xref: /netbsd-src/sys/dev/pci/if_ale.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_ale.c,v 1.24 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.24 2018/06/26 06:48:01 msaitoh Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 static int	ale_match(device_t, cfdata_t, void *);
82 static void	ale_attach(device_t, device_t, void *);
83 static int	ale_detach(device_t, int);
84 
85 static int	ale_miibus_readreg(device_t, int, int);
86 static void	ale_miibus_writereg(device_t, int, int, int);
87 static void	ale_miibus_statchg(struct ifnet *);
88 
89 static int	ale_init(struct ifnet *);
90 static void	ale_start(struct ifnet *);
91 static int	ale_ioctl(struct ifnet *, u_long, void *);
92 static void	ale_watchdog(struct ifnet *);
93 static int	ale_mediachange(struct ifnet *);
94 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
95 
96 static int	ale_intr(void *);
97 static int	ale_rxeof(struct ale_softc *sc);
98 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 		    uint32_t, uint32_t *);
100 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void	ale_txeof(struct ale_softc *);
102 
103 static int	ale_dma_alloc(struct ale_softc *);
104 static void	ale_dma_free(struct ale_softc *);
105 static int	ale_encap(struct ale_softc *, struct mbuf **);
106 static void	ale_init_rx_pages(struct ale_softc *);
107 static void	ale_init_tx_ring(struct ale_softc *);
108 
109 static void	ale_stop(struct ifnet *, int);
110 static void	ale_tick(void *);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_mac_config(struct ale_softc *);
113 static void	ale_phy_reset(struct ale_softc *);
114 static void	ale_reset(struct ale_softc *);
115 static void	ale_rxfilter(struct ale_softc *);
116 static void	ale_rxvlan(struct ale_softc *);
117 static void	ale_stats_clear(struct ale_softc *);
118 static void	ale_stats_update(struct ale_softc *);
119 static void	ale_stop_mac(struct ale_softc *);
120 
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 	ale_match, ale_attach, ale_detach, NULL);
123 
124 int aledebug = 0;
125 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
126 
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
129 
130 static int
131 ale_miibus_readreg(device_t dev, int phy, int reg)
132 {
133 	struct ale_softc *sc = device_private(dev);
134 	uint32_t v;
135 	int i;
136 
137 	if (phy != sc->ale_phyaddr)
138 		return 0;
139 
140 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
141 		switch (reg) {
142 		case MII_100T2CR:
143 		case MII_100T2SR:
144 		case MII_EXTSR:
145 			return 0;
146 		default:
147 			break;
148 		}
149 	}
150 
151 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 		DELAY(5);
155 		v = CSR_READ_4(sc, ALE_MDIO);
156 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 			break;
158 	}
159 
160 	if (i == 0) {
161 		printf("%s: phy read timeout: phy %d, reg %d\n",
162 		    device_xname(sc->sc_dev), phy, reg);
163 		return 0;
164 	}
165 
166 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 }
168 
169 static void
170 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
171 {
172 	struct ale_softc *sc = device_private(dev);
173 	uint32_t v;
174 	int i;
175 
176 	if (phy != sc->ale_phyaddr)
177 		return;
178 
179 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
180 		switch (reg) {
181 		case MII_100T2CR:
182 		case MII_100T2SR:
183 		case MII_EXTSR:
184 			return;
185 		default:
186 			break;
187 		}
188 	}
189 
190 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
191 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
192 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
193 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
194 		DELAY(5);
195 		v = CSR_READ_4(sc, ALE_MDIO);
196 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
197 			break;
198 	}
199 
200 	if (i == 0)
201 		printf("%s: phy write timeout: phy %d, reg %d\n",
202 		    device_xname(sc->sc_dev), phy, reg);
203 }
204 
205 static void
206 ale_miibus_statchg(struct ifnet *ifp)
207 {
208 	struct ale_softc *sc = ifp->if_softc;
209 	struct mii_data *mii = &sc->sc_miibus;
210 	uint32_t reg;
211 
212 	if ((ifp->if_flags & IFF_RUNNING) == 0)
213 		return;
214 
215 	sc->ale_flags &= ~ALE_FLAG_LINK;
216 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
217 	    (IFM_ACTIVE | IFM_AVALID)) {
218 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
219 		case IFM_10_T:
220 		case IFM_100_TX:
221 			sc->ale_flags |= ALE_FLAG_LINK;
222 			break;
223 
224 		case IFM_1000_T:
225 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
226 				sc->ale_flags |= ALE_FLAG_LINK;
227 			break;
228 
229 		default:
230 			break;
231 		}
232 	}
233 
234 	/* Stop Rx/Tx MACs. */
235 	ale_stop_mac(sc);
236 
237 	/* Program MACs with resolved speed/duplex/flow-control. */
238 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
239 		ale_mac_config(sc);
240 		/* Reenable Tx/Rx MACs. */
241 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
242 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
243 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
244 	}
245 }
246 
247 void
