xref: /netbsd-src/sys/dev/pci/if_ale.c (revision da9817918ec7e88db2912a2882967c7570a83f47)
1 /*	$NetBSD: if_ale.c,v 1.3 2009/04/28 11:49:15 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.3 2009/04/28 11:49:15 cegger Exp $");
36 
37 #include "bpfilter.h"
38 #include "vlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52 
53 #include <sys/bus.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70 
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74 
75 #include <sys/rnd.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_alereg.h>
85 
86 static int	ale_match(device_t, cfdata_t, void *);
87 static void	ale_attach(device_t, device_t, void *);
88 static int	ale_detach(device_t, int);
89 
90 static int	ale_miibus_readreg(device_t, int, int);
91 static void	ale_miibus_writereg(device_t, int, int, int);
92 static void	ale_miibus_statchg(device_t);
93 
94 static int	ale_init(struct ifnet *);
95 static void	ale_start(struct ifnet *);
96 static int	ale_ioctl(struct ifnet *, u_long, void *);
97 static void	ale_watchdog(struct ifnet *);
98 static int	ale_mediachange(struct ifnet *);
99 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
100 
101 static int	ale_intr(void *);
102 static int	ale_rxeof(struct ale_softc *sc);
103 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 		    uint32_t, uint32_t *);
105 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void	ale_txeof(struct ale_softc *);
107 
108 static int	ale_dma_alloc(struct ale_softc *);
109 static void	ale_dma_free(struct ale_softc *);
110 static int	ale_encap(struct ale_softc *, struct mbuf **);
111 static void	ale_init_rx_pages(struct ale_softc *);
112 static void	ale_init_tx_ring(struct ale_softc *);
113 
114 static void	ale_stop(struct ifnet *, int);
115 static void	ale_tick(void *);
116 static void	ale_get_macaddr(struct ale_softc *);
117 static void	ale_mac_config(struct ale_softc *);
118 static void	ale_phy_reset(struct ale_softc *);
119 static void	ale_reset(struct ale_softc *);
120 static void	ale_rxfilter(struct ale_softc *);
121 static void	ale_rxvlan(struct ale_softc *);
122 static void	ale_stats_clear(struct ale_softc *);
123 static void	ale_stats_update(struct ale_softc *);
124 static void	ale_stop_mac(struct ale_softc *);
125 
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 	ale_match, ale_attach, ale_detach, NULL);
128 
129 int aledebug = 0;
130 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
131 
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 	struct ale_softc *sc = device_private(dev);
139 	uint32_t v;
140 	int i;
141 
142 	if (phy != sc->ale_phyaddr)
143 		return 0;
144 
145 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
146 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
147 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
148 		DELAY(5);
149 		v = CSR_READ_4(sc, ALE_MDIO);
150 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
151 			break;
152 	}
153 
154 	if (i == 0) {
155 		printf("%s: phy read timeout: phy %d, reg %d\n",
156 		    device_xname(sc->sc_dev), phy, reg);
157 		return 0;
158 	}
159 
160 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
161 }
162 
163 static void
164 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
165 {
166 	struct ale_softc *sc = device_private(dev);
167 	uint32_t v;
168 	int i;
169 
170 	if (phy != sc->ale_phyaddr)
171 		return;
172 
173 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
174 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
175 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
176 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
177 		DELAY(5);
178 		v = CSR_READ_4(sc, ALE_MDIO);
179 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
180 			break;
181 	}
182 
183 	if (i == 0)
184 		printf("%s: phy write timeout: phy %d, reg %d\n",
185 		    device_xname(sc->sc_dev), phy, reg);
186 }
187 
188 static void
189 ale_miibus_statchg(device_t dev)
190 {
191 	struct ale_softc *sc = device_private(dev);
192 	struct ifnet *ifp = &sc->sc_ec.ec_if;
193 	struct mii_data *mii;
194 	uint32_t reg;
195 
196 	if ((ifp->if_flags & IFF_RUNNING) == 0)
197 		return;
198 
199 	mii = &sc->sc_miibus;
200 
201 	sc->ale_flags &= ~ALE_FLAG_LINK;
202 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
203 	    (IFM_ACTIVE | IFM_AVALID)) {
204 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
205 		case IFM_10_T:
206 		case IFM_100_TX:
207 			sc->ale_flags |= ALE_FLAG_LINK;
208 			break;
209 
210 		case IFM_1000_T:
211 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
212 				sc->ale_flags |= ALE_FLAG_LINK;
213 			break;
214 
215 		default:
216 			break;
217 		}
218 	}
219 
220 	/* Stop Rx/Tx MACs. */
221 	ale_stop_mac(sc);
222 
223 	/* Program MACs with resolved speed/duplex/flow-control. */
224 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
225 		ale_mac_config(sc);
226 		/* Reenable Tx/Rx MACs. */
227 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
228 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
229 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
230 	}
231 }
232 
233 void
234 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
235 {
236 	struct ale_softc *sc = ifp->if_softc;
237 	struct mii_data *mii = &sc->sc_miibus;
238 
239 	mii_pollstat(mii);
240 	ifmr->ifm_status = mii->mii_media_status;
241 	ifmr->ifm_active = mii->mii_media_active;
242 }
243 
244 int
245 ale_mediachange(struct ifnet *ifp)
246 {
247 	struct ale_softc *sc = ifp->if_softc;
248 	struct mii_data *mii = &sc->sc_miibus;
249 	int error;
250 
251 	if (mii->mii_instance != 0) {
252 		struct mii_softc *miisc;
253 
254 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
255 			mii_phy_reset(miisc);
256 	}
257 	error = mii_mediachg(mii);
258 
259 	return error;
260 }
261 
262 int
263 ale_match(device_t dev, cfdata_t match, void *aux)
264 {
265 	struct pci_attach_args *pa = aux;
266 
267 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
268 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
269 }
270 
271 void
272 ale_get_macaddr(struct ale_softc *sc)
273 {
274 	uint32_t ea[2], reg;
275 	int i, vpdc;
276 
277 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
278 	if ((reg & SPI_VPD_ENB) != 0) {
279 		reg &= ~SPI_VPD_ENB;
280 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
281 	}
282 
283 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
284 	    &vpdc, NULL)) {
285 		/*
286 		 * PCI VPD capability found, let TWSI reload EEPROM.
287 		 * This will set ethernet address of controller.
