void aq_attach(device_t, device_t, void *); 1049 static int aq_detach(device_t, int); 1050 1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1052 bool, bool); 1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1054 pci_intr_type_t); 1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1056 1057 static int aq_ifmedia_change(struct ifnet * const); 1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1060 static int aq_ifflags_cb(struct ethercom *); 1061 static int aq_init(struct ifnet *); 1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1063 struct aq_txring *, bool); 1064 static int aq_transmit(struct ifnet *, struct mbuf *); 1065 static void aq_deferred_transmit(void *); 1066 static void aq_start(struct ifnet *); 1067 static void aq_stop(struct ifnet *, int); 1068 static void aq_watchdog(struct ifnet *); 1069 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1070 1071 static int aq_txrx_rings_alloc(struct aq_softc *); 1072 static void aq_txrx_rings_free(struct aq_softc *); 1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1075 1076 static void aq_initmedia(struct aq_softc *); 1077 static void aq_enable_intr(struct aq_softc *, bool, bool); 1078 1079 #if NSYSMON_ENVSYS > 0 1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1081 #endif 1082 static void aq_tick(void *); 1083 static int aq_legacy_intr(void *); 1084 static int aq_link_intr(void *); 1085 static int aq_txrx_intr(void *); 1086 static int aq_tx_intr(void *); 1087 static int aq_rx_intr(void *); 1088 1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1090 aq_link_eee_t); 1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1092 aq_link_eee_t *); 1093 1094 static int aq_fw_reset(struct aq_softc *); 1095 static int aq_fw_version_init(struct aq_softc *); 1096 static int aq_hw_init(struct aq_softc *); 1097 static int aq_hw_init_ucp(struct aq_softc *); 1098 static int aq_hw_reset(struct aq_softc *); 1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1100 uint32_t); 1101 static int aq_get_mac_addr(struct aq_softc *); 1102 static int aq_init_rss(struct aq_softc *); 1103 static int aq_set_capability(struct aq_softc *); 1104 1105 static int fw1x_reset(struct aq_softc *); 1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1111 1112 static int fw2x_reset(struct aq_softc *); 1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1114 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1116 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1118 #if NSYSMON_ENVSYS > 0 1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1120 #endif 1121 1122 static const struct aq_firmware_ops aq_fw1x_ops = { 1123 .reset = fw1x_reset, 1124 .set_mode = fw1x_set_mode, 1125 .get_mode = fw1x_get_mode, 1126 .get_stats = fw1x_get_stats, 1127 #if NSYSMON_ENVSYS > 0 1128 .get_temperature = NULL 1129 #endif 1130 }; 1131 1132 static const struct aq_firmware_ops aq_fw2x_ops = { 1133 .reset = fw2x_reset, 1134 .set_mode = fw2x_set_mode, 1135 .get_mode = fw2x_get_mode, 1136 .get_stats = fw2x_get_stats, 1137 #if NSYSMON_ENVSYS > 0 1138 .get_temperature = fw2x_get_temperature 1139 #endif 1140 }; 1141 1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1143 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1144 1145 static const struct aq_product { 1146 pci_vendor_id_t aq_vendor; 1147 pci_product_id_t aq_product; 1148 const char *aq_name; 1149 enum aq_media_type aq_media_type; 1150 aq_link_speed_t aq_available_rates; 1151 } aq_products[] = { 1152 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1153 "Aquantia AQC100 10 Gigabit Network Adapter", 1154 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1155 }, 1156 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1157 "Aquantia AQC107 10 Gigabit Network Adapter", 1158 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1159 }, 1160 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1161 "Aquantia AQC108 5 Gigabit Network Adapter", 1162 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1163 }, 1164 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1165 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1166 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1167 }, 1168 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1169 "Aquantia AQC111 5 Gigabit Network Adapter", 1170 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1171 }, 1172 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1173 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1174 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1175 }, 1176 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1177 "Aquantia AQC100S 10 Gigabit Network Adapter", 1178 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1179 }, 1180 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1181 "Aquantia AQC107S 10 Gigabit Network Adapter", 1182 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1183 }, 1184 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1185 "Aquantia AQC108S 5 Gigabit Network Adapter", 1186 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1187 }, 1188 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1189 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1190 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1191 }, 1192 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1193 "Aquantia AQC111S 5 Gigabit Network Adapter", 1194 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1195 }, 1196 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1197 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1198 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1199 }, 1200 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1201 "Aquantia D100 10 Gigabit Network Adapter", 1202 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1203 }, 1204 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1205 "Aquantia D107 10 Gigabit Network Adapter", 1206 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1207 }, 1208 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1209 "Aquantia D108 5 Gigabit Network Adapter", 1210 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1211 }, 1212 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1213 "Aquantia D109 2.5 Gigabit Network Adapter", 1214 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1215 } 1216 }; 1217 1218 static const struct aq_product * 1219 aq_lookup(const struct pci_attach_args *pa) 1220 { 1221 unsigned int i; 1222 1223 for (i = 0; i < __arraycount(aq_products); i++) { 1224 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1225 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1226 return &aq_products[i]; 1227 } 1228 return NULL; 1229 } 1230 1231 static int 1232 aq_match(device_t parent, cfdata_t cf, void *aux) 1233 { 1234 struct pci_attach_args *pa = aux; 1235 1236 if (aq_lookup(pa) != NULL) 1237 return 1; 1238 1239 return 0; 1240 } 1241 1242 static void 1243 aq_attach(device_t parent, device_t self, void *aux) 1244 { 1245 struct aq_softc *sc = device_private(self); 1246 struct pci_attach_args *pa = aux; 1247 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1248 pci_chipset_tag_t pc; 1249 pcitag_t tag; 1250 pcireg_t command, memtype, bar; 1251 const struct aq_product *aqp; 1252 int error; 1253 1254 sc->sc_dev = self; 1255 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1256 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1257 1258 sc->sc_pc = pc = pa->pa_pc; 1259 sc->sc_pcitag = tag = pa->pa_tag; 1260 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1261 1262 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1263 command |= PCI_COMMAND_MASTER_ENABLE; 1264 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1265 1266 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1267 sc->sc_revision = PCI_REVISION(pa->pa_class); 1268 1269 aqp = aq_lookup(pa); 1270 KASSERT(aqp != NULL); 1271 1272 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1273 1274 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1275 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1276 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1277 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1278 return; 1279 } 1280 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1281 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1282 NULL, &sc->sc_iosize) != 0) { 1283 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1284 return; 1285 } 1286 1287 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1288 1289 /* max queue num is 8, and must be 2^n */ 1290 if (ncpu >= 8) 1291 sc->sc_nqueues = 8; 1292 else if (ncpu >= 4) 1293 sc->sc_nqueues = 4; 1294 else if (ncpu >= 2) 1295 sc->sc_nqueues = 2; 1296 else 1297 sc->sc_nqueues = 1; 1298 1299 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1300 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1301 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1302 /* TX intrs + RX intrs + LINKSTAT intrs */ 1303 sc->sc_use_txrx_independent_intr = true; 1304 sc->sc_poll_linkstat = false; 1305 sc->sc_msix = true; 1306 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1307 /* TX intrs + RX intrs */ 1308 sc->sc_use_txrx_independent_intr = true; 1309 sc->sc_poll_linkstat = true; 1310 sc->sc_msix = true; 1311 } else 1312 #endif 1313 if (msixcount >= (sc->sc_nqueues + 1)) { 1314 /* TX/RX intrs LINKSTAT intrs */ 1315 sc->sc_use_txrx_independent_intr = false; 1316 sc->sc_poll_linkstat = false; 1317 sc->sc_msix = true; 1318 } else if (msixcount >= sc->sc_nqueues) { 1319 /* TX/RX intrs */ 1320 sc->sc_use_txrx_independent_intr = false; 1321 sc->sc_poll_linkstat = true; 1322 sc->sc_msix = true; 1323 } else { 1324 /* giving up using MSI-X */ 1325 sc->sc_msix = false; 1326 } 1327 1328 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */ 1329 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE) 1330 sc->sc_poll_linkstat = true; 1331 1332 #ifdef AQ_FORCE_POLL_LINKSTAT 1333 sc->sc_poll_linkstat = true; 1334 #endif 1335 1336 aprint_debug_dev(sc->sc_dev, 1337 "ncpu=%d, pci_msix_count=%d." 1338 " allocate %d interrupts for %d%s queues%s\n", 1339 ncpu, msixcount, 1340 (sc->sc_use_txrx_independent_intr ? 1341 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1342 (sc->sc_poll_linkstat ? 0 : 1), 1343 sc->sc_nqueues, 1344 sc->sc_use_txrx_independent_intr ? "*2" : "", 1345 sc->sc_poll_linkstat ? "" : ", and link status"); 1346 1347 if (sc->sc_msix) 1348 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1349 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1350 else 1351 error = ENODEV; 1352 1353 if (error != 0) { 1354 /* if MSI-X failed, fallback to MSI with single queue */ 1355 sc->sc_use_txrx_independent_intr = false; 1356 sc->sc_poll_linkstat = false; 1357 sc->sc_msix = false; 1358 sc->sc_nqueues = 1; 1359 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1360 } 1361 if (error != 0) { 1362 /* if MSI failed, fallback to INTx */ 1363 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1364 } 1365 if (error != 0) 1366 return; 1367 1368 callout_init(&sc->sc_tick_ch, 0); 1369 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1370 1371 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1372 1373 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1374 sc->sc_rss_enable = true; 1375 else 1376 sc->sc_rss_enable = false; 1377 1378 error = aq_txrx_rings_alloc(sc); 1379 if (error != 0) 1380 goto attach_failure; 1381 1382 error = aq_fw_reset(sc); 1383 if (error != 0) 1384 goto attach_failure; 1385 1386 error = aq_fw_version_init(sc); 1387 if (error != 0) 1388 goto attach_failure; 1389 1390 error = aq_hw_init_ucp(sc); 1391 if (error < 0) 1392 goto attach_failure; 1393 1394 KASSERT(sc->sc_mbox_addr != 0); 1395 error = aq_hw_reset(sc); 1396 if (error != 0) 1397 goto attach_failure; 1398 1399 aq_get_mac_addr(sc); 1400 aq_init_rss(sc); 1401 1402 error = aq_hw_init(sc); /* initialize and interrupts */ 1403 if (error != 0) 1404 goto attach_failure; 1405 1406 sc->sc_media_type = aqp->aq_media_type; 1407 sc->sc_available_rates = aqp->aq_available_rates; 1408 1409 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1410 ifmedia_init(&sc->sc_media, IFM_IMASK, 1411 aq_ifmedia_change, aq_ifmedia_status); 1412 aq_initmedia(sc); 1413 1414 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1415 ifp->if_softc = sc; 1416 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1417 ifp->if_extflags = IFEF_MPSAFE; 1418 ifp->if_baudrate = IF_Gbps(10); 1419 ifp->if_init = aq_init; 1420 ifp->if_ioctl = aq_ioctl; 1421 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1422 ifp->if_transmit = aq_transmit; 1423 ifp->if_start = aq_start; 1424 ifp->if_stop = aq_stop; 1425 ifp->if_watchdog = aq_watchdog; 1426 IFQ_SET_READY(&ifp->if_snd); 1427 1428 /* initialize capabilities */ 1429 sc->sc_ethercom.ec_capabilities = 0; 1430 sc->sc_ethercom.ec_capenable = 0; 1431 #if notyet 1432 /* TODO */ 1433 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1434 #endif 1435 sc->sc_ethercom.ec_capabilities |= 1436 ETHERCAP_JUMBO_MTU | 1437 ETHERCAP_VLAN_MTU | 1438 ETHERCAP_VLAN_HWTAGGING | 1439 ETHERCAP_VLAN_HWFILTER; 1440 sc->sc_ethercom.ec_capenable |= 1441 ETHERCAP_VLAN_HWTAGGING | 1442 ETHERCAP_VLAN_HWFILTER; 1443 1444 ifp->if_capabilities = 0; 1445 ifp->if_capenable = 0; 1446 #ifdef CONFIG_LRO_SUPPORT 1447 ifp->if_capabilities |= IFCAP_LRO; 1448 ifp->if_capenable |= IFCAP_LRO; 1449 #endif 1450 #if notyet 1451 /* TSO */ 1452 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1453 #endif 1454 1455 /* TX hardware checksum offloading */ 1456 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1457 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1458 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1459 /* RX hardware checksum offloading */ 1460 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1461 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1462 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1463 1464 if_initialize(ifp); 1465 ifp->if_percpuq = if_percpuq_create(ifp); 1466 if_deferred_start_init(ifp, NULL); 1467 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1468 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1469 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1470 if_register(ifp); 1471 1472 aq_enable_intr(sc, true, false); /* only intr about link */ 1473 1474 /* update media */ 1475 aq_ifmedia_change(ifp); 1476 1477 #if NSYSMON_ENVSYS > 0 1478 /* temperature monitoring */ 1479 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1480 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1481 1482 sc->sc_sme = sysmon_envsys_create(); 1483 sc->sc_sme->sme_name = device_xname(self); 1484 sc->sc_sme->sme_cookie = sc; 1485 sc->sc_sme->sme_flags = 0; 1486 sc->sc_sme->sme_refresh = aq_temp_refresh; 1487 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1488 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1489 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1490 1491 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1492 if (sysmon_envsys_register(sc->sc_sme)) { 1493 sysmon_envsys_destroy(sc->sc_sme); 1494 sc->sc_sme = NULL; 1495 goto attach_failure; 1496 } 1497 1498 /* 1499 * for unknown reasons, the first call of fw2x_get_temperature() 1500 * will always fail (firmware matter?), so run once now. 1501 */ 1502 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1503 } 1504 #endif 1505 1506 #ifdef AQ_EVENT_COUNTERS 1507 /* get starting statistics values */ 1508 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1509 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1510 sc->sc_poll_statistics = true; 1511 } 1512 1513 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1514 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1515 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1516 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1517 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1518 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1519 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1520 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1521 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1522 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1523 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1524 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1525 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1526 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1527 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1528 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1529 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1530 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1531 #endif 1532 1533 if (pmf_device_register(self, NULL, NULL)) 1534 pmf_class_network_register(self, ifp); 1535 else 1536 aprint_error_dev(self, "couldn't establish power handler\n"); 1537 1538 return; 1539 1540 attach_failure: 1541 aq_detach(self, 0); 1542 } 1543 1544 static int 1545 aq_detach(device_t self, int flags __unused) 1546 { 1547 struct aq_softc *sc = device_private(self); 1548 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1549 int i, s; 1550 1551 if (sc->sc_iosize != 0) { 1552 if (ifp->if_softc != NULL) { 1553 s = splnet(); 1554 aq_stop(ifp, 0); 1555 splx(s); 1556 } 1557 1558 for (i = 0; i < AQ_NINTR_MAX; i++) { 1559 if (sc->sc_ihs[i] != NULL) { 1560 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1561 sc->sc_ihs[i] = NULL; 1562 } 1563 } 1564 if (sc->sc_nintrs > 0) { 1565 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1566 sc->sc_nintrs); 1567 sc->sc_intrs = NULL; 1568 sc->sc_nintrs = 0; 1569 } 1570 1571 aq_txrx_rings_free(sc); 1572 1573 if (ifp->if_softc != NULL) { 1574 ether_ifdetach(ifp); 1575 if_detach(ifp); 1576 } 1577 1578 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1579 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1580 sc->sc_iosize = 0; 1581 } 1582 1583 callout_stop(&sc->sc_tick_ch); 1584 1585 #if NSYSMON_ENVSYS > 0 1586 if (sc->sc_sme != NULL) { 1587 /* all sensors associated with this will also be detached */ 1588 sysmon_envsys_unregister(sc->sc_sme); 1589 } 1590 #endif 1591 1592 #ifdef AQ_EVENT_COUNTERS 1593 AQ_EVCNT_DETACH(sc, uprc); 1594 AQ_EVCNT_DETACH(sc, mprc); 1595 AQ_EVCNT_DETACH(sc, bprc); 1596 AQ_EVCNT_DETACH(sc, erpt); 1597 AQ_EVCNT_DETACH(sc, uptc); 1598 AQ_EVCNT_DETACH(sc, mptc); 1599 AQ_EVCNT_DETACH(sc, bptc); 1600 AQ_EVCNT_DETACH(sc, erpr); 1601 AQ_EVCNT_DETACH(sc, mbtc); 1602 AQ_EVCNT_DETACH(sc, bbtc); 1603 AQ_EVCNT_DETACH(sc, mbrc); 1604 AQ_EVCNT_DETACH(sc, bbrc); 1605 AQ_EVCNT_DETACH(sc, ubrc); 1606 AQ_EVCNT_DETACH(sc, ubtc); 1607 AQ_EVCNT_DETACH(sc, ptc); 1608 AQ_EVCNT_DETACH(sc, prc); 1609 AQ_EVCNT_DETACH(sc, dpc); 1610 AQ_EVCNT_DETACH(sc, cprc); 1611 #endif 1612 1613 ifmedia_fini(&sc->sc_media); 1614 1615 mutex_destroy(&sc->sc_mpi_mutex); 1616 mutex_destroy(&sc->sc_mutex); 1617 1618 return 0; 1619 } 1620 1621 static int 1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1623 int (*func)(void *), void *arg, const char *xname) 1624 { 1625 char intrbuf[PCI_INTRSTR_LEN]; 1626 pci_chipset_tag_t pc = sc->sc_pc; 1627 void *vih; 1628 const char *intrstr = NULL; 1629 1630 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1631 sizeof(intrbuf)); 1632 1633 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1634 1635 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1636 IPL_NET, func, arg, xname); 1637 if (vih == NULL) { 1638 aprint_error_dev(sc->sc_dev, 1639 "unable to establish MSI-X%s%s for %s\n", 1640 intrstr ? " at " : "", 1641 intrstr ? intrstr : "", xname); 1642 return EIO; 1643 } 1644 sc->sc_ihs[intno] = vih; 1645 1646 if (affinity != NULL) { 1647 /* Round-robin affinity */ 1648 kcpuset_zero(affinity); 1649 kcpuset_set(affinity, intno % ncpu); 1650 interrupt_distribute(vih, affinity, NULL); 1651 } 1652 1653 return 0; 1654 } 1655 1656 static int 1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1658 bool linkintr) 1659 { 1660 kcpuset_t *affinity; 1661 int error, intno, i; 1662 char intr_xname[INTRDEVNAMEBUF]; 1663 1664 kcpuset_create(&affinity, false); 1665 1666 intno = 0; 1667 1668 if (txrx_independent) { 1669 for (i = 0; i < sc->sc_nqueues; i++) { 1670 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1671 device_xname(sc->sc_dev), i); 1672 sc->sc_rx_irq[i] = intno; 1673 error = aq_establish_intr(sc, intno++, affinity, 1674 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1675 if (error != 0) 1676 goto fail; 1677 } 1678 for (i = 0; i < sc->sc_nqueues; i++) { 1679 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1680 device_xname(sc->sc_dev), i); 1681 sc->sc_tx_irq[i] = intno; 1682 error = aq_establish_intr(sc, intno++, affinity, 1683 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1684 if (error != 0) 1685 goto fail; 1686 } 1687 } else { 1688 for (i = 0; i < sc->sc_nqueues; i++) { 1689 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1690 device_xname(sc->sc_dev), i); 1691 sc->sc_rx_irq[i] = intno; 1692 sc->sc_tx_irq[i] = intno; 1693 error = aq_establish_intr(sc, intno++, affinity, 1694 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1695 if (error != 0) 1696 goto fail; 1697 } 1698 } 1699 1700 if (linkintr) { 1701 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1702 device_xname(sc->sc_dev)); 1703 sc->sc_linkstat_irq = intno; 1704 error = aq_establish_intr(sc, intno++, affinity, 1705 aq_link_intr, sc, intr_xname); 1706 if (error != 0) 1707 goto fail; 1708 } 1709 1710 kcpuset_destroy(affinity); 1711 return 0; 1712 1713 fail: 1714 for (i = 0; i < AQ_NINTR_MAX; i++) { 1715 if (sc->sc_ihs[i] != NULL) { 1716 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1717 sc->sc_ihs[i] = NULL; 1718 } 1719 } 1720 1721 kcpuset_destroy(affinity); 1722 return ENOMEM; 1723 } 1724 1725 static int 1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1727 bool txrx_independent, bool linkintr) 1728 { 1729 int error, nintr; 1730 1731 if (txrx_independent) 1732 nintr = nqueue * 2; 1733 else 1734 nintr = nqueue; 1735 1736 if (linkintr) 1737 nintr++; 1738 1739 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1740 if (error != 0) { 1741 aprint_error_dev(sc->sc_dev, 1742 "failed to allocate MSI-X interrupts\n"); 1743 goto fail; 1744 } 1745 1746 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1747 if (error == 0) { 1748 sc->sc_nintrs = nintr; 1749 } else { 1750 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1751 sc->sc_nintrs = 0; 1752 } 1753 fail: 1754 return error; 1755 1756 } 1757 1758 static int 1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1760 pci_intr_type_t inttype) 1761 { 1762 int counts[PCI_INTR_TYPE_SIZE]; 1763 int error, nintr; 1764 1765 nintr = 1; 1766 1767 memset(counts, 0, sizeof(counts)); 1768 counts[inttype] = nintr; 1769 1770 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1771 if (error != 0) { 1772 aprint_error_dev(sc->sc_dev, 1773 "failed to allocate%s interrupts\n", 1774 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1775 return error; 1776 } 1777 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1778 device_xname(sc->sc_dev)); 1779 if (error == 0) { 1780 sc->sc_nintrs = nintr; 1781 } else { 1782 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1783 sc->sc_nintrs = 0; 1784 } 1785 return error; 1786 } 1787 1788 static void 1789 global_software_reset(struct aq_softc *sc) 1790 { 1791 uint32_t v; 1792 1793 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1794 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1795 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1796 FW_MPI_RESETCTRL_RESET_DIS, 0); 1797 1798 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1799 v &= ~AQ_FW_SOFTRESET_DIS; 1800 v |= AQ_FW_SOFTRESET_RESET; 1801 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1802 } 1803 1804 static int 1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1806 { 1807 int timo; 1808 1809 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1810 1811 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1813 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1814 1815 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1816 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1817 1818 global_software_reset(sc); 1819 1820 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1821 1822 /* Wait for RBL to finish boot process. */ 1823 #define RBL_TIMEOUT_MS 10000 1824 uint16_t rbl_status; 1825 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1826 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1827 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1828 break; 1829 msec_delay(1); 1830 } 1831 if (timo <= 0) { 1832 aprint_error_dev(sc->sc_dev, 1833 "RBL> RBL restart failed: timeout\n"); 1834 return EBUSY; 1835 } 1836 switch (rbl_status) { 1837 case RBL_STATUS_SUCCESS: 1838 if (mode != NULL) 1839 *mode = FW_BOOT_MODE_RBL_FLASH; 1840 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1841 break; 1842 case RBL_STATUS_HOST_BOOT: 1843 if (mode != NULL) 1844 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1845 aprint_debug_dev(sc->sc_dev, 1846 "RBL> reset complete! [Host Bootload]\n"); 1847 break; 1848 case RBL_STATUS_FAILURE: 1849 default: 1850 aprint_error_dev(sc->sc_dev, 1851 "unknown RBL status 0x%x\n", rbl_status); 1852 return EBUSY; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int 1859 mac_soft_reset_flb(struct aq_softc *sc) 1860 { 1861 uint32_t v; 1862 int timo; 1863 1864 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1865 /* 1866 * Let Felicity hardware to complete SMBUS transaction before 1867 * Global software reset. 1868 */ 1869 msec_delay(50); 1870 1871 /* 1872 * If SPI burst transaction was interrupted(before running the script), 1873 * global software reset may not clear SPI interface. 1874 * Clean it up manually before global reset. 1875 */ 1876 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1877 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1878 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1879 msec_delay(50); 1880 1881 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1882 v &= ~AQ_FW_SOFTRESET_DIS; 1883 v |= AQ_FW_SOFTRESET_RESET; 1884 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1885 1886 /* Kickstart. */ 1887 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1888 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1889 if (!sc->sc_fast_start_enabled) 1890 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1891 1892 /* 1893 * For the case SPI burst transaction was interrupted (by MCP reset 1894 * above), wait until it is completed by hardware. 1895 */ 1896 msec_delay(50); 1897 1898 /* MAC Kickstart */ 1899 if (!sc->sc_fast_start_enabled) { 1900 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1901 1902 uint32_t flb_status; 1903 for (timo = 0; timo < 1000; timo++) { 1904 flb_status = AQ_READ_REG(sc, 1905 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1906 if (flb_status != 0) 1907 break; 1908 msec_delay(1); 1909 } 1910 if (flb_status == 0) { 1911 aprint_error_dev(sc->sc_dev, 1912 "FLB> MAC kickstart failed: timed out\n"); 1913 return ETIMEDOUT; 1914 } 1915 aprint_debug_dev(sc->sc_dev, 1916 "FLB> MAC kickstart done, %d ms\n", timo); 1917 /* FW reset */ 1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1919 /* 1920 * Let Felicity hardware complete SMBUS transaction before 1921 * Global software reset. 