248 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
249 {
250 	struct ale_softc *sc = ifp->if_softc;
251 	struct mii_data *mii = &sc->sc_miibus;
252 
253 	mii_pollstat(mii);
254 	ifmr->ifm_status = mii->mii_media_status;
255 	ifmr->ifm_active = mii->mii_media_active;
256 }
257 
258 int
259 ale_mediachange(struct ifnet *ifp)
260 {
261 	struct ale_softc *sc = ifp->if_softc;
262 	struct mii_data *mii = &sc->sc_miibus;
263 	int error;
264 
265 	if (mii->mii_instance != 0) {
266 		struct mii_softc *miisc;
267 
268 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
269 			mii_phy_reset(miisc);
270 	}
271 	error = mii_mediachg(mii);
272 
273 	return error;
274 }
275 
276 int
277 ale_match(device_t dev, cfdata_t match, void *aux)
278 {
279 	struct pci_attach_args *pa = aux;
280 
281 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
282 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
283 }
284 
285 void
286 ale_get_macaddr(struct ale_softc *sc)
287 {
288 	uint32_t ea[2], reg;
289 	int i, vpdc;
290 
291 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
292 	if ((reg & SPI_VPD_ENB) != 0) {
293 		reg &= ~SPI_VPD_ENB;
294 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
295 	}
296 
297 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
298 	    &vpdc, NULL)) {
299 		/*
300 		 * PCI VPD capability found, let TWSI reload EEPROM.
301 		 * This will set ethernet address of controller.
302 		 */
303 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
304 		    TWSI_CTRL_SW_LD_START);
305 		for (i = 100; i > 0; i--) {
306 			DELAY(1000);
307 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
308 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
309 				break;
310 		}
311 		if (i == 0)
312 			printf("%s: reloading EEPROM timeout!\n",
313 			    device_xname(sc->sc_dev));
314 	} else {
315 		if (aledebug)
316 			printf("%s: PCI VPD capability not found!\n",
317 			    device_xname(sc->sc_dev));
318 	}
319 
320 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
321 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
322 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
323 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
324 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
325 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
326 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
327 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
328 }
329 
330 void
331 ale_phy_reset(struct ale_softc *sc)
332 {
333 	/* Reset magic from Linux. */
334 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
335 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
336 	    GPHY_CTRL_PHY_PLL_ON);
337 	DELAY(1000);
338 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
339 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
340 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
341 	DELAY(1000);
342 
343 #define	ATPHY_DBG_ADDR		0x1D
344 #define	ATPHY_DBG_DATA		0x1E
345 
346 	/* Enable hibernation mode. */
347 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
348 	    ATPHY_DBG_ADDR, 0x0B);
349 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 	    ATPHY_DBG_DATA, 0xBC00);
351 	/* Set Class A/B for all modes. */
352 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 	    ATPHY_DBG_ADDR, 0x00);
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_DATA, 0x02EF);
356 	/* Enable 10BT power saving. */
357 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_ADDR, 0x12);
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_DATA, 0x4C04);
361 	/* Adjust 1000T power. */
362 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_ADDR, 0x04);
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_DATA, 0x8BBB);
366 	/* 10BT center tap voltage. */
367 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 	    ATPHY_DBG_ADDR, 0x05);
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_DATA, 0x2C46);
371 
372 #undef	ATPHY_DBG_ADDR
373 #undef	ATPHY_DBG_DATA
374 	DELAY(1000);
375 }
376 
377 void
378 ale_attach(device_t parent, device_t self, void *aux)
379 {
380 	struct ale_softc *sc = device_private(self);
381 	struct pci_attach_args *pa = aux;
382 	pci_chipset_tag_t pc = pa->pa_pc;
383 	pci_intr_handle_t ih;
384 	const char *intrstr;
385 	struct ifnet *ifp;
386 	pcireg_t memtype;
387 	int mii_flags, error = 0;
388 	uint32_t rxf_len, txf_len;
389 	const char *chipname;
390 	char intrbuf[PCI_INTRSTR_LEN];
391 
392 	aprint_naive("\n");
393 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
394 
395 	sc->sc_dev = self;
396 	sc->sc_dmat = pa->pa_dmat;
397 	sc->sc_pct = pa->pa_pc;
398 	sc->sc_pcitag = pa->pa_tag;
399 
400 	/*
401 	 * Allocate IO memory
402 	 */
403 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
404 	switch (memtype) {
405 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
406 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
407 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
408 		break;
409 	default:
410 		aprint_error_dev(self, "invalid base address register\n");
411 		break;
412 	}
413 