288 		 */
289 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
290 		    TWSI_CTRL_SW_LD_START);
291 		for (i = 100; i > 0; i--) {
292 			DELAY(1000);
293 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
294 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
295 				break;
296 		}
297 		if (i == 0)
298 			printf("%s: reloading EEPROM timeout!\n",
299 			    device_xname(sc->sc_dev));
300 	} else {
301 		if (aledebug)
302 			printf("%s: PCI VPD capability not found!\n",
303 			    device_xname(sc->sc_dev));
304 	}
305 
306 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
307 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
308 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
309 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
310 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
311 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
312 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
313 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
314 }
315 
316 void
317 ale_phy_reset(struct ale_softc *sc)
318 {
319 	/* Reset magic from Linux. */
320 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
321 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
322 	    GPHY_CTRL_PHY_PLL_ON);
323 	DELAY(1000);
324 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
325 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
326 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
327 	DELAY(1000);
328 
329 #define	ATPHY_DBG_ADDR		0x1D
330 #define	ATPHY_DBG_DATA		0x1E
331 
332 	/* Enable hibernation mode. */
333 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 	    ATPHY_DBG_ADDR, 0x0B);
335 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 	    ATPHY_DBG_DATA, 0xBC00);
337 	/* Set Class A/B for all modes. */
338 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 	    ATPHY_DBG_ADDR, 0x00);
340 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 	    ATPHY_DBG_DATA, 0x02EF);
342 	/* Enable 10BT power saving. */
343 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 	    ATPHY_DBG_ADDR, 0x12);
345 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 	    ATPHY_DBG_DATA, 0x4C04);
347 	/* Adjust 1000T power. */
348 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 	    ATPHY_DBG_ADDR, 0x04);
350 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 	    ATPHY_DBG_ADDR, 0x8BBB);
352 	/* 10BT center tap voltage. */
353 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 	    ATPHY_DBG_ADDR, 0x05);
355 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 	    ATPHY_DBG_ADDR, 0x2C46);
357 
358 #undef	ATPHY_DBG_ADDR
359 #undef	ATPHY_DBG_DATA
360 	DELAY(1000);
361 }
362 
363 void
364 ale_attach(device_t parent, device_t self, void *aux)
365 {
366 	struct ale_softc *sc = device_private(self);
367 	struct pci_attach_args *pa = aux;
368 	pci_chipset_tag_t pc = pa->pa_pc;
369 	pci_intr_handle_t ih;
370 	const char *intrstr;
371 	struct ifnet *ifp;
372 	pcireg_t memtype;
373 	int error = 0;
374 	uint32_t rxf_len, txf_len;
375 
376 	aprint_naive("\n");
377 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
378 
379 	sc->sc_dev = self;
380 	sc->sc_dmat = pa->pa_dmat;
381 	sc->sc_pct = pa->pa_pc;
382 	sc->sc_pcitag = pa->pa_tag;
383 
384 	/*
385 	 * Allocate IO memory
386 	 */
387 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
388 	switch (memtype) {
389 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
390 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
391 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
392 		break;
393 	default:
394 		aprint_error_dev(self, "invalid base address register\n");
395 		break;
396 	}
397 
398 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
399 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
400 		aprint_error_dev(self, "could not map mem space\n");
401 		return;
402 	}
403 
404 	if (pci_intr_map(pa, &ih) != 0) {
405 		aprint_error_dev(self, "could not map interrupt\n");
406 		goto fail;
407 	}
408 
409 	/*
410 	 * Allocate IRQ
411 	 */
412 	intrstr = pci_intr_string(sc->sc_pct, ih);
413 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
414 	if (sc->sc_irq_handle == NULL) {
415 		aprint_error_dev(self, "could not establish interrupt");
416 		if (intrstr != NULL)
417 			aprint_error(" at %s", intrstr);
418 		aprint_error("\n");
419 		goto fail;
420 	}
421 	aprint_normal_dev(self, "%s\n", intrstr);
422 
423 	/* Set PHY address. */
424 	sc->ale_phyaddr = ALE_PHY_ADDR;
425 
426 	/* Reset PHY. */
427 	ale_phy_reset(sc);
428 
429 	/* Reset the ethernet controller. */
430 	ale_reset(sc);
431 
432 	/* Get PCI and chip id/revision. */
433 	sc->ale_rev = PCI_REVISION(pa->pa_class);
434 	if (sc->ale_rev >= 0xF0) {
435 		/* L2E Rev. B. AR8114 */
436 		sc->ale_flags |= ALE_FLAG_FASTETHER;
437 	} else {
438 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
439 			/* L1E AR8121 */
440 			sc->ale_flags |= ALE_FLAG_JUMBO;
441 		} else {
442 			/* L2E Rev. A. AR8113 */
443 			sc->ale_flags |= ALE_FLAG_FASTETHER;
444 		}
445 	}
446 
447 	/*
448 	 * All known controllers seems to require 4 bytes alignment
449 	 * of Tx buffers to make Tx checksum offload with custom
450 	 * checksum generation method work.
451 	 */
452 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
453 
454 	/*
455 	 * All known controllers seems to have issues on Rx checksum
456 	 * offload for fragmented IP datagrams.
457 	 */
458 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
459 
460 	/*
461 	 * Don't use Tx CMB. It is known to cause RRS update failure
462 	 * under certain circumstances. Typical phenomenon of the
463 	 * issue would be unexpected sequence number encountered in
464 	 * Rx handler.
465 	 */
466 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
467 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
468 	    MASTER_CHIP_REV_SHIFT;
469 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
470 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
471 
472 	/*
473 	 * Uninitialized hardware returns an invalid chip id/revision
474 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
475 	 */
476 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
477 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
478 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
479 	    rxf_len == 0xFFFFFFF) {
480 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
481 		    "%u Rx FIFO -- not initialized?\n",
482 		    sc->ale_chip_rev, txf_len, rxf_len);
483 		goto fail;
484 	}
485 
486 	if (aledebug) {
487 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
488 		    txf_len, rxf_len);
489 	}
490 
491 	/* Set max allowable DMA size. */
492 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
493 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
494 
495 	callout_init(&sc->sc_tick_ch, 0);
496 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
497 
498 	error = ale_dma_alloc(sc);
499 	if (error)
500 		goto fail;
501 
502 	/* Load station address. */
503 	ale_get_macaddr(sc);
504 
505 	aprint_normal_dev(self, "Ethernet address %s\n",
506 	    ether_sprintf(sc->ale_eaddr));
507 
508 	ifp = &sc->sc_ec.ec_if;
509 	ifp->if_softc = sc;
510 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
511 	ifp->if_init = ale_init;
512 	ifp->if_ioctl = ale_ioctl;
513 	ifp->if_start = ale_start;
514 	ifp->if_stop = ale_stop;
515 	ifp->if_watchdog = ale_watchdog;
516 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
