xref: /netbsd-src/sys/dev/pci/if_aq.c (revision 122b5006ee1bd67145794b4cde92f4fe4781a5ec)
1 /*	$NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.29 2021/10/11 15:08:17 msaitoh Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 #define AQ_JUMBO_MTU_REV_A		9000
120 #define AQ_JUMBO_MTU_REV_B		16338
121 
122 /*
123  * TERMINOLOGY
124  *	MPI = MAC PHY INTERFACE?
125  *	RPO = RX Protocol Offloading
126  *	TPO = TX Protocol Offloading
127  *	RPF = RX Packet Filter
128  *	TPB = TX Packet buffer
129  *	RPB = RX Packet buffer
130  */
131 
132 /* registers */
133 #define AQ_FW_SOFTRESET_REG			0x0000
134 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
135 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
136 
137 #define AQ_FW_VERSION_REG			0x0018
138 #define AQ_HW_REVISION_REG			0x001c
139 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
140 
141 #define AQ_FW_MBOX_CMD_REG			0x0200
142 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
143 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
144 #define AQ_FW_MBOX_ADDR_REG			0x0208
145 #define AQ_FW_MBOX_VAL_REG			0x020c
146 
147 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
148 #define FW2X_LED_REG				0x031c
149 #define  FW2X_LED_DEFAULT			0x00000000
150 #define  FW2X_LED_NONE				0x0000003f
151 #define  FW2X_LINKLED				__BITS(0,1)
152 #define   FW2X_LINKLED_ACTIVE			0
153 #define   FW2X_LINKLED_ON			1
154 #define   FW2X_LINKLED_BLINK			2
155 #define   FW2X_LINKLED_OFF			3
156 #define  FW2X_STATUSLED				__BITS(2,5)
157 #define   FW2X_STATUSLED_ORANGE			0
158 #define   FW2X_STATUSLED_ORANGE_BLINK		2
159 #define   FW2X_STATUSLED_OFF			3
160 #define   FW2X_STATUSLED_GREEN			4
161 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
162 #define   FW2X_STATUSLED_GREEN_BLINK		10
163 
164 #define FW_MPI_MBOX_ADDR_REG			0x0360
165 #define FW1X_MPI_INIT1_REG			0x0364
166 #define FW1X_MPI_CONTROL_REG			0x0368
167 #define FW1X_MPI_STATE_REG			0x036c
168 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
169 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
170 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
171 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
172 #define FW1X_MPI_INIT2_REG			0x0370
173 #define FW1X_MPI_EFUSEADDR_REG			0x0374
174 
175 #define FW2X_MPI_EFUSEADDR_REG			0x0364
176 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
177 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
178 #define FW_BOOT_EXIT_CODE_REG			0x0388
179 #define  RBL_STATUS_DEAD			0x0000dead
180 #define  RBL_STATUS_SUCCESS			0x0000abba
181 #define  RBL_STATUS_FAILURE			0x00000bad
182 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
183 
184 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
185 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
186 
187 #define AQ_FW_GLB_CTL2_REG			0x0404
188 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
189 
190 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
191 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
192 
193 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
194 
195 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
196 
197 // msix bitmap */
198 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
199 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
200 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
201 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
202 #define AQ_INTR_AUTOMASK_REG			0x2090
203 
204 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
205 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
206 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
209 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
210 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
211 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
212 
213 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
214 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
215 #define  AQ_B0_ERR_INT				8U
216 
217 #define AQ_INTR_CTRL_REG			0x2300
218 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
219 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
220 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
221 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
222 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
223 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
224 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
225 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
226 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
227 
228 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
229 
230 #define FW_MPI_RESETCTRL_REG			0x4000
231 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
232 
233 #define RX_SYSCONTROL_REG			0x5000
234 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
235 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
236 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
237 
238 #define RX_TCP_RSS_HASH_REG			0x5040
239 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
240 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
241 
242 /* for RPF_*_REG.ACTION */
243 #define RPF_ACTION_DISCARD			0
244 #define RPF_ACTION_HOST				1
245 #define RPF_ACTION_MANAGEMENT			2
246 #define RPF_ACTION_HOST_MANAGEMENT		3
247 #define RPF_ACTION_WOL				4
248 
249 #define RPF_L2BC_REG				0x5100
250 #define  RPF_L2BC_EN				__BIT(0)
251 #define  RPF_L2BC_PROMISC			__BIT(3)
252 #define  RPF_L2BC_ACTION			__BITS(12,14)
253 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
254 
255 /* RPF_L2UC_*_REG[34] (actual [38]?) */
256 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
257 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
258 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
259 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
260 #define  RPF_L2UC_MSW_EN			__BIT(31)
261 #define AQ_HW_MAC_OWN			0	/* index of own address */
262 #define AQ_HW_MAC_NUM			34
263 
264 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
265 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
266 #define  RPF_MCAST_FILTER_EN			__BIT(31)
267 #define RPF_MCAST_FILTER_MASK_REG		0x5270
268 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
269 
270 #define RPF_VLAN_MODE_REG			0x5280
271 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
272 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
273 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
274 
275 #define RPF_VLAN_TPID_REG			0x5284
276 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
277 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
278 
279 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
280 #define RPF_VLAN_MAX_FILTERS			16
281 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
282 #define  RPF_VLAN_FILTER_EN			__BIT(31)
283 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
284 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
285 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
286 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
287 
288 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
289 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
290 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
291 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
292 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
293 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
294 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
295 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
296 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
297 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
298 
299 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
300 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
301 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
302 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
303 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
304 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
305 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
306 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
307 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
308 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
309 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
310 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
311 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
312 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
313 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
314 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
315 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
316 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
317 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
318 /* parameters of RPF_L3_FILTER_REG[8] */
319 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
320 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
321 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
322 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
323 
324 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
325 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
326 
327 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
328 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
329 
330 #define RPF_RSS_KEY_ADDR_REG			0x54d0
331 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
332 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
333 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
334 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
335 
336 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
337 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
338 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
339 
340 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
341 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
342 
343 #define RPO_HWCSUM_REG				0x5580
344 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
345 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
346 
347 #define RPO_LRO_ENABLE_REG			0x5590
348 
349 #define RPO_LRO_CONF_REG			0x5594
350 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
351 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
352 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
353 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
354 #define RPO_LRO_RSC_MAX_REG			0x5598
355 
356 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
357 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
358 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
359 #define RPO_LRO_TB_DIV_REG			0x5620
360 #define  RPO_LRO_TB_DIV				__BITS(20,31)
361 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
362 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
363 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
364 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
365 
366 #define RPB_RPF_RX_REG				0x5700
367 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
368 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
369 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
370 
371 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
372 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
373 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
374 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
375 #define  RPB_RXB_XOFF_EN			__BIT(31)
376 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
377 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
378 
379 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
380 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
381 
382 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
383 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
384 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
385 
386 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
387 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
388 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
389 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
390 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
391 
392 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
393 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
394 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
395 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
396 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
397 #define  RX_DMA_DESC_RESET			__BIT(25)
398 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
399 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
400 #define  RX_DMA_DESC_EN				__BIT(31)
401 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
402 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
403 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
404 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
405 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
406 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
407 
408 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
409 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
410 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
411 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
412 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
413 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
414 
415 #define RX_DMA_DCA_REG				0x6180
416 #define  RX_DMA_DCA_EN				__BIT(31)
417 #define  RX_DMA_DCA_MODE			__BITS(3,0)
418 
419 /* counters */
420 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
421 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
422 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
423 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
424 
425 #define TX_SYSCONTROL_REG			0x7000
426 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
427 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
428 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
429 
430 #define TX_TPO2_REG				0x7040
431 #define  TX_TPO2_EN				__BIT(16)
432 
433 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
434 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
435 #define TPS_DESC_RATE_REG			0x7310
436 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
437 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
438 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
439 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
440 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
441 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
442 
443 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
444 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
445 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
446 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
447 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
448 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
449 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
450 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
451 
452 #define AQ_HW_TXBUF_MAX		160
453 #define AQ_HW_RXBUF_MAX		320
454 
455 #define TPO_HWCSUM_REG				0x7800
456 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
457 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
458 
459 #define TDM_LSO_EN_REG				0x7810
460 
461 #define THM_LSO_TCP_FLAG1_REG			0x7820
462 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
463 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
464 #define THM_LSO_TCP_FLAG2_REG			0x7824
465 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
466 
467 #define TPB_TX_BUF_REG				0x7900
468 #define  TPB_TX_BUF_EN				__BIT(0)
469 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
470 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
471 
472 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
473 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
474 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
475 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
476 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
477 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
478 
479 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
480 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
481 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
482 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
483 
484 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
485 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
486 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
487 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
488 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
489 #define  TX_DMA_DESC_EN				__BIT(31)
490 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
491 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
492 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
493 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
494 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
495 
496 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
497 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
498 #define  TDM_DCAD_CPUID				__BITS(7,0)
499 #define  TDM_DCAD_CPUID_EN			__BIT(31)
500 
501 #define TDM_DCA_REG				0x8480
502 #define  TDM_DCA_EN				__BIT(31)
503 #define  TDM_DCA_MODE				__BITS(3,0)
504 
505 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
506 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
507 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
508 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
509 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
510 
511 #define FW1X_CTRL_10G				__BIT(0)
512 #define FW1X_CTRL_5G				__BIT(1)
513 #define FW1X_CTRL_5GSR				__BIT(2)
514 #define FW1X_CTRL_2G5				__BIT(3)
515 #define FW1X_CTRL_1G				__BIT(4)
516 #define FW1X_CTRL_100M				__BIT(5)
517 
518 #define FW2X_CTRL_10BASET_HD			__BIT(0)
519 #define FW2X_CTRL_10BASET_FD			__BIT(1)
520 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
521 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
522 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
523 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
524 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
525 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
526 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
527 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
528 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
529 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
530 #define FW2X_CTRL_RESERVED1			__BIT(32)
531 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
532 #define FW2X_CTRL_RESERVED2			__BIT(34)
533 #define FW2X_CTRL_PAUSE				__BIT(35)
534 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
535 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
536 #define FW2X_CTRL_RESERVED3			__BIT(38)
537 #define FW2X_CTRL_RESERVED4			__BIT(39)
538 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
539 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
540 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
541 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
542 #define FW2X_CTRL_RESERVED5			__BIT(44)
543 #define FW2X_CTRL_RESERVED6			__BIT(45)
544 #define FW2X_CTRL_RESERVED7			__BIT(46)
545 #define FW2X_CTRL_RESERVED8			__BIT(47)
546 #define FW2X_CTRL_RESERVED9			__BIT(48)
547 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
548 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
549 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
550 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
551 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
552 #define FW2X_CTRL_LINK_DROP			__BIT(54)
553 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
554 #define FW2X_CTRL_WOL				__BIT(56)
555 #define FW2X_CTRL_MAC_STOP			__BIT(57)
556 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
557 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
558 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
559 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
560 #define FW2X_CTRL_STATISTICS			__BIT(62)
561 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
562 
563 #define FW2X_SNPRINTB			\
564 	"\177\020"			\
565 	"b\x23" "PAUSE\0"		\
566 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
567 	"b\x31" "CABLE-DIAG\0"		\
568 	"b\x32" "TEMPERATURE\0"		\
569 	"b\x33" "DOWNSHIFT\0"		\
570 	"b\x34" "PTP-AVB\0"		\
571 	"b\x35" "MEDIA-DETECT\0"	\
572 	"b\x36" "LINK-DROP\0"		\
573 	"b\x37" "SLEEP-PROXY\0"		\
574 	"b\x38" "WOL\0"			\
575 	"b\x39" "MAC-STOP\0"		\
576 	"b\x3a" "EXT-LOOPBACK\0"	\
577 	"b\x3b" "INT-LOOPBACK\0"	\
578 	"b\x3c" "EFUSE-AGENT\0"		\
579 	"b\x3d" "WOL-TIMER\0"		\
580 	"b\x3e" "STATISTICS\0"		\
581 	"b\x3f" "TRANSACTION-ID\0"	\
582 	"\0"
583 
584 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
585 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
586 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
587 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
588 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
589 #define FW2X_CTRL_RATE_MASK		\
590 	(FW2X_CTRL_RATE_100M |		\
591 	 FW2X_CTRL_RATE_1G |		\
592 	 FW2X_CTRL_RATE_2G5 |		\
593 	 FW2X_CTRL_RATE_5G |		\
594 	 FW2X_CTRL_RATE_10G)
595 #define FW2X_CTRL_EEE_MASK		\
596 	(FW2X_CTRL_10BASET_EEE |	\
597 	 FW2X_CTRL_100BASETX_EEE |	\
598 	 FW2X_CTRL_1000BASET_FD_EEE |	\
599 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
600 	 FW2X_CTRL_5GBASET_FD_EEE |	\
601 	 FW2X_CTRL_10GBASET_FD_EEE)
602 
603 typedef enum aq_fw_bootloader_mode {
604 	FW_BOOT_MODE_UNKNOWN = 0,
605 	FW_BOOT_MODE_FLB,
606 	FW_BOOT_MODE_RBL_FLASH,
607 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
608 } aq_fw_bootloader_mode_t;
609 
610 #define AQ_WRITE_REG(sc, reg, val)				\
611 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
612 
613 #define AQ_READ_REG(sc, reg)					\
614 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
615 
616 #define AQ_READ64_REG(sc, reg)					\
617 	((uint64_t)AQ_READ_REG(sc, reg) |			\
618 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
619 
620 #define AQ_WRITE64_REG(sc, reg, val)				\
621 	do {							\
622 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
623 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
624 	} while (/* CONSTCOND */0)
625 
626 #define AQ_READ_REG_BIT(sc, reg, mask)				\
627 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
628 
629 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
630 	do {							\
631 		uint32_t _v;					\
632 		_v = AQ_READ_REG((sc), (reg));			\
633 		_v &= ~(mask);					\
634 		if ((val) != 0)					\
635 			_v |= __SHIFTIN((val), (mask));		\
636 		AQ_WRITE_REG((sc), (reg), _v);			\
637 	} while (/* CONSTCOND */ 0)
638 
639 #define WAIT_FOR(expr, us, n, errp)				\
640 	do {							\
641 		unsigned int _n;				\
642 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
643 			delay((us));				\
644 		}						\
645 		if ((errp != NULL)) {				\
646 			if (_n == 0)				\
647 				*(errp) = ETIMEDOUT;		\
648 			else					\
649 				*(errp) = 0;			\
650 		}						\