1922 */ 1923 msec_delay(50); 1924 sc->sc_fast_start_enabled = true; 1925 } 1926 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1927 1928 /* PHY Kickstart: #undone */ 1929 global_software_reset(sc); 1930 1931 for (timo = 0; timo < 1000; timo++) { 1932 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1933 break; 1934 msec_delay(10); 1935 } 1936 if (timo >= 1000) { 1937 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1938 return ETIMEDOUT; 1939 } 1940 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1941 return 0; 1942 1943 } 1944 1945 static int 1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1947 { 1948 if (sc->sc_rbl_enabled) 1949 return mac_soft_reset_rbl(sc, mode); 1950 1951 if (mode != NULL) 1952 *mode = FW_BOOT_MODE_FLB; 1953 return mac_soft_reset_flb(sc); 1954 } 1955 1956 static int 1957 aq_fw_read_version(struct aq_softc *sc) 1958 { 1959 int i, error = EBUSY; 1960 #define MAC_FW_START_TIMEOUT_MS 10000 1961 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1962 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1963 if (sc->sc_fw_version != 0) { 1964 error = 0; 1965 break; 1966 } 1967 delay(1000); 1968 } 1969 return error; 1970 } 1971 1972 static int 1973 aq_fw_reset(struct aq_softc *sc) 1974 { 1975 uint32_t ver, v, bootExitCode; 1976 int i, error; 1977 1978 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1979 1980 for (i = 1000; i > 0; i--) { 1981 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1982 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1983 if (v != 0x06000000 || bootExitCode != 0) 1984 break; 1985 } 1986 if (i <= 0) { 1987 aprint_error_dev(sc->sc_dev, 1988 "F/W reset failed. Neither RBL nor FLB started\n"); 1989 return ETIMEDOUT; 1990 } 1991 sc->sc_rbl_enabled = (bootExitCode != 0); 1992 1993 /* 1994 * Having FW version 0 is an indicator that cold start 1995 * is in progress. This means two things: 1996 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1997 * 2) Driver may skip reset sequence and save time. 1998 */ 1999 if (sc->sc_fast_start_enabled && (ver != 0)) { 2000 error = aq_fw_read_version(sc); 2001 /* Skip reset as it just completed */ 2002 if (error == 0) 2003 return 0; 2004 } 2005 2006 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 2007 error = mac_soft_reset(sc, &mode); 2008 if (error != 0) { 2009 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2010 return error; 2011 } 2012 2013 switch (mode) { 2014 case FW_BOOT_MODE_FLB: 2015 aprint_debug_dev(sc->sc_dev, 2016 "FLB> F/W successfully loaded from flash.\n"); 2017 sc->sc_flash_present = true; 2018 return aq_fw_read_version(sc); 2019 case FW_BOOT_MODE_RBL_FLASH: 2020 aprint_debug_dev(sc->sc_dev, 2021 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2022 sc->sc_flash_present = true; 2023 return aq_fw_read_version(sc); 2024 case FW_BOOT_MODE_UNKNOWN: 2025 aprint_error_dev(sc->sc_dev, 2026 "F/W bootload error: unknown bootloader type\n"); 2027 return ENOTSUP; 2028 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2029 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2030 break; 2031 } 2032 2033 /* 2034 * XXX: TODO: add support Host Boot 2035 */ 2036 aprint_error_dev(sc->sc_dev, 2037 "RBL> F/W Host Bootload not implemented\n"); 2038 return ENOTSUP; 2039 } 2040 2041 static int 2042 aq_hw_reset(struct aq_softc *sc) 2043 { 2044 int error; 2045 2046 /* disable irq */ 2047 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2048 2049 /* apply */ 2050 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2051 2052 /* wait ack 10 times by 1ms */ 2053 WAIT_FOR( 2054 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2055 1000, 10, &error); 2056 if (error != 0) { 2057 aprint_error_dev(sc->sc_dev, 2058 "atlantic: IRQ reset failed: %d\n", error); 2059 return error; 2060 } 2061 2062 return sc->sc_fw_ops->reset(sc); 2063 } 2064 2065 static int 2066 aq_hw_init_ucp(struct aq_softc *sc) 2067 { 2068 int timo; 2069 2070 if (FW_VERSION_MAJOR(sc) == 1) { 2071 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) { 2072 uint32_t data; 2073 cprng_fast(&data, sizeof(data)); 2074 data &= 0xfefefefe; 2075 data |= 0x02020202; 2076 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data); 2077 } 2078 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2079 } 2080 2081 for (timo = 100; timo > 0; timo--) { 2082 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2083 if (sc->sc_mbox_addr != 0) 2084 break; 2085 delay(1000); 2086 } 2087 2088 #define AQ_FW_MIN_VERSION 0x01050006 2089 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2090 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2091 aprint_error_dev(sc->sc_dev, 2092 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2093 " or later required, this is %d.%d.%d\n", 2094 FW_VERSION_MAJOR(sc), 2095 FW_VERSION_MINOR(sc), 2096 FW_VERSION_BUILD(sc)); 2097 return ENOTSUP; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static int 2104 aq_fw_version_init(struct aq_softc *sc) 2105 { 2106 int error = 0; 2107 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2108 2109 if (FW_VERSION_MAJOR(sc) == 1) { 2110 sc->sc_fw_ops = &aq_fw1x_ops; 2111 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2112 sc->sc_fw_ops = &aq_fw2x_ops; 2113 } else { 2114 aprint_error_dev(sc->sc_dev, 2115 "Unsupported F/W version %d.%d.%d\n", 2116 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2117 FW_VERSION_BUILD(sc)); 2118 return ENOTSUP; 2119 } 2120 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2121 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2122 2123 /* detect revision */ 2124 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2125 switch (hwrev & 0x0000000f) { 2126 case 0x01: 2127 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2128 fw_vers); 2129 sc->sc_features |= FEATURES_REV_A0 | 2130 FEATURES_MPI_AQ | FEATURES_MIPS; 2131 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A; 2132 break; 2133 case 0x02: 2134 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2135 fw_vers); 2136 sc->sc_features |= FEATURES_REV_B0 | 2137 FEATURES_MPI_AQ | FEATURES_MIPS | 2138 FEATURES_TPO2 | FEATURES_RPF2; 2139 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2140 break; 2141 case 0x0A: 2142 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2143 fw_vers); 2144 sc->sc_features |= FEATURES_REV_B1 | 2145 FEATURES_MPI_AQ | FEATURES_MIPS | 2146 FEATURES_TPO2 | FEATURES_RPF2; 2147 sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B; 2148 break; 2149 default: 2150 aprint_error_dev(sc->sc_dev, 2151 "Unknown revision (0x%08x)\n", hwrev); 2152 sc->sc_features = 0; 2153 sc->sc_max_mtu = ETHERMTU; 2154 error = ENOTSUP; 2155 break; 2156 } 2157 return error; 2158 } 2159 2160 static int 2161 fw1x_reset(struct aq_softc *sc) 2162 { 2163 struct aq_mailbox_header mbox; 2164 const int retryCount = 1000; 2165 uint32_t tid0; 2166 int i; 2167 2168 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2169 2170 for (i = 0; i < retryCount; ++i) { 2171 /* 2172 * Read the beginning of Statistics structure to capture 2173 * the Transaction ID. 2174 */ 2175 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2176 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2177 2178 /* Successfully read the stats. */ 2179 if (tid0 == ~0U) { 2180 /* We have read the initial value. */ 2181 tid0 = mbox.transaction_id; 2182 continue; 2183 } else if (mbox.transaction_id != tid0) { 2184 /* 2185 * Compare transaction ID to initial value. 2186 * If it's different means f/w is alive. 2187 * We're done. 2188 */ 2189 return 0; 2190 } 2191 2192 /* 2193 * Transaction ID value haven't changed since last time. 2194 * Try reading the stats again. 2195 */ 2196 delay(10); 2197 } 2198 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2199 return EBUSY; 2200 } 2201 2202 static int 2203 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2204 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2205 { 2206 uint32_t mpictrl = 0; 2207 uint32_t mpispeed = 0; 2208 2209 if (speed & AQ_LINK_10G) 2210 mpispeed |= FW1X_CTRL_10G; 2211 if (speed & AQ_LINK_5G) 2212 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2213 if (speed & AQ_LINK_2G5) 2214 mpispeed |= FW1X_CTRL_2G5; 2215 if (speed & AQ_LINK_1G) 2216 mpispeed |= FW1X_CTRL_1G; 2217 if (speed & AQ_LINK_100M) 2218 mpispeed |= FW1X_CTRL_100M; 2219 2220 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2221 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2222 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2223 return 0; 2224 } 2225 2226 static int 2227 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2228 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2229 { 2230 uint32_t mpistate, mpi_speed; 2231 aq_link_speed_t speed = AQ_LINK_NONE; 2232 2233 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2234 2235 if (modep != NULL) 2236 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2237 2238 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2239 if (mpi_speed & FW1X_CTRL_10G) 2240 speed = AQ_LINK_10G; 2241 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2242 speed = AQ_LINK_5G; 2243 else if (mpi_speed & FW1X_CTRL_2G5) 2244 speed = AQ_LINK_2G5; 2245 else if (mpi_speed & FW1X_CTRL_1G) 2246 speed = AQ_LINK_1G; 2247 else if (mpi_speed & FW1X_CTRL_100M) 2248 speed = AQ_LINK_100M; 2249 2250 if (speedp != NULL) 2251 *speedp = speed; 2252 2253 if (fcp != NULL) 2254 *fcp = AQ_FC_NONE; 2255 2256 if (eeep != NULL) 2257 *eeep = AQ_EEE_DISABLE; 2258 2259 return 0; 2260 } 2261 2262 static int 2263 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2264 { 2265 int error; 2266 2267 error = aq_fw_downld_dwords(sc, 2268 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2269 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2270 if (error < 0) { 2271 device_printf(sc->sc_dev, 2272 "fw1x> download statistics data FAILED, error %d", error); 2273 return error; 2274 } 2275 2276 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2277 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2278 return 0; 2279 } 2280 2281 static int 2282 fw2x_reset(struct aq_softc *sc) 2283 { 2284 fw2x_capabilities_t caps = { 0 }; 2285 int error; 2286 2287 error = aq_fw_downld_dwords(sc, 2288 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2289 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2290 if (error != 0) { 2291 aprint_error_dev(sc->sc_dev, 2292 "fw2x> can't get F/W capabilities mask, error %d\n", 2293 error); 2294 return error; 2295 } 2296 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2297 2298 char buf[256]; 2299 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2300 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2301 2302 return 0; 2303 } 2304 2305 static int 2306 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2307 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2308 { 2309 uint64_t mpi_ctrl; 2310 int error = 0; 2311 2312 AQ_MPI_LOCK(sc); 2313 2314 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2315 2316 switch (mode) { 2317 case MPI_INIT: 2318 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2319 if (speed & AQ_LINK_10G) 2320 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2321 if (speed & AQ_LINK_5G) 2322 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2323 if (speed & AQ_LINK_2G5) 2324 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2325 if (speed & AQ_LINK_1G) 2326 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2327 if (speed & AQ_LINK_100M) 2328 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2329 2330 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2331 2332 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2333 if (eee == AQ_EEE_ENABLE) 2334 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2335 2336 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2337 if (fc & AQ_FC_RX) 2338 mpi_ctrl |= FW2X_CTRL_PAUSE; 2339 if (fc & AQ_FC_TX) 2340 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2341 break; 2342 case MPI_DEINIT: 2343 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2344 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2345 break; 2346 default: 2347 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2348 error = EINVAL; 2349 goto failure; 2350 } 2351 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2352 2353 failure: 2354 AQ_MPI_UNLOCK(sc); 2355 return error; 2356 } 2357 2358 static int 2359 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2360 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2361 { 2362 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2363 2364 if (modep != NULL) { 2365 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2366 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2367 *modep = MPI_INIT; 2368 else 2369 *modep = MPI_DEINIT; 2370 } 2371 2372 aq_link_speed_t speed = AQ_LINK_NONE; 2373 if (mpi_state & FW2X_CTRL_RATE_10G) 2374 speed = AQ_LINK_10G; 2375 else if (mpi_state & FW2X_CTRL_RATE_5G) 2376 speed = AQ_LINK_5G; 2377 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2378 speed = AQ_LINK_2G5; 2379 else if (mpi_state & FW2X_CTRL_RATE_1G) 2380 speed = AQ_LINK_1G; 2381 else if (mpi_state & FW2X_CTRL_RATE_100M) 2382 speed = AQ_LINK_100M; 2383 2384 if (speedp != NULL) 2385 *speedp = speed; 2386 2387 aq_link_fc_t fc = AQ_FC_NONE; 2388 if (mpi_state & FW2X_CTRL_PAUSE) 2389 fc |= AQ_FC_RX; 2390 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2391 fc |= AQ_FC_TX; 2392 if (fcp != NULL) 2393 *fcp = fc; 2394 2395 /* XXX: TODO: EEE */ 2396 if (eeep != NULL) 2397 *eeep = AQ_EEE_DISABLE; 2398 2399 return 0; 2400 } 2401 2402 static int 2403 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2404 uint32_t timeout_ms, uint32_t try_count) 2405 { 2406 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2407 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2408 int error; 2409 2410 /* First, check that control and state values are consistent */ 2411 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2412 device_printf(sc->sc_dev, 2413 "fw2x> MPI control (%#llx) and state (%#llx)" 2414 " are not consistent for mask %#llx!