xref: /netbsd-src/sys/dev/pci/if_aq.c (revision 0e552da7216834a96e91ad098e59272b41087480)
1 /*	$NetBSD: if_aq.c,v 1.17 2020/05/14 08:34:18 msaitoh Exp $	*/
2 
3 /**
4  * aQuantia Corporation Network Driver
5  * Copyright (C) 2014-2017 aQuantia Corporation. All rights reserved
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  *   (1) Redistributions of source code must retain the above
12  *   copyright notice, this list of conditions and the following
13  *   disclaimer.
14  *
15  *   (2) Redistributions in binary form must reproduce the above
16  *   copyright notice, this list of conditions and the following
17  *   disclaimer in the documentation and/or other materials provided
18  *   with the distribution.
19  *
20  *   (3) The name of the author may not be used to endorse or promote
21  *   products derived from this software without specific prior
22  *   written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
25  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
28  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
30  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  */
37 
38 /*-
39  * Copyright (c) 2020 Ryo Shimizu <ryo@nerv.org>
40  * All rights reserved.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
52  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
53  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
54  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
55  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
56  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
57  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
59  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
60  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
61  * POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: if_aq.c,v 1.17 2020/05/14 08:34:18 msaitoh Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_if_aq.h"
69 #include "sysmon_envsys.h"
70 #endif
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 #include <sys/bitops.h>
75 #include <sys/cprng.h>
76 #include <sys/cpu.h>
77 #include <sys/interrupt.h>
78 #include <sys/module.h>
79 #include <sys/pcq.h>
80 
81 #include <net/bpf.h>
82 #include <net/if.h>
83 #include <net/if_dl.h>
84 #include <net/if_media.h>
85 #include <net/if_ether.h>
86 #include <net/rss_config.h>
87 
88 #include <dev/pci/pcivar.h>
89 #include <dev/pci/pcireg.h>
90 #include <dev/pci/pcidevs.h>
91 #include <dev/sysmon/sysmonvar.h>
92 
93 /* driver configuration */
94 #define CONFIG_INTR_MODERATION_ENABLE	true	/* delayed interrupt */
95 #undef CONFIG_LRO_SUPPORT			/* no LRO not suppoted */
96 #undef CONFIG_NO_TXRX_INDEPENDENT		/* share TX/RX interrupts */
97 
98 #define AQ_NINTR_MAX			(AQ_RSSQUEUE_MAX + AQ_RSSQUEUE_MAX + 1)
99 					/* TX + RX + LINK. must be <= 32 */
100 #define AQ_LINKSTAT_IRQ			31	/* for legacy mode */
101 
102 #define AQ_TXD_NUM			2048	/* per ring. 8*n && 32~8184 */
103 #define AQ_RXD_NUM			2048	/* per ring. 8*n && 32~8184 */
104 /* minimum required to send a packet (vlan needs additional TX descriptor) */
105 #define AQ_TXD_MIN			(1 + 1)
106 
107 
108 /* hardware specification */
109 #define AQ_RINGS_NUM			32
110 #define AQ_RSSQUEUE_MAX			8
111 #define AQ_RX_DESCRIPTOR_MIN		32
112 #define AQ_TX_DESCRIPTOR_MIN		32
113 #define AQ_RX_DESCRIPTOR_MAX		8184
114 #define AQ_TX_DESCRIPTOR_MAX		8184
115 #define AQ_TRAFFICCLASS_NUM		8
116 #define AQ_RSS_HASHKEY_SIZE		40
117 #define AQ_RSS_INDIRECTION_TABLE_MAX	64
118 
119 /*
120  * TERMINOLOGY
121  *	MPI = MAC PHY INTERFACE?
122  *	RPO = RX Protocol Offloading
123  *	TPO = TX Protocol Offloading
124  *	RPF = RX Packet Filter
125  *	TPB = TX Packet buffer
126  *	RPB = RX Packet buffer
127  */
128 
129 /* registers */
130 #define AQ_FW_SOFTRESET_REG			0x0000
131 #define  AQ_FW_SOFTRESET_RESET			__BIT(15) /* soft reset bit */
132 #define  AQ_FW_SOFTRESET_DIS			__BIT(14) /* reset disable */
133 
134 #define AQ_FW_VERSION_REG			0x0018
135 #define AQ_HW_REVISION_REG			0x001c
136 #define AQ_GLB_NVR_INTERFACE1_REG		0x0100
137 
138 #define AQ_FW_MBOX_CMD_REG			0x0200
139 #define  AQ_FW_MBOX_CMD_EXECUTE			0x00008000
140 #define  AQ_FW_MBOX_CMD_BUSY			0x00000100
141 #define AQ_FW_MBOX_ADDR_REG			0x0208
142 #define AQ_FW_MBOX_VAL_REG			0x020c
143 
144 #define FW2X_LED_MIN_VERSION			0x03010026	/* >= 3.1.38 */
145 #define FW2X_LED_REG				0x031c
146 #define  FW2X_LED_DEFAULT			0x00000000
147 #define  FW2X_LED_NONE				0x0000003f
148 #define  FW2X_LINKLED				__BITS(0,1)
149 #define   FW2X_LINKLED_ACTIVE			0
150 #define   FW2X_LINKLED_ON			1
151 #define   FW2X_LINKLED_BLINK			2
152 #define   FW2X_LINKLED_OFF			3
153 #define  FW2X_STATUSLED				__BITS(2,5)
154 #define   FW2X_STATUSLED_ORANGE			0
155 #define   FW2X_STATUSLED_ORANGE_BLINK		2
156 #define   FW2X_STATUSLED_OFF			3
157 #define   FW2X_STATUSLED_GREEN			4
158 #define   FW2X_STATUSLED_ORANGE_GREEN_BLINK	8
159 #define   FW2X_STATUSLED_GREEN_BLINK		10
160 
161 #define FW_MPI_MBOX_ADDR_REG			0x0360
162 #define FW1X_MPI_INIT1_REG			0x0364
163 #define FW1X_MPI_CONTROL_REG			0x0368
164 #define FW1X_MPI_STATE_REG			0x036c
165 #define  FW1X_MPI_STATE_MODE			__BITS(7,0)
166 #define  FW1X_MPI_STATE_SPEED			__BITS(32,16)
167 #define  FW1X_MPI_STATE_DISABLE_DIRTYWAKE	__BITS(25)
168 #define  FW1X_MPI_STATE_DOWNSHIFT		__BITS(31,28)
169 #define FW1X_MPI_INIT2_REG			0x0370
170 #define FW1X_MPI_EFUSEADDR_REG			0x0374
171 
172 #define FW2X_MPI_EFUSEADDR_REG			0x0364
173 #define FW2X_MPI_CONTROL_REG			0x0368	/* 64bit */
174 #define FW2X_MPI_STATE_REG			0x0370	/* 64bit */
175 #define FW_BOOT_EXIT_CODE_REG			0x0388
176 #define  RBL_STATUS_DEAD			0x0000dead
177 #define  RBL_STATUS_SUCCESS			0x0000abba
178 #define  RBL_STATUS_FAILURE			0x00000bad
179 #define  RBL_STATUS_HOST_BOOT			0x0000f1a7
180 
181 #define AQ_FW_GLB_CPU_SEM_REG(i)		(0x03a0 + (i) * 4)
182 #define AQ_FW_SEM_RAM_REG			AQ_FW_GLB_CPU_SEM_REG(2)
183 
184 #define AQ_FW_GLB_CTL2_REG			0x0404
185 #define  AQ_FW_GLB_CTL2_MCP_UP_FORCE_INTERRUPT	__BIT(1)
186 
187 #define AQ_GLB_GENERAL_PROVISIONING9_REG	0x0520
188 #define AQ_GLB_NVR_PROVISIONING2_REG		0x0534
189 
190 #define FW_MPI_DAISY_CHAIN_STATUS_REG		0x0704
191 
192 #define AQ_PCI_REG_CONTROL_6_REG		0x1014
193 
194 // msix bitmap */
195 #define AQ_INTR_STATUS_REG			0x2000	/* intr status */
196 #define AQ_INTR_STATUS_CLR_REG			0x2050	/* intr status clear */
197 #define AQ_INTR_MASK_REG			0x2060	/* intr mask set */
198 #define AQ_INTR_MASK_CLR_REG			0x2070	/* intr mask clear */
199 #define AQ_INTR_AUTOMASK_REG			0x2090
200 
201 /* AQ_INTR_IRQ_MAP_TXRX_REG[AQ_RINGS_NUM] 0x2100-0x2140 */
202 #define AQ_INTR_IRQ_MAP_TXRX_REG(i)		(0x2100 + ((i) / 2) * 4)
203 #define AQ_INTR_IRQ_MAP_TX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
204 #define  AQ_INTR_IRQ_MAP_TX_IRQMAP(i)		(__BITS(28,24) >> (((i) & 1)*8))
205 #define  AQ_INTR_IRQ_MAP_TX_EN(i)		(__BIT(31)     >> (((i) & 1)*8))
206 #define AQ_INTR_IRQ_MAP_RX_REG(i)		AQ_INTR_IRQ_MAP_TXRX_REG(i)
207 #define  AQ_INTR_IRQ_MAP_RX_IRQMAP(i)		(__BITS(12,8)  >> (((i) & 1)*8))
208 #define  AQ_INTR_IRQ_MAP_RX_EN(i)		(__BIT(15)     >> (((i) & 1)*8))
209 
210 /* AQ_GEN_INTR_MAP_REG[AQ_RINGS_NUM] 0x2180-0x2200 */
211 #define AQ_GEN_INTR_MAP_REG(i)			(0x2180 + (i) * 4)
212 #define  AQ_B0_ERR_INT				8U
213 
214 #define AQ_INTR_CTRL_REG			0x2300
215 #define  AQ_INTR_CTRL_IRQMODE			__BITS(1,0)
216 #define  AQ_INTR_CTRL_IRQMODE_LEGACY		0
217 #define  AQ_INTR_CTRL_IRQMODE_MSI		1
218 #define  AQ_INTR_CTRL_IRQMODE_MSIX		2
219 #define  AQ_INTR_CTRL_MULTIVEC			__BIT(2)
220 #define  AQ_INTR_CTRL_AUTO_MASK			__BIT(5)
221 #define  AQ_INTR_CTRL_CLR_ON_READ		__BIT(7)
222 #define  AQ_INTR_CTRL_RESET_DIS			__BIT(29)
223 #define  AQ_INTR_CTRL_RESET_IRQ			__BIT(31)
224 
225 #define AQ_MBOXIF_POWER_GATING_CONTROL_REG	0x32a8
226 
227 #define FW_MPI_RESETCTRL_REG			0x4000
228 #define  FW_MPI_RESETCTRL_RESET_DIS		__BIT(29)
229 
230 #define RX_SYSCONTROL_REG			0x5000
231 #define  RX_SYSCONTROL_RPB_DMA_LOOPBACK		__BIT(6)
232 #define  RX_SYSCONTROL_RPF_TPO_LOOPBACK		__BIT(8)
233 #define  RX_SYSCONTROL_RESET_DIS		__BIT(29)
234 
235 #define RX_TCP_RSS_HASH_REG			0x5040
236 #define  RX_TCP_RSS_HASH_RPF2			__BITS(19,16)
237 #define  RX_TCP_RSS_HASH_TYPE			__BITS(15,0)
238 
239 /* for RPF_*_REG.ACTION */
240 #define RPF_ACTION_DISCARD			0
241 #define RPF_ACTION_HOST				1
242 #define RPF_ACTION_MANAGEMENT			2
243 #define RPF_ACTION_HOST_MANAGEMENT		3
244 #define RPF_ACTION_WOL				4
245 
246 #define RPF_L2BC_REG				0x5100
247 #define  RPF_L2BC_EN				__BIT(0)
248 #define  RPF_L2BC_PROMISC			__BIT(3)
249 #define  RPF_L2BC_ACTION			__BITS(12,14)
250 #define  RPF_L2BC_THRESHOLD			__BITS(31,16)
251 
252 /* RPF_L2UC_*_REG[34] (actual [38]?) */
253 #define RPF_L2UC_LSW_REG(i)			(0x5110 + (i) * 8)
254 #define RPF_L2UC_MSW_REG(i)			(0x5114 + (i) * 8)
255 #define  RPF_L2UC_MSW_MACADDR_HI		__BITS(15,0)
256 #define  RPF_L2UC_MSW_ACTION			__BITS(18,16)
257 #define  RPF_L2UC_MSW_EN			__BIT(31)
258 #define AQ_HW_MAC_OWN			0	/* index of own address */
259 #define AQ_HW_MAC_NUM			34
260 
261 /* RPF_MCAST_FILTER_REG[8] 0x5250-0x5270 */
262 #define RPF_MCAST_FILTER_REG(i)			(0x5250 + (i) * 4)
263 #define  RPF_MCAST_FILTER_EN			__BIT(31)
264 #define RPF_MCAST_FILTER_MASK_REG		0x5270
265 #define  RPF_MCAST_FILTER_MASK_ALLMULTI		__BIT(14)
266 
267 #define RPF_VLAN_MODE_REG			0x5280
268 #define  RPF_VLAN_MODE_PROMISC			__BIT(1)
269 #define  RPF_VLAN_MODE_ACCEPT_UNTAGGED		__BIT(2)
270 #define  RPF_VLAN_MODE_UNTAGGED_ACTION		__BITS(5,3)
271 
272 #define RPF_VLAN_TPID_REG			0x5284
273 #define  RPF_VLAN_TPID_OUTER			__BITS(31,16)
274 #define  RPF_VLAN_TPID_INNER			__BITS(15,0)
275 
276 /* RPF_VLAN_FILTER_REG[RPF_VLAN_MAX_FILTERS] 0x5290-0x52d0 */
277 #define RPF_VLAN_MAX_FILTERS			16
278 #define RPF_VLAN_FILTER_REG(i)			(0x5290 + (i) * 4)
279 #define  RPF_VLAN_FILTER_EN			__BIT(31)
280 #define  RPF_VLAN_FILTER_RXQ_EN			__BIT(28)
281 #define  RPF_VLAN_FILTER_RXQ			__BITS(24,20)
282 #define  RPF_VLAN_FILTER_ACTION			__BITS(18,16)
283 #define  RPF_VLAN_FILTER_ID			__BITS(11,0)
284 
285 /* RPF_ETHERTYPE_FILTER_REG[AQ_RINGS_NUM] 0x5300-0x5380 */
286 #define RPF_ETHERTYPE_FILTER_REG(i)		(0x5300 + (i) * 4)
287 #define  RPF_ETHERTYPE_FILTER_EN		__BIT(31)
288 #define  RPF_ETHERTYPE_FILTER_PRIO_EN		__BIT(30)
289 #define  RPF_ETHERTYPE_FILTER_RXQF_EN		__BIT(29)
290 #define  RPF_ETHERTYPE_FILTER_PRIO		__BITS(28,26)
291 #define  RPF_ETHERTYPE_FILTER_RXQF		__BITS(24,20)
292 #define  RPF_ETHERTYPE_FILTER_MNG_RXQF		__BIT(19)
293 #define  RPF_ETHERTYPE_FILTER_ACTION		__BITS(18,16)
294 #define  RPF_ETHERTYPE_FILTER_VAL		__BITS(15,0)
295 
296 /* RPF_L3_FILTER_REG[8] 0x5380-0x53a0 */
297 #define RPF_L3_FILTER_REG(i)			(0x5380 + (i) * 4)
298 #define  RPF_L3_FILTER_L4_EN			__BIT(31)
299 #define  RPF_L3_FILTER_IPV6_EN			__BIT(30)
300 #define  RPF_L3_FILTER_SRCADDR_EN		__BIT(29)
301 #define  RPF_L3_FILTER_DSTADDR_EN		__BIT(28)
302 #define  RPF_L3_FILTER_L4_SRCPORT_EN		__BIT(27)
303 #define  RPF_L3_FILTER_L4_DSTPORT_EN		__BIT(26)
304 #define  RPF_L3_FILTER_L4_PROTO_EN		__BIT(25)
305 #define  RPF_L3_FILTER_ARP_EN			__BIT(24)
306 #define  RPF_L3_FILTER_L4_RXQUEUE_EN		__BIT(23)
307 #define  RPF_L3_FILTER_L4_RXQUEUE_MANAGEMENT_EN	__BIT(22)
308 #define  RPF_L3_FILTER_L4_ACTION		__BITS(16,18)
309 #define  RPF_L3_FILTER_L4_RXQUEUE		__BITS(12,8)
310 #define  RPF_L3_FILTER_L4_PROTO			__BITS(2,0)
311 #define   RPF_L3_FILTER_L4_PROTO_TCP		0
312 #define   RPF_L3_FILTER_L4_PROTO_UDP		1
313 #define   RPF_L3_FILTER_L4_PROTO_SCTP		2
314 #define   RPF_L3_FILTER_L4_PROTO_ICMP		3
315 /* parameters of RPF_L3_FILTER_REG[8] */
316 #define RPF_L3_FILTER_SRCADDR_REG(i)		(0x53b0 + (i) * 4)
317 #define RPF_L3_FILTER_DSTADDR_REG(i)		(0x53d0 + (i) * 4)
318 #define RPF_L3_FILTER_L4_SRCPORT_REG(i)		(0x5400 + (i) * 4)
319 #define RPF_L3_FILTER_L4_DSTPORT_REG(i)		(0x5420 + (i) * 4)
320 
321 #define RX_FLR_RSS_CONTROL1_REG			0x54c0
322 #define  RX_FLR_RSS_CONTROL1_EN			__BIT(31)
323 
324 #define RPF_RPB_RX_TC_UPT_REG			0x54c4
325 #define  RPF_RPB_RX_TC_UPT_MASK(i)		(0x00000007 << ((i) * 4))
326 
327 #define RPF_RSS_KEY_ADDR_REG			0x54d0
328 #define  RPF_RSS_KEY_ADDR			__BITS(4,0)
329 #define  RPF_RSS_KEY_WR_EN			__BIT(5)
330 #define RPF_RSS_KEY_WR_DATA_REG			0x54d4
331 #define RPF_RSS_KEY_RD_DATA_REG			0x54d8
332 
333 #define RPF_RSS_REDIR_ADDR_REG			0x54e0
334 #define  RPF_RSS_REDIR_ADDR			__BITS(3,0)
335 #define  RPF_RSS_REDIR_WR_EN			__BIT(4)
336 
337 #define RPF_RSS_REDIR_WR_DATA_REG		0x54e4
338 #define  RPF_RSS_REDIR_WR_DATA			__BITS(15,0)
339 
340 #define RPO_HWCSUM_REG				0x5580
341 #define  RPO_HWCSUM_IP4CSUM_EN			__BIT(1)
342 #define  RPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
343 
344 #define RPO_LRO_ENABLE_REG			0x5590
345 
346 #define RPO_LRO_CONF_REG			0x5594
347 #define  RPO_LRO_CONF_QSESSION_LIMIT		__BITS(13,12)
348 #define  RPO_LRO_CONF_TOTAL_DESC_LIMIT		__BITS(6,5)
349 #define  RPO_LRO_CONF_PATCHOPTIMIZATION_EN	__BIT(15)
350 #define  RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT	__BITS(4,0)
351 #define RPO_LRO_RSC_MAX_REG			0x5598
352 
353 /* RPO_LRO_LDES_MAX_REG[32/8] 0x55a0-0x55b0 */
354 #define RPO_LRO_LDES_MAX_REG(i)			(0x55a0 + (i / 8) * 4)
355 #define  RPO_LRO_LDES_MAX_MASK(i)		(0x00000003 << ((i & 7) * 4))
356 #define RPO_LRO_TB_DIV_REG			0x5620
357 #define  RPO_LRO_TB_DIV				__BITS(20,31)
358 #define RPO_LRO_INACTIVE_IVAL_REG		0x5620
359 #define  RPO_LRO_INACTIVE_IVAL			__BITS(10,19)
360 #define RPO_LRO_MAX_COALESCING_IVAL_REG		0x5620
361 #define  RPO_LRO_MAX_COALESCING_IVAL		__BITS(9,0)
362 
363 #define RPB_RPF_RX_REG				0x5700
364 #define  RPB_RPF_RX_TC_MODE			__BIT(8)
365 #define  RPB_RPF_RX_FC_MODE			__BITS(5,4)
366 #define  RPB_RPF_RX_BUF_EN			__BIT(0)
367 
368 /* RPB_RXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x5710-0x5790 */
369 #define RPB_RXB_BUFSIZE_REG(i)			(0x5710 + (i) * 0x10)
370 #define  RPB_RXB_BUFSIZE			__BITS(8,0)
371 #define RPB_RXB_XOFF_REG(i)			(0x5714 + (i) * 0x10)
372 #define  RPB_RXB_XOFF_EN			__BIT(31)
373 #define  RPB_RXB_XOFF_THRESH_HI			__BITS(29,16)
374 #define  RPB_RXB_XOFF_THRESH_LO			__BITS(13,0)
375 
376 #define RX_DMA_DESC_CACHE_INIT_REG		0x5a00
377 #define  RX_DMA_DESC_CACHE_INIT			__BIT(0)
378 
379 #define RX_DMA_INT_DESC_WRWB_EN_REG		0x05a30
380 #define  RX_DMA_INT_DESC_WRWB_EN		__BIT(2)
381 #define  RX_DMA_INT_DESC_MODERATE_EN		__BIT(3)
382 
383 /* RX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x5a40-0x5ac0 */
384 #define RX_INTR_MODERATION_CTL_REG(i)		(0x5a40 + (i) * 4)
385 #define  RX_INTR_MODERATION_CTL_EN		__BIT(1)
386 #define  RX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
387 #define  RX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
388 
389 /* RX_DMA_DESC_*[AQ_RINGS_NUM] 0x5b00-0x5f00 */
390 #define RX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x5b00 + (i) * 0x20)
391 #define RX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x5b04 + (i) * 0x20)
392 #define RX_DMA_DESC_REG(i)			(0x5b08 + (i) * 0x20)
393 #define  RX_DMA_DESC_LEN			__BITS(12,3)	/* RXD_NUM/8 */
394 #define  RX_DMA_DESC_RESET			__BIT(25)
395 #define  RX_DMA_DESC_HEADER_SPLIT		__BIT(28)
396 #define  RX_DMA_DESC_VLAN_STRIP			__BIT(29)
397 #define  RX_DMA_DESC_EN				__BIT(31)
398 #define RX_DMA_DESC_HEAD_PTR_REG(i)		(0x5b0c + (i) * 0x20)
399 #define  RX_DMA_DESC_HEAD_PTR			__BITS(12,0)
400 #define RX_DMA_DESC_TAIL_PTR_REG(i)		(0x5b10 + (i) * 0x20)
401 #define RX_DMA_DESC_BUFSIZE_REG(i)		(0x5b18 + (i) * 0x20)
402 #define  RX_DMA_DESC_BUFSIZE_DATA		__BITS(4,0)
403 #define  RX_DMA_DESC_BUFSIZE_HDR		__BITS(12,8)
404 
405 /* RX_DMA_DCAD_REG[AQ_RINGS_NUM] 0x6100-0x6180 */
406 #define RX_DMA_DCAD_REG(i)			(0x6100 + (i) * 4)
407 #define  RX_DMA_DCAD_CPUID			__BITS(7,0)
408 #define  RX_DMA_DCAD_PAYLOAD_EN			__BIT(29)
409 #define  RX_DMA_DCAD_HEADER_EN			__BIT(30)
410 #define  RX_DMA_DCAD_DESC_EN			__BIT(31)
411 
412 #define RX_DMA_DCA_REG				0x6180
413 #define  RX_DMA_DCA_EN				__BIT(31)
414 #define  RX_DMA_DCA_MODE			__BITS(3,0)
415 
416 /* counters */
417 #define RX_DMA_GOOD_PKT_COUNTERLSW		0x6800
418 #define RX_DMA_GOOD_OCTET_COUNTERLSW		0x6808
419 #define RX_DMA_DROP_PKT_CNT_REG			0x6818
420 #define RX_DMA_COALESCED_PKT_CNT_REG		0x6820
421 
422 #define TX_SYSCONTROL_REG			0x7000
423 #define  TX_SYSCONTROL_TPB_DMA_LOOPBACK		__BIT(6)
424 #define  TX_SYSCONTROL_TPO_PKT_LOOPBACK		__BIT(7)
425 #define  TX_SYSCONTROL_RESET_DIS		__BIT(29)
426 
427 #define TX_TPO2_REG				0x7040
428 #define  TX_TPO2_EN				__BIT(16)
429 
430 #define TPS_DESC_VM_ARB_MODE_REG		0x7300
431 #define  TPS_DESC_VM_ARB_MODE			__BIT(0)
432 #define TPS_DESC_RATE_REG			0x7310
433 #define  TPS_DESC_RATE_TA_RST			__BIT(31)
434 #define  TPS_DESC_RATE_LIM			__BITS(10,0)
435 #define TPS_DESC_TC_ARB_MODE_REG		0x7200
436 #define  TPS_DESC_TC_ARB_MODE			__BITS(1,0)
437 #define TPS_DATA_TC_ARB_MODE_REG		0x7100
438 #define  TPS_DATA_TC_ARB_MODE			__BIT(0)
439 
440 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7110-0x7130 */
441 #define TPS_DATA_TCT_REG(i)			(0x7110 + (i) * 4)
442 #define  TPS_DATA_TCT_CREDIT_MAX		__BITS(16,27)
443 #define  TPS_DATA_TCT_WEIGHT			__BITS(8,0)
444 /* TPS_DATA_TCT_REG[AQ_TRAFFICCLASS_NUM] 0x7210-0x7230 */
445 #define TPS_DESC_TCT_REG(i)			(0x7210 + (i) * 4)
446 #define  TPS_DESC_TCT_CREDIT_MAX		__BITS(16,27)
447 #define  TPS_DESC_TCT_WEIGHT			__BITS(8,0)
448 
449 #define AQ_HW_TXBUF_MAX		160
450 #define AQ_HW_RXBUF_MAX		320
451 
452 #define TPO_HWCSUM_REG				0x7800
453 #define  TPO_HWCSUM_IP4CSUM_EN			__BIT(1)
454 #define  TPO_HWCSUM_L4CSUM_EN			__BIT(0) /* TCP/UDP/SCTP */
455 
456 #define TDM_LSO_EN_REG				0x7810
457 
458 #define THM_LSO_TCP_FLAG1_REG			0x7820
459 #define  THM_LSO_TCP_FLAG1_FIRST		__BITS(11,0)
460 #define  THM_LSO_TCP_FLAG1_MID			__BITS(27,16)
461 #define THM_LSO_TCP_FLAG2_REG			0x7824
462 #define  THM_LSO_TCP_FLAG2_LAST			__BITS(11,0)
463 
464 #define TPB_TX_BUF_REG				0x7900
465 #define  TPB_TX_BUF_EN				__BIT(0)
