1 /* $NetBSD: if_aq.c,v 1.17 2020/05/14 08:34:18 msaitoh Exp $ */ 2 3 /** 4 * aQuantia Corporation Network Driver 5 * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * (1) Redistributions of source code must retain the above 12 * copyright notice, this list of conditions and the following 13 * disclaimer. 14 * 15 * (2) Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * (3) The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS 25 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 26 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 28 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 30 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 */ 37 38 /*- 39 * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org> 40 * All rights reserved. 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 51 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 52 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 53 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 54 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 55 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 56 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 57 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 59 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 60 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 61 * POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.17 2020/05/14 08:34:18 msaitoh Exp $"); 66 67 #ifdef _KERNEL_OPT 68 #include "opt_if_aq.h" 69 #include "sysmon_envsys.h" 70 #endif 71 72 #include <sys/param.h> 73 #include <sys/types.h> 74 #include <sys/bitops.h> 75 #include <sys/cprng.h> 76 #include <sys/cpu.h> 77 #include <sys/interrupt.h> 78 #include <sys/module.h> 79 #include <sys/pcq.h> 80 81 #include <net/bpf.h> 82 #include <net/if.h> 83 #include <net/if_dl.h> 84 #include <net/if_media.h> 85 #include <net/if_ether.h> 86 #include <net/rss_config.h> 87 88 #include <dev/pci/pcivar.h> 89 #include <dev/pci/pcireg.h> 90 #include <dev/pci/pcidevs.h> 91 #include <dev/sysmon/sysmonvar.h> 92 93 /* driver configuration */ 94 #define CONFIG_INTR_MODERATION_ENABLE true /* delayed interrupt */ 95 #undef CONFIG_LRO_SUPPORT /* no LRO not suppoted */ 96 #undef CONFIG_NO_TXRX_INDEPENDENT /* share TX/RX interrupts */ 97 98 #define AQ_NINTR_MAX (AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1) 99 /* TX + RX + LINK. must be <= 32 */ 100 #define AQ_LINKSTAT_IRQ 31 /* for legacy mode */ 101 102 #define AQ_TXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 103 #define AQ_RXD_NUM 2048 /* per ring. 8*n && 32~8184 */ 104 /* minimum required to send a packet (vlan needs additional TX descriptor) */ 105 #define AQ_TXD_MIN (1 + 1) 106 107 108 /* hardware specification */ 109 #define AQ_RINGS_NUM 32 110 #define AQ_RSSQUEUE_MAX 8 111 #define AQ_RX_DESCRIPTOR_MIN 32 112 #define AQ_TX_DESCRIPTOR_MIN 32 113 #define AQ_RX_DESCRIPTOR_MAX 8184 114 #define AQ_TX_DESCRIPTOR_MAX 8184 115 #define AQ_TRAFFICCLASS_NUM 8 116 #define AQ_RSS_HASHKEY_SIZE 40 117 #define AQ_RSS_INDIRECTION_TABLE_MAX 64 118 119 /* 120 * TERMINOLOGY 121 * MPI = MAC PHY INTERFACE? 122 * RPO = RX Protocol Offloading 123 * TPO = TX Protocol Offloading 124 * RPF = RX Packet Filter 125 * TPB = TX Packet buffer 126 * RPB = RX Packet buffer 127 */ 128 129 /* registers */ 130 #define AQ_FW_SOFTRESET_REG 0x0000 131 #define AQ_FW_SOFTRESET_RESET __BIT(15) /* soft reset bit */ 132 #define AQ_FW_SOFTRESET_DIS __BIT(14) /* reset disable */ 133 134 #define AQ_FW_VERSION_REG 0x0018 135 #define AQ_HW_REVISION_REG 0x001c 136 #define AQ_GLB_NVR_INTERFACE1_REG 0x0100 137 138 #define AQ_FW_MBOX_CMD_REG 0x0200 139 #define AQ_FW_MBOX_CMD_EXECUTE 0x00008000 140 #define AQ_FW_MBOX_CMD_BUSY 0x00000100 141 #define AQ_FW_MBOX_ADDR_REG 0x0208 142 #define AQ_FW_MBOX_VAL_REG 0x020c 143 144 #define FW2X_LED_MIN_VERSION 0x03010026 /* >= 3.1.38 */ 145 #define FW2X_LED_REG 0x031c 146 #define FW2X_LED_DEFAULT 0x00000000 147 #define FW2X_LED_NONE 0x0000003f 148 #define FW2X_LINKLED __BITS(0,1) 149 #define FW2X_LINKLED_ACTIVE 0 150 #define FW2X_LINKLED_ON 1 151 #define FW2X_LINKLED_BLINK 2 152 #define FW2X_LINKLED_OFF 3 153 #define FW2X_STATUSLED __BITS(2,5) 154 #define FW2X_STATUSLED_ORANGE 0 155 #define FW2X_STATUSLED_ORANGE_BLINK 2 156 #define FW2X_STATUSLED_OFF 3 157 #define FW2X_STATUSLED_GREEN 4 158 #define FW2X_STATUSLED_ORANGE_GREEN_BLINK 8 159 #define FW2X_STATUSLED_GREEN_BLINK 10 160 161 #define FW_MPI_MBOX_ADDR_REG 0x0360 162 #define FW1X_MPI_INIT1_REG 0x0364 163 #define FW1X_MPI_CONTROL_REG 0x0368 164 #define FW1X_MPI_STATE_REG 0x036c 165 #define FW1X_MPI_STATE_MODE __BITS(7,0) 166 #define FW1X_MPI_STATE_SPEED __BITS(32,16) 167 #define FW1X_MPI_STATE_DISABLE_DIRTYWAKE __BITS(25) 168 #define FW1X_MPI_STATE_DOWNSHIFT __BITS(31,28) 169 #define FW1X_MPI_INIT2_REG 0x0370 170 #define FW1X_MPI_EFUSEADDR_REG 0x0374 171 172 #define FW2X_MPI_EFUSEADDR_REG 0x0364 173 #define FW2X_MPI_CONTROL_REG 0x0368 /* 64bit */ 174 #define FW2X_MPI_STATE_REG 0x0370 /* 64bit */ 175 #define FW_BOOT_EXIT_CODE_REG 0x0388 176 #define RBL_STATUS_DEAD 0x0000dead 177 #define RBL_STATUS_SUCCESS 0x0000abba 178 #define RBL_STATUS_FAILURE 0x00000bad 179 #define RBL_STATUS_HOST_BOOT 0x0000f1a7 180 181 #define AQ_FW_GLB_CPU_SEM_REG(i) (0x03a0 + (i) * 4) 182 #define AQ_FW_SEM_RAM_REG AQ_FW_GLB_CPU_SEM_REG(2) 183 184 #define AQ_FW_GLB_CTL2_REG 0x0404 185 #define AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT __BIT(1) 186 187 #define AQ_GLB_GENERAL_PROVISIONING9_REG 0x0520 188 #define AQ_GLB_NVR_PROVISIONING2_REG 0x0534 189 190 #define FW_MPI_DAISY_CHAIN_STATUS_REG 0x0704 191 192 #define AQ_PCI_REG_CONTROL_6_REG 0x1014 193 194 // msix bitmap */ 195 #define AQ_INTR_STATUS_REG 0x2000 /* intr status */ 196 #define AQ_INTR_STATUS_CLR_REG 0x2050 /* intr status clear */ 197 #define AQ_INTR_MASK_REG 0x2060 /* intr mask set */ 198 #define AQ_INTR_MASK_CLR_REG 0x2070 /* intr mask clear */ 199 #define AQ_INTR_AUTOMASK_REG 0x2090 200 201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */ 202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i) (0x2100 + ((i) / 2) * 4) 203 #define AQ_INTR_IRQ_MAP_TX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 204 #define AQ_INTR_IRQ_MAP_TX_IRQMAP(i) (__BITS(28,24) >> (((i) & 1)*8)) 205 #define AQ_INTR_IRQ_MAP_TX_EN(i) (__BIT(31) >> (((i) & 1)*8)) 206 #define AQ_INTR_IRQ_MAP_RX_REG(i) AQ_INTR_IRQ_MAP_TXRX_REG(i) 207 #define AQ_INTR_IRQ_MAP_RX_IRQMAP(i) (__BITS(12,8) >> (((i) & 1)*8)) 208 #define AQ_INTR_IRQ_MAP_RX_EN(i) (__BIT(15) >> (((i) & 1)*8)) 209 210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */ 211 #define AQ_GEN_INTR_MAP_REG(i) (0x2180 + (i) * 4) 212 #define AQ_B0_ERR_INT 8U 213 214 #define AQ_INTR_CTRL_REG 0x2300 215 #define AQ_INTR_CTRL_IRQMODE __BITS(1,0) 216 #define AQ_INTR_CTRL_IRQMODE_LEGACY 0 217 #define AQ_INTR_CTRL_IRQMODE_MSI 1 218 #define AQ_INTR_CTRL_IRQMODE_MSIX 2 219 #define AQ_INTR_CTRL_MULTIVEC __BIT(2) 220 #define AQ_INTR_CTRL_AUTO_MASK __BIT(5) 221 #define AQ_INTR_CTRL_CLR_ON_READ __BIT(7) 222 #define AQ_INTR_CTRL_RESET_DIS __BIT(29) 223 #define AQ_INTR_CTRL_RESET_IRQ __BIT(31) 224 225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG 0x32a8 226 227 #define FW_MPI_RESETCTRL_REG 0x4000 228 #define FW_MPI_RESETCTRL_RESET_DIS __BIT(29) 229 230 #define RX_SYSCONTROL_REG 0x5000 231 #define RX_SYSCONTROL_RPB_DMA_LOOPBACK __BIT(6) 232 #define RX_SYSCONTROL_RPF_TPO_LOOPBACK __BIT(8) 233 #define RX_SYSCONTROL_RESET_DIS __BIT(29) 234 235 #define RX_TCP_RSS_HASH_REG 0x5040 236 #define RX_TCP_RSS_HASH_RPF2 __BITS(19,16) 237 #define RX_TCP_RSS_HASH_TYPE __BITS(15,0) 238 239 /* for RPF_*_REG.ACTION */ 240 #define RPF_ACTION_DISCARD 0 241 #define RPF_ACTION_HOST 1 242 #define RPF_ACTION_MANAGEMENT 2 243 #define RPF_ACTION_HOST_MANAGEMENT 3 244 #define RPF_ACTION_WOL 4 245 246 #define RPF_L2BC_REG 0x5100 247 #define RPF_L2BC_EN __BIT(0) 248 #define RPF_L2BC_PROMISC __BIT(3) 249 #define RPF_L2BC_ACTION __BITS(12,14) 250 #define RPF_L2BC_THRESHOLD __BITS(31,16) 251 252 /* RPF_L2UC_*_REG[34] (actual [38]?) */ 253 #define RPF_L2UC_LSW_REG(i) (0x5110 + (i) * 8) 254 #define RPF_L2UC_MSW_REG(i) (0x5114 + (i) * 8) 255 #define RPF_L2UC_MSW_MACADDR_HI __BITS(15,0) 256 #define RPF_L2UC_MSW_ACTION __BITS(18,16) 257 #define RPF_L2UC_MSW_EN __BIT(31) 258 #define AQ_HW_MAC_OWN 0 /* index of own address */ 259 #define AQ_HW_MAC_NUM 34 260 261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */ 262 #define RPF_MCAST_FILTER_REG(i) (0x5250 + (i) * 4) 263 #define RPF_MCAST_FILTER_EN __BIT(31) 264 #define RPF_MCAST_FILTER_MASK_REG 0x5270 265 #define RPF_MCAST_FILTER_MASK_ALLMULTI __BIT(14) 266 267 #define RPF_VLAN_MODE_REG 0x5280 268 #define RPF_VLAN_MODE_PROMISC __BIT(1) 269 #define RPF_VLAN_MODE_ACCEPT_UNTAGGED __BIT(2) 270 #define RPF_VLAN_MODE_UNTAGGED_ACTION __BITS(5,3) 271 272 #define RPF_VLAN_TPID_REG 0x5284 273 #define RPF_VLAN_TPID_OUTER __BITS(31,16) 274 #define RPF_VLAN_TPID_INNER __BITS(15,0) 275 276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */ 277 #define RPF_VLAN_MAX_FILTERS 16 278 #define RPF_VLAN_FILTER_REG(i) (0x5290 + (i) * 4) 279 #define RPF_VLAN_FILTER_EN __BIT(31) 280 #define RPF_VLAN_FILTER_RXQ_EN __BIT(28) 281 #define RPF_VLAN_FILTER_RXQ __BITS(24,20) 282 #define RPF_VLAN_FILTER_ACTION __BITS(18,16) 283 #define RPF_VLAN_FILTER_ID __BITS(11,0) 284 285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */ 286 #define RPF_ETHERTYPE_FILTER_REG(i) (0x5300 + (i) * 4) 287 #define RPF_ETHERTYPE_FILTER_EN __BIT(31) 288 #define RPF_ETHERTYPE_FILTER_PRIO_EN __BIT(30) 289 #define RPF_ETHERTYPE_FILTER_RXQF_EN __BIT(29) 290 #define RPF_ETHERTYPE_FILTER_PRIO __BITS(28,26) 291 #define RPF_ETHERTYPE_FILTER_RXQF __BITS(24,20) 292 #define RPF_ETHERTYPE_FILTER_MNG_RXQF __BIT(19) 293 #define RPF_ETHERTYPE_FILTER_ACTION __BITS(18,16) 294 #define RPF_ETHERTYPE_FILTER_VAL __BITS(15,0) 295 296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */ 297 #define RPF_L3_FILTER_REG(i) (0x5380 + (i) * 4) 298 #define RPF_L3_FILTER_L4_EN __BIT(31) 299 #define RPF_L3_FILTER_IPV6_EN __BIT(30) 300 #define RPF_L3_FILTER_SRCADDR_EN __BIT(29) 301 #define RPF_L3_FILTER_DSTADDR_EN __BIT(28) 302 #define RPF_L3_FILTER_L4_SRCPORT_EN __BIT(27) 303 #define RPF_L3_FILTER_L4_DSTPORT_EN __BIT(26) 304 #define RPF_L3_FILTER_L4_PROTO_EN __BIT(25) 305 #define RPF_L3_FILTER_ARP_EN __BIT(24) 306 #define RPF_L3_FILTER_L4_RXQUEUE_EN __BIT(23) 307 #define RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN __BIT(22) 308 #define RPF_L3_FILTER_L4_ACTION __BITS(16,18) 309 #define RPF_L3_FILTER_L4_RXQUEUE __BITS(12,8) 310 #define RPF_L3_FILTER_L4_PROTO __BITS(2,0) 311 #define RPF_L3_FILTER_L4_PROTO_TCP 0 312 #define RPF_L3_FILTER_L4_PROTO_UDP 1 313 #define RPF_L3_FILTER_L4_PROTO_SCTP 2 314 #define RPF_L3_FILTER_L4_PROTO_ICMP 3 315 /* parameters of RPF_L3_FILTER_REG[8] */ 316 #define RPF_L3_FILTER_SRCADDR_REG(i) (0x53b0 + (i) * 4) 317 #define RPF_L3_FILTER_DSTADDR_REG(i) (0x53d0 + (i) * 4) 318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i) (0x5400 + (i) * 4) 319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i) (0x5420 + (i) * 4) 320 321 #define RX_FLR_RSS_CONTROL1_REG 0x54c0 322 #define RX_FLR_RSS_CONTROL1_EN __BIT(31) 323 324 #define RPF_RPB_RX_TC_UPT_REG 0x54c4 325 #define RPF_RPB_RX_TC_UPT_MASK(i) (0x00000007 << ((i) * 4)) 326 327 #define RPF_RSS_KEY_ADDR_REG 0x54d0 328 #define RPF_RSS_KEY_ADDR __BITS(4,0) 329 #define RPF_RSS_KEY_WR_EN __BIT(5) 330 #define RPF_RSS_KEY_WR_DATA_REG 0x54d4 331 #define RPF_RSS_KEY_RD_DATA_REG 0x54d8 332 333 #define RPF_RSS_REDIR_ADDR_REG 0x54e0 334 #define RPF_RSS_REDIR_ADDR __BITS(3,0) 335 #define RPF_RSS_REDIR_WR_EN __BIT(4) 336 337 #define RPF_RSS_REDIR_WR_DATA_REG 0x54e4 338 #define RPF_RSS_REDIR_WR_DATA __BITS(15,0) 339 340 #define RPO_HWCSUM_REG 0x5580 341 #define RPO_HWCSUM_IP4CSUM_EN __BIT(1) 342 #define RPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 343 344 #define RPO_LRO_ENABLE_REG 0x5590 345 346 #define RPO_LRO_CONF_REG 0x5594 347 #define RPO_LRO_CONF_QSESSION_LIMIT __BITS(13,12) 348 #define RPO_LRO_CONF_TOTAL_DESC_LIMIT __BITS(6,5) 349 #define RPO_LRO_CONF_PATCHOPTIMIZATION_EN __BIT(15) 350 #define RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT __BITS(4,0) 351 #define RPO_LRO_RSC_MAX_REG 0x5598 352 353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */ 354 #define RPO_LRO_LDES_MAX_REG(i) (0x55a0 + (i / 8) * 4) 355 #define RPO_LRO_LDES_MAX_MASK(i) (0x00000003 << ((i & 7) * 4)) 356 #define RPO_LRO_TB_DIV_REG 0x5620 357 #define RPO_LRO_TB_DIV __BITS(20,31) 358 #define RPO_LRO_INACTIVE_IVAL_REG 0x5620 359 #define RPO_LRO_INACTIVE_IVAL __BITS(10,19) 360 #define RPO_LRO_MAX_COALESCING_IVAL_REG 0x5620 361 #define RPO_LRO_MAX_COALESCING_IVAL __BITS(9,0) 362 363 #define RPB_RPF_RX_REG 0x5700 364 #define RPB_RPF_RX_TC_MODE __BIT(8) 365 #define RPB_RPF_RX_FC_MODE __BITS(5,4) 366 #define RPB_RPF_RX_BUF_EN __BIT(0) 367 368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */ 369 #define RPB_RXB_BUFSIZE_REG(i) (0x5710 + (i) * 0x10) 370 #define RPB_RXB_BUFSIZE __BITS(8,0) 371 #define RPB_RXB_XOFF_REG(i) (0x5714 + (i) * 0x10) 372 #define RPB_RXB_XOFF_EN __BIT(31) 373 #define RPB_RXB_XOFF_THRESH_HI __BITS(29,16) 374 #define RPB_RXB_XOFF_THRESH_LO __BITS(13,0) 375 376 #define RX_DMA_DESC_CACHE_INIT_REG 0x5a00 377 #define RX_DMA_DESC_CACHE_INIT __BIT(0) 378 379 #define RX_DMA_INT_DESC_WRWB_EN_REG 0x05a30 380 #define RX_DMA_INT_DESC_WRWB_EN __BIT(2) 381 #define RX_DMA_INT_DESC_MODERATE_EN __BIT(3) 382 383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */ 384 #define RX_INTR_MODERATION_CTL_REG(i) (0x5a40 + (i) * 4) 385 #define RX_INTR_MODERATION_CTL_EN __BIT(1) 386 #define RX_INTR_MODERATION_CTL_MIN __BITS(15,8) 387 #define RX_INTR_MODERATION_CTL_MAX __BITS(24,16) 388 389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */ 390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x5b00 + (i) * 0x20) 391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x5b04 + (i) * 0x20) 392 #define RX_DMA_DESC_REG(i) (0x5b08 + (i) * 0x20) 393 #define RX_DMA_DESC_LEN __BITS(12,3) /* RXD_NUM/8 */ 394 #define RX_DMA_DESC_RESET __BIT(25) 395 #define RX_DMA_DESC_HEADER_SPLIT __BIT(28) 396 #define RX_DMA_DESC_VLAN_STRIP __BIT(29) 397 #define RX_DMA_DESC_EN __BIT(31) 398 #define RX_DMA_DESC_HEAD_PTR_REG(i) (0x5b0c + (i) * 0x20) 399 #define RX_DMA_DESC_HEAD_PTR __BITS(12,0) 400 #define RX_DMA_DESC_TAIL_PTR_REG(i) (0x5b10 + (i) * 0x20) 401 #define RX_DMA_DESC_BUFSIZE_REG(i) (0x5b18 + (i) * 0x20) 402 #define RX_DMA_DESC_BUFSIZE_DATA __BITS(4,0) 403 #define RX_DMA_DESC_BUFSIZE_HDR __BITS(12,8) 404 405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */ 406 #define RX_DMA_DCAD_REG(i) (0x6100 + (i) * 4) 407 #define RX_DMA_DCAD_CPUID __BITS(7,0) 408 #define RX_DMA_DCAD_PAYLOAD_EN __BIT(29) 409 #define RX_DMA_DCAD_HEADER_EN __BIT(30) 410 #define RX_DMA_DCAD_DESC_EN __BIT(31) 411 412 #define RX_DMA_DCA_REG 0x6180 413 #define RX_DMA_DCA_EN __BIT(31) 414 #define RX_DMA_DCA_MODE __BITS(3,0) 415 416 /* counters */ 417 #define RX_DMA_GOOD_PKT_COUNTERLSW 0x6800 418 #define RX_DMA_GOOD_OCTET_COUNTERLSW 0x6808 419 #define RX_DMA_DROP_PKT_CNT_REG 0x6818 420 #define RX_DMA_COALESCED_PKT_CNT_REG 0x6820 421 422 #define TX_SYSCONTROL_REG 0x7000 423 #define TX_SYSCONTROL_TPB_DMA_LOOPBACK __BIT(6) 424 #define TX_SYSCONTROL_TPO_PKT_LOOPBACK __BIT(7) 425 #define TX_SYSCONTROL_RESET_DIS __BIT(29) 426 427 #define TX_TPO2_REG 0x7040 428 #define TX_TPO2_EN __BIT(16) 429 430 #define TPS_DESC_VM_ARB_MODE_REG 0x7300 431 #define TPS_DESC_VM_ARB_MODE __BIT(0) 432 #define TPS_DESC_RATE_REG 0x7310 433 #define TPS_DESC_RATE_TA_RST __BIT(31) 434 #define TPS_DESC_RATE_LIM __BITS(10,0) 435 #define TPS_DESC_TC_ARB_MODE_REG 0x7200 436 #define TPS_DESC_TC_ARB_MODE __BITS(1,0) 437 #define TPS_DATA_TC_ARB_MODE_REG 0x7100 438 #define TPS_DATA_TC_ARB_MODE __BIT(0) 439 440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */ 441 #define TPS_DATA_TCT_REG(i) (0x7110 + (i) * 4) 442 #define TPS_DATA_TCT_CREDIT_MAX __BITS(16,27) 443 #define TPS_DATA_TCT_WEIGHT __BITS(8,0) 444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */ 445 #define TPS_DESC_TCT_REG(i) (0x7210 + (i) * 4) 446 #define TPS_DESC_TCT_CREDIT_MAX __BITS(16,27) 447 #define TPS_DESC_TCT_WEIGHT __BITS(8,0) 448 449 #define AQ_HW_TXBUF_MAX 160 450 #define AQ_HW_RXBUF_MAX 320 451 452 #define TPO_HWCSUM_REG 0x7800 453 #define TPO_HWCSUM_IP4CSUM_EN __BIT(1) 454 #define TPO_HWCSUM_L4CSUM_EN __BIT(0) /* TCP/UDP/SCTP */ 455 456 #define TDM_LSO_EN_REG 0x7810 457 458 #define THM_LSO_TCP_FLAG1_REG 0x7820 459 #define THM_LSO_TCP_FLAG1_FIRST __BITS(11,0) 460 #define THM_LSO_TCP_FLAG1_MID __BITS(27,16) 461 #define THM_LSO_TCP_FLAG2_REG 0x7824 462 #define THM_LSO_TCP_FLAG2_LAST __BITS(11,0) 463 464 #define TPB_TX_BUF_REG 0x7900 465 #define TPB_TX_BUF_EN __BIT(0) 466 #define TPB_TX_BUF_SCP_INS_EN __BIT(2) 467 #define TPB_TX_BUF_TC_MODE_EN __BIT(8) 468 469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */ 470 #define TPB_TXB_BUFSIZE_REG(i) (0x7910 + (i) * 0x10) 471 #define TPB_TXB_BUFSIZE __BITS(7,0) 472 #define TPB_TXB_THRESH_REG(i) (0x7914 + (i) * 0x10) 473 #define TPB_TXB_THRESH_HI __BITS(16,28) 474 #define TPB_TXB_THRESH_LO __BITS(12,0) 475 476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG 0x7b20 477 #define TX_DMA_INT_DESC_WRWB_EN_REG 0x7b40 478 #define TX_DMA_INT_DESC_WRWB_EN __BIT(1) 479 #define TX_DMA_INT_DESC_MODERATE_EN __BIT(4) 480 481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */ 482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i) (0x7c00 + (i) * 0x40) 483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i) (0x7c04 + (i) * 0x40) 484 #define TX_DMA_DESC_REG(i) (0x7c08 + (i) * 0x40) 485 #define TX_DMA_DESC_LEN __BITS(12, 3) /* TXD_NUM/8 */ 486 #define TX_DMA_DESC_EN __BIT(31) 487 #define TX_DMA_DESC_HEAD_PTR_REG(i) (0x7c0c + (i) * 0x40) 488 #define TX_DMA_DESC_HEAD_PTR __BITS(12,0) 489 #define TX_DMA_DESC_TAIL_PTR_REG(i) (0x7c10 + (i) * 0x40) 490 #define TX_DMA_DESC_WRWB_THRESH_REG(i) (0x7c18 + (i) * 0x40) 491 #define TX_DMA_DESC_WRWB_THRESH __BITS(14,8) 492 493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */ 494 #define TDM_DCAD_REG(i) (0x8400 + (i) * 4) 495 #define TDM_DCAD_CPUID __BITS(7,0) 496 #define TDM_DCAD_CPUID_EN __BIT(31) 497 498 #define TDM_DCA_REG 0x8480 499 #define TDM_DCA_EN __BIT(31) 500 #define TDM_DCA_MODE __BITS(3,0) 501 502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */ 503 #define TX_INTR_MODERATION_CTL_REG(i) (0x8980 + (i) * 4) 504 #define TX_INTR_MODERATION_CTL_EN __BIT(1) 505 #define TX_INTR_MODERATION_CTL_MIN __BITS(15,8) 506 #define TX_INTR_MODERATION_CTL_MAX __BITS(24,16) 507 508 #define FW1X_CTRL_10G __BIT(0) 509 #define FW1X_CTRL_5G __BIT(1) 510 #define FW1X_CTRL_5GSR __BIT(2) 511 #define FW1X_CTRL_2G5 __BIT(3) 512 #define FW1X_CTRL_1G __BIT(4) 513 #define FW1X_CTRL_100M __BIT(5) 514 515 #define FW2X_CTRL_10BASET_HD __BIT(0) 516 #define FW2X_CTRL_10BASET_FD __BIT(1) 517 #define FW2X_CTRL_100BASETX_HD __BIT(2) 518 #define FW2X_CTRL_100BASET4_HD __BIT(3) 519 #define FW2X_CTRL_100BASET2_HD __BIT(4) 520 #define FW2X_CTRL_100BASETX_FD __BIT(5) 521 #define FW2X_CTRL_100BASET2_FD __BIT(6) 522 #define FW2X_CTRL_1000BASET_HD __BIT(7) 523 #define FW2X_CTRL_1000BASET_FD __BIT(8) 524 #define FW2X_CTRL_2P5GBASET_FD __BIT(9) 525 #define FW2X_CTRL_5GBASET_FD __BIT(10) 526 #define FW2X_CTRL_10GBASET_FD __BIT(11) 527 #define FW2X_CTRL_RESERVED1 __BIT(32) 528 #define FW2X_CTRL_10BASET_EEE __BIT(33) 529 #define FW2X_CTRL_RESERVED2 __BIT(34) 530 #define FW2X_CTRL_PAUSE __BIT(35) 531 #define FW2X_CTRL_ASYMMETRIC_PAUSE __BIT(36) 532 #define FW2X_CTRL_100BASETX_EEE __BIT(37) 533 #define FW2X_CTRL_RESERVED3 __BIT(38) 534 #define FW2X_CTRL_RESERVED4 __BIT(39) 535 #define FW2X_CTRL_1000BASET_FD_EEE __BIT(40) 536 #define FW2X_CTRL_2P5GBASET_FD_EEE __BIT(41) 537 #define FW2X_CTRL_5GBASET_FD_EEE __BIT(42) 538 #define FW2X_CTRL_10GBASET_FD_EEE __BIT(43) 539 #define FW2X_CTRL_RESERVED5 __BIT(44) 540 #define FW2X_CTRL_RESERVED6 __BIT(45) 541 #define FW2X_CTRL_RESERVED7 __BIT(46) 542 #define FW2X_CTRL_RESERVED8 __BIT(47) 543 #define FW2X_CTRL_RESERVED9 __BIT(48) 544 #define FW2X_CTRL_CABLE_DIAG __BIT(49) 545 #define FW2X_CTRL_TEMPERATURE __BIT(50) 546 #define FW2X_CTRL_DOWNSHIFT __BIT(51) 547 #define FW2X_CTRL_PTP_AVB_EN __BIT(52) 548 #define FW2X_CTRL_MEDIA_DETECT __BIT(53) 549 #define FW2X_CTRL_LINK_DROP __BIT(54) 550 #define FW2X_CTRL_SLEEP_PROXY __BIT(55) 551 #define FW2X_CTRL_WOL __BIT(56) 552 #define FW2X_CTRL_MAC_STOP __BIT(57) 553 #define FW2X_CTRL_EXT_LOOPBACK __BIT(58) 554 #define FW2X_CTRL_INT_LOOPBACK __BIT(59) 555 #define FW2X_CTRL_EFUSE_AGENT __BIT(60) 556 #define FW2X_CTRL_WOL_TIMER __BIT(61) 557 #define FW2X_CTRL_STATISTICS __BIT(62) 558 #define FW2X_CTRL_TRANSACTION_ID __BIT(63) 559 560 #define FW2X_SNPRINTB \ 561 "\177\020" \ 562 "b\x23" "PAUSE\0" \ 563 "b\x24" "ASYMMETRIC-PAUSE\0" \ 564 "b\x31" "CABLE-DIAG\0" \ 565 "b\x32" "TEMPERATURE\0" \ 566 "b\x33" "DOWNSHIFT\0" \ 567 "b\x34" "PTP-AVB\0" \ 568 "b\x35" "MEDIA-DETECT\0" \ 569 "b\x36" "LINK-DROP\0" \ 570 "b\x37" "SLEEP-PROXY\0" \ 571 "b\x38" "WOL\0" \ 572 "b\x39" "MAC-STOP\0" \ 573 "b\x3a" "EXT-LOOPBACK\0" \ 574 "b\x3b" "INT-LOOPBACK\0" \ 575 "b\x3c" "EFUSE-AGENT\0" \ 576 "b\x3d" "WOL-TIMER\0" \ 577 "b\x3e" "STATISTICS\0" \ 578 "b\x3f" "TRANSACTION-ID\0" \ 579 "\0" 580 581 #define FW2X_CTRL_RATE_100M FW2X_CTRL_100BASETX_FD 582 #define FW2X_CTRL_RATE_1G FW2X_CTRL_1000BASET_FD 583 #define FW2X_CTRL_RATE_2G5 FW2X_CTRL_2P5GBASET_FD 584 #define FW2X_CTRL_RATE_5G FW2X_CTRL_5GBASET_FD 585 #define FW2X_CTRL_RATE_10G FW2X_CTRL_10GBASET_FD 586 #define FW2X_CTRL_RATE_MASK \ 587 (FW2X_CTRL_RATE_100M | \ 588 FW2X_CTRL_RATE_1G | \ 589 FW2X_CTRL_RATE_2G5 | \ 590 FW2X_CTRL_RATE_5G | \ 591 FW2X_CTRL_RATE_10G) 592 #define FW2X_CTRL_EEE_MASK \ 593 (FW2X_CTRL_10BASET_EEE | \ 594 FW2X_CTRL_100BASETX_EEE | \ 595 FW2X_CTRL_1000BASET_FD_EEE | \ 596 FW2X_CTRL_2P5GBASET_FD_EEE | \ 597 FW2X_CTRL_5GBASET_FD_EEE | \ 598 FW2X_CTRL_10GBASET_FD_EEE) 599 600 typedef enum aq_fw_bootloader_mode { 601 FW_BOOT_MODE_UNKNOWN = 0, 602 FW_BOOT_MODE_FLB, 603 FW_BOOT_MODE_RBL_FLASH, 604 FW_BOOT_MODE_RBL_HOST_BOOTLOAD 605 } aq_fw_bootloader_mode_t; 606 607 #define AQ_WRITE_REG(sc, reg, val) \ 608 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val)) 609 610 #define AQ_READ_REG(sc, reg) \ 611 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg)) 612 613 #define AQ_READ64_REG(sc, reg) \ 614 ((uint64_t)AQ_READ_REG(sc, reg) | \ 615 (((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32)) 616 617 #define AQ_WRITE64_REG(sc, reg, val) \ 618 do { \ 619 AQ_WRITE_REG(sc, reg, (uint32_t)val); \ 620 AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \ 621 } while (/* CONSTCOND */0) 622 623 #define AQ_READ_REG_BIT(sc, reg, mask) \ 624 __SHIFTOUT(AQ_READ_REG(sc, reg), mask) 625 626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val) \ 627 do { \ 628 uint32_t _v; \ 629 _v = AQ_READ_REG((sc), (reg)); \ 630 _v &= ~(mask); \ 631 if ((val) != 0) \ 632 _v |= __SHIFTIN((val), (mask)); \ 633 AQ_WRITE_REG((sc), (reg), _v); \ 634 } while (/* CONSTCOND */ 0) 635 636 #define WAIT_FOR(expr, us, n, errp) \ 637 do { \ 638 unsigned int _n; \ 639 for (_n = n; (!(expr)) && _n != 0; --_n) { \ 640 delay((us)); \ 641 } \ 642 if ((errp != NULL)) { \ 643 if (_n == 0) \ 644 *(errp) = ETIMEDOUT; \ 645 else \ 646 *(errp) = 0; \ 647 } \ 648 } while (/* CONSTCOND */ 0) 649 650 #define msec_delay(x) DELAY(1000 * (x)) 651 652 typedef struct aq_mailbox_header { 653 uint32_t version; 654 uint32_t transaction_id; 655 int32_t error; 656 } __packed aq_mailbox_header_t; 657 658 typedef struct aq_hw_stats_s { 659 uint32_t uprc; 660 uint32_t mprc; 661 uint32_t bprc; 662 uint32_t erpt; 663 uint32_t uptc; 664 uint32_t mptc; 665 uint32_t bptc; 666 uint32_t erpr; 667 uint32_t mbtc; 668 uint32_t bbtc; 669 uint32_t mbrc; 670 uint32_t bbrc; 671 uint32_t ubrc; 672 uint32_t ubtc; 673 uint32_t ptc; 674 uint32_t prc; 675 uint32_t dpc; /* not exists in fw2x_msm_statistics */ 676 uint32_t cprc; /* not exists in fw2x_msm_statistics */ 677 } __packed aq_hw_stats_s_t; 678 679 typedef struct fw1x_mailbox { 680 aq_mailbox_header_t header; 681 aq_hw_stats_s_t msm; 682 } __packed fw1x_mailbox_t; 683 684 typedef struct fw2x_msm_statistics { 685 uint32_t uprc; 686 uint32_t mprc; 687 uint32_t bprc; 688 uint32_t erpt; 689 uint32_t uptc; 690 uint32_t mptc; 691 uint32_t bptc; 692 uint32_t erpr; 693 uint32_t mbtc; 694 uint32_t bbtc; 695 uint32_t mbrc; 696 uint32_t bbrc; 697 uint32_t ubrc; 698 uint32_t ubtc; 699 uint32_t ptc; 700 uint32_t prc; 701 } __packed fw2x_msm_statistics_t; 702 703 typedef struct fw2x_phy_cable_diag_data { 704 uint32_t lane_data[4]; 705 } __packed fw2x_phy_cable_diag_data_t; 706 707 typedef struct fw2x_capabilities { 708 uint32_t caps_lo; 709 uint32_t caps_hi; 710 } __packed fw2x_capabilities_t; 711 712 typedef struct fw2x_mailbox { /* struct fwHostInterface */ 713 aq_mailbox_header_t header; 714 fw2x_msm_statistics_t msm; /* msmStatistics_t msm; */ 715 716 uint32_t phy_info1; 717 #define PHYINFO1_FAULT_CODE __BITS(31,16) 718 #define PHYINFO1_PHY_H_BIT __BITS(0,15) 719 uint32_t phy_info2; 720 #define PHYINFO2_TEMPERATURE __BITS(15,0) 721 #define PHYINFO2_CABLE_LEN __BITS(23,16) 722 723 fw2x_phy_cable_diag_data_t diag_data; 724 uint32_t reserved[8]; 725 726 fw2x_capabilities_t caps; 727 728 /* ... */ 729 } __packed fw2x_mailbox_t; 730 731 typedef enum aq_link_speed { 732 AQ_LINK_NONE = 0, 733 AQ_LINK_100M = (1 << 0), 734 AQ_LINK_1G = (1 << 1), 735 AQ_LINK_2G5 = (1 << 2), 736 AQ_LINK_5G = (1 << 3), 737 AQ_LINK_10G = (1 << 4) 738 } aq_link_speed_t; 739 #define AQ_LINK_ALL (AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \ 740 AQ_LINK_5G | AQ_LINK_10G ) 741 #define AQ_LINK_AUTO AQ_LINK_ALL 742 743 typedef enum aq_link_fc { 744 AQ_FC_NONE = 0, 745 AQ_FC_RX = __BIT(0), 746 AQ_FC_TX = __BIT(1), 747 AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX) 748 } aq_link_fc_t; 749 750 typedef enum aq_link_eee { 751 AQ_EEE_DISABLE = 0, 752 AQ_EEE_ENABLE = 1 753 } aq_link_eee_t; 754 755 typedef enum aq_hw_fw_mpi_state { 756 MPI_DEINIT = 0, 757 MPI_RESET = 1, 758 MPI_INIT = 2, 759 MPI_POWER = 4 760 } aq_hw_fw_mpi_state_t; 761 762 enum aq_media_type { 763 AQ_MEDIA_TYPE_UNKNOWN = 0, 764 AQ_MEDIA_TYPE_FIBRE, 765 AQ_MEDIA_TYPE_TP 766 }; 767 768 struct aq_rx_desc_read { 769 uint64_t buf_addr; 770 uint64_t hdr_addr; 771 } __packed; 772 773 struct aq_rx_desc_wb { 774 uint32_t type; 775 #define RXDESC_TYPE_RSSTYPE __BITS(3,0) 776 #define RXDESC_TYPE_RSSTYPE_NONE 0 777 #define RXDESC_TYPE_RSSTYPE_IPV4 2 778 #define RXDESC_TYPE_RSSTYPE_IPV6 3 779 #define RXDESC_TYPE_RSSTYPE_IPV4_TCP 4 780 #define RXDESC_TYPE_RSSTYPE_IPV6_TCP 5 781 #define RXDESC_TYPE_RSSTYPE_IPV4_UDP 6 782 #define RXDESC_TYPE_RSSTYPE_IPV6_UDP 7 783 #define RXDESC_TYPE_PKTTYPE_ETHER __BITS(5,4) 784 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV4 0 785 #define RXDESC_TYPE_PKTTYPE_ETHER_IPV6 1 786 #define RXDESC_TYPE_PKTTYPE_ETHER_OTHERS 2 787 #define RXDESC_TYPE_PKTTYPE_ETHER_ARP 3 788 #define RXDESC_TYPE_PKTTYPE_PROTO __BITS(8,6) 789 #define RXDESC_TYPE_PKTTYPE_PROTO_TCP 0 790 #define RXDESC_TYPE_PKTTYPE_PROTO_UDP 1 791 #define RXDESC_TYPE_PKTTYPE_PROTO_SCTP 2 792 #define RXDESC_TYPE_PKTTYPE_PROTO_ICMP 3 793 #define RXDESC_TYPE_PKTTYPE_PROTO_OTHERS 4 794 #define RXDESC_TYPE_PKTTYPE_VLAN __BIT(9) 795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE __BIT(10) 796 #define RXDESC_TYPE_MAC_DMA_ERR __BIT(12) 797 #define RXDESC_TYPE_RESERVED __BITS(18,13) 798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED __BIT(19) /* PKTTYPE_ETHER_IPV4 */ 799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED __BIT(20) 800 #define RXDESC_TYPE_SPH __BIT(21) 801 #define RXDESC_TYPE_HDR_LEN __BITS(31,22) 802 uint32_t rss_hash; 803 uint16_t status; 804 #define RXDESC_STATUS_DD __BIT(0) 805 #define RXDESC_STATUS_EOP __BIT(1) 806 #define RXDESC_STATUS_MACERR __BIT(2) 807 #define RXDESC_STATUS_IPV4_CSUM_NG __BIT(3) 808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR __BIT(4) 809 #define RXDESC_STATUS_TCPUDP_CSUM_OK __BIT(5) 810 811 #define RXDESC_STATUS_STAT __BITS(2,5) 812 #define RXDESC_STATUS_ESTAT __BITS(6,11) 813 #define RXDESC_STATUS_RSC_CNT __BITS(12,15) 814 uint16_t pkt_len; 815 uint16_t next_desc_ptr; 816 uint16_t vlan; 817 } __packed; 818 819 typedef union aq_rx_desc { 820 struct aq_rx_desc_read read; 821 struct aq_rx_desc_wb wb; 822 } __packed aq_rx_desc_t; 823 824 typedef struct aq_tx_desc { 825 uint64_t buf_addr; 826 uint32_t ctl1; 827 #define AQ_TXDESC_CTL1_TYPE_MASK 0x00000003 828 #define AQ_TXDESC_CTL1_TYPE_TXD 0x00000001 829 #define AQ_TXDESC_CTL1_TYPE_TXC 0x00000002 830 #define AQ_TXDESC_CTL1_BLEN __BITS(19,4) /* TXD */ 831 #define AQ_TXDESC_CTL1_DD __BIT(20) /* TXD */ 832 #define AQ_TXDESC_CTL1_EOP __BIT(21) /* TXD */ 833 #define AQ_TXDESC_CTL1_CMD_VLAN __BIT(22) /* TXD */ 834 #define AQ_TXDESC_CTL1_CMD_FCS __BIT(23) /* TXD */ 835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM __BIT(24) /* TXD */ 836 #define AQ_TXDESC_CTL1_CMD_L4CSUM __BIT(25) /* TXD */ 837 #define AQ_TXDESC_CTL1_CMD_LSO __BIT(26) /* TXD */ 838 #define AQ_TXDESC_CTL1_CMD_WB __BIT(27) /* TXD */ 839 #define AQ_TXDESC_CTL1_CMD_VXLAN __BIT(28) /* TXD */ 840 #define AQ_TXDESC_CTL1_VID __BITS(15,4) /* TXC */ 841 #define AQ_TXDESC_CTL1_LSO_IPV6 __BIT(21) /* TXC */ 842 #define AQ_TXDESC_CTL1_LSO_TCP __BIT(22) /* TXC */ 843 uint32_t ctl2; 844 #define AQ_TXDESC_CTL2_LEN __BITS(31,14) 845 #define AQ_TXDESC_CTL2_CTX_EN __BIT(13) 846 #define AQ_TXDESC_CTL2_CTX_IDX __BIT(12) 847 } __packed aq_tx_desc_t; 848 849 struct aq_txring { 850 struct aq_softc *txr_sc; 851 int txr_index; 852 kmutex_t txr_mutex; 853 bool txr_active; 854 855 pcq_t *txr_pcq; 856 void *txr_softint; 857 858 aq_tx_desc_t *txr_txdesc; /* aq_tx_desc_t[AQ_TXD_NUM] */ 859 bus_dmamap_t txr_txdesc_dmamap; 860 bus_dma_segment_t txr_txdesc_seg[1]; 861 bus_size_t txr_txdesc_size; 862 863 struct { 864 struct mbuf *m; 865 bus_dmamap_t dmamap; 866 } txr_mbufs[AQ_TXD_NUM]; 867 unsigned int txr_prodidx; 868 unsigned int txr_considx; 869 int txr_nfree; 870 }; 871 872 struct aq_rxring { 873 struct aq_softc *rxr_sc; 874 int rxr_index; 875 kmutex_t rxr_mutex; 876 bool rxr_active; 877 878 aq_rx_desc_t *rxr_rxdesc; /* aq_rx_desc_t[AQ_RXD_NUM] */ 879 bus_dmamap_t rxr_rxdesc_dmamap; 880 bus_dma_segment_t rxr_rxdesc_seg[1]; 881 bus_size_t rxr_rxdesc_size; 882 struct { 883 struct mbuf *m; 884 bus_dmamap_t dmamap; 885 } rxr_mbufs[AQ_RXD_NUM]; 886 unsigned int rxr_readidx; 887 }; 888 889 struct aq_queue { 890 struct aq_softc *sc; 891 struct aq_txring txring; 892 struct aq_rxring rxring; 893 }; 894 895 struct aq_softc; 896 struct aq_firmware_ops { 897 int (*reset)(struct aq_softc *); 898 int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t, 899 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 900 int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *, 901 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 902 int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *); 903 #if NSYSMON_ENVSYS > 0 904 int (*get_temperature)(struct aq_softc *, uint32_t *); 905 #endif 906 }; 907 908 #ifdef AQ_EVENT_COUNTERS 909 #define AQ_EVCNT_DECL(name) \ 910 char sc_evcount_##name##_name[32]; \ 911 struct evcnt sc_evcount_##name##_ev; 912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype) \ 913 do { \ 914 snprintf((sc)->sc_evcount_##name##_name, \ 915 sizeof((sc)->sc_evcount_##name##_name), \ 916 "%s", desc); \ 917 evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev, \ 918 (evtype), NULL, device_xname((sc)->sc_dev), \ 919 (sc)->sc_evcount_##name##_name); \ 920 } while (/*CONSTCOND*/0) 921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc) \ 922 AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC) 923 #define AQ_EVCNT_DETACH(sc, name) \ 924 evcnt_detach(&(sc)->sc_evcount_##name##_ev) 925 #define AQ_EVCNT_ADD(sc, name, val) \ 926 ((sc)->sc_evcount_##name##_ev.ev_count += (val)) 927 #endif /* AQ_EVENT_COUNTERS */ 928 929 #define AQ_LOCK(sc) mutex_enter(&(sc)->sc_mutex); 930 #define AQ_UNLOCK(sc) mutex_exit(&(sc)->sc_mutex); 931 932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */ 933 #define AQ_MPI_LOCK(sc) mutex_enter(&(sc)->sc_mpi_mutex); 934 #define AQ_MPI_UNLOCK(sc) mutex_exit(&(sc)->sc_mpi_mutex); 935 936 937 struct aq_softc { 938 device_t sc_dev; 939 940 bus_space_tag_t sc_iot; 941 bus_space_handle_t sc_ioh; 942 bus_size_t sc_iosize; 943 bus_dma_tag_t sc_dmat; 944 945 void *sc_ihs[AQ_NINTR_MAX]; 946 pci_intr_handle_t *sc_intrs; 947 948 int sc_tx_irq[AQ_RSSQUEUE_MAX]; 949 int sc_rx_irq[AQ_RSSQUEUE_MAX]; 950 int sc_linkstat_irq; 951 bool sc_use_txrx_independent_intr; 952 bool sc_poll_linkstat; 953 bool sc_detect_linkstat; 954 955 #if NSYSMON_ENVSYS > 0 956 struct sysmon_envsys *sc_sme; 957 envsys_data_t sc_sensor_temp; 958 #endif 959 960 callout_t sc_tick_ch; 961 962 int sc_nintrs; 963 bool sc_msix; 964 965 struct aq_queue sc_queue[AQ_RSSQUEUE_MAX]; 966 int sc_nqueues; 967 968 pci_chipset_tag_t sc_pc; 969 pcitag_t sc_pcitag; 970 uint16_t sc_product; 971 uint16_t sc_revision; 972 973 kmutex_t sc_mutex; 974 kmutex_t sc_mpi_mutex; 975 976 const struct aq_firmware_ops *sc_fw_ops; 977 uint64_t sc_fw_caps; 978 enum aq_media_type sc_media_type; 979 aq_link_speed_t sc_available_rates; 980 981 aq_link_speed_t sc_link_rate; 982 aq_link_fc_t sc_link_fc; 983 aq_link_eee_t sc_link_eee; 984 985 uint32_t sc_fw_version; 986 #define FW_VERSION_MAJOR(sc) (((sc)->sc_fw_version >> 24) & 0xff) 987 #define FW_VERSION_MINOR(sc) (((sc)->sc_fw_version >> 16) & 0xff) 988 #define FW_VERSION_BUILD(sc) ((sc)->sc_fw_version & 0xffff) 989 uint32_t sc_features; 990 #define FEATURES_MIPS 0x00000001 991 #define FEATURES_TPO2 0x00000002 992 #define FEATURES_RPF2 0x00000004 993 #define FEATURES_MPI_AQ 0x00000008 994 #define FEATURES_REV_A0 0x10000000 995 #define FEATURES_REV_A (FEATURES_REV_A0) 996 #define FEATURES_REV_B0 0x20000000 997 #define FEATURES_REV_B1 0x40000000 998 #define FEATURES_REV_B (FEATURES_REV_B0|FEATURES_REV_B1) 999 uint32_t sc_mbox_addr; 1000 1001 bool sc_rbl_enabled; 1002 bool sc_fast_start_enabled; 1003 bool sc_flash_present; 1004 1005 bool sc_intr_moderation_enable; 1006 bool sc_rss_enable; 1007 1008 struct ethercom sc_ethercom; 1009 struct ether_addr sc_enaddr; 1010 struct ifmedia sc_media; 1011 int sc_ec_capenable; /* last ec_capenable */ 1012 unsigned short sc_if_flags; /* last if_flags */ 1013 1014 #ifdef AQ_EVENT_COUNTERS 1015 aq_hw_stats_s_t sc_statistics[2]; 1016 int sc_statistics_idx; 1017 bool sc_poll_statistics; 1018 1019 AQ_EVCNT_DECL(uprc); 1020 AQ_EVCNT_DECL(mprc); 1021 AQ_EVCNT_DECL(bprc); 1022 AQ_EVCNT_DECL(erpt); 1023 AQ_EVCNT_DECL(uptc); 1024 AQ_EVCNT_DECL(mptc); 1025 AQ_EVCNT_DECL(bptc); 1026 AQ_EVCNT_DECL(erpr); 1027 AQ_EVCNT_DECL(mbtc); 1028 AQ_EVCNT_DECL(bbtc); 1029 AQ_EVCNT_DECL(mbrc); 1030 AQ_EVCNT_DECL(bbrc); 1031 AQ_EVCNT_DECL(ubrc); 1032 AQ_EVCNT_DECL(ubtc); 1033 AQ_EVCNT_DECL(ptc); 1034 AQ_EVCNT_DECL(prc); 1035 AQ_EVCNT_DECL(dpc); 1036 AQ_EVCNT_DECL(cprc); 1037 #endif 1038 }; 1039 1040 static int aq_match(device_t, cfdata_t, void *); 1041 static void aq_attach(device_t, device_t, void *); 1042 static int aq_detach(device_t, int); 1043 1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int, 1045 bool, bool); 1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *, 1047 pci_intr_type_t); 1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool); 1049 1050 static int aq_ifmedia_change(struct ifnet * const); 1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *); 1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set); 1053 static int aq_ifflags_cb(struct ethercom *); 1054 static int aq_init(struct ifnet *); 1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *, 1056 struct aq_txring *, bool); 1057 static int aq_transmit(struct ifnet *, struct mbuf *); 1058 static void aq_deferred_transmit(void *); 1059 static void aq_start(struct ifnet *); 1060 static void aq_stop(struct ifnet *, int); 1061 static void aq_watchdog(struct ifnet *); 1062 static int aq_ioctl(struct ifnet *, unsigned long, void *); 1063 1064 static int aq_txrx_rings_alloc(struct aq_softc *); 1065 static void aq_txrx_rings_free(struct aq_softc *); 1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *); 1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *); 1068 1069 static void aq_initmedia(struct aq_softc *); 1070 static void aq_enable_intr(struct aq_softc *, bool, bool); 1071 1072 #if NSYSMON_ENVSYS > 0 1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *); 1074 #endif 1075 static void