414 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
415 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
416 		aprint_error_dev(self, "could not map mem space\n");
417 		return;
418 	}
419 
420 	if (pci_intr_map(pa, &ih) != 0) {
421 		aprint_error_dev(self, "could not map interrupt\n");
422 		goto fail;
423 	}
424 
425 	/*
426 	 * Allocate IRQ
427 	 */
428 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
429 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
430 	if (sc->sc_irq_handle == NULL) {
431 		aprint_error_dev(self, "could not establish interrupt");
432 		if (intrstr != NULL)
433 			aprint_error(" at %s", intrstr);
434 		aprint_error("\n");
435 		goto fail;
436 	}
437 
438 	/* Set PHY address. */
439 	sc->ale_phyaddr = ALE_PHY_ADDR;
440 
441 	/* Reset PHY. */
442 	ale_phy_reset(sc);
443 
444 	/* Reset the ethernet controller. */
445 	ale_reset(sc);
446 
447 	/* Get PCI and chip id/revision. */
448 	sc->ale_rev = PCI_REVISION(pa->pa_class);
449 	if (sc->ale_rev >= 0xF0) {
450 		/* L2E Rev. B. AR8114 */
451 		sc->ale_flags |= ALE_FLAG_FASTETHER;
452 		chipname = "AR8114 (L2E RevB)";
453 	} else {
454 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
455 			/* L1E AR8121 */
456 			sc->ale_flags |= ALE_FLAG_JUMBO;
457 			chipname = "AR8121 (L1E)";
458 		} else {
459 			/* L2E Rev. A. AR8113 */
460 			sc->ale_flags |= ALE_FLAG_FASTETHER;
461 			chipname = "AR8113 (L2E RevA)";
462 		}
463 	}
464 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
465 
466 	/*
467 	 * All known controllers seems to require 4 bytes alignment
468 	 * of Tx buffers to make Tx checksum offload with custom
469 	 * checksum generation method work.
470 	 */
471 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
472 
473 	/*
474 	 * All known controllers seems to have issues on Rx checksum
475 	 * offload for fragmented IP datagrams.
476 	 */
477 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
478 
479 	/*
480 	 * Don't use Tx CMB. It is known to cause RRS update failure
481 	 * under certain circumstances. Typical phenomenon of the
482 	 * issue would be unexpected sequence number encountered in
483 	 * Rx handler.
484 	 */
485 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
486 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
487 	    MASTER_CHIP_REV_SHIFT;
488 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
489 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
490 
491 	/*
492 	 * Uninitialized hardware returns an invalid chip id/revision
493 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
494 	 */
495 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
496 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
497 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
498 	    rxf_len == 0xFFFFFFF) {
499 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
500 		    "%u Rx FIFO -- not initialized?\n",
501 		    sc->ale_chip_rev, txf_len, rxf_len);
502 		goto fail;
503 	}
504 
505 	if (aledebug) {
506 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
507 		    txf_len, rxf_len);
508 	}
509 
510 	/* Set max allowable DMA size. */
511 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
512 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
513 
514 	callout_init(&sc->sc_tick_ch, 0);
515 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
516 
517 	error = ale_dma_alloc(sc);
518 	if (error)
519 		goto fail;
520 
521 	/* Load station address. */
522 	ale_get_macaddr(sc);
523 
524 	aprint_normal_dev(self, "Ethernet address %s\n",
525 	    ether_sprintf(sc->ale_eaddr));
526 
527 	ifp = &sc->sc_ec.ec_if;
528 	ifp->if_softc = sc;
529 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
530 	ifp->if_init = ale_init;
531 	ifp->if_ioctl = ale_ioctl;
532 	ifp->if_start = ale_start;
533 	ifp->if_stop = ale_stop;
534 	ifp->if_watchdog = ale_watchdog;
535 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
536 	IFQ_SET_READY(&ifp->if_snd);
537 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
538 
539 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
540 
541 #ifdef ALE_CHECKSUM
542 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
543 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
544 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
545 #endif
546 
547 #if NVLAN > 0
548 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
549 #endif
550 
551 	/* Set up MII bus. */
552 	sc->sc_miibus.mii_ifp = ifp;
553 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
554 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
555 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
556 
557 	sc->sc_ec.ec_mii = &sc->sc_miibus;
558 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
559 	    ale_mediastatus);
560 	mii_flags = 0;
561 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
562 		mii_flags |= MIIF_DOPAUSE;
563 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
564 	    MII_OFFSET_ANY, mii_flags);
565 
566 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
567 		aprint_error_dev(self, "no PHY found!\n");
568 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