651 	} while (/* CONSTCOND */ 0)
652 
653 #define msec_delay(x)	DELAY(1000 * (x))
654 
655 typedef struct aq_mailbox_header {
656 	uint32_t version;
657 	uint32_t transaction_id;
658 	int32_t error;
659 } __packed __aligned(4) aq_mailbox_header_t;
660 
661 typedef struct aq_hw_stats_s {
662 	uint32_t uprc;
663 	uint32_t mprc;
664 	uint32_t bprc;
665 	uint32_t erpt;
666 	uint32_t uptc;
667 	uint32_t mptc;
668 	uint32_t bptc;
669 	uint32_t erpr;
670 	uint32_t mbtc;
671 	uint32_t bbtc;
672 	uint32_t mbrc;
673 	uint32_t bbrc;
674 	uint32_t ubrc;
675 	uint32_t ubtc;
676 	uint32_t ptc;
677 	uint32_t prc;
678 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
679 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
680 } __packed __aligned(4) aq_hw_stats_s_t;
681 
682 typedef struct fw1x_mailbox {
683 	aq_mailbox_header_t header;
684 	aq_hw_stats_s_t msm;
685 } __packed __aligned(4) fw1x_mailbox_t;
686 
687 typedef struct fw2x_msm_statistics {
688 	uint32_t uprc;
689 	uint32_t mprc;
690 	uint32_t bprc;
691 	uint32_t erpt;
692 	uint32_t uptc;
693 	uint32_t mptc;
694 	uint32_t bptc;
695 	uint32_t erpr;
696 	uint32_t mbtc;
697 	uint32_t bbtc;
698 	uint32_t mbrc;
699 	uint32_t bbrc;
700 	uint32_t ubrc;
701 	uint32_t ubtc;
702 	uint32_t ptc;
703 	uint32_t prc;
704 } __packed __aligned(4) fw2x_msm_statistics_t;
705 
706 typedef struct fw2x_phy_cable_diag_data {
707 	uint32_t lane_data[4];
708 } __packed __aligned(4) fw2x_phy_cable_diag_data_t;
709 
710 typedef struct fw2x_capabilities {
711 	uint32_t caps_lo;
712 	uint32_t caps_hi;
713 } __packed __aligned(4) fw2x_capabilities_t;
714 
715 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
716 	aq_mailbox_header_t header;
717 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
718 
719 	uint32_t phy_info1;
720 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
721 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
722 	uint32_t phy_info2;
723 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
724 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
725 
726 	fw2x_phy_cable_diag_data_t diag_data;
727 	uint32_t reserved[8];
728 
729 	fw2x_capabilities_t caps;
730 
731 	/* ... */
732 } __packed __aligned(4) fw2x_mailbox_t;
733 
734 typedef enum aq_link_speed {
735 	AQ_LINK_NONE	= 0,
736 	AQ_LINK_100M	= (1 << 0),
737 	AQ_LINK_1G	= (1 << 1),
738 	AQ_LINK_2G5	= (1 << 2),
739 	AQ_LINK_5G	= (1 << 3),
740 	AQ_LINK_10G	= (1 << 4)
741 } aq_link_speed_t;
742 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
743 			 AQ_LINK_5G | AQ_LINK_10G )
744 #define AQ_LINK_AUTO	AQ_LINK_ALL
745 
746 typedef enum aq_link_fc {
747 	AQ_FC_NONE = 0,
748 	AQ_FC_RX = __BIT(0),
749 	AQ_FC_TX = __BIT(1),
750 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
751 } aq_link_fc_t;
752 
753 typedef enum aq_link_eee {
754 	AQ_EEE_DISABLE = 0,
755 	AQ_EEE_ENABLE = 1
756 } aq_link_eee_t;
757 
758 typedef enum aq_hw_fw_mpi_state {
759 	MPI_DEINIT	= 0,
760 	MPI_RESET	= 1,
761 	MPI_INIT	= 2,
762 	MPI_POWER	= 4
763 } aq_hw_fw_mpi_state_t;
764 
765 enum aq_media_type {
766 	AQ_MEDIA_TYPE_UNKNOWN = 0,
767 	AQ_MEDIA_TYPE_FIBRE,
768 	AQ_MEDIA_TYPE_TP
769 };
770 
771 struct aq_rx_desc_read {
772 	uint64_t buf_addr;
773 	uint64_t hdr_addr;
774 } __packed __aligned(8);
775 
776 struct aq_rx_desc_wb {
777 	uint32_t type;
778 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
779 #define  RXDESC_TYPE_RSSTYPE_NONE		0
780 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
781 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
782 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
783 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
784 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
785 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
786 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
788 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
789 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
790 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
791 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
794 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
795 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
796 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
797 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
798 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
799 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
800 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
801 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
802 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
803 #define RXDESC_TYPE_SPH			__BIT(21)
804 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
805 	uint32_t rss_hash;
806 	uint16_t status;
807 #define RXDESC_STATUS_DD		__BIT(0)
808 #define RXDESC_STATUS_EOP		__BIT(1)
809 #define RXDESC_STATUS_MACERR		__BIT(2)
810 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
811 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
812 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
813 
814 #define RXDESC_STATUS_STAT		__BITS(2,5)
815 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
816 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
817 	uint16_t pkt_len;
818 	uint16_t next_desc_ptr;
819 	uint16_t vlan;
820 } __packed __aligned(4);
821 
822 typedef union aq_rx_desc {
823 	struct aq_rx_desc_read read;
824 	struct aq_rx_desc_wb wb;
825 } __packed __aligned(8) aq_rx_desc_t;
826 
827 typedef struct aq_tx_desc {
828 	uint64_t buf_addr;
829 	uint32_t ctl1;
830 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
831 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
832 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
833 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
834 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
835 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
840 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
841 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
842 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
843 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
844 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
845 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
846 	uint32_t ctl2;
847 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
848 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
849 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
850 } __packed __aligned(8) aq_tx_desc_t;
851 
852 struct aq_txring {
853 	struct aq_softc *txr_sc;
854 	int txr_index;
855 	kmutex_t txr_mutex;
856 	bool txr_active;
857 
858 	pcq_t *txr_pcq;
859 	void *txr_softint;
860 
861 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
862 	bus_dmamap_t txr_txdesc_dmamap;
863 	bus_dma_segment_t txr_txdesc_seg[1];
864 	bus_size_t txr_txdesc_size;
865 
866 	struct {
867 		struct mbuf *m;
868 		bus_dmamap_t dmamap;
869 	} txr_mbufs[AQ_TXD_NUM];
870 	unsigned int txr_prodidx;
871 	unsigned int txr_considx;
872 	int txr_nfree;
873 };
874 
875 struct aq_rxring {
876 	struct aq_softc *rxr_sc;
877 	int rxr_index;
878 	kmutex_t rxr_mutex;
879 	bool rxr_active;
880 	bool rxr_discarding;
881 	struct mbuf *rxr_receiving_m;		/* receiving jumboframe */
882 	struct mbuf *rxr_receiving_m_last;	/* last mbuf of jumboframe */
883 
884 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
885 	bus_dmamap_t rxr_rxdesc_dmamap;
886 	bus_dma_segment_t rxr_rxdesc_seg[1];
887 	bus_size_t rxr_rxdesc_size;
888 	struct {
889 		struct mbuf *m;
890 		bus_dmamap_t dmamap;
891 	} rxr_mbufs[AQ_RXD_NUM];
892 	unsigned int rxr_readidx;
893 };
894 
895 struct aq_queue {
896 	struct aq_softc *sc;
897 	struct aq_txring txring;
898 	struct aq_rxring rxring;
899 };
900 
901 struct aq_softc;
902 struct aq_firmware_ops {
903 	int (*reset)(struct aq_softc *);
904 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
905 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
906 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
907 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
908 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
909 #if NSYSMON_ENVSYS > 0
910 	int (*get_temperature)(struct aq_softc *, uint32_t *);
911 #endif
912 };
913 
914 #ifdef AQ_EVENT_COUNTERS
915 #define AQ_EVCNT_DECL(name)						\
916 	char sc_evcount_##name##_name[32];				\
917 	struct evcnt sc_evcount_##name##_ev;
918 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
919 	do {								\
920 		snprintf((sc)->sc_evcount_##name##_name,		\
921 		    sizeof((sc)->sc_evcount_##name##_name),		\
922 		    "%s", desc);					\
923 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
924 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
925 		    (sc)->sc_evcount_##name##_name);			\
926 	} while (/*CONSTCOND*/0)
927 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
928 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
929 #define AQ_EVCNT_DETACH(sc, name)					\
930 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
931 #define AQ_EVCNT_ADD(sc, name, val)					\
932 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
933 #endif /* AQ_EVENT_COUNTERS */
934 
935 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
936 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
937 
938 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
939 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
940 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
941 
942 
943 struct aq_softc {
944 	device_t sc_dev;
945 
946 	bus_space_tag_t sc_iot;
947 	bus_space_handle_t sc_ioh;
948 	bus_size_t sc_iosize;
949 	bus_dma_tag_t sc_dmat;
950 
951 	void *sc_ihs[AQ_NINTR_MAX];
952 	pci_intr_handle_t *sc_intrs;
953 
954 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
955 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
956 	int sc_linkstat_irq;
957 	bool sc_use_txrx_independent_intr;
958 	bool sc_poll_linkstat;
959 	bool sc_detect_linkstat;
960 
961 #if NSYSMON_ENVSYS > 0
962 	struct sysmon_envsys *sc_sme;
963 	envsys_data_t sc_sensor_temp;
964 #endif
965 
966 	callout_t sc_tick_ch;
967 
968 	int sc_nintrs;
969 	bool sc_msix;
970 
971 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
972 	int sc_nqueues;
973 
974 	pci_chipset_tag_t sc_pc;
975 	pcitag_t sc_pcitag;
976 	uint16_t sc_product;
977 	uint16_t sc_revision;
978 
979 	kmutex_t sc_mutex;
980 	kmutex_t sc_mpi_mutex;
981 
982 	const struct aq_firmware_ops *sc_fw_ops;
983 	uint64_t sc_fw_caps;
984 	enum aq_media_type sc_media_type;
985 	aq_link_speed_t sc_available_rates;
986 
987 	aq_link_speed_t sc_link_rate;
988 	aq_link_fc_t sc_link_fc;
989 	aq_link_eee_t sc_link_eee;
990 
991 	uint32_t sc_fw_version;
992 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
993 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
994 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
995 	uint32_t sc_features;
996 #define FEATURES_MIPS		0x00000001
997 #define FEATURES_TPO2		0x00000002
998 #define FEATURES_RPF2		0x00000004
999 #define FEATURES_MPI_AQ		0x00000008
1000 #define FEATURES_REV_A0		0x10000000
1001 #define FEATURES_REV_A		(FEATURES_REV_A0)
1002 #define FEATURES_REV_B0		0x20000000
1003 #define FEATURES_REV_B1		0x40000000
1004 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
1005 	uint32_t sc_max_mtu;
1006 	uint32_t sc_mbox_addr;
1007 
1008 	bool sc_rbl_enabled;
1009 	bool sc_fast_start_enabled;
1010 	bool sc_flash_present;
1011 
1012 	bool sc_intr_moderation_enable;
1013 	bool sc_rss_enable;
1014 
1015 	struct ethercom sc_ethercom;
1016 	struct ether_addr sc_enaddr;
1017 	struct ifmedia sc_media;
1018 	int sc_ec_capenable;		/* last ec_capenable */
1019 	unsigned short sc_if_flags;	/* last if_flags */
1020 
1021 #ifdef AQ_EVENT_COUNTERS
1022 	aq_hw_stats_s_t sc_statistics[2];
1023 	int sc_statistics_idx;
1024 	bool sc_poll_statistics;
1025 
1026 	AQ_EVCNT_DECL(uprc);
1027 	AQ_EVCNT_DECL(mprc);
1028 	AQ_EVCNT_DECL(bprc);
1029 	AQ_EVCNT_DECL(erpt);
1030 	AQ_EVCNT_DECL(uptc);
1031 	AQ_EVCNT_DECL(mptc);
1032 	AQ_EVCNT_DECL(bptc);
1033 	AQ_EVCNT_DECL(erpr);
1034 	AQ_EVCNT_DECL(mbtc);
1035 	AQ_EVCNT_DECL(bbtc);
1036 	AQ_EVCNT_DECL(mbrc);
1037 	AQ_EVCNT_DECL(bbrc);
1038 	AQ_EVCNT_DECL(ubrc);
1039 	AQ_EVCNT_DECL(ubtc);
1040 	AQ_EVCNT_DECL(ptc);
1041 	AQ_EVCNT_DECL(prc);
1042 	AQ_EVCNT_DECL(dpc);
1043 	AQ_EVCNT_DECL(cprc);
1044 #endif
1045 };
1046 
1047 static int aq_match(device_t, cfdata_t, void *);
1048 static void aq_attach(device_t, device_t, void *);
1049 static int aq_detach(device_t, int);
1050 
1051 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1052     bool, bool);
1053 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1054     pci_intr_type_t);
1055 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1056 
1057 static int aq_ifmedia_change(struct ifnet * const);
1058 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1059 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1060 static int aq_ifflags_cb(struct ethercom *);
1061 static int aq_init(struct ifnet *);
1062 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1063     struct aq_txring *, bool);
1064 static int aq_transmit(struct ifnet *, struct mbuf *);
1065 static void aq_deferred_transmit(void *);
1066 static void aq_start(struct ifnet *);
1067 static void aq_stop(struct ifnet *, int);
1068 static void aq_watchdog(struct ifnet *);
1069 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1070 
1071 static int aq_txrx_rings_alloc(struct aq_softc *);
1072 static void aq_txrx_rings_free(struct aq_softc *);
1073 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1074 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1075 
1076 static void aq_initmedia(struct aq_softc *);
1077 static void aq_enable_intr(struct aq_softc *, bool, bool);
1078 
1079 #if NSYSMON_ENVSYS > 0
1080 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1081 #endif
1082 static void aq_tick(void *);
1083 static int aq_legacy_intr(void *);
1084 static int aq_link_intr(void *);
1085 static int aq_txrx_intr(void *);
1086 static int aq_tx_intr(void *);
1087 static int aq_rx_intr(void *);
1088 
1089 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1090     aq_link_eee_t);
1091 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1092     aq_link_eee_t *);
1093 
1094 static int aq_fw_reset(struct aq_softc *);
1095 static int aq_fw_version_init(struct aq_softc *);
1096 static int aq_hw_init(struct aq_softc *);
1097 static int aq_hw_init_ucp(struct aq_softc *);
1098 static int aq_hw_reset(struct aq_softc *);
1099 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1100     uint32_t);
1101 static int aq_get_mac_addr(struct aq_softc *);
1102 static int aq_init_rss(struct aq_softc *);
1103 static int aq_set_capability(struct aq_softc *);
1104 
1105 static int fw1x_reset(struct aq_softc *);
1106 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 
1112 static int fw2x_reset(struct aq_softc *);
1113 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1114     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1115 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1116     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1117 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1118 #if NSYSMON_ENVSYS > 0
1119 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1120 #endif
1121 
1122 static const struct aq_firmware_ops aq_fw1x_ops = {
1123 	.reset = fw1x_reset,
1124 	.set_mode = fw1x_set_mode,
1125 	.get_mode = fw1x_get_mode,
1126 	.get_stats = fw1x_get_stats,
1127 #if NSYSMON_ENVSYS > 0
1128 	.get_temperature = NULL
1129 #endif
1130 };
1131 
1132 static const struct aq_firmware_ops aq_fw2x_ops = {
1133 	.reset = fw2x_reset,
1134 	.set_mode = fw2x_set_mode,
1135 	.get_mode = fw2x_get_mode,
1136 	.get_stats = fw2x_get_stats,
1137 #if NSYSMON_ENVSYS > 0
1138 	.get_temperature = fw2x_get_temperature
1139 #endif
1140 };
1141 
1142 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1143     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1144 
1145 static const struct aq_product {
1146 	pci_vendor_id_t aq_vendor;
1147 	pci_product_id_t aq_product;
1148 	const char *aq_name;
1149 	enum aq_media_type aq_media_type;
1150 	aq_link_speed_t aq_available_rates;
1151 } aq_products[] = {
1152 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1153 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1154 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1155 	},
1156 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1157 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1158 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1159 	},
1160 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1161 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1162 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1163 	},
1164 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1165 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1166 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1167 	},
1168 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1169 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1170 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1171 	},
1172 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1173 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1174 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1175 	},
1176 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1177 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1178 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1179 	},
1180 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1181 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1182 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1183 	},
1184 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1185 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1186 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1187 	},
1188 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1189 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1190 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1191 	},
1192 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1193 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1194 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1195 	},
1196 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1197 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1198 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1199 	},
1200 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1201 	  "Aquantia D100 10 Gigabit Network Adapter",
1202 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1203 	},
1204 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1205 	  "Aquantia D107 10 Gigabit Network Adapter",
1206 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1207 	},
1208 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1209 	  "Aquantia D108 5 Gigabit Network Adapter",
1210 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1211 	},
1212 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1213 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1214 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1215 	}
1216 };
1217 
1218 static const struct aq_product *
1219 aq_lookup(const struct pci_attach_args *pa)
1220 {
1221 	unsigned int i;
1222 
1223 	for (i = 0; i < __arraycount(aq_products); i++) {
1224 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1225 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1226 			return &aq_products[i];
1227 	}
1228 	return NULL;
1229 }
1230 
1231 static int
1232 aq_match(device_t parent, cfdata_t cf, void *aux)
1233 {
1234 	struct pci_attach_args *pa = aux;
1235 
1236 	if (aq_lookup(pa) != NULL)
1237 		return 1;
1238 
1239 	return 0;
1240 }
1241 
1242 static void
1243 aq_attach(device_t parent, device_t self, void *aux)
1244 {
1245 	struct aq_softc *sc = device_private(self);
1246 	struct pci_attach_args *pa = aux;
1247 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1248 	pci_chipset_tag_t pc;
1249 	pcitag_t tag;
1250 	pcireg_t command, memtype, bar;
1251 	const struct aq_product *aqp;
1252 	int error;
1253 
1254 	sc->sc_dev = self;
1255 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1256 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1257 
1258 	sc->sc_pc = pc = pa->pa_pc;
1259 	sc->sc_pcitag = tag = pa->pa_tag;
1260 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1261 
1262 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1263 	command |= PCI_COMMAND_MASTER_ENABLE;
1264 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1265 
1266 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1267 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1268 
1269 	aqp = aq_lookup(pa);
1270 	KASSERT(aqp != NULL);
1271 
1272 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1273 
1274 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1275 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1276 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1277 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1278 		return;
1279 	}
1280 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1281 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1282 	    NULL, &sc->sc_iosize) != 0) {
1283 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1284 		return;
1285 	}
1286 
1287 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1288 
1289 	/* max queue num is 8, and must be 2^n */
1290 	if (ncpu >= 8)
1291 		sc->sc_nqueues = 8;
1292 	else if (ncpu >= 4)
1293 		sc->sc_nqueues = 4;
1294 	else if (ncpu >= 2)
1295 		sc->sc_nqueues = 2;
1296 	else
1297 		sc->sc_nqueues = 1;
1298 
1299 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1300 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1301 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1302 		/* TX intrs + RX intrs + LINKSTAT intrs */
1303 		sc->sc_use_txrx_independent_intr = true;
1304 		sc->sc_poll_linkstat = false;
1305 		sc->sc_msix = true;
1306 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1307 		/* TX intrs + RX intrs */
1308 		sc->sc_use_txrx_independent_intr = true;
1309 		sc->sc_poll_linkstat = true;
1310 		sc->sc_msix = true;
1311 	} else
1312 #endif
1313 	if (msixcount >= (sc->sc_nqueues + 1)) {
1314 		/* TX/RX intrs LINKSTAT intrs */
1315 		sc->sc_use_txrx_independent_intr = false;
1316 		sc->sc_poll_linkstat = false;
1317 		sc->sc_msix = true;
1318 	} else if (msixcount >= sc->sc_nqueues) {
1319 		/* TX/RX intrs */
1320 		sc->sc_use_txrx_independent_intr = false;
1321 		sc->sc_poll_linkstat = true;
1322 		sc->sc_msix = true;
1323 	} else {
1324 		/* giving up using MSI-X */
1325 		sc->sc_msix = false;
1326 	}
1327 
1328 	/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1329 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1330 		sc->sc_poll_linkstat = true;
1331 
1332 #ifdef AQ_FORCE_POLL_LINKSTAT
1333 	sc->sc_poll_linkstat = true;
1334 #endif
1335 
1336 	aprint_debug_dev(sc->sc_dev,
1337 	    "ncpu=%d, pci_msix_count=%d."