aq_tick(void *); 1076 static int aq_legacy_intr(void *); 1077 static int aq_link_intr(void *); 1078 static int aq_txrx_intr(void *); 1079 static int aq_tx_intr(void *); 1080 static int aq_rx_intr(void *); 1081 1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t, 1083 aq_link_eee_t); 1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *, 1085 aq_link_eee_t *); 1086 1087 static int aq_fw_reset(struct aq_softc *); 1088 static int aq_fw_version_init(struct aq_softc *); 1089 static int aq_hw_init(struct aq_softc *); 1090 static int aq_hw_init_ucp(struct aq_softc *); 1091 static int aq_hw_reset(struct aq_softc *); 1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *, 1093 uint32_t); 1094 static int aq_get_mac_addr(struct aq_softc *); 1095 static int aq_init_rss(struct aq_softc *); 1096 static int aq_set_capability(struct aq_softc *); 1097 1098 static int fw1x_reset(struct aq_softc *); 1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1100 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1102 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1104 1105 static int fw2x_reset(struct aq_softc *); 1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t, 1107 aq_link_speed_t, aq_link_fc_t, aq_link_eee_t); 1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *, 1109 aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *); 1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *); 1111 #if NSYSMON_ENVSYS > 0 1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *); 1113 #endif 1114 1115 static const struct aq_firmware_ops aq_fw1x_ops = { 1116 .reset = fw1x_reset, 1117 .set_mode = fw1x_set_mode, 1118 .get_mode = fw1x_get_mode, 1119 .get_stats = fw1x_get_stats, 1120 #if NSYSMON_ENVSYS > 0 1121 .get_temperature = NULL 1122 #endif 1123 }; 1124 1125 static const struct aq_firmware_ops aq_fw2x_ops = { 1126 .reset = fw2x_reset, 1127 .set_mode = fw2x_set_mode, 1128 .get_mode = fw2x_get_mode, 1129 .get_stats = fw2x_get_stats, 1130 #if NSYSMON_ENVSYS > 0 1131 .get_temperature = fw2x_get_temperature 1132 #endif 1133 }; 1134 1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc), 1136 aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); 1137 1138 static const struct aq_product { 1139 pci_vendor_id_t aq_vendor; 1140 pci_product_id_t aq_product; 1141 const char *aq_name; 1142 enum aq_media_type aq_media_type; 1143 aq_link_speed_t aq_available_rates; 1144 } aq_products[] = { 1145 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100, 1146 "Aquantia AQC100 10 Gigabit Network Adapter", 1147 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1148 }, 1149 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107, 1150 "Aquantia AQC107 10 Gigabit Network Adapter", 1151 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1152 }, 1153 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108, 1154 "Aquantia AQC108 5 Gigabit Network Adapter", 1155 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1156 }, 1157 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109, 1158 "Aquantia AQC109 2.5 Gigabit Network Adapter", 1159 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1160 }, 1161 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111, 1162 "Aquantia AQC111 5 Gigabit Network Adapter", 1163 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1164 }, 1165 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112, 1166 "Aquantia AQC112 2.5 Gigabit Network Adapter", 1167 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1168 }, 1169 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S, 1170 "Aquantia AQC100S 10 Gigabit Network Adapter", 1171 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1172 }, 1173 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S, 1174 "Aquantia AQC107S 10 Gigabit Network Adapter", 1175 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1176 }, 1177 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S, 1178 "Aquantia AQC108S 5 Gigabit Network Adapter", 1179 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1180 }, 1181 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S, 1182 "Aquantia AQC109S 2.5 Gigabit Network Adapter", 1183 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1184 }, 1185 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S, 1186 "Aquantia AQC111S 5 Gigabit Network Adapter", 1187 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1188 }, 1189 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S, 1190 "Aquantia AQC112S 2.5 Gigabit Network Adapter", 1191 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1192 }, 1193 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100, 1194 "Aquantia D100 10 Gigabit Network Adapter", 1195 AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL 1196 }, 1197 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107, 1198 "Aquantia D107 10 Gigabit Network Adapter", 1199 AQ_MEDIA_TYPE_TP, AQ_LINK_ALL 1200 }, 1201 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108, 1202 "Aquantia D108 5 Gigabit Network Adapter", 1203 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G 1204 }, 1205 { PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109, 1206 "Aquantia D109 2.5 Gigabit Network Adapter", 1207 AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 1208 } 1209 }; 1210 1211 static const struct aq_product * 1212 aq_lookup(const struct pci_attach_args *pa) 1213 { 1214 unsigned int i; 1215 1216 for (i = 0; i < __arraycount(aq_products); i++) { 1217 if (PCI_VENDOR(pa->pa_id) == aq_products[i].aq_vendor && 1218 PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product) 1219 return &aq_products[i]; 1220 } 1221 return NULL; 1222 } 1223 1224 static int 1225 aq_match(device_t parent, cfdata_t cf, void *aux) 1226 { 1227 struct pci_attach_args *pa = aux; 1228 1229 if (aq_lookup(pa) != NULL) 1230 return 1; 1231 1232 return 0; 1233 } 1234 1235 static void 1236 aq_attach(device_t parent, device_t self, void *aux) 1237 { 1238 struct aq_softc *sc = device_private(self); 1239 struct pci_attach_args *pa = aux; 1240 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1241 pci_chipset_tag_t pc; 1242 pcitag_t tag; 1243 pcireg_t command, memtype, bar; 1244 const struct aq_product *aqp; 1245 int error; 1246 1247 sc->sc_dev = self; 1248 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET); 1249 mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET); 1250 1251 sc->sc_pc = pc = pa->pa_pc; 1252 sc->sc_pcitag = tag = pa->pa_tag; 1253 sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat; 1254 1255 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 1256 command |= PCI_COMMAND_MASTER_ENABLE; 1257 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); 1258 1259 sc->sc_product = PCI_PRODUCT(pa->pa_id); 1260 sc->sc_revision = PCI_REVISION(pa->pa_class); 1261 1262 aqp = aq_lookup(pa); 1263 KASSERT(aqp != NULL); 1264 1265 pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1); 1266 1267 bar = pci_conf_read(pc, tag, PCI_BAR(0)); 1268 if ((PCI_MAPREG_MEM_ADDR(bar) == 0) || 1269 (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) { 1270 aprint_error_dev(sc->sc_dev, "wrong BAR type\n"); 1271 return; 1272 } 1273 memtype = pci_mapreg_type(pc, tag, PCI_BAR(0)); 1274 if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh, 1275 NULL, &sc->sc_iosize) != 0) { 1276 aprint_error_dev(sc->sc_dev, "unable to map register\n"); 1277 return; 1278 } 1279 1280 sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX); 1281 1282 /* max queue num is 8, and must be 2^n */ 1283 if (ncpu >= 8) 1284 sc->sc_nqueues = 8; 1285 else if (ncpu >= 4) 1286 sc->sc_nqueues = 4; 1287 else if (ncpu >= 2) 1288 sc->sc_nqueues = 2; 1289 else 1290 sc->sc_nqueues = 1; 1291 1292 int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag); 1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT 1294 if (msixcount >= (sc->sc_nqueues * 2 + 1)) { 1295 /* TX intrs + RX intrs + LINKSTAT intrs */ 1296 sc->sc_use_txrx_independent_intr = true; 1297 sc->sc_poll_linkstat = false; 1298 sc->sc_msix = true; 1299 } else if (msixcount >= (sc->sc_nqueues * 2)) { 1300 /* TX intrs + RX intrs */ 1301 sc->sc_use_txrx_independent_intr = true; 1302 sc->sc_poll_linkstat = true; 1303 sc->sc_msix = true; 1304 } else 1305 #endif 1306 if (msixcount >= (sc->sc_nqueues + 1)) { 1307 /* TX/RX intrs LINKSTAT intrs */ 1308 sc->sc_use_txrx_independent_intr = false; 1309 sc->sc_poll_linkstat = false; 1310 sc->sc_msix = true; 1311 } else if (msixcount >= sc->sc_nqueues) { 1312 /* TX/RX intrs */ 1313 sc->sc_use_txrx_independent_intr = false; 1314 sc->sc_poll_linkstat = true; 1315 sc->sc_msix = true; 1316 } else { 1317 /* giving up using MSI-X */ 1318 sc->sc_msix = false; 1319 } 1320 1321 /* XXX: on FIBRE, linkstat interrupt does not occur on boot? */ 1322 if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE) 1323 sc->sc_poll_linkstat = true; 1324 1325 #ifdef AQ_FORCE_POLL_LINKSTAT 1326 sc->sc_poll_linkstat = true; 1327 #endif 1328 1329 aprint_debug_dev(sc->sc_dev, 1330 "ncpu=%d, pci_msix_count=%d." 1331 " allocate %d interrupts for %d%s queues%s\n", 1332 ncpu, msixcount, 1333 (sc->sc_use_txrx_independent_intr ? 1334 (sc->sc_nqueues * 2) : sc->sc_nqueues) + 1335 (sc->sc_poll_linkstat ? 0 : 1), 1336 sc->sc_nqueues, 1337 sc->sc_use_txrx_independent_intr ? "*2" : "", 1338 sc->sc_poll_linkstat ? "" : ", and link status"); 1339 1340 if (sc->sc_msix) 1341 error = aq_setup_msix(sc, pa, sc->sc_nqueues, 1342 sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat); 1343 else 1344 error = ENODEV; 1345 1346 if (error != 0) { 1347 /* if MSI-X failed, fallback to MSI with single queue */ 1348 sc->sc_use_txrx_independent_intr = false; 1349 sc->sc_poll_linkstat = false; 1350 sc->sc_msix = false; 1351 sc->sc_nqueues = 1; 1352 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI); 1353 } 1354 if (error != 0) { 1355 /* if MSI failed, fallback to INTx */ 1356 error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX); 1357 } 1358 if (error != 0) 1359 return; 1360 1361 callout_init(&sc->sc_tick_ch, 0); 1362 callout_setfunc(&sc->sc_tick_ch, aq_tick, sc); 1363 1364 sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE; 1365 1366 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1367 sc->sc_rss_enable = true; 1368 else 1369 sc->sc_rss_enable = false; 1370 1371 error = aq_txrx_rings_alloc(sc); 1372 if (error != 0) 1373 goto attach_failure; 1374 1375 error = aq_fw_reset(sc); 1376 if (error != 0) 1377 goto attach_failure; 1378 1379 error = aq_fw_version_init(sc); 1380 if (error != 0) 1381 goto attach_failure; 1382 1383 error = aq_hw_init_ucp(sc); 1384 if (error < 0) 1385 goto attach_failure; 1386 1387 KASSERT(sc->sc_mbox_addr != 0); 1388 error = aq_hw_reset(sc); 1389 if (error != 0) 1390 goto attach_failure; 1391 1392 aq_get_mac_addr(sc); 1393 aq_init_rss(sc); 1394 1395 error = aq_hw_init(sc); /* initialize and interrupts */ 1396 if (error != 0) 1397 goto attach_failure; 1398 1399 sc->sc_media_type = aqp->aq_media_type; 1400 sc->sc_available_rates = aqp->aq_available_rates; 1401 1402 sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 1403 ifmedia_init(&sc->sc_media, IFM_IMASK, 1404 aq_ifmedia_change, aq_ifmedia_status); 1405 aq_initmedia(sc); 1406 1407 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 1408 ifp->if_softc = sc; 1409 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1410 ifp->if_baudrate = IF_Gbps(10); 1411 ifp->if_init = aq_init; 1412 ifp->if_ioctl = aq_ioctl; 1413 if (sc->sc_msix && (sc->sc_nqueues > 1)) 1414 ifp->if_transmit = aq_transmit; 1415 ifp->if_start = aq_start; 1416 ifp->if_stop = aq_stop; 1417 ifp->if_watchdog = aq_watchdog; 1418 IFQ_SET_READY(&ifp->if_snd); 1419 1420 /* initialize capabilities */ 1421 sc->sc_ethercom.ec_capabilities = 0; 1422 sc->sc_ethercom.ec_capenable = 0; 1423 #if notyet 1424 /* TODO */ 1425 sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE; 1426 #endif 1427 sc->sc_ethercom.ec_capabilities |= 1428 ETHERCAP_JUMBO_MTU | 1429 ETHERCAP_VLAN_MTU | 1430 ETHERCAP_VLAN_HWTAGGING | 1431 ETHERCAP_VLAN_HWFILTER; 1432 sc->sc_ethercom.ec_capenable |= 1433 ETHERCAP_VLAN_HWTAGGING | 1434 ETHERCAP_VLAN_HWFILTER; 1435 1436 ifp->if_capabilities = 0; 1437 ifp->if_capenable = 0; 1438 #ifdef CONFIG_LRO_SUPPORT 1439 ifp->if_capabilities |= IFCAP_LRO; 1440 ifp->if_capenable |= IFCAP_LRO; 1441 #endif 1442 #if notyet 1443 /* TSO */ 1444 ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6; 1445 #endif 1446 1447 #if notyet 1448 /* 1449 * XXX: 1450 * Rx L4 CSUM doesn't work well for fragment packet. 1451 * aq marks 'CHEDKED' and 'BAD' for them. 1452 * we need to ignore (clear) hw-csum flags if the packet is fragmented 1453 * 1454 * TODO: test with LRO enabled 1455 */ 1456 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx; 1457 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx; 1458 #endif 1459 /* TX hardware checksum offloadding */ 1460 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx; 1461 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx; 1462 ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx; 1463 /* RX hardware checksum offloadding */ 1464 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx; 1465 1466 if_attach(ifp); 1467 if_deferred_start_init(ifp, NULL); 1468 ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet); 1469 ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb); 1470 ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb); 1471 1472 aq_enable_intr(sc, true, false); /* only intr about link */ 1473 1474 /* update media */ 1475 aq_ifmedia_change(ifp); 1476 1477 #if NSYSMON_ENVSYS > 0 1478 /* temperature monitoring */ 1479 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL && 1480 (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) { 1481 1482 sc->sc_sme = sysmon_envsys_create(); 1483 sc->sc_sme->sme_name = device_xname(self); 1484 sc->sc_sme->sme_cookie = sc; 1485 sc->sc_sme->sme_flags = 0; 1486 sc->sc_sme->sme_refresh = aq_temp_refresh; 1487 sc->sc_sensor_temp.units = ENVSYS_STEMP; 1488 sc->sc_sensor_temp.state = ENVSYS_SINVALID; 1489 snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY"); 1490 1491 sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp); 1492 sysmon_envsys_register(sc->sc_sme); 1493 1494 /* 1495 * for unknown reasons, the first call of fw2x_get_temperature() 1496 * will always fail (firmware matter?), so run once now. 1497 */ 1498 aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp); 1499 } 1500 #endif 1501 1502 #ifdef AQ_EVENT_COUNTERS 1503 /* get starting statistics values */ 1504 if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL && 1505 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) { 1506 sc->sc_poll_statistics = true; 1507 } 1508 1509 AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet"); 1510 AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet"); 1511 AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet"); 1512 AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet"); 1513 AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes"); 1514 AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes"); 1515 AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes"); 1516 AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet"); 1517 AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet"); 1518 AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet"); 1519 AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet"); 1520 AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet"); 1521 AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes"); 1522 AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes"); 1523 AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes"); 1524 AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet"); 1525 AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet"); 1526 AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet"); 1527 #endif 1528 1529 return; 1530 1531 attach_failure: 1532 aq_detach(self, 0); 1533 } 1534 1535 static int 1536 aq_detach(device_t self, int flags __unused) 1537 { 1538 struct aq_softc *sc = device_private(self); 1539 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1540 int i, s; 1541 1542 if (sc->sc_iosize != 0) { 1543 if (ifp->if_softc != NULL) { 1544 s = splnet(); 1545 aq_stop(ifp, 0); 1546 splx(s); 1547 } 1548 1549 for (i = 0; i < AQ_NINTR_MAX; i++) { 1550 if (sc->sc_ihs[i] != NULL) { 1551 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1552 sc->sc_ihs[i] = NULL; 1553 } 1554 } 1555 if (sc->sc_nintrs > 0) { 1556 pci_intr_release(sc->sc_pc, sc->sc_intrs, 1557 sc->sc_nintrs); 1558 sc->sc_intrs = NULL; 1559 sc->sc_nintrs = 0; 1560 } 1561 1562 aq_txrx_rings_free(sc); 1563 1564 if (ifp->if_softc != NULL) { 1565 ether_ifdetach(ifp); 1566 if_detach(ifp); 1567 } 1568 1569 aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__); 1570 bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize); 1571 sc->sc_iosize = 0; 1572 } 1573 1574 callout_stop(&sc->sc_tick_ch); 1575 1576 #if NSYSMON_ENVSYS > 0 1577 if (sc->sc_sme != NULL) { 1578 /* all sensors associated with this will also be detached */ 1579 sysmon_envsys_unregister(sc->sc_sme); 1580 sc->sc_sme = NULL; 1581 } 1582 #endif 1583 1584 #ifdef AQ_EVENT_COUNTERS 1585 AQ_EVCNT_DETACH(sc, uprc); 1586 AQ_EVCNT_DETACH(sc, mprc); 1587 AQ_EVCNT_DETACH(sc, bprc); 1588 AQ_EVCNT_DETACH(sc, erpt); 1589 AQ_EVCNT_DETACH(sc, uptc); 1590 AQ_EVCNT_DETACH(sc, mptc); 1591 AQ_EVCNT_DETACH(sc, bptc); 1592 AQ_EVCNT_DETACH(sc, erpr); 1593 AQ_EVCNT_DETACH(sc, mbtc); 1594 AQ_EVCNT_DETACH(sc, bbtc); 1595 AQ_EVCNT_DETACH(sc, mbrc); 1596 AQ_EVCNT_DETACH(sc, bbrc); 1597 AQ_EVCNT_DETACH(sc, ubrc); 1598 AQ_EVCNT_DETACH(sc, ubtc); 1599 AQ_EVCNT_DETACH(sc, ptc); 1600 AQ_EVCNT_DETACH(sc, prc); 1601 AQ_EVCNT_DETACH(sc, dpc); 1602 AQ_EVCNT_DETACH(sc, cprc); 1603 #endif 1604 1605 ifmedia_fini(&sc->sc_media); 1606 1607 mutex_destroy(&sc->sc_mpi_mutex); 1608 mutex_destroy(&sc->sc_mutex); 1609 1610 return 0; 1611 } 1612 1613 static int 1614 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity, 1615 int (*func)(void *), void *arg, const char *xname) 1616 { 1617 char intrbuf[PCI_INTRSTR_LEN]; 1618 pci_chipset_tag_t pc = sc->sc_pc; 1619 void *vih; 1620 const char *intrstr = NULL; 1621 1622 intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf, 1623 sizeof(intrbuf)); 