466 #define  TPB_TX_BUF_SCP_INS_EN			__BIT(2)
467 #define  TPB_TX_BUF_TC_MODE_EN			__BIT(8)
468 
469 /* TPB_TXB_BUFSIZE_REG[AQ_TRAFFICCLASS_NUM] 0x7910-7990 */
470 #define TPB_TXB_BUFSIZE_REG(i)			(0x7910 + (i) * 0x10)
471 #define  TPB_TXB_BUFSIZE			__BITS(7,0)
472 #define TPB_TXB_THRESH_REG(i)			(0x7914 + (i) * 0x10)
473 #define  TPB_TXB_THRESH_HI			__BITS(16,28)
474 #define  TPB_TXB_THRESH_LO			__BITS(12,0)
475 
476 #define AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG	0x7b20
477 #define TX_DMA_INT_DESC_WRWB_EN_REG		0x7b40
478 #define  TX_DMA_INT_DESC_WRWB_EN		__BIT(1)
479 #define  TX_DMA_INT_DESC_MODERATE_EN		__BIT(4)
480 
481 /* TX_DMA_DESC_*[AQ_RINGS_NUM] 0x7c00-0x8400 */
482 #define TX_DMA_DESC_BASE_ADDRLSW_REG(i)		(0x7c00 + (i) * 0x40)
483 #define TX_DMA_DESC_BASE_ADDRMSW_REG(i)		(0x7c04 + (i) * 0x40)
484 #define TX_DMA_DESC_REG(i)			(0x7c08 + (i) * 0x40)
485 #define  TX_DMA_DESC_LEN			__BITS(12, 3)	/* TXD_NUM/8 */
486 #define  TX_DMA_DESC_EN				__BIT(31)
487 #define TX_DMA_DESC_HEAD_PTR_REG(i)		(0x7c0c + (i) * 0x40)
488 #define  TX_DMA_DESC_HEAD_PTR			__BITS(12,0)
489 #define TX_DMA_DESC_TAIL_PTR_REG(i)		(0x7c10 + (i) * 0x40)
490 #define TX_DMA_DESC_WRWB_THRESH_REG(i)		(0x7c18 + (i) * 0x40)
491 #define  TX_DMA_DESC_WRWB_THRESH		__BITS(14,8)
492 
493 /* TDM_DCAD_REG[AQ_RINGS_NUM] 0x8400-0x8480 */
494 #define TDM_DCAD_REG(i)				(0x8400 + (i) * 4)
495 #define  TDM_DCAD_CPUID				__BITS(7,0)
496 #define  TDM_DCAD_CPUID_EN			__BIT(31)
497 
498 #define TDM_DCA_REG				0x8480
499 #define  TDM_DCA_EN				__BIT(31)
500 #define  TDM_DCA_MODE				__BITS(3,0)
501 
502 /* TX_INTR_MODERATION_CTL_REG[AQ_RINGS_NUM] 0x8980-0x8a00 */
503 #define TX_INTR_MODERATION_CTL_REG(i)		(0x8980 + (i) * 4)
504 #define  TX_INTR_MODERATION_CTL_EN		__BIT(1)
505 #define  TX_INTR_MODERATION_CTL_MIN		__BITS(15,8)
506 #define  TX_INTR_MODERATION_CTL_MAX		__BITS(24,16)
507 
508 #define FW1X_CTRL_10G				__BIT(0)
509 #define FW1X_CTRL_5G				__BIT(1)
510 #define FW1X_CTRL_5GSR				__BIT(2)
511 #define FW1X_CTRL_2G5				__BIT(3)
512 #define FW1X_CTRL_1G				__BIT(4)
513 #define FW1X_CTRL_100M				__BIT(5)
514 
515 #define FW2X_CTRL_10BASET_HD			__BIT(0)
516 #define FW2X_CTRL_10BASET_FD			__BIT(1)
517 #define FW2X_CTRL_100BASETX_HD			__BIT(2)
518 #define FW2X_CTRL_100BASET4_HD			__BIT(3)
519 #define FW2X_CTRL_100BASET2_HD			__BIT(4)
520 #define FW2X_CTRL_100BASETX_FD			__BIT(5)
521 #define FW2X_CTRL_100BASET2_FD			__BIT(6)
522 #define FW2X_CTRL_1000BASET_HD			__BIT(7)
523 #define FW2X_CTRL_1000BASET_FD			__BIT(8)
524 #define FW2X_CTRL_2P5GBASET_FD			__BIT(9)
525 #define FW2X_CTRL_5GBASET_FD			__BIT(10)
526 #define FW2X_CTRL_10GBASET_FD			__BIT(11)
527 #define FW2X_CTRL_RESERVED1			__BIT(32)
528 #define FW2X_CTRL_10BASET_EEE			__BIT(33)
529 #define FW2X_CTRL_RESERVED2			__BIT(34)
530 #define FW2X_CTRL_PAUSE				__BIT(35)
531 #define FW2X_CTRL_ASYMMETRIC_PAUSE		__BIT(36)
532 #define FW2X_CTRL_100BASETX_EEE			__BIT(37)
533 #define FW2X_CTRL_RESERVED3			__BIT(38)
534 #define FW2X_CTRL_RESERVED4			__BIT(39)
535 #define FW2X_CTRL_1000BASET_FD_EEE		__BIT(40)
536 #define FW2X_CTRL_2P5GBASET_FD_EEE		__BIT(41)
537 #define FW2X_CTRL_5GBASET_FD_EEE		__BIT(42)
538 #define FW2X_CTRL_10GBASET_FD_EEE		__BIT(43)
539 #define FW2X_CTRL_RESERVED5			__BIT(44)
540 #define FW2X_CTRL_RESERVED6			__BIT(45)
541 #define FW2X_CTRL_RESERVED7			__BIT(46)
542 #define FW2X_CTRL_RESERVED8			__BIT(47)
543 #define FW2X_CTRL_RESERVED9			__BIT(48)
544 #define FW2X_CTRL_CABLE_DIAG			__BIT(49)
545 #define FW2X_CTRL_TEMPERATURE			__BIT(50)
546 #define FW2X_CTRL_DOWNSHIFT			__BIT(51)
547 #define FW2X_CTRL_PTP_AVB_EN			__BIT(52)
548 #define FW2X_CTRL_MEDIA_DETECT			__BIT(53)
549 #define FW2X_CTRL_LINK_DROP			__BIT(54)
550 #define FW2X_CTRL_SLEEP_PROXY			__BIT(55)
551 #define FW2X_CTRL_WOL				__BIT(56)
552 #define FW2X_CTRL_MAC_STOP			__BIT(57)
553 #define FW2X_CTRL_EXT_LOOPBACK			__BIT(58)
554 #define FW2X_CTRL_INT_LOOPBACK			__BIT(59)
555 #define FW2X_CTRL_EFUSE_AGENT			__BIT(60)
556 #define FW2X_CTRL_WOL_TIMER			__BIT(61)
557 #define FW2X_CTRL_STATISTICS			__BIT(62)
558 #define FW2X_CTRL_TRANSACTION_ID		__BIT(63)
559 
560 #define FW2X_SNPRINTB			\
561 	"\177\020"			\
562 	"b\x23" "PAUSE\0"		\
563 	"b\x24" "ASYMMETRIC-PAUSE\0"	\
564 	"b\x31" "CABLE-DIAG\0"		\
565 	"b\x32" "TEMPERATURE\0"		\
566 	"b\x33" "DOWNSHIFT\0"		\
567 	"b\x34" "PTP-AVB\0"		\
568 	"b\x35" "MEDIA-DETECT\0"	\
569 	"b\x36" "LINK-DROP\0"		\
570 	"b\x37" "SLEEP-PROXY\0"		\
571 	"b\x38" "WOL\0"			\
572 	"b\x39" "MAC-STOP\0"		\
573 	"b\x3a" "EXT-LOOPBACK\0"	\
574 	"b\x3b" "INT-LOOPBACK\0"	\
575 	"b\x3c" "EFUSE-AGENT\0"		\
576 	"b\x3d" "WOL-TIMER\0"		\
577 	"b\x3e" "STATISTICS\0"		\
578 	"b\x3f" "TRANSACTION-ID\0"	\
579 	"\0"
580 
581 #define FW2X_CTRL_RATE_100M			FW2X_CTRL_100BASETX_FD
582 #define FW2X_CTRL_RATE_1G			FW2X_CTRL_1000BASET_FD
583 #define FW2X_CTRL_RATE_2G5			FW2X_CTRL_2P5GBASET_FD
584 #define FW2X_CTRL_RATE_5G			FW2X_CTRL_5GBASET_FD
585 #define FW2X_CTRL_RATE_10G			FW2X_CTRL_10GBASET_FD
586 #define FW2X_CTRL_RATE_MASK		\
587 	(FW2X_CTRL_RATE_100M |		\
588 	 FW2X_CTRL_RATE_1G |		\
589 	 FW2X_CTRL_RATE_2G5 |		\
590 	 FW2X_CTRL_RATE_5G |		\
591 	 FW2X_CTRL_RATE_10G)
592 #define FW2X_CTRL_EEE_MASK		\
593 	(FW2X_CTRL_10BASET_EEE |	\
594 	 FW2X_CTRL_100BASETX_EEE |	\
595 	 FW2X_CTRL_1000BASET_FD_EEE |	\
596 	 FW2X_CTRL_2P5GBASET_FD_EEE |	\
597 	 FW2X_CTRL_5GBASET_FD_EEE |	\
598 	 FW2X_CTRL_10GBASET_FD_EEE)
599 
600 typedef enum aq_fw_bootloader_mode {
601 	FW_BOOT_MODE_UNKNOWN = 0,
602 	FW_BOOT_MODE_FLB,
603 	FW_BOOT_MODE_RBL_FLASH,
604 	FW_BOOT_MODE_RBL_HOST_BOOTLOAD
605 } aq_fw_bootloader_mode_t;
606 
607 #define AQ_WRITE_REG(sc, reg, val)				\
608 	bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))
609 
610 #define AQ_READ_REG(sc, reg)					\
611 	bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, (reg))
612 
613 #define AQ_READ64_REG(sc, reg)					\
614 	((uint64_t)AQ_READ_REG(sc, reg) |			\
615 	(((uint64_t)AQ_READ_REG(sc, (reg) + 4)) << 32))
616 
617 #define AQ_WRITE64_REG(sc, reg, val)				\
618 	do {							\
619 		AQ_WRITE_REG(sc, reg, (uint32_t)val);		\
620 		AQ_WRITE_REG(sc, reg + 4, (uint32_t)(val >> 32)); \
621 	} while (/* CONSTCOND */0)
622 
623 #define AQ_READ_REG_BIT(sc, reg, mask)				\
624 	__SHIFTOUT(AQ_READ_REG(sc, reg), mask)
625 
626 #define AQ_WRITE_REG_BIT(sc, reg, mask, val)			\
627 	do {							\
628 		uint32_t _v;					\
629 		_v = AQ_READ_REG((sc), (reg));			\
630 		_v &= ~(mask);					\
631 		if ((val) != 0)					\
632 			_v |= __SHIFTIN((val), (mask));		\
633 		AQ_WRITE_REG((sc), (reg), _v);			\
634 	} while (/* CONSTCOND */ 0)
635 
636 #define WAIT_FOR(expr, us, n, errp)				\
637 	do {							\
638 		unsigned int _n;				\
639 		for (_n = n; (!(expr)) && _n != 0; --_n) {	\
640 			delay((us));				\
641 		}						\
642 		if ((errp != NULL)) {				\
643 			if (_n == 0)				\
644 				*(errp) = ETIMEDOUT;		\
645 			else					\
646 				*(errp) = 0;			\
647 		}						\
648 	} while (/* CONSTCOND */ 0)
649 
650 #define msec_delay(x)	DELAY(1000 * (x))
651 
652 typedef struct aq_mailbox_header {
653 	uint32_t version;
654 	uint32_t transaction_id;
655 	int32_t error;
656 } __packed aq_mailbox_header_t;
657 
658 typedef struct aq_hw_stats_s {
659 	uint32_t uprc;
660 	uint32_t mprc;
661 	uint32_t bprc;
662 	uint32_t erpt;
663 	uint32_t uptc;
664 	uint32_t mptc;
665 	uint32_t bptc;
666 	uint32_t erpr;
667 	uint32_t mbtc;
668 	uint32_t bbtc;
669 	uint32_t mbrc;
670 	uint32_t bbrc;
671 	uint32_t ubrc;
672 	uint32_t ubtc;
673 	uint32_t ptc;
674 	uint32_t prc;
675 	uint32_t dpc;	/* not exists in fw2x_msm_statistics */
676 	uint32_t cprc;	/* not exists in fw2x_msm_statistics */
677 } __packed aq_hw_stats_s_t;
678 
679 typedef struct fw1x_mailbox {
680 	aq_mailbox_header_t header;
681 	aq_hw_stats_s_t msm;
682 } __packed fw1x_mailbox_t;
683 
684 typedef struct fw2x_msm_statistics {
685 	uint32_t uprc;
686 	uint32_t mprc;
687 	uint32_t bprc;
688 	uint32_t erpt;
689 	uint32_t uptc;
690 	uint32_t mptc;
691 	uint32_t bptc;
692 	uint32_t erpr;
693 	uint32_t mbtc;
694 	uint32_t bbtc;
695 	uint32_t mbrc;
696 	uint32_t bbrc;
697 	uint32_t ubrc;
698 	uint32_t ubtc;
699 	uint32_t ptc;
700 	uint32_t prc;
701 } __packed fw2x_msm_statistics_t;
702 
703 typedef struct fw2x_phy_cable_diag_data {
704 	uint32_t lane_data[4];
705 } __packed fw2x_phy_cable_diag_data_t;
706 
707 typedef struct fw2x_capabilities {
708 	uint32_t caps_lo;
709 	uint32_t caps_hi;
710 } __packed fw2x_capabilities_t;
711 
712 typedef struct fw2x_mailbox {		/* struct fwHostInterface */
713 	aq_mailbox_header_t header;
714 	fw2x_msm_statistics_t msm;	/* msmStatistics_t msm; */
715 
716 	uint32_t phy_info1;
717 #define PHYINFO1_FAULT_CODE	__BITS(31,16)
718 #define PHYINFO1_PHY_H_BIT	__BITS(0,15)
719 	uint32_t phy_info2;
720 #define PHYINFO2_TEMPERATURE	__BITS(15,0)
721 #define PHYINFO2_CABLE_LEN	__BITS(23,16)
722 
723 	fw2x_phy_cable_diag_data_t diag_data;
724 	uint32_t reserved[8];
725 
726 	fw2x_capabilities_t caps;
727 
728 	/* ... */
729 } __packed fw2x_mailbox_t;
730 
731 typedef enum aq_link_speed {
732 	AQ_LINK_NONE	= 0,
733 	AQ_LINK_100M	= (1 << 0),
734 	AQ_LINK_1G	= (1 << 1),
735 	AQ_LINK_2G5	= (1 << 2),
736 	AQ_LINK_5G	= (1 << 3),
737 	AQ_LINK_10G	= (1 << 4)
738 } aq_link_speed_t;
739 #define AQ_LINK_ALL	(AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | \
740 			 AQ_LINK_5G | AQ_LINK_10G )
741 #define AQ_LINK_AUTO	AQ_LINK_ALL
742 
743 typedef enum aq_link_fc {
744 	AQ_FC_NONE = 0,
745 	AQ_FC_RX = __BIT(0),
746 	AQ_FC_TX = __BIT(1),
747 	AQ_FC_ALL = (AQ_FC_RX | AQ_FC_TX)
748 } aq_link_fc_t;
749 
750 typedef enum aq_link_eee {
751 	AQ_EEE_DISABLE = 0,
752 	AQ_EEE_ENABLE = 1
753 } aq_link_eee_t;
754 
755 typedef enum aq_hw_fw_mpi_state {
756 	MPI_DEINIT	= 0,
757 	MPI_RESET	= 1,
758 	MPI_INIT	= 2,
759 	MPI_POWER	= 4
760 } aq_hw_fw_mpi_state_t;
761 
762 enum aq_media_type {
763 	AQ_MEDIA_TYPE_UNKNOWN = 0,
764 	AQ_MEDIA_TYPE_FIBRE,
765 	AQ_MEDIA_TYPE_TP
766 };
767 
768 struct aq_rx_desc_read {
769 	uint64_t buf_addr;
770 	uint64_t hdr_addr;
771 } __packed;
772 
773 struct aq_rx_desc_wb {
774 	uint32_t type;
775 #define RXDESC_TYPE_RSSTYPE		__BITS(3,0)
776 #define  RXDESC_TYPE_RSSTYPE_NONE		0
777 #define  RXDESC_TYPE_RSSTYPE_IPV4		2
778 #define  RXDESC_TYPE_RSSTYPE_IPV6		3
779 #define  RXDESC_TYPE_RSSTYPE_IPV4_TCP		4
780 #define  RXDESC_TYPE_RSSTYPE_IPV6_TCP		5
781 #define  RXDESC_TYPE_RSSTYPE_IPV4_UDP		6
782 #define  RXDESC_TYPE_RSSTYPE_IPV6_UDP		7
783 #define RXDESC_TYPE_PKTTYPE_ETHER	__BITS(5,4)
784 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV4		0
785 #define  RXDESC_TYPE_PKTTYPE_ETHER_IPV6		1
786 #define  RXDESC_TYPE_PKTTYPE_ETHER_OTHERS	2
787 #define  RXDESC_TYPE_PKTTYPE_ETHER_ARP		3
788 #define RXDESC_TYPE_PKTTYPE_PROTO	__BITS(8,6)
789 #define  RXDESC_TYPE_PKTTYPE_PROTO_TCP		0
790 #define  RXDESC_TYPE_PKTTYPE_PROTO_UDP		1
791 #define  RXDESC_TYPE_PKTTYPE_PROTO_SCTP		2
792 #define  RXDESC_TYPE_PKTTYPE_PROTO_ICMP		3
793 #define  RXDESC_TYPE_PKTTYPE_PROTO_OTHERS	4
794 #define RXDESC_TYPE_PKTTYPE_VLAN	__BIT(9)
795 #define RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE	__BIT(10)
796 #define RXDESC_TYPE_MAC_DMA_ERR		__BIT(12)
797 #define RXDESC_TYPE_RESERVED		__BITS(18,13)
798 #define RXDESC_TYPE_IPV4_CSUM_CHECKED	__BIT(19)	/* PKTTYPE_ETHER_IPV4 */
799 #define RXDESC_TYPE_TCPUDP_CSUM_CHECKED	__BIT(20)
800 #define RXDESC_TYPE_SPH			__BIT(21)
801 #define RXDESC_TYPE_HDR_LEN		__BITS(31,22)
802 	uint32_t rss_hash;
803 	uint16_t status;
804 #define RXDESC_STATUS_DD		__BIT(0)
805 #define RXDESC_STATUS_EOP		__BIT(1)
806 #define RXDESC_STATUS_MACERR		__BIT(2)
807 #define RXDESC_STATUS_IPV4_CSUM_NG	__BIT(3)
808 #define RXDESC_STATUS_TCPUDP_CSUM_ERROR	__BIT(4)
809 #define RXDESC_STATUS_TCPUDP_CSUM_OK	__BIT(5)
810 
811 #define RXDESC_STATUS_STAT		__BITS(2,5)
812 #define RXDESC_STATUS_ESTAT		__BITS(6,11)
813 #define RXDESC_STATUS_RSC_CNT		__BITS(12,15)
814 	uint16_t pkt_len;
815 	uint16_t next_desc_ptr;
816 	uint16_t vlan;
817 } __packed;
818 
819 typedef union aq_rx_desc {
820 	struct aq_rx_desc_read read;
821 	struct aq_rx_desc_wb wb;
822 } __packed aq_rx_desc_t;
823 
824 typedef struct aq_tx_desc {
825 	uint64_t buf_addr;
826 	uint32_t ctl1;
827 #define AQ_TXDESC_CTL1_TYPE_MASK	0x00000003
828 #define AQ_TXDESC_CTL1_TYPE_TXD		0x00000001
829 #define AQ_TXDESC_CTL1_TYPE_TXC		0x00000002
830 #define AQ_TXDESC_CTL1_BLEN		__BITS(19,4)	/* TXD */
831 #define AQ_TXDESC_CTL1_DD		__BIT(20)	/* TXD */
832 #define AQ_TXDESC_CTL1_EOP		__BIT(21)	/* TXD */
833 #define AQ_TXDESC_CTL1_CMD_VLAN		__BIT(22)	/* TXD */
834 #define AQ_TXDESC_CTL1_CMD_FCS		__BIT(23)	/* TXD */
835 #define AQ_TXDESC_CTL1_CMD_IP4CSUM	__BIT(24)	/* TXD */
836 #define AQ_TXDESC_CTL1_CMD_L4CSUM	__BIT(25)	/* TXD */
837 #define AQ_TXDESC_CTL1_CMD_LSO		__BIT(26)	/* TXD */
838 #define AQ_TXDESC_CTL1_CMD_WB		__BIT(27)	/* TXD */
839 #define AQ_TXDESC_CTL1_CMD_VXLAN	__BIT(28)	/* TXD */
840 #define AQ_TXDESC_CTL1_VID		__BITS(15,4)	/* TXC */
841 #define AQ_TXDESC_CTL1_LSO_IPV6		__BIT(21)	/* TXC */
842 #define AQ_TXDESC_CTL1_LSO_TCP		__BIT(22)	/* TXC */
843 	uint32_t ctl2;
844 #define AQ_TXDESC_CTL2_LEN		__BITS(31,14)
845 #define AQ_TXDESC_CTL2_CTX_EN		__BIT(13)
846 #define AQ_TXDESC_CTL2_CTX_IDX		__BIT(12)
847 } __packed aq_tx_desc_t;
848 
849 struct aq_txring {
850 	struct aq_softc *txr_sc;
851 	int txr_index;
852 	kmutex_t txr_mutex;
853 	bool txr_active;
854 
855 	pcq_t *txr_pcq;
856 	void *txr_softint;
857 
858 	aq_tx_desc_t *txr_txdesc;	/* aq_tx_desc_t[AQ_TXD_NUM] */
859 	bus_dmamap_t txr_txdesc_dmamap;
860 	bus_dma_segment_t txr_txdesc_seg[1];
861 	bus_size_t txr_txdesc_size;
862 
863 	struct {
864 		struct mbuf *m;
865 		bus_dmamap_t dmamap;
866 	} txr_mbufs[AQ_TXD_NUM];
867 	unsigned int txr_prodidx;
868 	unsigned int txr_considx;
869 	int txr_nfree;
870 };
871 
872 struct aq_rxring {
873 	struct aq_softc *rxr_sc;
874 	int rxr_index;
875 	kmutex_t rxr_mutex;
876 	bool rxr_active;
877 
878 	aq_rx_desc_t *rxr_rxdesc;	/* aq_rx_desc_t[AQ_RXD_NUM] */
879 	bus_dmamap_t rxr_rxdesc_dmamap;
880 	bus_dma_segment_t rxr_rxdesc_seg[1];
881 	bus_size_t rxr_rxdesc_size;
882 	struct {
883 		struct mbuf *m;
884 		bus_dmamap_t dmamap;
885 	} rxr_mbufs[AQ_RXD_NUM];
886 	unsigned int rxr_readidx;
887 };
888 
889 struct aq_queue {
890 	struct aq_softc *sc;
891 	struct aq_txring txring;
892 	struct aq_rxring rxring;
893 };
894 
895 struct aq_softc;
896 struct aq_firmware_ops {
897 	int (*reset)(struct aq_softc *);
898 	int (*set_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t,
899 	    aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
900 	int (*get_mode)(struct aq_softc *, aq_hw_fw_mpi_state_t *,
901 	    aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
902 	int (*get_stats)(struct aq_softc *, aq_hw_stats_s_t *);
903 #if NSYSMON_ENVSYS > 0
904 	int (*get_temperature)(struct aq_softc *, uint32_t *);
905 #endif
906 };
907 
908 #ifdef AQ_EVENT_COUNTERS
909 #define AQ_EVCNT_DECL(name)						\
910 	char sc_evcount_##name##_name[32];				\
911 	struct evcnt sc_evcount_##name##_ev;
912 #define AQ_EVCNT_ATTACH(sc, name, desc, evtype)				\
913 	do {								\
914 		snprintf((sc)->sc_evcount_##name##_name,		\
915 		    sizeof((sc)->sc_evcount_##name##_name),		\
916 		    "%s", desc);					\
917 		evcnt_attach_dynamic(&(sc)->sc_evcount_##name##_ev,	\
918 		    (evtype), NULL, device_xname((sc)->sc_dev),		\
919 		    (sc)->sc_evcount_##name##_name);			\
920 	} while (/*CONSTCOND*/0)
921 #define AQ_EVCNT_ATTACH_MISC(sc, name, desc)				\
922 	AQ_EVCNT_ATTACH(sc, name, desc, EVCNT_TYPE_MISC)
923 #define AQ_EVCNT_DETACH(sc, name)					\
924 	evcnt_detach(&(sc)->sc_evcount_##name##_ev)
925 #define AQ_EVCNT_ADD(sc, name, val)					\
926 	((sc)->sc_evcount_##name##_ev.ev_count += (val))
927 #endif /* AQ_EVENT_COUNTERS */
928 
929 #define AQ_LOCK(sc)		mutex_enter(&(sc)->sc_mutex);
930 #define AQ_UNLOCK(sc)		mutex_exit(&(sc)->sc_mutex);
931 
932 /* lock for FW2X_MPI_{CONTROL,STATE]_REG read-modify-write */
933 #define AQ_MPI_LOCK(sc)		mutex_enter(&(sc)->sc_mpi_mutex);
934 #define AQ_MPI_UNLOCK(sc)	mutex_exit(&(sc)->sc_mpi_mutex);
935 
936 
937 struct aq_softc {
938 	device_t sc_dev;
939 
940 	bus_space_tag_t sc_iot;
941 	bus_space_handle_t sc_ioh;
942 	bus_size_t sc_iosize;
943 	bus_dma_tag_t sc_dmat;
944 
945 	void *sc_ihs[AQ_NINTR_MAX];
946 	pci_intr_handle_t *sc_intrs;
947 
948 	int sc_tx_irq[AQ_RSSQUEUE_MAX];
949 	int sc_rx_irq[AQ_RSSQUEUE_MAX];
950 	int sc_linkstat_irq;
951 	bool sc_use_txrx_independent_intr;
952 	bool sc_poll_linkstat;
953 	bool sc_detect_linkstat;
954 
955 #if NSYSMON_ENVSYS > 0
956 	struct sysmon_envsys *sc_sme;
957 	envsys_data_t sc_sensor_temp;
958 #endif
959 
960 	callout_t sc_tick_ch;
961 
962 	int sc_nintrs;
963 	bool sc_msix;
964 
965 	struct aq_queue sc_queue[AQ_RSSQUEUE_MAX];
966 	int sc_nqueues;
967 
968 	pci_chipset_tag_t sc_pc;
969 	pcitag_t sc_pcitag;
970 	uint16_t sc_product;
971 	uint16_t sc_revision;
972 
973 	kmutex_t sc_mutex;
974 	kmutex_t sc_mpi_mutex;
975 
976 	const struct aq_firmware_ops *sc_fw_ops;
977 	uint64_t sc_fw_caps;
978 	enum aq_media_type sc_media_type;
979 	aq_link_speed_t sc_available_rates;
980 
981 	aq_link_speed_t sc_link_rate;
982 	aq_link_fc_t sc_link_fc;
983 	aq_link_eee_t sc_link_eee;
984 
985 	uint32_t sc_fw_version;
986 #define FW_VERSION_MAJOR(sc)	(((sc)->sc_fw_version >> 24) & 0xff)
987 #define FW_VERSION_MINOR(sc)	(((sc)->sc_fw_version >> 16) & 0xff)
988 #define FW_VERSION_BUILD(sc)	((sc)->sc_fw_version & 0xffff)
989 	uint32_t sc_features;
990 #define FEATURES_MIPS		0x00000001
991 #define FEATURES_TPO2		0x00000002
992 #define FEATURES_RPF2		0x00000004
993 #define FEATURES_MPI_AQ		0x00000008
994 #define FEATURES_REV_A0		0x10000000
995 #define FEATURES_REV_A		(FEATURES_REV_A0)
996 #define FEATURES_REV_B0		0x20000000
997 #define FEATURES_REV_B1		0x40000000
998 #define FEATURES_REV_B		(FEATURES_REV_B0|FEATURES_REV_B1)
999 	uint32_t sc_mbox_addr;
1000 
1001 	bool sc_rbl_enabled;