1338 	    " allocate %d interrupts for %d%s queues%s\n",
1339 	    ncpu, msixcount,
1340 	    (sc->sc_use_txrx_independent_intr ?
1341 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1342 	    (sc->sc_poll_linkstat ? 0 : 1),
1343 	    sc->sc_nqueues,
1344 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1345 	    sc->sc_poll_linkstat ? "" : ", and link status");
1346 
1347 	if (sc->sc_msix)
1348 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1349 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1350 	else
1351 		error = ENODEV;
1352 
1353 	if (error != 0) {
1354 		/* if MSI-X failed, fallback to MSI with single queue */
1355 		sc->sc_use_txrx_independent_intr = false;
1356 		sc->sc_poll_linkstat = false;
1357 		sc->sc_msix = false;
1358 		sc->sc_nqueues = 1;
1359 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1360 	}
1361 	if (error != 0) {
1362 		/* if MSI failed, fallback to INTx */
1363 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1364 	}
1365 	if (error != 0)
1366 		return;
1367 
1368 	callout_init(&sc->sc_tick_ch, 0);
1369 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1370 
1371 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1372 
1373 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1374 		sc->sc_rss_enable = true;
1375 	else
1376 		sc->sc_rss_enable = false;
1377 
1378 	error = aq_txrx_rings_alloc(sc);
1379 	if (error != 0)
1380 		goto attach_failure;
1381 
1382 	error = aq_fw_reset(sc);
1383 	if (error != 0)
1384 		goto attach_failure;
1385 
1386 	error = aq_fw_version_init(sc);
1387 	if (error != 0)
1388 		goto attach_failure;
1389 
1390 	error = aq_hw_init_ucp(sc);
1391 	if (error < 0)
1392 		goto attach_failure;
1393 
1394 	KASSERT(sc->sc_mbox_addr != 0);
1395 	error = aq_hw_reset(sc);
1396 	if (error != 0)
1397 		goto attach_failure;
1398 
1399 	aq_get_mac_addr(sc);
1400 	aq_init_rss(sc);
1401 
1402 	error = aq_hw_init(sc);	/* initialize and interrupts */
1403 	if (error != 0)
1404 		goto attach_failure;
1405 
1406 	sc->sc_media_type = aqp->aq_media_type;
1407 	sc->sc_available_rates = aqp->aq_available_rates;
1408 
1409 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1410 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1411 	    aq_ifmedia_change, aq_ifmedia_status);
1412 	aq_initmedia(sc);
1413 
1414 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1415 	ifp->if_softc = sc;
1416 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1417 	ifp->if_extflags = IFEF_MPSAFE;
1418 	ifp->if_baudrate = IF_Gbps(10);
1419 	ifp->if_init = aq_init;
1420 	ifp->if_ioctl = aq_ioctl;
1421 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1422 		ifp->if_transmit = aq_transmit;
1423 	ifp->if_start = aq_start;
1424 	ifp->if_stop = aq_stop;
1425 	ifp->if_watchdog = aq_watchdog;
1426 	IFQ_SET_READY(&ifp->if_snd);
1427 
1428 	/* initialize capabilities */
1429 	sc->sc_ethercom.ec_capabilities = 0;
1430 	sc->sc_ethercom.ec_capenable = 0;
1431 #if notyet
1432 	/* TODO */
1433 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1434 #endif
1435 	sc->sc_ethercom.ec_capabilities |=
1436 	    ETHERCAP_JUMBO_MTU |
1437 	    ETHERCAP_VLAN_MTU |
1438 	    ETHERCAP_VLAN_HWTAGGING |
1439 	    ETHERCAP_VLAN_HWFILTER;
1440 	sc->sc_ethercom.ec_capenable |=
1441 	    ETHERCAP_VLAN_HWTAGGING |
1442 	    ETHERCAP_VLAN_HWFILTER;
1443 
1444 	ifp->if_capabilities = 0;
1445 	ifp->if_capenable = 0;
1446 #ifdef CONFIG_LRO_SUPPORT
1447 	ifp->if_capabilities |= IFCAP_LRO;
1448 	ifp->if_capenable |= IFCAP_LRO;
1449 #endif
1450 #if notyet
1451 	/* TSO */
1452 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1453 #endif
1454 
1455 	/* TX hardware checksum offloading */
1456 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1457 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1458 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1459 	/* RX hardware checksum offloading */
1460 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1461 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1462 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1463 
1464 	if_initialize(ifp);
1465 	ifp->if_percpuq = if_percpuq_create(ifp);
1466 	if_deferred_start_init(ifp, NULL);
1467 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1468 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1469 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1470 	if_register(ifp);
1471 
1472 	aq_enable_intr(sc, true, false);	/* only intr about link */
1473 
1474 	/* update media */
1475 	aq_ifmedia_change(ifp);
1476 
1477 #if NSYSMON_ENVSYS > 0
1478 	/* temperature monitoring */
1479 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1480 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1481 
1482 		sc->sc_sme = sysmon_envsys_create();
1483 		sc->sc_sme->sme_name = device_xname(self);
1484 		sc->sc_sme->sme_cookie = sc;
1485 		sc->sc_sme->sme_flags = 0;
1486 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1487 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1488 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1489 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1490 
1491 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1492 		if (sysmon_envsys_register(sc->sc_sme)) {
1493 			sysmon_envsys_destroy(sc->sc_sme);
1494 			sc->sc_sme = NULL;
1495 			goto attach_failure;
1496 		}
1497 
1498 		/*
1499 		 * for unknown reasons, the first call of fw2x_get_temperature()
1500 		 * will always fail (firmware matter?), so run once now.
1501 		 */
1502 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1503 	}
1504 #endif
1505 
1506 #ifdef AQ_EVENT_COUNTERS
1507 	/* get starting statistics values */
1508 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1509 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1510 		sc->sc_poll_statistics = true;
1511 	}
1512 
1513 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1514 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1515 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1516 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1517 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1518 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1519 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1520 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1521 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1522 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1523 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1524 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1525 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1526 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1527 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1528 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1529 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1530 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1531 #endif
1532 
1533 	if (pmf_device_register(self, NULL, NULL))
1534 		pmf_class_network_register(self, ifp);
1535 	else
1536 		aprint_error_dev(self, "couldn't establish power handler\n");
1537 
1538 	return;
1539 
1540  attach_failure:
1541 	aq_detach(self, 0);
1542 }
1543 
1544 static int
1545 aq_detach(device_t self, int flags __unused)
1546 {
1547 	struct aq_softc *sc = device_private(self);
1548 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1549 	int i, s;
1550 
1551 	if (sc->sc_iosize != 0) {
1552 		if (ifp->if_softc != NULL) {
1553 			s = splnet();
1554 			aq_stop(ifp, 0);
1555 			splx(s);
1556 		}
1557 
1558 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1559 			if (sc->sc_ihs[i] != NULL) {
1560 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1561 				sc->sc_ihs[i] = NULL;
1562 			}
1563 		}
1564 		if (sc->sc_nintrs > 0) {
1565 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1566 			    sc->sc_nintrs);
1567 			sc->sc_intrs = NULL;
1568 			sc->sc_nintrs = 0;
1569 		}
1570 
1571 		aq_txrx_rings_free(sc);
1572 
1573 		if (ifp->if_softc != NULL) {
1574 			ether_ifdetach(ifp);
1575 			if_detach(ifp);
1576 		}
1577 
1578 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1579 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1580 		sc->sc_iosize = 0;
1581 	}
1582 
1583 	callout_stop(&sc->sc_tick_ch);
1584 
1585 #if NSYSMON_ENVSYS > 0
1586 	if (sc->sc_sme != NULL) {
1587 		/* all sensors associated with this will also be detached */
1588 		sysmon_envsys_unregister(sc->sc_sme);
1589 	}
1590 #endif
1591 
1592 #ifdef AQ_EVENT_COUNTERS
1593 	AQ_EVCNT_DETACH(sc, uprc);
1594 	AQ_EVCNT_DETACH(sc, mprc);
1595 	AQ_EVCNT_DETACH(sc, bprc);
1596 	AQ_EVCNT_DETACH(sc, erpt);
1597 	AQ_EVCNT_DETACH(sc, uptc);
1598 	AQ_EVCNT_DETACH(sc, mptc);
1599 	AQ_EVCNT_DETACH(sc, bptc);
1600 	AQ_EVCNT_DETACH(sc, erpr);
1601 	AQ_EVCNT_DETACH(sc, mbtc);
1602 	AQ_EVCNT_DETACH(sc, bbtc);
1603 	AQ_EVCNT_DETACH(sc, mbrc);
1604 	AQ_EVCNT_DETACH(sc, bbrc);
1605 	AQ_EVCNT_DETACH(sc, ubrc);
1606 	AQ_EVCNT_DETACH(sc, ubtc);
1607 	AQ_EVCNT_DETACH(sc, ptc);
1608 	AQ_EVCNT_DETACH(sc, prc);
1609 	AQ_EVCNT_DETACH(sc, dpc);
1610 	AQ_EVCNT_DETACH(sc, cprc);
1611 #endif
1612 
1613 	ifmedia_fini(&sc->sc_media);
1614 
1615 	mutex_destroy(&sc->sc_mpi_mutex);
1616 	mutex_destroy(&sc->sc_mutex);
1617 
1618 	return 0;
1619 }
1620 
1621 static int
1622 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1623     int (*func)(void *), void *arg, const char *xname)
1624 {
1625 	char intrbuf[PCI_INTRSTR_LEN];
1626 	pci_chipset_tag_t pc = sc->sc_pc;
1627 	void *vih;
1628 	const char *intrstr = NULL;
1629 
1630 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1631 	    sizeof(intrbuf));
1632 
1633 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1634 
1635 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1636 	    IPL_NET, func, arg, xname);
1637 	if (vih == NULL) {
1638 		aprint_error_dev(sc->sc_dev,
1639 		    "unable to establish MSI-X%s%s for %s\n",
1640 		    intrstr ? " at " : "",
1641 		    intrstr ? intrstr : "", xname);
1642 		return EIO;
1643 	}
1644 	sc->sc_ihs[intno] = vih;
1645 
1646 	if (affinity != NULL) {
1647 		/* Round-robin affinity */
1648 		kcpuset_zero(affinity);
1649 		kcpuset_set(affinity, intno % ncpu);
1650 		interrupt_distribute(vih, affinity, NULL);
1651 	}
1652 
1653 	return 0;
1654 }
1655 
1656 static int
1657 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1658     bool linkintr)
1659 {
1660 	kcpuset_t *affinity;
1661 	int error, intno, i;
1662 	char intr_xname[INTRDEVNAMEBUF];
1663 
1664 	kcpuset_create(&affinity, false);
1665 
1666 	intno = 0;
1667 
1668 	if (txrx_independent) {
1669 		for (i = 0; i < sc->sc_nqueues; i++) {
1670 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1671 			    device_xname(sc->sc_dev), i);
1672 			sc->sc_rx_irq[i] = intno;
1673 			error = aq_establish_intr(sc, intno++, affinity,
1674 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1675 			if (error != 0)
1676 				goto fail;
1677 		}
1678 		for (i = 0; i < sc->sc_nqueues; i++) {
1679 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1680 			    device_xname(sc->sc_dev), i);
1681 			sc->sc_tx_irq[i] = intno;
1682 			error = aq_establish_intr(sc, intno++, affinity,
1683 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1684 			if (error != 0)
1685 				goto fail;
1686 		}
1687 	} else {
1688 		for (i = 0; i < sc->sc_nqueues; i++) {
1689 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1690 			    device_xname(sc->sc_dev), i);
1691 			sc->sc_rx_irq[i] = intno;
1692 			sc->sc_tx_irq[i] = intno;
1693 			error = aq_establish_intr(sc, intno++, affinity,
1694 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1695 			if (error != 0)
1696 				goto fail;
1697 		}
1698 	}
1699 
1700 	if (linkintr) {
1701 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1702 		    device_xname(sc->sc_dev));
1703 		sc->sc_linkstat_irq = intno;
1704 		error = aq_establish_intr(sc, intno++, affinity,
1705 		    aq_link_intr, sc, intr_xname);
1706 		if (error != 0)
1707 			goto fail;
1708 	}
1709 
1710 	kcpuset_destroy(affinity);
1711 	return 0;
1712 
1713  fail:
1714 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1715 		if (sc->sc_ihs[i] != NULL) {
1716 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1717 			sc->sc_ihs[i] = NULL;
1718 		}
1719 	}
1720 
1721 	kcpuset_destroy(affinity);
1722 	return ENOMEM;
1723 }
1724 
1725 static int
1726 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1727     bool txrx_independent, bool linkintr)
1728 {
1729 	int error, nintr;
1730 
1731 	if (txrx_independent)
1732 		nintr = nqueue * 2;
1733 	else
1734 		nintr = nqueue;
1735 
1736 	if (linkintr)
1737 		nintr++;
1738 
1739 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1740 	if (error != 0) {
1741 		aprint_error_dev(sc->sc_dev,
1742 		    "failed to allocate MSI-X interrupts\n");
1743 		goto fail;
1744 	}
1745 
1746 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1747 	if (error == 0) {
1748 		sc->sc_nintrs = nintr;
1749 	} else {
1750 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1751 		sc->sc_nintrs = 0;
1752 	}
1753  fail:
1754 	return error;
1755 
1756 }
1757 
1758 static int
1759 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1760     pci_intr_type_t inttype)
1761 {
1762 	int counts[PCI_INTR_TYPE_SIZE];
1763 	int error, nintr;
1764 
1765 	nintr = 1;
1766 
1767 	memset(counts, 0, sizeof(counts));
1768 	counts[inttype] = nintr;
1769 
1770 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1771 	if (error != 0) {
1772 		aprint_error_dev(sc->sc_dev,
1773 		    "failed to allocate%s interrupts\n",
1774 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1775 		return error;
1776 	}
1777 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1778 	    device_xname(sc->sc_dev));
1779 	if (error == 0) {
1780 		sc->sc_nintrs = nintr;
1781 	} else {
1782 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1783 		sc->sc_nintrs = 0;
1784 	}
1785 	return error;
1786 }
1787 
1788 static void
1789 global_software_reset(struct aq_softc *sc)
1790 {
1791 	uint32_t v;
1792 
1793 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1794 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1795 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1796 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1797 
1798 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1799 	v &= ~AQ_FW_SOFTRESET_DIS;
1800 	v |= AQ_FW_SOFTRESET_RESET;
1801 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1802 }
1803 
1804 static int
1805 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1806 {
1807 	int timo;
1808 
1809 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1810 
1811 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1812 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1813 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1814 
1815 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1816 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1817 
1818 	global_software_reset(sc);
1819 
1820 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1821 
1822 	/* Wait for RBL to finish boot process. */
1823 #define RBL_TIMEOUT_MS	10000
1824 	uint16_t rbl_status;
1825 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1826 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1827 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1828 			break;
1829 		msec_delay(1);
1830 	}
1831 	if (timo <= 0) {
1832 		aprint_error_dev(sc->sc_dev,
1833 		    "RBL> RBL restart failed: timeout\n");
1834 		return EBUSY;
1835 	}
1836 	switch (rbl_status) {
1837 	case RBL_STATUS_SUCCESS:
1838 		if (mode != NULL)
1839 			*mode = FW_BOOT_MODE_RBL_FLASH;
1840 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1841 		break;
1842 	case RBL_STATUS_HOST_BOOT:
1843 		if (mode != NULL)
1844 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1845 		aprint_debug_dev(sc->sc_dev,
1846 		    "RBL> reset complete! [Host Bootload]\n");
1847 		break;
1848 	case RBL_STATUS_FAILURE:
1849 	default:
1850 		aprint_error_dev(sc->sc_dev,
1851 		    "unknown RBL status 0x%x\n", rbl_status);
1852 		return EBUSY;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static int
1859 mac_soft_reset_flb(struct aq_softc *sc)
1860 {
1861 	uint32_t v;
1862 	int timo;
1863 
1864 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1865 	/*
1866 	 * Let Felicity hardware to complete SMBUS transaction before
1867 	 * Global software reset.