\n", 2415 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2416 (unsigned long long)mask); 2417 return EINVAL; 2418 } 2419 2420 /* Invert bits (toggle) in control register */ 2421 mpi_ctrl ^= mask; 2422 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2423 2424 /* Clear all bits except masked */ 2425 mpi_ctrl &= mask; 2426 2427 /* Wait for FW reflecting change in state register */ 2428 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2429 1000 * timeout_ms, try_count, &error); 2430 if (error != 0) { 2431 device_printf(sc->sc_dev, 2432 "f/w2x> timeout while waiting for response" 2433 " in state register for bit %#llx!", 2434 (unsigned long long)mask); 2435 return error; 2436 } 2437 return 0; 2438 } 2439 2440 static int 2441 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2442 { 2443 int error; 2444 2445 AQ_MPI_LOCK(sc); 2446 /* Say to F/W to update the statistics */ 2447 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2448 if (error != 0) { 2449 device_printf(sc->sc_dev, 2450 "fw2x> statistics update error %d\n", error); 2451 goto failure; 2452 } 2453 2454 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2455 error = aq_fw_downld_dwords(sc, 2456 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2457 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2458 if (error != 0) { 2459 device_printf(sc->sc_dev, 2460 "fw2x> download statistics data FAILED, error %d", error); 2461 goto failure; 2462 } 2463 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2464 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2465 2466 failure: 2467 AQ_MPI_UNLOCK(sc); 2468 return error; 2469 } 2470 2471 #if NSYSMON_ENVSYS > 0 2472 static int 2473 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2474 { 2475 int error; 2476 uint32_t value, celsius; 2477 2478 AQ_MPI_LOCK(sc); 2479 2480 /* Say to F/W to update the temperature */ 2481 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2482 if (error != 0) 2483 goto failure; 2484 2485 error = aq_fw_downld_dwords(sc, 2486 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2487 &value, sizeof(value) / sizeof(uint32_t)); 2488 if (error != 0) 2489 goto failure; 2490 2491 /* 1/256 decrees C to microkelvin */ 2492 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2493 if (celsius == 0) { 2494 error = EIO; 2495 goto failure; 2496 } 2497 *temp = celsius * (1000000 / 256) + 273150000; 2498 2499 failure: 2500 AQ_MPI_UNLOCK(sc); 2501 return 0; 2502 } 2503 #endif 2504 2505 static int 2506 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2507 uint32_t cnt) 2508 { 2509 uint32_t v; 2510 int error = 0; 2511 2512 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2513 if (error != 0) { 2514 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2515 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2516 if (v == 0) { 2517 device_printf(sc->sc_dev, 2518 "%s:%d: timeout\n", __func__, __LINE__); 2519 return ETIMEDOUT; 2520 } 2521 } 2522 2523 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2524 2525 error = 0; 2526 for (; cnt > 0 && error == 0; cnt--) { 2527 /* execute mailbox interface */ 2528 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2529 AQ_FW_MBOX_CMD_EXECUTE, 1); 2530 if (sc->sc_features & FEATURES_REV_B1) { 2531 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2532 1, 1000, &error); 2533 } else { 2534 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2535 AQ_FW_MBOX_CMD_BUSY) == 0, 2536 1, 1000, &error); 2537 } 2538 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2539 addr += sizeof(uint32_t); 2540 } 2541 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2542 2543 if (error != 0) 2544 device_printf(sc->sc_dev, 2545 "%s:%d: timeout\n", __func__, __LINE__); 2546 2547 return error; 2548 } 2549 2550 /* read my mac address */ 2551 static int 2552 aq_get_mac_addr(struct aq_softc *sc) 2553 { 2554 uint32_t mac_addr[2]; 2555 uint32_t efuse_shadow_addr; 2556 int err; 2557 2558 efuse_shadow_addr = 0; 2559 if (FW_VERSION_MAJOR(sc) >= 2) 2560 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2561 else 2562 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2563 2564 if (efuse_shadow_addr == 0) { 2565 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2566 return ENXIO; 2567 } 2568 2569 memset(mac_addr, 0, sizeof(mac_addr)); 2570 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2571 mac_addr, __arraycount(mac_addr)); 2572 if (err < 0) 2573 return err; 2574 2575 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2576 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2577 return ENXIO; 2578 } 2579 2580 mac_addr[0] = htobe32(mac_addr[0]); 2581 mac_addr[1] = htobe32(mac_addr[1]); 2582 2583 memcpy(sc->sc_enaddr.ether_addr_octet, 2584 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2585 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2586 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2587 2588 return 0; 2589 } 2590 2591 /* set multicast filter. index 0 for own address */ 2592 static int 2593 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2594 { 2595 uint32_t h, l; 2596 2597 if (index >= AQ_HW_MAC_NUM) 2598 return EINVAL; 2599 2600 if (enaddr == NULL) { 2601 /* disable */ 2602 AQ_WRITE_REG_BIT(sc, 2603 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2604 return 0; 2605 } 2606 2607 h = (enaddr[0] << 8) | (enaddr[1]); 2608 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2609 (enaddr[4] << 8) | (enaddr[5]); 2610 2611 /* disable, set, and enable */ 2612 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2613 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2614 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2615 RPF_L2UC_MSW_MACADDR_HI, h); 2616 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2617 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2618 2619 return 0; 2620 } 2621 2622 static int 2623 aq_set_capability(struct aq_softc *sc) 2624 { 2625 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2626 int ip4csum_tx = 2627 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2628 int ip4csum_rx = 2629 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2630 int l4csum_tx = ((ifp->if_capenable & 2631 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2632 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2633 int l4csum_rx = 2634 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2635 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2636 uint32_t lso = 2637 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2638 0 : 0xffffffff; 2639 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2640 0 : 0xffffffff; 2641 uint32_t i, v; 2642 2643 /* TX checksums offloads*/ 2644 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2645 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2646 2647 /* RX checksums offloads*/ 2648 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2649 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2650 2651 /* LSO offloads*/ 2652 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2653 2654 #define AQ_B0_LRO_RXD_MAX 16 2655 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2656 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2657 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2658 for (i = 0; i < AQ_RINGS_NUM; i++) { 2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2660 RPO_LRO_LDES_MAX_MASK(i), v); 2661 } 2662 2663 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2664 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2665 RPO_LRO_INACTIVE_IVAL, 0); 2666 /* 2667 * the LRO timebase divider is 5 uS (0x61a), 2668 * to get a maximum coalescing interval of 250 uS, 2669 * we need to multiply by 50(0x32) to get 2670 * the default value 250 uS 2671 */ 2672 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2673 RPO_LRO_MAX_COALESCING_IVAL, 50); 2674 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2675 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2676 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2677 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2678 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2679 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2680 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2681 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2682 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2683 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2684 2685 return 0; 2686 } 2687 2688 static int 2689 aq_set_filter(struct aq_softc *sc) 2690 { 2691 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2692 struct ethercom *ec = &sc->sc_ethercom; 2693 struct ether_multi *enm; 2694 struct ether_multistep step; 2695 int idx, error = 0; 2696 2697 if (ifp->if_flags & IFF_PROMISC) { 2698 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2699 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2700 ec->ec_flags |= ETHER_F_ALLMULTI; 2701 goto done; 2702 } 2703 2704 /* clear all table */ 2705 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2706 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2707 continue; 2708 aq_set_mac_addr(sc, idx, NULL); 2709 } 2710 2711 /* don't accept all multicast */ 2712 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2713 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2714 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2715 RPF_MCAST_FILTER_EN, 0); 2716 2717 idx = 0; 2718 ETHER_LOCK(ec); 2719 ETHER_FIRST_MULTI(step, ec, enm); 2720 while (enm != NULL) { 2721 if (idx == AQ_HW_MAC_OWN) 2722 idx++; 2723 2724 if ((idx >= AQ_HW_MAC_NUM) || 2725 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2726 /* 2727 * too many filters. 2728 * fallback to accept all multicast addresses. 2729 */ 2730 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2731 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2732 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2733 RPF_MCAST_FILTER_EN, 1); 2734 ec->ec_flags |= ETHER_F_ALLMULTI; 2735 ETHER_UNLOCK(ec); 2736 goto done; 2737 } 2738 2739 /* add a filter */ 2740 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2741 2742 ETHER_NEXT_MULTI(step, enm); 2743 } 2744 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2745 ETHER_UNLOCK(ec); 2746 2747 done: 2748 return error; 2749 } 2750 2751 static int 2752 aq_ifmedia_change(struct ifnet * const ifp) 2753 { 2754 struct aq_softc *sc = ifp->if_softc; 2755 aq_link_speed_t rate = AQ_LINK_NONE; 2756 aq_link_fc_t fc = AQ_FC_NONE; 2757 aq_link_eee_t eee = AQ_EEE_DISABLE; 2758 2759 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2760 return EINVAL; 2761 2762 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2763 case IFM_AUTO: 2764 rate = AQ_LINK_AUTO; 2765 break; 2766 case IFM_NONE: 2767 rate = AQ_LINK_NONE; 2768 break; 2769 case IFM_100_TX: 2770 rate = AQ_LINK_100M; 2771 break; 2772 case IFM_1000_T: 2773 rate = AQ_LINK_1G; 2774 break; 2775 case IFM_2500_T: 2776 rate = AQ_LINK_2G5; 2777 break; 2778 case IFM_5000_T: 2779 rate = AQ_LINK_5G; 2780 break; 2781 case IFM_10G_T: 2782 rate = AQ_LINK_10G; 2783 break; 2784 default: 2785 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2786 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2787 return ENODEV; 2788 } 2789 2790 if (sc->sc_media.ifm_media & IFM_FLOW) 2791 fc = AQ_FC_ALL; 2792 2793 /* XXX: todo EEE */ 2794 2795 /* re-initialize hardware with new parameters */ 2796 aq_set_linkmode(sc, rate, fc, eee); 2797 2798 return 0; 2799 } 2800 2801 static void 2802 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2803 { 2804 struct aq_softc *sc = ifp->if_softc; 2805 2806 /* update ifm_active */ 2807 ifmr->ifm_active = IFM_ETHER; 2808 if (sc->sc_link_fc & AQ_FC_RX) 2809 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2810 if (sc->sc_link_fc & AQ_FC_TX) 2811 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2812 2813 switch (sc->sc_link_rate) { 2814 case AQ_LINK_100M: 2815 /* XXX: need to detect fulldup or halfdup */ 2816 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2817 break; 2818 case AQ_LINK_1G: 2819 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2820 break; 2821 case AQ_LINK_2G5: 2822 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2823 break; 2824 case AQ_LINK_5G: 2825 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2826 break; 2827 case AQ_LINK_10G: 2828 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2829 break; 2830 default: 2831 ifmr->ifm_active |= IFM_NONE; 2832 break; 2833 } 2834 2835 /* update ifm_status */ 2836 ifmr->ifm_status = IFM_AVALID; 2837 if (sc->sc_link_rate != AQ_LINK_NONE) 2838 ifmr->ifm_status |= IFM_ACTIVE; 2839 } 2840 2841 static void 2842 aq_initmedia(struct aq_softc *sc) 2843 { 2844 #define IFMEDIA_ETHER_ADD(sc, media) \ 2845 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2846 2847 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2848 if (sc->sc_available_rates & AQ_LINK_100M) { 2849 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2850 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2851 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2852 } 2853 if (sc->sc_available_rates & AQ_LINK_1G) { 2854 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2855 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2856 } 2857 if (sc->sc_available_rates & AQ_LINK_2G5) { 2858 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2859 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2860 } 2861 if (sc->sc_available_rates & AQ_LINK_5G) { 2862 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2863 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2864 } 2865 if (sc->sc_available_rates & AQ_LINK_10G) { 2866 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2867 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2868 } 2869 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2870 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2871 2872 /* default: auto without flowcontrol */ 2873 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2874 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2875 } 2876 2877 static int 2878 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2879 aq_link_eee_t eee) 2880 { 2881 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2882 } 2883 2884 static int 2885 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2886 aq_link_eee_t *eee) 2887 { 2888 aq_hw_fw_mpi_state_t mode; 2889 int error; 2890 2891 