517 	IFQ_SET_READY(&ifp->if_snd);
518 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
519 
520 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
521 
522 #ifdef ALE_CHECKSUM
523 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
524 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
525 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
526 #endif
527 
528 #if NVLAN > 0
529 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
530 #endif
531 
532 	/* Set up MII bus. */
533 	sc->sc_miibus.mii_ifp = ifp;
534 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
535 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
536 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
537 
538 	sc->sc_ec.ec_mii = &sc->sc_miibus;
539 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
540 	    ale_mediastatus);
541 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
542 	    MII_OFFSET_ANY, 0);
543 
544 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
545 		aprint_error_dev(self, "no PHY found!\n");
546 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
547 		    0, NULL);
548 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
549 	} else
550 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
551 
552 	if_attach(ifp);
553 	ether_ifattach(ifp, sc->ale_eaddr);
554 
555 	if (!pmf_device_register(self, NULL, NULL))
556 		aprint_error_dev(self, "couldn't establish power handler\n");
557 	else
558 		pmf_class_network_register(self, ifp);
559 
560 	return;
561 fail:
562 	ale_dma_free(sc);
563 	if (sc->sc_irq_handle != NULL) {
564 		pci_intr_disestablish(pc, sc->sc_irq_handle);
565 		sc->sc_irq_handle = NULL;
566 	}
567 	if (sc->sc_mem_size) {
568 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
569 		sc->sc_mem_size = 0;
570 	}
571 }
572 
573 static int
574 ale_detach(device_t self, int flags)
575 {
576 	struct ale_softc *sc = device_private(self);
577 	struct ifnet *ifp = &sc->sc_ec.ec_if;
578 	int s;
579 
580 	pmf_device_deregister(self);
581 	s = splnet();
582 	ale_stop(ifp, 0);
583 	splx(s);
584 
585 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
586 
587 	/* Delete all remaining media. */
588 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
589 
590 	ether_ifdetach(ifp);
591 	if_detach(ifp);
592 	ale_dma_free(sc);
593 
594 	if (sc->sc_irq_handle != NULL) {
595 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
596 		sc->sc_irq_handle = NULL;
597 	}
598 	if (sc->sc_mem_size) {
599 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
600 		sc->sc_mem_size = 0;
601 	}
602 
603 	return 0;
604 }
605 
606 
607 static int
608 ale_dma_alloc(struct ale_softc *sc)
609 {
610 	struct ale_txdesc *txd;
611 	int nsegs, error, guard_size, i;
612 
613 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
614 		guard_size = ALE_JUMBO_FRAMELEN;
615 	else
616 		guard_size = ALE_MAX_FRAMELEN;
617 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
618 	    ALE_RX_PAGE_ALIGN);
619 
620 	/*
621 	 * Create DMA stuffs for TX ring
622 	 */
623 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
624 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
625 	if (error) {
626 		sc->ale_cdata.ale_tx_ring_map = NULL;
627 		return ENOBUFS;
628 	}
629 
630 	/* Allocate DMA'able memory for TX ring */
631 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
632 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
633 	    &nsegs, BUS_DMA_WAITOK);
634 	if (error) {
635 		printf("%s: could not allocate DMA'able memory for Tx ring, "
636 		    "error = %i\n", device_xname(sc->sc_dev), error);
637 		return error;
638 	}
639 
640 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
641 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
642 	    BUS_DMA_NOWAIT);
643 	if (error)
644 		return ENOBUFS;
645 
646 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
647 
648 	/* Load the DMA map for Tx ring. */
649 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
650 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
651 	if (error) {
652 		printf("%s: could not load DMA'able memory for Tx ring.\n",
653 		    device_xname(sc->sc_dev));
654 		bus_dmamem_free(sc->sc_dmat,
655 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
656 		return error;
657 	}
658 	sc->ale_cdata.ale_tx_ring_paddr =
659 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
660 
661 	for (i = 0; i < ALE_RX_PAGES; i++) {
662 		/*
663 		 * Create DMA stuffs for RX pages
664 		 */
665 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
666 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
667 		    &sc->ale_cdata.ale_rx_page[i].page_map);
668 		if (error) {
669 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
670 			return ENOBUFS;
671 		}
672 
673 		/* Allocate DMA'able memory for RX pages */
674 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
675 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
676 		    1, &nsegs, BUS_DMA_WAITOK);
677 		if (error) {
678 			printf("%s: could not allocate DMA'able memory for "
679 			    "Rx ring.\n", device_xname(sc->sc_dev));
680 			return error;
681 		}
682 		error = bus_dmamem_map(sc->sc_dmat,
683 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
684 		    sc->ale_pagesize,
685 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
686 		    BUS_DMA_NOWAIT);
687 		if (error)
688 			return ENOBUFS;
689 
690 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
691 		    sc->ale_pagesize);
692 
693 		/* Load the DMA map for Rx pages. */
694 		error = bus_dmamap_load(sc->sc_dmat,
695 		    sc->ale_cdata.ale_rx_page[i].page_map,
696 		    sc->ale_cdata.ale_rx_page[i].page_addr,
697 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
698 		if (error) {
699 			printf("%s: could not load DMA'able memory for "
700 			    "Rx pages.\n", device_xname(sc->sc_dev));
701 			bus_dmamem_free(sc->sc_dmat,
702 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
703 			return error;
704 		}
705 		sc->ale_cdata.ale_rx_page[i].page_paddr =
706 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
707 	}
708 
709 	/*
710 	 * Create DMA stuffs for Tx CMB.
711 	 */
712 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
713 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
714 	if (error) {
715 		sc->ale_cdata.ale_tx_cmb_map = NULL;
716 		return ENOBUFS;
717 	}
718 
719 	/* Allocate DMA'able memory for Tx CMB. */
720 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
721 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
722 
723 	if (error) {
724 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
725 		    device_xname(sc->sc_dev));
726 		return error;
727 	}
728 
729 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
730 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
731 	    BUS_DMA_NOWAIT);
732 	if (error)
733 		return ENOBUFS;
734 
735 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
736 
737 	/* Load the DMA map for Tx CMB. */
738 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
739 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
740 	if (error) {
741 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
742 		    device_xname(sc->sc_dev));
743 		bus_dmamem_free(sc->sc_dmat,
744 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
745 		return error;
746 	}
747 
748 	sc->ale_cdata.ale_tx_cmb_paddr =
749 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
750 
751 	for (i = 0; i < ALE_RX_PAGES; i++) {
752 		/*
753 		 * Create DMA stuffs for Rx CMB.