1868 	 */
1869 	msec_delay(50);
1870 
1871 	/*
1872 	 * If SPI burst transaction was interrupted(before running the script),
1873 	 * global software reset may not clear SPI interface.
1874 	 * Clean it up manually before global reset.
1875 	 */
1876 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1877 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1878 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1879 	msec_delay(50);
1880 
1881 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1882 	v &= ~AQ_FW_SOFTRESET_DIS;
1883 	v |= AQ_FW_SOFTRESET_RESET;
1884 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1885 
1886 	/* Kickstart. */
1887 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1888 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1889 	if (!sc->sc_fast_start_enabled)
1890 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1891 
1892 	/*
1893 	 * For the case SPI burst transaction was interrupted (by MCP reset
1894 	 * above), wait until it is completed by hardware.
1895 	 */
1896 	msec_delay(50);
1897 
1898 	/* MAC Kickstart */
1899 	if (!sc->sc_fast_start_enabled) {
1900 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1901 
1902 		uint32_t flb_status;
1903 		for (timo = 0; timo < 1000; timo++) {
1904 			flb_status = AQ_READ_REG(sc,
1905 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1906 			if (flb_status != 0)
1907 				break;
1908 			msec_delay(1);
1909 		}
1910 		if (flb_status == 0) {
1911 			aprint_error_dev(sc->sc_dev,
1912 			    "FLB> MAC kickstart failed: timed out\n");
1913 			return ETIMEDOUT;
1914 		}
1915 		aprint_debug_dev(sc->sc_dev,
1916 		    "FLB> MAC kickstart done, %d ms\n", timo);
1917 		/* FW reset */
1918 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1919 		/*
1920 		 * Let Felicity hardware complete SMBUS transaction before
1921 		 * Global software reset.
1922 		 */
1923 		msec_delay(50);
1924 		sc->sc_fast_start_enabled = true;
1925 	}
1926 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1927 
1928 	/* PHY Kickstart: #undone */
1929 	global_software_reset(sc);
1930 
1931 	for (timo = 0; timo < 1000; timo++) {
1932 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1933 			break;
1934 		msec_delay(10);
1935 	}
1936 	if (timo >= 1000) {
1937 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1938 		return ETIMEDOUT;
1939 	}
1940 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1941 	return 0;
1942 
1943 }
1944 
1945 static int
1946 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1947 {
1948 	if (sc->sc_rbl_enabled)
1949 		return mac_soft_reset_rbl(sc, mode);
1950 
1951 	if (mode != NULL)
1952 		*mode = FW_BOOT_MODE_FLB;
1953 	return mac_soft_reset_flb(sc);
1954 }
1955 
1956 static int
1957 aq_fw_read_version(struct aq_softc *sc)
1958 {
1959 	int i, error = EBUSY;
1960 #define MAC_FW_START_TIMEOUT_MS	10000
1961 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1962 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1963 		if (sc->sc_fw_version != 0) {
1964 			error = 0;
1965 			break;
1966 		}
1967 		delay(1000);
1968 	}
1969 	return error;
1970 }
1971 
1972 static int
1973 aq_fw_reset(struct aq_softc *sc)
1974 {
1975 	uint32_t ver, v, bootExitCode;
1976 	int i, error;
1977 
1978 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1979 
1980 	for (i = 1000; i > 0; i--) {
1981 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1982 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1983 		if (v != 0x06000000 || bootExitCode != 0)
1984 			break;
1985 	}
1986 	if (i <= 0) {
1987 		aprint_error_dev(sc->sc_dev,
1988 		    "F/W reset failed. Neither RBL nor FLB started\n");
1989 		return ETIMEDOUT;
1990 	}
1991 	sc->sc_rbl_enabled = (bootExitCode != 0);
1992 
1993 	/*
1994 	 * Having FW version 0 is an indicator that cold start
1995 	 * is in progress. This means two things:
1996 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1997 	 * 2) Driver may skip reset sequence and save time.
1998 	 */
1999 	if (sc->sc_fast_start_enabled && (ver != 0)) {
2000 		error = aq_fw_read_version(sc);
2001 		/* Skip reset as it just completed */
2002 		if (error == 0)
2003 			return 0;
2004 	}
2005 
2006 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
2007 	error = mac_soft_reset(sc, &mode);
2008 	if (error != 0) {
2009 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2010 		return error;
2011 	}
2012 
2013 	switch (mode) {
2014 	case FW_BOOT_MODE_FLB:
2015 		aprint_debug_dev(sc->sc_dev,
2016 		    "FLB> F/W successfully loaded from flash.\n");
2017 		sc->sc_flash_present = true;
2018 		return aq_fw_read_version(sc);
2019 	case FW_BOOT_MODE_RBL_FLASH:
2020 		aprint_debug_dev(sc->sc_dev,
2021 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2022 		sc->sc_flash_present = true;
2023 		return aq_fw_read_version(sc);
2024 	case FW_BOOT_MODE_UNKNOWN:
2025 		aprint_error_dev(sc->sc_dev,
2026 		    "F/W bootload error: unknown bootloader type\n");
2027 		return ENOTSUP;
2028 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2029 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2030 		break;
2031 	}
2032 
2033 	/*
2034 	 * XXX: TODO: add support Host Boot
2035 	 */
2036 	aprint_error_dev(sc->sc_dev,
2037 	    "RBL> F/W Host Bootload not implemented\n");
2038 	return ENOTSUP;
2039 }
2040 
2041 static int
2042 aq_hw_reset(struct aq_softc *sc)
2043 {
2044 	int error;
2045 
2046 	/* disable irq */
2047 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2048 
2049 	/* apply */
2050 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2051 
2052 	/* wait ack 10 times by 1ms */
2053 	WAIT_FOR(
2054 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2055 	    1000, 10, &error);
2056 	if (error != 0) {
2057 		aprint_error_dev(sc->sc_dev,
2058 		    "atlantic: IRQ reset failed: %d\n", error);
2059 		return error;
2060 	}
2061 
2062 	return sc->sc_fw_ops->reset(sc);
2063 }
2064 
2065 static int
2066 aq_hw_init_ucp(struct aq_softc *sc)
2067 {
2068 	int timo;
2069 
2070 	if (FW_VERSION_MAJOR(sc) == 1) {
2071 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2072 			uint32_t data;
2073 			cprng_fast(&data, sizeof(data));
2074 			data &= 0xfefefefe;
2075 			data |= 0x02020202;
2076 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2077 		}
2078 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2079 	}
2080 
2081 	for (timo = 100; timo > 0; timo--) {
2082 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2083 		if (sc->sc_mbox_addr != 0)
2084 			break;
2085 		delay(1000);
2086 	}
2087 
2088 #define AQ_FW_MIN_VERSION	0x01050006
2089 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2090 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2091 		aprint_error_dev(sc->sc_dev,
2092 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2093 		    " or later required, this is %d.%d.%d\n",
2094 		    FW_VERSION_MAJOR(sc),
2095 		    FW_VERSION_MINOR(sc),
2096 		    FW_VERSION_BUILD(sc));
2097 		return ENOTSUP;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 static int
2104 aq_fw_version_init(struct aq_softc *sc)
2105 {
2106 	int error = 0;
2107 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2108 
2109 	if (FW_VERSION_MAJOR(sc) == 1) {
2110 		sc->sc_fw_ops = &aq_fw1x_ops;
2111 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2112 		sc->sc_fw_ops = &aq_fw2x_ops;
2113 	} else {
2114 		aprint_error_dev(sc->sc_dev,
2115 		    "Unsupported F/W version %d.%d.%d\n",
2116 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2117 		    FW_VERSION_BUILD(sc));
2118 		return ENOTSUP;
2119 	}
2120 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2121 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2122 
2123 	/* detect revision */
2124 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2125 	switch (hwrev & 0x0000000f) {
2126 	case 0x01:
2127 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2128 		    fw_vers);
2129 		sc->sc_features |= FEATURES_REV_A0 |
2130 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2131 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_A;
2132 		break;
2133 	case 0x02:
2134 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2135 		    fw_vers);
2136 		sc->sc_features |= FEATURES_REV_B0 |
2137 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2138 		    FEATURES_TPO2 | FEATURES_RPF2;
2139 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2140 		break;
2141 	case 0x0A:
2142 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2143 		    fw_vers);
2144 		sc->sc_features |= FEATURES_REV_B1 |
2145 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2146 		    FEATURES_TPO2 | FEATURES_RPF2;
2147 		sc->sc_max_mtu = AQ_JUMBO_MTU_REV_B;
2148 		break;
2149 	default:
2150 		aprint_error_dev(sc->sc_dev,
2151 		    "Unknown revision (0x%08x)\n", hwrev);
2152 		sc->sc_features = 0;
2153 		sc->sc_max_mtu = ETHERMTU;
2154 		error = ENOTSUP;
2155 		break;
2156 	}
2157 	return error;
2158 }
2159 
2160 static int
2161 fw1x_reset(struct aq_softc *sc)
2162 {
2163 	struct aq_mailbox_header mbox;
2164 	const int retryCount = 1000;
2165 	uint32_t tid0;
2166 	int i;
2167 
2168 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2169 
2170 	for (i = 0; i < retryCount; ++i) {
2171 		/*
2172 		 * Read the beginning of Statistics structure to capture
2173 		 * the Transaction ID.
2174 		 */
2175 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2176 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2177 
2178 		/* Successfully read the stats. */
2179 		if (tid0 == ~0U) {
2180 			/* We have read the initial value. */
2181 			tid0 = mbox.transaction_id;
2182 			continue;
2183 		} else if (mbox.transaction_id != tid0) {
2184 			/*
2185 			 * Compare transaction ID to initial value.
2186 			 * If it's different means f/w is alive.
2187 			 * We're done.
2188 			 */
2189 			return 0;
2190 		}
2191 
2192 		/*
2193 		 * Transaction ID value haven't changed since last time.
2194 		 * Try reading the stats again.
2195 		 */
2196 		delay(10);
2197 	}
2198 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2199 	return EBUSY;
2200 }
2201 
2202 static int
2203 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2204     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2205 {
2206 	uint32_t mpictrl = 0;
2207 	uint32_t mpispeed = 0;
2208 
2209 	if (speed & AQ_LINK_10G)
2210 		mpispeed |= FW1X_CTRL_10G;
2211 	if (speed & AQ_LINK_5G)
2212 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2213 	if (speed & AQ_LINK_2G5)
2214 		mpispeed |= FW1X_CTRL_2G5;
2215 	if (speed & AQ_LINK_1G)
2216 		mpispeed |= FW1X_CTRL_1G;
2217 	if (speed & AQ_LINK_100M)
2218 		mpispeed |= FW1X_CTRL_100M;
2219 
2220 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2221 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2222 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2223 	return 0;
2224 }
2225 
2226 static int
2227 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2228     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2229 {
2230 	uint32_t mpistate, mpi_speed;
2231 	aq_link_speed_t speed = AQ_LINK_NONE;
2232 
2233 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2234 
2235 	if (modep != NULL)
2236 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2237 
2238 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2239 	if (mpi_speed & FW1X_CTRL_10G)
2240 		speed = AQ_LINK_10G;
2241 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2242 		speed = AQ_LINK_5G;
2243 	else if (mpi_speed & FW1X_CTRL_2G5)
2244 		speed = AQ_LINK_2G5;
2245 	else if (mpi_speed & FW1X_CTRL_1G)
2246 		speed = AQ_LINK_1G;
2247 	else if (mpi_speed & FW1X_CTRL_100M)
2248 		speed = AQ_LINK_100M;
2249 
2250 	if (speedp != NULL)
2251 		*speedp = speed;
2252 
2253 	if (fcp != NULL)
2254 		*fcp = AQ_FC_NONE;
2255 
2256 	if (eeep != NULL)
2257 		*eeep = AQ_EEE_DISABLE;
2258 
2259 	return 0;
2260 }
2261 
2262 static int
2263 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2264 {
2265 	int error;
2266 
2267 	error = aq_fw_downld_dwords(sc,
2268 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2269 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2270 	if (error < 0) {
2271 		device_printf(sc->sc_dev,
2272 		    "fw1x> download statistics data FAILED, error %d", error);
2273 		return error;
2274 	}
2275 
2276 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2277 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2278 	return 0;
2279 }
2280 
2281 static int
2282 fw2x_reset(struct aq_softc *sc)
2283 {
2284 	fw2x_capabilities_t caps = { 0 };
2285 	int error;
2286 
2287 	error = aq_fw_downld_dwords(sc,
2288 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2289 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2290 	if (error != 0) {
2291 		aprint_error_dev(sc->sc_dev,
2292 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2293 		    error);
2294 		return error;
2295 	}
2296 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2297 
2298 	char buf[256];
2299 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2300 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2301 
2302 	return 0;
2303 }
2304 
2305 static int
2306 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2307     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2308 {
2309 	uint64_t mpi_ctrl;
2310 	int error = 0;
2311 
2312 	AQ_MPI_LOCK(sc);
2313 
2314 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2315 
2316 	switch (mode) {
2317 	case MPI_INIT:
2318 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2319 		if (speed & AQ_LINK_10G)
2320 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2321 		if (speed & AQ_LINK_5G)
2322 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2323 		if (speed & AQ_LINK_2G5)
2324 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2325 		if (speed & AQ_LINK_1G)
2326 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2327 		if (speed & AQ_LINK_100M)
2328 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2329 
2330 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2331 
2332 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2333 		if (eee == AQ_EEE_ENABLE)
2334 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2335 
2336 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2337 		if (fc & AQ_FC_RX)
2338 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2339 		if (fc & AQ_FC_TX)
2340 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2341 		break;
2342 	case MPI_DEINIT:
2343 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2344 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2345 		break;
2346 	default:
2347 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2348 		error =  EINVAL;
2349 		goto failure;
2350 	}
2351 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2352 
2353  failure:
2354 	AQ_MPI_UNLOCK(sc);
2355 	return error;
2356 }
2357 
2358 static int
2359 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2360     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2361 {
2362 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2363 
2364 	if (modep != NULL) {
2365 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2366 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2367 			*modep = MPI_INIT;
2368 		else
2369 			*modep = MPI_DEINIT;
2370 	}
2371 
2372 	aq_link_speed_t speed = AQ_LINK_NONE;
2373 	if (mpi_state & FW2X_CTRL_RATE_10G)
2374 		speed = AQ_LINK_10G;
2375 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2376 		speed = AQ_LINK_5G;
2377 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2378 		speed = AQ_LINK_2G5;
2379 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2380 		speed = AQ_LINK_1G;
2381 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2382 		speed = AQ_LINK_100M;
2383 
2384 	if (speedp != NULL)
2385 		*speedp = speed;
2386 
2387 	aq_link_fc_t fc = AQ_FC_NONE;
2388 	if (mpi_state & FW2X_CTRL_PAUSE)
2389 		fc |= AQ_FC_RX;
2390 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2391 		fc |= AQ_FC_TX;
2392 	if (fcp != NULL)
2393 		*fcp = fc;
2394 
2395 	/* XXX: TODO: EEE */
2396 	if (eeep != NULL)
2397 		*eeep = AQ_EEE_DISABLE;
2398 
2399 	return 0;
2400 }
2401 
2402 static int
2403 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2404     uint32_t timeout_ms, uint32_t try_count)
2405 {
2406 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2407 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2408 	int error;
2409 
2410 	/* First, check that control and state values are consistent */
2411 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2412 		device_printf(sc->sc_dev,
2413 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2414 		    " are not consistent for mask %#llx!\n",
2415 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2416 		    (unsigned long long)mask);
2417 		return EINVAL;
2418 	}
2419 
2420 	/* Invert bits (toggle) in control register */
2421 	mpi_ctrl ^= mask;
2422 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2423 
2424 	/* Clear all bits except masked */
2425 	mpi_ctrl &= mask;
2426 
2427 	/* Wait for FW reflecting change in state register */
2428 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2429 	    1000 * timeout_ms, try_count, &error);
2430 	if (error != 0) {
2431 		device_printf(sc->sc_dev,
2432 		    "f/w2x> timeout while waiting for response"
2433 		    " in state register for bit %#llx!",
2434 		    (unsigned long long)mask);
2435 		return error;
2436 	}
2437 	return 0;
2438 }
2439 
2440 static int
2441 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2442 {
2443 	int error;
2444 
2445 	AQ_MPI_LOCK(sc);
2446 	/* Say to F/W to update the statistics */
2447 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2448 	if (error != 0) {
2449 		device_printf(sc->sc_dev,
2450 		    "fw2x> statistics update error %d\n", error);
2451 		goto failure;
2452 	}
2453 
2454 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2455 	error = aq_fw_downld_dwords(sc,
2456 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2457 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2458 	if (error != 0) {
2459 		device_printf(sc->sc_dev,
2460 		    "fw2x> download statistics data FAILED, error %d", error);
2461 		goto failure;
2462 	}
2463 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2464 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2465 
2466  failure:
2467 	AQ_MPI_UNLOCK(sc);
2468 	return error;
2469 }
2470 
2471 #if NSYSMON_ENVSYS > 0
2472 static int
2473 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2474 {
2475 	int error;
2476 	uint32_t value, celsius;
2477 
2478 	AQ_MPI_LOCK(sc);
2479 
2480 	/* Say to F/W to update the temperature */
2481 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2482 	if (error != 0)
2483 		goto failure;
2484 
2485 	error = aq_fw_downld_dwords(sc,
2486 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2487 	    &value, sizeof(value) / sizeof(uint32_t));
2488 	if (error != 0)
2489 		goto failure;
2490 
2491 	/* 1/256 decrees C to microkelvin */
2492 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2493 	if (celsius == 0) {
2494 		error = EIO;
2495 		goto failure;
2496 	}
2497 	*temp = celsius * (1000000 / 256) + 273150000;
2498 
2499  failure:
2500 	AQ_MPI_UNLOCK(sc);
2501 	return 0;
2502 }
2503 #endif
2504 
2505 static int
2506 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2507     uint32_t cnt)
2508 {
2509 	uint32_t v;
2510 	int error = 0;
2511 
2512 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2513 	if (error != 0) {
2514 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2515 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2516 		if (v == 0) {
2517 			device_printf(sc->sc_dev,
2518 			    "%s:%d: timeout\n", __func__, __LINE__);
2519 			return ETIMEDOUT;
2520 		}
2521 	}
2522 
2523 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2524 
2525 	error = 0;
2526 	for (; cnt > 0 && error == 0; cnt--) {
2527 		/* execute mailbox interface */
2528 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2529 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2530 		if (sc->sc_features & FEATURES_REV_B1) {
2531 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2532 			    1, 1000, &error);
2533 		} else {
2534 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2535 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2536 			    1, 1000, &error);
2537 		}
2538 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2539 		addr += sizeof(uint32_t);
2540 	}
2541 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2542 
2543 	if (error != 0)
2544 		device_printf(sc->sc_dev,
2545 		    "%s:%d: timeout\n", __func__, __LINE__);
2546 
2547 	return error;
2548 }
2549 
2550 /* read my mac address */
2551 static int
2552 aq_get_mac_addr(struct aq_softc *sc)
2553 {
2554 	uint32_t mac_addr[2];
2555 	uint32_t efuse_shadow_addr;
2556 	int err;
2557 
2558 	efuse_shadow_addr = 0;
2559 	if (FW_VERSION_MAJOR(sc) >= 2)