569 		    0, NULL);
570 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
571 	} else
572 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
573 
574 	if_attach(ifp);
575 	if_deferred_start_init(ifp, NULL);
576 	ether_ifattach(ifp, sc->ale_eaddr);
577 
578 	if (pmf_device_register(self, NULL, NULL))
579 		pmf_class_network_register(self, ifp);
580 	else
581 		aprint_error_dev(self, "couldn't establish power handler\n");
582 
583 	return;
584 fail:
585 	ale_dma_free(sc);
586 	if (sc->sc_irq_handle != NULL) {
587 		pci_intr_disestablish(pc, sc->sc_irq_handle);
588 		sc->sc_irq_handle = NULL;
589 	}
590 	if (sc->sc_mem_size) {
591 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
592 		sc->sc_mem_size = 0;
593 	}
594 }
595 
596 static int
597 ale_detach(device_t self, int flags)
598 {
599 	struct ale_softc *sc = device_private(self);
600 	struct ifnet *ifp = &sc->sc_ec.ec_if;
601 	int s;
602 
603 	pmf_device_deregister(self);
604 	s = splnet();
605 	ale_stop(ifp, 0);
606 	splx(s);
607 
608 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
609 
610 	/* Delete all remaining media. */
611 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
612 
613 	ether_ifdetach(ifp);
614 	if_detach(ifp);
615 	ale_dma_free(sc);
616 
617 	if (sc->sc_irq_handle != NULL) {
618 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
619 		sc->sc_irq_handle = NULL;
620 	}
621 	if (sc->sc_mem_size) {
622 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
623 		sc->sc_mem_size = 0;
624 	}
625 
626 	return 0;
627 }
628 
629 
630 static int
631 ale_dma_alloc(struct ale_softc *sc)
632 {
633 	struct ale_txdesc *txd;
634 	int nsegs, error, guard_size, i;
635 
636 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
637 		guard_size = ALE_JUMBO_FRAMELEN;
638 	else
639 		guard_size = ALE_MAX_FRAMELEN;
640 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
641 	    ALE_RX_PAGE_ALIGN);
642 
643 	/*
644 	 * Create DMA stuffs for TX ring
645 	 */
646 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
647 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
648 	if (error) {
649 		sc->ale_cdata.ale_tx_ring_map = NULL;
650 		return ENOBUFS;
651 	}
652 
653 	/* Allocate DMA'able memory for TX ring */
654 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
655 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
656 	    &nsegs, BUS_DMA_WAITOK);
657 	if (error) {
658 		printf("%s: could not allocate DMA'able memory for Tx ring, "
659 		    "error = %i\n", device_xname(sc->sc_dev), error);
660 		return error;
661 	}
662 
663 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
664 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
665 	    BUS_DMA_NOWAIT);
666 	if (error)
667 		return ENOBUFS;
668 
669 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
670 
671 	/* Load the DMA map for Tx ring. */
672 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
673 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
674 	if (error) {
675 		printf("%s: could not load DMA'able memory for Tx ring.\n",
676 		    device_xname(sc->sc_dev));
677 		bus_dmamem_free(sc->sc_dmat,
678 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
679 		return error;
680 	}
681 	sc->ale_cdata.ale_tx_ring_paddr =
682 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
683 
684 	for (i = 0; i < ALE_RX_PAGES; i++) {
685 		/*
686 		 * Create DMA stuffs for RX pages
687 		 */
688 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
689 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
690 		    &sc->ale_cdata.ale_rx_page[i].page_map);
691 		if (error) {
692 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
693 			return ENOBUFS;
694 		}
695 
696 		/* Allocate DMA'able memory for RX pages */
697 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
698 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
699 		    1, &nsegs, BUS_DMA_WAITOK);
700 		if (error) {
701 			printf("%s: could not allocate DMA'able memory for "
702 			    "Rx ring.\n", device_xname(sc->sc_dev));
703 			return error;
704 		}
705 		error = bus_dmamem_map(sc->sc_dmat,
706 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
707 		    sc->ale_pagesize,
708 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
709 		    BUS_DMA_NOWAIT);
710 		if (error)
711 			return ENOBUFS;
712 
713 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
714 		    sc->ale_pagesize);
715 
716 		/* Load the DMA map for Rx pages. */
717 		error = bus_dmamap_load(sc->sc_dmat,
718 		    sc->ale_cdata.ale_rx_page[i].page_map,
719 		    sc->ale_cdata.ale_rx_page[i].page_addr,
720 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
721 		if (error) {
722 			printf("%s: could not load DMA'able memory for "
723 			    "Rx pages.\n", device_xname(sc->sc_dev));
724 			bus_dmamem_free(sc->sc_dmat,
725 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
726 			return error;
727 		}
728 		sc->ale_cdata.ale_rx_page[i].page_paddr =
729 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
730 	}
731 
732 	/*
733 	 * Create DMA stuffs for Tx CMB.