1624 1625 pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true); 1626 1627 vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno], 1628 IPL_NET, func, arg, xname); 1629 if (vih == NULL) { 1630 aprint_error_dev(sc->sc_dev, 1631 "unable to establish MSI-X%s%s for %s\n", 1632 intrstr ? " at " : "", 1633 intrstr ? intrstr : "", xname); 1634 return EIO; 1635 } 1636 sc->sc_ihs[intno] = vih; 1637 1638 if (affinity != NULL) { 1639 /* Round-robin affinity */ 1640 kcpuset_zero(affinity); 1641 kcpuset_set(affinity, intno % ncpu); 1642 interrupt_distribute(vih, affinity, NULL); 1643 } 1644 1645 return 0; 1646 } 1647 1648 static int 1649 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent, 1650 bool linkintr) 1651 { 1652 kcpuset_t *affinity; 1653 int error, intno, i; 1654 char intr_xname[INTRDEVNAMEBUF]; 1655 1656 kcpuset_create(&affinity, false); 1657 1658 intno = 0; 1659 1660 if (txrx_independent) { 1661 for (i = 0; i < sc->sc_nqueues; i++) { 1662 snprintf(intr_xname, sizeof(intr_xname), "%s RX%d", 1663 device_xname(sc->sc_dev), i); 1664 sc->sc_rx_irq[i] = intno; 1665 error = aq_establish_intr(sc, intno++, affinity, 1666 aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname); 1667 if (error != 0) 1668 goto fail; 1669 } 1670 for (i = 0; i < sc->sc_nqueues; i++) { 1671 snprintf(intr_xname, sizeof(intr_xname), "%s TX%d", 1672 device_xname(sc->sc_dev), i); 1673 sc->sc_tx_irq[i] = intno; 1674 error = aq_establish_intr(sc, intno++, affinity, 1675 aq_tx_intr, &sc->sc_queue[i].txring, intr_xname); 1676 if (error != 0) 1677 goto fail; 1678 } 1679 } else { 1680 for (i = 0; i < sc->sc_nqueues; i++) { 1681 snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d", 1682 device_xname(sc->sc_dev), i); 1683 sc->sc_rx_irq[i] = intno; 1684 sc->sc_tx_irq[i] = intno; 1685 error = aq_establish_intr(sc, intno++, affinity, 1686 aq_txrx_intr, &sc->sc_queue[i], intr_xname); 1687 if (error != 0) 1688 goto fail; 1689 } 1690 } 1691 1692 if (linkintr) { 1693 snprintf(intr_xname, sizeof(intr_xname), "%s LINK", 1694 device_xname(sc->sc_dev)); 1695 sc->sc_linkstat_irq = intno; 1696 error = aq_establish_intr(sc, intno++, affinity, 1697 aq_link_intr, sc, intr_xname); 1698 if (error != 0) 1699 goto fail; 1700 } 1701 1702 kcpuset_destroy(affinity); 1703 return 0; 1704 1705 fail: 1706 for (i = 0; i < AQ_NINTR_MAX; i++) { 1707 if (sc->sc_ihs[i] != NULL) { 1708 pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]); 1709 sc->sc_ihs[i] = NULL; 1710 } 1711 } 1712 1713 kcpuset_destroy(affinity); 1714 return ENOMEM; 1715 } 1716 1717 static int 1718 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue, 1719 bool txrx_independent, bool linkintr) 1720 { 1721 int error, nintr; 1722 1723 if (txrx_independent) 1724 nintr = nqueue * 2; 1725 else 1726 nintr = nqueue; 1727 1728 if (linkintr) 1729 nintr++; 1730 1731 error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr); 1732 if (error != 0) { 1733 aprint_error_dev(sc->sc_dev, 1734 "failed to allocate MSI-X interrupts\n"); 1735 goto fail; 1736 } 1737 1738 error = aq_establish_msix_intr(sc, txrx_independent, linkintr); 1739 if (error == 0) { 1740 sc->sc_nintrs = nintr; 1741 } else { 1742 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1743 sc->sc_nintrs = 0; 1744 } 1745 fail: 1746 return error; 1747 1748 } 1749 1750 static int 1751 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa, 1752 pci_intr_type_t inttype) 1753 { 1754 int counts[PCI_INTR_TYPE_SIZE]; 1755 int error, nintr; 1756 1757 nintr = 1; 1758 1759 memset(counts, 0, sizeof(counts)); 1760 counts[inttype] = nintr; 1761 1762 error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype); 1763 if (error != 0) { 1764 aprint_error_dev(sc->sc_dev, 1765 "failed to allocate%s interrupts\n", 1766 (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : ""); 1767 return error; 1768 } 1769 error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc, 1770 device_xname(sc->sc_dev)); 1771 if (error == 0) { 1772 sc->sc_nintrs = nintr; 1773 } else { 1774 pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr); 1775 sc->sc_nintrs = 0; 1776 } 1777 return error; 1778 } 1779 1780 static void 1781 global_software_reset(struct aq_softc *sc) 1782 { 1783 uint32_t v; 1784 1785 AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0); 1786 AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0); 1787 AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG, 1788 FW_MPI_RESETCTRL_RESET_DIS, 0); 1789 1790 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1791 v &= ~AQ_FW_SOFTRESET_DIS; 1792 v |= AQ_FW_SOFTRESET_RESET; 1793 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1794 } 1795 1796 static int 1797 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1798 { 1799 int timo; 1800 1801 aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n"); 1802 1803 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1804 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1805 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1806 1807 /* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */ 1808 AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD); 1809 1810 global_software_reset(sc); 1811 1812 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0); 1813 1814 /* Wait for RBL to finish boot process. */ 1815 #define RBL_TIMEOUT_MS 10000 1816 uint16_t rbl_status; 1817 for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) { 1818 rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff; 1819 if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD) 1820 break; 1821 msec_delay(1); 1822 } 1823 if (timo <= 0) { 1824 aprint_error_dev(sc->sc_dev, 1825 "RBL> RBL restart failed: timeout\n"); 1826 return EBUSY; 1827 } 1828 switch (rbl_status) { 1829 case RBL_STATUS_SUCCESS: 1830 if (mode != NULL) 1831 *mode = FW_BOOT_MODE_RBL_FLASH; 1832 aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n"); 1833 break; 1834 case RBL_STATUS_HOST_BOOT: 1835 if (mode != NULL) 1836 *mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD; 1837 aprint_debug_dev(sc->sc_dev, 1838 "RBL> reset complete! [Host Bootload]\n"); 1839 break; 1840 case RBL_STATUS_FAILURE: 1841 default: 1842 aprint_error_dev(sc->sc_dev, 1843 "unknown RBL status 0x%x\n", rbl_status); 1844 return EBUSY; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int 1851 mac_soft_reset_flb(struct aq_softc *sc) 1852 { 1853 uint32_t v; 1854 int timo; 1855 1856 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1); 1857 /* 1858 * Let Felicity hardware to complete SMBUS transaction before 1859 * Global software reset. 1860 */ 1861 msec_delay(50); 1862 1863 /* 1864 * If SPI burst transaction was interrupted(before running the script), 1865 * global software reset may not clear SPI interface. 1866 * Clean it up manually before global reset. 1867 */ 1868 AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0); 1869 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f); 1870 AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f); 1871 msec_delay(50); 1872 1873 v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG); 1874 v &= ~AQ_FW_SOFTRESET_DIS; 1875 v |= AQ_FW_SOFTRESET_RESET; 1876 AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v); 1877 1878 /* Kickstart. */ 1879 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1880 AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0); 1881 if (!sc->sc_fast_start_enabled) 1882 AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1); 1883 1884 /* 1885 * For the case SPI burst transaction was interrupted (by MCP reset 1886 * above), wait until it is completed by hardware. 1887 */ 1888 msec_delay(50); 1889 1890 /* MAC Kickstart */ 1891 if (!sc->sc_fast_start_enabled) { 1892 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0); 1893 1894 uint32_t flb_status; 1895 for (timo = 0; timo < 1000; timo++) { 1896 flb_status = AQ_READ_REG(sc, 1897 FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10; 1898 if (flb_status != 0) 1899 break; 1900 msec_delay(1); 1901 } 1902 if (flb_status == 0) { 1903 aprint_error_dev(sc->sc_dev, 1904 "FLB> MAC kickstart failed: timed out\n"); 1905 return ETIMEDOUT; 1906 } 1907 aprint_debug_dev(sc->sc_dev, 1908 "FLB> MAC kickstart done, %d ms\n", timo); 1909 /* FW reset */ 1910 AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0); 1911 /* 1912 * Let Felicity hardware complete SMBUS transaction before 1913 * Global software reset. 1914 */ 1915 msec_delay(50); 1916 sc->sc_fast_start_enabled = true; 1917 } 1918 AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1); 1919 1920 /* PHY Kickstart: #undone */ 1921 global_software_reset(sc); 1922 1923 for (timo = 0; timo < 1000; timo++) { 1924 if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0) 1925 break; 1926 msec_delay(10); 1927 } 1928 if (timo >= 1000) { 1929 aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n"); 1930 return ETIMEDOUT; 1931 } 1932 aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10); 1933 return 0; 1934 1935 } 1936 1937 static int 1938 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode) 1939 { 1940 if (sc->sc_rbl_enabled) 1941 return mac_soft_reset_rbl(sc, mode); 1942 1943 if (mode != NULL) 1944 *mode = FW_BOOT_MODE_FLB; 1945 return mac_soft_reset_flb(sc); 1946 } 1947 1948 static int 1949 aq_fw_read_version(struct aq_softc *sc) 1950 { 1951 int i, error = EBUSY; 1952 #define MAC_FW_START_TIMEOUT_MS 10000 1953 for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) { 1954 sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1955 if (sc->sc_fw_version != 0) { 1956 error = 0; 1957 break; 1958 } 1959 delay(1000); 1960 } 1961 return error; 1962 } 1963 1964 static int 1965 aq_fw_reset(struct aq_softc *sc) 1966 { 1967 uint32_t ver, v, bootExitCode; 1968 int i, error; 1969 1970 ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG); 1971 1972 for (i = 1000; i > 0; i--) { 1973 v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG); 1974 bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG); 1975 if (v != 0x06000000 || bootExitCode != 0) 1976 break; 1977 } 1978 if (i <= 0) { 1979 aprint_error_dev(sc->sc_dev, 1980 "F/W reset failed. Neither RBL nor FLB started\n"); 1981 return ETIMEDOUT; 1982 } 1983 sc->sc_rbl_enabled = (bootExitCode != 0); 1984 1985 /* 1986 * Having FW version 0 is an indicator that cold start 1987 * is in progress. This means two things: 1988 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup) 1989 * 2) Driver may skip reset sequence and save time. 1990 */ 1991 if (sc->sc_fast_start_enabled && (ver != 0)) { 1992 error = aq_fw_read_version(sc); 1993 /* Skip reset as it just completed */ 1994 if (error == 0) 1995 return 0; 1996 } 1997 1998 aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN; 1999 error = mac_soft_reset(sc, &mode); 2000 if (error != 0) { 2001 aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error); 2002 return error; 2003 } 2004 2005 switch (mode) { 2006 case FW_BOOT_MODE_FLB: 2007 aprint_debug_dev(sc->sc_dev, 2008 "FLB> F/W successfully loaded from flash.\n"); 2009 sc->sc_flash_present = true; 2010 return aq_fw_read_version(sc); 2011 case FW_BOOT_MODE_RBL_FLASH: 2012 aprint_debug_dev(sc->sc_dev, 2013 "RBL> F/W loaded from flash. Host Bootload disabled.\n"); 2014 sc->sc_flash_present = true; 2015 return aq_fw_read_version(sc); 2016 case FW_BOOT_MODE_UNKNOWN: 2017 aprint_error_dev(sc->sc_dev, 2018 "F/W bootload error: unknown bootloader type\n"); 2019 return ENOTSUP; 2020 case FW_BOOT_MODE_RBL_HOST_BOOTLOAD: 2021 aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n"); 2022 break; 2023 } 2024 2025 /* 2026 * XXX: TODO: add support Host Boot 2027 */ 2028 aprint_error_dev(sc->sc_dev, 2029 "RBL> F/W Host Bootload not implemented\n"); 2030 return ENOTSUP; 2031 } 2032 2033 static int 2034 aq_hw_reset(struct aq_softc *sc) 2035 { 2036 int error; 2037 2038 /* disable irq */ 2039 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0); 2040 2041 /* apply */ 2042 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1); 2043 2044 /* wait ack 10 times by 1ms */ 2045 WAIT_FOR( 2046 (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0, 2047 1000, 10, &error); 2048 if (error != 0) { 2049 aprint_error_dev(sc->sc_dev, 2050 "atlantic: IRQ reset failed: %d\n", error); 2051 return error; 2052 } 2053 2054 return sc->sc_fw_ops->reset(sc); 2055 } 2056 2057 static int 2058 aq_hw_init_ucp(struct aq_softc *sc) 2059 { 2060 int timo; 2061 2062 if (FW_VERSION_MAJOR(sc) == 1) { 2063 if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) { 2064 uint32_t data; 2065 cprng_fast(&data, sizeof(data)); 2066 data &= 0xfefefefe; 2067 data |= 0x02020202; 2068 AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data); 2069 } 2070 AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0); 2071 } 2072 2073 for (timo = 100; timo > 0; timo--) { 2074 sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG); 2075 if (sc->sc_mbox_addr != 0) 2076 break; 2077 delay(1000); 2078 } 2079 2080 #define AQ_FW_MIN_VERSION 0x01050006 2081 #define AQ_FW_MIN_VERSION_STR "1.5.6" 2082 if (sc->sc_fw_version < AQ_FW_MIN_VERSION) { 2083 aprint_error_dev(sc->sc_dev, 2084 "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR 2085 " or later required, this is %d.%d.%d\n", 2086 FW_VERSION_MAJOR(sc), 2087 FW_VERSION_MINOR(sc), 2088 FW_VERSION_BUILD(sc)); 2089 return ENOTSUP; 2090 } 2091 2092 return 0; 2093 } 2094 2095 static int 2096 aq_fw_version_init(struct aq_softc *sc) 2097 { 2098 int error = 0; 2099 char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")]; 2100 2101 if (FW_VERSION_MAJOR(sc) == 1) { 2102 sc->sc_fw_ops = &aq_fw1x_ops; 2103 } else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) { 2104 sc->sc_fw_ops = &aq_fw2x_ops; 2105 } else { 2106 aprint_error_dev(sc->sc_dev, 2107 "Unsupported F/W version %d.%d.%d\n", 2108 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), 2109 FW_VERSION_BUILD(sc)); 2110 return ENOTSUP; 2111 } 2112 snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d", 2113 FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc)); 2114 2115 /* detect revision */ 2116 uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG); 2117 switch (hwrev & 0x0000000f) { 2118 case 0x01: 2119 aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n", 2120 fw_vers); 2121 sc->sc_features |= FEATURES_REV_A0 | 2122 FEATURES_MPI_AQ | FEATURES_MIPS; 2123 break; 2124 case 0x02: 2125 aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n", 2126 fw_vers); 2127 sc->sc_features |= FEATURES_REV_B0 | 2128 FEATURES_MPI_AQ | FEATURES_MIPS | 2129 FEATURES_TPO2 | FEATURES_RPF2; 2130 break; 2131 case 0x0A: 2132 aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n", 2133 fw_vers); 2134 sc->sc_features |= FEATURES_REV_B1 | 2135 FEATURES_MPI_AQ | FEATURES_MIPS | 2136 FEATURES_TPO2 | FEATURES_RPF2; 2137 break; 2138 default: 2139 aprint_error_dev(sc->sc_dev, 2140 "Unknown revision (0x%08x)\n", hwrev); 2141 error = ENOTSUP; 2142 break; 2143 } 2144 return error; 2145 } 2146 2147 static int 2148 fw1x_reset(struct aq_softc *sc) 2149 { 2150 struct aq_mailbox_header mbox; 2151 const int retryCount = 1000; 2152 uint32_t tid0; 2153 int i; 2154 2155 tid0 = ~0; /*< Initial value of MBOX transactionId. */ 2156 2157 for (i = 0; i < retryCount; ++i) { 2158 /* 2159 * Read the beginning of Statistics structure to capture 2160 * the Transaction ID. 2161 */ 2162 aq_fw_downld_dwords(sc, sc->sc_mbox_addr, 2163 (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t)); 2164 2165 /* Successfully read the stats. */ 2166 if (tid0 == ~0U) { 2167 /* We have read the initial value. */ 2168 tid0 = mbox.transaction_id; 2169 continue; 2170 } else if (mbox.transaction_id != tid0) { 2171 /* 2172 * Compare transaction ID to initial value. 2173 * If it's different means f/w is alive. 2174 * We're done. 2175 */ 2176 return 0; 2177 } 2178 2179 /* 2180 * Transaction ID value haven't changed since last time. 2181 * Try reading the stats again. 