754 		 */
755 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
756 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
757 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
758 		if (error) {
759 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
760 			return ENOBUFS;
761 		}
762 
763 		/* Allocate DMA'able memory for Rx CMB */
764 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
765 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
766 		    &nsegs, BUS_DMA_WAITOK);
767 		if (error) {
768 			printf("%s: could not allocate DMA'able memory for "
769 			    "Rx CMB\n", device_xname(sc->sc_dev));
770 			return error;
771 		}
772 		error = bus_dmamem_map(sc->sc_dmat,
773 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
774 		    ALE_RX_CMB_SZ,
775 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
776 		    BUS_DMA_NOWAIT);
777 		if (error)
778 			return ENOBUFS;
779 
780 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
781 
782 		/* Load the DMA map for Rx CMB */
783 		error = bus_dmamap_load(sc->sc_dmat,
784 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
785 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
786 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
787 		if (error) {
788 			printf("%s: could not load DMA'able memory for Rx CMB"
789 			    "\n", device_xname(sc->sc_dev));
790 			bus_dmamem_free(sc->sc_dmat,
791 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
792 			return error;
793 		}
794 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
795 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
796 	}
797 
798 
799 	/* Create DMA maps for Tx buffers. */
800 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
801 		txd = &sc->ale_cdata.ale_txdesc[i];
802 		txd->tx_m = NULL;
803 		txd->tx_dmamap = NULL;
804 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
805 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
806 		    &txd->tx_dmamap);
807 		if (error) {
808 			txd->tx_dmamap = NULL;
809 			printf("%s: could not create Tx dmamap.\n",
810 			    device_xname(sc->sc_dev));
811 			return error;
812 		}
813 	}
814 
815 	return 0;
816 }
817 
818 static void
819 ale_dma_free(struct ale_softc *sc)
820 {
821 	struct ale_txdesc *txd;
822 	int i;
823 
824 	/* Tx buffers. */
825 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
826 		txd = &sc->ale_cdata.ale_txdesc[i];
827 		if (txd->tx_dmamap != NULL) {
828 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
829 			txd->tx_dmamap = NULL;
830 		}
831 	}
832 
833 	/* Tx descriptor ring. */
834 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
835 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
836 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
837 	    sc->ale_cdata.ale_tx_ring != NULL)
838 		bus_dmamem_free(sc->sc_dmat,
839 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
840 	sc->ale_cdata.ale_tx_ring = NULL;
841 	sc->ale_cdata.ale_tx_ring_map = NULL;
842 
843 	/* Rx page block. */
844 	for (i = 0; i < ALE_RX_PAGES; i++) {
845 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
846 			bus_dmamap_unload(sc->sc_dmat,
847 			    sc->ale_cdata.ale_rx_page[i].page_map);
848 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
849 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
850 			bus_dmamem_free(sc->sc_dmat,
851 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
852 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
853 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
854 	}
855 
856 	/* Rx CMB. */
857 	for (i = 0; i < ALE_RX_PAGES; i++) {
858 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
859 			bus_dmamap_unload(sc->sc_dmat,
860 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
861 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
862 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
863 			bus_dmamem_free(sc->sc_dmat,
864 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
865 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
866 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
867 	}
868 
869 	/* Tx CMB. */
870 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
871 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
872 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
873 	    sc->ale_cdata.ale_tx_cmb != NULL)
874 		bus_dmamem_free(sc->sc_dmat,
875 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
876 	sc->ale_cdata.ale_tx_cmb = NULL;
877 	sc->ale_cdata.ale_tx_cmb_map = NULL;
878 
879 }
880 
881 static int
882 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
883 {
884 	struct ale_txdesc *txd, *txd_last;
885 	struct tx_desc *desc;
886 	struct mbuf *m;
887 	bus_dmamap_t map;
888 	uint32_t cflags, poff, vtag;
889 	int error, i, nsegs, prod;
890 #if NVLAN > 0
891 	struct m_tag *mtag;
892 #endif
893 
894 	m = *m_head;
895 	cflags = vtag = 0;
896 	poff = 0;
897 
898 	prod = sc->ale_cdata.ale_tx_prod;
899 	txd = &sc->ale_cdata.ale_txdesc[prod];
900 	txd_last = txd;
901 	map = txd->tx_dmamap;
902 
903 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
904 	if (error == EFBIG) {
905 		error = 0;
906 
907 		MGETHDR(m, M_DONTWAIT, MT_DATA);
908 		if (m == NULL) {
909 			printf("%s: can't defrag TX mbuf\n",
910 			    device_xname(sc->sc_dev));
911 			m_freem(*m_head);
912 			*m_head = NULL;
913 			return ENOBUFS;
914 		}
915 
916 		M_COPY_PKTHDR(m, *m_head);
917 		if ((*m_head)->m_pkthdr.len > MHLEN) {
918 			MCLGET(m, M_DONTWAIT);
919 			if (!(m->m_flags & M_EXT)) {
920 				m_freem(*m_head);
921 				m_freem(m);
922 				*m_head = NULL;
923 				return ENOBUFS;
924 			}
925 		}
926 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
927 		    mtod(m, void *));
928 		m_freem(*m_head);
929 		m->m_len = m->m_pkthdr.len;
930 		*m_head = m;
931 
932 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
933 		    BUS_DMA_NOWAIT);
934 
935 		if (error != 0) {
936 			printf("%s: could not load defragged TX mbuf\n",
937 			    device_xname(sc->sc_dev));
938 			if (!error) {
939 				bus_dmamap_unload(sc->sc_dmat, map);
940 				error = EFBIG;
941 			}
942 			m_freem(*m_head);
943 			*m_head = NULL;
944 			return error;
945 		}
946 	} else if (error) {
947 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
948 		return error;
949 	}
950 
951 	nsegs = map->dm_nsegs;
952 
953 	if (nsegs == 0) {
954 		m_freem(*m_head);
955 		*m_head = NULL;
956 		return EIO;
957 	}
958 
959 	/* Check descriptor overrun. */
960 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
961 		bus_dmamap_unload(sc->sc_dmat, map);
962 		return ENOBUFS;
963 	}
964 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
965 	    BUS_DMASYNC_PREWRITE);
966 
967 	m = *m_head;
968 	/* Configure Tx checksum offload. */
969 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
970 		/*
971 		 * AR81xx supports Tx custom checksum offload feature
972 		 * that offloads single 16bit checksum computation.
973 		 * So you can choose one among IP, TCP and UDP.
974 		 * Normally driver sets checksum start/insertion
975 		 * position from the information of TCP/UDP frame as
976 		 * TCP/UDP checksum takes more time than that of IP.
977 		 * However it seems that custom checksum offload
978 		 * requires 4 bytes aligned Tx buffers due to hardware
979 		 * bug.
980 		 * AR81xx also supports explicit Tx checksum computation
981 		 * if it is told that the size of IP header and TCP
982 		 * header(for UDP, the header size does not matter
983 		 * because it's fixed length). However with this scheme
984 		 * TSO does not work so you have to choose one either
985 		 * TSO or explicit Tx checksum offload. I chosen TSO
986 		 * plus custom checksum offload with work-around which
987 		 * will cover most common usage for this consumer
988 		 * ethernet controller. The work-around takes a lot of
989 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
990 		 * boundary, though.
991 		 */
992 		cflags |= ALE_TD_CXSUM;
993 		/* Set checksum start offset. */
994 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
995 	}
996 
997 #if NVLAN > 0
998 	/* Configure VLAN hardware tag insertion. */
999 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1000 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1001 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1002 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1003 	}
1004 #endif
1005 
1006 	desc = NULL;
1007 	for (i = 0; i < nsegs; i++) {
1008 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1009 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1010 		desc->len =
1011 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1012 		desc->flags = htole32(cflags);
1013 		sc->ale_cdata.ale_tx_cnt++;
1014 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1015 	}
1016 	/* Update producer index. */
1017 	sc->ale_cdata.ale_tx_prod = prod;
1018 
1019 	/* Finally set EOP on the last descriptor. */
1020 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1021 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1022 	desc->flags |= htole32(ALE_TD_EOP);
1023 
1024 	/* Swap dmamap of the first and the last. */
1025 	txd = &sc->ale_cdata.ale_txdesc[prod];
1026 	map = txd_last->tx_dmamap;
1027 	txd_last->tx_dmamap = txd->tx_dmamap;
1028 	txd->tx_dmamap = map;
1029 	txd->tx_m = m;
1030 
1031 	/* Sync descriptors. */
1032 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1033 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1034 
1035 	return 0;
1036 }
1037 
1038 static void
1039 ale_start(struct ifnet *ifp)
1040 {
1041         struct ale_softc *sc = ifp->if_softc;
1042 	struct mbuf *m_head;
1043 	int enq;
1044 
1045 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1046 		return;
1047 
1048 	/* Reclaim transmitted frames. */
1049 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1050 		ale_txeof(sc);
1051 
1052 	enq = 0;
1053 	for (;;) {
1054 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1055 		if (m_head == NULL)
1056 			break;
1057 
1058 		/*
1059 		 * Pack the data into the transmit ring. If we
1060 		 * don't have room, set the OACTIVE flag and wait
1061 		 * for the NIC to drain the ring.