734 	 */
735 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
736 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
737 	if (error) {
738 		sc->ale_cdata.ale_tx_cmb_map = NULL;
739 		return ENOBUFS;
740 	}
741 
742 	/* Allocate DMA'able memory for Tx CMB. */
743 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
744 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
745 
746 	if (error) {
747 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
748 		    device_xname(sc->sc_dev));
749 		return error;
750 	}
751 
752 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
753 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
754 	    BUS_DMA_NOWAIT);
755 	if (error)
756 		return ENOBUFS;
757 
758 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
759 
760 	/* Load the DMA map for Tx CMB. */
761 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
762 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
763 	if (error) {
764 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
765 		    device_xname(sc->sc_dev));
766 		bus_dmamem_free(sc->sc_dmat,
767 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
768 		return error;
769 	}
770 
771 	sc->ale_cdata.ale_tx_cmb_paddr =
772 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
773 
774 	for (i = 0; i < ALE_RX_PAGES; i++) {
775 		/*
776 		 * Create DMA stuffs for Rx CMB.
777 		 */
778 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
779 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
780 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
781 		if (error) {
782 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
783 			return ENOBUFS;
784 		}
785 
786 		/* Allocate DMA'able memory for Rx CMB */
787 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
788 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
789 		    &nsegs, BUS_DMA_WAITOK);
790 		if (error) {
791 			printf("%s: could not allocate DMA'able memory for "
792 			    "Rx CMB\n", device_xname(sc->sc_dev));
793 			return error;
794 		}
795 		error = bus_dmamem_map(sc->sc_dmat,
796 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
797 		    ALE_RX_CMB_SZ,
798 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
799 		    BUS_DMA_NOWAIT);
800 		if (error)
801 			return ENOBUFS;
802 
803 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
804 
805 		/* Load the DMA map for Rx CMB */
806 		error = bus_dmamap_load(sc->sc_dmat,
807 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
808 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
809 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
810 		if (error) {
811 			printf("%s: could not load DMA'able memory for Rx CMB"
812 			    "\n", device_xname(sc->sc_dev));
813 			bus_dmamem_free(sc->sc_dmat,
814 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
815 			return error;
816 		}
817 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
818 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
819 	}
820 
821 
822 	/* Create DMA maps for Tx buffers. */
823 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
824 		txd = &sc->ale_cdata.ale_txdesc[i];
825 		txd->tx_m = NULL;
826 		txd->tx_dmamap = NULL;
827 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
828 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
829 		    &txd->tx_dmamap);
830 		if (error) {
831 			txd->tx_dmamap = NULL;
832 			printf("%s: could not create Tx dmamap.\n",
833 			    device_xname(sc->sc_dev));
834 			return error;
835 		}
836 	}
837 
838 	return 0;
839 }
840 
841 static void
842 ale_dma_free(struct ale_softc *sc)
843 {
844 	struct ale_txdesc *txd;
845 	int i;
846 
847 	/* Tx buffers. */
848 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
849 		txd = &sc->ale_cdata.ale_txdesc[i];
850 		if (txd->tx_dmamap != NULL) {
851 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
852 			txd->tx_dmamap = NULL;
853 		}
854 	}
855 
856 	/* Tx descriptor ring. */
857 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
858 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
859 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
860 	    sc->ale_cdata.ale_tx_ring != NULL)
861 		bus_dmamem_free(sc->sc_dmat,
862 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
863 	sc->ale_cdata.ale_tx_ring = NULL;
864 	sc->ale_cdata.ale_tx_ring_map = NULL;