2182 */ 2183 delay(10); 2184 } 2185 aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n"); 2186 return EBUSY; 2187 } 2188 2189 static int 2190 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2191 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2192 { 2193 uint32_t mpictrl = 0; 2194 uint32_t mpispeed = 0; 2195 2196 if (speed & AQ_LINK_10G) 2197 mpispeed |= FW1X_CTRL_10G; 2198 if (speed & AQ_LINK_5G) 2199 mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR); 2200 if (speed & AQ_LINK_2G5) 2201 mpispeed |= FW1X_CTRL_2G5; 2202 if (speed & AQ_LINK_1G) 2203 mpispeed |= FW1X_CTRL_1G; 2204 if (speed & AQ_LINK_100M) 2205 mpispeed |= FW1X_CTRL_100M; 2206 2207 mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE); 2208 mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED); 2209 AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl); 2210 return 0; 2211 } 2212 2213 static int 2214 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2215 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2216 { 2217 uint32_t mpistate, mpi_speed; 2218 aq_link_speed_t speed = AQ_LINK_NONE; 2219 2220 mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG); 2221 2222 if (modep != NULL) 2223 *modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE); 2224 2225 mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED); 2226 if (mpi_speed & FW1X_CTRL_10G) 2227 speed = AQ_LINK_10G; 2228 else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR)) 2229 speed = AQ_LINK_5G; 2230 else if (mpi_speed & FW1X_CTRL_2G5) 2231 speed = AQ_LINK_2G5; 2232 else if (mpi_speed & FW1X_CTRL_1G) 2233 speed = AQ_LINK_1G; 2234 else if (mpi_speed & FW1X_CTRL_100M) 2235 speed = AQ_LINK_100M; 2236 2237 if (speedp != NULL) 2238 *speedp = speed; 2239 2240 if (fcp != NULL) 2241 *fcp = AQ_FC_NONE; 2242 2243 if (eeep != NULL) 2244 *eeep = AQ_EEE_DISABLE; 2245 2246 return 0; 2247 } 2248 2249 static int 2250 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2251 { 2252 int error; 2253 2254 error = aq_fw_downld_dwords(sc, 2255 sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats, 2256 sizeof(aq_hw_stats_s_t) / sizeof(uint32_t)); 2257 if (error < 0) { 2258 device_printf(sc->sc_dev, 2259 "fw1x> download statistics data FAILED, error %d", error); 2260 return error; 2261 } 2262 2263 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2264 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2265 return 0; 2266 } 2267 2268 static int 2269 fw2x_reset(struct aq_softc *sc) 2270 { 2271 fw2x_capabilities_t caps = { 0 }; 2272 int error; 2273 2274 error = aq_fw_downld_dwords(sc, 2275 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps), 2276 (uint32_t *)&caps, sizeof caps / sizeof(uint32_t)); 2277 if (error != 0) { 2278 aprint_error_dev(sc->sc_dev, 2279 "fw2x> can't get F/W capabilities mask, error %d\n", 2280 error); 2281 return error; 2282 } 2283 sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32); 2284 2285 char buf[256]; 2286 snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps); 2287 aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf); 2288 2289 return 0; 2290 } 2291 2292 static int 2293 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode, 2294 aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee) 2295 { 2296 uint64_t mpi_ctrl; 2297 int error = 0; 2298 2299 AQ_MPI_LOCK(sc); 2300 2301 mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2302 2303 switch (mode) { 2304 case MPI_INIT: 2305 mpi_ctrl &= ~FW2X_CTRL_RATE_MASK; 2306 if (speed & AQ_LINK_10G) 2307 mpi_ctrl |= FW2X_CTRL_RATE_10G; 2308 if (speed & AQ_LINK_5G) 2309 mpi_ctrl |= FW2X_CTRL_RATE_5G; 2310 if (speed & AQ_LINK_2G5) 2311 mpi_ctrl |= FW2X_CTRL_RATE_2G5; 2312 if (speed & AQ_LINK_1G) 2313 mpi_ctrl |= FW2X_CTRL_RATE_1G; 2314 if (speed & AQ_LINK_100M) 2315 mpi_ctrl |= FW2X_CTRL_RATE_100M; 2316 2317 mpi_ctrl &= ~FW2X_CTRL_LINK_DROP; 2318 2319 mpi_ctrl &= ~FW2X_CTRL_EEE_MASK; 2320 if (eee == AQ_EEE_ENABLE) 2321 mpi_ctrl |= FW2X_CTRL_EEE_MASK; 2322 2323 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2324 if (fc & AQ_FC_RX) 2325 mpi_ctrl |= FW2X_CTRL_PAUSE; 2326 if (fc & AQ_FC_TX) 2327 mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE; 2328 break; 2329 case MPI_DEINIT: 2330 mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK); 2331 mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE); 2332 break; 2333 default: 2334 device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode); 2335 error = EINVAL; 2336 goto failure; 2337 } 2338 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2339 2340 failure: 2341 AQ_MPI_UNLOCK(sc); 2342 return error; 2343 } 2344 2345 static int 2346 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep, 2347 aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep) 2348 { 2349 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2350 2351 if (modep != NULL) { 2352 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2353 if (mpi_ctrl & FW2X_CTRL_RATE_MASK) 2354 *modep = MPI_INIT; 2355 else 2356 *modep = MPI_DEINIT; 2357 } 2358 2359 aq_link_speed_t speed = AQ_LINK_NONE; 2360 if (mpi_state & FW2X_CTRL_RATE_10G) 2361 speed = AQ_LINK_10G; 2362 else if (mpi_state & FW2X_CTRL_RATE_5G) 2363 speed = AQ_LINK_5G; 2364 else if (mpi_state & FW2X_CTRL_RATE_2G5) 2365 speed = AQ_LINK_2G5; 2366 else if (mpi_state & FW2X_CTRL_RATE_1G) 2367 speed = AQ_LINK_1G; 2368 else if (mpi_state & FW2X_CTRL_RATE_100M) 2369 speed = AQ_LINK_100M; 2370 2371 if (speedp != NULL) 2372 *speedp = speed; 2373 2374 aq_link_fc_t fc = AQ_FC_NONE; 2375 if (mpi_state & FW2X_CTRL_PAUSE) 2376 fc |= AQ_FC_RX; 2377 if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE) 2378 fc |= AQ_FC_TX; 2379 if (fcp != NULL) 2380 *fcp = fc; 2381 2382 /* XXX: TODO: EEE */ 2383 if (eeep != NULL) 2384 *eeep = AQ_EEE_DISABLE; 2385 2386 return 0; 2387 } 2388 2389 static int 2390 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask, 2391 uint32_t timeout_ms, uint32_t try_count) 2392 { 2393 uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG); 2394 uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG); 2395 int error; 2396 2397 /* First, check that control and state values are consistent */ 2398 if ((mpi_ctrl & mask) != (mpi_state & mask)) { 2399 device_printf(sc->sc_dev, 2400 "fw2x> MPI control (%#llx) and state (%#llx)" 2401 " are not consistent for mask %#llx!\n", 2402 (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state, 2403 (unsigned long long)mask); 2404 return EINVAL; 2405 } 2406 2407 /* Invert bits (toggle) in control register */ 2408 mpi_ctrl ^= mask; 2409 AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl); 2410 2411 /* Clear all bits except masked */ 2412 mpi_ctrl &= mask; 2413 2414 /* Wait for FW reflecting change in state register */ 2415 WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl, 2416 1000 * timeout_ms, try_count, &error); 2417 if (error != 0) { 2418 device_printf(sc->sc_dev, 2419 "f/w2x> timeout while waiting for response" 2420 " in state register for bit %#llx!", 2421 (unsigned long long)mask); 2422 return error; 2423 } 2424 return 0; 2425 } 2426 2427 static int 2428 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats) 2429 { 2430 int error; 2431 2432 AQ_MPI_LOCK(sc); 2433 /* Say to F/W to update the statistics */ 2434 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25); 2435 if (error != 0) { 2436 device_printf(sc->sc_dev, 2437 "fw2x> statistics update error %d\n", error); 2438 goto failure; 2439 } 2440 2441 CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s)); 2442 error = aq_fw_downld_dwords(sc, 2443 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats, 2444 sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t)); 2445 if (error != 0) { 2446 device_printf(sc->sc_dev, 2447 "fw2x> download statistics data FAILED, error %d", error); 2448 goto failure; 2449 } 2450 stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG); 2451 stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG); 2452 2453 failure: 2454 AQ_MPI_UNLOCK(sc); 2455 return error; 2456 } 2457 2458 #if NSYSMON_ENVSYS > 0 2459 static int 2460 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp) 2461 { 2462 int error; 2463 uint32_t value, celsius; 2464 2465 AQ_MPI_LOCK(sc); 2466 2467 /* Say to F/W to update the temperature */ 2468 error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25); 2469 if (error != 0) 2470 goto failure; 2471 2472 error = aq_fw_downld_dwords(sc, 2473 sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2), 2474 &value, sizeof(value) / sizeof(uint32_t)); 2475 if (error != 0) 2476 goto failure; 2477 2478 /* 1/256 decrees C to microkelvin */ 2479 celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE); 2480 if (celsius == 0) { 2481 error = EIO; 2482 goto failure; 2483 } 2484 *temp = celsius * (1000000 / 256) + 273150000; 2485 2486 failure: 2487 AQ_MPI_UNLOCK(sc); 2488 return 0; 2489 } 2490 #endif 2491 2492 static int 2493 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p, 2494 uint32_t cnt) 2495 { 2496 uint32_t v; 2497 int error = 0; 2498 2499 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error); 2500 if (error != 0) { 2501 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2502 v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG); 2503 if (v == 0) { 2504 device_printf(sc->sc_dev, 2505 "%s:%d: timeout\n", __func__, __LINE__); 2506 return ETIMEDOUT; 2507 } 2508 } 2509 2510 AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr); 2511 2512 error = 0; 2513 for (; cnt > 0 && error == 0; cnt--) { 2514 /* execute mailbox interface */ 2515 AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG, 2516 AQ_FW_MBOX_CMD_EXECUTE, 1); 2517 if (sc->sc_features & FEATURES_REV_B1) { 2518 WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr, 2519 1, 1000, &error); 2520 } else { 2521 WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) & 2522 AQ_FW_MBOX_CMD_BUSY) == 0, 2523 1, 1000, &error); 2524 } 2525 *p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG); 2526 addr += sizeof(uint32_t); 2527 } 2528 AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1); 2529 2530 if (error != 0) 2531 device_printf(sc->sc_dev, 2532 "%s:%d: timeout\n", __func__, __LINE__); 2533 2534 return error; 2535 } 2536 2537 /* read my mac address */ 2538 static int 2539 aq_get_mac_addr(struct aq_softc *sc) 2540 { 2541 uint32_t mac_addr[2]; 2542 uint32_t efuse_shadow_addr; 2543 int err; 2544 2545 efuse_shadow_addr = 0; 2546 if (FW_VERSION_MAJOR(sc) >= 2) 2547 efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG); 2548 else 2549 efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG); 2550 2551 if (efuse_shadow_addr == 0) { 2552 aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n"); 2553 return ENXIO; 2554 } 2555 2556 memset(mac_addr, 0, sizeof(mac_addr)); 2557 err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4), 2558 mac_addr, __arraycount(mac_addr)); 2559 if (err < 0) 2560 return err; 2561 2562 if (mac_addr[0] == 0 && mac_addr[1] == 0) { 2563 aprint_error_dev(sc->sc_dev, "mac address not found\n"); 2564 return ENXIO; 2565 } 2566 2567 mac_addr[0] = bswap32(mac_addr[0]); 2568 mac_addr[1] = bswap32(mac_addr[1]); 2569 2570 memcpy(sc->sc_enaddr.ether_addr_octet, 2571 (uint8_t *)mac_addr, ETHER_ADDR_LEN); 2572 aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n", 2573 ether_sprintf(sc->sc_enaddr.ether_addr_octet)); 2574 2575 return 0; 2576 } 2577 2578 /* set multicast filter. index 0 for own address */ 2579 static int 2580 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr) 2581 { 2582 uint32_t h, l; 2583 2584 if (index >= AQ_HW_MAC_NUM) 2585 return EINVAL; 2586 2587 if (enaddr == NULL) { 2588 /* disable */ 2589 AQ_WRITE_REG_BIT(sc, 2590 RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2591 return 0; 2592 } 2593 2594 h = (enaddr[0] << 8) | (enaddr[1]); 2595 l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) | 2596 (enaddr[4] << 8) | (enaddr[5]); 2597 2598 /* disable, set, and enable */ 2599 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0); 2600 AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l); 2601 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), 2602 RPF_L2UC_MSW_MACADDR_HI, h); 2603 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1); 2604 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1); 2605 2606 return 0; 2607 } 2608 2609 static int 2610 aq_set_capability(struct aq_softc *sc) 2611 { 2612 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2613 int ip4csum_tx = 2614 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1; 2615 int ip4csum_rx = 2616 ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1; 2617 int l4csum_tx = ((ifp->if_capenable & 2618 (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx | 2619 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1; 2620 int l4csum_rx = 2621 ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx | 2622 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1; 2623 uint32_t lso = 2624 ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ? 2625 0 : 0xffffffff; 2626 uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ? 2627 0 : 0xffffffff; 2628 uint32_t i, v; 2629 2630 /* TX checksums offloads*/ 2631 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx); 2632 AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx); 2633 2634 /* RX checksums offloads*/ 2635 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx); 2636 AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx); 2637 2638 /* LSO offloads*/ 2639 AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso); 2640 2641 #define AQ_B0_LRO_RXD_MAX 16 2642 v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 : 2643 (4 < AQ_B0_LRO_RXD_MAX) ? 2 : 2644 (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0; 2645 for (i = 0; i < AQ_RINGS_NUM; i++) { 2646 AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i), 2647 RPO_LRO_LDES_MAX_MASK(i), v); 2648 } 2649 2650 AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a); 2651 AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG, 2652 RPO_LRO_INACTIVE_IVAL, 0); 2653 /* 2654 * the LRO timebase divider is 5 uS (0x61a), 2655 * to get a maximum coalescing interval of 250 uS, 2656 * we need to multiply by 50(0x32) to get 2657 * the default value 250 uS 2658 */ 2659 AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG, 2660 RPO_LRO_MAX_COALESCING_IVAL, 50); 2661 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2662 RPO_LRO_CONF_QSESSION_LIMIT, 1); 2663 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2664 RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2); 2665 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2666 RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0); 2667 AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG, 2668 RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10); 2669 AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1); 2670 AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro); 2671 2672 return 0; 2673 } 2674 2675 static int 2676 aq_set_filter(struct aq_softc *sc) 2677 { 2678 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2679 struct ethercom *ec = &sc->sc_ethercom; 2680 struct ether_multi *enm; 2681 struct ether_multistep step; 2682 int idx, error = 0; 2683 2684 if (ifp->if_flags & IFF_PROMISC) { 2685 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC, 2686 (ifp->if_flags & IFF_PROMISC) ? 1 : 0); 2687 ec->ec_flags |= ETHER_F_ALLMULTI; 2688 goto done; 2689 } 2690 2691 /* clear all table */ 2692 for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) { 2693 if (idx == AQ_HW_MAC_OWN) /* already used for own */ 2694 continue; 2695 aq_set_mac_addr(sc, idx, NULL); 2696 } 2697 2698 /* don't accept all multicast */ 2699 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2700 RPF_MCAST_FILTER_MASK_ALLMULTI, 0); 2701 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2702 RPF_MCAST_FILTER_EN, 0); 2703 2704 idx = 0; 2705 ETHER_LOCK(ec); 2706 ETHER_FIRST_MULTI(step, ec, enm); 2707 while (enm != NULL) { 2708 if (idx == AQ_HW_MAC_OWN) 2709 idx++; 2710 2711 if ((idx >= AQ_HW_MAC_NUM) || 2712 memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2713 /* 2714 * too many filters. 2715 * fallback to accept all multicast addresses. 2716 */ 2717 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG, 2718 RPF_MCAST_FILTER_MASK_ALLMULTI, 1); 2719 AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0), 2720 RPF_MCAST_FILTER_EN, 1); 2721 ec->ec_flags |= ETHER_F_ALLMULTI; 2722 ETHER_UNLOCK(ec); 2723 goto done; 2724 } 2725 2726 /* add a filter */ 2727 aq_set_mac_addr(sc, idx++, enm->enm_addrlo); 2728 2729 ETHER_NEXT_MULTI(step, enm); 2730 } 2731 ec->ec_flags &= ~ETHER_F_ALLMULTI; 2732 ETHER_UNLOCK(ec); 2733 2734 done: 2735 return error; 2736 } 2737 2738 static int 2739 aq_ifmedia_change(struct ifnet * const ifp) 2740 { 2741 struct aq_softc *sc = ifp->if_softc; 2742 aq_link_speed_t rate = AQ_LINK_NONE; 2743 aq_link_fc_t fc = AQ_FC_NONE; 2744 aq_link_eee_t eee = AQ_EEE_DISABLE; 2745 2746 if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER) 2747 return EINVAL; 2748 2749 switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) { 2750 case IFM_AUTO: 2751 rate = AQ_LINK_AUTO; 2752 break; 2753 case IFM_NONE: 2754 rate = AQ_LINK_NONE; 2755 break; 2756 case IFM_100_TX: 2757 rate = AQ_LINK_100M; 2758 break; 2759 case IFM_1000_T: 2760 rate = AQ_LINK_1G; 2761 break; 2762 case IFM_2500_T: 2763 rate = AQ_LINK_2G5; 2764 break; 2765 case IFM_5000_T: 2766 rate = AQ_LINK_5G; 2767 break; 2768 case IFM_10G_T: 2769 rate = AQ_LINK_10G; 2770 break; 2771 default: 2772 device_printf(sc->sc_dev, "unknown media: 0x%X\n", 2773 IFM_SUBTYPE(sc->sc_media.ifm_media)); 2774 return ENODEV; 2775 } 2776 2777 if (sc->sc_media.ifm_media & IFM_FLOW) 2778 fc = AQ_FC_ALL; 2779 2780 /* XXX: todo EEE */ 2781 2782 /* re-initialize hardware with new parameters */ 2783 aq_set_linkmode(sc, rate, fc, eee); 2784 2785 return 0; 2786 } 2787 2788 static void 2789 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr) 2790 { 2791 struct aq_softc *sc = ifp->if_softc; 2792 2793 /* update ifm_active */ 2794 ifmr->ifm_active = IFM_ETHER; 2795 if (sc->sc_link_fc & AQ_FC_RX) 2796 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2797 if (sc->sc_link_fc & AQ_FC_TX) 2798 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2799 2800 switch (sc->sc_link_rate) { 2801 case AQ_LINK_100M: 2802 /* XXX: need to detect fulldup or halfdup */ 2803 ifmr->ifm_active |= IFM_100_TX | IFM_FDX; 2804 break; 2805 case AQ_LINK_1G: 2806 ifmr->ifm_active |= IFM_1000_T | IFM_FDX; 2807 break; 2808 case AQ_LINK_2G5: 2809 ifmr->ifm_active |= IFM_2500_T | IFM_FDX; 2810 break; 2811 case AQ_LINK_5G: 2812 ifmr->ifm_active |= IFM_5000_T | IFM_FDX; 2813 break; 2814 case AQ_LINK_10G: 2815 ifmr->ifm_active |= IFM_10G_T | IFM_FDX; 2816 break; 2817 default: 2818 ifmr->ifm_active |= IFM_NONE; 2819 break; 2820 } 2821 2822 /* update ifm_status */ 2823 ifmr->ifm_status = IFM_AVALID; 2824 if (sc->sc_link_rate != AQ_LINK_NONE) 2825 ifmr->ifm_status |= IFM_ACTIVE; 2826 } 2827 2828 static void 2829 aq_initmedia(struct aq_softc *sc) 2830 { 2831 #define IFMEDIA_ETHER_ADD(sc, media) \ 2832 ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL); 2833 2834 IFMEDIA_ETHER_ADD(sc, IFM_NONE); 2835 if (sc->sc_available_rates & AQ_LINK_100M) { 2836 IFMEDIA_ETHER_ADD(sc, IFM_100_TX); 2837 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW); 2838 IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW); 2839 } 2840 if (sc->sc_available_rates & AQ_LINK_1G) { 2841 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX); 2842 IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW); 2843 } 2844 if (sc->sc_available_rates & AQ_LINK_2G5) { 2845 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX); 2846 IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW); 2847 } 2848 if (sc->sc_available_rates & AQ_LINK_5G) { 2849 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX); 2850 IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW); 2851 } 2852 if (sc->sc_available_rates & AQ_LINK_10G) { 2853 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX); 2854 IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW); 2855 } 2856 IFMEDIA_ETHER_ADD(sc, IFM_AUTO); 2857 IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW); 2858 2859 /* default: auto without flowcontrol */ 2860 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO); 2861 aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE); 2862 } 2863 2864 static int 2865 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc, 2866 aq_link_eee_t eee) 2867 { 2868 return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee); 2869 } 2870 2871 static