1062 		 */
1063 		if (ale_encap(sc, &m_head)) {
1064 			if (m_head == NULL)
1065 				break;
1066 			ifp->if_flags |= IFF_OACTIVE;
1067 			break;
1068 		}
1069 		enq = 1;
1070 
1071 #if NBPFILTER > 0
1072 		/*
1073 		 * If there's a BPF listener, bounce a copy of this frame
1074 		 * to him.
1075 		 */
1076 		if (ifp->if_bpf != NULL)
1077 			bpf_mtap(ifp->if_bpf, m_head);
1078 #endif
1079 	}
1080 
1081 	if (enq) {
1082 		/* Kick. */
1083 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1084 		    sc->ale_cdata.ale_tx_prod);
1085 
1086 		/* Set a timeout in case the chip goes out to lunch. */
1087 		ifp->if_timer = ALE_TX_TIMEOUT;
1088 	}
1089 }
1090 
1091 static void
1092 ale_watchdog(struct ifnet *ifp)
1093 {
1094 	struct ale_softc *sc = ifp->if_softc;
1095 
1096 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1097 		printf("%s: watchdog timeout (missed link)\n",
1098 		    device_xname(sc->sc_dev));
1099 		ifp->if_oerrors++;
1100 		ale_init(ifp);
1101 		return;
1102 	}
1103 
1104 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1105 	ifp->if_oerrors++;
1106 	ale_init(ifp);
1107 
1108 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1109 		ale_start(ifp);
1110 }
1111 
1112 static int
1113 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 	struct ale_softc *sc = ifp->if_softc;
1116 	int s, error;
1117 
1118 	s = splnet();
1119 
1120 	error = ether_ioctl(ifp, cmd, data);
1121 	if (error == ENETRESET) {
1122 		if (ifp->if_flags & IFF_RUNNING)
1123 			ale_rxfilter(sc);
1124 		error = 0;
1125 	}
1126 
1127 	splx(s);
1128 	return error;
1129 }
1130 
1131 static void
1132 ale_mac_config(struct ale_softc *sc)
1133 {
1134 	struct mii_data *mii;
1135 	uint32_t reg;
1136 
1137 	mii = &sc->sc_miibus;
1138 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1139 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1140 	    MAC_CFG_SPEED_MASK);
1141 
1142 	/* Reprogram MAC with resolved speed/duplex. */
1143 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1144 	case IFM_10_T:
1145 	case IFM_100_TX:
1146 		reg |= MAC_CFG_SPEED_10_100;
1147 		break;
1148 	case IFM_1000_T:
1149 		reg |= MAC_CFG_SPEED_1000;
1150 		break;
1151 	}
1152 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1153 		reg |= MAC_CFG_FULL_DUPLEX;
1154 #ifdef notyet
1155 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1156 			reg |= MAC_CFG_TX_FC;
1157 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1158 			reg |= MAC_CFG_RX_FC;
1159 #endif
1160 	}
1161 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1162 }
1163 
1164 static void
1165 ale_stats_clear(struct ale_softc *sc)
1166 {
1167 	struct smb sb;
1168 	uint32_t *reg;
1169 	int i;
1170 
1171 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1172 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1173 		i += sizeof(uint32_t);
1174 	}
1175 	/* Read Tx statistics. */
1176 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1177 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1178 		i += sizeof(uint32_t);
1179 	}
1180 }
1181 
1182 static void
1183 ale_stats_update(struct ale_softc *sc)
1184 {
1185 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1186 	struct ale_hw_stats *stat;
1187 	struct smb sb, *smb;
1188 	uint32_t *reg;
1189 	int i;
1190 
1191 	stat = &sc->ale_stats;
1192 	smb = &sb;
1193 
1194 	/* Read Rx statistics. */
1195 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1196 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1197 		i += sizeof(uint32_t);
1198 	}
1199 	/* Read Tx statistics. */
1200 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1201 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1202 		i += sizeof(uint32_t);
1203 	}
1204 
1205 	/* Rx stats. */
1206 	stat->rx_frames += smb->rx_frames;
1207 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1208 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1209 	stat->rx_pause_frames += smb->rx_pause_frames;
1210 	stat->rx_control_frames += smb->rx_control_frames;
1211 	stat->rx_crcerrs += smb->rx_crcerrs;
1212 	stat->rx_lenerrs += smb->rx_lenerrs;
1213 	stat->rx_bytes += smb->rx_bytes;
1214 	stat->rx_runts += smb->rx_runts;
1215 	stat->rx_fragments += smb->rx_fragments;
1216 	stat->rx_pkts_64 += smb->rx_pkts_64;
1217 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1218 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1219 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1220 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1221 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1222 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1223 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1224 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1225 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1226 	stat->rx_alignerrs += smb->rx_alignerrs;
1227 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1228 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1229 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1230 
1231 	/* Tx stats. */
1232 	stat->tx_frames += smb->tx_frames;
1233 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1234 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1235 	stat->tx_pause_frames += smb->tx_pause_frames;
1236 	stat->tx_excess_defer += smb->tx_excess_defer;
1237 	stat->tx_control_frames += smb->tx_control_frames;
1238 	stat->tx_deferred += smb->tx_deferred;
1239 	stat->tx_bytes += smb->tx_bytes;
1240 	stat->tx_pkts_64 += smb->tx_pkts_64;
1241 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1242 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1243 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1244 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1245 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1246 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1247 	stat->tx_single_colls += smb->tx_single_colls;
1248 	stat->tx_multi_colls += smb->tx_multi_colls;
1249 	stat->tx_late_colls += smb->tx_late_colls;
1250 	stat->tx_excess_colls += smb->tx_excess_colls;
1251 	stat->tx_abort += smb->tx_abort;
1252 	stat->tx_underrun += smb->tx_underrun;
1253 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1254 	stat->tx_lenerrs += smb->tx_lenerrs;
1255 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1256 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1257 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1258 
1259 	/* Update counters in ifnet. */
1260 	ifp->if_opackets += smb->tx_frames;
1261 
1262 	ifp->if_collisions += smb->tx_single_colls +
1263 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1264 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1265 
1266 	/*
1267 	 * XXX
1268 	 * tx_pkts_truncated counter looks suspicious. It constantly
1269 	 * increments with no sign of Tx errors. This may indicate
1270 	 * the counter name is not correct one so I've removed the
1271 	 * counter in output errors.