865 
866 	/* Rx page block. */
867 	for (i = 0; i < ALE_RX_PAGES; i++) {
868 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
869 			bus_dmamap_unload(sc->sc_dmat,
870 			    sc->ale_cdata.ale_rx_page[i].page_map);
871 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
872 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
873 			bus_dmamem_free(sc->sc_dmat,
874 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
875 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
876 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
877 	}
878 
879 	/* Rx CMB. */
880 	for (i = 0; i < ALE_RX_PAGES; i++) {
881 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
882 			bus_dmamap_unload(sc->sc_dmat,
883 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
884 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
885 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
886 			bus_dmamem_free(sc->sc_dmat,
887 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
888 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
889 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
890 	}
891 
892 	/* Tx CMB. */
893 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
894 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
895 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
896 	    sc->ale_cdata.ale_tx_cmb != NULL)
897 		bus_dmamem_free(sc->sc_dmat,
898 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
899 	sc->ale_cdata.ale_tx_cmb = NULL;
900 	sc->ale_cdata.ale_tx_cmb_map = NULL;
901 
902 }
903 
904 static int
905 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
906 {
907 	struct ale_txdesc *txd, *txd_last;
908 	struct tx_desc *desc;
909 	struct mbuf *m;
910 	bus_dmamap_t map;
911 	uint32_t cflags, poff, vtag;
912 	int error, i, nsegs, prod;
913 
914 	m = *m_head;
915 	cflags = vtag = 0;
916 	poff = 0;
917 
918 	prod = sc->ale_cdata.ale_tx_prod;
919 	txd = &sc->ale_cdata.ale_txdesc[prod];
920 	txd_last = txd;
921 	map = txd->tx_dmamap;
922 
923 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
924 	if (error == EFBIG) {
925 		error = 0;
926 
927 		*m_head = m_pullup(*m_head, MHLEN);
928 		if (*m_head == NULL) {
929 			printf("%s: can't defrag TX mbuf\n",
930 			    device_xname(sc->sc_dev));
931 			return ENOBUFS;
932 		}
933 
934 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
935 		    BUS_DMA_NOWAIT);
936 
937 		if (error != 0) {
938 			printf("%s: could not load defragged TX mbuf\n",
939 			    device_xname(sc->sc_dev));
940 			m_freem(*m_head);
941 			*m_head = NULL;
942 			return error;
943 		}
944 	} else if (error) {
945 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
946 		return error;
947 	}
948 
949 	nsegs = map->dm_nsegs;
950 
951 	if (nsegs == 0) {
952 		m_freem(*m_head);
953 		*m_head = NULL;
954 		return EIO;
955 	}
956 
957 	/* Check descriptor overrun. */
958 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
959 		bus_dmamap_unload(sc->sc_dmat, map);
960 		return ENOBUFS;
961 	}
962 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
963 	    BUS_DMASYNC_PREWRITE);
964 
965 	m = *m_head;
966 	/* Configure Tx checksum offload. */
967 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
968 		/*
969 		 * AR81xx supports Tx custom checksum offload feature
970 		 * that offloads single 16bit checksum computation.
971 		 * So you can choose one among IP, TCP and UDP.
972 		 * Normally driver sets checksum start/insertion
973 		 * position from the information of TCP/UDP frame as
974 		 * TCP/UDP checksum takes more time than that of IP.
975 		 * However it seems that custom checksum offload
976 		 * requires 4 bytes aligned Tx buffers due to hardware
977 		 * bug.
978 		 * AR81xx also supports explicit Tx checksum computation
979 		 * if it is told that the size of IP header and TCP
980 		 * header(for UDP, the header size does not matter
981 		 * because it's fixed length). However with this scheme
982 		 * TSO does not work so you have to choose one either
983 		 * TSO or explicit Tx checksum offload. I chosen TSO
984 		 * plus custom checksum offload with work-around which
985 		 * will cover most common usage for this consumer
986 		 * ethernet controller. The work-around takes a lot of
987 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
988 		 * boundary, though.