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2892 if (error != 0) 2893 return error; 2894 if (mode != MPI_INIT) 2895 return ENXIO; 2896 2897 return 0; 2898 } 2899 2900 static void 2901 aq_hw_init_tx_path(struct aq_softc *sc) 2902 { 2903 /* Tx TC/RSS number config */ 2904 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2905 2906 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2907 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2908 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2909 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2910 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2911 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2912 2913 /* misc */ 2914 AQ_WRITE_REG(sc, TX_TPO2_REG, 2915 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2916 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2917 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2918 2919 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2920 } 2921 2922 static void 2923 aq_hw_init_rx_path(struct aq_softc *sc) 2924 { 2925 int i; 2926 2927 /* clear setting */ 2928 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2929 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2930 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2931 for (i = 0; i < 32; i++) { 2932 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2933 RPF_ETHERTYPE_FILTER_EN, 0); 2934 } 2935 2936 if (sc->sc_rss_enable) { 2937 /* Rx TC/RSS number config */ 2938 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2939 2940 /* Rx flow control */ 2941 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2942 2943 /* RSS Ring selection */ 2944 switch (sc->sc_nqueues) { 2945 case 2: 2946 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2947 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2948 break; 2949 case 4: 2950 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2951 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2952 break; 2953 case 8: 2954 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2955 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2956 break; 2957 } 2958 } 2959 2960 /* L2 and Multicast filters */ 2961 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2962 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2963 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2964 RPF_ACTION_HOST); 2965 } 2966 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2967 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2968 2969 /* Vlan filters */ 2970 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2971 ETHERTYPE_QINQ); 2972 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2973 ETHERTYPE_VLAN); 2974 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2975 2976 if (sc->sc_features & FEATURES_REV_B) { 2977 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2978 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2979 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2980 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2981 } 2982 2983 /* misc */ 2984 if (sc->sc_features & FEATURES_RPF2) 2985 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2986 else 2987 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2988 2989 /* 2990 * XXX: RX_TCP_RSS_HASH_REG: 2991 * linux set 0x000f0000 2992 * freebsd set 0x000f001e 2993 */ 2994 /* RSS hash type set for IP/TCP */ 2995 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2996 RX_TCP_RSS_HASH_TYPE, 0x001e); 2997 2998 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 2999 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 3000 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 3001 3002 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 3003 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 3004 } 3005 3006 static void 3007 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 3008 { 3009 int i; 3010 3011 if (sc->sc_intr_moderation_enable) { 3012 unsigned int tx_min, rx_min; /* 0-255 */ 3013 unsigned int tx_max, rx_max; /* 0-511? */ 3014 3015 switch (sc->sc_link_rate) { 3016 case AQ_LINK_100M: 3017 tx_min = 0x4f; 3018 tx_max = 0xff; 3019 rx_min = 0x04; 3020 rx_max = 0x50; 3021 break; 3022 case AQ_LINK_1G: 3023 default: 3024 tx_min = 0x4f; 3025 tx_max = 0xff; 3026 rx_min = 0x30; 3027 rx_max = 0x80; 3028 break; 3029 case AQ_LINK_2G5: 3030 tx_min = 0x4f; 3031 tx_max = 0xff; 3032 rx_min = 0x18; 3033 rx_max = 0xe0; 3034 break; 3035 case AQ_LINK_5G: 3036 tx_min = 0x4f; 3037 tx_max = 0xff; 3038 rx_min = 0x0c; 3039 rx_max = 0x70; 3040 break; 3041 case AQ_LINK_10G: 3042 tx_min = 0x4f; 3043 tx_max = 0x1ff; 3044 rx_min = 0x06; /* freebsd use 80 */ 3045 rx_max = 0x38; /* freebsd use 120 */ 3046 break; 3047 } 3048 3049 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3050 TX_DMA_INT_DESC_WRWB_EN, 0); 3051 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3052 TX_DMA_INT_DESC_MODERATE_EN, 1); 3053 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3054 RX_DMA_INT_DESC_WRWB_EN, 0); 3055 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3056 RX_DMA_INT_DESC_MODERATE_EN, 1); 3057 3058 for (i = 0; i < AQ_RINGS_NUM; i++) { 3059 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3060 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3061 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3062 TX_INTR_MODERATION_CTL_EN); 3063 } 3064 for (i = 0; i < AQ_RINGS_NUM; i++) { 3065 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3066 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3067 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3068 RX_INTR_MODERATION_CTL_EN); 3069 } 3070 3071 } else { 3072 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3073 TX_DMA_INT_DESC_WRWB_EN, 1); 3074 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3075 TX_DMA_INT_DESC_MODERATE_EN, 0); 3076 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3077 RX_DMA_INT_DESC_WRWB_EN, 1); 3078 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3079 RX_DMA_INT_DESC_MODERATE_EN, 0); 3080 3081 for (i = 0; i < AQ_RINGS_NUM; i++) { 3082 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3083 } 3084 for (i = 0; i < AQ_RINGS_NUM; i++) { 3085 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3086 } 3087 } 3088 } 3089 3090 static void 3091 aq_hw_qos_set(struct aq_softc *sc) 3092 { 3093 uint32_t tc = 0; 3094 uint32_t buff_size; 3095 3096 /* TPS Descriptor rate init */ 3097 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3099 3100 /* TPS VM init */ 3101 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3102 3103 /* TPS TC credits init */ 3104 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3105 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3106 3107 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3108 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3109 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3110 TPS_DATA_TCT_WEIGHT, 0x64); 3111 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3112 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3113 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3114 TPS_DESC_TCT_WEIGHT, 0x1e); 3115 3116 /* Tx buf size */ 3117 tc = 0; 3118 buff_size = AQ_HW_TXBUF_MAX; 3119 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3120 buff_size); 3121 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3122 (buff_size * (1024 / 32) * 66) / 100); 3123 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3124 (buff_size * (1024 / 32) * 50) / 100); 3125 3126 /* QoS Rx buf size per TC */ 3127 tc = 0; 3128 buff_size = AQ_HW_RXBUF_MAX; 3129 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3130 buff_size); 3131 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3132 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3133 (buff_size * (1024 / 32) * 66) / 100); 3134 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3135 (buff_size * (1024 / 32) * 50) / 100); 3136 3137 /* QoS 802.1p priority -> TC mapping */ 3138 int i_priority; 3139 for (i_priority = 0; i_priority < 8; i_priority++) { 3140 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3141 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3142 } 3143 } 3144 3145 /* called once from aq_attach */ 3146 static int 3147 aq_init_rss(struct aq_softc *sc) 3148 { 3149 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3150 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3151 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3152 unsigned int i; 3153 int error; 3154 3155 /* initialize rss key */ 3156 rss_getkey((uint8_t *)rss_key); 3157 3158 /* hash to ring table */ 3159 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3160 rss_table[i] = i % sc->sc_nqueues; 3161 } 3162 3163 /* 3164 * set rss key 3165 */ 3166 for (i = 0; i < __arraycount(rss_key); i++) { 3167 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3168 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3169 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3170 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3171 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3172 RPF_RSS_KEY_WR_EN, 1); 3173 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3174 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3175 if (error != 0) { 3176 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3177 __func__); 3178 goto rss_set_timeout; 3179 } 3180 } 3181 3182 /* 3183 * set rss indirection table 3184 * 3185 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3186 * we'll make it by __BITMAP(3) macros. 3187 */ 3188 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3189 __BITMAP_ZERO(&bit3x64); 3190 3191 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3192 do { \ 3193 if (val & 1) { \ 3194 __BITMAP_SET((idx) * 3, (bitmap)); \ 3195 } else { \ 3196 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3197 } \ 3198 if (val & 2) { \ 3199 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3200 } else { \ 3201 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3202 } \ 3203 if (val & 4) { \ 3204 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3205 } else { \ 3206 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3207 } \ 3208 } while (0 /* CONSTCOND */) 3209 3210 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3211 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3212 } 3213 3214 /* write 192bit data in steps of 16bit */ 3215 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3216 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3217 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3218 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3219 RPF_RSS_REDIR_ADDR, i); 3220 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3221 RPF_RSS_REDIR_WR_EN, 1); 3222 3223 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3224 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3225 if (error != 0) 3226 break; 3227 } 3228 3229 rss_set_timeout: 3230 return error; 3231 } 3232 3233 static void 3234 aq_hw_l3_filter_set(struct aq_softc *sc) 3235 { 3236 int i; 3237 3238 /* clear all filter */ 3239 for (i = 0; i < 8; i++) { 3240 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3241 RPF_L3_FILTER_L4_EN, 0); 3242 } 3243 } 3244 3245 static void 3246 aq_set_vlan_filters(struct aq_softc *sc) 3247 { 3248 struct ethercom *ec = &sc->sc_ethercom; 3249 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3250 struct vlanid_list *vlanidp; 3251 int i; 3252 3253 ETHER_LOCK(ec); 3254 3255 /* disable all vlan filters */ 3256 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3257 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3258 3259 /* count VID */ 3260 i = 0; 3261 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3262 i++; 3263 3264 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3265 (ifp->if_flags & IFF_PROMISC) || 3266 (i > RPF_VLAN_MAX_FILTERS)) { 3267 /* 3268 * no vlan hwfilter, in promiscuous mode, or too many VID? 3269 * must receive all VID 3270 */ 3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3272 RPF_VLAN_MODE_PROMISC, 1); 3273 goto done; 3274 } 3275 3276 /* receive only selected VID */ 3277 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3278 i = 0; 3279 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3280 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3281 RPF_VLAN_FILTER_EN, 1); 3282 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3283 RPF_VLAN_FILTER_RXQ_EN, 0); 3284 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3285 RPF_VLAN_FILTER_RXQ, 0); 3286 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3287 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3288 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3289 RPF_VLAN_FILTER_ID, vlanidp->vid); 3290 i++; 3291 } 3292 3293 done: 3294 ETHER_UNLOCK(ec); 3295 } 3296 3297 static int 3298 aq_hw_init(struct aq_softc *sc) 3299 { 3300 uint32_t v; 3301 3302 /* Force limit MRRS on RDM/TDM to 2K */ 3303 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3304 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3305 3306 /* 3307 * TX DMA total request limit. B0 hardware is not capable to 3308 * handle more than (8K-MRRS) incoming DMA data. 3309 * Value 24 in 256byte units 3310 */ 3311 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3312 3313 aq_hw_init_tx_path(sc); 3314 aq_hw_init_rx_path(sc); 3315 3316 aq_hw_interrupt_moderation_set(sc); 3317 3318 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3319 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3320 3321 aq_hw_qos_set(sc); 3322 3323 /* Enable interrupt */ 3324 int irqmode; 3325 if (sc->sc_msix) 3326 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3327 else 3328 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3329 3330 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3331 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3332 sc->sc_msix ? 