1002 	bool sc_fast_start_enabled;
1003 	bool sc_flash_present;
1004 
1005 	bool sc_intr_moderation_enable;
1006 	bool sc_rss_enable;
1007 
1008 	struct ethercom sc_ethercom;
1009 	struct ether_addr sc_enaddr;
1010 	struct ifmedia sc_media;
1011 	int sc_ec_capenable;		/* last ec_capenable */
1012 	unsigned short sc_if_flags;	/* last if_flags */
1013 
1014 #ifdef AQ_EVENT_COUNTERS
1015 	aq_hw_stats_s_t sc_statistics[2];
1016 	int sc_statistics_idx;
1017 	bool sc_poll_statistics;
1018 
1019 	AQ_EVCNT_DECL(uprc);
1020 	AQ_EVCNT_DECL(mprc);
1021 	AQ_EVCNT_DECL(bprc);
1022 	AQ_EVCNT_DECL(erpt);
1023 	AQ_EVCNT_DECL(uptc);
1024 	AQ_EVCNT_DECL(mptc);
1025 	AQ_EVCNT_DECL(bptc);
1026 	AQ_EVCNT_DECL(erpr);
1027 	AQ_EVCNT_DECL(mbtc);
1028 	AQ_EVCNT_DECL(bbtc);
1029 	AQ_EVCNT_DECL(mbrc);
1030 	AQ_EVCNT_DECL(bbrc);
1031 	AQ_EVCNT_DECL(ubrc);
1032 	AQ_EVCNT_DECL(ubtc);
1033 	AQ_EVCNT_DECL(ptc);
1034 	AQ_EVCNT_DECL(prc);
1035 	AQ_EVCNT_DECL(dpc);
1036 	AQ_EVCNT_DECL(cprc);
1037 #endif
1038 };
1039 
1040 static int aq_match(device_t, cfdata_t, void *);
1041 static void aq_attach(device_t, device_t, void *);
1042 static int aq_detach(device_t, int);
1043 
1044 static int aq_setup_msix(struct aq_softc *, struct pci_attach_args *, int,
1045     bool, bool);
1046 static int aq_setup_legacy(struct aq_softc *, struct pci_attach_args *,
1047     pci_intr_type_t);
1048 static int aq_establish_msix_intr(struct aq_softc *, bool, bool);
1049 
1050 static int aq_ifmedia_change(struct ifnet * const);
1051 static void aq_ifmedia_status(struct ifnet * const, struct ifmediareq *);
1052 static int aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set);
1053 static int aq_ifflags_cb(struct ethercom *);
1054 static int aq_init(struct ifnet *);
1055 static void aq_send_common_locked(struct ifnet *, struct aq_softc *,
1056     struct aq_txring *, bool);
1057 static int aq_transmit(struct ifnet *, struct mbuf *);
1058 static void aq_deferred_transmit(void *);
1059 static void aq_start(struct ifnet *);
1060 static void aq_stop(struct ifnet *, int);
1061 static void aq_watchdog(struct ifnet *);
1062 static int aq_ioctl(struct ifnet *, unsigned long, void *);
1063 
1064 static int aq_txrx_rings_alloc(struct aq_softc *);
1065 static void aq_txrx_rings_free(struct aq_softc *);
1066 static int aq_tx_pcq_alloc(struct aq_softc *, struct aq_txring *);
1067 static void aq_tx_pcq_free(struct aq_softc *, struct aq_txring *);
1068 
1069 static void aq_initmedia(struct aq_softc *);
1070 static void aq_enable_intr(struct aq_softc *, bool, bool);
1071 
1072 #if NSYSMON_ENVSYS > 0
1073 static void aq_temp_refresh(struct sysmon_envsys *, envsys_data_t *);
1074 #endif
1075 static void aq_tick(void *);
1076 static int aq_legacy_intr(void *);
1077 static int aq_link_intr(void *);
1078 static int aq_txrx_intr(void *);
1079 static int aq_tx_intr(void *);
1080 static int aq_rx_intr(void *);
1081 
1082 static int aq_set_linkmode(struct aq_softc *, aq_link_speed_t, aq_link_fc_t,
1083     aq_link_eee_t);
1084 static int aq_get_linkmode(struct aq_softc *, aq_link_speed_t *, aq_link_fc_t *,
1085     aq_link_eee_t *);
1086 
1087 static int aq_fw_reset(struct aq_softc *);
1088 static int aq_fw_version_init(struct aq_softc *);
1089 static int aq_hw_init(struct aq_softc *);
1090 static int aq_hw_init_ucp(struct aq_softc *);
1091 static int aq_hw_reset(struct aq_softc *);
1092 static int aq_fw_downld_dwords(struct aq_softc *, uint32_t, uint32_t *,
1093     uint32_t);
1094 static int aq_get_mac_addr(struct aq_softc *);
1095 static int aq_init_rss(struct aq_softc *);
1096 static int aq_set_capability(struct aq_softc *);
1097 
1098 static int fw1x_reset(struct aq_softc *);
1099 static int fw1x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1100     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1101 static int fw1x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1102     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1103 static int fw1x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1104 
1105 static int fw2x_reset(struct aq_softc *);
1106 static int fw2x_set_mode(struct aq_softc *, aq_hw_fw_mpi_state_t,
1107     aq_link_speed_t, aq_link_fc_t, aq_link_eee_t);
1108 static int fw2x_get_mode(struct aq_softc *, aq_hw_fw_mpi_state_t *,
1109     aq_link_speed_t *, aq_link_fc_t *, aq_link_eee_t *);
1110 static int fw2x_get_stats(struct aq_softc *, aq_hw_stats_s_t *);
1111 #if NSYSMON_ENVSYS > 0
1112 static int fw2x_get_temperature(struct aq_softc *, uint32_t *);
1113 #endif
1114 
1115 static const struct aq_firmware_ops aq_fw1x_ops = {
1116 	.reset = fw1x_reset,
1117 	.set_mode = fw1x_set_mode,
1118 	.get_mode = fw1x_get_mode,
1119 	.get_stats = fw1x_get_stats,
1120 #if NSYSMON_ENVSYS > 0
1121 	.get_temperature = NULL
1122 #endif
1123 };
1124 
1125 static const struct aq_firmware_ops aq_fw2x_ops = {
1126 	.reset = fw2x_reset,
1127 	.set_mode = fw2x_set_mode,
1128 	.get_mode = fw2x_get_mode,
1129 	.get_stats = fw2x_get_stats,
1130 #if NSYSMON_ENVSYS > 0
1131 	.get_temperature = fw2x_get_temperature
1132 #endif
1133 };
1134 
1135 CFATTACH_DECL3_NEW(aq, sizeof(struct aq_softc),
1136     aq_match, aq_attach, aq_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
1137 
1138 static const struct aq_product {
1139 	pci_vendor_id_t aq_vendor;
1140 	pci_product_id_t aq_product;
1141 	const char *aq_name;
1142 	enum aq_media_type aq_media_type;
1143 	aq_link_speed_t aq_available_rates;
1144 } aq_products[] = {
1145 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100,
1146 	  "Aquantia AQC100 10 Gigabit Network Adapter",
1147 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1148 	},
1149 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107,
1150 	  "Aquantia AQC107 10 Gigabit Network Adapter",
1151 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1152 	},
1153 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108,
1154 	  "Aquantia AQC108 5 Gigabit Network Adapter",
1155 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1156 	},
1157 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109,
1158 	  "Aquantia AQC109 2.5 Gigabit Network Adapter",
1159 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1160 	},
1161 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111,
1162 	  "Aquantia AQC111 5 Gigabit Network Adapter",
1163 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1164 	},
1165 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112,
1166 	  "Aquantia AQC112 2.5 Gigabit Network Adapter",
1167 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1168 	},
1169 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC100S,
1170 	  "Aquantia AQC100S 10 Gigabit Network Adapter",
1171 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1172 	},
1173 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC107S,
1174 	  "Aquantia AQC107S 10 Gigabit Network Adapter",
1175 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1176 	},
1177 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC108S,
1178 	  "Aquantia AQC108S 5 Gigabit Network Adapter",
1179 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1180 	},
1181 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC109S,
1182 	  "Aquantia AQC109S 2.5 Gigabit Network Adapter",
1183 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1184 	},
1185 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC111S,
1186 	  "Aquantia AQC111S 5 Gigabit Network Adapter",
1187 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1188 	},
1189 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_AQC112S,
1190 	  "Aquantia AQC112S 2.5 Gigabit Network Adapter",
1191 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1192 	},
1193 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D100,
1194 	  "Aquantia D100 10 Gigabit Network Adapter",
1195 	  AQ_MEDIA_TYPE_FIBRE, AQ_LINK_ALL
1196 	},
1197 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D107,
1198 	  "Aquantia D107 10 Gigabit Network Adapter",
1199 	  AQ_MEDIA_TYPE_TP, AQ_LINK_ALL
1200 	},
1201 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D108,
1202 	  "Aquantia D108 5 Gigabit Network Adapter",
1203 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5 | AQ_LINK_5G
1204 	},
1205 	{ PCI_VENDOR_AQUANTIA, PCI_PRODUCT_AQUANTIA_D109,
1206 	  "Aquantia D109 2.5 Gigabit Network Adapter",
1207 	  AQ_MEDIA_TYPE_TP, AQ_LINK_100M | AQ_LINK_1G | AQ_LINK_2G5
1208 	}
1209 };
1210 
1211 static const struct aq_product *
1212 aq_lookup(const struct pci_attach_args *pa)
1213 {
1214 	unsigned int i;
1215 
1216 	for (i = 0; i < __arraycount(aq_products); i++) {
1217 		if (PCI_VENDOR(pa->pa_id)  == aq_products[i].aq_vendor &&
1218 		    PCI_PRODUCT(pa->pa_id) == aq_products[i].aq_product)
1219 			return &aq_products[i];
1220 	}
1221 	return NULL;
1222 }
1223 
1224 static int
1225 aq_match(device_t parent, cfdata_t cf, void *aux)
1226 {
1227 	struct pci_attach_args *pa = aux;
1228 
1229 	if (aq_lookup(pa) != NULL)
1230 		return 1;
1231 
1232 	return 0;
1233 }
1234 
1235 static void
1236 aq_attach(device_t parent, device_t self, void *aux)
1237 {
1238 	struct aq_softc *sc = device_private(self);
1239 	struct pci_attach_args *pa = aux;
1240 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1241 	pci_chipset_tag_t pc;
1242 	pcitag_t tag;
1243 	pcireg_t command, memtype, bar;
1244 	const struct aq_product *aqp;
1245 	int error;
1246 
1247 	sc->sc_dev = self;
1248 	mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NET);
1249 	mutex_init(&sc->sc_mpi_mutex, MUTEX_DEFAULT, IPL_NET);
1250 
1251 	sc->sc_pc = pc = pa->pa_pc;
1252 	sc->sc_pcitag = tag = pa->pa_tag;
1253 	sc->sc_dmat = pci_dma64_available(pa) ? pa->pa_dmat64 : pa->pa_dmat;
1254 
1255 	command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1256 	command |= PCI_COMMAND_MASTER_ENABLE;
1257 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1258 
1259 	sc->sc_product = PCI_PRODUCT(pa->pa_id);
1260 	sc->sc_revision = PCI_REVISION(pa->pa_class);
1261 
1262 	aqp = aq_lookup(pa);
1263 	KASSERT(aqp != NULL);
1264 
1265 	pci_aprint_devinfo_fancy(pa, "Ethernet controller", aqp->aq_name, 1);
1266 
1267 	bar = pci_conf_read(pc, tag, PCI_BAR(0));
1268 	if ((PCI_MAPREG_MEM_ADDR(bar) == 0) ||
1269 	    (PCI_MAPREG_TYPE(bar) != PCI_MAPREG_TYPE_MEM)) {
1270 		aprint_error_dev(sc->sc_dev, "wrong BAR type\n");
1271 		return;
1272 	}
1273 	memtype = pci_mapreg_type(pc, tag, PCI_BAR(0));
1274 	if (pci_mapreg_map(pa, PCI_BAR(0), memtype, 0, &sc->sc_iot, &sc->sc_ioh,
1275 	    NULL, &sc->sc_iosize) != 0) {
1276 		aprint_error_dev(sc->sc_dev, "unable to map register\n");
1277 		return;
1278 	}
1279 
1280 	sc->sc_nqueues = MIN(ncpu, AQ_RSSQUEUE_MAX);
1281 
1282 	/* max queue num is 8, and must be 2^n */
1283 	if (ncpu >= 8)
1284 		sc->sc_nqueues = 8;
1285 	else if (ncpu >= 4)
1286 		sc->sc_nqueues = 4;
1287 	else if (ncpu >= 2)
1288 		sc->sc_nqueues = 2;
1289 	else
1290 		sc->sc_nqueues = 1;
1291 
1292 	int msixcount = pci_msix_count(pa->pa_pc, pa->pa_tag);
1293 #ifndef CONFIG_NO_TXRX_INDEPENDENT
1294 	if (msixcount >= (sc->sc_nqueues * 2 + 1)) {
1295 		/* TX intrs + RX intrs + LINKSTAT intrs */
1296 		sc->sc_use_txrx_independent_intr = true;
1297 		sc->sc_poll_linkstat = false;
1298 		sc->sc_msix = true;
1299 	} else if (msixcount >= (sc->sc_nqueues * 2)) {
1300 		/* TX intrs + RX intrs */
1301 		sc->sc_use_txrx_independent_intr = true;
1302 		sc->sc_poll_linkstat = true;
1303 		sc->sc_msix = true;
1304 	} else
1305 #endif
1306 	if (msixcount >= (sc->sc_nqueues + 1)) {
1307 		/* TX/RX intrs LINKSTAT intrs */
1308 		sc->sc_use_txrx_independent_intr = false;
1309 		sc->sc_poll_linkstat = false;
1310 		sc->sc_msix = true;
1311 	} else if (msixcount >= sc->sc_nqueues) {
1312 		/* TX/RX intrs */
1313 		sc->sc_use_txrx_independent_intr = false;
1314 		sc->sc_poll_linkstat = true;
1315 		sc->sc_msix = true;
1316 	} else {
1317 		/* giving up using MSI-X */
1318 		sc->sc_msix = false;
1319 	}
1320 
1321 	/* XXX: on FIBRE, linkstat interrupt does not occur on boot? */
1322 	if (aqp->aq_media_type == AQ_MEDIA_TYPE_FIBRE)
1323 		sc->sc_poll_linkstat = true;
1324 
1325 #ifdef AQ_FORCE_POLL_LINKSTAT
1326 	sc->sc_poll_linkstat = true;
1327 #endif
1328 
1329 	aprint_debug_dev(sc->sc_dev,
1330 	    "ncpu=%d, pci_msix_count=%d."
1331 	    " allocate %d interrupts for %d%s queues%s\n",
1332 	    ncpu, msixcount,
1333 	    (sc->sc_use_txrx_independent_intr ?
1334 	    (sc->sc_nqueues * 2) : sc->sc_nqueues) +
1335 	    (sc->sc_poll_linkstat ? 0 : 1),
1336 	    sc->sc_nqueues,
1337 	    sc->sc_use_txrx_independent_intr ? "*2" : "",
1338 	    sc->sc_poll_linkstat ? "" : ", and link status");
1339 
1340 	if (sc->sc_msix)
1341 		error = aq_setup_msix(sc, pa, sc->sc_nqueues,
1342 		    sc->sc_use_txrx_independent_intr, !sc->sc_poll_linkstat);
1343 	else
1344 		error = ENODEV;
1345 
1346 	if (error != 0) {
1347 		/* if MSI-X failed, fallback to MSI with single queue */
1348 		sc->sc_use_txrx_independent_intr = false;
1349 		sc->sc_poll_linkstat = false;
1350 		sc->sc_msix = false;
1351 		sc->sc_nqueues = 1;
1352 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_MSI);
1353 	}
1354 	if (error != 0) {
1355 		/* if MSI failed, fallback to INTx */
1356 		error = aq_setup_legacy(sc, pa, PCI_INTR_TYPE_INTX);
1357 	}
1358 	if (error != 0)
1359 		return;
1360 
1361 	callout_init(&sc->sc_tick_ch, 0);
1362 	callout_setfunc(&sc->sc_tick_ch, aq_tick, sc);
1363 
1364 	sc->sc_intr_moderation_enable = CONFIG_INTR_MODERATION_ENABLE;
1365 
1366 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1367 		sc->sc_rss_enable = true;
1368 	else
1369 		sc->sc_rss_enable = false;
1370 
1371 	error = aq_txrx_rings_alloc(sc);
1372 	if (error != 0)
1373 		goto attach_failure;
1374 
1375 	error = aq_fw_reset(sc);
1376 	if (error != 0)
1377 		goto attach_failure;
1378 
1379 	error = aq_fw_version_init(sc);
1380 	if (error != 0)
1381 		goto attach_failure;
1382 
1383 	error = aq_hw_init_ucp(sc);
1384 	if (error < 0)
1385 		goto attach_failure;
1386 
1387 	KASSERT(sc->sc_mbox_addr != 0);
1388 	error = aq_hw_reset(sc);
1389 	if (error != 0)
1390 		goto attach_failure;
1391 
1392 	aq_get_mac_addr(sc);
1393 	aq_init_rss(sc);
1394 
1395 	error = aq_hw_init(sc);	/* initialize and interrupts */
1396 	if (error != 0)
1397 		goto attach_failure;
1398 
1399 	sc->sc_media_type = aqp->aq_media_type;
1400 	sc->sc_available_rates = aqp->aq_available_rates;
1401 
1402 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
1403 	ifmedia_init(&sc->sc_media, IFM_IMASK,
1404 	    aq_ifmedia_change, aq_ifmedia_status);
1405 	aq_initmedia(sc);
1406 
1407 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
1408 	ifp->if_softc = sc;
1409 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1410 	ifp->if_baudrate = IF_Gbps(10);
1411 	ifp->if_init = aq_init;
1412 	ifp->if_ioctl = aq_ioctl;
1413 	if (sc->sc_msix && (sc->sc_nqueues > 1))
1414 		ifp->if_transmit = aq_transmit;
1415 	ifp->if_start = aq_start;
1416 	ifp->if_stop = aq_stop;
1417 	ifp->if_watchdog = aq_watchdog;
1418 	IFQ_SET_READY(&ifp->if_snd);
1419 
1420 	/* initialize capabilities */
1421 	sc->sc_ethercom.ec_capabilities = 0;
1422 	sc->sc_ethercom.ec_capenable = 0;
1423 #if notyet
1424 	/* TODO */
1425 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_EEE;
1426 #endif
1427 	sc->sc_ethercom.ec_capabilities |=
1428 	    ETHERCAP_JUMBO_MTU |
1429 	    ETHERCAP_VLAN_MTU |
1430 	    ETHERCAP_VLAN_HWTAGGING |
1431 	    ETHERCAP_VLAN_HWFILTER;
1432 	sc->sc_ethercom.ec_capenable |=
1433 	    ETHERCAP_VLAN_HWTAGGING |
1434 	    ETHERCAP_VLAN_HWFILTER;
1435 
1436 	ifp->if_capabilities = 0;
1437 	ifp->if_capenable = 0;
1438 #ifdef CONFIG_LRO_SUPPORT
1439 	ifp->if_capabilities |= IFCAP_LRO;
1440 	ifp->if_capenable |= IFCAP_LRO;
1441 #endif
1442 #if notyet
1443 	/* TSO */
1444 	ifp->if_capabilities |= IFCAP_TSOv4 | IFCAP_TSOv6;
1445 #endif
1446 
1447 #if notyet
1448 	/*
1449 	 * XXX:
1450 	 *   Rx L4 CSUM doesn't work well for fragment packet.
1451 	 *   aq marks 'CHEDKED' and 'BAD' for them.
1452 	 *   we need to ignore (clear) hw-csum flags if the packet is fragmented
1453 	 *
1454 	 *   TODO: test with LRO enabled
1455 	 */
1456 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_TCPv6_Rx;
1457 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_UDPv6_Rx;
1458 #endif
1459 	/* TX hardware checksum offloadding */
1460 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
1461 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv6_Tx;
1462 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv6_Tx;
1463 	/* RX hardware checksum offloadding */
1464 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
1465 
1466 	if_attach(ifp);
1467 	if_deferred_start_init(ifp, NULL);
1468 	ether_ifattach(ifp, sc->sc_enaddr.ether_addr_octet);
1469 	ether_set_vlan_cb(&sc->sc_ethercom, aq_vlan_cb);
1470 	ether_set_ifflags_cb(&sc->sc_ethercom, aq_ifflags_cb);
1471 
1472 	aq_enable_intr(sc, true, false);	/* only intr about link */
1473 
1474 	/* update media */
1475 	aq_ifmedia_change(ifp);
1476 
1477 #if NSYSMON_ENVSYS > 0
1478 	/* temperature monitoring */
1479 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_temperature != NULL &&
1480 	    (sc->sc_fw_caps & FW2X_CTRL_TEMPERATURE) != 0) {
1481 
1482 		sc->sc_sme = sysmon_envsys_create();
1483 		sc->sc_sme->sme_name = device_xname(self);
1484 		sc->sc_sme->sme_cookie = sc;
1485 		sc->sc_sme->sme_flags = 0;
1486 		sc->sc_sme->sme_refresh = aq_temp_refresh;
1487 		sc->sc_sensor_temp.units = ENVSYS_STEMP;
1488 		sc->sc_sensor_temp.state = ENVSYS_SINVALID;
1489 		snprintf(sc->sc_sensor_temp.desc, ENVSYS_DESCLEN, "PHY");
1490 
1491 		sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_temp);
1492 		sysmon_envsys_register(sc->sc_sme);
1493 
1494 		/*
1495 		 * for unknown reasons, the first call of fw2x_get_temperature()
1496 		 * will always fail (firmware matter?), so run once now.