int 2872 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc, 2873 aq_link_eee_t *eee) 2874 { 2875 aq_hw_fw_mpi_state_t mode; 2876 int error; 2877 2878 error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee); 2879 if (error != 0) 2880 return error; 2881 if (mode != MPI_INIT) 2882 return ENXIO; 2883 2884 return 0; 2885 } 2886 2887 static void 2888 aq_hw_init_tx_path(struct aq_softc *sc) 2889 { 2890 /* Tx TC/RSS number config */ 2891 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1); 2892 2893 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2894 THM_LSO_TCP_FLAG1_FIRST, 0x0ff6); 2895 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG, 2896 THM_LSO_TCP_FLAG1_MID, 0x0ff6); 2897 AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG, 2898 THM_LSO_TCP_FLAG2_LAST, 0x0f7f); 2899 2900 /* misc */ 2901 AQ_WRITE_REG(sc, TX_TPO2_REG, 2902 (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0); 2903 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0); 2904 AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0); 2905 2906 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1); 2907 } 2908 2909 static void 2910 aq_hw_init_rx_path(struct aq_softc *sc) 2911 { 2912 int i; 2913 2914 /* clear setting */ 2915 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0); 2916 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0); 2917 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0); 2918 for (i = 0; i < 32; i++) { 2919 AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i), 2920 RPF_ETHERTYPE_FILTER_EN, 0); 2921 } 2922 2923 if (sc->sc_rss_enable) { 2924 /* Rx TC/RSS number config */ 2925 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1); 2926 2927 /* Rx flow control */ 2928 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1); 2929 2930 /* RSS Ring selection */ 2931 switch (sc->sc_nqueues) { 2932 case 2: 2933 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2934 RX_FLR_RSS_CONTROL1_EN | 0x11111111); 2935 break; 2936 case 4: 2937 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2938 RX_FLR_RSS_CONTROL1_EN | 0x22222222); 2939 break; 2940 case 8: 2941 AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 2942 RX_FLR_RSS_CONTROL1_EN | 0x33333333); 2943 break; 2944 } 2945 } 2946 2947 /* L2 and Multicast filters */ 2948 for (i = 0; i < AQ_HW_MAC_NUM; i++) { 2949 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0); 2950 AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION, 2951 RPF_ACTION_HOST); 2952 } 2953 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0); 2954 AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff); 2955 2956 /* Vlan filters */ 2957 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER, 2958 ETHERTYPE_QINQ); 2959 AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER, 2960 ETHERTYPE_VLAN); 2961 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 2962 2963 if (sc->sc_features & FEATURES_REV_B) { 2964 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2965 RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1); 2966 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 2967 RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST); 2968 } 2969 2970 /* misc */ 2971 if (sc->sc_features & FEATURES_RPF2) 2972 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2); 2973 else 2974 AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0); 2975 2976 /* 2977 * XXX: RX_TCP_RSS_HASH_REG: 2978 * linux set 0x000f0000 2979 * freebsd set 0x000f001e 2980 */ 2981 /* RSS hash type set for IP/TCP */ 2982 AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG, 2983 RX_TCP_RSS_HASH_TYPE, 0x001e); 2984 2985 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1); 2986 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST); 2987 AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff); 2988 2989 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0); 2990 AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0); 2991 } 2992 2993 static void 2994 aq_hw_interrupt_moderation_set(struct aq_softc *sc) 2995 { 2996 int i; 2997 2998 if (sc->sc_intr_moderation_enable) { 2999 unsigned int tx_min, rx_min; /* 0-255 */ 3000 unsigned int tx_max, rx_max; /* 0-511? */ 3001 3002 switch (sc->sc_link_rate) { 3003 case AQ_LINK_100M: 3004 tx_min = 0x4f; 3005 tx_max = 0xff; 3006 rx_min = 0x04; 3007 rx_max = 0x50; 3008 break; 3009 case AQ_LINK_1G: 3010 default: 3011 tx_min = 0x4f; 3012 tx_max = 0xff; 3013 rx_min = 0x30; 3014 rx_max = 0x80; 3015 break; 3016 case AQ_LINK_2G5: 3017 tx_min = 0x4f; 3018 tx_max = 0xff; 3019 rx_min = 0x18; 3020 rx_max = 0xe0; 3021 break; 3022 case AQ_LINK_5G: 3023 tx_min = 0x4f; 3024 tx_max = 0xff; 3025 rx_min = 0x0c; 3026 rx_max = 0x70; 3027 break; 3028 case AQ_LINK_10G: 3029 tx_min = 0x4f; 3030 tx_max = 0x1ff; 3031 rx_min = 0x06; /* freebsd use 80 */ 3032 rx_max = 0x38; /* freebsd use 120 */ 3033 break; 3034 } 3035 3036 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3037 TX_DMA_INT_DESC_WRWB_EN, 0); 3038 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3039 TX_DMA_INT_DESC_MODERATE_EN, 1); 3040 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3041 RX_DMA_INT_DESC_WRWB_EN, 0); 3042 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3043 RX_DMA_INT_DESC_MODERATE_EN, 1); 3044 3045 for (i = 0; i < AQ_RINGS_NUM; i++) { 3046 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 3047 __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) | 3048 __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) | 3049 TX_INTR_MODERATION_CTL_EN); 3050 } 3051 for (i = 0; i < AQ_RINGS_NUM; i++) { 3052 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 3053 __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) | 3054 __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) | 3055 RX_INTR_MODERATION_CTL_EN); 3056 } 3057 3058 } else { 3059 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3060 TX_DMA_INT_DESC_WRWB_EN, 1); 3061 AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG, 3062 TX_DMA_INT_DESC_MODERATE_EN, 0); 3063 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3064 RX_DMA_INT_DESC_WRWB_EN, 1); 3065 AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG, 3066 RX_DMA_INT_DESC_MODERATE_EN, 0); 3067 3068 for (i = 0; i < AQ_RINGS_NUM; i++) { 3069 AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0); 3070 } 3071 for (i = 0; i < AQ_RINGS_NUM; i++) { 3072 AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0); 3073 } 3074 } 3075 } 3076 3077 static void 3078 aq_hw_qos_set(struct aq_softc *sc) 3079 { 3080 uint32_t tc = 0; 3081 uint32_t buff_size; 3082 3083 /* TPS Descriptor rate init */ 3084 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0); 3085 AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa); 3086 3087 /* TPS VM init */ 3088 AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0); 3089 3090 /* TPS TC credits init */ 3091 AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0); 3092 AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0); 3093 3094 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3095 TPS_DATA_TCT_CREDIT_MAX, 0xfff); 3096 AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc), 3097 TPS_DATA_TCT_WEIGHT, 0x64); 3098 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3099 TPS_DESC_TCT_CREDIT_MAX, 0x50); 3100 AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc), 3101 TPS_DESC_TCT_WEIGHT, 0x1e); 3102 3103 /* Tx buf size */ 3104 tc = 0; 3105 buff_size = AQ_HW_TXBUF_MAX; 3106 AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE, 3107 buff_size); 3108 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI, 3109 (buff_size * (1024 / 32) * 66) / 100); 3110 AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO, 3111 (buff_size * (1024 / 32) * 50) / 100); 3112 3113 /* QoS Rx buf size per TC */ 3114 tc = 0; 3115 buff_size = AQ_HW_RXBUF_MAX; 3116 AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE, 3117 buff_size); 3118 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0); 3119 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI, 3120 (buff_size * (1024 / 32) * 66) / 100); 3121 AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO, 3122 (buff_size * (1024 / 32) * 50) / 100); 3123 3124 /* QoS 802.1p priority -> TC mapping */ 3125 int i_priority; 3126 for (i_priority = 0; i_priority < 8; i_priority++) { 3127 AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG, 3128 RPF_RPB_RX_TC_UPT_MASK(i_priority), 0); 3129 } 3130 } 3131 3132 /* called once from aq_attach */ 3133 static int 3134 aq_init_rss(struct aq_softc *sc) 3135 { 3136 CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE); 3137 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 3138 uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX]; 3139 unsigned int i; 3140 int error; 3141 3142 /* initialize rss key */ 3143 rss_getkey((uint8_t *)rss_key); 3144 3145 /* hash to ring table */ 3146 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3147 rss_table[i] = i % sc->sc_nqueues; 3148 } 3149 3150 /* 3151 * set rss key 3152 */ 3153 for (i = 0; i < __arraycount(rss_key); i++) { 3154 uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0; 3155 AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data); 3156 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3157 RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i); 3158 AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3159 RPF_RSS_KEY_WR_EN, 1); 3160 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG, 3161 RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error); 3162 if (error != 0) { 3163 device_printf(sc->sc_dev, "%s: rss key write timeout\n", 3164 __func__); 3165 goto rss_set_timeout; 3166 } 3167 } 3168 3169 /* 3170 * set rss indirection table 3171 * 3172 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array. 3173 * we'll make it by __BITMAP(3) macros. 3174 */ 3175 __BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64; 3176 __BITMAP_ZERO(&bit3x64); 3177 3178 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val) \ 3179 do { \ 3180 if (val & 1) { \ 3181 __BITMAP_SET((idx) * 3, (bitmap)); \ 3182 } else { \ 3183 __BITMAP_CLR((idx) * 3, (bitmap)); \ 3184 } \ 3185 if (val & 2) { \ 3186 __BITMAP_SET((idx) * 3 + 1, (bitmap)); \ 3187 } else { \ 3188 __BITMAP_CLR((idx) * 3 + 1, (bitmap)); \ 3189 } \ 3190 if (val & 4) { \ 3191 __BITMAP_SET((idx) * 3 + 2, (bitmap)); \ 3192 } else { \ 3193 __BITMAP_CLR((idx) * 3 + 2, (bitmap)); \ 3194 } \ 3195 } while (0 /* CONSTCOND */) 3196 3197 for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) { 3198 AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]); 3199 } 3200 3201 /* write 192bit data in steps of 16bit */ 3202 for (i = 0; i < (int)__arraycount(bit3x64._b); i++) { 3203 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG, 3204 RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]); 3205 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3206 RPF_RSS_REDIR_ADDR, i); 3207 AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3208 RPF_RSS_REDIR_WR_EN, 1); 3209 3210 WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG, 3211 RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error); 3212 if (error != 0) 3213 break; 3214 } 3215 3216 rss_set_timeout: 3217 return error; 3218 } 3219 3220 static void 3221 aq_hw_l3_filter_set(struct aq_softc *sc) 3222 { 3223 int i; 3224 3225 /* clear all filter */ 3226 for (i = 0; i < 8; i++) { 3227 AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i), 3228 RPF_L3_FILTER_L4_EN, 0); 3229 } 3230 } 3231 3232 static void 3233 aq_set_vlan_filters(struct aq_softc *sc) 3234 { 3235 struct ethercom *ec = &sc->sc_ethercom; 3236 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3237 struct vlanid_list *vlanidp; 3238 int i; 3239 3240 ETHER_LOCK(ec); 3241 3242 /* disable all vlan filters */ 3243 for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++) 3244 AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0); 3245 3246 /* count VID */ 3247 i = 0; 3248 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) 3249 i++; 3250 3251 if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) || 3252 (ifp->if_flags & IFF_PROMISC) || 3253 (i > RPF_VLAN_MAX_FILTERS)) { 3254 /* 3255 * no vlan hwfilter, in promiscuous mode, or too many VID? 3256 * must receive all VID 3257 */ 3258 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, 3259 RPF_VLAN_MODE_PROMISC, 1); 3260 goto done; 3261 } 3262 3263 /* receive only selected VID */ 3264 AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0); 3265 i = 0; 3266 SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) { 3267 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3268 RPF_VLAN_FILTER_EN, 1); 3269 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3270 RPF_VLAN_FILTER_RXQ_EN, 0); 3271 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3272 RPF_VLAN_FILTER_RXQ, 0); 3273 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3274 RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST); 3275 AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i), 3276 RPF_VLAN_FILTER_ID, vlanidp->vid); 3277 i++; 3278 } 3279 3280 done: 3281 ETHER_UNLOCK(ec); 3282 } 3283 3284 static int 3285 aq_hw_init(struct aq_softc *sc) 3286 { 3287 uint32_t v; 3288 3289 /* Force limit MRRS on RDM/TDM to 2K */ 3290 v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG); 3291 AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404); 3292 3293 /* 3294 * TX DMA total request limit. B0 hardware is not capable to 3295 * handle more than (8K-MRRS) incoming DMA data. 3296 * Value 24 in 256byte units 3297 */ 3298 AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24); 3299 3300 aq_hw_init_tx_path(sc); 3301 aq_hw_init_rx_path(sc); 3302 3303 aq_hw_interrupt_moderation_set(sc); 3304 3305 aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet); 3306 aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE); 3307 3308 aq_hw_qos_set(sc); 3309 3310 /* Enable interrupt */ 3311 int irqmode; 3312 if (sc->sc_msix) 3313 irqmode = AQ_INTR_CTRL_IRQMODE_MSIX; 3314 else 3315 irqmode = AQ_INTR_CTRL_IRQMODE_MSI; 3316 3317 AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS); 3318 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC, 3319 sc->sc_msix ? 1 : 0); 3320 AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode); 3321 3322 AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff); 3323 3324 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0), 3325 ((AQ_B0_ERR_INT << 24) | (1U << 31)) | 3326 ((AQ_B0_ERR_INT << 16) | (1 << 23)) 3327 ); 3328 3329 /* link interrupt */ 3330 if (!sc->sc_msix) 3331 sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ; 3332 AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3), 3333 __BIT(7) | sc->sc_linkstat_irq); 3334 3335 return 0; 3336 } 3337 3338 static int 3339 aq_update_link_status(struct aq_softc *sc) 3340 { 3341 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 3342 aq_link_speed_t rate = AQ_LINK_NONE; 3343 aq_link_fc_t fc = AQ_FC_NONE; 3344 aq_link_eee_t eee = AQ_EEE_DISABLE; 3345 unsigned int speed; 3346 int changed = 0; 3347 3348 aq_get_linkmode(sc, &rate, &fc, &eee); 3349 3350 if (sc->sc_link_rate != rate) 3351 changed = 1; 3352 if (sc->sc_link_fc != fc) 3353 changed = 1; 3354 if (sc->sc_link_eee != eee) 3355 changed = 1; 3356 3357 if (changed) { 3358 switch (rate) { 3359 case AQ_LINK_100M: 3360 speed = 100; 3361 break; 3362 case AQ_LINK_1G: 3363 speed = 1000; 3364 break; 3365 case AQ_LINK_2G5: 3366 speed = 2500; 3367 break; 3368 case AQ_LINK_5G: 3369 speed = 5000; 3370 break; 3371 case AQ_LINK_10G: 3372 speed = 10000; 3373 break; 3374 case AQ_LINK_NONE: 3375 default: 3376 speed = 0; 3377 break; 3378 } 3379 3380 if (sc->sc_link_rate == AQ_LINK_NONE) { 3381 /* link DOWN -> UP */ 3382 device_printf(sc->sc_dev, "link is UP: speed=%u\n", 3383 speed); 3384 if_link_state_change(ifp, LINK_STATE_UP); 3385 } else if (rate == AQ_LINK_NONE) { 3386 /* link UP -> DOWN */ 3387 device_printf(sc->sc_dev, "link is DOWN\n"); 3388 if_link_state_change(ifp, LINK_STATE_DOWN); 3389 } else { 3390 device_printf(sc->sc_dev, 3391 "link mode changed: speed=%u, fc=0x%x, eee=%x\n", 3392 speed, fc, eee); 3393 } 3394 3395 sc->sc_link_rate = rate; 3396 sc->sc_link_fc = fc; 3397 sc->sc_link_eee = eee; 3398 3399 /* update interrupt timing according to new link speed */ 3400 aq_hw_interrupt_moderation_set(sc); 3401 } 3402 3403 return changed; 3404 } 3405 3406 #ifdef AQ_EVENT_COUNTERS 3407 static void 3408 aq_update_statistics(struct aq_softc *sc) 3409 { 3410 int prev = sc->sc_statistics_idx; 3411 int cur = prev ^ 1; 3412 3413 sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]); 3414 3415 /* 3416 * aq's internal statistics counter is 32bit. 3417 * cauculate delta, and add to evcount 3418 */ 3419 #define ADD_DELTA(cur, prev, name) \ 3420 do { \ 3421 uint32_t n; \ 3422 n = (uint32_t)(sc->sc_statistics[cur].name - \ 3423 sc->sc_statistics[prev].name); \ 3424 if (n != 0) { \ 3425 AQ_EVCNT_ADD(sc, name, n); \ 3426 } \ 3427 } while (/*CONSTCOND*/0); 3428 3429 ADD_DELTA(cur, prev, uprc); 3430 ADD_DELTA(cur, prev, mprc); 3431 ADD_DELTA(cur, prev, bprc); 3432 ADD_DELTA(cur, prev, prc); 3433 ADD_DELTA(cur, prev, erpr); 3434 ADD_DELTA(cur, prev, uptc); 3435 ADD_DELTA(cur, prev, mptc); 3436 ADD_DELTA(cur, prev, bptc); 3437 ADD_DELTA(cur, prev, ptc); 3438 ADD_DELTA(cur, prev, erpt); 3439 ADD_DELTA(cur, prev, mbtc); 3440 ADD_DELTA(cur, prev, bbtc); 3441 ADD_DELTA(cur, prev, mbrc); 3442 ADD_DELTA(cur, prev, bbrc); 3443 ADD_DELTA(cur, prev, ubrc); 3444 ADD_DELTA(cur, prev, ubtc); 3445 ADD_DELTA(cur, prev, dpc); 3446 ADD_DELTA(cur, prev, cprc); 3447 3448 sc->sc_statistics_idx = cur; 3449 } 3450 #endif /* AQ_EVENT_COUNTERS */ 3451 3452 /* allocate and map one DMA block */ 3453 static int 3454 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep, 3455 void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3456 { 3457 int nsegs, error; 3458 3459 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg, 3460 1, &nsegs, 0)) != 0) { 3461 aprint_error_dev(sc->sc_dev, 3462 "unable to allocate DMA buffer, error=%d\n", error); 3463 goto fail_alloc; 3464 } 3465 3466 if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp, 3467 BUS_DMA_COHERENT)) != 0) { 3468 aprint_error_dev(sc->sc_dev, 3469 "unable to map DMA buffer, error=%d\n", error); 3470 