2560 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2561 	else
2562 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2563 
2564 	if (efuse_shadow_addr == 0) {
2565 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2566 		return ENXIO;
2567 	}
2568 
2569 	memset(mac_addr, 0, sizeof(mac_addr));
2570 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2571 	    mac_addr, __arraycount(mac_addr));
2572 	if (err < 0)
2573 		return err;
2574 
2575 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2576 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2577 		return ENXIO;
2578 	}
2579 
2580 	mac_addr[0] = htobe32(mac_addr[0]);
2581 	mac_addr[1] = htobe32(mac_addr[1]);
2582 
2583 	memcpy(sc->sc_enaddr.ether_addr_octet,
2584 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2585 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2586 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2587 
2588 	return 0;
2589 }
2590 
2591 /* set multicast filter. index 0 for own address */
2592 static int
2593 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2594 {
2595 	uint32_t h, l;
2596 
2597 	if (index >= AQ_HW_MAC_NUM)
2598 		return EINVAL;
2599 
2600 	if (enaddr == NULL) {
2601 		/* disable */
2602 		AQ_WRITE_REG_BIT(sc,
2603 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2604 		return 0;
2605 	}
2606 
2607 	h = (enaddr[0] <<  8) | (enaddr[1]);
2608 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2609 	    (enaddr[4] <<  8) | (enaddr[5]);
2610 
2611 	/* disable, set, and enable */
2612 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2613 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2614 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2615 	    RPF_L2UC_MSW_MACADDR_HI, h);
2616 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2617 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2618 
2619 	return 0;
2620 }
2621 
2622 static int
2623 aq_set_capability(struct aq_softc *sc)
2624 {
2625 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2626 	int ip4csum_tx =
2627 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2628 	int ip4csum_rx =
2629 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2630 	int l4csum_tx = ((ifp->if_capenable &
2631 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2632 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2633 	int l4csum_rx =
2634 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2635 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2636 	uint32_t lso =
2637 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2638 	   0 : 0xffffffff;
2639 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2640 	    0 : 0xffffffff;
2641 	uint32_t i, v;
2642 
2643 	/* TX checksums offloads*/
2644 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2645 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2646 
2647 	/* RX checksums offloads*/
2648 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2649 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2650 
2651 	/* LSO offloads*/
2652 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2653 
2654 #define AQ_B0_LRO_RXD_MAX	16
2655 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2656 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2657 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2658 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2659 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2660 		    RPO_LRO_LDES_MAX_MASK(i), v);
2661 	}
2662 
2663 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2664 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2665 	    RPO_LRO_INACTIVE_IVAL, 0);
2666 	/*
2667 	 * the LRO timebase divider is 5 uS (0x61a),
2668 	 * to get a maximum coalescing interval of 250 uS,
2669 	 * we need to multiply by 50(0x32) to get
2670 	 * the default value 250 uS
2671 	 */
2672 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2673 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2674 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2675 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2676 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2677 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2678 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2679 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2680 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2681 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2682 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2683 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2684 
2685 	return 0;
2686 }
2687 
2688 static int
2689 aq_set_filter(struct aq_softc *sc)
2690 {
2691 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2692 	struct ethercom *ec = &sc->sc_ethercom;
2693 	struct ether_multi *enm;
2694 	struct ether_multistep step;
2695 	int idx, error = 0;
2696 
2697 	if (ifp->if_flags & IFF_PROMISC) {
2698 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2699 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2700 		ec->ec_flags |= ETHER_F_ALLMULTI;
2701 		goto done;
2702 	}
2703 
2704 	/* clear all table */
2705 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2706 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2707 			continue;
2708 		aq_set_mac_addr(sc, idx, NULL);
2709 	}
2710 
2711 	/* don't accept all multicast */
2712 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2713 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2714 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2715 	    RPF_MCAST_FILTER_EN, 0);
2716 
2717 	idx = 0;
2718 	ETHER_LOCK(ec);
2719 	ETHER_FIRST_MULTI(step, ec, enm);
2720 	while (enm != NULL) {
2721 		if (idx == AQ_HW_MAC_OWN)
2722 			idx++;
2723 
2724 		if ((idx >= AQ_HW_MAC_NUM) ||
2725 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2726 			/*
2727 			 * too many filters.
2728 			 * fallback to accept all multicast addresses.
2729 			 */
2730 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2731 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2732 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2733 			    RPF_MCAST_FILTER_EN, 1);
2734 			ec->ec_flags |= ETHER_F_ALLMULTI;
2735 			ETHER_UNLOCK(ec);
2736 			goto done;
2737 		}
2738 
2739 		/* add a filter */
2740 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2741 
2742 		ETHER_NEXT_MULTI(step, enm);
2743 	}
2744 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2745 	ETHER_UNLOCK(ec);
2746 
2747  done:
2748 	return error;
2749 }
2750 
2751 static int
2752 aq_ifmedia_change(struct ifnet * const ifp)
2753 {
2754 	struct aq_softc *sc = ifp->if_softc;
2755 	aq_link_speed_t rate = AQ_LINK_NONE;
2756 	aq_link_fc_t fc = AQ_FC_NONE;
2757 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2758 
2759 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2760 		return EINVAL;
2761 
2762 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2763 	case IFM_AUTO:
2764 		rate = AQ_LINK_AUTO;
2765 		break;
2766 	case IFM_NONE:
2767 		rate = AQ_LINK_NONE;
2768 		break;
2769 	case IFM_100_TX:
2770 		rate = AQ_LINK_100M;
2771 		break;
2772 	case IFM_1000_T:
2773 		rate = AQ_LINK_1G;
2774 		break;
2775 	case IFM_2500_T:
2776 		rate = AQ_LINK_2G5;
2777 		break;
2778 	case IFM_5000_T:
2779 		rate = AQ_LINK_5G;
2780 		break;
2781 	case IFM_10G_T:
2782 		rate = AQ_LINK_10G;
2783 		break;
2784 	default:
2785 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2786 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2787 		return ENODEV;
2788 	}
2789 
2790 	if (sc->sc_media.ifm_media & IFM_FLOW)
2791 		fc = AQ_FC_ALL;
2792 
2793 	/* XXX: todo EEE */
2794 
2795 	/* re-initialize hardware with new parameters */
2796 	aq_set_linkmode(sc, rate, fc, eee);
2797 
2798 	return 0;
2799 }
2800 
2801 static void
2802 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2803 {
2804 	struct aq_softc *sc = ifp->if_softc;
2805 
2806 	/* update ifm_active */
2807 	ifmr->ifm_active = IFM_ETHER;
2808 	if (sc->sc_link_fc & AQ_FC_RX)
2809 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2810 	if (sc->sc_link_fc & AQ_FC_TX)
2811 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2812 
2813 	switch (sc->sc_link_rate) {
2814 	case AQ_LINK_100M:
2815 		/* XXX: need to detect fulldup or halfdup */
2816 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2817 		break;
2818 	case AQ_LINK_1G:
2819 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2820 		break;
2821 	case AQ_LINK_2G5:
2822 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2823 		break;
2824 	case AQ_LINK_5G:
2825 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2826 		break;
2827 	case AQ_LINK_10G:
2828 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2829 		break;
2830 	default:
2831 		ifmr->ifm_active |= IFM_NONE;
2832 		break;
2833 	}
2834 
2835 	/* update ifm_status */
2836 	ifmr->ifm_status = IFM_AVALID;
2837 	if (sc->sc_link_rate != AQ_LINK_NONE)
2838 		ifmr->ifm_status |= IFM_ACTIVE;
2839 }
2840 
2841 static void
2842 aq_initmedia(struct aq_softc *sc)
2843 {
2844 #define IFMEDIA_ETHER_ADD(sc, media)	\
2845 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2846 
2847 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2848 	if (sc->sc_available_rates & AQ_LINK_100M) {
2849 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2850 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2851 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2852 	}
2853 	if (sc->sc_available_rates & AQ_LINK_1G) {
2854 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2855 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2856 	}
2857 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2858 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2859 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2860 	}
2861 	if (sc->sc_available_rates & AQ_LINK_5G) {
2862 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2863 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2864 	}
2865 	if (sc->sc_available_rates & AQ_LINK_10G) {
2866 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2867 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2868 	}
2869 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2870 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2871 
2872 	/* default: auto without flowcontrol */
2873 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2874 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2875 }
2876 
2877 static int
2878 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2879     aq_link_eee_t eee)
2880 {
2881 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2882 }
2883 
2884 static int
2885 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2886    aq_link_eee_t *eee)
2887 {
2888 	aq_hw_fw_mpi_state_t mode;
2889 	int error;
2890 
2891 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2892 	if (error != 0)
2893 		return error;
2894 	if (mode != MPI_INIT)
2895 		return ENXIO;
2896 
2897 	return 0;
2898 }
2899 
2900 static void
2901 aq_hw_init_tx_path(struct aq_softc *sc)
2902 {
2903 	/* Tx TC/RSS number config */
2904 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2905 
2906 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2907 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2908 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2909 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2910 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2911 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2912 
2913 	/* misc */
2914 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2915 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2916 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2917 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2918 
2919 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2920 }
2921 
2922 static void
2923 aq_hw_init_rx_path(struct aq_softc *sc)
2924 {
2925 	int i;
2926 
2927 	/* clear setting */
2928 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2929 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2930 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2931 	for (i = 0; i < 32; i++) {
2932 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2933 		   RPF_ETHERTYPE_FILTER_EN, 0);
2934 	}
2935 
2936 	if (sc->sc_rss_enable) {
2937 		/* Rx TC/RSS number config */
2938 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2939 
2940 		/* Rx flow control */
2941 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2942 
2943 		/* RSS Ring selection */
2944 		switch (sc->sc_nqueues) {
2945 		case 2:
2946 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2947 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2948 			break;
2949 		case 4:
2950 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2951 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2952 			break;
2953 		case 8:
2954 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2955 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2956 			break;
2957 		}
2958 	}
2959 
2960 	/* L2 and Multicast filters */
2961 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2962 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2963 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2964 		    RPF_ACTION_HOST);
2965 	}
2966 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2967 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2968 
2969 	/* Vlan filters */
2970 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2971 	    ETHERTYPE_QINQ);
2972 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2973 	    ETHERTYPE_VLAN);
2974 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2975 
2976 	if (sc->sc_features & FEATURES_REV_B) {
2977 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2978 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2979 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2980 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2981 	}
2982 
2983 	/* misc */
2984 	if (sc->sc_features & FEATURES_RPF2)
2985 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2986 	else
2987 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2988 
2989 	/*
2990 	 * XXX: RX_TCP_RSS_HASH_REG:
2991 	 *  linux   set 0x000f0000
2992 	 *  freebsd set 0x000f001e
2993 	 */
2994 	/* RSS hash type set for IP/TCP */
2995 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2996 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2997 
2998 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2999 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
3000 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
3001 
3002 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
3003 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
3004 }
3005 
3006 static void
3007 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
3008 {
3009 	int i;
3010 
3011 	if (sc->sc_intr_moderation_enable) {
3012 		unsigned int tx_min, rx_min;	/* 0-255 */
3013 		unsigned int tx_max, rx_max;	/* 0-511? */
3014 
3015 		switch (sc->sc_link_rate) {
3016 		case AQ_LINK_100M:
3017 			tx_min = 0x4f;
3018 			tx_max = 0xff;
3019 			rx_min = 0x04;
3020 			rx_max = 0x50;
3021 			break;
3022 		case AQ_LINK_1G:
3023 		default:
3024 			tx_min = 0x4f;
3025 			tx_max = 0xff;
3026 			rx_min = 0x30;
3027 			rx_max = 0x80;
3028 			break;
3029 		case AQ_LINK_2G5:
3030 			tx_min = 0x4f;
3031 			tx_max = 0xff;
3032 			rx_min = 0x18;
3033 			rx_max = 0xe0;
3034 			break;
3035 		case AQ_LINK_5G:
3036 			tx_min = 0x4f;
3037 			tx_max = 0xff;
3038 			rx_min = 0x0c;
3039 			rx_max = 0x70;
3040 			break;
3041 		case AQ_LINK_10G:
3042 			tx_min = 0x4f;
3043 			tx_max = 0x1ff;
3044 			rx_min = 0x06;	/* freebsd use 80 */
3045 			rx_max = 0x38;	/* freebsd use 120 */
3046 			break;
3047 		}
3048 
3049 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3050 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3051 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3052 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3053 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3054 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3055 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3056 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3057 
3058 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3059 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3060 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3061 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3062 			    TX_INTR_MODERATION_CTL_EN);
3063 		}
3064 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3065 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3066 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3067 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3068 			    RX_INTR_MODERATION_CTL_EN);
3069 		}
3070 
3071 	} else {
3072 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3073 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3074 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3075 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3076 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3077 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3078 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3079 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3080 
3081 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3082 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3083 		}
3084 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3085 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3086 		}
3087 	}
3088 }
3089 
3090 static void
3091 aq_hw_qos_set(struct aq_softc *sc)
3092 {
3093 	uint32_t tc = 0;
3094 	uint32_t buff_size;
3095 
3096 	/* TPS Descriptor rate init */
3097 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3099 
3100 	/* TPS VM init */
3101 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3102 
3103 	/* TPS TC credits init */
3104 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3105 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3106 
3107 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3108 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3109 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3110 	    TPS_DATA_TCT_WEIGHT, 0x64);
3111 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3112 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3113 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3114 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3115 
3116 	/* Tx buf size */
3117 	tc = 0;
3118 	buff_size = AQ_HW_TXBUF_MAX;
3119 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3120 	    buff_size);
3121 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3122 	    (buff_size * (1024 / 32) * 66) / 100);
3123 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3124 	    (buff_size * (1024 / 32) * 50) / 100);
3125 
3126 	/* QoS Rx buf size per TC */
3127 	tc = 0;
3128 	buff_size = AQ_HW_RXBUF_MAX;
3129 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3130 	    buff_size);
3131 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3132 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3133 	    (buff_size * (1024 / 32) * 66) / 100);
3134 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3135 	    (buff_size * (1024 / 32) * 50) / 100);
3136 
3137 	/* QoS 802.1p priority -> TC mapping */
3138 	int i_priority;
3139 	for (i_priority = 0; i_priority < 8; i_priority++) {
3140 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3141 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3142 	}
3143 }
3144 
3145 /* called once from aq_attach */
3146 static int
3147 aq_init_rss(struct aq_softc *sc)
3148 {
3149 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3150 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3151 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3152 	unsigned int i;
3153 	int error;
3154 
3155 	/* initialize rss key */
3156 	rss_getkey((uint8_t *)rss_key);
3157 
3158 	/* hash to ring table */
3159 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3160 		rss_table[i] = i % sc->sc_nqueues;
3161 	}
3162 
3163 	/*
3164 	 * set rss key
3165 	 */
3166 	for (i = 0; i < __arraycount(rss_key); i++) {
3167 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3168 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3169 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3170 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3171 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3172 		    RPF_RSS_KEY_WR_EN, 1);
3173 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3174 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3175 		if (error != 0) {
3176 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3177 			    __func__);
3178 			goto rss_set_timeout;
3179 		}
3180 	}
3181 
3182 	/*
3183 	 * set rss indirection table
3184 	 *
3185 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3186 	 * we'll make it by __BITMAP(3) macros.