1272 	 */
1273 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1274 	    smb->tx_underrun;
1275 
1276 	ifp->if_ipackets += smb->rx_frames;
1277 
1278 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1279 	    smb->rx_runts + smb->rx_pkts_truncated +
1280 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1281 	    smb->rx_alignerrs;
1282 }
1283 
1284 static int
1285 ale_intr(void *xsc)
1286 {
1287 	struct ale_softc *sc = xsc;
1288 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1289 	uint32_t status;
1290 
1291 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1292 	if ((status & ALE_INTRS) == 0)
1293 		return 0;
1294 
1295 	/* Acknowledge and disable interrupts. */
1296 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1297 
1298 	if (ifp->if_flags & IFF_RUNNING) {
1299 		int error;
1300 
1301 		error = ale_rxeof(sc);
1302 		if (error) {
1303 			sc->ale_stats.reset_brk_seq++;
1304 			ale_init(ifp);
1305 			return 0;
1306 		}
1307 
1308 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1309 			if (status & INTR_DMA_RD_TO_RST)
1310 				printf("%s: DMA read error! -- resetting\n",
1311 				    device_xname(sc->sc_dev));
1312 			if (status & INTR_DMA_WR_TO_RST)
1313 				printf("%s: DMA write error! -- resetting\n",
1314 				    device_xname(sc->sc_dev));
1315 			ale_init(ifp);
1316 			return 0;
1317 		}
1318 
1319 		ale_txeof(sc);
1320 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1321 			ale_start(ifp);
1322 	}
1323 
1324 	/* Re-enable interrupts. */
1325 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1326 	return 1;
1327 }
1328 
1329 static void
1330 ale_txeof(struct ale_softc *sc)
1331 {
1332 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1333 	struct ale_txdesc *txd;
1334 	uint32_t cons, prod;
1335 	int prog;
1336 
1337 	if (sc->ale_cdata.ale_tx_cnt == 0)
1338 		return;
1339 
1340 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1341 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1342 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1343 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1344 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1345 		    BUS_DMASYNC_POSTREAD);
1346 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1347 	} else
1348 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1349 	cons = sc->ale_cdata.ale_tx_cons;
1350 	/*
1351 	 * Go through our Tx list and free mbufs for those
1352 	 * frames which have been transmitted.
1353 	 */
1354 	for (prog = 0; cons != prod; prog++,
1355 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1356 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1357 			break;
1358 		prog++;
1359 		ifp->if_flags &= ~IFF_OACTIVE;
1360 		sc->ale_cdata.ale_tx_cnt--;
1361 		txd = &sc->ale_cdata.ale_txdesc[cons];
1362 		if (txd->tx_m != NULL) {
1363 			/* Reclaim transmitted mbufs. */
1364 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1365 			m_freem(txd->tx_m);
1366 			txd->tx_m = NULL;
1367 		}
1368 	}
1369 
1370 	if (prog > 0) {
1371 		sc->ale_cdata.ale_tx_cons = cons;
1372 		/*
1373 		 * Unarm watchdog timer only when there is no pending
1374 		 * Tx descriptors in queue.
1375 		 */
1376 		if (sc->ale_cdata.ale_tx_cnt == 0)
1377 			ifp->if_timer = 0;
1378 	}
1379 }
1380 
1381 static void
1382 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1383     uint32_t length, uint32_t *prod)
1384 {
1385 	struct ale_rx_page *rx_page;
1386 
1387 	rx_page = *page;
1388 	/* Update consumer position. */
1389 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1390 	    ALE_RX_PAGE_ALIGN);
1391 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1392 		/*
1393 		 * End of Rx page reached, let hardware reuse
1394 		 * this page.
1395 		 */
1396 		rx_page->cons = 0;
1397 		*rx_page->cmb_addr = 0;
1398 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1399 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1400 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1401 		    RXF_VALID);
1402 		/* Switch to alternate Rx page. */
1403 		sc->ale_cdata.ale_rx_curp ^= 1;
1404 		rx_page = *page =
1405 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1406 		/* Page flipped, sync CMB and Rx page. */
1407 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1408 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1410 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1411 		/* Sync completed, cache updated producer index. */
1412 		*prod = *rx_page->cmb_addr;
1413 	}
1414 }
1415 
1416 
1417 /*
1418  * It seems that AR81xx controller can compute partial checksum.
1419  * The partial checksum value can be used to accelerate checksum
1420  * computation for fragmented TCP/UDP packets. Upper network stack
1421  * already takes advantage of the partial checksum value in IP
1422  * reassembly stage. But I'm not sure the correctness of the
1423  * partial hardware checksum assistance due to lack of data sheet.
1424  * In addition, the Rx feature of controller that requires copying
1425  * for every frames effectively nullifies one of most nice offload
1426  * capability of controller.
1427  */
1428 static void
1429 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1430 {
1431 	if (status & ALE_RD_IPCSUM_NOK)
1432 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1433 
1434 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1435 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1436 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1437 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1438 		{
1439 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1440 		}
1441 	} else {
1442 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1443 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1444 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1445 			}
1446 		}
1447 	}
1448 	/*
1449 	 * Don't mark bad checksum for TCP/UDP frames
1450 	 * as fragmented frames may always have set
1451 	 * bad checksummed bit of frame status.
1452 	 */
1453 }
1454 
1455 /* Process received frames. */
1456 static int
1457 ale_rxeof(struct ale_softc *sc)
1458 {
1459 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1460 	struct ale_rx_page *rx_page;
1461 	struct rx_rs *rs;
1462 	struct mbuf *m;
1463 	uint32_t length, prod, seqno, status;
1464 	int prog;
1465 
1466 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1467 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1468 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1470 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1471 	/*
1472 	 * Don't directly access producer index as hardware may
1473 	 * update it while Rx handler is in progress. It would
1474 	 * be even better if there is a way to let hardware
1475 	 * know how far driver processed its received frames.
1476 	 * Alternatively, hardware could provide a way to disable
1477 	 * CMB updates until driver acknowledges the end of CMB
1478 	 * access.
1479 	 */
1480 	prod = *rx_page->cmb_addr;
1481 	for (prog = 0; ; prog++) {
1482 		if (rx_page->cons >= prod)
1483 			break;
1484 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1485 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1486 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1487 			/*
1488 			 * Normally I believe this should not happen unless
1489 			 * severe driver bug or corrupted memory. However
1490 			 * it seems to happen under certain conditions which
1491 			 * is triggered by abrupt Rx events such as initiation
1492 			 * of bulk transfer of remote host. It's not easy to
1493 			 * reproduce this and I doubt it could be related
1494 			 * with FIFO overflow of hardware or activity of Tx
1495 			 * CMB updates. I also remember similar behaviour
1496 			 * seen on RealTek 8139 which uses resembling Rx
1497 			 * scheme.
1498 			 */
1499 			if (aledebug)
1500 				printf("%s: garbled seq: %u, expected: %u -- "
1501 				    "resetting!\n", device_xname(sc->sc_dev),
1502 				    seqno, sc->ale_cdata.ale_rx_seqno);
1503 			return EIO;
1504 		}
1505 		/* Frame received. */
1506 		sc->ale_cdata.ale_rx_seqno++;
1507 		length = ALE_RX_BYTES(le32toh(rs->length));
1508 		status = le32toh(rs->flags);
1509 		if (status & ALE_RD_ERROR) {
1510 			/*
1511 			 * We want to pass the following frames to upper
1512 			 * layer regardless of error status of Rx return
1513 			 * status.