989 		 */
990 		cflags |= ALE_TD_CXSUM;
991 		/* Set checksum start offset. */
992 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
993 	}
994 
995 #if NVLAN > 0
996 	/* Configure VLAN hardware tag insertion. */
997 	if (vlan_has_tag(m)) {
998 		vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
999 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1000 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1001 	}
1002 #endif
1003 
1004 	desc = NULL;
1005 	for (i = 0; i < nsegs; i++) {
1006 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1007 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1008 		desc->len =
1009 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1010 		desc->flags = htole32(cflags);
1011 		sc->ale_cdata.ale_tx_cnt++;
1012 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1013 	}
1014 	/* Update producer index. */
1015 	sc->ale_cdata.ale_tx_prod = prod;
1016 
1017 	/* Finally set EOP on the last descriptor. */
1018 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1019 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1020 	desc->flags |= htole32(ALE_TD_EOP);
1021 
1022 	/* Swap dmamap of the first and the last. */
1023 	txd = &sc->ale_cdata.ale_txdesc[prod];
1024 	map = txd_last->tx_dmamap;
1025 	txd_last->tx_dmamap = txd->tx_dmamap;
1026 	txd->tx_dmamap = map;
1027 	txd->tx_m = m;
1028 
1029 	/* Sync descriptors. */
1030 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1031 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1032 
1033 	return 0;
1034 }
1035 
1036 static void
1037 ale_start(struct ifnet *ifp)
1038 {
1039         struct ale_softc *sc = ifp->if_softc;
1040 	struct mbuf *m_head;
1041 	int enq;
1042 
1043 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1044 		return;
1045 
1046 	/* Reclaim transmitted frames. */
1047 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1048 		ale_txeof(sc);
1049 
1050 	enq = 0;
1051 	for (;;) {
1052 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1053 		if (m_head == NULL)
1054 			break;
1055 
1056 		/*
1057 		 * Pack the data into the transmit ring. If we
1058 		 * don't have room, set the OACTIVE flag and wait
1059 		 * for the NIC to drain the ring.
1060 		 */
1061 		if (ale_encap(sc, &m_head)) {
1062 			if (m_head == NULL)
1063 				break;
1064 			IF_PREPEND(&ifp->if_snd, m_head);
1065 			ifp->if_flags |= IFF_OACTIVE;
1066 			break;
1067 		}
1068 		enq = 1;
1069 
1070 		/*
1071 		 * If there's a BPF listener, bounce a copy of this frame
1072 		 * to him.
1073 		 */
1074 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1075 	}
1076 
1077 	if (enq) {
1078 		/* Kick. */
1079 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1080 		    sc->ale_cdata.ale_tx_prod);
1081 
1082 		/* Set a timeout in case the chip goes out to lunch. */
1083 		ifp->if_timer = ALE_TX_TIMEOUT;
1084 	}
1085 }
1086 
1087 static void
1088 ale_watchdog(struct ifnet *ifp)
1089 {
1090 	struct ale_softc *sc = ifp->if_softc;
1091 
1092 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1093 		printf("%s: watchdog timeout (missed link)\n",
1094 		    device_xname(sc->sc_dev));
1095 		ifp->if_oerrors++;
1096 		ale_init(ifp);
1097 		return;
1098 	}
1099 
1100 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1101 	ifp->if_oerrors++;
1102 	ale_init(ifp);
1103 
1104 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1105 		ale_start(ifp);
1106 }
1107 
1108 static int
1109 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1110 {
1111 	struct ale_softc *sc = ifp->if_softc;
1112 	int s, error;
1113 
1114 	s = splnet();
1115 
1116 	error = ether_ioctl(ifp, cmd, data);
1117 	if (error == ENETRESET) {
1118 		if (ifp->if_flags & IFF_RUNNING)
1119 			ale_rxfilter(sc);
1120 		error = 0;
1121 	}
1122 
1123 	splx(s);
1124 	return error;
1125 }
1126 
1127 static void
1128 ale_mac_config(struct ale_softc *sc)
1129 {
1130 	struct mii_data *mii;
1131 	uint32_t reg;
1132 
1133 	mii = &sc->sc_miibus;
1134 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1135 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1136 	    MAC_CFG_SPEED_MASK);
1137 
1138 	/* Reprogram MAC with resolved speed/duplex. */
1139 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1140 	case IFM_10_T:
1141 	case IFM_100_TX:
1142 		reg |= MAC_CFG_SPEED_10_100;
1143 		break;
1144 	case IFM_1000_T:
1145 		reg |= MAC_CFG_SPEED_1000;
1146 		break;
1147 	}
1148 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1149 		reg |= MAC_CFG_FULL_DUPLEX;
1150 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1151 			reg |= MAC_CFG_TX_FC;
1152 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1153 			reg |= MAC_CFG_RX_FC;
1154 	}
1155 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1156 }
1157 
1158 static void
1159 ale_stats_clear(struct ale_softc *sc)
1160 {
1161 	struct smb sb;
1162 	uint32_t *reg;
1163 	int i;
1164 
1165 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1166 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1167 		i += sizeof(uint32_t);
1168 	}
1169 	/* Read Tx statistics. */
1170 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1171 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1172 		i += sizeof(uint32_t);
1173 	}
1174 }
1175 
1176 static void