1 : 0); 3333 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3334 3335 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3336 3337 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3338 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3339 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3340 ); 3341 3342 /* link interrupt */ 3343 if (!sc->sc_msix) 3344 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3345 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3346 __BIT(7) | sc->sc_linkstat_irq); 3347 3348 return 0; 3349 } 3350 3351 static int 3352 aq_update_link_status(struct aq_softc *sc) 3353 { 3354 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3355 aq_link_speed_t rate = AQ_LINK_NONE; 3356 aq_link_fc_t fc = AQ_FC_NONE; 3357 aq_link_eee_t eee = AQ_EEE_DISABLE; 3358 unsigned int speed; 3359 int changed = 0; 3360 3361 aq_get_linkmode(sc, &rate, &fc, &eee); 3362 3363 if (sc->sc_link_rate != rate) 3364 changed = 1; 3365 if (sc->sc_link_fc != fc) 3366 changed = 1; 3367 if (sc->sc_link_eee != eee) 3368 changed = 1; 3369 3370 if (changed) { 3371 switch (rate) { 3372 case AQ_LINK_100M: 3373 speed = 100; 3374 break; 3375 case AQ_LINK_1G: 3376 speed = 1000; 3377 break; 3378 case AQ_LINK_2G5: 3379 speed = 2500; 3380 break; 3381 case AQ_LINK_5G: 3382 speed = 5000; 3383 break; 3384 case AQ_LINK_10G: 3385 speed = 10000; 3386 break; 3387 case AQ_LINK_NONE: 3388 default: 3389 speed = 0; 3390 break; 3391 } 3392 3393 if (sc->sc_link_rate == AQ_LINK_NONE) { 3394 /* link DOWN -> UP */ 3395 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3396 speed); 3397 if_link_state_change(ifp, LINK_STATE_UP); 3398 } else if (rate == AQ_LINK_NONE) { 3399 /* link UP -> DOWN */ 3400 device_printf(sc->sc_dev, "link is DOWN\n"); 3401 if_link_state_change(ifp, LINK_STATE_DOWN); 3402 } else { 3403 device_printf(sc->sc_dev, 3404 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3405 speed, fc, eee); 3406 } 3407 3408 sc->sc_link_rate = rate; 3409 sc->sc_link_fc = fc; 3410 sc->sc_link_eee = eee; 3411 3412 /* update interrupt timing according to new link speed */ 3413 aq_hw_interrupt_moderation_set(sc); 3414 } 3415 3416 return changed; 3417 } 3418 3419 #ifdef AQ_EVENT_COUNTERS 3420 static void 3421 aq_update_statistics(struct aq_softc *sc) 3422 { 3423 int prev = sc->sc_statistics_idx; 3424 int cur = prev ^ 1; 3425 3426 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3427 3428 /* 3429 * aq's internal statistics counter is 32bit. 3430 * cauculate delta, and add to evcount 3431 */ 3432 #define ADD_DELTA(cur, prev, name) \ 3433 do { \ 3434 uint32_t n; \ 3435 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3436 sc->sc_statistics[prev].name); \ 3437 if (n != 0) { \ 3438 AQ_EVCNT_ADD(sc, name, n); \ 3439 } \ 3440 } while (/*CONSTCOND*/0); 3441 3442 ADD_DELTA(cur, prev, uprc); 3443 ADD_DELTA(cur, prev, mprc); 3444 ADD_DELTA(cur, prev, bprc); 3445 ADD_DELTA(cur, prev, prc); 3446 ADD_DELTA(cur, prev, erpr); 3447 ADD_DELTA(cur, prev, uptc); 3448 ADD_DELTA(cur, prev, mptc); 3449 ADD_DELTA(cur, prev, bptc); 3450 ADD_DELTA(cur, prev, ptc); 3451 ADD_DELTA(cur, prev, erpt); 3452 ADD_DELTA(cur, prev, mbtc); 3453 ADD_DELTA(cur, prev, bbtc); 3454 ADD_DELTA(cur, prev, mbrc); 3455 ADD_DELTA(cur, prev, bbrc); 3456 ADD_DELTA(cur, prev, ubrc); 3457 ADD_DELTA(cur, prev, ubtc); 3458 ADD_DELTA(cur, prev, dpc); 3459 ADD_DELTA(cur, prev, cprc); 3460 3461 sc->sc_statistics_idx = cur; 3462 } 3463 #endif /* AQ_EVENT_COUNTERS */ 3464 3465 /* allocate and map one DMA block */ 3466 static int 3467 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3468 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3469 { 3470 int nsegs, error; 3471 3472 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3473 1, &nsegs, 0)) != 0) { 3474 aprint_error_dev(sc->sc_dev, 3475 "unable to allocate DMA buffer, error=%d\n", error); 3476 goto fail_alloc; 3477 } 3478 3479 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3480 BUS_DMA_COHERENT)) != 0) { 3481 aprint_error_dev(sc->sc_dev, 3482 "unable to map DMA buffer, error=%d\n", error); 3483 goto fail_map; 3484 } 3485 3486 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3487 0, mapp)) != 0) { 3488 aprint_error_dev(sc->sc_dev, 3489 "unable to create DMA map, error=%d\n", error); 3490 goto fail_create; 3491 } 3492 3493 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3494 0)) != 0) { 3495 aprint_error_dev(sc->sc_dev, 3496 "unable to load DMA map, error=%d\n", error); 3497 goto fail_load; 3498 } 3499 3500 *sizep = size; 3501 return 0; 3502 3503 fail_load: 3504 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3505 *mapp = NULL; 3506 fail_create: 3507 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3508 *addrp = NULL; 3509 fail_map: 3510 bus_dmamem_free(sc->sc_dmat, seg, 1); 3511 memset(seg, 0, sizeof(*seg)); 3512 fail_alloc: 3513 *sizep = 0; 3514 return error; 3515 } 3516 3517 static void 3518 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3519 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3520 { 3521 if (*mapp != NULL) { 3522 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3523 *mapp = NULL; 3524 } 3525 if (*addrp != NULL) { 3526 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3527 *addrp = NULL; 3528 } 3529 if (*sizep != 0) { 3530 bus_dmamem_free(sc->sc_dmat, seg, 1); 3531 memset(seg, 0, sizeof(*seg)); 3532 *sizep = 0; 3533 } 3534 } 3535 3536 static int 3537 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3538 { 3539 int i, error; 3540 3541 /* allocate tx descriptors */ 3542 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3543 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3544 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3545 if (error != 0) 3546 return error; 3547 3548 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3549 3550 /* fill tx ring with dmamap */ 3551 for (i = 0; i < AQ_TXD_NUM; i++) { 3552 #define AQ_MAXDMASIZE (16 * 1024) 3553 #define AQ_NTXSEGS 32 3554 /* XXX: TODO: error check */ 3555 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3556 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3557 } 3558 return 0; 3559 } 3560 3561 static void 3562 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3563 { 3564 int i; 3565 3566 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3567 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3568 3569 for (i = 0; i < AQ_TXD_NUM; i++) { 3570 if (txring->txr_mbufs[i].dmamap != NULL) { 3571 if (txring->txr_mbufs[i].m != NULL) { 3572 bus_dmamap_unload(sc->sc_dmat, 3573 txring->txr_mbufs[i].dmamap); 3574 m_freem(txring->txr_mbufs[i].m); 3575 txring->txr_mbufs[i].m = NULL; 3576 } 3577 bus_dmamap_destroy(sc->sc_dmat, 3578 txring->txr_mbufs[i].dmamap); 3579 txring->txr_mbufs[i].dmamap = NULL; 3580 } 3581 } 3582 } 3583 3584 static int 3585 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3586 { 3587 int i, error; 3588 3589 /* allocate rx descriptors */ 3590 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3591 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3592 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3593 if (error != 0) 3594 return error; 3595 3596 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3597 3598 /* fill rxring with dmamaps */ 3599 for (i = 0; i < AQ_RXD_NUM; i++) { 3600 rxring->rxr_mbufs[i].m = NULL; 3601 /* XXX: TODO: error check */ 3602 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3603 &rxring->rxr_mbufs[i].dmamap); 3604 } 3605 return 0; 3606 } 3607 3608 static void 3609 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3610 { 3611 int i; 3612 3613 /* free all mbufs allocated for RX */ 3614 for (i = 0; i < AQ_RXD_NUM; i++) { 3615 if (rxring->rxr_mbufs[i].m != NULL) { 3616 bus_dmamap_unload(sc->sc_dmat, 3617 rxring->rxr_mbufs[i].dmamap); 3618 m_freem(rxring->rxr_mbufs[i].m); 3619 rxring->rxr_mbufs[i].m = NULL; 3620 } 3621 } 3622 } 3623 3624 static void 3625 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3626 { 3627 int i; 3628 3629 /* free all mbufs and dmamaps */ 3630 aq_rxdrain(sc, rxring); 3631 for (i = 0; i < AQ_RXD_NUM; i++) { 3632 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3633 bus_dmamap_destroy(sc->sc_dmat, 3634 rxring->rxr_mbufs[i].dmamap); 3635 rxring->rxr_mbufs[i].dmamap = NULL; 3636 } 3637 } 3638 3639 /* free RX descriptor */ 3640 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3641 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3642 } 3643 3644 static void 3645 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3646 struct mbuf *m) 3647 { 3648 int error; 3649 3650 /* if mbuf already exists, unload and free */ 3651 if (rxring->rxr_mbufs[idx].m != NULL) { 3652 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3653 m_freem(rxring->rxr_mbufs[idx].m); 3654 rxring->rxr_mbufs[idx].m = NULL; 3655 } 3656 3657 rxring->rxr_mbufs[idx].m = m; 3658 3659 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3660 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3661 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3662 if (error) { 3663 device_printf(sc->sc_dev, 3664 "unable to load rx DMA map %d, error = %d\n", idx, error); 3665 panic("%s: unable to load rx DMA map. error=%d", 3666 __func__, error); 3667 } 3668 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3669 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3670 } 3671 3672 static inline void 3673 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3674 { 3675 /* refill rxdesc, and sync */ 3676 rxring->rxr_rxdesc[idx].read.buf_addr = 3677 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3678 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3679 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3680 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3681 BUS_DMASYNC_PREWRITE); 3682 } 3683 3684 static struct mbuf * 3685 aq_alloc_mbuf(void) 3686 { 3687 struct mbuf *m; 3688 3689 MGETHDR(m, M_DONTWAIT, MT_DATA); 3690 if (m == NULL) 3691 return NULL; 3692 3693 MCLGET(m, M_DONTWAIT); 3694 if ((m->m_flags & M_EXT) == 0) { 3695 m_freem(m); 3696 return NULL; 3697 } 3698 3699 return m; 3700 } 3701 3702 /* allocate mbuf and unload dmamap */ 3703 static int 3704 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3705 { 3706 struct mbuf *m; 3707 3708 m = aq_alloc_mbuf(); 3709 if (m == NULL) 3710 return ENOBUFS; 3711 3712 aq_rxring_setmbuf(sc, rxring, idx, m); 3713 return 0; 3714 } 3715 3716 static int 3717 aq_txrx_rings_alloc(struct aq_softc *sc) 3718 { 3719 int n, error; 3720 3721 for (n = 0; n < sc->sc_nqueues; n++) { 3722 sc->sc_queue[n].sc = sc; 3723 sc->sc_queue[n].txring.txr_sc = sc; 3724 sc->sc_queue[n].txring.txr_index = n; 3725 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3726 IPL_NET); 3727 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3728 if (error != 0) 3729 goto failure; 3730 3731 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3732 if (error != 0) 3733 goto failure; 3734 3735 sc->sc_queue[n].rxring.rxr_sc = sc; 3736 sc->sc_queue[n].rxring.rxr_index = n; 3737 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3738 IPL_NET); 3739 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3740 if (error != 0) 3741 break; 3742 } 3743 3744 failure: 3745 return error; 3746 } 3747 3748 static void 3749 aq_txrx_rings_free(struct aq_softc *sc) 3750 { 3751 int n; 3752 3753 for (n = 0; n < sc->sc_nqueues; n++) { 3754 aq_txring_free(sc, &sc->sc_queue[n].txring); 3755 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3756 3757 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3758 3759 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3760 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3761 } 3762 } 3763 3764 static int 3765 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3766 { 3767 int error = 0; 3768 txring->txr_softint = NULL; 3769 3770 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3771 if (txring->txr_pcq == NULL) { 3772 aprint_error_dev(sc->sc_dev, 3773 "unable to allocate pcq for TXring[%d]\n", 3774 txring->txr_index); 3775 error = ENOMEM; 3776 goto done; 3777 } 3778 3779 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3780 aq_deferred_transmit, txring); 3781 if (txring->txr_softint == NULL) { 3782 aprint_error_dev(sc->sc_dev, 3783 "unable to establish softint for TXring[%d]\n", 3784 txring->txr_index); 3785 error = ENOENT; 3786 } 3787 3788 done: 3789 return error; 3790 } 3791 3792 static void 3793 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3794 { 3795 struct mbuf *m; 3796 3797 if (txring->txr_softint != NULL) { 3798 softint_disestablish(txring->txr_softint); 3799 txring->txr_softint = NULL; 3800 } 3801 3802 if (txring->txr_pcq != NULL) { 3803 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3804 m_freem(m); 3805 pcq_destroy(txring->txr_pcq); 3806 txring->txr_pcq = NULL; 3807 } 3808 } 3809 3810 #if NSYSMON_ENVSYS > 0 3811 static void 3812 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3813 { 3814 struct aq_softc *sc; 3815 uint32_t temp; 3816 int error; 3817 3818 sc = sme->sme_cookie; 3819 3820 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3821 if (error == 0) { 3822 edata->value_cur = temp; 3823 edata->state = ENVSYS_SVALID; 3824 } else { 3825 edata->state = ENVSYS_SINVALID; 3826 } 3827 } 3828 #endif 3829 3830 static void 3831 aq_tick(void *arg) 3832 { 3833 struct aq_softc *sc = arg; 3834 3835 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3836 sc->sc_detect_linkstat = false; 3837 aq_update_link_status(sc); 3838 } 3839 3840 #ifdef AQ_EVENT_COUNTERS 3841 if (sc->sc_poll_statistics) 3842 aq_update_statistics(sc); 3843 #endif 3844 3845 if (sc->sc_poll_linkstat 3846 #ifdef AQ_EVENT_COUNTERS 3847 || sc->sc_poll_statistics 3848 #endif 3849 ) { 3850 callout_schedule(&sc->sc_tick_ch, hz); 3851 } 3852 } 3853 3854 /* interrupt enable/disable */ 3855 static void 3856 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3857 { 3858 uint32_t imask = 0; 3859 int i; 3860 3861 if (txrx) { 3862 for (i = 0; i < sc->sc_nqueues; i++) { 3863 imask |= __BIT(sc->sc_tx_irq[i]); 3864 imask |= __BIT(sc->sc_rx_irq[i]); 