1514 			 *
1515 			 *  o IP/TCP/UDP checksum is bad.
1516 			 *  o frame length and protocol specific length
1517 			 *     does not match.
1518 			 */
1519 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1520 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1521 			    ALE_RD_TRUNC)) {
1522 				ale_rx_update_page(sc, &rx_page, length, &prod);
1523 				continue;
1524 			}
1525 		}
1526 		/*
1527 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1528 		 * from hardware limitation). For jumbo frames we could
1529 		 * get a slightly better performance if driver use
1530 		 * m_getjcl(9) with proper buffer size argument. However
1531 		 * that would make code more complicated and I don't
1532 		 * think users would expect good Rx performance numbers
1533 		 * on these low-end consumer ethernet controller.
1534 		 */
1535 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1536 		    0, ifp, NULL);
1537 		if (m == NULL) {
1538 			ifp->if_iqdrops++;
1539 			ale_rx_update_page(sc, &rx_page, length, &prod);
1540 			continue;
1541 		}
1542 		if (status & ALE_RD_IPV4)
1543 			ale_rxcsum(sc, m, status);
1544 #if NVLAN > 0
1545 		if (status & ALE_RD_VLAN) {
1546 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1547 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1548 		}
1549 #endif
1550 
1551 
1552 #if NBPFILTER > 0
1553 		if (ifp->if_bpf)
1554 			bpf_mtap(ifp->if_bpf, m);
1555 #endif
1556 
1557 		/* Pass it to upper layer. */
1558 		ether_input(ifp, m);
1559 
1560 		ale_rx_update_page(sc, &rx_page, length, &prod);
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static void
1567 ale_tick(void *xsc)
1568 {
1569 	struct ale_softc *sc = xsc;
1570 	struct mii_data *mii = &sc->sc_miibus;
1571 	int s;
1572 
1573 	s = splnet();
1574 	mii_tick(mii);
1575 	ale_stats_update(sc);
1576 	splx(s);
1577 
1578 	callout_schedule(&sc->sc_tick_ch, hz);
1579 }
1580 
1581 static void
1582 ale_reset(struct ale_softc *sc)
1583 {
1584 	uint32_t reg;
1585 	int i;
1586 
1587 	/* Initialize PCIe module. From Linux. */
1588 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1589 
1590 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1591 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1592 		DELAY(10);
1593 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1594 			break;
1595 	}
1596 	if (i == 0)
1597 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1598 
1599 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1600 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1601 			break;
1602 		DELAY(10);
1603 	}
1604 
1605 	if (i == 0)
1606 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1607 		    reg);
1608 }
1609 
1610 static int
1611 ale_init(struct ifnet *ifp)
1612 {
1613 	struct ale_softc *sc = ifp->if_softc;
1614 	struct mii_data *mii;
1615 	uint8_t eaddr[ETHER_ADDR_LEN];
1616 	bus_addr_t paddr;
1617 	uint32_t reg, rxf_hi, rxf_lo;
1618 
1619 	/*
1620 	 * Cancel any pending I/O.
1621 	 */
1622 	ale_stop(ifp, 0);
1623 
1624 	/*
1625 	 * Reset the chip to a known state.
1626 	 */
1627 	ale_reset(sc);
1628 
1629 	/* Initialize Tx descriptors, DMA memory blocks. */
1630 	ale_init_rx_pages(sc);
1631 	ale_init_tx_ring(sc);
1632 
1633 	/* Reprogram the station address. */
1634 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1635 	CSR_WRITE_4(sc, ALE_PAR0,
1636 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1637 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1638 
1639 	/*
1640 	 * Clear WOL status and disable all WOL feature as WOL
1641 	 * would interfere Rx operation under normal environments.
1642 	 */
1643 	CSR_READ_4(sc, ALE_WOL_CFG);
1644 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1645 
1646 	/*
1647 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1648 	 * the same high address part of DMAable region.
1649 	 */
1650 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1651 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1652 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1653 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1654 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1655 
1656 	/* Set Rx page base address, note we use single queue. */
1657 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1658 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1659 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1660 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1661 
1662 	/* Set Tx/Rx CMB addresses. */
1663 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1664 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1665 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1666 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1667 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1668 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1669 
1670 	/* Mark RXF0 is valid. */
1671 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1672 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1673 	/*
1674 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1675 	 * multi-queue yet.
1676 	 */
1677 
1678 	/* Set Rx page size, excluding guard frame size. */
1679 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1680 
1681 	/* Tell hardware that we're ready to load DMA blocks. */
1682 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1683 
1684 	/* Set Rx/Tx interrupt trigger threshold. */
1685 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1686 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1687 	/*
1688 	 * XXX
1689 	 * Set interrupt trigger timer, its purpose and relation
1690 	 * with interrupt moderation mechanism is not clear yet.
1691 	 */
1692 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1693 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1694 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1695 
1696 	/* Configure interrupt moderation timer. */
1697 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1698 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1699 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1700 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1701 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1702 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1703 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1704 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1705 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1706 		reg |= MASTER_IM_RX_TIMER_ENB;
1707 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1708 		reg |= MASTER_IM_TX_TIMER_ENB;
1709 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1710 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1711 
1712 	/* Set Maximum frame size of controller. */
1713 	if (ifp->if_mtu < ETHERMTU)
1714 		sc->ale_max_frame_size = ETHERMTU;
1715 	else
1716 		sc->ale_max_frame_size = ifp->if_mtu;
1717 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1718 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1719 
1720 	/* Configure IPG/IFG parameters. */
1721 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1722 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1723 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1724 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1725 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1726 
1727 	/* Set parameters for half-duplex media. */
1728 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1729 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1730 	    HDPX_CFG_LCOL_MASK) |
1731 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1732 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1733 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1734 	    HDPX_CFG_ABEBT_MASK) |
1735 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1736 	    HDPX_CFG_JAMIPG_MASK));
1737 
1738 	/* Configure Tx jumbo frame parameters. */
1739 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1740 		if (ifp->if_mtu < ETHERMTU)
1741 			reg = sc->ale_max_frame_size;
1742 		else if (ifp->if_mtu < 6 * 1024)
1743 			reg = (sc->ale_max_frame_size * 2) / 3;
1744 		else
1745 			reg = sc->ale_max_frame_size / 2;
1746 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1747 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1748 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1749 	}
1750 
1751 	/* Configure TxQ. */
1752 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1753 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1754 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1755 	    TXQ_CFG_TPD_BURST_MASK;
1756 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1757 
1758 	/* Configure Rx jumbo frame & flow control parameters. */
1759 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1760 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1761 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1762 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1763 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1764 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1765 		    RX_JUMBO_LKAH_MASK));
1766 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1767 		rxf_hi = (reg * 7) / 10;
1768 		rxf_lo = (reg * 3)/ 10;
1769 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1770 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1771 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1772 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1773 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1774 	}
1775 
1776 	/* Disable RSS. */
1777 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1778 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1779 
1780 	/* Configure RxQ. */
1781 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1782 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1783 
1784 	/* Configure DMA parameters. */
1785 	reg = 0;
1786 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1787 		reg |= DMA_CFG_TXCMB_ENB;
1788 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1789 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1790 	    sc->ale_dma_rd_burst | reg |
1791 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1792 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1793 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1794 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1795 	    DMA_CFG_WR_DELAY_CNT_MASK));
1796 
1797 	/*
1798 	 * Hardware can be configured to issue SMB interrupt based
1799 	 * on programmed interval. Since there is a callout that is
1800 	 * invoked for every hz in driver we use that instead of
1801 	 * relying on periodic SMB interrupt.