1497 		 */
1498 		aq_temp_refresh(sc->sc_sme, &sc->sc_sensor_temp);
1499 	}
1500 #endif
1501 
1502 #ifdef AQ_EVENT_COUNTERS
1503 	/* get starting statistics values */
1504 	if (sc->sc_fw_ops != NULL && sc->sc_fw_ops->get_stats != NULL &&
1505 	    sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[0]) == 0) {
1506 		sc->sc_poll_statistics = true;
1507 	}
1508 
1509 	AQ_EVCNT_ATTACH_MISC(sc, uprc, "RX unicast packet");
1510 	AQ_EVCNT_ATTACH_MISC(sc, bprc, "RX broadcast packet");
1511 	AQ_EVCNT_ATTACH_MISC(sc, mprc, "RX multicast packet");
1512 	AQ_EVCNT_ATTACH_MISC(sc, erpr, "RX error packet");
1513 	AQ_EVCNT_ATTACH_MISC(sc, ubrc, "RX unicast bytes");
1514 	AQ_EVCNT_ATTACH_MISC(sc, bbrc, "RX broadcast bytes");
1515 	AQ_EVCNT_ATTACH_MISC(sc, mbrc, "RX multicast bytes");
1516 	AQ_EVCNT_ATTACH_MISC(sc, prc, "RX good packet");
1517 	AQ_EVCNT_ATTACH_MISC(sc, uptc, "TX unicast packet");
1518 	AQ_EVCNT_ATTACH_MISC(sc, bptc, "TX broadcast packet");
1519 	AQ_EVCNT_ATTACH_MISC(sc, mptc, "TX multicast packet");
1520 	AQ_EVCNT_ATTACH_MISC(sc, erpt, "TX error packet");
1521 	AQ_EVCNT_ATTACH_MISC(sc, ubtc, "TX unicast bytes");
1522 	AQ_EVCNT_ATTACH_MISC(sc, bbtc, "TX broadcast bytes");
1523 	AQ_EVCNT_ATTACH_MISC(sc, mbtc, "TX multicast bytes");
1524 	AQ_EVCNT_ATTACH_MISC(sc, ptc, "TX good packet");
1525 	AQ_EVCNT_ATTACH_MISC(sc, dpc, "DMA drop packet");
1526 	AQ_EVCNT_ATTACH_MISC(sc, cprc, "RX coalesced packet");
1527 #endif
1528 
1529 	return;
1530 
1531  attach_failure:
1532 	aq_detach(self, 0);
1533 }
1534 
1535 static int
1536 aq_detach(device_t self, int flags __unused)
1537 {
1538 	struct aq_softc *sc = device_private(self);
1539 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 	int i, s;
1541 
1542 	if (sc->sc_iosize != 0) {
1543 		if (ifp->if_softc != NULL) {
1544 			s = splnet();
1545 			aq_stop(ifp, 0);
1546 			splx(s);
1547 		}
1548 
1549 		for (i = 0; i < AQ_NINTR_MAX; i++) {
1550 			if (sc->sc_ihs[i] != NULL) {
1551 				pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1552 				sc->sc_ihs[i] = NULL;
1553 			}
1554 		}
1555 		if (sc->sc_nintrs > 0) {
1556 			pci_intr_release(sc->sc_pc, sc->sc_intrs,
1557 			    sc->sc_nintrs);
1558 			sc->sc_intrs = NULL;
1559 			sc->sc_nintrs = 0;
1560 		}
1561 
1562 		aq_txrx_rings_free(sc);
1563 
1564 		if (ifp->if_softc != NULL) {
1565 			ether_ifdetach(ifp);
1566 			if_detach(ifp);
1567 		}
1568 
1569 		aprint_debug_dev(sc->sc_dev, "%s: bus_space_unmap\n", __func__);
1570 		bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_iosize);
1571 		sc->sc_iosize = 0;
1572 	}
1573 
1574 	callout_stop(&sc->sc_tick_ch);
1575 
1576 #if NSYSMON_ENVSYS > 0
1577 	if (sc->sc_sme != NULL) {
1578 		/* all sensors associated with this will also be detached */
1579 		sysmon_envsys_unregister(sc->sc_sme);
1580 		sc->sc_sme = NULL;
1581 	}
1582 #endif
1583 
1584 #ifdef AQ_EVENT_COUNTERS
1585 	AQ_EVCNT_DETACH(sc, uprc);
1586 	AQ_EVCNT_DETACH(sc, mprc);
1587 	AQ_EVCNT_DETACH(sc, bprc);
1588 	AQ_EVCNT_DETACH(sc, erpt);
1589 	AQ_EVCNT_DETACH(sc, uptc);
1590 	AQ_EVCNT_DETACH(sc, mptc);
1591 	AQ_EVCNT_DETACH(sc, bptc);
1592 	AQ_EVCNT_DETACH(sc, erpr);
1593 	AQ_EVCNT_DETACH(sc, mbtc);
1594 	AQ_EVCNT_DETACH(sc, bbtc);
1595 	AQ_EVCNT_DETACH(sc, mbrc);
1596 	AQ_EVCNT_DETACH(sc, bbrc);
1597 	AQ_EVCNT_DETACH(sc, ubrc);
1598 	AQ_EVCNT_DETACH(sc, ubtc);
1599 	AQ_EVCNT_DETACH(sc, ptc);
1600 	AQ_EVCNT_DETACH(sc, prc);
1601 	AQ_EVCNT_DETACH(sc, dpc);
1602 	AQ_EVCNT_DETACH(sc, cprc);
1603 #endif
1604 
1605 	ifmedia_fini(&sc->sc_media);
1606 
1607 	mutex_destroy(&sc->sc_mpi_mutex);
1608 	mutex_destroy(&sc->sc_mutex);
1609 
1610 	return 0;
1611 }
1612 
1613 static int
1614 aq_establish_intr(struct aq_softc *sc, int intno, kcpuset_t *affinity,
1615     int (*func)(void *), void *arg, const char *xname)
1616 {
1617 	char intrbuf[PCI_INTRSTR_LEN];
1618 	pci_chipset_tag_t pc = sc->sc_pc;
1619 	void *vih;
1620 	const char *intrstr = NULL;
1621 
1622 	intrstr = pci_intr_string(pc, sc->sc_intrs[intno], intrbuf,
1623 	    sizeof(intrbuf));
1624 
1625 	pci_intr_setattr(pc, &sc->sc_intrs[intno], PCI_INTR_MPSAFE, true);
1626 
1627 	vih = pci_intr_establish_xname(pc, sc->sc_intrs[intno],
1628 	    IPL_NET, func, arg, xname);
1629 	if (vih == NULL) {
1630 		aprint_error_dev(sc->sc_dev,
1631 		    "unable to establish MSI-X%s%s for %s\n",
1632 		    intrstr ? " at " : "",
1633 		    intrstr ? intrstr : "", xname);
1634 		return EIO;
1635 	}
1636 	sc->sc_ihs[intno] = vih;
1637 
1638 	if (affinity != NULL) {
1639 		/* Round-robin affinity */
1640 		kcpuset_zero(affinity);
1641 		kcpuset_set(affinity, intno % ncpu);
1642 		interrupt_distribute(vih, affinity, NULL);
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static int
1649 aq_establish_msix_intr(struct aq_softc *sc, bool txrx_independent,
1650     bool linkintr)
1651 {
1652 	kcpuset_t *affinity;
1653 	int error, intno, i;
1654 	char intr_xname[INTRDEVNAMEBUF];
1655 
1656 	kcpuset_create(&affinity, false);
1657 
1658 	intno = 0;
1659 
1660 	if (txrx_independent) {
1661 		for (i = 0; i < sc->sc_nqueues; i++) {
1662 			snprintf(intr_xname, sizeof(intr_xname), "%s RX%d",
1663 			    device_xname(sc->sc_dev), i);
1664 			sc->sc_rx_irq[i] = intno;
1665 			error = aq_establish_intr(sc, intno++, affinity,
1666 			   aq_rx_intr, &sc->sc_queue[i].rxring, intr_xname);
1667 			if (error != 0)
1668 				goto fail;
1669 		}
1670 		for (i = 0; i < sc->sc_nqueues; i++) {
1671 			snprintf(intr_xname, sizeof(intr_xname), "%s TX%d",
1672 			    device_xname(sc->sc_dev), i);
1673 			sc->sc_tx_irq[i] = intno;
1674 			error = aq_establish_intr(sc, intno++, affinity,
1675 			    aq_tx_intr, &sc->sc_queue[i].txring, intr_xname);
1676 			if (error != 0)
1677 				goto fail;
1678 		}
1679 	} else {
1680 		for (i = 0; i < sc->sc_nqueues; i++) {
1681 			snprintf(intr_xname, sizeof(intr_xname), "%s TXRX%d",
1682 			    device_xname(sc->sc_dev), i);
1683 			sc->sc_rx_irq[i] = intno;
1684 			sc->sc_tx_irq[i] = intno;
1685 			error = aq_establish_intr(sc, intno++, affinity,
1686 			    aq_txrx_intr, &sc->sc_queue[i], intr_xname);
1687 			if (error != 0)
1688 				goto fail;
1689 		}
1690 	}
1691 
1692 	if (linkintr) {
1693 		snprintf(intr_xname, sizeof(intr_xname), "%s LINK",
1694 		    device_xname(sc->sc_dev));
1695 		sc->sc_linkstat_irq = intno;
1696 		error = aq_establish_intr(sc, intno++, affinity,
1697 		    aq_link_intr, sc, intr_xname);
1698 		if (error != 0)
1699 			goto fail;
1700 	}
1701 
1702 	kcpuset_destroy(affinity);
1703 	return 0;
1704 
1705  fail:
1706 	for (i = 0; i < AQ_NINTR_MAX; i++) {
1707 		if (sc->sc_ihs[i] != NULL) {
1708 			pci_intr_disestablish(sc->sc_pc, sc->sc_ihs[i]);
1709 			sc->sc_ihs[i] = NULL;
1710 		}
1711 	}
1712 
1713 	kcpuset_destroy(affinity);
1714 	return ENOMEM;
1715 }
1716 
1717 static int
1718 aq_setup_msix(struct aq_softc *sc, struct pci_attach_args *pa, int nqueue,
1719     bool txrx_independent, bool linkintr)
1720 {
1721 	int error, nintr;
1722 
1723 	if (txrx_independent)
1724 		nintr = nqueue * 2;
1725 	else
1726 		nintr = nqueue;
1727 
1728 	if (linkintr)
1729 		nintr++;
1730 
1731 	error = pci_msix_alloc_exact(pa, &sc->sc_intrs, nintr);
1732 	if (error != 0) {
1733 		aprint_error_dev(sc->sc_dev,
1734 		    "failed to allocate MSI-X interrupts\n");
1735 		goto fail;
1736 	}
1737 
1738 	error = aq_establish_msix_intr(sc, txrx_independent, linkintr);
1739 	if (error == 0) {
1740 		sc->sc_nintrs = nintr;
1741 	} else {
1742 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1743 		sc->sc_nintrs = 0;
1744 	}
1745  fail:
1746 	return error;
1747 
1748 }
1749 
1750 static int
1751 aq_setup_legacy(struct aq_softc *sc, struct pci_attach_args *pa,
1752     pci_intr_type_t inttype)
1753 {
1754 	int counts[PCI_INTR_TYPE_SIZE];
1755 	int error, nintr;
1756 
1757 	nintr = 1;
1758 
1759 	memset(counts, 0, sizeof(counts));
1760 	counts[inttype] = nintr;
1761 
1762 	error = pci_intr_alloc(pa, &sc->sc_intrs, counts, inttype);
1763 	if (error != 0) {
1764 		aprint_error_dev(sc->sc_dev,
1765 		    "failed to allocate%s interrupts\n",
1766 		    (inttype == PCI_INTR_TYPE_MSI) ? " MSI" : "");
1767 		return error;
1768 	}
1769 	error = aq_establish_intr(sc, 0, NULL, aq_legacy_intr, sc,
1770 	    device_xname(sc->sc_dev));
1771 	if (error == 0) {
1772 		sc->sc_nintrs = nintr;
1773 	} else {
1774 		pci_intr_release(sc->sc_pc, sc->sc_intrs, nintr);
1775 		sc->sc_nintrs = 0;
1776 	}
1777 	return error;
1778 }
1779 
1780 static void
1781 global_software_reset(struct aq_softc *sc)
1782 {
1783 	uint32_t v;
1784 
1785 	AQ_WRITE_REG_BIT(sc, RX_SYSCONTROL_REG, RX_SYSCONTROL_RESET_DIS, 0);
1786 	AQ_WRITE_REG_BIT(sc, TX_SYSCONTROL_REG, TX_SYSCONTROL_RESET_DIS, 0);
1787 	AQ_WRITE_REG_BIT(sc, FW_MPI_RESETCTRL_REG,
1788 	    FW_MPI_RESETCTRL_RESET_DIS, 0);
1789 
1790 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1791 	v &= ~AQ_FW_SOFTRESET_DIS;
1792 	v |= AQ_FW_SOFTRESET_RESET;
1793 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1794 }
1795 
1796 static int
1797 mac_soft_reset_rbl(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1798 {
1799 	int timo;
1800 
1801 	aprint_debug_dev(sc->sc_dev, "RBL> MAC reset STARTED!\n");
1802 
1803 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1804 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1805 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1806 
1807 	/* MAC FW will reload PHY FW if 1E.1000.3 was cleaned - #undone */
1808 	AQ_WRITE_REG(sc, FW_BOOT_EXIT_CODE_REG, RBL_STATUS_DEAD);
1809 
1810 	global_software_reset(sc);
1811 
1812 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e0);
1813 
1814 	/* Wait for RBL to finish boot process. */
1815 #define RBL_TIMEOUT_MS	10000
1816 	uint16_t rbl_status;
1817 	for (timo = RBL_TIMEOUT_MS; timo > 0; timo--) {
1818 		rbl_status = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG) & 0xffff;
1819 		if (rbl_status != 0 && rbl_status != RBL_STATUS_DEAD)
1820 			break;
1821 		msec_delay(1);
1822 	}
1823 	if (timo <= 0) {
1824 		aprint_error_dev(sc->sc_dev,
1825 		    "RBL> RBL restart failed: timeout\n");
1826 		return EBUSY;
1827 	}
1828 	switch (rbl_status) {
1829 	case RBL_STATUS_SUCCESS:
1830 		if (mode != NULL)
1831 			*mode = FW_BOOT_MODE_RBL_FLASH;
1832 		aprint_debug_dev(sc->sc_dev, "RBL> reset complete! [Flash]\n");
1833 		break;
1834 	case RBL_STATUS_HOST_BOOT:
1835 		if (mode != NULL)
1836 			*mode = FW_BOOT_MODE_RBL_HOST_BOOTLOAD;
1837 		aprint_debug_dev(sc->sc_dev,
1838 		    "RBL> reset complete! [Host Bootload]\n");
1839 		break;
1840 	case RBL_STATUS_FAILURE:
1841 	default:
1842 		aprint_error_dev(sc->sc_dev,
1843 		    "unknown RBL status 0x%x\n", rbl_status);
1844 		return EBUSY;
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static int
1851 mac_soft_reset_flb(struct aq_softc *sc)
1852 {
1853 	uint32_t v;
1854 	int timo;
1855 
1856 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x40e1);
1857 	/*
1858 	 * Let Felicity hardware to complete SMBUS transaction before
1859 	 * Global software reset.
1860 	 */
1861 	msec_delay(50);
1862 
1863 	/*
1864 	 * If SPI burst transaction was interrupted(before running the script),
1865 	 * global software reset may not clear SPI interface.
1866 	 * Clean it up manually before global reset.
1867 	 */
1868 	AQ_WRITE_REG(sc, AQ_GLB_NVR_PROVISIONING2_REG, 0x00a0);
1869 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x009f);
1870 	AQ_WRITE_REG(sc, AQ_GLB_NVR_INTERFACE1_REG, 0x809f);
1871 	msec_delay(50);
1872 
1873 	v = AQ_READ_REG(sc, AQ_FW_SOFTRESET_REG);
1874 	v &= ~AQ_FW_SOFTRESET_DIS;
1875 	v |= AQ_FW_SOFTRESET_RESET;
1876 	AQ_WRITE_REG(sc, AQ_FW_SOFTRESET_REG, v);
1877 
1878 	/* Kickstart. */
1879 	AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1880 	AQ_WRITE_REG(sc, AQ_MBOXIF_POWER_GATING_CONTROL_REG, 0);
1881 	if (!sc->sc_fast_start_enabled)
1882 		AQ_WRITE_REG(sc, AQ_GLB_GENERAL_PROVISIONING9_REG, 1);
1883 
1884 	/*
1885 	 * For the case SPI burst transaction was interrupted (by MCP reset
1886 	 * above), wait until it is completed by hardware.
1887 	 */
1888 	msec_delay(50);
1889 
1890 	/* MAC Kickstart */
1891 	if (!sc->sc_fast_start_enabled) {
1892 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x180e0);
1893 
1894 		uint32_t flb_status;
1895 		for (timo = 0; timo < 1000; timo++) {
1896 			flb_status = AQ_READ_REG(sc,
1897 			    FW_MPI_DAISY_CHAIN_STATUS_REG) & 0x10;
1898 			if (flb_status != 0)
1899 				break;
1900 			msec_delay(1);
1901 		}
1902 		if (flb_status == 0) {
1903 			aprint_error_dev(sc->sc_dev,
1904 			    "FLB> MAC kickstart failed: timed out\n");
1905 			return ETIMEDOUT;
1906 		}
1907 		aprint_debug_dev(sc->sc_dev,
1908 		    "FLB> MAC kickstart done, %d ms\n", timo);
1909 		/* FW reset */
1910 		AQ_WRITE_REG(sc, AQ_FW_GLB_CTL2_REG, 0x80e0);
1911 		/*
1912 		 * Let Felicity hardware complete SMBUS transaction before
1913 		 * Global software reset.
1914 		 */
1915 		msec_delay(50);
1916 		sc->sc_fast_start_enabled = true;
1917 	}
1918 	AQ_WRITE_REG(sc, AQ_FW_GLB_CPU_SEM_REG(0), 1);
1919 
1920 	/* PHY Kickstart: #undone */
1921 	global_software_reset(sc);
1922 
1923 	for (timo = 0; timo < 1000; timo++) {
1924 		if (AQ_READ_REG(sc, AQ_FW_VERSION_REG) != 0)
1925 			break;
1926 		msec_delay(10);
1927 	}
1928 	if (timo >= 1000) {
1929 		aprint_error_dev(sc->sc_dev, "FLB> Global Soft Reset failed\n");
1930 		return ETIMEDOUT;
1931 	}
1932 	aprint_debug_dev(sc->sc_dev, "FLB> F/W restart: %d ms\n", timo * 10);
1933 	return 0;
1934 
1935 }
1936 
1937 static int
1938 mac_soft_reset(struct aq_softc *sc, aq_fw_bootloader_mode_t *mode)
1939 {
1940 	if (sc->sc_rbl_enabled)
1941 		return mac_soft_reset_rbl(sc, mode);
1942 
1943 	if (mode != NULL)
1944 		*mode = FW_BOOT_MODE_FLB;
1945 	return mac_soft_reset_flb(sc);
1946 }
1947 
1948 static int
1949 aq_fw_read_version(struct aq_softc *sc)
1950 {
1951 	int i, error = EBUSY;
1952 #define MAC_FW_START_TIMEOUT_MS	10000
1953 	for (i = 0; i < MAC_FW_START_TIMEOUT_MS; i++) {
1954 		sc->sc_fw_version = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1955 		if (sc->sc_fw_version != 0) {
1956 			error = 0;
1957 			break;
1958 		}
1959 		delay(1000);
1960 	}
1961 	return error;
1962 }
1963 
1964 static int
1965 aq_fw_reset(struct aq_softc *sc)
1966 {
1967 	uint32_t ver, v, bootExitCode;
1968 	int i, error;
1969 
1970 	ver = AQ_READ_REG(sc, AQ_FW_VERSION_REG);
1971 
1972 	for (i = 1000; i > 0; i--) {
1973 		v = AQ_READ_REG(sc, FW_MPI_DAISY_CHAIN_STATUS_REG);
1974 		bootExitCode = AQ_READ_REG(sc, FW_BOOT_EXIT_CODE_REG);
1975 		if (v != 0x06000000 || bootExitCode != 0)
1976 			break;
1977 	}
1978 	if (i <= 0) {
1979 		aprint_error_dev(sc->sc_dev,
1980 		    "F/W reset failed. Neither RBL nor FLB started\n");
1981 		return ETIMEDOUT;
1982 	}
1983 	sc->sc_rbl_enabled = (bootExitCode != 0);
1984 
1985 	/*
1986 	 * Having FW version 0 is an indicator that cold start
1987 	 * is in progress. This means two things:
1988 	 * 1) Driver have to wait for FW/HW to finish boot (500ms giveup)
1989 	 * 2) Driver may skip reset sequence and save time.
1990 	 */
1991 	if (sc->sc_fast_start_enabled && (ver != 0)) {
1992 		error = aq_fw_read_version(sc);
1993 		/* Skip reset as it just completed */
1994 		if (error == 0)
1995 			return 0;
1996 	}
1997 
1998 	aq_fw_bootloader_mode_t mode = FW_BOOT_MODE_UNKNOWN;
1999 	error = mac_soft_reset(sc, &mode);
2000 	if (error != 0) {
2001 		aprint_error_dev(sc->sc_dev, "MAC reset failed: %d\n", error);
2002 		return error;
2003 	}
2004 
2005 	switch (mode) {
2006 	case FW_BOOT_MODE_FLB:
2007 		aprint_debug_dev(sc->sc_dev,
2008 		    "FLB> F/W successfully loaded from flash.\n");
2009 		sc->sc_flash_present = true;
2010 		return aq_fw_read_version(sc);
2011 	case FW_BOOT_MODE_RBL_FLASH:
2012 		aprint_debug_dev(sc->sc_dev,
2013 		    "RBL> F/W loaded from flash. Host Bootload disabled.\n");
2014 		sc->sc_flash_present = true;
2015 		return aq_fw_read_version(sc);
2016 	case FW_BOOT_MODE_UNKNOWN:
2017 		aprint_error_dev(sc->sc_dev,
2018 		    "F/W bootload error: unknown bootloader type\n");
2019 		return ENOTSUP;
2020 	case FW_BOOT_MODE_RBL_HOST_BOOTLOAD:
2021 		aprint_debug_dev(sc->sc_dev, "RBL> Host Bootload mode\n");
2022 		break;
2023 	}
2024 
2025 	/*
2026 	 * XXX: TODO: add support Host Boot
2027 	 */
2028 	aprint_error_dev(sc->sc_dev,
2029 	    "RBL> F/W Host Bootload not implemented\n");
2030 	return ENOTSUP;
2031 }
2032 
2033 static int
2034 aq_hw_reset(struct aq_softc *sc)
2035 {
2036 	int error;
2037 
2038 	/* disable irq */
2039 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS, 0);
2040 
2041 	/* apply */
2042 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_IRQ, 1);
2043 
2044 	/* wait ack 10 times by 1ms */
2045 	WAIT_FOR(
2046 	    (AQ_READ_REG(sc, AQ_INTR_CTRL_REG) & AQ_INTR_CTRL_RESET_IRQ) == 0,
2047 	    1000, 10, &error);
2048 	if (error != 0) {
2049 		aprint_error_dev(sc->sc_dev,
2050 		    "atlantic: IRQ reset failed: %d\n", error);
2051 		return error;
2052 	}
2053 
2054 	return sc->sc_fw_ops->reset(sc);
2055 }
2056 
2057 static int
2058 aq_hw_init_ucp(struct aq_softc *sc)
2059 {
2060 	int timo;
2061 
2062 	if (FW_VERSION_MAJOR(sc) == 1) {
2063 		if (AQ_READ_REG(sc, FW1X_MPI_INIT2_REG) == 0) {
2064 			uint32_t data;
2065 			cprng_fast(&data, sizeof(data));
2066 			data &= 0xfefefefe;
2067 			data |= 0x02020202;
2068 			AQ_WRITE_REG(sc, FW1X_MPI_INIT2_REG, data);
2069 		}
2070 		AQ_WRITE_REG(sc, FW1X_MPI_INIT1_REG, 0);
2071 	}
2072 
2073 	for (timo = 100; timo > 0; timo--) {
2074 		sc->sc_mbox_addr = AQ_READ_REG(sc, FW_MPI_MBOX_ADDR_REG);
2075 		if (sc->sc_mbox_addr != 0)
2076 			break;
2077 		delay(1000);
2078 	}
2079 
2080 #define AQ_FW_MIN_VERSION	0x01050006
2081 #define AQ_FW_MIN_VERSION_STR	"1.5.6"
2082 	if (sc->sc_fw_version < AQ_FW_MIN_VERSION) {
2083 		aprint_error_dev(sc->sc_dev,
2084 		    "atlantic: wrong FW version: " AQ_FW_MIN_VERSION_STR
2085 		    " or later required, this is %d.%d.%d\n",
2086 		    FW_VERSION_MAJOR(sc),
2087 		    FW_VERSION_MINOR(sc),
2088 		    FW_VERSION_BUILD(sc));
2089 		return ENOTSUP;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static int
2096 aq_fw_version_init(struct aq_softc *sc)
2097 {
2098 	int error = 0;
2099 	char fw_vers[sizeof("F/W version xxxxx.xxxxx.xxxxx")];
2100 
2101 	if (FW_VERSION_MAJOR(sc) == 1) {
2102 		sc->sc_fw_ops = &aq_fw1x_ops;
2103 	} else if ((FW_VERSION_MAJOR(sc) == 2) || (FW_VERSION_MAJOR(sc) == 3)) {
2104 		sc->sc_fw_ops = &aq_fw2x_ops;
2105 	} else {
2106 		aprint_error_dev(sc->sc_dev,
2107 		    "Unsupported F/W version %d.%d.%d\n",
2108 		    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc),
2109 		    FW_VERSION_BUILD(sc));
2110 		return ENOTSUP;
2111 	}
2112 	snprintf(fw_vers, sizeof(fw_vers), "F/W version %d.%d.%d",
2113 	    FW_VERSION_MAJOR(sc), FW_VERSION_MINOR(sc), FW_VERSION_BUILD(sc));
2114 
2115 	/* detect revision */
2116 	uint32_t hwrev = AQ_READ_REG(sc, AQ_HW_REVISION_REG);
2117 	switch (hwrev & 0x0000000f) {
2118 	case 0x01:
2119 		aprint_normal_dev(sc->sc_dev, "Atlantic revision A0, %s\n",
2120 		    fw_vers);
2121 		sc->sc_features |= FEATURES_REV_A0 |
2122 		    FEATURES_MPI_AQ | FEATURES_MIPS;
2123 		break;
2124 	case 0x02:
2125 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B0, %s\n",
2126 		    fw_vers);
2127 		sc->sc_features |= FEATURES_REV_B0 |
2128 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2129 		    FEATURES_TPO2 | FEATURES_RPF2;
2130 		break;
2131 	case 0x0A:
2132 		aprint_normal_dev(sc->sc_dev, "Atlantic revision B1, %s\n",
2133 		    fw_vers);
2134 		sc->sc_features |= FEATURES_REV_B1 |
2135 		    FEATURES_MPI_AQ | FEATURES_MIPS |
2136 		    FEATURES_TPO2 | FEATURES_RPF2;
2137 		break;
2138 	default:
2139 		aprint_error_dev(sc->sc_dev,
2140 		    "Unknown revision (0x%08x)\n", hwrev);
2141 		error = ENOTSUP;
2142 		break;
2143 	}
2144 	return error;
2145 }
2146 
2147 static int
2148 fw1x_reset(struct aq_softc *sc)
2149 {
2150 	struct aq_mailbox_header mbox;
2151 	const int retryCount = 1000;
2152 	uint32_t tid0;
2153 	int i;
2154 
2155 	tid0 = ~0;	/*< Initial value of MBOX transactionId. */
2156 
2157 	for (i = 0; i < retryCount; ++i) {
2158 		/*
2159 		 * Read the beginning of Statistics structure to capture
2160 		 * the Transaction ID.
2161 		 */
2162 		aq_fw_downld_dwords(sc, sc->sc_mbox_addr,
2163 		    (uint32_t *)&mbox, sizeof(mbox) / sizeof(uint32_t));
2164 
2165 		/* Successfully read the stats. */
2166 		if (tid0 == ~0U) {
2167 			/* We have read the initial value. */
2168 			tid0 = mbox.transaction_id;
2169 			continue;
2170 		} else if (mbox.transaction_id != tid0) {
2171 			/*
2172 			 * Compare transaction ID to initial value.
2173 			 * If it's different means f/w is alive.
2174 			 * We're done.
2175 			 */
2176 			return 0;
2177 		}
2178 
2179 		/*
2180 		 * Transaction ID value haven't changed since last time.
2181 		 * Try reading the stats again.