3865 } 3866 } 3867 3868 if (link) 3869 imask |= __BIT(sc->sc_linkstat_irq); 3870 3871 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3872 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3873 } 3874 3875 static int 3876 aq_legacy_intr(void *arg) 3877 { 3878 struct aq_softc *sc = arg; 3879 uint32_t status; 3880 int nintr = 0; 3881 3882 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3883 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3884 3885 if (status & __BIT(sc->sc_linkstat_irq)) { 3886 sc->sc_detect_linkstat = true; 3887 callout_schedule(&sc->sc_tick_ch, 0); 3888 nintr++; 3889 } 3890 3891 if (status & __BIT(sc->sc_rx_irq[0])) { 3892 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3893 } 3894 3895 if (status & __BIT(sc->sc_tx_irq[0])) { 3896 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3897 } 3898 3899 return nintr; 3900 } 3901 3902 static int 3903 aq_txrx_intr(void *arg) 3904 { 3905 struct aq_queue *queue = arg; 3906 struct aq_softc *sc = queue->sc; 3907 struct aq_txring *txring = &queue->txring; 3908 struct aq_rxring *rxring = &queue->rxring; 3909 uint32_t status; 3910 int nintr = 0; 3911 int txringidx, rxringidx, txirq, rxirq; 3912 3913 txringidx = txring->txr_index; 3914 rxringidx = rxring->rxr_index; 3915 txirq = sc->sc_tx_irq[txringidx]; 3916 rxirq = sc->sc_rx_irq[rxringidx]; 3917 3918 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3919 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3920 /* stray interrupt? */ 3921 return 0; 3922 } 3923 3924 nintr += aq_rx_intr(rxring); 3925 nintr += aq_tx_intr(txring); 3926 3927 return nintr; 3928 } 3929 3930 static int 3931 aq_link_intr(void *arg) 3932 { 3933 struct aq_softc *sc = arg; 3934 uint32_t status; 3935 int nintr = 0; 3936 3937 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3938 if (status & __BIT(sc->sc_linkstat_irq)) { 3939 sc->sc_detect_linkstat = true; 3940 callout_schedule(&sc->sc_tick_ch, 0); 3941 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3942 __BIT(sc->sc_linkstat_irq)); 3943 nintr++; 3944 } 3945 3946 return nintr; 3947 } 3948 3949 static void 3950 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3951 { 3952 const int ringidx = txring->txr_index; 3953 int i; 3954 3955 mutex_enter(&txring->txr_mutex); 3956 3957 txring->txr_prodidx = 0; 3958 txring->txr_considx = 0; 3959 txring->txr_nfree = AQ_TXD_NUM; 3960 txring->txr_active = false; 3961 3962 /* free mbufs untransmitted */ 3963 for (i = 0; i < AQ_TXD_NUM; i++) { 3964 if (txring->txr_mbufs[i].m != NULL) { 3965 m_freem(txring->txr_mbufs[i].m); 3966 txring->txr_mbufs[i].m = NULL; 3967 } 3968 } 3969 3970 /* disable DMA */ 3971 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3972 3973 if (start) { 3974 /* TX descriptor physical address */ 3975 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3976 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3977 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3978 (uint32_t)((uint64_t)paddr >> 32)); 3979 3980 /* TX descriptor size */ 3981 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3982 AQ_TXD_NUM / 8); 3983 3984 /* reload TAIL pointer */ 3985 txring->txr_prodidx = txring->txr_considx = 3986 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3987 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3988 3989 /* Mapping interrupt vector */ 3990 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3991 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3992 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3993 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3994 3995 /* enable DMA */ 3996 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3997 TX_DMA_DESC_EN, 1); 3998 3999 const int cpuid = 0; /* XXX? */ 4000 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4001 TDM_DCAD_CPUID, cpuid); 4002 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 4003 TDM_DCAD_CPUID_EN, 0); 4004 4005 txring->txr_active = true; 4006 } 4007 4008 mutex_exit(&txring->txr_mutex); 4009 } 4010 4011 static int 4012 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4013 { 4014 const int ringidx = rxring->rxr_index; 4015 int i; 4016 int error = 0; 4017 4018 mutex_enter(&rxring->rxr_mutex); 4019 rxring->rxr_active = false; 4020 rxring->rxr_discarding = false; 4021 if (rxring->rxr_receiving_m != NULL) { 4022 m_freem(rxring->rxr_receiving_m); 4023 rxring->rxr_receiving_m = NULL; 4024 rxring->rxr_receiving_m_last = NULL; 4025 } 4026 4027 /* disable DMA */ 4028 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4029 4030 /* free all RX mbufs */ 4031 aq_rxdrain(sc, rxring); 4032 4033 if (start) { 4034 for (i = 0; i < AQ_RXD_NUM; i++) { 4035 error = aq_rxring_add(sc, rxring, i); 4036 if (error != 0) { 4037 aq_rxdrain(sc, rxring); 4038 return error; 4039 } 4040 aq_rxring_reset_desc(sc, rxring, i); 4041 } 4042 4043 /* RX descriptor physical address */ 4044 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4045 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4046 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4047 (uint32_t)((uint64_t)paddr >> 32)); 4048 4049 /* RX descriptor size */ 4050 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4051 AQ_RXD_NUM / 8); 4052 4053 /* maximum receive frame size */ 4054 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4055 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4056 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4057 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4058 4059 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4060 RX_DMA_DESC_HEADER_SPLIT, 0); 4061 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4062 RX_DMA_DESC_VLAN_STRIP, 4063 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4064 1 : 0); 4065 4066 /* 4067 * reload TAIL pointer, and update readidx 4068 * (HEAD pointer cannot write) 4069 */ 4070 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4071 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4072 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4073 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4074 4075 /* Rx ring set mode */ 4076 4077 /* Mapping interrupt vector */ 4078 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4079 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4080 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4081 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4082 4083 const int cpuid = 0; /* XXX? */ 4084 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4085 RX_DMA_DCAD_CPUID, cpuid); 4086 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4087 RX_DMA_DCAD_DESC_EN, 0); 4088 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4089 RX_DMA_DCAD_HEADER_EN, 0); 4090 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4091 RX_DMA_DCAD_PAYLOAD_EN, 0); 4092 4093 /* enable DMA. start receiving */ 4094 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4095 RX_DMA_DESC_EN, 1); 4096 4097 rxring->rxr_active = true; 4098 } 4099 4100 mutex_exit(&rxring->rxr_mutex); 4101 return error; 4102 } 4103 4104 #define TXRING_NEXTIDX(idx) \ 4105 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4106 #define RXRING_NEXTIDX(idx) \ 4107 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4108 4109 static int 4110 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4111 { 4112 bus_dmamap_t map; 4113 struct mbuf *m = *mp; 4114 uint32_t ctl1, ctl1_ctx, ctl2; 4115 int idx, i, error; 4116 4117 idx = txring->txr_prodidx; 4118 map = txring->txr_mbufs[idx].dmamap; 4119 4120 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4121 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4122 if (error == EFBIG) { 4123 struct mbuf *n; 4124 n = m_defrag(m, M_DONTWAIT); 4125 if (n == NULL) 4126 return EFBIG; 4127 /* m_defrag() preserve m */ 4128 KASSERT(n == m); 4129 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4130 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4131 } 4132 if (error != 0) 4133 return error; 4134 4135 /* 4136 * check spaces of free descriptors. 4137 * +1 is additional descriptor for context (vlan, etc,.) 4138 */ 4139 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4140 device_printf(sc->sc_dev, 4141 "TX: not enough descriptors left %d for %d segs\n", 4142 txring->txr_nfree, map->dm_nsegs + 1); 4143 bus_dmamap_unload(sc->sc_dmat, map); 4144 return ENOBUFS; 4145 } 4146 4147 /* sync dma for mbuf */ 4148 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4149 BUS_DMASYNC_PREWRITE); 4150 4151 ctl1_ctx = 0; 4152 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4153 4154 if (vlan_has_tag(m)) { 4155 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4156 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4157 4158 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4159 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4160 4161 /* fill context descriptor and forward index */ 4162 txring->txr_txdesc[idx].buf_addr = 0; 4163 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4164 txring->txr_txdesc[idx].ctl2 = 0; 4165 4166 idx = TXRING_NEXTIDX(idx); 4167 txring->txr_nfree--; 4168 } 4169 4170 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4171 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4172 if (m->m_pkthdr.csum_flags & 4173 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4174 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4175 } 4176 4177 /* fill descriptor(s) */ 4178 for (i = 0; i < map->dm_nsegs; i++) { 4179 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4180 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4181 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4182 4183 if (i == 0) { 4184 /* remember mbuf of these descriptors */ 4185 txring->txr_mbufs[idx].m = m; 4186 } else { 4187 txring->txr_mbufs[idx].m = NULL; 4188 } 4189 4190 if (i == map->dm_nsegs - 1) { 4191 /* last segment, mark an EndOfPacket, and cause intr */ 4192 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4193 } 4194 4195 txring->txr_txdesc[idx].buf_addr = 4196 htole64(map->dm_segs[i].ds_addr); 4197 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4198 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4199 4200 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4201 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4202 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4203 4204 idx = TXRING_NEXTIDX(idx); 4205 txring->txr_nfree--; 4206 } 4207 4208 txring->txr_prodidx = idx; 4209 4210 return 0; 4211 } 4212 4213 static int 4214 aq_tx_intr(void *arg) 4215 { 4216 struct aq_txring *txring = arg; 4217 struct aq_softc *sc = txring->txr_sc; 4218 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4219 struct mbuf *m; 4220 const int ringidx = txring->txr_index; 4221 unsigned int idx, hw_head, n = 0; 4222 4223 mutex_enter(&txring->txr_mutex); 4224 4225 if (!txring->txr_active) 4226 goto tx_intr_done; 4227 4228 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4229 TX_DMA_DESC_HEAD_PTR); 4230 if (hw_head == txring->txr_considx) { 4231 goto tx_intr_done; 4232 } 4233 4234 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4235 4236 for (idx = txring->txr_considx; idx != hw_head; 4237 idx = TXRING_NEXTIDX(idx), n++) { 4238 4239 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4240 bus_dmamap_unload(sc->sc_dmat, 4241 txring->txr_mbufs[idx].dmamap); 4242 4243 if_statinc_ref(nsr, if_opackets); 4244 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4245 if (m->m_flags & M_MCAST) 4246 if_statinc_ref(nsr, if_omcasts); 4247 4248 m_freem(m); 4249 txring->txr_mbufs[idx].m = NULL; 4250 } 4251 4252 txring->txr_nfree++; 4253 } 4254 txring->txr_considx = idx; 4255 4256 IF_STAT_PUTREF(ifp); 4257 4258 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4259 ifp->if_flags &= ~IFF_OACTIVE; 4260 4261 /* no more pending TX packet, cancel watchdog */ 4262 if (txring->txr_nfree >= AQ_TXD_NUM) 4263 ifp->if_timer = 0; 4264 4265 tx_intr_done: 4266 mutex_exit(&txring->txr_mutex); 4267 4268 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4269 return n; 4270 } 4271 4272 static int 4273 aq_rx_intr(void *arg) 4274 { 4275 struct aq_rxring *rxring = arg; 4276 struct aq_softc *sc = rxring->rxr_sc; 4277 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4278 const int ringidx = rxring->rxr_index; 4279 aq_rx_desc_t *rxd; 4280 struct mbuf *m, *m0, *mprev, *new_m; 4281 uint32_t rxd_type, rxd_hash __unused; 4282 uint16_t rxd_status, rxd_pktlen; 4283 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4284 unsigned int idx, n = 0; 4285 bool discarding; 4286 4287 mutex_enter(&rxring->rxr_mutex); 4288 4289 if (!rxring->rxr_active) 4290 goto rx_intr_done; 4291 4292 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4293 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4294 goto rx_intr_done; 4295 } 4296 4297 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4298 4299 /* restore ring context */ 4300 discarding = rxring->rxr_discarding; 4301 m0 = rxring->rxr_receiving_m; 4302 mprev = rxring->rxr_receiving_m_last; 4303 4304 for (idx = rxring->rxr_readidx; 4305 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4306 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4307 4308 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4309 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4310 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4311 4312 rxd = &rxring->rxr_rxdesc[idx]; 4313 rxd_status = le16toh(rxd->wb.status); 4314 4315 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4316 break; /* not yet done */ 4317 4318 rxd_type = le32toh(rxd->wb.type); 4319 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4320 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4321 rxd_hash = le32toh(rxd->wb.rss_hash); 4322 rxd_vlan = le16toh(rxd->wb.vlan); 4323 4324 /* 4325 * Some segments are being dropped while receiving jumboframe. 