3187 	 */
3188 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3189 	__BITMAP_ZERO(&bit3x64);
3190 
3191 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3192 	do {							\
3193 		if (val & 1) {					\
3194 			__BITMAP_SET((idx) * 3, (bitmap));	\
3195 		} else {					\
3196 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3197 		}						\
3198 		if (val & 2) {					\
3199 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3200 		} else {					\
3201 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3202 		}						\
3203 		if (val & 4) {					\
3204 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3205 		} else {					\
3206 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3207 		}						\
3208 	} while (0 /* CONSTCOND */)
3209 
3210 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3211 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3212 	}
3213 
3214 	/* write 192bit data in steps of 16bit */
3215 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3216 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3217 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3218 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3219 		    RPF_RSS_REDIR_ADDR, i);
3220 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3221 		    RPF_RSS_REDIR_WR_EN, 1);
3222 
3223 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3224 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3225 		if (error != 0)
3226 			break;
3227 	}
3228 
3229  rss_set_timeout:
3230 	return error;
3231 }
3232 
3233 static void
3234 aq_hw_l3_filter_set(struct aq_softc *sc)
3235 {
3236 	int i;
3237 
3238 	/* clear all filter */
3239 	for (i = 0; i < 8; i++) {
3240 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3241 		    RPF_L3_FILTER_L4_EN, 0);
3242 	}
3243 }
3244 
3245 static void
3246 aq_set_vlan_filters(struct aq_softc *sc)
3247 {
3248 	struct ethercom *ec = &sc->sc_ethercom;
3249 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3250 	struct vlanid_list *vlanidp;
3251 	int i;
3252 
3253 	ETHER_LOCK(ec);
3254 
3255 	/* disable all vlan filters */
3256 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3257 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3258 
3259 	/* count VID */
3260 	i = 0;
3261 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3262 		i++;
3263 
3264 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3265 	    (ifp->if_flags & IFF_PROMISC) ||
3266 	    (i > RPF_VLAN_MAX_FILTERS)) {
3267 		/*
3268 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3269 		 * must receive all VID
3270 		 */
3271 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3272 		    RPF_VLAN_MODE_PROMISC, 1);
3273 		goto done;
3274 	}
3275 
3276 	/* receive only selected VID */
3277 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3278 	i = 0;
3279 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3280 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3281 		    RPF_VLAN_FILTER_EN, 1);
3282 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3283 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3284 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3285 		    RPF_VLAN_FILTER_RXQ, 0);
3286 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3287 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3288 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3289 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3290 		i++;
3291 	}
3292 
3293  done:
3294 	ETHER_UNLOCK(ec);
3295 }
3296 
3297 static int
3298 aq_hw_init(struct aq_softc *sc)
3299 {
3300 	uint32_t v;
3301 
3302 	/* Force limit MRRS on RDM/TDM to 2K */
3303 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3304 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3305 
3306 	/*
3307 	 * TX DMA total request limit. B0 hardware is not capable to
3308 	 * handle more than (8K-MRRS) incoming DMA data.
3309 	 * Value 24 in 256byte units
3310 	 */
3311 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3312 
3313 	aq_hw_init_tx_path(sc);
3314 	aq_hw_init_rx_path(sc);
3315 
3316 	aq_hw_interrupt_moderation_set(sc);
3317 
3318 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3319 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3320 
3321 	aq_hw_qos_set(sc);
3322 
3323 	/* Enable interrupt */
3324 	int irqmode;
3325 	if (sc->sc_msix)
3326 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3327 	else
3328 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3329 
3330 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3331 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3332 	    sc->sc_msix ? 1 : 0);
3333 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3334 
3335 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3336 
3337 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3338 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3339 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3340 	);
3341 
3342 	/* link interrupt */
3343 	if (!sc->sc_msix)
3344 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3345 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3346 	    __BIT(7) | sc->sc_linkstat_irq);
3347 
3348 	return 0;
3349 }
3350 
3351 static int
3352 aq_update_link_status(struct aq_softc *sc)
3353 {
3354 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3355 	aq_link_speed_t rate = AQ_LINK_NONE;
3356 	aq_link_fc_t fc = AQ_FC_NONE;
3357 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3358 	unsigned int speed;
3359 	int changed = 0;
3360 
3361 	aq_get_linkmode(sc, &rate, &fc, &eee);
3362 
3363 	if (sc->sc_link_rate != rate)
3364 		changed = 1;
3365 	if (sc->sc_link_fc != fc)
3366 		changed = 1;
3367 	if (sc->sc_link_eee != eee)
3368 		changed = 1;
3369 
3370 	if (changed) {
3371 		switch (rate) {
3372 		case AQ_LINK_100M:
3373 			speed = 100;
3374 			break;
3375 		case AQ_LINK_1G:
3376 			speed = 1000;
3377 			break;
3378 		case AQ_LINK_2G5:
3379 			speed = 2500;
3380 			break;
3381 		case AQ_LINK_5G:
3382 			speed = 5000;
3383 			break;
3384 		case AQ_LINK_10G:
3385 			speed = 10000;
3386 			break;
3387 		case AQ_LINK_NONE:
3388 		default:
3389 			speed = 0;
3390 			break;
3391 		}
3392 
3393 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3394 			/* link DOWN -> UP */
3395 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3396 			    speed);
3397 			if_link_state_change(ifp, LINK_STATE_UP);
3398 		} else if (rate == AQ_LINK_NONE) {
3399 			/* link UP -> DOWN */
3400 			device_printf(sc->sc_dev, "link is DOWN\n");
3401 			if_link_state_change(ifp, LINK_STATE_DOWN);
3402 		} else {
3403 			device_printf(sc->sc_dev,
3404 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3405 			    speed, fc, eee);
3406 		}
3407 
3408 		sc->sc_link_rate = rate;
3409 		sc->sc_link_fc = fc;
3410 		sc->sc_link_eee = eee;
3411 
3412 		/* update interrupt timing according to new link speed */
3413 		aq_hw_interrupt_moderation_set(sc);
3414 	}
3415 
3416 	return changed;
3417 }
3418 
3419 #ifdef AQ_EVENT_COUNTERS
3420 static void
3421 aq_update_statistics(struct aq_softc *sc)
3422 {
3423 	int prev = sc->sc_statistics_idx;
3424 	int cur = prev ^ 1;
3425 
3426 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3427 
3428 	/*
3429 	 * aq's internal statistics counter is 32bit.
3430 	 * cauculate delta, and add to evcount
3431 	 */
3432 #define ADD_DELTA(cur, prev, name)				\
3433 	do {							\
3434 		uint32_t n;					\
3435 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3436 		    sc->sc_statistics[prev].name);		\
3437 		if (n != 0) {					\
3438 			AQ_EVCNT_ADD(sc, name, n);		\
3439 		}						\
3440 	} while (/*CONSTCOND*/0);
3441 
3442 	ADD_DELTA(cur, prev, uprc);
3443 	ADD_DELTA(cur, prev, mprc);
3444 	ADD_DELTA(cur, prev, bprc);
3445 	ADD_DELTA(cur, prev, prc);
3446 	ADD_DELTA(cur, prev, erpr);
3447 	ADD_DELTA(cur, prev, uptc);
3448 	ADD_DELTA(cur, prev, mptc);
3449 	ADD_DELTA(cur, prev, bptc);
3450 	ADD_DELTA(cur, prev, ptc);
3451 	ADD_DELTA(cur, prev, erpt);
3452 	ADD_DELTA(cur, prev, mbtc);
3453 	ADD_DELTA(cur, prev, bbtc);
3454 	ADD_DELTA(cur, prev, mbrc);
3455 	ADD_DELTA(cur, prev, bbrc);
3456 	ADD_DELTA(cur, prev, ubrc);
3457 	ADD_DELTA(cur, prev, ubtc);
3458 	ADD_DELTA(cur, prev, dpc);
3459 	ADD_DELTA(cur, prev, cprc);
3460 
3461 	sc->sc_statistics_idx = cur;
3462 }
3463 #endif /* AQ_EVENT_COUNTERS */
3464 
3465 /* allocate and map one DMA block */
3466 static int
3467 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3468     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3469 {
3470 	int nsegs, error;
3471 
3472 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3473 	    1, &nsegs, 0)) != 0) {
3474 		aprint_error_dev(sc->sc_dev,
3475 		    "unable to allocate DMA buffer, error=%d\n", error);
3476 		goto fail_alloc;
3477 	}
3478 
3479 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3480 	    BUS_DMA_COHERENT)) != 0) {
3481 		aprint_error_dev(sc->sc_dev,
3482 		    "unable to map DMA buffer, error=%d\n", error);
3483 		goto fail_map;
3484 	}
3485 
3486 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3487 	    0, mapp)) != 0) {
3488 		aprint_error_dev(sc->sc_dev,
3489 		    "unable to create DMA map, error=%d\n", error);
3490 		goto fail_create;
3491 	}
3492 
3493 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3494 	    0)) != 0) {
3495 		aprint_error_dev(sc->sc_dev,
3496 		    "unable to load DMA map, error=%d\n", error);
3497 		goto fail_load;
3498 	}
3499 
3500 	*sizep = size;
3501 	return 0;
3502 
3503  fail_load:
3504 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3505 	*mapp = NULL;
3506  fail_create:
3507 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3508 	*addrp = NULL;
3509  fail_map:
3510 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3511 	memset(seg, 0, sizeof(*seg));
3512  fail_alloc:
3513 	*sizep = 0;
3514 	return error;
3515 }
3516 
3517 static void
3518 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3519     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3520 {
3521 	if (*mapp != NULL) {
3522 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3523 		*mapp = NULL;
3524 	}
3525 	if (*addrp != NULL) {
3526 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3527 		*addrp = NULL;
3528 	}
3529 	if (*sizep != 0) {
3530 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3531 		memset(seg, 0, sizeof(*seg));
3532 		*sizep = 0;
3533 	}
3534 }
3535 
3536 static int
3537 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3538 {
3539 	int i, error;
3540 
3541 	/* allocate tx descriptors */
3542 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3543 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3544 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3545 	if (error != 0)
3546 		return error;
3547 
3548 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3549 
3550 	/* fill tx ring with dmamap */
3551 	for (i = 0; i < AQ_TXD_NUM; i++) {
3552 #define AQ_MAXDMASIZE	(16 * 1024)
3553 #define AQ_NTXSEGS	32
3554 		/* XXX: TODO: error check */
3555 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3556 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3557 	}
3558 	return 0;
3559 }
3560 
3561 static void
3562 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3563 {
3564 	int i;
3565 
3566 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3567 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3568 
3569 	for (i = 0; i < AQ_TXD_NUM; i++) {
3570 		if (txring->txr_mbufs[i].dmamap != NULL) {
3571 			if (txring->txr_mbufs[i].m != NULL) {
3572 				bus_dmamap_unload(sc->sc_dmat,
3573 				    txring->txr_mbufs[i].dmamap);
3574 				m_freem(txring->txr_mbufs[i].m);
3575 				txring->txr_mbufs[i].m = NULL;
3576 			}
3577 			bus_dmamap_destroy(sc->sc_dmat,
3578 			    txring->txr_mbufs[i].dmamap);
3579 			txring->txr_mbufs[i].dmamap = NULL;
3580 		}
3581 	}
3582 }
3583 
3584 static int
3585 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3586 {
3587 	int i, error;
3588 
3589 	/* allocate rx descriptors */
3590 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3591 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3592 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3593 	if (error != 0)
3594 		return error;
3595 
3596 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3597 
3598 	/* fill rxring with dmamaps */
3599 	for (i = 0; i < AQ_RXD_NUM; i++) {
3600 		rxring->rxr_mbufs[i].m = NULL;
3601 		/* XXX: TODO: error check */
3602 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3603 		    &rxring->rxr_mbufs[i].dmamap);
3604 	}
3605 	return 0;
3606 }
3607 
3608 static void
3609 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3610 {
3611 	int i;
3612 
3613 	/* free all mbufs allocated for RX */
3614 	for (i = 0; i < AQ_RXD_NUM; i++) {
3615 		if (rxring->rxr_mbufs[i].m != NULL) {
3616 			bus_dmamap_unload(sc->sc_dmat,
3617 			    rxring->rxr_mbufs[i].dmamap);
3618 			m_freem(rxring->rxr_mbufs[i].m);
3619 			rxring->rxr_mbufs[i].m = NULL;
3620 		}
3621 	}
3622 }
3623 
3624 static void
3625 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3626 {
3627 	int i;
3628 
3629 	/* free all mbufs and dmamaps */
3630 	aq_rxdrain(sc, rxring);
3631 	for (i = 0; i < AQ_RXD_NUM; i++) {
3632 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3633 			bus_dmamap_destroy(sc->sc_dmat,
3634 			    rxring->rxr_mbufs[i].dmamap);
3635 			rxring->rxr_mbufs[i].dmamap = NULL;
3636 		}
3637 	}
3638 
3639 	/* free RX descriptor */
3640 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3641 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3642 }
3643 
3644 static void
3645 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3646     struct mbuf *m)
3647 {
3648 	int error;
3649 
3650 	/* if mbuf already exists, unload and free */
3651 	if (rxring->rxr_mbufs[idx].m != NULL) {
3652 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3653 		m_freem(rxring->rxr_mbufs[idx].m);
3654 		rxring->rxr_mbufs[idx].m = NULL;
3655 	}
3656 
3657 	rxring->rxr_mbufs[idx].m = m;
3658 
3659 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3660 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3661 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3662 	if (error) {
3663 		device_printf(sc->sc_dev,
3664 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3665 		panic("%s: unable to load rx DMA map. error=%d",
3666 		    __func__, error);
3667 	}
3668 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3669 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3670 }
3671 
3672 static inline void
3673 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3674 {
3675 	/* refill rxdesc, and sync */
3676 	rxring->rxr_rxdesc[idx].read.buf_addr =
3677 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3678 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3679 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3680 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3681 	    BUS_DMASYNC_PREWRITE);
3682 }
3683 
3684 static struct mbuf *
3685 aq_alloc_mbuf(void)
3686 {
3687 	struct mbuf *m;
3688 
3689 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3690 	if (m == NULL)
3691 		return NULL;
3692 
3693 	MCLGET(m, M_DONTWAIT);
3694 	if ((m->m_flags & M_EXT) == 0) {
3695 		m_freem(m);
3696 		return NULL;
3697 	}
3698 
3699 	return m;
3700 }
3701 
3702 /* allocate mbuf and unload dmamap */
3703 static int
3704 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3705 {
3706 	struct mbuf *m;
3707 
3708 	m = aq_alloc_mbuf();
3709 	if (m == NULL)
3710 		return ENOBUFS;
3711 
3712 	aq_rxring_setmbuf(sc, rxring, idx, m);
3713 	return 0;
3714 }
3715 
3716 static int
3717 aq_txrx_rings_alloc(struct aq_softc *sc)
3718 {
3719 	int n, error;
3720 
3721 	for (n = 0; n < sc->sc_nqueues; n++) {
3722 		sc->sc_queue[n].sc = sc;
3723 		sc->sc_queue[n].txring.txr_sc = sc;
3724 		sc->sc_queue[n].txring.txr_index = n;
3725 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3726 		    IPL_NET);
3727 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3728 		if (error != 0)
3729 			goto failure;
3730 
3731 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3732 		if (error != 0)
3733 			goto failure;
3734 
3735 		sc->sc_queue[n].rxring.rxr_sc = sc;
3736 		sc->sc_queue[n].rxring.rxr_index = n;
3737 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3738 		   IPL_NET);
3739 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3740 		if (error != 0)
3741 			break;
3742 	}
3743 
3744  failure:
3745 	return error;
3746 }
3747 
3748 static void
3749 aq_txrx_rings_free(struct aq_softc *sc)
3750 {
3751 	int n;
3752 
3753 	for (n = 0; n < sc->sc_nqueues; n++) {
3754 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3755 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3756 
3757 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3758 
3759 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3760 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3761 	}
3762 }
3763 
3764 static int