2182 		 */
2183 		delay(10);
2184 	}
2185 	aprint_error_dev(sc->sc_dev, "F/W 1.x reset finalize timeout\n");
2186 	return EBUSY;
2187 }
2188 
2189 static int
2190 fw1x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2191     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2192 {
2193 	uint32_t mpictrl = 0;
2194 	uint32_t mpispeed = 0;
2195 
2196 	if (speed & AQ_LINK_10G)
2197 		mpispeed |= FW1X_CTRL_10G;
2198 	if (speed & AQ_LINK_5G)
2199 		mpispeed |= (FW1X_CTRL_5G | FW1X_CTRL_5GSR);
2200 	if (speed & AQ_LINK_2G5)
2201 		mpispeed |= FW1X_CTRL_2G5;
2202 	if (speed & AQ_LINK_1G)
2203 		mpispeed |= FW1X_CTRL_1G;
2204 	if (speed & AQ_LINK_100M)
2205 		mpispeed |= FW1X_CTRL_100M;
2206 
2207 	mpictrl |= __SHIFTIN(mode, FW1X_MPI_STATE_MODE);
2208 	mpictrl |= __SHIFTIN(mpispeed, FW1X_MPI_STATE_SPEED);
2209 	AQ_WRITE_REG(sc, FW1X_MPI_CONTROL_REG, mpictrl);
2210 	return 0;
2211 }
2212 
2213 static int
2214 fw1x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2215     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2216 {
2217 	uint32_t mpistate, mpi_speed;
2218 	aq_link_speed_t speed = AQ_LINK_NONE;
2219 
2220 	mpistate = AQ_READ_REG(sc, FW1X_MPI_STATE_REG);
2221 
2222 	if (modep != NULL)
2223 		*modep = __SHIFTOUT(mpistate, FW1X_MPI_STATE_MODE);
2224 
2225 	mpi_speed = __SHIFTOUT(mpistate, FW1X_MPI_STATE_SPEED);
2226 	if (mpi_speed & FW1X_CTRL_10G)
2227 		speed = AQ_LINK_10G;
2228 	else if (mpi_speed & (FW1X_CTRL_5G|FW1X_CTRL_5GSR))
2229 		speed = AQ_LINK_5G;
2230 	else if (mpi_speed & FW1X_CTRL_2G5)
2231 		speed = AQ_LINK_2G5;
2232 	else if (mpi_speed & FW1X_CTRL_1G)
2233 		speed = AQ_LINK_1G;
2234 	else if (mpi_speed & FW1X_CTRL_100M)
2235 		speed = AQ_LINK_100M;
2236 
2237 	if (speedp != NULL)
2238 		*speedp = speed;
2239 
2240 	if (fcp != NULL)
2241 		*fcp = AQ_FC_NONE;
2242 
2243 	if (eeep != NULL)
2244 		*eeep = AQ_EEE_DISABLE;
2245 
2246 	return 0;
2247 }
2248 
2249 static int
2250 fw1x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2251 {
2252 	int error;
2253 
2254 	error = aq_fw_downld_dwords(sc,
2255 	    sc->sc_mbox_addr + offsetof(fw1x_mailbox_t, msm), (uint32_t *)stats,
2256 	    sizeof(aq_hw_stats_s_t) / sizeof(uint32_t));
2257 	if (error < 0) {
2258 		device_printf(sc->sc_dev,
2259 		    "fw1x> download statistics data FAILED, error %d", error);
2260 		return error;
2261 	}
2262 
2263 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2264 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2265 	return 0;
2266 }
2267 
2268 static int
2269 fw2x_reset(struct aq_softc *sc)
2270 {
2271 	fw2x_capabilities_t caps = { 0 };
2272 	int error;
2273 
2274 	error = aq_fw_downld_dwords(sc,
2275 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, caps),
2276 	    (uint32_t *)&caps, sizeof caps / sizeof(uint32_t));
2277 	if (error != 0) {
2278 		aprint_error_dev(sc->sc_dev,
2279 		    "fw2x> can't get F/W capabilities mask, error %d\n",
2280 		    error);
2281 		return error;
2282 	}
2283 	sc->sc_fw_caps = caps.caps_lo | ((uint64_t)caps.caps_hi << 32);
2284 
2285 	char buf[256];
2286 	snprintb(buf, sizeof(buf), FW2X_SNPRINTB, sc->sc_fw_caps);
2287 	aprint_verbose_dev(sc->sc_dev, "fw2x> F/W capabilities=%s\n", buf);
2288 
2289 	return 0;
2290 }
2291 
2292 static int
2293 fw2x_set_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t mode,
2294     aq_link_speed_t speed, aq_link_fc_t fc, aq_link_eee_t eee)
2295 {
2296 	uint64_t mpi_ctrl;
2297 	int error = 0;
2298 
2299 	AQ_MPI_LOCK(sc);
2300 
2301 	mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2302 
2303 	switch (mode) {
2304 	case MPI_INIT:
2305 		mpi_ctrl &= ~FW2X_CTRL_RATE_MASK;
2306 		if (speed & AQ_LINK_10G)
2307 			mpi_ctrl |= FW2X_CTRL_RATE_10G;
2308 		if (speed & AQ_LINK_5G)
2309 			mpi_ctrl |= FW2X_CTRL_RATE_5G;
2310 		if (speed & AQ_LINK_2G5)
2311 			mpi_ctrl |= FW2X_CTRL_RATE_2G5;
2312 		if (speed & AQ_LINK_1G)
2313 			mpi_ctrl |= FW2X_CTRL_RATE_1G;
2314 		if (speed & AQ_LINK_100M)
2315 			mpi_ctrl |= FW2X_CTRL_RATE_100M;
2316 
2317 		mpi_ctrl &= ~FW2X_CTRL_LINK_DROP;
2318 
2319 		mpi_ctrl &= ~FW2X_CTRL_EEE_MASK;
2320 		if (eee == AQ_EEE_ENABLE)
2321 			mpi_ctrl |= FW2X_CTRL_EEE_MASK;
2322 
2323 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2324 		if (fc & AQ_FC_RX)
2325 			mpi_ctrl |= FW2X_CTRL_PAUSE;
2326 		if (fc & AQ_FC_TX)
2327 			mpi_ctrl |= FW2X_CTRL_ASYMMETRIC_PAUSE;
2328 		break;
2329 	case MPI_DEINIT:
2330 		mpi_ctrl &= ~(FW2X_CTRL_RATE_MASK | FW2X_CTRL_EEE_MASK);
2331 		mpi_ctrl &= ~(FW2X_CTRL_PAUSE | FW2X_CTRL_ASYMMETRIC_PAUSE);
2332 		break;
2333 	default:
2334 		device_printf(sc->sc_dev, "fw2x> unknown MPI state %d\n", mode);
2335 		error =  EINVAL;
2336 		goto failure;
2337 	}
2338 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2339 
2340  failure:
2341 	AQ_MPI_UNLOCK(sc);
2342 	return error;
2343 }
2344 
2345 static int
2346 fw2x_get_mode(struct aq_softc *sc, aq_hw_fw_mpi_state_t *modep,
2347     aq_link_speed_t *speedp, aq_link_fc_t *fcp, aq_link_eee_t *eeep)
2348 {
2349 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2350 
2351 	if (modep != NULL) {
2352 		uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2353 		if (mpi_ctrl & FW2X_CTRL_RATE_MASK)
2354 			*modep = MPI_INIT;
2355 		else
2356 			*modep = MPI_DEINIT;
2357 	}
2358 
2359 	aq_link_speed_t speed = AQ_LINK_NONE;
2360 	if (mpi_state & FW2X_CTRL_RATE_10G)
2361 		speed = AQ_LINK_10G;
2362 	else if (mpi_state & FW2X_CTRL_RATE_5G)
2363 		speed = AQ_LINK_5G;
2364 	else if (mpi_state & FW2X_CTRL_RATE_2G5)
2365 		speed = AQ_LINK_2G5;
2366 	else if (mpi_state & FW2X_CTRL_RATE_1G)
2367 		speed = AQ_LINK_1G;
2368 	else if (mpi_state & FW2X_CTRL_RATE_100M)
2369 		speed = AQ_LINK_100M;
2370 
2371 	if (speedp != NULL)
2372 		*speedp = speed;
2373 
2374 	aq_link_fc_t fc = AQ_FC_NONE;
2375 	if (mpi_state & FW2X_CTRL_PAUSE)
2376 		fc |= AQ_FC_RX;
2377 	if (mpi_state & FW2X_CTRL_ASYMMETRIC_PAUSE)
2378 		fc |= AQ_FC_TX;
2379 	if (fcp != NULL)
2380 		*fcp = fc;
2381 
2382 	/* XXX: TODO: EEE */
2383 	if (eeep != NULL)
2384 		*eeep = AQ_EEE_DISABLE;
2385 
2386 	return 0;
2387 }
2388 
2389 static int
2390 toggle_mpi_ctrl_and_wait(struct aq_softc *sc, uint64_t mask,
2391     uint32_t timeout_ms, uint32_t try_count)
2392 {
2393 	uint64_t mpi_ctrl = AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG);
2394 	uint64_t mpi_state = AQ_READ64_REG(sc, FW2X_MPI_STATE_REG);
2395 	int error;
2396 
2397 	/* First, check that control and state values are consistent */
2398 	if ((mpi_ctrl & mask) != (mpi_state & mask)) {
2399 		device_printf(sc->sc_dev,
2400 		    "fw2x> MPI control (%#llx) and state (%#llx)"
2401 		    " are not consistent for mask %#llx!\n",
2402 		    (unsigned long long)mpi_ctrl, (unsigned long long)mpi_state,
2403 		    (unsigned long long)mask);
2404 		return EINVAL;
2405 	}
2406 
2407 	/* Invert bits (toggle) in control register */
2408 	mpi_ctrl ^= mask;
2409 	AQ_WRITE64_REG(sc, FW2X_MPI_CONTROL_REG, mpi_ctrl);
2410 
2411 	/* Clear all bits except masked */
2412 	mpi_ctrl &= mask;
2413 
2414 	/* Wait for FW reflecting change in state register */
2415 	WAIT_FOR((AQ_READ64_REG(sc, FW2X_MPI_CONTROL_REG) & mask) == mpi_ctrl,
2416 	    1000 * timeout_ms, try_count, &error);
2417 	if (error != 0) {
2418 		device_printf(sc->sc_dev,
2419 		    "f/w2x> timeout while waiting for response"
2420 		    " in state register for bit %#llx!",
2421 		    (unsigned long long)mask);
2422 		return error;
2423 	}
2424 	return 0;
2425 }
2426 
2427 static int
2428 fw2x_get_stats(struct aq_softc *sc, aq_hw_stats_s_t *stats)
2429 {
2430 	int error;
2431 
2432 	AQ_MPI_LOCK(sc);
2433 	/* Say to F/W to update the statistics */
2434 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_STATISTICS, 1, 25);
2435 	if (error != 0) {
2436 		device_printf(sc->sc_dev,
2437 		    "fw2x> statistics update error %d\n", error);
2438 		goto failure;
2439 	}
2440 
2441 	CTASSERT(sizeof(fw2x_msm_statistics_t) <= sizeof(struct aq_hw_stats_s));
2442 	error = aq_fw_downld_dwords(sc,
2443 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, msm), (uint32_t *)stats,
2444 	    sizeof(fw2x_msm_statistics_t) / sizeof(uint32_t));
2445 	if (error != 0) {
2446 		device_printf(sc->sc_dev,
2447 		    "fw2x> download statistics data FAILED, error %d", error);
2448 		goto failure;
2449 	}
2450 	stats->dpc = AQ_READ_REG(sc, RX_DMA_DROP_PKT_CNT_REG);
2451 	stats->cprc = AQ_READ_REG(sc, RX_DMA_COALESCED_PKT_CNT_REG);
2452 
2453  failure:
2454 	AQ_MPI_UNLOCK(sc);
2455 	return error;
2456 }
2457 
2458 #if NSYSMON_ENVSYS > 0
2459 static int
2460 fw2x_get_temperature(struct aq_softc *sc, uint32_t *temp)
2461 {
2462 	int error;
2463 	uint32_t value, celsius;
2464 
2465 	AQ_MPI_LOCK(sc);
2466 
2467 	/* Say to F/W to update the temperature */
2468 	error = toggle_mpi_ctrl_and_wait(sc, FW2X_CTRL_TEMPERATURE, 1, 25);
2469 	if (error != 0)
2470 		goto failure;
2471 
2472 	error = aq_fw_downld_dwords(sc,
2473 	    sc->sc_mbox_addr + offsetof(fw2x_mailbox_t, phy_info2),
2474 	    &value, sizeof(value) / sizeof(uint32_t));
2475 	if (error != 0)
2476 		goto failure;
2477 
2478 	/* 1/256 decrees C to microkelvin */
2479 	celsius = __SHIFTOUT(value, PHYINFO2_TEMPERATURE);
2480 	if (celsius == 0) {
2481 		error = EIO;
2482 		goto failure;
2483 	}
2484 	*temp = celsius * (1000000 / 256) + 273150000;
2485 
2486  failure:
2487 	AQ_MPI_UNLOCK(sc);
2488 	return 0;
2489 }
2490 #endif
2491 
2492 static int
2493 aq_fw_downld_dwords(struct aq_softc *sc, uint32_t addr, uint32_t *p,
2494     uint32_t cnt)
2495 {
2496 	uint32_t v;
2497 	int error = 0;
2498 
2499 	WAIT_FOR(AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG) == 1, 1, 10000, &error);
2500 	if (error != 0) {
2501 		AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2502 		v = AQ_READ_REG(sc, AQ_FW_SEM_RAM_REG);
2503 		if (v == 0) {
2504 			device_printf(sc->sc_dev,
2505 			    "%s:%d: timeout\n", __func__, __LINE__);
2506 			return ETIMEDOUT;
2507 		}
2508 	}
2509 
2510 	AQ_WRITE_REG(sc, AQ_FW_MBOX_ADDR_REG, addr);
2511 
2512 	error = 0;
2513 	for (; cnt > 0 && error == 0; cnt--) {
2514 		/* execute mailbox interface */
2515 		AQ_WRITE_REG_BIT(sc, AQ_FW_MBOX_CMD_REG,
2516 		    AQ_FW_MBOX_CMD_EXECUTE, 1);
2517 		if (sc->sc_features & FEATURES_REV_B1) {
2518 			WAIT_FOR(AQ_READ_REG(sc, AQ_FW_MBOX_ADDR_REG) != addr,
2519 			    1, 1000, &error);
2520 		} else {
2521 			WAIT_FOR((AQ_READ_REG(sc, AQ_FW_MBOX_CMD_REG) &
2522 			    AQ_FW_MBOX_CMD_BUSY) == 0,
2523 			    1, 1000, &error);
2524 		}
2525 		*p++ = AQ_READ_REG(sc, AQ_FW_MBOX_VAL_REG);
2526 		addr += sizeof(uint32_t);
2527 	}
2528 	AQ_WRITE_REG(sc, AQ_FW_SEM_RAM_REG, 1);
2529 
2530 	if (error != 0)
2531 		device_printf(sc->sc_dev,
2532 		    "%s:%d: timeout\n", __func__, __LINE__);
2533 
2534 	return error;
2535 }
2536 
2537 /* read my mac address */
2538 static int
2539 aq_get_mac_addr(struct aq_softc *sc)
2540 {
2541 	uint32_t mac_addr[2];
2542 	uint32_t efuse_shadow_addr;
2543 	int err;
2544 
2545 	efuse_shadow_addr = 0;
2546 	if (FW_VERSION_MAJOR(sc) >= 2)
2547 		efuse_shadow_addr = AQ_READ_REG(sc, FW2X_MPI_EFUSEADDR_REG);
2548 	else
2549 		efuse_shadow_addr = AQ_READ_REG(sc, FW1X_MPI_EFUSEADDR_REG);
2550 
2551 	if (efuse_shadow_addr == 0) {
2552 		aprint_error_dev(sc->sc_dev, "cannot get efuse addr\n");
2553 		return ENXIO;
2554 	}
2555 
2556 	memset(mac_addr, 0, sizeof(mac_addr));
2557 	err = aq_fw_downld_dwords(sc, efuse_shadow_addr + (40 * 4),
2558 	    mac_addr, __arraycount(mac_addr));
2559 	if (err < 0)
2560 		return err;
2561 
2562 	if (mac_addr[0] == 0 && mac_addr[1] == 0) {
2563 		aprint_error_dev(sc->sc_dev, "mac address not found\n");
2564 		return ENXIO;
2565 	}
2566 
2567 	mac_addr[0] = bswap32(mac_addr[0]);
2568 	mac_addr[1] = bswap32(mac_addr[1]);
2569 
2570 	memcpy(sc->sc_enaddr.ether_addr_octet,
2571 	    (uint8_t *)mac_addr, ETHER_ADDR_LEN);
2572 	aprint_normal_dev(sc->sc_dev, "Etheraddr: %s\n",
2573 	    ether_sprintf(sc->sc_enaddr.ether_addr_octet));
2574 
2575 	return 0;
2576 }
2577 
2578 /* set multicast filter. index 0 for own address */
2579 static int
2580 aq_set_mac_addr(struct aq_softc *sc, int index, uint8_t *enaddr)
2581 {
2582 	uint32_t h, l;
2583 
2584 	if (index >= AQ_HW_MAC_NUM)
2585 		return EINVAL;
2586 
2587 	if (enaddr == NULL) {
2588 		/* disable */
2589 		AQ_WRITE_REG_BIT(sc,
2590 		    RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2591 		return 0;
2592 	}
2593 
2594 	h = (enaddr[0] <<  8) | (enaddr[1]);
2595 	l = ((uint32_t)enaddr[2] << 24) | (enaddr[3] << 16) |
2596 	    (enaddr[4] <<  8) | (enaddr[5]);
2597 
2598 	/* disable, set, and enable */
2599 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 0);
2600 	AQ_WRITE_REG(sc, RPF_L2UC_LSW_REG(index), l);
2601 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index),
2602 	    RPF_L2UC_MSW_MACADDR_HI, h);
2603 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_ACTION, 1);
2604 	AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(index), RPF_L2UC_MSW_EN, 1);
2605 
2606 	return 0;
2607 }
2608 
2609 static int
2610 aq_set_capability(struct aq_softc *sc)
2611 {
2612 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2613 	int ip4csum_tx =
2614 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) == 0) ? 0 : 1;
2615 	int ip4csum_rx =
2616 	    ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) ? 0 : 1;
2617 	int l4csum_tx = ((ifp->if_capenable &
2618 	   (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
2619 	   IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) == 0) ? 0 : 1;
2620 	int l4csum_rx =
2621 	   ((ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
2622 	   IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) == 0) ? 0 : 1;
2623 	uint32_t lso =
2624 	   ((ifp->if_capenable & (IFCAP_TSOv4 | IFCAP_TSOv6)) == 0) ?
2625 	   0 : 0xffffffff;
2626 	uint32_t lro = ((ifp->if_capenable & IFCAP_LRO) == 0) ?
2627 	    0 : 0xffffffff;
2628 	uint32_t i, v;
2629 
2630 	/* TX checksums offloads*/
2631 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_IP4CSUM_EN, ip4csum_tx);
2632 	AQ_WRITE_REG_BIT(sc, TPO_HWCSUM_REG, TPO_HWCSUM_L4CSUM_EN, l4csum_tx);
2633 
2634 	/* RX checksums offloads*/
2635 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_IP4CSUM_EN, ip4csum_rx);
2636 	AQ_WRITE_REG_BIT(sc, RPO_HWCSUM_REG, RPO_HWCSUM_L4CSUM_EN, l4csum_rx);
2637 
2638 	/* LSO offloads*/
2639 	AQ_WRITE_REG(sc, TDM_LSO_EN_REG, lso);
2640 
2641 #define AQ_B0_LRO_RXD_MAX	16
2642 	v = (8 < AQ_B0_LRO_RXD_MAX) ? 3 :
2643 	    (4 < AQ_B0_LRO_RXD_MAX) ? 2 :
2644 	    (2 < AQ_B0_LRO_RXD_MAX) ? 1 : 0;
2645 	for (i = 0; i < AQ_RINGS_NUM; i++) {
2646 		AQ_WRITE_REG_BIT(sc, RPO_LRO_LDES_MAX_REG(i),
2647 		    RPO_LRO_LDES_MAX_MASK(i), v);
2648 	}
2649 
2650 	AQ_WRITE_REG_BIT(sc, RPO_LRO_TB_DIV_REG, RPO_LRO_TB_DIV, 0x61a);
2651 	AQ_WRITE_REG_BIT(sc, RPO_LRO_INACTIVE_IVAL_REG,
2652 	    RPO_LRO_INACTIVE_IVAL, 0);
2653 	/*
2654 	 * the LRO timebase divider is 5 uS (0x61a),
2655 	 * to get a maximum coalescing interval of 250 uS,
2656 	 * we need to multiply by 50(0x32) to get
2657 	 * the default value 250 uS
2658 	 */
2659 	AQ_WRITE_REG_BIT(sc, RPO_LRO_MAX_COALESCING_IVAL_REG,
2660 	    RPO_LRO_MAX_COALESCING_IVAL, 50);
2661 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2662 	    RPO_LRO_CONF_QSESSION_LIMIT, 1);
2663 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2664 	    RPO_LRO_CONF_TOTAL_DESC_LIMIT, 2);
2665 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2666 	    RPO_LRO_CONF_PATCHOPTIMIZATION_EN, 0);
2667 	AQ_WRITE_REG_BIT(sc, RPO_LRO_CONF_REG,
2668 	    RPO_LRO_CONF_MIN_PAYLOAD_OF_FIRST_PKT, 10);
2669 	AQ_WRITE_REG(sc, RPO_LRO_RSC_MAX_REG, 1);
2670 	AQ_WRITE_REG(sc, RPO_LRO_ENABLE_REG, lro);
2671 
2672 	return 0;
2673 }
2674 
2675 static int
2676 aq_set_filter(struct aq_softc *sc)
2677 {
2678 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2679 	struct ethercom *ec = &sc->sc_ethercom;
2680 	struct ether_multi *enm;
2681 	struct ether_multistep step;
2682 	int idx, error = 0;
2683 
2684 	if (ifp->if_flags & IFF_PROMISC) {
2685 		AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_PROMISC,
2686 		    (ifp->if_flags & IFF_PROMISC) ? 1 : 0);
2687 		ec->ec_flags |= ETHER_F_ALLMULTI;
2688 		goto done;
2689 	}
2690 
2691 	/* clear all table */
2692 	for (idx = 0; idx < AQ_HW_MAC_NUM; idx++) {
2693 		if (idx == AQ_HW_MAC_OWN)	/* already used for own */
2694 			continue;
2695 		aq_set_mac_addr(sc, idx, NULL);
2696 	}
2697 
2698 	/* don't accept all multicast */
2699 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2700 	    RPF_MCAST_FILTER_MASK_ALLMULTI, 0);
2701 	AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2702 	    RPF_MCAST_FILTER_EN, 0);
2703 
2704 	idx = 0;
2705 	ETHER_LOCK(ec);
2706 	ETHER_FIRST_MULTI(step, ec, enm);
2707 	while (enm != NULL) {
2708 		if (idx == AQ_HW_MAC_OWN)
2709 			idx++;
2710 
2711 		if ((idx >= AQ_HW_MAC_NUM) ||
2712 		    memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2713 			/*
2714 			 * too many filters.
2715 			 * fallback to accept all multicast addresses.