1802 	 */
1803 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1804 
1805 	/* Clear MAC statistics. */
1806 	ale_stats_clear(sc);
1807 
1808 	/*
1809 	 * Configure Tx/Rx MACs.
1810 	 *  - Auto-padding for short frames.
1811 	 *  - Enable CRC generation.
1812 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1813 	 *  is followed after detection of link establishment.
1814 	 *  AR81xx always does checksum computation regardless of
1815 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1816 	 *  cause Rx handling issue for fragmented IP datagrams due
1817 	 *  to silicon bug.
1818 	 */
1819 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1820 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1821 	    MAC_CFG_PREAMBLE_MASK);
1822 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1823 		reg |= MAC_CFG_SPEED_10_100;
1824 	else
1825 		reg |= MAC_CFG_SPEED_1000;
1826 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1827 
1828 	/* Set up the receive filter. */
1829 	ale_rxfilter(sc);
1830 	ale_rxvlan(sc);
1831 
1832 	/* Acknowledge all pending interrupts and clear it. */
1833 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1834 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1835 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1836 
1837 	sc->ale_flags &= ~ALE_FLAG_LINK;
1838 
1839 	/* Switch to the current media. */
1840 	mii = &sc->sc_miibus;
1841 	mii_mediachg(mii);
1842 
1843 	callout_schedule(&sc->sc_tick_ch, hz);
1844 
1845 	ifp->if_flags |= IFF_RUNNING;
1846 	ifp->if_flags &= ~IFF_OACTIVE;
1847 
1848 	return 0;
1849 }
1850 
1851 static void
1852 ale_stop(struct ifnet *ifp, int disable)
1853 {
1854 	struct ale_softc *sc = ifp->if_softc;
1855 	struct ale_txdesc *txd;
1856 	uint32_t reg;
1857 	int i;
1858 
1859 	callout_stop(&sc->sc_tick_ch);
1860 
1861 	/*
1862 	 * Mark the interface down and cancel the watchdog timer.
1863 	 */
1864 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1865 	ifp->if_timer = 0;
1866 
1867 	sc->ale_flags &= ~ALE_FLAG_LINK;
1868 
1869 	ale_stats_update(sc);
1870 
1871 	mii_down(&sc->sc_miibus);
1872 
1873 	/* Disable interrupts. */
1874 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1875 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1876 
1877 	/* Disable queue processing and DMA. */
1878 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1879 	reg &= ~TXQ_CFG_ENB;
1880 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1881 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1882 	reg &= ~RXQ_CFG_ENB;
1883 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1884 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1885 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1886 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1887 	DELAY(1000);
1888 
1889 	/* Stop Rx/Tx MACs. */
1890 	ale_stop_mac(sc);
1891 
1892 	/* Disable interrupts again? XXX */
1893 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1894 
1895 	/*
1896 	 * Free TX mbufs still in the queues.
1897 	 */
1898 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1899 		txd = &sc->ale_cdata.ale_txdesc[i];
1900 		if (txd->tx_m != NULL) {
1901 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1902 			m_freem(txd->tx_m);
1903 			txd->tx_m = NULL;
1904 		}
1905         }
1906 }
1907 
1908 static void
1909 ale_stop_mac(struct ale_softc *sc)
1910 {
1911 	uint32_t reg;
1912 	int i;
1913 
1914 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1915 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1916 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1917 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1918 	}
1919 
1920 	for (i = ALE_TIMEOUT; i > 0; i--) {
1921 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1922 		if (reg == 0)
1923 			break;
1924 		DELAY(10);
1925 	}
1926 	if (i == 0)
1927 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1928 		    device_xname(sc->sc_dev), reg);
1929 }
1930 
1931 static void
1932 ale_init_tx_ring(struct ale_softc *sc)
1933 {
1934 	struct ale_txdesc *txd;
1935 	int i;
1936 
1937 	sc->ale_cdata.ale_tx_prod = 0;
1938 	sc->ale_cdata.ale_tx_cons = 0;
1939 	sc->ale_cdata.ale_tx_cnt = 0;
1940 
1941 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1942 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1943 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1944 		txd = &sc->ale_cdata.ale_txdesc[i];
1945 		txd->tx_m = NULL;
1946 	}
1947 	*sc->ale_cdata.ale_tx_cmb = 0;
1948 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1949 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1951 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1952 }
1953 
1954 static void
1955 ale_init_rx_pages(struct ale_softc *sc)
1956 {
1957 	struct ale_rx_page *rx_page;
1958 	int i;
1959 
1960 	sc->ale_cdata.ale_rx_seqno = 0;
1961 	sc->ale_cdata.ale_rx_curp = 0;
1962 
1963 	for (i = 0; i < ALE_RX_PAGES; i++) {
1964 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1965 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1966 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1967 		rx_page->cons = 0;
1968 		*rx_page->cmb_addr = 0;
1969 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1970 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1971 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1972 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1973 	}
1974 }
1975 
1976 static void
1977 ale_rxvlan(struct ale_softc *sc)
1978 {
1979 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1980 	uint32_t reg;
1981 
1982 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1983 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1984 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1985 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1986 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1987 }
1988 
1989 static void
1990 ale_rxfilter(struct ale_softc *sc)
1991 {
1992 	struct ethercom *ec = &sc->sc_ec;
1993 	struct ifnet *ifp = &ec->ec_if;
1994 	struct ether_multi *enm;
1995 	struct ether_multistep step;
1996 	uint32_t crc;
1997 	uint32_t mchash[2];
1998 	uint32_t rxcfg;
1999 
2000 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2001 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2002 
2003 	/*
2004 	 * Always accept broadcast frames.
2005 	 */
2006 	rxcfg |= MAC_CFG_BCAST;
2007 
2008 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2009 	    ec->ec_multicnt > 0) {
2010 allmulti:
2011 		if (ifp->if_flags & IFF_PROMISC)
2012 			rxcfg |= MAC_CFG_PROMISC;
2013 		else
2014 			rxcfg |= MAC_CFG_ALLMULTI;
2015 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2016 	} else {
2017 		/* Program new filter. */
2018 		memset(mchash, 0, sizeof(mchash));
2019 
2020 		ETHER_FIRST_MULTI(step, ec, enm);
2021 		while (enm != NULL) {
2022 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2023 			    ETHER_ADDR_LEN)) {
2024 			    	ifp->if_flags |= IFF_ALLMULTI;
2025 				goto allmulti;
2026 			}
2027 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2028 
2029 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2030 			ETHER_NEXT_MULTI(step, enm);
2031 		}
2032 	}
2033 
2034 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2035 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2036 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2037 }
2038