4326 * Discard until EOP. 4327 */ 4328 if (discarding) 4329 goto rx_next; 4330 4331 if ((rxd_status & RXDESC_STATUS_MACERR) || 4332 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4333 if_statinc_ref(nsr, if_ierrors); 4334 if (m0 != NULL) { 4335 m_freem(m0); 4336 m0 = mprev = NULL; 4337 } 4338 discarding = true; 4339 goto rx_next; 4340 } 4341 4342 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4343 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4344 BUS_DMASYNC_POSTREAD); 4345 m = rxring->rxr_mbufs[idx].m; 4346 4347 new_m = aq_alloc_mbuf(); 4348 if (new_m == NULL) { 4349 /* 4350 * cannot allocate new mbuf. 4351 * discard this packet, and reuse mbuf for next. 4352 */ 4353 if_statinc_ref(nsr, if_iqdrops); 4354 if (m0 != NULL) { 4355 m_freem(m0); 4356 m0 = mprev = NULL; 4357 } 4358 discarding = true; 4359 goto rx_next; 4360 } 4361 rxring->rxr_mbufs[idx].m = NULL; 4362 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4363 4364 if (m0 == NULL) { 4365 m0 = m; 4366 } else { 4367 if (m->m_flags & M_PKTHDR) 4368 m_remove_pkthdr(m); 4369 mprev->m_next = m; 4370 } 4371 mprev = m; 4372 4373 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4374 /* to be continued in the next segment */ 4375 m->m_len = MCLBYTES; 4376 } else { 4377 /* the last segment */ 4378 int mlen = rxd_pktlen % MCLBYTES; 4379 if (mlen == 0) 4380 mlen = MCLBYTES; 4381 m->m_len = mlen; 4382 m0->m_pkthdr.len = rxd_pktlen; 4383 /* VLAN offloading */ 4384 if ((sc->sc_ethercom.ec_capenable & 4385 ETHERCAP_VLAN_HWTAGGING) && 4386 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4387 __SHIFTOUT(rxd_type, 4388 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4389 vlan_set_tag(m0, rxd_vlan); 4390 } 4391 4392 /* Checksum offloading */ 4393 unsigned int pkttype_eth = 4394 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4395 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4396 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4397 __SHIFTOUT(rxd_type, 4398 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4399 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4400 if (__SHIFTOUT(rxd_status, 4401 RXDESC_STATUS_IPV4_CSUM_NG)) 4402 m0->m_pkthdr.csum_flags |= 4403 M_CSUM_IPv4_BAD; 4404 } 4405 4406 /* 4407 * aq will always mark BAD for fragment packets, 4408 * but this is not a problem because the IP stack 4409 * ignores the CSUM flag in fragment packets. 4410 */ 4411 if (__SHIFTOUT(rxd_type, 4412 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4413 bool checked = false; 4414 unsigned int pkttype_proto = 4415 __SHIFTOUT(rxd_type, 4416 RXDESC_TYPE_PKTTYPE_PROTO); 4417 4418 if (pkttype_proto == 4419 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4420 if ((pkttype_eth == 4421 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4422 (ifp->if_capabilities & 4423 IFCAP_CSUM_TCPv4_Rx)) { 4424 m0->m_pkthdr.csum_flags |= 4425 M_CSUM_TCPv4; 4426 checked = true; 4427 } else if ((pkttype_eth == 4428 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4429 (ifp->if_capabilities & 4430 IFCAP_CSUM_TCPv6_Rx)) { 4431 m0->m_pkthdr.csum_flags |= 4432 M_CSUM_TCPv6; 4433 checked = true; 4434 } 4435 } else if (pkttype_proto == 4436 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4437 if ((pkttype_eth == 4438 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4439 (ifp->if_capabilities & 4440 IFCAP_CSUM_UDPv4_Rx)) { 4441 m0->m_pkthdr.csum_flags |= 4442 M_CSUM_UDPv4; 4443 checked = true; 4444 } else if ((pkttype_eth == 4445 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4446 (ifp->if_capabilities & 4447 IFCAP_CSUM_UDPv6_Rx)) { 4448 m0->m_pkthdr.csum_flags |= 4449 M_CSUM_UDPv6; 4450 checked = true; 4451 } 4452 } 4453 if (checked && 4454 (__SHIFTOUT(rxd_status, 4455 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4456 !__SHIFTOUT(rxd_status, 4457 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4458 m0->m_pkthdr.csum_flags |= 4459 M_CSUM_TCP_UDP_BAD; 4460 } 4461 } 4462 4463 m_set_rcvif(m0, ifp); 4464 if_statinc_ref(nsr, if_ipackets); 4465 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4466 if_percpuq_enqueue(ifp->if_percpuq, m0); 4467 m0 = mprev = NULL; 4468 } 4469 4470 rx_next: 4471 if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0) 4472 discarding = false; 4473 4474 aq_rxring_reset_desc(sc, rxring, idx); 4475 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4476 } 4477 /* save ring context */ 4478 rxring->rxr_readidx = idx; 4479 rxring->rxr_discarding = discarding; 4480 rxring->rxr_receiving_m = m0; 4481 rxring->rxr_receiving_m_last = mprev; 4482 4483 IF_STAT_PUTREF(ifp); 4484 4485 rx_intr_done: 4486 mutex_exit(&rxring->rxr_mutex); 4487 4488 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4489 return n; 4490 } 4491 4492 static int 4493 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4494 { 4495 struct ifnet *ifp = &ec->ec_if; 4496 struct aq_softc *sc = ifp->if_softc; 4497 4498 aq_set_vlan_filters(sc); 4499 return 0; 4500 } 4501 4502 static int 4503 aq_ifflags_cb(struct ethercom *ec) 4504 { 4505 struct ifnet *ifp = &ec->ec_if; 4506 struct aq_softc *sc = ifp->if_softc; 4507 int i, ecchange, error = 0; 4508 unsigned short iffchange; 4509 4510 AQ_LOCK(sc); 4511 4512 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4513 if ((iffchange & IFF_PROMISC) != 0) 4514 error = aq_set_filter(sc); 4515 4516 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4517 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4518 for (i = 0; i < AQ_RINGS_NUM; i++) { 4519 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4520 RX_DMA_DESC_VLAN_STRIP, 4521 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4522 1 : 0); 4523 } 4524 } 4525 4526 /* vlan configuration depends on also interface promiscuous mode */ 4527 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4528 aq_set_vlan_filters(sc); 4529 4530 sc->sc_ec_capenable = ec->ec_capenable; 4531 sc->sc_if_flags = ifp->if_flags; 4532 4533 AQ_UNLOCK(sc); 4534 4535 return error; 4536 } 4537 4538 static int 4539 aq_init(struct ifnet *ifp) 4540 { 4541 struct aq_softc *sc = ifp->if_softc; 4542 int i, error = 0; 4543 4544 aq_stop(ifp, false); 4545 4546 AQ_LOCK(sc); 4547 4548 aq_set_vlan_filters(sc); 4549 aq_set_capability(sc); 4550 4551 for (i = 0; i < sc->sc_nqueues; i++) { 4552 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4553 } 4554 4555 /* invalidate RX descriptor cache */ 4556 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4557 AQ_READ_REG_BIT(sc, 4558 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4559 4560 /* start RX */ 4561 for (i = 0; i < sc->sc_nqueues; i++) { 4562 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4563 if (error != 0) { 4564 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4565 __func__); 4566 goto aq_init_failure; 4567 } 4568 } 4569 aq_init_rss(sc); 4570 aq_hw_l3_filter_set(sc); 4571 4572 /* need to start callout? */ 4573 if (sc->sc_poll_linkstat 4574 #ifdef AQ_EVENT_COUNTERS 4575 || sc->sc_poll_statistics 4576 #endif 4577 ) { 4578 callout_schedule(&sc->sc_tick_ch, hz); 4579 } 4580 4581 /* ready */ 4582 ifp->if_flags |= IFF_RUNNING; 4583 ifp->if_flags &= ~IFF_OACTIVE; 4584 4585 /* start TX and RX */ 4586 aq_enable_intr(sc, true, true); 4587 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4588 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4589 4590 aq_init_failure: 4591 sc->sc_if_flags = ifp->if_flags; 4592 4593 AQ_UNLOCK(sc); 4594 4595 return error; 4596 } 4597 4598 static void 4599 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4600 struct aq_txring *txring, bool is_transmit) 4601 { 4602 struct mbuf *m; 4603 int npkt, error; 4604 4605 if ((ifp->if_flags & IFF_RUNNING) == 0) 4606 return; 4607 4608 for (npkt = 0; ; npkt++) { 4609 if (is_transmit) 4610 m = pcq_peek(txring->txr_pcq); 4611 else 4612 IFQ_POLL(&ifp->if_snd, m); 4613 4614 if (m == NULL) 4615 break; 4616 4617 if (txring->txr_nfree < AQ_TXD_MIN) 4618 break; 4619 4620 if (is_transmit) 4621 pcq_get(txring->txr_pcq); 4622 else 4623 IFQ_DEQUEUE(&ifp->if_snd, m); 4624 4625 error = aq_encap_txring(sc, txring, &m); 4626 if (error != 0) { 4627 /* too many mbuf chains? or not enough descriptors? */ 4628 m_freem(m); 4629 if_statinc(ifp, if_oerrors); 4630 if (txring->txr_index == 0 && error == ENOBUFS) 4631 ifp->if_flags |= IFF_OACTIVE; 4632 break; 4633 } 4634 4635 /* update tail ptr */ 4636 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4637 txring->txr_prodidx); 4638 4639 /* Pass the packet to any BPF listeners */ 4640 bpf_mtap(ifp, m, BPF_D_OUT); 4641 } 4642 4643 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4644 ifp->if_flags |= IFF_OACTIVE; 4645 4646 if (npkt) 4647 ifp->if_timer = 5; 4648 } 4649 4650 static void 4651 aq_start(struct ifnet *ifp) 4652 { 4653 struct aq_softc *sc; 4654 struct aq_txring *txring; 4655 4656 sc = ifp->if_softc; 4657 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4658 4659 mutex_enter(&txring->txr_mutex); 4660 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4661 aq_send_common_locked(ifp, sc, txring, false); 4662 mutex_exit(&txring->txr_mutex); 4663 } 4664 4665 static inline unsigned int 4666 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4667 { 4668 return (cpu_index(curcpu()) % sc->sc_nqueues); 4669 } 4670 4671 static int 4672 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4673 { 4674 struct aq_softc *sc = ifp->if_softc; 4675 struct aq_txring *txring; 4676 int ringidx; 4677 4678 ringidx = aq_select_txqueue(sc, m); 4679 txring = &sc->sc_queue[ringidx].txring; 4680 4681 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4682 m_freem(m); 4683 return ENOBUFS; 4684 } 4685 4686 if (mutex_tryenter(&txring->txr_mutex)) { 4687 aq_send_common_locked(ifp, sc, txring, true); 4688 mutex_exit(&txring->txr_mutex); 4689 } else { 4690 softint_schedule(txring->txr_softint); 4691 } 4692 return 0; 4693 } 4694 4695 static void 4696 aq_deferred_transmit(void *arg) 4697 { 4698 struct aq_txring *txring = arg; 4699 struct aq_softc *sc = txring->txr_sc; 4700 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4701 4702 mutex_enter(&txring->txr_mutex); 4703 if (pcq_peek(txring->txr_pcq) != NULL) 4704 aq_send_common_locked(ifp, sc, txring, true); 4705 mutex_exit(&txring->txr_mutex); 4706 } 4707 4708 static void 4709 aq_stop(struct ifnet *ifp, int disable) 4710 { 4711 struct aq_softc *sc = ifp->if_softc; 4712 int i; 4713 4714 AQ_LOCK(sc); 4715 4716 ifp->if_timer = 0; 4717 4718 if ((ifp->if_flags & IFF_RUNNING) == 0) 4719 goto already_stopped; 4720 4721 /* disable tx/rx interrupts */ 4722 aq_enable_intr(sc, true, false); 4723 4724 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4725 for (i = 0; i < sc->sc_nqueues; i++) { 4726 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4727 } 4728 4729 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4730 for (i = 0; i < sc->sc_nqueues; i++) { 4731 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4732 } 4733 4734 /* invalidate RX descriptor cache */ 4735 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4736 AQ_READ_REG_BIT(sc, 4737 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4738 4739 ifp->if_timer = 0; 4740 4741 already_stopped: 4742 if (!disable) { 4743 /* when pmf stop, disable link status intr and callout */ 4744 aq_enable_intr(sc, false, false); 4745 callout_stop(&sc->sc_tick_ch); 4746 } 4747 4748 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4749 4750 AQ_UNLOCK(sc); 4751 } 4752 4753 static void 4754 aq_watchdog(struct ifnet *ifp) 4755 { 4756 struct aq_softc *sc = ifp->if_softc; 4757 struct aq_txring *txring; 4758 int n, head, tail; 4759 4760 AQ_LOCK(sc); 4761 4762 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4763 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4764 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4765 4766 for (n = 0; n < sc->sc_nqueues; n++) { 4767 txring = &sc->sc_queue[n].txring; 4768 head = AQ_READ_REG_BIT(sc, 4769 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4770 TX_DMA_DESC_HEAD_PTR), 4771 tail = AQ_READ_REG(sc, 4772 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4773 4774 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4775 __func__, txring->txr_index, head, tail); 4776 4777 aq_tx_intr(txring); 4778 } 4779 4780 AQ_UNLOCK(sc); 4781 4782 aq_init(ifp); 4783 } 4784 4785 static int 4786 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4787 { 4788 struct aq_softc *sc __unused; 4789 struct ifreq *ifr __unused; 4790 int error, s; 4791 4792 sc = (struct aq_softc *)ifp->if_softc; 4793 ifr = (struct ifreq *)data; 4794 error = 0; 4795 4796 s = splnet(); 4797 switch (cmd) { 4798 case SIOCSIFMTU: 4799 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) { 4800 error = EINVAL; 4801 } else { 4802 ifp->if_mtu = ifr->ifr_mtu; 4803 error = 0; /* no need to reset (no ENETRESET) */ 4804 } 4805 break; 4806 default: 4807 error = ether_ioctl(ifp, cmd, data); 4808 break; 4809 } 4810 splx(s); 4811 4812 if (error != ENETRESET) 4813 return error; 4814 4815 switch (cmd) { 4816 case SIOCSIFCAP: 4817 error = aq_set_capability(sc); 4818 break; 4819 case SIOCADDMULTI: 4820 case SIOCDELMULTI: 4821 if ((ifp->if_flags & IFF_RUNNING) == 0) 4822 break; 4823 4824 /* 4825 * Multicast list has changed; set the hardware filter 4826 * accordingly. 4827 */ 4828 error = aq_set_filter(sc); 4829 break; 4830 } 4831 4832 return error; 4833 } 4834 4835 4836 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4837 4838 #ifdef _MODULE 4839 #include "ioconf.c" 4840 #endif 4841 4842 static int 4843 if_aq_modcmd(modcmd_t cmd, void *opaque) 4844 { 4845 int error = 0; 4846 4847 switch (cmd) { 4848 case MODULE_CMD_INIT: 4849 #ifdef _MODULE 4850 error = config_init_component(cfdriver_ioconf_if_aq, 4851 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4852 #endif 4853 return error; 4854 case MODULE_CMD_FINI: 4855 #ifdef _MODULE 4856 error = config_fini_component(cfdriver_ioconf_if_aq, 4857 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4858 #endif 4859 return error; 4860 default: 4861 return ENOTTY; 4862 } 4863 } 4864