2716 			 */
2717 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_MASK_REG,
2718 			    RPF_MCAST_FILTER_MASK_ALLMULTI, 1);
2719 			AQ_WRITE_REG_BIT(sc, RPF_MCAST_FILTER_REG(0),
2720 			    RPF_MCAST_FILTER_EN, 1);
2721 			ec->ec_flags |= ETHER_F_ALLMULTI;
2722 			ETHER_UNLOCK(ec);
2723 			goto done;
2724 		}
2725 
2726 		/* add a filter */
2727 		aq_set_mac_addr(sc, idx++, enm->enm_addrlo);
2728 
2729 		ETHER_NEXT_MULTI(step, enm);
2730 	}
2731 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
2732 	ETHER_UNLOCK(ec);
2733 
2734  done:
2735 	return error;
2736 }
2737 
2738 static int
2739 aq_ifmedia_change(struct ifnet * const ifp)
2740 {
2741 	struct aq_softc *sc = ifp->if_softc;
2742 	aq_link_speed_t rate = AQ_LINK_NONE;
2743 	aq_link_fc_t fc = AQ_FC_NONE;
2744 	aq_link_eee_t eee = AQ_EEE_DISABLE;
2745 
2746 	if (IFM_TYPE(sc->sc_media.ifm_media) != IFM_ETHER)
2747 		return EINVAL;
2748 
2749 	switch (IFM_SUBTYPE(sc->sc_media.ifm_media)) {
2750 	case IFM_AUTO:
2751 		rate = AQ_LINK_AUTO;
2752 		break;
2753 	case IFM_NONE:
2754 		rate = AQ_LINK_NONE;
2755 		break;
2756 	case IFM_100_TX:
2757 		rate = AQ_LINK_100M;
2758 		break;
2759 	case IFM_1000_T:
2760 		rate = AQ_LINK_1G;
2761 		break;
2762 	case IFM_2500_T:
2763 		rate = AQ_LINK_2G5;
2764 		break;
2765 	case IFM_5000_T:
2766 		rate = AQ_LINK_5G;
2767 		break;
2768 	case IFM_10G_T:
2769 		rate = AQ_LINK_10G;
2770 		break;
2771 	default:
2772 		device_printf(sc->sc_dev, "unknown media: 0x%X\n",
2773 		    IFM_SUBTYPE(sc->sc_media.ifm_media));
2774 		return ENODEV;
2775 	}
2776 
2777 	if (sc->sc_media.ifm_media & IFM_FLOW)
2778 		fc = AQ_FC_ALL;
2779 
2780 	/* XXX: todo EEE */
2781 
2782 	/* re-initialize hardware with new parameters */
2783 	aq_set_linkmode(sc, rate, fc, eee);
2784 
2785 	return 0;
2786 }
2787 
2788 static void
2789 aq_ifmedia_status(struct ifnet * const ifp, struct ifmediareq *ifmr)
2790 {
2791 	struct aq_softc *sc = ifp->if_softc;
2792 
2793 	/* update ifm_active */
2794 	ifmr->ifm_active = IFM_ETHER;
2795 	if (sc->sc_link_fc & AQ_FC_RX)
2796 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2797 	if (sc->sc_link_fc & AQ_FC_TX)
2798 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2799 
2800 	switch (sc->sc_link_rate) {
2801 	case AQ_LINK_100M:
2802 		/* XXX: need to detect fulldup or halfdup */
2803 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
2804 		break;
2805 	case AQ_LINK_1G:
2806 		ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
2807 		break;
2808 	case AQ_LINK_2G5:
2809 		ifmr->ifm_active |= IFM_2500_T | IFM_FDX;
2810 		break;
2811 	case AQ_LINK_5G:
2812 		ifmr->ifm_active |= IFM_5000_T | IFM_FDX;
2813 		break;
2814 	case AQ_LINK_10G:
2815 		ifmr->ifm_active |= IFM_10G_T | IFM_FDX;
2816 		break;
2817 	default:
2818 		ifmr->ifm_active |= IFM_NONE;
2819 		break;
2820 	}
2821 
2822 	/* update ifm_status */
2823 	ifmr->ifm_status = IFM_AVALID;
2824 	if (sc->sc_link_rate != AQ_LINK_NONE)
2825 		ifmr->ifm_status |= IFM_ACTIVE;
2826 }
2827 
2828 static void
2829 aq_initmedia(struct aq_softc *sc)
2830 {
2831 #define IFMEDIA_ETHER_ADD(sc, media)	\
2832 	ifmedia_add(&(sc)->sc_media, IFM_ETHER | media, 0, NULL);
2833 
2834 	IFMEDIA_ETHER_ADD(sc, IFM_NONE);
2835 	if (sc->sc_available_rates & AQ_LINK_100M) {
2836 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX);
2837 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FLOW);
2838 		IFMEDIA_ETHER_ADD(sc, IFM_100_TX | IFM_FDX | IFM_FLOW);
2839 	}
2840 	if (sc->sc_available_rates & AQ_LINK_1G) {
2841 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX);
2842 		IFMEDIA_ETHER_ADD(sc, IFM_1000_T | IFM_FDX | IFM_FLOW);
2843 	}
2844 	if (sc->sc_available_rates & AQ_LINK_2G5) {
2845 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX);
2846 		IFMEDIA_ETHER_ADD(sc, IFM_2500_T | IFM_FDX | IFM_FLOW);
2847 	}
2848 	if (sc->sc_available_rates & AQ_LINK_5G) {
2849 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX);
2850 		IFMEDIA_ETHER_ADD(sc, IFM_5000_T | IFM_FDX | IFM_FLOW);
2851 	}
2852 	if (sc->sc_available_rates & AQ_LINK_10G) {
2853 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX);
2854 		IFMEDIA_ETHER_ADD(sc, IFM_10G_T | IFM_FDX | IFM_FLOW);
2855 	}
2856 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO);
2857 	IFMEDIA_ETHER_ADD(sc, IFM_AUTO | IFM_FLOW);
2858 
2859 	/* default: auto without flowcontrol */
2860 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
2861 	aq_set_linkmode(sc, AQ_LINK_AUTO, AQ_FC_NONE, AQ_EEE_DISABLE);
2862 }
2863 
2864 static int
2865 aq_set_linkmode(struct aq_softc *sc, aq_link_speed_t speed, aq_link_fc_t fc,
2866     aq_link_eee_t eee)
2867 {
2868 	return sc->sc_fw_ops->set_mode(sc, MPI_INIT, speed, fc, eee);
2869 }
2870 
2871 static int
2872 aq_get_linkmode(struct aq_softc *sc, aq_link_speed_t *speed, aq_link_fc_t *fc,
2873    aq_link_eee_t *eee)
2874 {
2875 	aq_hw_fw_mpi_state_t mode;
2876 	int error;
2877 
2878 	error = sc->sc_fw_ops->get_mode(sc, &mode, speed, fc, eee);
2879 	if (error != 0)
2880 		return error;
2881 	if (mode != MPI_INIT)
2882 		return ENXIO;
2883 
2884 	return 0;
2885 }
2886 
2887 static void
2888 aq_hw_init_tx_path(struct aq_softc *sc)
2889 {
2890 	/* Tx TC/RSS number config */
2891 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_TC_MODE_EN, 1);
2892 
2893 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2894 	    THM_LSO_TCP_FLAG1_FIRST, 0x0ff6);
2895 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG1_REG,
2896 	    THM_LSO_TCP_FLAG1_MID,   0x0ff6);
2897 	AQ_WRITE_REG_BIT(sc, THM_LSO_TCP_FLAG2_REG,
2898 	   THM_LSO_TCP_FLAG2_LAST,  0x0f7f);
2899 
2900 	/* misc */
2901 	AQ_WRITE_REG(sc, TX_TPO2_REG,
2902 	   (sc->sc_features & FEATURES_TPO2) ? TX_TPO2_EN : 0);
2903 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_EN, 0);
2904 	AQ_WRITE_REG_BIT(sc, TDM_DCA_REG, TDM_DCA_MODE, 0);
2905 
2906 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_SCP_INS_EN, 1);
2907 }
2908 
2909 static void
2910 aq_hw_init_rx_path(struct aq_softc *sc)
2911 {
2912 	int i;
2913 
2914 	/* clear setting */
2915 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 0);
2916 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 0);
2917 	AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG, 0);
2918 	for (i = 0; i < 32; i++) {
2919 		AQ_WRITE_REG_BIT(sc, RPF_ETHERTYPE_FILTER_REG(i),
2920 		   RPF_ETHERTYPE_FILTER_EN, 0);
2921 	}
2922 
2923 	if (sc->sc_rss_enable) {
2924 		/* Rx TC/RSS number config */
2925 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_TC_MODE, 1);
2926 
2927 		/* Rx flow control */
2928 		AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_FC_MODE, 1);
2929 
2930 		/* RSS Ring selection */
2931 		switch (sc->sc_nqueues) {
2932 		case 2:
2933 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2934 			    RX_FLR_RSS_CONTROL1_EN | 0x11111111);
2935 			break;
2936 		case 4:
2937 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2938 			    RX_FLR_RSS_CONTROL1_EN | 0x22222222);
2939 			break;
2940 		case 8:
2941 			AQ_WRITE_REG(sc, RX_FLR_RSS_CONTROL1_REG,
2942 			    RX_FLR_RSS_CONTROL1_EN | 0x33333333);
2943 			break;
2944 		}
2945 	}
2946 
2947 	/* L2 and Multicast filters */
2948 	for (i = 0; i < AQ_HW_MAC_NUM; i++) {
2949 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_EN, 0);
2950 		AQ_WRITE_REG_BIT(sc, RPF_L2UC_MSW_REG(i), RPF_L2UC_MSW_ACTION,
2951 		    RPF_ACTION_HOST);
2952 	}
2953 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_MASK_REG, 0);
2954 	AQ_WRITE_REG(sc, RPF_MCAST_FILTER_REG(0), 0x00010fff);
2955 
2956 	/* Vlan filters */
2957 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_OUTER,
2958 	    ETHERTYPE_QINQ);
2959 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_TPID_REG, RPF_VLAN_TPID_INNER,
2960 	    ETHERTYPE_VLAN);
2961 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
2962 
2963 	if (sc->sc_features & FEATURES_REV_B) {
2964 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2965 		    RPF_VLAN_MODE_ACCEPT_UNTAGGED, 1);
2966 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
2967 		    RPF_VLAN_MODE_UNTAGGED_ACTION, RPF_ACTION_HOST);
2968 	}
2969 
2970 	/* misc */
2971 	if (sc->sc_features & FEATURES_RPF2)
2972 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, RX_TCP_RSS_HASH_RPF2);
2973 	else
2974 		AQ_WRITE_REG(sc, RX_TCP_RSS_HASH_REG, 0);
2975 
2976 	/*
2977 	 * XXX: RX_TCP_RSS_HASH_REG:
2978 	 *  linux   set 0x000f0000
2979 	 *  freebsd set 0x000f001e
2980 	 */
2981 	/* RSS hash type set for IP/TCP */
2982 	AQ_WRITE_REG_BIT(sc, RX_TCP_RSS_HASH_REG,
2983 	    RX_TCP_RSS_HASH_TYPE, 0x001e);
2984 
2985 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_EN, 1);
2986 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_ACTION, RPF_ACTION_HOST);
2987 	AQ_WRITE_REG_BIT(sc, RPF_L2BC_REG, RPF_L2BC_THRESHOLD, 0xffff);
2988 
2989 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_EN, 0);
2990 	AQ_WRITE_REG_BIT(sc, RX_DMA_DCA_REG, RX_DMA_DCA_MODE, 0);
2991 }
2992 
2993 static void
2994 aq_hw_interrupt_moderation_set(struct aq_softc *sc)
2995 {
2996 	int i;
2997 
2998 	if (sc->sc_intr_moderation_enable) {
2999 		unsigned int tx_min, rx_min;	/* 0-255 */
3000 		unsigned int tx_max, rx_max;	/* 0-511? */
3001 
3002 		switch (sc->sc_link_rate) {
3003 		case AQ_LINK_100M:
3004 			tx_min = 0x4f;
3005 			tx_max = 0xff;
3006 			rx_min = 0x04;
3007 			rx_max = 0x50;
3008 			break;
3009 		case AQ_LINK_1G:
3010 		default:
3011 			tx_min = 0x4f;
3012 			tx_max = 0xff;
3013 			rx_min = 0x30;
3014 			rx_max = 0x80;
3015 			break;
3016 		case AQ_LINK_2G5:
3017 			tx_min = 0x4f;
3018 			tx_max = 0xff;
3019 			rx_min = 0x18;
3020 			rx_max = 0xe0;
3021 			break;
3022 		case AQ_LINK_5G:
3023 			tx_min = 0x4f;
3024 			tx_max = 0xff;
3025 			rx_min = 0x0c;
3026 			rx_max = 0x70;
3027 			break;
3028 		case AQ_LINK_10G:
3029 			tx_min = 0x4f;
3030 			tx_max = 0x1ff;
3031 			rx_min = 0x06;	/* freebsd use 80 */
3032 			rx_max = 0x38;	/* freebsd use 120 */
3033 			break;
3034 		}
3035 
3036 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3037 		    TX_DMA_INT_DESC_WRWB_EN, 0);
3038 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3039 		    TX_DMA_INT_DESC_MODERATE_EN, 1);
3040 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3041 		    RX_DMA_INT_DESC_WRWB_EN, 0);
3042 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3043 		    RX_DMA_INT_DESC_MODERATE_EN, 1);
3044 
3045 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3046 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i),
3047 			    __SHIFTIN(tx_min, TX_INTR_MODERATION_CTL_MIN) |
3048 			    __SHIFTIN(tx_max, TX_INTR_MODERATION_CTL_MAX) |
3049 			    TX_INTR_MODERATION_CTL_EN);
3050 		}
3051 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3052 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i),
3053 			    __SHIFTIN(rx_min, RX_INTR_MODERATION_CTL_MIN) |
3054 			    __SHIFTIN(rx_max, RX_INTR_MODERATION_CTL_MAX) |
3055 			    RX_INTR_MODERATION_CTL_EN);
3056 		}
3057 
3058 	} else {
3059 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3060 		    TX_DMA_INT_DESC_WRWB_EN, 1);
3061 		AQ_WRITE_REG_BIT(sc, TX_DMA_INT_DESC_WRWB_EN_REG,
3062 		    TX_DMA_INT_DESC_MODERATE_EN, 0);
3063 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3064 		    RX_DMA_INT_DESC_WRWB_EN, 1);
3065 		AQ_WRITE_REG_BIT(sc, RX_DMA_INT_DESC_WRWB_EN_REG,
3066 		    RX_DMA_INT_DESC_MODERATE_EN, 0);
3067 
3068 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3069 			AQ_WRITE_REG(sc, TX_INTR_MODERATION_CTL_REG(i), 0);
3070 		}
3071 		for (i = 0; i < AQ_RINGS_NUM; i++) {
3072 			AQ_WRITE_REG(sc, RX_INTR_MODERATION_CTL_REG(i), 0);
3073 		}
3074 	}
3075 }
3076 
3077 static void
3078 aq_hw_qos_set(struct aq_softc *sc)
3079 {
3080 	uint32_t tc = 0;
3081 	uint32_t buff_size;
3082 
3083 	/* TPS Descriptor rate init */
3084 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_TA_RST, 0);
3085 	AQ_WRITE_REG_BIT(sc, TPS_DESC_RATE_REG, TPS_DESC_RATE_LIM, 0xa);
3086 
3087 	/* TPS VM init */
3088 	AQ_WRITE_REG_BIT(sc, TPS_DESC_VM_ARB_MODE_REG, TPS_DESC_VM_ARB_MODE, 0);
3089 
3090 	/* TPS TC credits init */
3091 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TC_ARB_MODE_REG, TPS_DESC_TC_ARB_MODE, 0);
3092 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TC_ARB_MODE_REG, TPS_DATA_TC_ARB_MODE, 0);
3093 
3094 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3095 	    TPS_DATA_TCT_CREDIT_MAX, 0xfff);
3096 	AQ_WRITE_REG_BIT(sc, TPS_DATA_TCT_REG(tc),
3097 	    TPS_DATA_TCT_WEIGHT, 0x64);
3098 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3099 	    TPS_DESC_TCT_CREDIT_MAX, 0x50);
3100 	AQ_WRITE_REG_BIT(sc, TPS_DESC_TCT_REG(tc),
3101 	    TPS_DESC_TCT_WEIGHT, 0x1e);
3102 
3103 	/* Tx buf size */
3104 	tc = 0;
3105 	buff_size = AQ_HW_TXBUF_MAX;
3106 	AQ_WRITE_REG_BIT(sc, TPB_TXB_BUFSIZE_REG(tc), TPB_TXB_BUFSIZE,
3107 	    buff_size);
3108 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_HI,
3109 	    (buff_size * (1024 / 32) * 66) / 100);
3110 	AQ_WRITE_REG_BIT(sc, TPB_TXB_THRESH_REG(tc), TPB_TXB_THRESH_LO,
3111 	    (buff_size * (1024 / 32) * 50) / 100);
3112 
3113 	/* QoS Rx buf size per TC */
3114 	tc = 0;
3115 	buff_size = AQ_HW_RXBUF_MAX;
3116 	AQ_WRITE_REG_BIT(sc, RPB_RXB_BUFSIZE_REG(tc), RPB_RXB_BUFSIZE,
3117 	    buff_size);
3118 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_EN, 0);
3119 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_HI,
3120 	    (buff_size * (1024 / 32) * 66) / 100);
3121 	AQ_WRITE_REG_BIT(sc, RPB_RXB_XOFF_REG(tc), RPB_RXB_XOFF_THRESH_LO,
3122 	    (buff_size * (1024 / 32) * 50) / 100);
3123 
3124 	/* QoS 802.1p priority -> TC mapping */
3125 	int i_priority;
3126 	for (i_priority = 0; i_priority < 8; i_priority++) {
3127 		AQ_WRITE_REG_BIT(sc, RPF_RPB_RX_TC_UPT_REG,
3128 		    RPF_RPB_RX_TC_UPT_MASK(i_priority), 0);
3129 	}
3130 }
3131 
3132 /* called once from aq_attach */
3133 static int
3134 aq_init_rss(struct aq_softc *sc)
3135 {
3136 	CTASSERT(AQ_RSS_HASHKEY_SIZE == RSS_KEYSIZE);
3137 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
3138 	uint8_t rss_table[AQ_RSS_INDIRECTION_TABLE_MAX];
3139 	unsigned int i;
3140 	int error;
3141 
3142 	/* initialize rss key */
3143 	rss_getkey((uint8_t *)rss_key);
3144 
3145 	/* hash to ring table */
3146 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3147 		rss_table[i] = i % sc->sc_nqueues;
3148 	}
3149 
3150 	/*
3151 	 * set rss key
3152 	 */
3153 	for (i = 0; i < __arraycount(rss_key); i++) {
3154 		uint32_t key_data = sc->sc_rss_enable ? ntohl(rss_key[i]) : 0;
3155 		AQ_WRITE_REG(sc, RPF_RSS_KEY_WR_DATA_REG, key_data);
3156 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3157 		    RPF_RSS_KEY_ADDR, __arraycount(rss_key) - 1 - i);
3158 		AQ_WRITE_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3159 		    RPF_RSS_KEY_WR_EN, 1);
3160 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_KEY_ADDR_REG,
3161 		    RPF_RSS_KEY_WR_EN) == 0, 1000, 10, &error);
3162 		if (error != 0) {
3163 			device_printf(sc->sc_dev, "%s: rss key write timeout\n",
3164 			    __func__);
3165 			goto rss_set_timeout;
3166 		}
3167 	}
3168 
3169 	/*
3170 	 * set rss indirection table
3171 	 *
3172 	 * AQ's rss redirect table is consist of 3bit*64 (192bit) packed array.
3173 	 * we'll make it by __BITMAP(3) macros.
3174 	 */
3175 	__BITMAP_TYPE(, uint16_t, 3 * AQ_RSS_INDIRECTION_TABLE_MAX) bit3x64;
3176 	__BITMAP_ZERO(&bit3x64);
3177 
3178 #define AQ_3BIT_PACKED_ARRAY_SET(bitmap, idx, val)		\
3179 	do {							\
3180 		if (val & 1) {					\
3181 			__BITMAP_SET((idx) * 3, (bitmap));	\
3182 		} else {					\
3183 			__BITMAP_CLR((idx) * 3, (bitmap));	\
3184 		}						\
3185 		if (val & 2) {					\
3186 			__BITMAP_SET((idx) * 3 + 1, (bitmap));	\
3187 		} else {					\
3188 			__BITMAP_CLR((idx) * 3 + 1, (bitmap));	\
3189 		}						\
3190 		if (val & 4) {					\
3191 			__BITMAP_SET((idx) * 3 + 2, (bitmap));	\
3192 		} else {					\
3193 			__BITMAP_CLR((idx) * 3 + 2, (bitmap));	\
3194 		}						\
3195 	} while (0 /* CONSTCOND */)
3196 
3197 	for (i = 0; i < AQ_RSS_INDIRECTION_TABLE_MAX; i++) {
3198 		AQ_3BIT_PACKED_ARRAY_SET(&bit3x64, i, rss_table[i]);
3199 	}
3200 
3201 	/* write 192bit data in steps of 16bit */
3202 	for (i = 0; i < (int)__arraycount(bit3x64._b); i++) {
3203 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_WR_DATA_REG,
3204 		    RPF_RSS_REDIR_WR_DATA, bit3x64._b[i]);
3205 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3206 		    RPF_RSS_REDIR_ADDR, i);
3207 		AQ_WRITE_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3208 		    RPF_RSS_REDIR_WR_EN, 1);
3209 
3210 		WAIT_FOR(AQ_READ_REG_BIT(sc, RPF_RSS_REDIR_ADDR_REG,
3211 		    RPF_RSS_REDIR_WR_EN) == 0, 1000, 10, &error);
3212 		if (error != 0)
3213 			break;
3214 	}
3215 
3216  rss_set_timeout:
3217 	return error;
3218 }
3219 
3220 static void
3221 aq_hw_l3_filter_set(struct aq_softc *sc)
3222 {
3223 	int i;
3224 
3225 	/* clear all filter */
3226 	for (i = 0; i < 8; i++) {
3227 		AQ_WRITE_REG_BIT(sc, RPF_L3_FILTER_REG(i),
3228 		    RPF_L3_FILTER_L4_EN, 0);
3229 	}
3230 }
3231 
3232 static void
3233 aq_set_vlan_filters(struct aq_softc *sc)
3234 {
3235 	struct ethercom *ec = &sc->sc_ethercom;
3236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3237 	struct vlanid_list *vlanidp;
3238 	int i;
3239 
3240 	ETHER_LOCK(ec);
3241 
3242 	/* disable all vlan filters */
3243 	for (i = 0; i < RPF_VLAN_MAX_FILTERS; i++)
3244 		AQ_WRITE_REG(sc, RPF_VLAN_FILTER_REG(i), 0);
3245 
3246 	/* count VID */
3247 	i = 0;
3248 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list)
3249 		i++;
3250 
3251 	if (((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWFILTER) == 0) ||
3252 	    (ifp->if_flags & IFF_PROMISC) ||
3253 	    (i > RPF_VLAN_MAX_FILTERS)) {
3254 		/*
3255 		 * no vlan hwfilter, in promiscuous mode, or too many VID?
3256 		 * must receive all VID
3257 		 */
3258 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG,
3259 		    RPF_VLAN_MODE_PROMISC, 1);
3260 		goto done;
3261 	}
3262 
3263 	/* receive only selected VID */
3264 	AQ_WRITE_REG_BIT(sc, RPF_VLAN_MODE_REG, RPF_VLAN_MODE_PROMISC, 0);
3265 	i = 0;
3266 	SIMPLEQ_FOREACH(vlanidp, &ec->ec_vids, vid_list) {
3267 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3268 		    RPF_VLAN_FILTER_EN, 1);
3269 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3270 		    RPF_VLAN_FILTER_RXQ_EN, 0);
3271 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3272 		    RPF_VLAN_FILTER_RXQ, 0);
3273 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3274 		    RPF_VLAN_FILTER_ACTION, RPF_ACTION_HOST);
3275 		AQ_WRITE_REG_BIT(sc, RPF_VLAN_FILTER_REG(i),
3276 		    RPF_VLAN_FILTER_ID, vlanidp->vid);
3277 		i++;
3278 	}
3279 
3280  done:
3281 	ETHER_UNLOCK(ec);
3282 }
3283 
3284 static int
3285 aq_hw_init(struct aq_softc *sc)
3286 {
3287 	uint32_t v;
3288 
3289 	/* Force limit MRRS on RDM/TDM to 2K */
3290 	v = AQ_READ_REG(sc, AQ_PCI_REG_CONTROL_6_REG);
3291 	AQ_WRITE_REG(sc, AQ_PCI_REG_CONTROL_6_REG, (v & ~0x0707) | 0x0404);
3292 
3293 	/*
3294 	 * TX DMA total request limit. B0 hardware is not capable to
3295 	 * handle more than (8K-MRRS) incoming DMA data.
3296 	 * Value 24 in 256byte units
3297 	 */
3298 	AQ_WRITE_REG(sc, AQ_HW_TX_DMA_TOTAL_REQ_LIMIT_REG, 24);
3299 
3300 	aq_hw_init_tx_path(sc);
3301 	aq_hw_init_rx_path(sc);
3302 
3303 	aq_hw_interrupt_moderation_set(sc);
3304 
3305 	aq_set_mac_addr(sc, AQ_HW_MAC_OWN, sc->sc_enaddr.ether_addr_octet);
3306 	aq_set_linkmode(sc, AQ_LINK_NONE, AQ_FC_NONE, AQ_EEE_DISABLE);
3307 
3308 	aq_hw_qos_set(sc);
3309 
3310 	/* Enable interrupt */
3311 	int irqmode;
3312 	if (sc->sc_msix)
3313 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSIX;
3314 	else
3315 		irqmode =  AQ_INTR_CTRL_IRQMODE_MSI;
3316 
3317 	AQ_WRITE_REG(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_RESET_DIS);
3318 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_MULTIVEC,
3319 	    sc->sc_msix ? 1 : 0);
3320 	AQ_WRITE_REG_BIT(sc, AQ_INTR_CTRL_REG, AQ_INTR_CTRL_IRQMODE, irqmode);
3321 
3322 	AQ_WRITE_REG(sc, AQ_INTR_AUTOMASK_REG, 0xffffffff);
3323 
3324 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(0),
3325 	    ((AQ_B0_ERR_INT << 24) | (1U << 31)) |
3326 	    ((AQ_B0_ERR_INT << 16) | (1 << 23))
3327 	);
3328 
3329 	/* link interrupt */
3330 	if (!sc->sc_msix)
3331 		sc->sc_linkstat_irq = AQ_LINKSTAT_IRQ;
3332 	AQ_WRITE_REG(sc, AQ_GEN_INTR_MAP_REG(3),
3333 	    __BIT(7) | sc->sc_linkstat_irq);
3334 
3335 	return 0;
3336 }
3337 
3338 static int
3339 aq_update_link_status(struct aq_softc *sc)
3340 {
3341 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3342 	aq_link_speed_t rate = AQ_LINK_NONE;
3343 	aq_link_fc_t fc = AQ_FC_NONE;
3344 	aq_link_eee_t eee = AQ_EEE_DISABLE;
3345 	unsigned int speed;
3346 	int changed = 0;
3347 
3348 	aq_get_linkmode(sc, &rate, &fc, &eee);
3349 
3350 	if (sc->sc_link_rate != rate)
3351 		changed = 1;
3352 	if (sc->sc_link_fc != fc)
3353 		changed = 1;
3354 	if (sc->sc_link_eee != eee)
3355 		changed = 1;
3356 
3357 	if (changed) {
3358 		switch (rate) {
3359 		case AQ_LINK_100M:
3360 			speed = 100;
3361 			break;
3362 		case AQ_LINK_1G:
3363 			speed = 1000;
3364 			break;
3365 		case AQ_LINK_2G5:
3366 			speed = 2500;
3367 			break;
3368 		case AQ_LINK_5G:
3369 			speed = 5000;
3370 			break;
3371 		case AQ_LINK_10G:
3372 			speed = 10000;
3373 			break;
3374 		case AQ_LINK_NONE:
3375 		default:
3376 			speed = 0;
3377 			break;
3378 		}
3379 
3380 		if (sc->sc_link_rate == AQ_LINK_NONE) {
3381 			/* link DOWN -> UP */
3382 			device_printf(sc->sc_dev, "link is UP: speed=%u\n",
3383 			    speed);
3384 			if_link_state_change(ifp, LINK_STATE_UP);
3385 		} else if (rate == AQ_LINK_NONE) {
3386 			/* link UP -> DOWN */
3387 			device_printf(sc->sc_dev, "link is DOWN\n");
3388 			if_link_state_change(ifp, LINK_STATE_DOWN);
3389 		} else {
3390 			device_printf(sc->sc_dev,
3391 			    "link mode changed: speed=%u, fc=0x%x, eee=%x\n",
3392 			    speed, fc, eee);
3393 		}
3394 
3395 		sc->sc_link_rate = rate;
3396 		sc->sc_link_fc = fc;
3397 		sc->sc_link_eee = eee;
3398 
3399 		/* update interrupt timing according to new link speed */
3400 		aq_hw_interrupt_moderation_set(sc);
3401 	}
3402 
3403 	return changed;
3404 }
3405 
3406 #ifdef AQ_EVENT_COUNTERS
3407 static void
3408 aq_update_statistics(struct aq_softc *sc)
3409 {
3410 	int prev = sc->sc_statistics_idx;
3411 	int cur = prev ^ 1;
3412 
3413 	sc->sc_fw_ops->get_stats(sc, &sc->sc_statistics[cur]);
3414 
3415 	/*
3416 	 * aq's internal statistics counter is 32bit.