goto fail_map; 3471 } 3472 3473 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, 3474 0, mapp)) != 0) { 3475 aprint_error_dev(sc->sc_dev, 3476 "unable to create DMA map, error=%d\n", error); 3477 goto fail_create; 3478 } 3479 3480 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL, 3481 0)) != 0) { 3482 aprint_error_dev(sc->sc_dev, 3483 "unable to load DMA map, error=%d\n", error); 3484 goto fail_load; 3485 } 3486 3487 *sizep = size; 3488 return 0; 3489 3490 fail_load: 3491 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3492 *mapp = NULL; 3493 fail_create: 3494 bus_dmamem_unmap(sc->sc_dmat, *addrp, size); 3495 *addrp = NULL; 3496 fail_map: 3497 bus_dmamem_free(sc->sc_dmat, seg, 1); 3498 memset(seg, 0, sizeof(*seg)); 3499 fail_alloc: 3500 *sizep = 0; 3501 return error; 3502 } 3503 3504 static void 3505 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp, 3506 bus_dmamap_t *mapp, bus_dma_segment_t *seg) 3507 { 3508 if (*mapp != NULL) { 3509 bus_dmamap_destroy(sc->sc_dmat, *mapp); 3510 *mapp = NULL; 3511 } 3512 if (*addrp != NULL) { 3513 bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep); 3514 *addrp = NULL; 3515 } 3516 if (*sizep != 0) { 3517 bus_dmamem_free(sc->sc_dmat, seg, 1); 3518 memset(seg, 0, sizeof(*seg)); 3519 *sizep = 0; 3520 } 3521 } 3522 3523 static int 3524 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring) 3525 { 3526 int i, error; 3527 3528 /* allocate tx descriptors */ 3529 error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM, 3530 &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3531 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3532 if (error != 0) 3533 return error; 3534 3535 memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM); 3536 3537 /* fill tx ring with dmamap */ 3538 for (i = 0; i < AQ_TXD_NUM; i++) { 3539 #define AQ_MAXDMASIZE (16 * 1024) 3540 #define AQ_NTXSEGS 32 3541 /* XXX: TODO: error check */ 3542 bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS, 3543 AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap); 3544 } 3545 return 0; 3546 } 3547 3548 static void 3549 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring) 3550 { 3551 int i; 3552 3553 _free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc, 3554 &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg); 3555 3556 for (i = 0; i < AQ_TXD_NUM; i++) { 3557 if (txring->txr_mbufs[i].dmamap != NULL) { 3558 if (txring->txr_mbufs[i].m != NULL) { 3559 bus_dmamap_unload(sc->sc_dmat, 3560 txring->txr_mbufs[i].dmamap); 3561 m_freem(txring->txr_mbufs[i].m); 3562 txring->txr_mbufs[i].m = NULL; 3563 } 3564 bus_dmamap_destroy(sc->sc_dmat, 3565 txring->txr_mbufs[i].dmamap); 3566 txring->txr_mbufs[i].dmamap = NULL; 3567 } 3568 } 3569 } 3570 3571 static int 3572 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring) 3573 { 3574 int i, error; 3575 3576 /* allocate rx descriptors */ 3577 error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM, 3578 &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3579 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3580 if (error != 0) 3581 return error; 3582 3583 memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM); 3584 3585 /* fill rxring with dmamaps */ 3586 for (i = 0; i < AQ_RXD_NUM; i++) { 3587 rxring->rxr_mbufs[i].m = NULL; 3588 /* XXX: TODO: error check */ 3589 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, 3590 &rxring->rxr_mbufs[i].dmamap); 3591 } 3592 return 0; 3593 } 3594 3595 static void 3596 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring) 3597 { 3598 int i; 3599 3600 /* free all mbufs allocated for RX */ 3601 for (i = 0; i < AQ_RXD_NUM; i++) { 3602 if (rxring->rxr_mbufs[i].m != NULL) { 3603 bus_dmamap_unload(sc->sc_dmat, 3604 rxring->rxr_mbufs[i].dmamap); 3605 m_freem(rxring->rxr_mbufs[i].m); 3606 rxring->rxr_mbufs[i].m = NULL; 3607 } 3608 } 3609 } 3610 3611 static void 3612 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring) 3613 { 3614 int i; 3615 3616 /* free all mbufs and dmamaps */ 3617 aq_rxdrain(sc, rxring); 3618 for (i = 0; i < AQ_RXD_NUM; i++) { 3619 if (rxring->rxr_mbufs[i].dmamap != NULL) { 3620 bus_dmamap_destroy(sc->sc_dmat, 3621 rxring->rxr_mbufs[i].dmamap); 3622 rxring->rxr_mbufs[i].dmamap = NULL; 3623 } 3624 } 3625 3626 /* free RX descriptor */ 3627 _free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc, 3628 &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg); 3629 } 3630 3631 static void 3632 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx, 3633 struct mbuf *m) 3634 { 3635 int error; 3636 3637 /* if mbuf already exists, unload and free */ 3638 if (rxring->rxr_mbufs[idx].m != NULL) { 3639 bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap); 3640 m_freem(rxring->rxr_mbufs[idx].m); 3641 rxring->rxr_mbufs[idx].m = NULL; 3642 } 3643 3644 rxring->rxr_mbufs[idx].m = m; 3645 3646 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 3647 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 3648 m, BUS_DMA_READ | BUS_DMA_NOWAIT); 3649 if (error) { 3650 device_printf(sc->sc_dev, 3651 "unable to load rx DMA map %d, error = %d\n", idx, error); 3652 panic("%s: unable to load rx DMA map. error=%d", 3653 __func__, error); 3654 } 3655 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 3656 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 3657 } 3658 3659 static inline void 3660 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3661 { 3662 /* refill rxdesc, and sync */ 3663 rxring->rxr_rxdesc[idx].read.buf_addr = 3664 htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr); 3665 rxring->rxr_rxdesc[idx].read.hdr_addr = 0; 3666 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 3667 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 3668 BUS_DMASYNC_PREWRITE); 3669 } 3670 3671 static struct mbuf * 3672 aq_alloc_mbuf(void) 3673 { 3674 struct mbuf *m; 3675 3676 MGETHDR(m, M_DONTWAIT, MT_DATA); 3677 if (m == NULL) 3678 return NULL; 3679 3680 MCLGET(m, M_DONTWAIT); 3681 if ((m->m_flags & M_EXT) == 0) { 3682 m_freem(m); 3683 return NULL; 3684 } 3685 3686 return m; 3687 } 3688 3689 /* allocate mbuf and unload dmamap */ 3690 static int 3691 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx) 3692 { 3693 struct mbuf *m; 3694 3695 m = aq_alloc_mbuf(); 3696 if (m == NULL) 3697 return ENOBUFS; 3698 3699 aq_rxring_setmbuf(sc, rxring, idx, m); 3700 return 0; 3701 } 3702 3703 static int 3704 aq_txrx_rings_alloc(struct aq_softc *sc) 3705 { 3706 int n, error; 3707 3708 for (n = 0; n < sc->sc_nqueues; n++) { 3709 sc->sc_queue[n].sc = sc; 3710 sc->sc_queue[n].txring.txr_sc = sc; 3711 sc->sc_queue[n].txring.txr_index = n; 3712 mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT, 3713 IPL_NET); 3714 error = aq_txring_alloc(sc, &sc->sc_queue[n].txring); 3715 if (error != 0) 3716 goto failure; 3717 3718 error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring); 3719 if (error != 0) 3720 goto failure; 3721 3722 sc->sc_queue[n].rxring.rxr_sc = sc; 3723 sc->sc_queue[n].rxring.rxr_index = n; 3724 mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT, 3725 IPL_NET); 3726 error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring); 3727 if (error != 0) 3728 break; 3729 } 3730 3731 failure: 3732 return error; 3733 } 3734 3735 static void 3736 aq_txrx_rings_free(struct aq_softc *sc) 3737 { 3738 int n; 3739 3740 for (n = 0; n < sc->sc_nqueues; n++) { 3741 aq_txring_free(sc, &sc->sc_queue[n].txring); 3742 mutex_destroy(&sc->sc_queue[n].txring.txr_mutex); 3743 3744 aq_tx_pcq_free(sc, &sc->sc_queue[n].txring); 3745 3746 aq_rxring_free(sc, &sc->sc_queue[n].rxring); 3747 mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex); 3748 } 3749 } 3750 3751 static int 3752 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring) 3753 { 3754 int error = 0; 3755 txring->txr_softint = NULL; 3756 3757 txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP); 3758 if (txring->txr_pcq == NULL) { 3759 aprint_error_dev(sc->sc_dev, 3760 "unable to allocate pcq for TXring[%d]\n", 3761 txring->txr_index); 3762 error = ENOMEM; 3763 goto done; 3764 } 3765 3766 txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE, 3767 aq_deferred_transmit, txring); 3768 if (txring->txr_softint == NULL) { 3769 aprint_error_dev(sc->sc_dev, 3770 "unable to establish softint for TXring[%d]\n", 3771 txring->txr_index); 3772 error = ENOENT; 3773 } 3774 3775 done: 3776 return error; 3777 } 3778 3779 static void 3780 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring) 3781 { 3782 struct mbuf *m; 3783 3784 if (txring->txr_softint != NULL) { 3785 softint_disestablish(txring->txr_softint); 3786 txring->txr_softint = NULL; 3787 } 3788 3789 if (txring->txr_pcq != NULL) { 3790 while ((m = pcq_get(txring->txr_pcq)) != NULL) 3791 m_freem(m); 3792 pcq_destroy(txring->txr_pcq); 3793 txring->txr_pcq = NULL; 3794 } 3795 } 3796 3797 #if NSYSMON_ENVSYS > 0 3798 static void 3799 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) 3800 { 3801 struct aq_softc *sc; 3802 uint32_t temp; 3803 int error; 3804 3805 sc = sme->sme_cookie; 3806 3807 error = sc->sc_fw_ops->get_temperature(sc, &temp); 3808 if (error == 0) { 3809 edata->value_cur = temp; 3810 edata->state = ENVSYS_SVALID; 3811 } else { 3812 edata->state = ENVSYS_SINVALID; 3813 } 3814 } 3815 #endif 3816 3817 static void 3818 aq_tick(void *arg) 3819 { 3820 struct aq_softc *sc = arg; 3821 3822 if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) { 3823 sc->sc_detect_linkstat = false; 3824 aq_update_link_status(sc); 3825 } 3826 3827 #ifdef AQ_EVENT_COUNTERS 3828 if (sc->sc_poll_statistics) 3829 aq_update_statistics(sc); 3830 #endif 3831 3832 if (sc->sc_poll_linkstat 3833 #ifdef AQ_EVENT_COUNTERS 3834 || sc->sc_poll_statistics 3835 #endif 3836 ) { 3837 callout_schedule(&sc->sc_tick_ch, hz); 3838 } 3839 } 3840 3841 /* interrupt enable/disable */ 3842 static void 3843 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx) 3844 { 3845 uint32_t imask = 0; 3846 int i; 3847 3848 if (txrx) { 3849 for (i = 0; i < sc->sc_nqueues; i++) { 3850 imask |= __BIT(sc->sc_tx_irq[i]); 3851 imask |= __BIT(sc->sc_rx_irq[i]); 3852 } 3853 } 3854 3855 if (link) 3856 imask |= __BIT(sc->sc_linkstat_irq); 3857 3858 AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask); 3859 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3860 } 3861 3862 static int 3863 aq_legacy_intr(void *arg) 3864 { 3865 struct aq_softc *sc = arg; 3866 uint32_t status; 3867 int nintr = 0; 3868 3869 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3870 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff); 3871 3872 if (status & __BIT(sc->sc_linkstat_irq)) { 3873 sc->sc_detect_linkstat = true; 3874 callout_schedule(&sc->sc_tick_ch, 0); 3875 nintr++; 3876 } 3877 3878 if (status & __BIT(sc->sc_rx_irq[0])) { 3879 nintr += aq_rx_intr(&sc->sc_queue[0].rxring); 3880 } 3881 3882 if (status & __BIT(sc->sc_tx_irq[0])) { 3883 nintr += aq_tx_intr(&sc->sc_queue[0].txring); 3884 } 3885 3886 return nintr; 3887 } 3888 3889 static int 3890 aq_txrx_intr(void *arg) 3891 { 3892 struct aq_queue *queue = arg; 3893 struct aq_softc *sc = queue->sc; 3894 struct aq_txring *txring = &queue->txring; 3895 struct aq_rxring *rxring = &queue->rxring; 3896 uint32_t status; 3897 int nintr = 0; 3898 int txringidx, rxringidx, txirq, rxirq; 3899 3900 txringidx = txring->txr_index; 3901 rxringidx = rxring->rxr_index; 3902 txirq = sc->sc_tx_irq[txringidx]; 3903 rxirq = sc->sc_rx_irq[rxringidx]; 3904 3905 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3906 if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) { 3907 /* stray interrupt? */ 3908 return 0; 3909 } 3910 3911 nintr += aq_rx_intr(rxring); 3912 nintr += aq_tx_intr(txring); 3913 3914 return nintr; 3915 } 3916 3917 static int 3918 aq_link_intr(void *arg) 3919 { 3920 struct aq_softc *sc = arg; 3921 uint32_t status; 3922 int nintr = 0; 3923 3924 status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG); 3925 if (status & __BIT(sc->sc_linkstat_irq)) { 3926 sc->sc_detect_linkstat = true; 3927 callout_schedule(&sc->sc_tick_ch, 0); 3928 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 3929 __BIT(sc->sc_linkstat_irq)); 3930 nintr++; 3931 } 3932 3933 return nintr; 3934 } 3935 3936 static void 3937 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start) 3938 { 3939 const int ringidx = txring->txr_index; 3940 int i; 3941 3942 mutex_enter(&txring->txr_mutex); 3943 3944 txring->txr_prodidx = 0; 3945 txring->txr_considx = 0; 3946 txring->txr_nfree = AQ_TXD_NUM; 3947 txring->txr_active = false; 3948 3949 /* free mbufs untransmitted */ 3950 for (i = 0; i < AQ_TXD_NUM; i++) { 3951 if (txring->txr_mbufs[i].m != NULL) { 3952 m_freem(txring->txr_mbufs[i].m); 3953 txring->txr_mbufs[i].m = NULL; 3954 } 3955 } 3956 3957 /* disable DMA */ 3958 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0); 3959 3960 if (start) { 3961 /* TX descriptor physical address */ 3962 paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr; 3963 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 3964 AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 3965 (uint32_t)((uint64_t)paddr >> 32)); 3966 3967 /* TX descriptor size */ 3968 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN, 3969 AQ_TXD_NUM / 8); 3970 3971 /* reload TAIL pointer */ 3972 txring->txr_prodidx = txring->txr_considx = 3973 AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx)); 3974 AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0); 3975 3976 /* Mapping interrupt vector */ 3977 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3978 AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]); 3979 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx), 3980 AQ_INTR_IRQ_MAP_TX_EN(ringidx), true); 3981 3982 /* enable DMA */ 3983 AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), 3984 TX_DMA_DESC_EN, 1); 3985 3986 const int cpuid = 0; /* XXX? */ 3987 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3988 TDM_DCAD_CPUID, cpuid); 3989 AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx), 3990 TDM_DCAD_CPUID_EN, 0); 3991 3992 txring->txr_active = true; 3993 } 3994 3995 mutex_exit(&txring->txr_mutex); 3996 } 3997 3998 static int 3999 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start) 4000 { 4001 const int ringidx = rxring->rxr_index; 4002 int i; 4003 int error = 0; 4004 4005 mutex_enter(&rxring->rxr_mutex); 4006 rxring->rxr_active = false; 4007 4008 /* disable DMA */ 4009 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0); 4010 4011 /* free all RX mbufs */ 4012 aq_rxdrain(sc, rxring); 4013 4014 if (start) { 4015 for (i = 0; i < AQ_RXD_NUM; i++) { 4016 error = aq_rxring_add(sc, rxring, i); 4017 if (error != 0) { 4018 aq_rxdrain(sc, rxring); 4019 return error; 4020 } 4021 aq_rxring_reset_desc(sc, rxring, i); 4022 } 4023 4024 /* RX descriptor physical address */ 4025 paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr; 4026 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr); 4027 AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx), 4028 (uint32_t)((uint64_t)paddr >> 32)); 4029 4030 /* RX descriptor size */ 4031 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN, 4032 AQ_RXD_NUM / 8); 4033 4034 /* maximum receive frame size */ 4035 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4036 RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024); 4037 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx), 4038 RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024); 4039 4040 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4041 RX_DMA_DESC_HEADER_SPLIT, 0); 4042 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4043 RX_DMA_DESC_VLAN_STRIP, 4044 (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4045 1 : 0); 4046 4047 /* 4048 * reload TAIL pointer, and update readidx 4049 * (HEAD pointer cannot write) 4050 */ 4051 rxring->rxr_readidx = AQ_READ_REG_BIT(sc, 4052 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR); 4053 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), 4054 (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM); 4055 4056 /* Rx ring set mode */ 4057 4058 /* Mapping interrupt vector */ 4059 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4060 AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]); 4061 AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx), 4062 AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1); 4063 4064 const int cpuid = 0; /* XXX? */ 4065 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4066 RX_DMA_DCAD_CPUID, cpuid); 4067 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4068 RX_DMA_DCAD_DESC_EN, 0); 4069 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4070 RX_DMA_DCAD_HEADER_EN, 0); 4071 AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx), 4072 RX_DMA_DCAD_PAYLOAD_EN, 0); 4073 4074 /* enable DMA. start receiving */ 4075 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), 4076 RX_DMA_DESC_EN, 1); 4077 4078 rxring->rxr_active = true; 4079 } 4080 4081 mutex_exit(&rxring->rxr_mutex); 4082 return error; 4083 } 4084 4085 #define TXRING_NEXTIDX(idx) \ 4086 (((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1)) 4087 #define RXRING_NEXTIDX(idx) \ 4088 (((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1)) 4089 4090 static int 4091 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp) 4092 { 4093 bus_dmamap_t map; 4094 struct mbuf *m = *mp; 4095 uint32_t ctl1, ctl1_ctx, ctl2; 4096 int idx, i, error; 4097 4098 idx = txring->txr_prodidx; 4099 map = txring->txr_mbufs[idx].dmamap; 4100 4101 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4102 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4103 if (error == EFBIG) { 4104 struct mbuf *n; 4105 n = m_defrag(m, M_DONTWAIT); 4106 if (n == NULL) 4107 return EFBIG; 4108 /* m_defrag() preserve m */ 4109 KASSERT(n == m); 4110 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, 4111 BUS_DMA_WRITE | BUS_DMA_NOWAIT); 4112 } 4113 if (error != 0) 4114 return error; 4115 4116 /* 4117 * check spaces of free descriptors. 4118 * +1 is additional descriptor for context (vlan, etc,.) 