3765 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3766 {
3767 	int error = 0;
3768 	txring->txr_softint = NULL;
3769 
3770 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3771 	if (txring->txr_pcq == NULL) {
3772 		aprint_error_dev(sc->sc_dev,
3773 		    "unable to allocate pcq for TXring[%d]\n",
3774 		    txring->txr_index);
3775 		error = ENOMEM;
3776 		goto done;
3777 	}
3778 
3779 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3780 	    aq_deferred_transmit, txring);
3781 	if (txring->txr_softint == NULL) {
3782 		aprint_error_dev(sc->sc_dev,
3783 		    "unable to establish softint for TXring[%d]\n",
3784 		    txring->txr_index);
3785 		error = ENOENT;
3786 	}
3787 
3788  done:
3789 	return error;
3790 }
3791 
3792 static void
3793 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3794 {
3795 	struct mbuf *m;
3796 
3797 	if (txring->txr_softint != NULL) {
3798 		softint_disestablish(txring->txr_softint);
3799 		txring->txr_softint = NULL;
3800 	}
3801 
3802 	if (txring->txr_pcq != NULL) {
3803 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3804 			m_freem(m);
3805 		pcq_destroy(txring->txr_pcq);
3806 		txring->txr_pcq = NULL;
3807 	}
3808 }
3809 
3810 #if NSYSMON_ENVSYS > 0
3811 static void
3812 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3813 {
3814 	struct aq_softc *sc;
3815 	uint32_t temp;
3816 	int error;
3817 
3818 	sc = sme->sme_cookie;
3819 
3820 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3821 	if (error == 0) {
3822 		edata->value_cur = temp;
3823 		edata->state = ENVSYS_SVALID;
3824 	} else {
3825 		edata->state = ENVSYS_SINVALID;
3826 	}
3827 }
3828 #endif
3829 
3830 static void
3831 aq_tick(void *arg)
3832 {
3833 	struct aq_softc *sc = arg;
3834 
3835 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3836 		sc->sc_detect_linkstat = false;
3837 		aq_update_link_status(sc);
3838 	}
3839 
3840 #ifdef AQ_EVENT_COUNTERS
3841 	if (sc->sc_poll_statistics)
3842 		aq_update_statistics(sc);
3843 #endif
3844 
3845 	if (sc->sc_poll_linkstat
3846 #ifdef AQ_EVENT_COUNTERS
3847 	    || sc->sc_poll_statistics
3848 #endif
3849 	    ) {
3850 		callout_schedule(&sc->sc_tick_ch, hz);
3851 	}
3852 }
3853 
3854 /* interrupt enable/disable */
3855 static void
3856 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3857 {
3858 	uint32_t imask = 0;
3859 	int i;
3860 
3861 	if (txrx) {
3862 		for (i = 0; i < sc->sc_nqueues; i++) {
3863 			imask |= __BIT(sc->sc_tx_irq[i]);
3864 			imask |= __BIT(sc->sc_rx_irq[i]);
3865 		}
3866 	}
3867 
3868 	if (link)
3869 		imask |= __BIT(sc->sc_linkstat_irq);
3870 
3871 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3872 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3873 }
3874 
3875 static int
3876 aq_legacy_intr(void *arg)
3877 {
3878 	struct aq_softc *sc = arg;
3879 	uint32_t status;
3880 	int nintr = 0;
3881 
3882 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3883 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3884 
3885 	if (status & __BIT(sc->sc_linkstat_irq)) {
3886 		sc->sc_detect_linkstat = true;
3887 		callout_schedule(&sc->sc_tick_ch, 0);
3888 		nintr++;
3889 	}
3890 
3891 	if (status & __BIT(sc->sc_rx_irq[0])) {
3892 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3893 	}
3894 
3895 	if (status & __BIT(sc->sc_tx_irq[0])) {
3896 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3897 	}
3898 
3899 	return nintr;
3900 }
3901 
3902 static int
3903 aq_txrx_intr(void *arg)
3904 {
3905 	struct aq_queue *queue = arg;
3906 	struct aq_softc *sc = queue->sc;
3907 	struct aq_txring *txring = &queue->txring;
3908 	struct aq_rxring *rxring = &queue->rxring;
3909 	uint32_t status;
3910 	int nintr = 0;
3911 	int txringidx, rxringidx, txirq, rxirq;
3912 
3913 	txringidx = txring->txr_index;
3914 	rxringidx = rxring->rxr_index;
3915 	txirq = sc->sc_tx_irq[txringidx];
3916 	rxirq = sc->sc_rx_irq[rxringidx];
3917 
3918 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3919 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3920 		/* stray interrupt? */
3921 		return 0;
3922 	}
3923 
3924 	nintr += aq_rx_intr(rxring);
3925 	nintr += aq_tx_intr(txring);
3926 
3927 	return nintr;
3928 }
3929 
3930 static int
3931 aq_link_intr(void *arg)
3932 {
3933 	struct aq_softc *sc = arg;
3934 	uint32_t status;
3935 	int nintr = 0;
3936 
3937 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3938 	if (status & __BIT(sc->sc_linkstat_irq)) {
3939 		sc->sc_detect_linkstat = true;
3940 		callout_schedule(&sc->sc_tick_ch, 0);
3941 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3942 		    __BIT(sc->sc_linkstat_irq));
3943 		nintr++;
3944 	}
3945 
3946 	return nintr;
3947 }
3948 
3949 static void
3950 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3951 {
3952 	const int ringidx = txring->txr_index;
3953 	int i;
3954 
3955 	mutex_enter(&txring->txr_mutex);
3956 
3957 	txring->txr_prodidx = 0;
3958 	txring->txr_considx = 0;
3959 	txring->txr_nfree = AQ_TXD_NUM;
3960 	txring->txr_active = false;
3961 
3962 	/* free mbufs untransmitted */
3963 	for (i = 0; i < AQ_TXD_NUM; i++) {
3964 		if (txring->txr_mbufs[i].m != NULL) {
3965 			m_freem(txring->txr_mbufs[i].m);
3966 			txring->txr_mbufs[i].m = NULL;
3967 		}
3968 	}
3969 
3970 	/* disable DMA */
3971 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3972 
3973 	if (start) {
3974 		/* TX descriptor physical address */
3975 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3976 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3977 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3978 		    (uint32_t)((uint64_t)paddr >> 32));
3979 
3980 		/* TX descriptor size */
3981 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3982 		    AQ_TXD_NUM / 8);
3983 
3984 		/* reload TAIL pointer */
3985 		txring->txr_prodidx = txring->txr_considx =
3986 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3987 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3988 
3989 		/* Mapping interrupt vector */
3990 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3991 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3992 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3993 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3994 
3995 		/* enable DMA */
3996 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3997 		    TX_DMA_DESC_EN, 1);
3998 
3999 		const int cpuid = 0;	/* XXX? */
4000 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4001 		    TDM_DCAD_CPUID, cpuid);
4002 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
4003 		    TDM_DCAD_CPUID_EN, 0);
4004 
4005 		txring->txr_active = true;
4006 	}
4007 
4008 	mutex_exit(&txring->txr_mutex);
4009 }
4010 
4011 static int
4012 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4013 {
4014 	const int ringidx = rxring->rxr_index;
4015 	int i;
4016 	int error = 0;
4017 
4018 	mutex_enter(&rxring->rxr_mutex);
4019 	rxring->rxr_active = false;
4020 	rxring->rxr_discarding = false;
4021 	if (rxring->rxr_receiving_m != NULL) {
4022 		m_freem(rxring->rxr_receiving_m);
4023 		rxring->rxr_receiving_m = NULL;
4024 		rxring->rxr_receiving_m_last = NULL;
4025 	}
4026 
4027 	/* disable DMA */
4028 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4029 
4030 	/* free all RX mbufs */
4031 	aq_rxdrain(sc, rxring);
4032 
4033 	if (start) {
4034 		for (i = 0; i < AQ_RXD_NUM; i++) {
4035 			error = aq_rxring_add(sc, rxring, i);
4036 			if (error != 0) {
4037 				aq_rxdrain(sc, rxring);
4038 				return error;
4039 			}
4040 			aq_rxring_reset_desc(sc, rxring, i);
4041 		}
4042 
4043 		/* RX descriptor physical address */
4044 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4045 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4046 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4047 		    (uint32_t)((uint64_t)paddr >> 32));
4048 
4049 		/* RX descriptor size */
4050 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4051 		    AQ_RXD_NUM / 8);
4052 
4053 		/* maximum receive frame size */
4054 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4055 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4056 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4057 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4058 
4059 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4060 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4061 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4062 		    RX_DMA_DESC_VLAN_STRIP,
4063 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4064 		    1 : 0);
4065 
4066 		/*
4067 		 * reload TAIL pointer, and update readidx
4068 		 * (HEAD pointer cannot write)
4069 		 */
4070 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4071 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4072 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4073 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4074 
4075 		/* Rx ring set mode */
4076 
4077 		/* Mapping interrupt vector */
4078 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4079 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4080 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4081 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4082 
4083 		const int cpuid = 0;	/* XXX? */
4084 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4085 		    RX_DMA_DCAD_CPUID, cpuid);
4086 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4087 		    RX_DMA_DCAD_DESC_EN, 0);
4088 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4089 		    RX_DMA_DCAD_HEADER_EN, 0);
4090 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4091 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4092 
4093 		/* enable DMA. start receiving */
4094 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4095 		    RX_DMA_DESC_EN, 1);
4096 
4097 		rxring->rxr_active = true;
4098 	}
4099 
4100 	mutex_exit(&rxring->rxr_mutex);
4101 	return error;
4102 }
4103 
4104 #define TXRING_NEXTIDX(idx)	\
4105 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4106 #define RXRING_NEXTIDX(idx)	\
4107 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4108 
4109 static int
4110 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4111 {
4112 	bus_dmamap_t map;
4113 	struct mbuf *m = *mp;
4114 	uint32_t ctl1, ctl1_ctx, ctl2;
4115 	int idx, i, error;
4116 
4117 	idx = txring->txr_prodidx;
4118 	map = txring->txr_mbufs[idx].dmamap;
4119 
4120 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4121 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4122 	if (error == EFBIG) {
4123 		struct mbuf *n;
4124 		n = m_defrag(m, M_DONTWAIT);
4125 		if (n == NULL)
4126 			return EFBIG;
4127 		/* m_defrag() preserve m */
4128 		KASSERT(n == m);
4129 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4130 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4131 	}
4132 	if (error != 0)
4133 		return error;
4134 
4135 	/*
4136 	 * check spaces of free descriptors.
4137 	 * +1 is additional descriptor for context (vlan, etc,.)
4138 	 */
4139 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4140 		device_printf(sc->sc_dev,
4141 		    "TX: not enough descriptors left %d for %d segs\n",
4142 		    txring->txr_nfree, map->dm_nsegs + 1);
4143 		bus_dmamap_unload(sc->sc_dmat, map);
4144 		return ENOBUFS;
4145 	}
4146 
4147 	/* sync dma for mbuf */
4148 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4149 	    BUS_DMASYNC_PREWRITE);
4150 
4151 	ctl1_ctx = 0;
4152 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4153 
4154 	if (vlan_has_tag(m)) {
4155 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4156 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4157 
4158 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4159 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4160 
4161 		/* fill context descriptor and forward index */
4162 		txring->txr_txdesc[idx].buf_addr = 0;
4163 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4164 		txring->txr_txdesc[idx].ctl2 = 0;
4165 
4166 		idx = TXRING_NEXTIDX(idx);
4167 		txring->txr_nfree--;
4168 	}
4169 
4170 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4171 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4172 	if (m->m_pkthdr.csum_flags &
4173 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4174 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4175 	}
4176 
4177 	/* fill descriptor(s) */
4178 	for (i = 0; i < map->dm_nsegs; i++) {
4179 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4180 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4181 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4182 
4183 		if (i == 0) {
4184 			/* remember mbuf of these descriptors */
4185 			txring->txr_mbufs[idx].m = m;
4186 		} else {
4187 			txring->txr_mbufs[idx].m = NULL;
4188 		}
4189 
4190 		if (i == map->dm_nsegs - 1) {
4191 			/* last segment, mark an EndOfPacket, and cause intr */
4192 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4193 		}
4194 
4195 		txring->txr_txdesc[idx].buf_addr =
4196 		    htole64(map->dm_segs[i].ds_addr);
4197 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4198 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4199 
4200 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4201 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4202 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4203 
4204 		idx = TXRING_NEXTIDX(idx);
4205 		txring->txr_nfree--;
4206 	}
4207 
4208 	txring->txr_prodidx = idx;
4209 
4210 	return 0;
4211 }
4212 
4213 static int
4214 aq_tx_intr(void *arg)
4215 {
4216 	struct aq_txring *txring = arg;
4217 	struct aq_softc *sc = txring->txr_sc;
4218 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4219 	struct mbuf *m;
4220 	const int ringidx = txring->txr_index;
4221 	unsigned int idx, hw_head, n = 0;
4222 
4223 	mutex_enter(&txring->txr_mutex);
4224 
4225 	if (!txring->txr_active)
4226 		goto tx_intr_done;
4227 
4228 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4229 	    TX_DMA_DESC_HEAD_PTR);
4230 	if (hw_head == txring->txr_considx) {
4231 		goto tx_intr_done;
4232 	}
4233 
4234 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4235 
4236 	for (idx = txring->txr_considx; idx != hw_head;
4237 	    idx = TXRING_NEXTIDX(idx), n++) {
4238 
4239 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4240 			bus_dmamap_unload(sc->sc_dmat,
4241 			    txring->txr_mbufs[idx].dmamap);
4242 
4243 			if_statinc_ref(nsr, if_opackets);
4244 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4245 			if (m->m_flags & M_MCAST)
4246 				if_statinc_ref(nsr, if_omcasts);
4247 
4248 			m_freem(m);
4249 			txring->txr_mbufs[idx].m = NULL;
4250 		}
4251 
4252 		txring->txr_nfree++;
4253 	}
4254 	txring->txr_considx = idx;
4255 
4256 	IF_STAT_PUTREF(ifp);
4257 
4258 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4259 		ifp->if_flags &= ~IFF_OACTIVE;
4260 
4261 	/* no more pending TX packet, cancel watchdog */
4262 	if (txring->txr_nfree >= AQ_TXD_NUM)
4263 		ifp->if_timer = 0;
4264 
4265  tx_intr_done:
4266 	mutex_exit(&txring->txr_mutex);
4267 
4268 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4269 	return n;
4270 }
4271 
4272 static int
4273 aq_rx_intr(void *arg)
4274 {
4275 	struct aq_rxring *rxring = arg;
4276 	struct aq_softc *sc = rxring->rxr_sc;
4277 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4278 	const int ringidx = rxring->rxr_index;
4279 	aq_rx_desc_t *rxd;
4280 	struct mbuf *m, *m0, *mprev, *new_m;
4281 	uint32_t rxd_type, rxd_hash __unused;
4282 	uint16_t rxd_status, rxd_pktlen;
4283 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4284 	unsigned int idx, n = 0;
4285 	bool discarding;
4286 
4287 	mutex_enter(&rxring->rxr_mutex);
4288 
4289 	if (!rxring->rxr_active)
4290 		goto rx_intr_done;
4291 
4292 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4293 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4294 		goto rx_intr_done;
4295 	}
4296 
4297 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4298 
4299 	/* restore ring context */
4300 	discarding = rxring->rxr_discarding;
4301 	m0 = rxring->rxr_receiving_m;
4302 	mprev = rxring->rxr_receiving_m_last;
4303 
4304 	for (idx = rxring->rxr_readidx;
4305 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4306 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4307 
4308 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4309 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4310 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4311 
4312 		rxd = &rxring->rxr_rxdesc[idx];
4313 		rxd_status = le16toh(rxd->wb.status);
4314 
4315 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4316 			break;	/* not yet done */
4317 
4318 		rxd_type = le32toh(rxd->wb.type);
4319 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4320 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4321 		rxd_hash = le32toh(rxd->wb.rss_hash);
4322 		rxd_vlan = le16toh(rxd->wb.vlan);
4323 
4324 		/*
4325 		 * Some segments are being dropped while receiving jumboframe.