3417 	 * cauculate delta, and add to evcount
3418 	 */
3419 #define ADD_DELTA(cur, prev, name)				\
3420 	do {							\
3421 		uint32_t n;					\
3422 		n = (uint32_t)(sc->sc_statistics[cur].name -	\
3423 		    sc->sc_statistics[prev].name);		\
3424 		if (n != 0) {					\
3425 			AQ_EVCNT_ADD(sc, name, n);		\
3426 		}						\
3427 	} while (/*CONSTCOND*/0);
3428 
3429 	ADD_DELTA(cur, prev, uprc);
3430 	ADD_DELTA(cur, prev, mprc);
3431 	ADD_DELTA(cur, prev, bprc);
3432 	ADD_DELTA(cur, prev, prc);
3433 	ADD_DELTA(cur, prev, erpr);
3434 	ADD_DELTA(cur, prev, uptc);
3435 	ADD_DELTA(cur, prev, mptc);
3436 	ADD_DELTA(cur, prev, bptc);
3437 	ADD_DELTA(cur, prev, ptc);
3438 	ADD_DELTA(cur, prev, erpt);
3439 	ADD_DELTA(cur, prev, mbtc);
3440 	ADD_DELTA(cur, prev, bbtc);
3441 	ADD_DELTA(cur, prev, mbrc);
3442 	ADD_DELTA(cur, prev, bbrc);
3443 	ADD_DELTA(cur, prev, ubrc);
3444 	ADD_DELTA(cur, prev, ubtc);
3445 	ADD_DELTA(cur, prev, dpc);
3446 	ADD_DELTA(cur, prev, cprc);
3447 
3448 	sc->sc_statistics_idx = cur;
3449 }
3450 #endif /* AQ_EVENT_COUNTERS */
3451 
3452 /* allocate and map one DMA block */
3453 static int
3454 _alloc_dma(struct aq_softc *sc, bus_size_t size, bus_size_t *sizep,
3455     void **addrp, bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3456 {
3457 	int nsegs, error;
3458 
3459 	if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seg,
3460 	    1, &nsegs, 0)) != 0) {
3461 		aprint_error_dev(sc->sc_dev,
3462 		    "unable to allocate DMA buffer, error=%d\n", error);
3463 		goto fail_alloc;
3464 	}
3465 
3466 	if ((error = bus_dmamem_map(sc->sc_dmat, seg, 1, size, addrp,
3467 	    BUS_DMA_COHERENT)) != 0) {
3468 		aprint_error_dev(sc->sc_dev,
3469 		    "unable to map DMA buffer, error=%d\n", error);
3470 		goto fail_map;
3471 	}
3472 
3473 	if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
3474 	    0, mapp)) != 0) {
3475 		aprint_error_dev(sc->sc_dev,
3476 		    "unable to create DMA map, error=%d\n", error);
3477 		goto fail_create;
3478 	}
3479 
3480 	if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
3481 	    0)) != 0) {
3482 		aprint_error_dev(sc->sc_dev,
3483 		    "unable to load DMA map, error=%d\n", error);
3484 		goto fail_load;
3485 	}
3486 
3487 	*sizep = size;
3488 	return 0;
3489 
3490  fail_load:
3491 	bus_dmamap_destroy(sc->sc_dmat, *mapp);
3492 	*mapp = NULL;
3493  fail_create:
3494 	bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
3495 	*addrp = NULL;
3496  fail_map:
3497 	bus_dmamem_free(sc->sc_dmat, seg, 1);
3498 	memset(seg, 0, sizeof(*seg));
3499  fail_alloc:
3500 	*sizep = 0;
3501 	return error;
3502 }
3503 
3504 static void
3505 _free_dma(struct aq_softc *sc, bus_size_t *sizep, void **addrp,
3506     bus_dmamap_t *mapp, bus_dma_segment_t *seg)
3507 {
3508 	if (*mapp != NULL) {
3509 		bus_dmamap_destroy(sc->sc_dmat, *mapp);
3510 		*mapp = NULL;
3511 	}
3512 	if (*addrp != NULL) {
3513 		bus_dmamem_unmap(sc->sc_dmat, *addrp, *sizep);
3514 		*addrp = NULL;
3515 	}
3516 	if (*sizep != 0) {
3517 		bus_dmamem_free(sc->sc_dmat, seg, 1);
3518 		memset(seg, 0, sizeof(*seg));
3519 		*sizep = 0;
3520 	}
3521 }
3522 
3523 static int
3524 aq_txring_alloc(struct aq_softc *sc, struct aq_txring *txring)
3525 {
3526 	int i, error;
3527 
3528 	/* allocate tx descriptors */
3529 	error = _alloc_dma(sc, sizeof(aq_tx_desc_t) * AQ_TXD_NUM,
3530 	    &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3531 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3532 	if (error != 0)
3533 		return error;
3534 
3535 	memset(txring->txr_txdesc, 0, sizeof(aq_tx_desc_t) * AQ_TXD_NUM);
3536 
3537 	/* fill tx ring with dmamap */
3538 	for (i = 0; i < AQ_TXD_NUM; i++) {
3539 #define AQ_MAXDMASIZE	(16 * 1024)
3540 #define AQ_NTXSEGS	32
3541 		/* XXX: TODO: error check */
3542 		bus_dmamap_create(sc->sc_dmat, AQ_MAXDMASIZE, AQ_NTXSEGS,
3543 		    AQ_MAXDMASIZE, 0, 0, &txring->txr_mbufs[i].dmamap);
3544 	}
3545 	return 0;
3546 }
3547 
3548 static void
3549 aq_txring_free(struct aq_softc *sc, struct aq_txring *txring)
3550 {
3551 	int i;
3552 
3553 	_free_dma(sc, &txring->txr_txdesc_size, (void **)&txring->txr_txdesc,
3554 	    &txring->txr_txdesc_dmamap, txring->txr_txdesc_seg);
3555 
3556 	for (i = 0; i < AQ_TXD_NUM; i++) {
3557 		if (txring->txr_mbufs[i].dmamap != NULL) {
3558 			if (txring->txr_mbufs[i].m != NULL) {
3559 				bus_dmamap_unload(sc->sc_dmat,
3560 				    txring->txr_mbufs[i].dmamap);
3561 				m_freem(txring->txr_mbufs[i].m);
3562 				txring->txr_mbufs[i].m = NULL;
3563 			}
3564 			bus_dmamap_destroy(sc->sc_dmat,
3565 			    txring->txr_mbufs[i].dmamap);
3566 			txring->txr_mbufs[i].dmamap = NULL;
3567 		}
3568 	}
3569 }
3570 
3571 static int
3572 aq_rxring_alloc(struct aq_softc *sc, struct aq_rxring *rxring)
3573 {
3574 	int i, error;
3575 
3576 	/* allocate rx descriptors */
3577 	error = _alloc_dma(sc, sizeof(aq_rx_desc_t) * AQ_RXD_NUM,
3578 	    &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3579 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3580 	if (error != 0)
3581 		return error;
3582 
3583 	memset(rxring->rxr_rxdesc, 0, sizeof(aq_rx_desc_t) * AQ_RXD_NUM);
3584 
3585 	/* fill rxring with dmamaps */
3586 	for (i = 0; i < AQ_RXD_NUM; i++) {
3587 		rxring->rxr_mbufs[i].m = NULL;
3588 		/* XXX: TODO: error check */
3589 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0,
3590 		    &rxring->rxr_mbufs[i].dmamap);
3591 	}
3592 	return 0;
3593 }
3594 
3595 static void
3596 aq_rxdrain(struct aq_softc *sc, struct aq_rxring *rxring)
3597 {
3598 	int i;
3599 
3600 	/* free all mbufs allocated for RX */
3601 	for (i = 0; i < AQ_RXD_NUM; i++) {
3602 		if (rxring->rxr_mbufs[i].m != NULL) {
3603 			bus_dmamap_unload(sc->sc_dmat,
3604 			    rxring->rxr_mbufs[i].dmamap);
3605 			m_freem(rxring->rxr_mbufs[i].m);
3606 			rxring->rxr_mbufs[i].m = NULL;
3607 		}
3608 	}
3609 }
3610 
3611 static void
3612 aq_rxring_free(struct aq_softc *sc, struct aq_rxring *rxring)
3613 {
3614 	int i;
3615 
3616 	/* free all mbufs and dmamaps */
3617 	aq_rxdrain(sc, rxring);
3618 	for (i = 0; i < AQ_RXD_NUM; i++) {
3619 		if (rxring->rxr_mbufs[i].dmamap != NULL) {
3620 			bus_dmamap_destroy(sc->sc_dmat,
3621 			    rxring->rxr_mbufs[i].dmamap);
3622 			rxring->rxr_mbufs[i].dmamap = NULL;
3623 		}
3624 	}
3625 
3626 	/* free RX descriptor */
3627 	_free_dma(sc, &rxring->rxr_rxdesc_size, (void **)&rxring->rxr_rxdesc,
3628 	    &rxring->rxr_rxdesc_dmamap, rxring->rxr_rxdesc_seg);
3629 }
3630 
3631 static void
3632 aq_rxring_setmbuf(struct aq_softc *sc, struct aq_rxring *rxring, int idx,
3633     struct mbuf *m)
3634 {
3635 	int error;
3636 
3637 	/* if mbuf already exists, unload and free */
3638 	if (rxring->rxr_mbufs[idx].m != NULL) {
3639 		bus_dmamap_unload(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap);
3640 		m_freem(rxring->rxr_mbufs[idx].m);
3641 		rxring->rxr_mbufs[idx].m = NULL;
3642 	}
3643 
3644 	rxring->rxr_mbufs[idx].m = m;
3645 
3646 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
3647 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap,
3648 	    m, BUS_DMA_READ | BUS_DMA_NOWAIT);
3649 	if (error) {
3650 		device_printf(sc->sc_dev,
3651 		    "unable to load rx DMA map %d, error = %d\n", idx, error);
3652 		panic("%s: unable to load rx DMA map. error=%d",
3653 		    __func__, error);
3654 	}
3655 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
3656 	    rxring->rxr_mbufs[idx].dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
3657 }
3658 
3659 static inline void
3660 aq_rxring_reset_desc(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3661 {
3662 	/* refill rxdesc, and sync */
3663 	rxring->rxr_rxdesc[idx].read.buf_addr =
3664 	   htole64(rxring->rxr_mbufs[idx].dmamap->dm_segs[0].ds_addr);
3665 	rxring->rxr_rxdesc[idx].read.hdr_addr = 0;
3666 	bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
3667 	    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
3668 	    BUS_DMASYNC_PREWRITE);
3669 }
3670 
3671 static struct mbuf *
3672 aq_alloc_mbuf(void)
3673 {
3674 	struct mbuf *m;
3675 
3676 	MGETHDR(m, M_DONTWAIT, MT_DATA);
3677 	if (m == NULL)
3678 		return NULL;
3679 
3680 	MCLGET(m, M_DONTWAIT);
3681 	if ((m->m_flags & M_EXT) == 0) {
3682 		m_freem(m);
3683 		return NULL;
3684 	}
3685 
3686 	return m;
3687 }
3688 
3689 /* allocate mbuf and unload dmamap */
3690 static int
3691 aq_rxring_add(struct aq_softc *sc, struct aq_rxring *rxring, int idx)
3692 {
3693 	struct mbuf *m;
3694 
3695 	m = aq_alloc_mbuf();
3696 	if (m == NULL)
3697 		return ENOBUFS;
3698 
3699 	aq_rxring_setmbuf(sc, rxring, idx, m);
3700 	return 0;
3701 }
3702 
3703 static int
3704 aq_txrx_rings_alloc(struct aq_softc *sc)
3705 {
3706 	int n, error;
3707 
3708 	for (n = 0; n < sc->sc_nqueues; n++) {
3709 		sc->sc_queue[n].sc = sc;
3710 		sc->sc_queue[n].txring.txr_sc = sc;
3711 		sc->sc_queue[n].txring.txr_index = n;
3712 		mutex_init(&sc->sc_queue[n].txring.txr_mutex, MUTEX_DEFAULT,
3713 		    IPL_NET);
3714 		error = aq_txring_alloc(sc, &sc->sc_queue[n].txring);
3715 		if (error != 0)
3716 			goto failure;
3717 
3718 		error = aq_tx_pcq_alloc(sc, &sc->sc_queue[n].txring);
3719 		if (error != 0)
3720 			goto failure;
3721 
3722 		sc->sc_queue[n].rxring.rxr_sc = sc;
3723 		sc->sc_queue[n].rxring.rxr_index = n;
3724 		mutex_init(&sc->sc_queue[n].rxring.rxr_mutex, MUTEX_DEFAULT,
3725 		   IPL_NET);
3726 		error = aq_rxring_alloc(sc, &sc->sc_queue[n].rxring);
3727 		if (error != 0)
3728 			break;
3729 	}
3730 
3731  failure:
3732 	return error;
3733 }
3734 
3735 static void
3736 aq_txrx_rings_free(struct aq_softc *sc)
3737 {
3738 	int n;
3739 
3740 	for (n = 0; n < sc->sc_nqueues; n++) {
3741 		aq_txring_free(sc, &sc->sc_queue[n].txring);
3742 		mutex_destroy(&sc->sc_queue[n].txring.txr_mutex);
3743 
3744 		aq_tx_pcq_free(sc, &sc->sc_queue[n].txring);
3745 
3746 		aq_rxring_free(sc, &sc->sc_queue[n].rxring);
3747 		mutex_destroy(&sc->sc_queue[n].rxring.rxr_mutex);
3748 	}
3749 }
3750 
3751 static int
3752 aq_tx_pcq_alloc(struct aq_softc *sc, struct aq_txring *txring)
3753 {
3754 	int error = 0;
3755 	txring->txr_softint = NULL;
3756 
3757 	txring->txr_pcq = pcq_create(AQ_TXD_NUM, KM_NOSLEEP);
3758 	if (txring->txr_pcq == NULL) {
3759 		aprint_error_dev(sc->sc_dev,
3760 		    "unable to allocate pcq for TXring[%d]\n",
3761 		    txring->txr_index);
3762 		error = ENOMEM;
3763 		goto done;
3764 	}
3765 
3766 	txring->txr_softint = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
3767 	    aq_deferred_transmit, txring);
3768 	if (txring->txr_softint == NULL) {
3769 		aprint_error_dev(sc->sc_dev,
3770 		    "unable to establish softint for TXring[%d]\n",
3771 		    txring->txr_index);
3772 		error = ENOENT;
3773 	}
3774 
3775  done:
3776 	return error;
3777 }
3778 
3779 static void
3780 aq_tx_pcq_free(struct aq_softc *sc, struct aq_txring *txring)
3781 {
3782 	struct mbuf *m;
3783 
3784 	if (txring->txr_softint != NULL) {
3785 		softint_disestablish(txring->txr_softint);
3786 		txring->txr_softint = NULL;
3787 	}
3788 
3789 	if (txring->txr_pcq != NULL) {
3790 		while ((m = pcq_get(txring->txr_pcq)) != NULL)
3791 			m_freem(m);
3792 		pcq_destroy(txring->txr_pcq);
3793 		txring->txr_pcq = NULL;
3794 	}
3795 }
3796 
3797 #if NSYSMON_ENVSYS > 0
3798 static void
3799 aq_temp_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
3800 {
3801 	struct aq_softc *sc;
3802 	uint32_t temp;
3803 	int error;
3804 
3805 	sc = sme->sme_cookie;
3806 
3807 	error = sc->sc_fw_ops->get_temperature(sc, &temp);
3808 	if (error == 0) {
3809 		edata->value_cur = temp;
3810 		edata->state = ENVSYS_SVALID;
3811 	} else {
3812 		edata->state = ENVSYS_SINVALID;
3813 	}
3814 }
3815 #endif
3816 
3817 static void
3818 aq_tick(void *arg)
3819 {
3820 	struct aq_softc *sc = arg;
3821 
3822 	if (sc->sc_poll_linkstat || sc->sc_detect_linkstat) {
3823 		sc->sc_detect_linkstat = false;
3824 		aq_update_link_status(sc);
3825 	}
3826 
3827 #ifdef AQ_EVENT_COUNTERS
3828 	if (sc->sc_poll_statistics)
3829 		aq_update_statistics(sc);
3830 #endif
3831 
3832 	if (sc->sc_poll_linkstat
3833 #ifdef AQ_EVENT_COUNTERS
3834 	    || sc->sc_poll_statistics
3835 #endif
3836 	    ) {
3837 		callout_schedule(&sc->sc_tick_ch, hz);
3838 	}
3839 }
3840 
3841 /* interrupt enable/disable */
3842 static void
3843 aq_enable_intr(struct aq_softc *sc, bool link, bool txrx)
3844 {
3845 	uint32_t imask = 0;
3846 	int i;
3847 
3848 	if (txrx) {
3849 		for (i = 0; i < sc->sc_nqueues; i++) {
3850 			imask |= __BIT(sc->sc_tx_irq[i]);
3851 			imask |= __BIT(sc->sc_rx_irq[i]);
3852 		}
3853 	}
3854 
3855 	if (link)
3856 		imask |= __BIT(sc->sc_linkstat_irq);
3857 
3858 	AQ_WRITE_REG(sc, AQ_INTR_MASK_REG, imask);
3859 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3860 }
3861 
3862 static int
3863 aq_legacy_intr(void *arg)
3864 {
3865 	struct aq_softc *sc = arg;
3866 	uint32_t status;
3867 	int nintr = 0;
3868 
3869 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3870 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, 0xffffffff);
3871 
3872 	if (status & __BIT(sc->sc_linkstat_irq)) {
3873 		sc->sc_detect_linkstat = true;
3874 		callout_schedule(&sc->sc_tick_ch, 0);
3875 		nintr++;
3876 	}
3877 
3878 	if (status & __BIT(sc->sc_rx_irq[0])) {
3879 		nintr += aq_rx_intr(&sc->sc_queue[0].rxring);
3880 	}
3881 
3882 	if (status & __BIT(sc->sc_tx_irq[0])) {
3883 		nintr += aq_tx_intr(&sc->sc_queue[0].txring);
3884 	}
3885 
3886 	return nintr;
3887 }
3888 
3889 static int
3890 aq_txrx_intr(void *arg)
3891 {
3892 	struct aq_queue *queue = arg;
3893 	struct aq_softc *sc = queue->sc;
3894 	struct aq_txring *txring = &queue->txring;
3895 	struct aq_rxring *rxring = &queue->rxring;
3896 	uint32_t status;
3897 	int nintr = 0;
3898 	int txringidx, rxringidx, txirq, rxirq;
3899 
3900 	txringidx = txring->txr_index;
3901 	rxringidx = rxring->rxr_index;
3902 	txirq = sc->sc_tx_irq[txringidx];
3903 	rxirq = sc->sc_rx_irq[rxringidx];
3904 
3905 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3906 	if ((status & (__BIT(txirq) | __BIT(rxirq))) == 0) {
3907 		/* stray interrupt? */
3908 		return 0;
3909 	}
3910 
3911 	nintr += aq_rx_intr(rxring);
3912 	nintr += aq_tx_intr(txring);
3913 
3914 	return nintr;
3915 }
3916 
3917 static int
3918 aq_link_intr(void *arg)
3919 {
3920 	struct aq_softc *sc = arg;
3921 	uint32_t status;
3922 	int nintr = 0;
3923 
3924 	status = AQ_READ_REG(sc, AQ_INTR_STATUS_REG);
3925 	if (status & __BIT(sc->sc_linkstat_irq)) {
3926 		sc->sc_detect_linkstat = true;
3927 		callout_schedule(&sc->sc_tick_ch, 0);
3928 		AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG,
3929 		    __BIT(sc->sc_linkstat_irq));
3930 		nintr++;
3931 	}
3932 
3933 	return nintr;
3934 }
3935 
3936 static void
3937 aq_txring_reset(struct aq_softc *sc, struct aq_txring *txring, bool start)
3938 {
3939 	const int ringidx = txring->txr_index;
3940 	int i;
3941 
3942 	mutex_enter(&txring->txr_mutex);
3943 
3944 	txring->txr_prodidx = 0;
3945 	txring->txr_considx = 0;
3946 	txring->txr_nfree = AQ_TXD_NUM;
3947 	txring->txr_active = false;
3948 
3949 	/* free mbufs untransmitted */
3950 	for (i = 0; i < AQ_TXD_NUM; i++) {
3951 		if (txring->txr_mbufs[i].m != NULL) {
3952 			m_freem(txring->txr_mbufs[i].m);
3953 			txring->txr_mbufs[i].m = NULL;
3954 		}
3955 	}
3956 
3957 	/* disable DMA */
3958 	AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_EN, 0);
3959 
3960 	if (start) {
3961 		/* TX descriptor physical address */
3962 		paddr_t paddr = txring->txr_txdesc_dmamap->dm_segs[0].ds_addr;
3963 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
3964 		AQ_WRITE_REG(sc, TX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
3965 		    (uint32_t)((uint64_t)paddr >> 32));
3966 
3967 		/* TX descriptor size */
3968 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx), TX_DMA_DESC_LEN,
3969 		    AQ_TXD_NUM / 8);
3970 
3971 		/* reload TAIL pointer */
3972 		txring->txr_prodidx = txring->txr_considx =
3973 		    AQ_READ_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(ringidx));
3974 		AQ_WRITE_REG(sc, TX_DMA_DESC_WRWB_THRESH_REG(ringidx), 0);
3975 
3976 		/* Mapping interrupt vector */
3977 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3978 		    AQ_INTR_IRQ_MAP_TX_IRQMAP(ringidx), sc->sc_tx_irq[ringidx]);
3979 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_TX_REG(ringidx),
3980 		    AQ_INTR_IRQ_MAP_TX_EN(ringidx), true);
3981 
3982 		/* enable DMA */
3983 		AQ_WRITE_REG_BIT(sc, TX_DMA_DESC_REG(ringidx),
3984 		    TX_DMA_DESC_EN, 1);
3985 
3986 		const int cpuid = 0;	/* XXX? */
3987 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3988 		    TDM_DCAD_CPUID, cpuid);
3989 		AQ_WRITE_REG_BIT(sc, TDM_DCAD_REG(ringidx),
3990 		    TDM_DCAD_CPUID_EN, 0);
3991 
3992 		txring->txr_active = true;
3993 	}
3994 
3995 	mutex_exit(&txring->txr_mutex);
3996 }
3997 
3998 static int
3999 aq_rxring_reset(struct aq_softc *sc, struct aq_rxring *rxring, bool start)
4000 {
4001 	const int ringidx = rxring->rxr_index;
4002 	int i;
4003 	int error = 0;
4004 
4005 	mutex_enter(&rxring->rxr_mutex);
4006 	rxring->rxr_active = false;
4007 
4008 	/* disable DMA */
4009 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_EN, 0);
4010 
4011 	/* free all RX mbufs */
4012 	aq_rxdrain(sc, rxring);
4013 
4014 	if (start) {
4015 		for (i = 0; i < AQ_RXD_NUM; i++) {
4016 			error = aq_rxring_add(sc, rxring, i);
4017 			if (error != 0) {
4018 				aq_rxdrain(sc, rxring);
4019 				return error;
4020 			}
4021 			aq_rxring_reset_desc(sc, rxring, i);
4022 		}
4023 
4024 		/* RX descriptor physical address */
4025 		paddr_t paddr = rxring->rxr_rxdesc_dmamap->dm_segs[0].ds_addr;
4026 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRLSW_REG(ringidx), paddr);
4027 		AQ_WRITE_REG(sc, RX_DMA_DESC_BASE_ADDRMSW_REG(ringidx),
4028 		    (uint32_t)((uint64_t)paddr >> 32));
4029 
4030 		/* RX descriptor size */
4031 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx), RX_DMA_DESC_LEN,
4032 		    AQ_RXD_NUM / 8);
4033 
4034 		/* maximum receive frame size */
4035 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4036 		    RX_DMA_DESC_BUFSIZE_DATA, MCLBYTES / 1024);
4037 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_BUFSIZE_REG(ringidx),
4038 		    RX_DMA_DESC_BUFSIZE_HDR, 0 / 1024);
4039 
4040 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4041 		    RX_DMA_DESC_HEADER_SPLIT, 0);
4042 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4043 		    RX_DMA_DESC_VLAN_STRIP,
4044 		    (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4045 		    1 : 0);
4046 
4047 		/*
4048 		 * reload TAIL pointer, and update readidx
4049 		 * (HEAD pointer cannot write)
4050 		 */
4051 		rxring->rxr_readidx = AQ_READ_REG_BIT(sc,
4052 		    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR);
4053 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx),
4054 		    (rxring->rxr_readidx + AQ_RXD_NUM - 1) % AQ_RXD_NUM);
4055 
4056 		/* Rx ring set mode */
4057 
4058 		/* Mapping interrupt vector */
4059 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4060 		    AQ_INTR_IRQ_MAP_RX_IRQMAP(ringidx), sc->sc_rx_irq[ringidx]);
4061 		AQ_WRITE_REG_BIT(sc, AQ_INTR_IRQ_MAP_RX_REG(ringidx),
4062 		    AQ_INTR_IRQ_MAP_RX_EN(ringidx), 1);
4063 
4064 		const int cpuid = 0;	/* XXX? */
4065 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4066 		    RX_DMA_DCAD_CPUID, cpuid);
4067 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4068 		    RX_DMA_DCAD_DESC_EN, 0);
4069 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4070 		    RX_DMA_DCAD_HEADER_EN, 0);
4071 		AQ_WRITE_REG_BIT(sc, RX_DMA_DCAD_REG(ringidx),
4072 		    RX_DMA_DCAD_PAYLOAD_EN, 0);
4073 
4074 		/* enable DMA. start receiving */
4075 		AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(ringidx),
4076 		    RX_DMA_DESC_EN, 1);
4077 
4078 		rxring->rxr_active = true;
4079 	}
4080 
4081 	mutex_exit(&rxring->rxr_mutex);
4082 	return error;
4083 }
4084 
4085 #define TXRING_NEXTIDX(idx)	\
4086 	(((idx) >= (AQ_TXD_NUM - 1)) ? 0 : ((idx) + 1))
4087 #define RXRING_NEXTIDX(idx)	\
4088 	(((idx) >= (AQ_RXD_NUM - 1)) ? 0 : ((idx) + 1))
4089 
4090 static int
4091 aq_encap_txring(struct aq_softc *sc, struct aq_txring *txring, struct mbuf **mp)
4092 {
4093 	bus_dmamap_t map;
4094 	struct mbuf *m = *mp;
4095 	uint32_t ctl1, ctl1_ctx, ctl2;
4096 	int idx, i, error;
4097 
4098 	idx = txring->txr_prodidx;
4099 	map = txring->txr_mbufs[idx].dmamap;
4100 
4101 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4102 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4103 	if (error == EFBIG) {
4104 		struct mbuf *n;
4105 		n = m_defrag(m, M_DONTWAIT);
4106 		if (n == NULL)
4107 			return EFBIG;
4108 		/* m_defrag() preserve m */
4109 		KASSERT(n == m);
4110 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
4111 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
4112 	}
4113 	if (error != 0)
4114 		return error;
4115 
4116 	/*
4117 	 * check spaces of free descriptors.
4118 	 * +1 is additional descriptor for context (vlan, etc,.)