4119 */ 4120 if ((map->dm_nsegs + 1) > txring->txr_nfree) { 4121 device_printf(sc->sc_dev, 4122 "TX: not enough descriptors left %d for %d segs\n", 4123 txring->txr_nfree, map->dm_nsegs + 1); 4124 bus_dmamap_unload(sc->sc_dmat, map); 4125 return ENOBUFS; 4126 } 4127 4128 /* sync dma for mbuf */ 4129 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 4130 BUS_DMASYNC_PREWRITE); 4131 4132 ctl1_ctx = 0; 4133 ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN); 4134 4135 if (vlan_has_tag(m)) { 4136 ctl1 = AQ_TXDESC_CTL1_TYPE_TXC; 4137 ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID); 4138 4139 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN; 4140 ctl2 |= AQ_TXDESC_CTL2_CTX_EN; 4141 4142 /* fill context descriptor and forward index */ 4143 txring->txr_txdesc[idx].buf_addr = 0; 4144 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4145 txring->txr_txdesc[idx].ctl2 = 0; 4146 4147 idx = TXRING_NEXTIDX(idx); 4148 txring->txr_nfree--; 4149 } 4150 4151 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4) 4152 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM; 4153 if (m->m_pkthdr.csum_flags & 4154 (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) { 4155 ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM; 4156 } 4157 4158 /* fill descriptor(s) */ 4159 for (i = 0; i < map->dm_nsegs; i++) { 4160 ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD | 4161 __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN); 4162 ctl1 |= AQ_TXDESC_CTL1_CMD_FCS; 4163 4164 if (i == 0) { 4165 /* remember mbuf of these descriptors */ 4166 txring->txr_mbufs[idx].m = m; 4167 } else { 4168 txring->txr_mbufs[idx].m = NULL; 4169 } 4170 4171 if (i == map->dm_nsegs - 1) { 4172 /* last segment, mark an EndOfPacket, and cause intr */ 4173 ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB; 4174 } 4175 4176 txring->txr_txdesc[idx].buf_addr = 4177 htole64(map->dm_segs[i].ds_addr); 4178 txring->txr_txdesc[idx].ctl1 = htole32(ctl1); 4179 txring->txr_txdesc[idx].ctl2 = htole32(ctl2); 4180 4181 bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap, 4182 sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t), 4183 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 4184 4185 idx = TXRING_NEXTIDX(idx); 4186 txring->txr_nfree--; 4187 } 4188 4189 txring->txr_prodidx = idx; 4190 4191 return 0; 4192 } 4193 4194 static int 4195 aq_tx_intr(void *arg) 4196 { 4197 struct aq_txring *txring = arg; 4198 struct aq_softc *sc = txring->txr_sc; 4199 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4200 struct mbuf *m; 4201 const int ringidx = txring->txr_index; 4202 unsigned int idx, hw_head, n = 0; 4203 4204 mutex_enter(&txring->txr_mutex); 4205 4206 if (!txring->txr_active) 4207 goto tx_intr_done; 4208 4209 hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx), 4210 TX_DMA_DESC_HEAD_PTR); 4211 if (hw_head == txring->txr_considx) { 4212 goto tx_intr_done; 4213 } 4214 4215 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4216 4217 for (idx = txring->txr_considx; idx != hw_head; 4218 idx = TXRING_NEXTIDX(idx), n++) { 4219 4220 if ((m = txring->txr_mbufs[idx].m) != NULL) { 4221 bus_dmamap_unload(sc->sc_dmat, 4222 txring->txr_mbufs[idx].dmamap); 4223 4224 if_statinc_ref(nsr, if_opackets); 4225 if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len); 4226 if (m->m_flags & M_MCAST) 4227 if_statinc_ref(nsr, if_omcasts); 4228 4229 m_freem(m); 4230 txring->txr_mbufs[idx].m = NULL; 4231 } 4232 4233 txring->txr_nfree++; 4234 } 4235 txring->txr_considx = idx; 4236 4237 IF_STAT_PUTREF(ifp); 4238 4239 if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN) 4240 ifp->if_flags &= ~IFF_OACTIVE; 4241 4242 /* no more pending TX packet, cancel watchdog */ 4243 if (txring->txr_nfree >= AQ_TXD_NUM) 4244 ifp->if_timer = 0; 4245 4246 tx_intr_done: 4247 mutex_exit(&txring->txr_mutex); 4248 4249 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx])); 4250 return n; 4251 } 4252 4253 static int 4254 aq_rx_intr(void *arg) 4255 { 4256 struct aq_rxring *rxring = arg; 4257 struct aq_softc *sc = rxring->rxr_sc; 4258 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4259 const int ringidx = rxring->rxr_index; 4260 aq_rx_desc_t *rxd; 4261 struct mbuf *m, *m0, *mprev, *new_m; 4262 uint32_t rxd_type, rxd_hash __unused; 4263 uint16_t rxd_status, rxd_pktlen; 4264 uint16_t rxd_nextdescptr __unused, rxd_vlan __unused; 4265 unsigned int idx, n = 0; 4266 4267 mutex_enter(&rxring->rxr_mutex); 4268 4269 if (!rxring->rxr_active) 4270 goto rx_intr_done; 4271 4272 if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc, 4273 RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) { 4274 goto rx_intr_done; 4275 } 4276 4277 net_stat_ref_t nsr = IF_STAT_GETREF(ifp); 4278 4279 m0 = mprev = NULL; 4280 for (idx = rxring->rxr_readidx; 4281 idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx), 4282 RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) { 4283 4284 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap, 4285 sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t), 4286 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 4287 4288 rxd = &rxring->rxr_rxdesc[idx]; 4289 rxd_status = le16toh(rxd->wb.status); 4290 4291 if ((rxd_status & RXDESC_STATUS_DD) == 0) 4292 break; /* not yet done */ 4293 4294 rxd_type = le32toh(rxd->wb.type); 4295 rxd_pktlen = le16toh(rxd->wb.pkt_len); 4296 rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr); 4297 rxd_hash = le32toh(rxd->wb.rss_hash); 4298 rxd_vlan = le16toh(rxd->wb.vlan); 4299 4300 if ((rxd_status & RXDESC_STATUS_MACERR) || 4301 (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) { 4302 if_statinc_ref(nsr, if_ierrors); 4303 goto rx_next; 4304 } 4305 4306 bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0, 4307 rxring->rxr_mbufs[idx].dmamap->dm_mapsize, 4308 BUS_DMASYNC_POSTREAD); 4309 m = rxring->rxr_mbufs[idx].m; 4310 4311 new_m = aq_alloc_mbuf(); 4312 if (new_m == NULL) { 4313 /* 4314 * cannot allocate new mbuf. 4315 * discard this packet, and reuse mbuf for next. 4316 */ 4317 if_statinc_ref(nsr, if_iqdrops); 4318 goto rx_next; 4319 } 4320 rxring->rxr_mbufs[idx].m = NULL; 4321 aq_rxring_setmbuf(sc, rxring, idx, new_m); 4322 4323 if (m0 == NULL) { 4324 m0 = m; 4325 } else { 4326 if (m->m_flags & M_PKTHDR) 4327 m_remove_pkthdr(m); 4328 mprev->m_next = m; 4329 } 4330 mprev = m; 4331 4332 if ((rxd_status & RXDESC_STATUS_EOP) == 0) { 4333 m->m_len = MCLBYTES; 4334 } else { 4335 /* last buffer */ 4336 m->m_len = rxd_pktlen % MCLBYTES; 4337 m0->m_pkthdr.len = rxd_pktlen; 4338 /* VLAN offloading */ 4339 if ((sc->sc_ethercom.ec_capenable & 4340 ETHERCAP_VLAN_HWTAGGING) && 4341 (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) || 4342 __SHIFTOUT(rxd_type, 4343 RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) { 4344 vlan_set_tag(m0, rxd_vlan); 4345 } 4346 4347 /* Checksum offloading */ 4348 unsigned int pkttype_eth = 4349 __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER); 4350 if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) && 4351 (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4352 __SHIFTOUT(rxd_type, 4353 RXDESC_TYPE_IPV4_CSUM_CHECKED)) { 4354 m0->m_pkthdr.csum_flags |= M_CSUM_IPv4; 4355 if (__SHIFTOUT(rxd_status, 4356 RXDESC_STATUS_IPV4_CSUM_NG)) 4357 m0->m_pkthdr.csum_flags |= 4358 M_CSUM_IPv4_BAD; 4359 } 4360 #if notyet 4361 /* 4362 * XXX: aq always marks BAD for fragmented packet. 4363 * we should peek L3 header, and ignore cksum flags 4364 * if the packet is fragmented. 4365 */ 4366 if (__SHIFTOUT(rxd_type, 4367 RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) { 4368 bool checked = false; 4369 unsigned int pkttype_proto = 4370 __SHIFTOUT(rxd_type, 4371 RXDESC_TYPE_PKTTYPE_PROTO); 4372 4373 if (pkttype_proto == 4374 RXDESC_TYPE_PKTTYPE_PROTO_TCP) { 4375 if ((pkttype_eth == 4376 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4377 (ifp->if_capabilities & 4378 IFCAP_CSUM_TCPv4_Rx)) { 4379 m0->m_pkthdr.csum_flags |= 4380 M_CSUM_TCPv4; 4381 checked = true; 4382 } else if ((pkttype_eth == 4383 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4384 (ifp->if_capabilities & 4385 IFCAP_CSUM_TCPv6_Rx)) { 4386 m0->m_pkthdr.csum_flags |= 4387 M_CSUM_TCPv6; 4388 checked = true; 4389 } 4390 } else if (pkttype_proto == 4391 RXDESC_TYPE_PKTTYPE_PROTO_UDP) { 4392 if ((pkttype_eth == 4393 RXDESC_TYPE_PKTTYPE_ETHER_IPV4) && 4394 (ifp->if_capabilities & 4395 IFCAP_CSUM_UDPv4_Rx)) { 4396 m0->m_pkthdr.csum_flags |= 4397 M_CSUM_UDPv4; 4398 checked = true; 4399 } else if ((pkttype_eth == 4400 RXDESC_TYPE_PKTTYPE_ETHER_IPV6) && 4401 (ifp->if_capabilities & 4402 IFCAP_CSUM_UDPv6_Rx)) { 4403 m0->m_pkthdr.csum_flags |= 4404 M_CSUM_UDPv6; 4405 checked = true; 4406 } 4407 } 4408 if (checked && 4409 (__SHIFTOUT(rxd_status, 4410 RXDESC_STATUS_TCPUDP_CSUM_ERROR) || 4411 !__SHIFTOUT(rxd_status, 4412 RXDESC_STATUS_TCPUDP_CSUM_OK))) { 4413 m0->m_pkthdr.csum_flags |= 4414 M_CSUM_TCP_UDP_BAD; 4415 } 4416 } 4417 #endif 4418 m_set_rcvif(m0, ifp); 4419 if_statinc_ref(nsr, if_ipackets); 4420 if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len); 4421 if_percpuq_enqueue(ifp->if_percpuq, m0); 4422 m0 = mprev = NULL; 4423 } 4424 4425 rx_next: 4426 aq_rxring_reset_desc(sc, rxring, idx); 4427 AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx); 4428 } 4429 rxring->rxr_readidx = idx; 4430 4431 IF_STAT_PUTREF(ifp); 4432 4433 rx_intr_done: 4434 mutex_exit(&rxring->rxr_mutex); 4435 4436 AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx])); 4437 return n; 4438 } 4439 4440 static int 4441 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set) 4442 { 4443 struct ifnet *ifp = &ec->ec_if; 4444 struct aq_softc *sc = ifp->if_softc; 4445 4446 aq_set_vlan_filters(sc); 4447 return 0; 4448 } 4449 4450 static int 4451 aq_ifflags_cb(struct ethercom *ec) 4452 { 4453 struct ifnet *ifp = &ec->ec_if; 4454 struct aq_softc *sc = ifp->if_softc; 4455 int i, ecchange, error = 0; 4456 unsigned short iffchange; 4457 4458 AQ_LOCK(sc); 4459 4460 iffchange = ifp->if_flags ^ sc->sc_if_flags; 4461 if ((iffchange & IFF_PROMISC) != 0) 4462 error = aq_set_filter(sc); 4463 4464 ecchange = ec->ec_capenable ^ sc->sc_ec_capenable; 4465 if (ecchange & ETHERCAP_VLAN_HWTAGGING) { 4466 for (i = 0; i < AQ_RINGS_NUM; i++) { 4467 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i), 4468 RX_DMA_DESC_VLAN_STRIP, 4469 (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ? 4470 1 : 0); 4471 } 4472 } 4473 4474 /* vlan configuration depends on also interface promiscuous mode */ 4475 if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC)) 4476 aq_set_vlan_filters(sc); 4477 4478 sc->sc_ec_capenable = ec->ec_capenable; 4479 sc->sc_if_flags = ifp->if_flags; 4480 4481 AQ_UNLOCK(sc); 4482 4483 return error; 4484 } 4485 4486 static int 4487 aq_init(struct ifnet *ifp) 4488 { 4489 struct aq_softc *sc = ifp->if_softc; 4490 int i, error = 0; 4491 4492 AQ_LOCK(sc); 4493 4494 aq_set_vlan_filters(sc); 4495 aq_set_capability(sc); 4496 4497 for (i = 0; i < sc->sc_nqueues; i++) { 4498 aq_txring_reset(sc, &sc->sc_queue[i].txring, true); 4499 } 4500 4501 /* invalidate RX descriptor cache */ 4502 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4503 AQ_READ_REG_BIT(sc, 4504 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4505 4506 /* start RX */ 4507 for (i = 0; i < sc->sc_nqueues; i++) { 4508 error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true); 4509 if (error != 0) { 4510 device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n", 4511 __func__); 4512 goto aq_init_failure; 4513 } 4514 } 4515 aq_init_rss(sc); 4516 aq_hw_l3_filter_set(sc); 4517 4518 /* need to start callout? */ 4519 if (sc->sc_poll_linkstat 4520 #ifdef AQ_EVENT_COUNTERS 4521 || sc->sc_poll_statistics 4522 #endif 4523 ) { 4524 callout_schedule(&sc->sc_tick_ch, hz); 4525 } 4526 4527 /* ready */ 4528 ifp->if_flags |= IFF_RUNNING; 4529 ifp->if_flags &= ~IFF_OACTIVE; 4530 4531 /* start TX and RX */ 4532 aq_enable_intr(sc, true, true); 4533 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1); 4534 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1); 4535 4536 aq_init_failure: 4537 sc->sc_if_flags = ifp->if_flags; 4538 4539 AQ_UNLOCK(sc); 4540 4541 return error; 4542 } 4543 4544 static void 4545 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc, 4546 struct aq_txring *txring, bool is_transmit) 4547 { 4548 struct mbuf *m; 4549 int npkt, error; 4550 4551 if ((ifp->if_flags & IFF_RUNNING) == 0) 4552 return; 4553 4554 for (npkt = 0; ; npkt++) { 4555 if (is_transmit) 4556 m = pcq_peek(txring->txr_pcq); 4557 else 4558 IFQ_POLL(&ifp->if_snd, m); 4559 4560 if (m == NULL) 4561 break; 4562 4563 if (txring->txr_nfree < AQ_TXD_MIN) 4564 break; 4565 4566 if (is_transmit) 4567 pcq_get(txring->txr_pcq); 4568 else 4569 IFQ_DEQUEUE(&ifp->if_snd, m); 4570 4571 error = aq_encap_txring(sc, txring, &m); 4572 if (error != 0) { 4573 /* too many mbuf chains? or not enough descriptors? */ 4574 m_freem(m); 4575 if_statinc(ifp, if_oerrors); 4576 if (txring->txr_index == 0 && error == ENOBUFS) 4577 ifp->if_flags |= IFF_OACTIVE; 4578 break; 4579 } 4580 4581 /* update tail ptr */ 4582 AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index), 4583 txring->txr_prodidx); 4584 4585 /* Pass the packet to any BPF listeners */ 4586 bpf_mtap(ifp, m, BPF_D_OUT); 4587 } 4588 4589 if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN) 4590 ifp->if_flags |= IFF_OACTIVE; 4591 4592 if (npkt) 4593 ifp->if_timer = 5; 4594 } 4595 4596 static void 4597 aq_start(struct ifnet *ifp) 4598 { 4599 struct aq_softc *sc; 4600 struct aq_txring *txring; 4601 4602 sc = ifp->if_softc; 4603 txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */ 4604 4605 mutex_enter(&txring->txr_mutex); 4606 if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE)) 4607 aq_send_common_locked(ifp, sc, txring, false); 4608 mutex_exit(&txring->txr_mutex); 4609 } 4610 4611 static inline unsigned int 4612 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m) 4613 { 4614 return (cpu_index(curcpu()) % sc->sc_nqueues); 4615 } 4616 4617 static int 4618 aq_transmit(struct ifnet *ifp, struct mbuf *m) 4619 { 4620 struct aq_softc *sc = ifp->if_softc; 4621 struct aq_txring *txring; 4622 int ringidx; 4623 4624 ringidx = aq_select_txqueue(sc, m); 4625 txring = &sc->sc_queue[ringidx].txring; 4626 4627 if (__predict_false(!pcq_put(txring->txr_pcq, m))) { 4628 m_freem(m); 4629 return ENOBUFS; 4630 } 4631 4632 if (mutex_tryenter(&txring->txr_mutex)) { 4633 aq_send_common_locked(ifp, sc, txring, true); 4634 mutex_exit(&txring->txr_mutex); 4635 } else { 4636 softint_schedule(txring->txr_softint); 4637 } 4638 return 0; 4639 } 4640 4641 static void 4642 aq_deferred_transmit(void *arg) 4643 { 4644 struct aq_txring *txring = arg; 4645 struct aq_softc *sc = txring->txr_sc; 4646 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 4647 4648 mutex_enter(&txring->txr_mutex); 4649 if (pcq_peek(txring->txr_pcq) != NULL) 4650 aq_send_common_locked(ifp, sc, txring, true); 4651 mutex_exit(&txring->txr_mutex); 4652 } 4653 4654 static void 4655 aq_stop(struct ifnet *ifp, int disable) 4656 { 4657 struct aq_softc *sc = ifp->if_softc; 4658 int i; 4659 4660 AQ_LOCK(sc); 4661 4662 ifp->if_timer = 0; 4663 4664 /* disable tx/rx interrupts */ 4665 aq_enable_intr(sc, true, false); 4666 4667 AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0); 4668 for (i = 0; i < sc->sc_nqueues; i++) { 4669 aq_txring_reset(sc, &sc->sc_queue[i].txring, false); 4670 } 4671 4672 AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0); 4673 for (i = 0; i < sc->sc_nqueues; i++) { 4674 aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false); 4675 } 4676 4677 /* invalidate RX descriptor cache */ 4678 AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT, 4679 AQ_READ_REG_BIT(sc, 4680 RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1); 4681 4682 ifp->if_timer = 0; 4683 4684 if (!disable) { 4685 /* when pmf stop, disable link status intr and callout */ 4686 aq_enable_intr(sc, false, false); 4687 callout_stop(&sc->sc_tick_ch); 4688 } 4689 4690 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 4691 4692 AQ_UNLOCK(sc); 4693 } 4694 4695 static void 4696 aq_watchdog(struct ifnet *ifp) 4697 { 4698 struct aq_softc *sc = ifp->if_softc; 4699 struct aq_txring *txring; 4700 int n, head, tail; 4701 4702 AQ_LOCK(sc); 4703 4704 device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n", 4705 __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG), 4706 AQ_READ_REG(sc, AQ_INTR_STATUS_REG)); 4707 4708 for (n = 0; n < sc->sc_nqueues; n++) { 4709 txring = &sc->sc_queue[n].txring; 4710 head = AQ_READ_REG_BIT(sc, 4711 TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index), 4712 TX_DMA_DESC_HEAD_PTR), 4713 tail = AQ_READ_REG(sc, 4714 TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index)); 4715 4716 device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n", 4717 __func__, txring->txr_index, head, tail); 4718 4719 aq_tx_intr(txring); 4720 } 4721 4722 AQ_UNLOCK(sc); 4723 4724 aq_init(ifp); 4725 } 4726 4727 static int 4728 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 4729 { 4730 struct aq_softc *sc __unused; 4731 struct ifreq *ifr __unused; 4732 int error, s; 4733 4734 sc = (struct aq_softc *)ifp->if_softc; 4735 ifr = (struct ifreq *)data; 4736 error = 0; 4737 4738 s = splnet(); 4739 error = ether_ioctl(ifp, cmd, data); 4740 splx(s); 4741 4742 if (error != ENETRESET) 4743 return error; 4744 4745 switch (cmd) { 4746 case SIOCSIFCAP: 4747 error = aq_set_capability(sc); 4748 break; 4749 case SIOCADDMULTI: 4750 case SIOCDELMULTI: 4751 if ((ifp->if_flags & IFF_RUNNING) == 0) 4752 break; 4753 4754 /* 4755 * Multicast list has changed; set the hardware filter 4756 * accordingly. 4757 */ 4758 error = aq_set_filter(sc); 4759 break; 4760 } 4761 4762 return error; 4763 } 4764 4765 4766 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci"); 4767 4768 #ifdef _MODULE 4769 #include "ioconf.c" 4770 #endif 4771 4772 static int 4773 if_aq_modcmd(modcmd_t cmd, void *opaque) 4774 { 4775 int error = 0; 4776 4777 switch (cmd) { 4778 case MODULE_CMD_INIT: 4779 #ifdef _MODULE 4780 error = config_init_component(cfdriver_ioconf_if_aq, 4781 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4782 #endif 4783 return error; 4784 case MODULE_CMD_FINI: 4785 #ifdef _MODULE 4786 error = config_fini_component(cfdriver_ioconf_if_aq, 4787 cfattach_ioconf_if_aq, cfdata_ioconf_if_aq); 4788 #endif 4789 return error; 4790 default: 4791 return ENOTTY; 4792 } 4793 } 4794