4326 		 * Discard until EOP.
4327 		 */
4328 		if (discarding)
4329 			goto rx_next;
4330 
4331 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4332 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4333 			if_statinc_ref(nsr, if_ierrors);
4334 			if (m0 != NULL) {
4335 				m_freem(m0);
4336 				m0 = mprev = NULL;
4337 			}
4338 			discarding = true;
4339 			goto rx_next;
4340 		}
4341 
4342 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4343 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4344 		    BUS_DMASYNC_POSTREAD);
4345 		m = rxring->rxr_mbufs[idx].m;
4346 
4347 		new_m = aq_alloc_mbuf();
4348 		if (new_m == NULL) {
4349 			/*
4350 			 * cannot allocate new mbuf.
4351 			 * discard this packet, and reuse mbuf for next.
4352 			 */
4353 			if_statinc_ref(nsr, if_iqdrops);
4354 			if (m0 != NULL) {
4355 				m_freem(m0);
4356 				m0 = mprev = NULL;
4357 			}
4358 			discarding = true;
4359 			goto rx_next;
4360 		}
4361 		rxring->rxr_mbufs[idx].m = NULL;
4362 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4363 
4364 		if (m0 == NULL) {
4365 			m0 = m;
4366 		} else {
4367 			if (m->m_flags & M_PKTHDR)
4368 				m_remove_pkthdr(m);
4369 			mprev->m_next = m;
4370 		}
4371 		mprev = m;
4372 
4373 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4374 			/* to be continued in the next segment */
4375 			m->m_len = MCLBYTES;
4376 		} else {
4377 			/* the last segment */
4378 			int mlen = rxd_pktlen % MCLBYTES;
4379 			if (mlen == 0)
4380 				mlen = MCLBYTES;
4381 			m->m_len = mlen;
4382 			m0->m_pkthdr.len = rxd_pktlen;
4383 			/* VLAN offloading */
4384 			if ((sc->sc_ethercom.ec_capenable &
4385 			    ETHERCAP_VLAN_HWTAGGING) &&
4386 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4387 			    __SHIFTOUT(rxd_type,
4388 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4389 				vlan_set_tag(m0, rxd_vlan);
4390 			}
4391 
4392 			/* Checksum offloading */
4393 			unsigned int pkttype_eth =
4394 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4395 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4396 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4397 			    __SHIFTOUT(rxd_type,
4398 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4399 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4400 				if (__SHIFTOUT(rxd_status,
4401 				    RXDESC_STATUS_IPV4_CSUM_NG))
4402 					m0->m_pkthdr.csum_flags |=
4403 					    M_CSUM_IPv4_BAD;
4404 			}
4405 
4406 			/*
4407 			 * aq will always mark BAD for fragment packets,
4408 			 * but this is not a problem because the IP stack
4409 			 * ignores the CSUM flag in fragment packets.
4410 			 */
4411 			if (__SHIFTOUT(rxd_type,
4412 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4413 				bool checked = false;
4414 				unsigned int pkttype_proto =
4415 				    __SHIFTOUT(rxd_type,
4416 				    RXDESC_TYPE_PKTTYPE_PROTO);
4417 
4418 				if (pkttype_proto ==
4419 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4420 					if ((pkttype_eth ==
4421 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4422 					    (ifp->if_capabilities &
4423 					    IFCAP_CSUM_TCPv4_Rx)) {
4424 						m0->m_pkthdr.csum_flags |=
4425 						    M_CSUM_TCPv4;
4426 						checked = true;
4427 					} else if ((pkttype_eth ==
4428 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4429 					    (ifp->if_capabilities &
4430 					    IFCAP_CSUM_TCPv6_Rx)) {
4431 						m0->m_pkthdr.csum_flags |=
4432 						    M_CSUM_TCPv6;
4433 						checked = true;
4434 					}
4435 				} else if (pkttype_proto ==
4436 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4437 					if ((pkttype_eth ==
4438 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4439 					    (ifp->if_capabilities &
4440 					    IFCAP_CSUM_UDPv4_Rx)) {
4441 						m0->m_pkthdr.csum_flags |=
4442 						    M_CSUM_UDPv4;
4443 						checked = true;
4444 					} else if ((pkttype_eth ==
4445 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4446 					    (ifp->if_capabilities &
4447 					    IFCAP_CSUM_UDPv6_Rx)) {
4448 						m0->m_pkthdr.csum_flags |=
4449 						    M_CSUM_UDPv6;
4450 						checked = true;
4451 					}
4452 				}
4453 				if (checked &&
4454 				    (__SHIFTOUT(rxd_status,
4455 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4456 				    !__SHIFTOUT(rxd_status,
4457 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4458 					m0->m_pkthdr.csum_flags |=
4459 					    M_CSUM_TCP_UDP_BAD;
4460 				}
4461 			}
4462 
4463 			m_set_rcvif(m0, ifp);
4464 			if_statinc_ref(nsr, if_ipackets);
4465 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4466 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4467 			m0 = mprev = NULL;
4468 		}
4469 
4470  rx_next:
4471 		if (discarding && (rxd_status & RXDESC_STATUS_EOP) != 0)
4472 			discarding = false;
4473 
4474 		aq_rxring_reset_desc(sc, rxring, idx);
4475 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4476 	}
4477 	/* save ring context */
4478 	rxring->rxr_readidx = idx;
4479 	rxring->rxr_discarding = discarding;
4480 	rxring->rxr_receiving_m = m0;
4481 	rxring->rxr_receiving_m_last = mprev;
4482 
4483 	IF_STAT_PUTREF(ifp);
4484 
4485  rx_intr_done:
4486 	mutex_exit(&rxring->rxr_mutex);
4487 
4488 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4489 	return n;
4490 }
4491 
4492 static int
4493 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4494 {
4495 	struct ifnet *ifp = &ec->ec_if;
4496 	struct aq_softc *sc = ifp->if_softc;
4497 
4498 	aq_set_vlan_filters(sc);
4499 	return 0;
4500 }
4501 
4502 static int
4503 aq_ifflags_cb(struct ethercom *ec)
4504 {
4505 	struct ifnet *ifp = &ec->ec_if;
4506 	struct aq_softc *sc = ifp->if_softc;
4507 	int i, ecchange, error = 0;
4508 	unsigned short iffchange;
4509 
4510 	AQ_LOCK(sc);
4511 
4512 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4513 	if ((iffchange & IFF_PROMISC) != 0)
4514 		error = aq_set_filter(sc);
4515 
4516 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4517 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4518 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4519 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4520 			    RX_DMA_DESC_VLAN_STRIP,
4521 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4522 			    1 : 0);
4523 		}
4524 	}
4525 
4526 	/* vlan configuration depends on also interface promiscuous mode */
4527 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4528 		aq_set_vlan_filters(sc);
4529 
4530 	sc->sc_ec_capenable = ec->ec_capenable;
4531 	sc->sc_if_flags = ifp->if_flags;
4532 
4533 	AQ_UNLOCK(sc);
4534 
4535 	return error;
4536 }
4537 
4538 static int
4539 aq_init(struct ifnet *ifp)
4540 {
4541 	struct aq_softc *sc = ifp->if_softc;
4542 	int i, error = 0;
4543 
4544 	aq_stop(ifp, false);
4545 
4546 	AQ_LOCK(sc);
4547 
4548 	aq_set_vlan_filters(sc);
4549 	aq_set_capability(sc);
4550 
4551 	for (i = 0; i < sc->sc_nqueues; i++) {
4552 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4553 	}
4554 
4555 	/* invalidate RX descriptor cache */
4556 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4557 	    AQ_READ_REG_BIT(sc,
4558 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4559 
4560 	/* start RX */
4561 	for (i = 0; i < sc->sc_nqueues; i++) {
4562 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4563 		if (error != 0) {
4564 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4565 			    __func__);
4566 			goto aq_init_failure;
4567 		}
4568 	}
4569 	aq_init_rss(sc);
4570 	aq_hw_l3_filter_set(sc);
4571 
4572 	/* need to start callout? */
4573 	if (sc->sc_poll_linkstat
4574 #ifdef AQ_EVENT_COUNTERS
4575 	    || sc->sc_poll_statistics
4576 #endif
4577 	    ) {
4578 		callout_schedule(&sc->sc_tick_ch, hz);
4579 	}
4580 
4581 	/* ready */
4582 	ifp->if_flags |= IFF_RUNNING;
4583 	ifp->if_flags &= ~IFF_OACTIVE;
4584 
4585 	/* start TX and RX */
4586 	aq_enable_intr(sc, true, true);
4587 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4588 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4589 
4590  aq_init_failure:
4591 	sc->sc_if_flags = ifp->if_flags;
4592 
4593 	AQ_UNLOCK(sc);
4594 
4595 	return error;
4596 }
4597 
4598 static void
4599 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4600     struct aq_txring *txring, bool is_transmit)
4601 {
4602 	struct mbuf *m;
4603 	int npkt, error;
4604 
4605 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4606 		return;
4607 
4608 	for (npkt = 0; ; npkt++) {
4609 		if (is_transmit)
4610 			m = pcq_peek(txring->txr_pcq);
4611 		else
4612 			IFQ_POLL(&ifp->if_snd, m);
4613 
4614 		if (m == NULL)
4615 			break;
4616 
4617 		if (txring->txr_nfree < AQ_TXD_MIN)
4618 			break;
4619 
4620 		if (is_transmit)
4621 			pcq_get(txring->txr_pcq);
4622 		else
4623 			IFQ_DEQUEUE(&ifp->if_snd, m);
4624 
4625 		error = aq_encap_txring(sc, txring, &m);
4626 		if (error != 0) {
4627 			/* too many mbuf chains? or not enough descriptors? */
4628 			m_freem(m);
4629 			if_statinc(ifp, if_oerrors);
4630 			if (txring->txr_index == 0 && error == ENOBUFS)
4631 				ifp->if_flags |= IFF_OACTIVE;
4632 			break;
4633 		}
4634 
4635 		/* update tail ptr */
4636 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4637 		    txring->txr_prodidx);
4638 
4639 		/* Pass the packet to any BPF listeners */
4640 		bpf_mtap(ifp, m, BPF_D_OUT);
4641 	}
4642 
4643 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4644 		ifp->if_flags |= IFF_OACTIVE;
4645 
4646 	if (npkt)
4647 		ifp->if_timer = 5;
4648 }
4649 
4650 static void
4651 aq_start(struct ifnet *ifp)
4652 {
4653 	struct aq_softc *sc;
4654 	struct aq_txring *txring;
4655 
4656 	sc = ifp->if_softc;
4657 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4658 
4659 	mutex_enter(&txring->txr_mutex);
4660 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4661 		aq_send_common_locked(ifp, sc, txring, false);
4662 	mutex_exit(&txring->txr_mutex);
4663 }
4664 
4665 static inline unsigned int
4666 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4667 {
4668 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4669 }
4670 
4671 static int
4672 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4673 {
4674 	struct aq_softc *sc = ifp->if_softc;
4675 	struct aq_txring *txring;
4676 	int ringidx;
4677 
4678 	ringidx = aq_select_txqueue(sc, m);
4679 	txring = &sc->sc_queue[ringidx].txring;
4680 
4681 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4682 		m_freem(m);
4683 		return ENOBUFS;
4684 	}
4685 
4686 	if (mutex_tryenter(&txring->txr_mutex)) {
4687 		aq_send_common_locked(ifp, sc, txring, true);
4688 		mutex_exit(&txring->txr_mutex);
4689 	} else {
4690 		softint_schedule(txring->txr_softint);
4691 	}
4692 	return 0;
4693 }
4694 
4695 static void
4696 aq_deferred_transmit(void *arg)
4697 {
4698 	struct aq_txring *txring = arg;
4699 	struct aq_softc *sc = txring->txr_sc;
4700 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4701 
4702 	mutex_enter(&txring->txr_mutex);
4703 	if (pcq_peek(txring->txr_pcq) != NULL)
4704 		aq_send_common_locked(ifp, sc, txring, true);
4705 	mutex_exit(&txring->txr_mutex);
4706 }
4707 
4708 static void
4709 aq_stop(struct ifnet *ifp, int disable)
4710 {
4711 	struct aq_softc *sc = ifp->if_softc;
4712 	int i;
4713 
4714 	AQ_LOCK(sc);
4715 
4716 	ifp->if_timer = 0;
4717 
4718 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4719 		goto already_stopped;
4720 
4721 	/* disable tx/rx interrupts */
4722 	aq_enable_intr(sc, true, false);
4723 
4724 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4725 	for (i = 0; i < sc->sc_nqueues; i++) {
4726 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4727 	}
4728 
4729 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4730 	for (i = 0; i < sc->sc_nqueues; i++) {
4731 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4732 	}
4733 
4734 	/* invalidate RX descriptor cache */
4735 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4736 	    AQ_READ_REG_BIT(sc,
4737 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4738 
4739 	ifp->if_timer = 0;
4740 
4741  already_stopped:
4742 	if (!disable) {
4743 		/* when pmf stop, disable link status intr and callout */
4744 		aq_enable_intr(sc, false, false);
4745 		callout_stop(&sc->sc_tick_ch);
4746 	}
4747 
4748 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4749 
4750 	AQ_UNLOCK(sc);
4751 }
4752 
4753 static void
4754 aq_watchdog(struct ifnet *ifp)
4755 {
4756 	struct aq_softc *sc = ifp->if_softc;
4757 	struct aq_txring *txring;
4758 	int n, head, tail;
4759 
4760 	AQ_LOCK(sc);
4761 
4762 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4763 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4764 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4765 
4766 	for (n = 0; n < sc->sc_nqueues; n++) {
4767 		txring = &sc->sc_queue[n].txring;
4768 		head = AQ_READ_REG_BIT(sc,
4769 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4770 		    TX_DMA_DESC_HEAD_PTR),
4771 		tail = AQ_READ_REG(sc,
4772 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4773 
4774 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4775 		    __func__, txring->txr_index, head, tail);
4776 
4777 		aq_tx_intr(txring);
4778 	}
4779 
4780 	AQ_UNLOCK(sc);
4781 
4782 	aq_init(ifp);
4783 }
4784 
4785 static int
4786 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4787 {
4788 	struct aq_softc *sc __unused;
4789 	struct ifreq *ifr __unused;
4790 	int error, s;
4791 
4792 	sc = (struct aq_softc *)ifp->if_softc;
4793 	ifr = (struct ifreq *)data;
4794 	error = 0;
4795 
4796 	s = splnet();
4797 	switch (cmd) {
4798 	case SIOCSIFMTU:
4799 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > sc->sc_max_mtu) {
4800 			error = EINVAL;
4801 		} else {
4802 			ifp->if_mtu = ifr->ifr_mtu;
4803 			error = 0;	/* no need to reset (no ENETRESET) */
4804 		}
4805 		break;
4806 	default:
4807 		error = ether_ioctl(ifp, cmd, data);
4808 		break;
4809 	}
4810 	splx(s);
4811 
4812 	if (error != ENETRESET)
4813 		return error;
4814 
4815 	switch (cmd) {
4816 	case SIOCSIFCAP:
4817 		error = aq_set_capability(sc);
4818 		break;
4819 	case SIOCADDMULTI:
4820 	case SIOCDELMULTI:
4821 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4822 			break;
4823 
4824 		/*
4825 		 * Multicast list has changed; set the hardware filter
4826 		 * accordingly.
4827 		 */
4828 		error = aq_set_filter(sc);
4829 		break;
4830 	}
4831 
4832 	return error;
4833 }
4834 
4835 
4836 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4837 
4838 #ifdef _MODULE
4839 #include "ioconf.c"
4840 #endif
4841 
4842 static int
4843 if_aq_modcmd(modcmd_t cmd, void *opaque)
4844 {
4845 	int error = 0;
4846 
4847 	switch (cmd) {
4848 	case MODULE_CMD_INIT:
4849 #ifdef _MODULE
4850 		error = config_init_component(cfdriver_ioconf_if_aq,
4851 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4852 #endif
4853 		return error;
4854 	case MODULE_CMD_FINI:
4855 #ifdef _MODULE
4856 		error = config_fini_component(cfdriver_ioconf_if_aq,
4857 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4858 #endif
4859 		return error;
4860 	default:
4861 		return ENOTTY;
4862 	}
4863 }
4864