4119 	 */
4120 	if ((map->dm_nsegs + 1) > txring->txr_nfree) {
4121 		device_printf(sc->sc_dev,
4122 		    "TX: not enough descriptors left %d for %d segs\n",
4123 		    txring->txr_nfree, map->dm_nsegs + 1);
4124 		bus_dmamap_unload(sc->sc_dmat, map);
4125 		return ENOBUFS;
4126 	}
4127 
4128 	/* sync dma for mbuf */
4129 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
4130 	    BUS_DMASYNC_PREWRITE);
4131 
4132 	ctl1_ctx = 0;
4133 	ctl2 = __SHIFTIN(m->m_pkthdr.len, AQ_TXDESC_CTL2_LEN);
4134 
4135 	if (vlan_has_tag(m)) {
4136 		ctl1 = AQ_TXDESC_CTL1_TYPE_TXC;
4137 		ctl1 |= __SHIFTIN(vlan_get_tag(m), AQ_TXDESC_CTL1_VID);
4138 
4139 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_VLAN;
4140 		ctl2 |= AQ_TXDESC_CTL2_CTX_EN;
4141 
4142 		/* fill context descriptor and forward index */
4143 		txring->txr_txdesc[idx].buf_addr = 0;
4144 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4145 		txring->txr_txdesc[idx].ctl2 = 0;
4146 
4147 		idx = TXRING_NEXTIDX(idx);
4148 		txring->txr_nfree--;
4149 	}
4150 
4151 	if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4152 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_IP4CSUM;
4153 	if (m->m_pkthdr.csum_flags &
4154 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
4155 		ctl1_ctx |= AQ_TXDESC_CTL1_CMD_L4CSUM;
4156 	}
4157 
4158 	/* fill descriptor(s) */
4159 	for (i = 0; i < map->dm_nsegs; i++) {
4160 		ctl1 = ctl1_ctx | AQ_TXDESC_CTL1_TYPE_TXD |
4161 		    __SHIFTIN(map->dm_segs[i].ds_len, AQ_TXDESC_CTL1_BLEN);
4162 		ctl1 |= AQ_TXDESC_CTL1_CMD_FCS;
4163 
4164 		if (i == 0) {
4165 			/* remember mbuf of these descriptors */
4166 			txring->txr_mbufs[idx].m = m;
4167 		} else {
4168 			txring->txr_mbufs[idx].m = NULL;
4169 		}
4170 
4171 		if (i == map->dm_nsegs - 1) {
4172 			/* last segment, mark an EndOfPacket, and cause intr */
4173 			ctl1 |= AQ_TXDESC_CTL1_EOP | AQ_TXDESC_CTL1_CMD_WB;
4174 		}
4175 
4176 		txring->txr_txdesc[idx].buf_addr =
4177 		    htole64(map->dm_segs[i].ds_addr);
4178 		txring->txr_txdesc[idx].ctl1 = htole32(ctl1);
4179 		txring->txr_txdesc[idx].ctl2 = htole32(ctl2);
4180 
4181 		bus_dmamap_sync(sc->sc_dmat, txring->txr_txdesc_dmamap,
4182 		    sizeof(aq_tx_desc_t) * idx, sizeof(aq_tx_desc_t),
4183 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4184 
4185 		idx = TXRING_NEXTIDX(idx);
4186 		txring->txr_nfree--;
4187 	}
4188 
4189 	txring->txr_prodidx = idx;
4190 
4191 	return 0;
4192 }
4193 
4194 static int
4195 aq_tx_intr(void *arg)
4196 {
4197 	struct aq_txring *txring = arg;
4198 	struct aq_softc *sc = txring->txr_sc;
4199 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4200 	struct mbuf *m;
4201 	const int ringidx = txring->txr_index;
4202 	unsigned int idx, hw_head, n = 0;
4203 
4204 	mutex_enter(&txring->txr_mutex);
4205 
4206 	if (!txring->txr_active)
4207 		goto tx_intr_done;
4208 
4209 	hw_head = AQ_READ_REG_BIT(sc, TX_DMA_DESC_HEAD_PTR_REG(ringidx),
4210 	    TX_DMA_DESC_HEAD_PTR);
4211 	if (hw_head == txring->txr_considx) {
4212 		goto tx_intr_done;
4213 	}
4214 
4215 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4216 
4217 	for (idx = txring->txr_considx; idx != hw_head;
4218 	    idx = TXRING_NEXTIDX(idx), n++) {
4219 
4220 		if ((m = txring->txr_mbufs[idx].m) != NULL) {
4221 			bus_dmamap_unload(sc->sc_dmat,
4222 			    txring->txr_mbufs[idx].dmamap);
4223 
4224 			if_statinc_ref(nsr, if_opackets);
4225 			if_statadd_ref(nsr, if_obytes, m->m_pkthdr.len);
4226 			if (m->m_flags & M_MCAST)
4227 				if_statinc_ref(nsr, if_omcasts);
4228 
4229 			m_freem(m);
4230 			txring->txr_mbufs[idx].m = NULL;
4231 		}
4232 
4233 		txring->txr_nfree++;
4234 	}
4235 	txring->txr_considx = idx;
4236 
4237 	IF_STAT_PUTREF(ifp);
4238 
4239 	if (ringidx == 0 && txring->txr_nfree >= AQ_TXD_MIN)
4240 		ifp->if_flags &= ~IFF_OACTIVE;
4241 
4242 	/* no more pending TX packet, cancel watchdog */
4243 	if (txring->txr_nfree >= AQ_TXD_NUM)
4244 		ifp->if_timer = 0;
4245 
4246  tx_intr_done:
4247 	mutex_exit(&txring->txr_mutex);
4248 
4249 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_tx_irq[ringidx]));
4250 	return n;
4251 }
4252 
4253 static int
4254 aq_rx_intr(void *arg)
4255 {
4256 	struct aq_rxring *rxring = arg;
4257 	struct aq_softc *sc = rxring->rxr_sc;
4258 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4259 	const int ringidx = rxring->rxr_index;
4260 	aq_rx_desc_t *rxd;
4261 	struct mbuf *m, *m0, *mprev, *new_m;
4262 	uint32_t rxd_type, rxd_hash __unused;
4263 	uint16_t rxd_status, rxd_pktlen;
4264 	uint16_t rxd_nextdescptr __unused, rxd_vlan __unused;
4265 	unsigned int idx, n = 0;
4266 
4267 	mutex_enter(&rxring->rxr_mutex);
4268 
4269 	if (!rxring->rxr_active)
4270 		goto rx_intr_done;
4271 
4272 	if (rxring->rxr_readidx == AQ_READ_REG_BIT(sc,
4273 	    RX_DMA_DESC_HEAD_PTR_REG(ringidx), RX_DMA_DESC_HEAD_PTR)) {
4274 		goto rx_intr_done;
4275 	}
4276 
4277 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
4278 
4279 	m0 = mprev = NULL;
4280 	for (idx = rxring->rxr_readidx;
4281 	    idx != AQ_READ_REG_BIT(sc, RX_DMA_DESC_HEAD_PTR_REG(ringidx),
4282 	    RX_DMA_DESC_HEAD_PTR); idx = RXRING_NEXTIDX(idx), n++) {
4283 
4284 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_rxdesc_dmamap,
4285 		    sizeof(aq_rx_desc_t) * idx, sizeof(aq_rx_desc_t),
4286 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4287 
4288 		rxd = &rxring->rxr_rxdesc[idx];
4289 		rxd_status = le16toh(rxd->wb.status);
4290 
4291 		if ((rxd_status & RXDESC_STATUS_DD) == 0)
4292 			break;	/* not yet done */
4293 
4294 		rxd_type = le32toh(rxd->wb.type);
4295 		rxd_pktlen = le16toh(rxd->wb.pkt_len);
4296 		rxd_nextdescptr = le16toh(rxd->wb.next_desc_ptr);
4297 		rxd_hash = le32toh(rxd->wb.rss_hash);
4298 		rxd_vlan = le16toh(rxd->wb.vlan);
4299 
4300 		if ((rxd_status & RXDESC_STATUS_MACERR) ||
4301 		    (rxd_type & RXDESC_TYPE_MAC_DMA_ERR)) {
4302 			if_statinc_ref(nsr, if_ierrors);
4303 			goto rx_next;
4304 		}
4305 
4306 		bus_dmamap_sync(sc->sc_dmat, rxring->rxr_mbufs[idx].dmamap, 0,
4307 		    rxring->rxr_mbufs[idx].dmamap->dm_mapsize,
4308 		    BUS_DMASYNC_POSTREAD);
4309 		m = rxring->rxr_mbufs[idx].m;
4310 
4311 		new_m = aq_alloc_mbuf();
4312 		if (new_m == NULL) {
4313 			/*
4314 			 * cannot allocate new mbuf.
4315 			 * discard this packet, and reuse mbuf for next.
4316 			 */
4317 			if_statinc_ref(nsr, if_iqdrops);
4318 			goto rx_next;
4319 		}
4320 		rxring->rxr_mbufs[idx].m = NULL;
4321 		aq_rxring_setmbuf(sc, rxring, idx, new_m);
4322 
4323 		if (m0 == NULL) {
4324 			m0 = m;
4325 		} else {
4326 			if (m->m_flags & M_PKTHDR)
4327 				m_remove_pkthdr(m);
4328 			mprev->m_next = m;
4329 		}
4330 		mprev = m;
4331 
4332 		if ((rxd_status & RXDESC_STATUS_EOP) == 0) {
4333 			m->m_len = MCLBYTES;
4334 		} else {
4335 			/* last buffer */
4336 			m->m_len = rxd_pktlen % MCLBYTES;
4337 			m0->m_pkthdr.len = rxd_pktlen;
4338 			/* VLAN offloading */
4339 			if ((sc->sc_ethercom.ec_capenable &
4340 			    ETHERCAP_VLAN_HWTAGGING) &&
4341 			    (__SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_VLAN) ||
4342 			    __SHIFTOUT(rxd_type,
4343 			    RXDESC_TYPE_PKTTYPE_VLAN_DOUBLE))) {
4344 				vlan_set_tag(m0, rxd_vlan);
4345 			}
4346 
4347 			/* Checksum offloading */
4348 			unsigned int pkttype_eth =
4349 			    __SHIFTOUT(rxd_type, RXDESC_TYPE_PKTTYPE_ETHER);
4350 			if ((ifp->if_capabilities & IFCAP_CSUM_IPv4_Rx) &&
4351 			    (pkttype_eth == RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4352 			    __SHIFTOUT(rxd_type,
4353 			    RXDESC_TYPE_IPV4_CSUM_CHECKED)) {
4354 				m0->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4355 				if (__SHIFTOUT(rxd_status,
4356 				    RXDESC_STATUS_IPV4_CSUM_NG))
4357 					m0->m_pkthdr.csum_flags |=
4358 					    M_CSUM_IPv4_BAD;
4359 			}
4360 #if notyet
4361 			/*
4362 			 * XXX: aq always marks BAD for fragmented packet.
4363 			 * we should peek L3 header, and ignore cksum flags
4364 			 * if the packet is fragmented.
4365 			 */
4366 			if (__SHIFTOUT(rxd_type,
4367 			    RXDESC_TYPE_TCPUDP_CSUM_CHECKED)) {
4368 				bool checked = false;
4369 				unsigned int pkttype_proto =
4370 				    __SHIFTOUT(rxd_type,
4371 				    RXDESC_TYPE_PKTTYPE_PROTO);
4372 
4373 				if (pkttype_proto ==
4374 				    RXDESC_TYPE_PKTTYPE_PROTO_TCP) {
4375 					if ((pkttype_eth ==
4376 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4377 					    (ifp->if_capabilities &
4378 					    IFCAP_CSUM_TCPv4_Rx)) {
4379 						m0->m_pkthdr.csum_flags |=
4380 						    M_CSUM_TCPv4;
4381 						checked = true;
4382 					} else if ((pkttype_eth ==
4383 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4384 					    (ifp->if_capabilities &
4385 					    IFCAP_CSUM_TCPv6_Rx)) {
4386 						m0->m_pkthdr.csum_flags |=
4387 						    M_CSUM_TCPv6;
4388 						checked = true;
4389 					}
4390 				} else if (pkttype_proto ==
4391 				    RXDESC_TYPE_PKTTYPE_PROTO_UDP) {
4392 					if ((pkttype_eth ==
4393 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV4) &&
4394 					    (ifp->if_capabilities &
4395 					    IFCAP_CSUM_UDPv4_Rx)) {
4396 						m0->m_pkthdr.csum_flags |=
4397 						    M_CSUM_UDPv4;
4398 						checked = true;
4399 					} else if ((pkttype_eth ==
4400 					    RXDESC_TYPE_PKTTYPE_ETHER_IPV6) &&
4401 					    (ifp->if_capabilities &
4402 					    IFCAP_CSUM_UDPv6_Rx)) {
4403 						m0->m_pkthdr.csum_flags |=
4404 						    M_CSUM_UDPv6;
4405 						checked = true;
4406 					}
4407 				}
4408 				if (checked &&
4409 				    (__SHIFTOUT(rxd_status,
4410 				    RXDESC_STATUS_TCPUDP_CSUM_ERROR) ||
4411 				    !__SHIFTOUT(rxd_status,
4412 				    RXDESC_STATUS_TCPUDP_CSUM_OK))) {
4413 					m0->m_pkthdr.csum_flags |=
4414 					    M_CSUM_TCP_UDP_BAD;
4415 				}
4416 			}
4417 #endif
4418 			m_set_rcvif(m0, ifp);
4419 			if_statinc_ref(nsr, if_ipackets);
4420 			if_statadd_ref(nsr, if_ibytes, m0->m_pkthdr.len);
4421 			if_percpuq_enqueue(ifp->if_percpuq, m0);
4422 			m0 = mprev = NULL;
4423 		}
4424 
4425  rx_next:
4426 		aq_rxring_reset_desc(sc, rxring, idx);
4427 		AQ_WRITE_REG(sc, RX_DMA_DESC_TAIL_PTR_REG(ringidx), idx);
4428 	}
4429 	rxring->rxr_readidx = idx;
4430 
4431 	IF_STAT_PUTREF(ifp);
4432 
4433  rx_intr_done:
4434 	mutex_exit(&rxring->rxr_mutex);
4435 
4436 	AQ_WRITE_REG(sc, AQ_INTR_STATUS_CLR_REG, __BIT(sc->sc_rx_irq[ringidx]));
4437 	return n;
4438 }
4439 
4440 static int
4441 aq_vlan_cb(struct ethercom *ec, uint16_t vid, bool set)
4442 {
4443 	struct ifnet *ifp = &ec->ec_if;
4444 	struct aq_softc *sc = ifp->if_softc;
4445 
4446 	aq_set_vlan_filters(sc);
4447 	return 0;
4448 }
4449 
4450 static int
4451 aq_ifflags_cb(struct ethercom *ec)
4452 {
4453 	struct ifnet *ifp = &ec->ec_if;
4454 	struct aq_softc *sc = ifp->if_softc;
4455 	int i, ecchange, error = 0;
4456 	unsigned short iffchange;
4457 
4458 	AQ_LOCK(sc);
4459 
4460 	iffchange = ifp->if_flags ^ sc->sc_if_flags;
4461 	if ((iffchange & IFF_PROMISC) != 0)
4462 		error = aq_set_filter(sc);
4463 
4464 	ecchange = ec->ec_capenable ^ sc->sc_ec_capenable;
4465 	if (ecchange & ETHERCAP_VLAN_HWTAGGING) {
4466 		for (i = 0; i < AQ_RINGS_NUM; i++) {
4467 			AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_REG(i),
4468 			    RX_DMA_DESC_VLAN_STRIP,
4469 			    (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) ?
4470 			    1 : 0);
4471 		}
4472 	}
4473 
4474 	/* vlan configuration depends on also interface promiscuous mode */
4475 	if ((ecchange & ETHERCAP_VLAN_HWFILTER) || (iffchange & IFF_PROMISC))
4476 		aq_set_vlan_filters(sc);
4477 
4478 	sc->sc_ec_capenable = ec->ec_capenable;
4479 	sc->sc_if_flags = ifp->if_flags;
4480 
4481 	AQ_UNLOCK(sc);
4482 
4483 	return error;
4484 }
4485 
4486 static int
4487 aq_init(struct ifnet *ifp)
4488 {
4489 	struct aq_softc *sc = ifp->if_softc;
4490 	int i, error = 0;
4491 
4492 	AQ_LOCK(sc);
4493 
4494 	aq_set_vlan_filters(sc);
4495 	aq_set_capability(sc);
4496 
4497 	for (i = 0; i < sc->sc_nqueues; i++) {
4498 		aq_txring_reset(sc, &sc->sc_queue[i].txring, true);
4499 	}
4500 
4501 	/* invalidate RX descriptor cache */
4502 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4503 	    AQ_READ_REG_BIT(sc,
4504 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4505 
4506 	/* start RX */
4507 	for (i = 0; i < sc->sc_nqueues; i++) {
4508 		error = aq_rxring_reset(sc, &sc->sc_queue[i].rxring, true);
4509 		if (error != 0) {
4510 			device_printf(sc->sc_dev, "%s: cannot allocate rxbuf\n",
4511 			    __func__);
4512 			goto aq_init_failure;
4513 		}
4514 	}
4515 	aq_init_rss(sc);
4516 	aq_hw_l3_filter_set(sc);
4517 
4518 	/* need to start callout? */
4519 	if (sc->sc_poll_linkstat
4520 #ifdef AQ_EVENT_COUNTERS
4521 	    || sc->sc_poll_statistics
4522 #endif
4523 	    ) {
4524 		callout_schedule(&sc->sc_tick_ch, hz);
4525 	}
4526 
4527 	/* ready */
4528 	ifp->if_flags |= IFF_RUNNING;
4529 	ifp->if_flags &= ~IFF_OACTIVE;
4530 
4531 	/* start TX and RX */
4532 	aq_enable_intr(sc, true, true);
4533 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 1);
4534 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 1);
4535 
4536  aq_init_failure:
4537 	sc->sc_if_flags = ifp->if_flags;
4538 
4539 	AQ_UNLOCK(sc);
4540 
4541 	return error;
4542 }
4543 
4544 static void
4545 aq_send_common_locked(struct ifnet *ifp, struct aq_softc *sc,
4546     struct aq_txring *txring, bool is_transmit)
4547 {
4548 	struct mbuf *m;
4549 	int npkt, error;
4550 
4551 	if ((ifp->if_flags & IFF_RUNNING) == 0)
4552 		return;
4553 
4554 	for (npkt = 0; ; npkt++) {
4555 		if (is_transmit)
4556 			m = pcq_peek(txring->txr_pcq);
4557 		else
4558 			IFQ_POLL(&ifp->if_snd, m);
4559 
4560 		if (m == NULL)
4561 			break;
4562 
4563 		if (txring->txr_nfree < AQ_TXD_MIN)
4564 			break;
4565 
4566 		if (is_transmit)
4567 			pcq_get(txring->txr_pcq);
4568 		else
4569 			IFQ_DEQUEUE(&ifp->if_snd, m);
4570 
4571 		error = aq_encap_txring(sc, txring, &m);
4572 		if (error != 0) {
4573 			/* too many mbuf chains? or not enough descriptors? */
4574 			m_freem(m);
4575 			if_statinc(ifp, if_oerrors);
4576 			if (txring->txr_index == 0 && error == ENOBUFS)
4577 				ifp->if_flags |= IFF_OACTIVE;
4578 			break;
4579 		}
4580 
4581 		/* update tail ptr */
4582 		AQ_WRITE_REG(sc, TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index),
4583 		    txring->txr_prodidx);
4584 
4585 		/* Pass the packet to any BPF listeners */
4586 		bpf_mtap(ifp, m, BPF_D_OUT);
4587 	}
4588 
4589 	if (txring->txr_index == 0 && txring->txr_nfree < AQ_TXD_MIN)
4590 		ifp->if_flags |= IFF_OACTIVE;
4591 
4592 	if (npkt)
4593 		ifp->if_timer = 5;
4594 }
4595 
4596 static void
4597 aq_start(struct ifnet *ifp)
4598 {
4599 	struct aq_softc *sc;
4600 	struct aq_txring *txring;
4601 
4602 	sc = ifp->if_softc;
4603 	txring = &sc->sc_queue[0].txring; /* aq_start() always use TX ring[0] */
4604 
4605 	mutex_enter(&txring->txr_mutex);
4606 	if (txring->txr_active && !ISSET(ifp->if_flags, IFF_OACTIVE))
4607 		aq_send_common_locked(ifp, sc, txring, false);
4608 	mutex_exit(&txring->txr_mutex);
4609 }
4610 
4611 static inline unsigned int
4612 aq_select_txqueue(struct aq_softc *sc, struct mbuf *m)
4613 {
4614 	return (cpu_index(curcpu()) % sc->sc_nqueues);
4615 }
4616 
4617 static int
4618 aq_transmit(struct ifnet *ifp, struct mbuf *m)
4619 {
4620 	struct aq_softc *sc = ifp->if_softc;
4621 	struct aq_txring *txring;
4622 	int ringidx;
4623 
4624 	ringidx = aq_select_txqueue(sc, m);
4625 	txring = &sc->sc_queue[ringidx].txring;
4626 
4627 	if (__predict_false(!pcq_put(txring->txr_pcq, m))) {
4628 		m_freem(m);
4629 		return ENOBUFS;
4630 	}
4631 
4632 	if (mutex_tryenter(&txring->txr_mutex)) {
4633 		aq_send_common_locked(ifp, sc, txring, true);
4634 		mutex_exit(&txring->txr_mutex);
4635 	} else {
4636 		softint_schedule(txring->txr_softint);
4637 	}
4638 	return 0;
4639 }
4640 
4641 static void
4642 aq_deferred_transmit(void *arg)
4643 {
4644 	struct aq_txring *txring = arg;
4645 	struct aq_softc *sc = txring->txr_sc;
4646 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
4647 
4648 	mutex_enter(&txring->txr_mutex);
4649 	if (pcq_peek(txring->txr_pcq) != NULL)
4650 		aq_send_common_locked(ifp, sc, txring, true);
4651 	mutex_exit(&txring->txr_mutex);
4652 }
4653 
4654 static void
4655 aq_stop(struct ifnet *ifp, int disable)
4656 {
4657 	struct aq_softc *sc = ifp->if_softc;
4658 	int i;
4659 
4660 	AQ_LOCK(sc);
4661 
4662 	ifp->if_timer = 0;
4663 
4664 	/* disable tx/rx interrupts */
4665 	aq_enable_intr(sc, true, false);
4666 
4667 	AQ_WRITE_REG_BIT(sc, TPB_TX_BUF_REG, TPB_TX_BUF_EN, 0);
4668 	for (i = 0; i < sc->sc_nqueues; i++) {
4669 		aq_txring_reset(sc, &sc->sc_queue[i].txring, false);
4670 	}
4671 
4672 	AQ_WRITE_REG_BIT(sc, RPB_RPF_RX_REG, RPB_RPF_RX_BUF_EN, 0);
4673 	for (i = 0; i < sc->sc_nqueues; i++) {
4674 		aq_rxring_reset(sc, &sc->sc_queue[i].rxring, false);
4675 	}
4676 
4677 	/* invalidate RX descriptor cache */
4678 	AQ_WRITE_REG_BIT(sc, RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT,
4679 	    AQ_READ_REG_BIT(sc,
4680 	    RX_DMA_DESC_CACHE_INIT_REG, RX_DMA_DESC_CACHE_INIT) ^ 1);
4681 
4682 	ifp->if_timer = 0;
4683 
4684 	if (!disable) {
4685 		/* when pmf stop, disable link status intr and callout */
4686 		aq_enable_intr(sc, false, false);
4687 		callout_stop(&sc->sc_tick_ch);
4688 	}
4689 
4690 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
4691 
4692 	AQ_UNLOCK(sc);
4693 }
4694 
4695 static void
4696 aq_watchdog(struct ifnet *ifp)
4697 {
4698 	struct aq_softc *sc = ifp->if_softc;
4699 	struct aq_txring *txring;
4700 	int n, head, tail;
4701 
4702 	AQ_LOCK(sc);
4703 
4704 	device_printf(sc->sc_dev, "%s: INTR_MASK/STATUS = %08x/%08x\n",
4705 	    __func__, AQ_READ_REG(sc, AQ_INTR_MASK_REG),
4706 	    AQ_READ_REG(sc, AQ_INTR_STATUS_REG));
4707 
4708 	for (n = 0; n < sc->sc_nqueues; n++) {
4709 		txring = &sc->sc_queue[n].txring;
4710 		head = AQ_READ_REG_BIT(sc,
4711 		    TX_DMA_DESC_HEAD_PTR_REG(txring->txr_index),
4712 		    TX_DMA_DESC_HEAD_PTR),
4713 		tail = AQ_READ_REG(sc,
4714 		    TX_DMA_DESC_TAIL_PTR_REG(txring->txr_index));
4715 
4716 		device_printf(sc->sc_dev, "%s: TXring[%d] HEAD/TAIL=%d/%d\n",
4717 		    __func__, txring->txr_index, head, tail);
4718 
4719 		aq_tx_intr(txring);
4720 	}
4721 
4722 	AQ_UNLOCK(sc);
4723 
4724 	aq_init(ifp);
4725 }
4726 
4727 static int
4728 aq_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
4729 {
4730 	struct aq_softc *sc __unused;
4731 	struct ifreq *ifr __unused;
4732 	int error, s;
4733 
4734 	sc = (struct aq_softc *)ifp->if_softc;
4735 	ifr = (struct ifreq *)data;
4736 	error = 0;
4737 
4738 	s = splnet();
4739 	error = ether_ioctl(ifp, cmd, data);
4740 	splx(s);
4741 
4742 	if (error != ENETRESET)
4743 		return error;
4744 
4745 	switch (cmd) {
4746 	case SIOCSIFCAP:
4747 		error = aq_set_capability(sc);
4748 		break;
4749 	case SIOCADDMULTI:
4750 	case SIOCDELMULTI:
4751 		if ((ifp->if_flags & IFF_RUNNING) == 0)
4752 			break;
4753 
4754 		/*
4755 		 * Multicast list has changed; set the hardware filter
4756 		 * accordingly.
4757 		 */
4758 		error = aq_set_filter(sc);
4759 		break;
4760 	}
4761 
4762 	return error;
4763 }
4764 
4765 
4766 MODULE(MODULE_CLASS_DRIVER, if_aq, "pci");
4767 
4768 #ifdef _MODULE
4769 #include "ioconf.c"
4770 #endif
4771 
4772 static int
4773 if_aq_modcmd(modcmd_t cmd, void *opaque)
4774 {
4775 	int error = 0;
4776 
4777 	switch (cmd) {
4778 	case MODULE_CMD_INIT:
4779 #ifdef _MODULE
4780 		error = config_init_component(cfdriver_ioconf_if_aq,
4781 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4782 #endif
4783 		return error;
4784 	case MODULE_CMD_FINI:
4785 #ifdef _MODULE
4786 		error = config_fini_component(cfdriver_ioconf_if_aq,
4787 		    cfattach_ioconf_if_aq, cfdata_ioconf_if_aq);
4788 #endif
4789 		return error;
4790 	default:
4791 		return ENOTTY;
4792 	}
4793 }
4794