1177 ale_stats_update(struct ale_softc *sc)
1178 {
1179 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 	struct ale_hw_stats *stat;
1181 	struct smb sb, *smb;
1182 	uint32_t *reg;
1183 	int i;
1184 
1185 	stat = &sc->ale_stats;
1186 	smb = &sb;
1187 
1188 	/* Read Rx statistics. */
1189 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1190 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1191 		i += sizeof(uint32_t);
1192 	}
1193 	/* Read Tx statistics. */
1194 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1195 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1196 		i += sizeof(uint32_t);
1197 	}
1198 
1199 	/* Rx stats. */
1200 	stat->rx_frames += smb->rx_frames;
1201 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1202 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1203 	stat->rx_pause_frames += smb->rx_pause_frames;
1204 	stat->rx_control_frames += smb->rx_control_frames;
1205 	stat->rx_crcerrs += smb->rx_crcerrs;
1206 	stat->rx_lenerrs += smb->rx_lenerrs;
1207 	stat->rx_bytes += smb->rx_bytes;
1208 	stat->rx_runts += smb->rx_runts;
1209 	stat->rx_fragments += smb->rx_fragments;
1210 	stat->rx_pkts_64 += smb->rx_pkts_64;
1211 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1212 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1213 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1214 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1215 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1216 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1217 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1218 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1219 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1220 	stat->rx_alignerrs += smb->rx_alignerrs;
1221 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1222 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1223 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1224 
1225 	/* Tx stats. */
1226 	stat->tx_frames += smb->tx_frames;
1227 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1228 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1229 	stat->tx_pause_frames += smb->tx_pause_frames;
1230 	stat->tx_excess_defer += smb->tx_excess_defer;
1231 	stat->tx_control_frames += smb->tx_control_frames;
1232 	stat->tx_deferred += smb->tx_deferred;
1233 	stat->tx_bytes += smb->tx_bytes;
1234 	stat->tx_pkts_64 += smb->tx_pkts_64;
1235 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1236 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1237 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1238 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1239 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1240 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1241 	stat->tx_single_colls += smb->tx_single_colls;
1242 	stat->tx_multi_colls += smb->tx_multi_colls;
1243 	stat->tx_late_colls += smb->tx_late_colls;
1244 	stat->tx_excess_colls += smb->tx_excess_colls;
1245 	stat->tx_abort += smb->tx_abort;
1246 	stat->tx_underrun += smb->tx_underrun;
1247 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1248 	stat->tx_lenerrs += smb->tx_lenerrs;
1249 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1250 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1251 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1252 
1253 	/* Update counters in ifnet. */
1254 	ifp->if_opackets += smb->tx_frames;
1255 
1256 	ifp->if_collisions += smb->tx_single_colls +
1257 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1258 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1259 
1260 	/*
1261 	 * XXX
1262 	 * tx_pkts_truncated counter looks suspicious. It constantly
1263 	 * increments with no sign of Tx errors. This may indicate
1264 	 * the counter name is not correct one so I've removed the
1265 	 * counter in output errors.
1266 	 */
1267 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1268 	    smb->tx_underrun;
1269 
1270 	ifp->if_ipackets += smb->rx_frames;
1271 
1272 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1273 	    smb->rx_runts + smb->rx_pkts_truncated +
1274 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1275 	    smb->rx_alignerrs;
1276 }
1277 
1278 static int
1279 ale_intr(void *xsc)
1280 {
1281 	struct ale_softc *sc = xsc;
1282 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1283 	uint32_t status;
1284 
1285 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1286 	if ((status & ALE_INTRS) == 0)
1287 		return 0;
1288 
1289 	/* Acknowledge and disable interrupts. */
1290 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1291 
1292 	if (ifp->if_flags & IFF_RUNNING) {
1293 		int error;
1294 
1295 		error = ale_rxeof(sc);
1296 		if (error) {
1297 			sc->ale_stats.reset_brk_seq++;
1298 			ale_init(ifp);
1299 			return 0;
1300 		}
1301 
1302 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1303 			if (status & INTR_DMA_RD_TO_RST)
1304 				printf("%s: DMA read error! -- resetting\n",
1305 				    device_xname(sc->sc_dev));
1306 			if (status & INTR_DMA_WR_TO_RST)
1307 				printf("%s: DMA write error! -- resetting\n",
1308 				    device_xname(sc->sc_dev));
1309 			ale_init(ifp);
1310 			return 0;
1311 		}
1312 
1313 		ale_txeof(sc);
1314 		if_schedule_deferred_start(ifp);
1315 	}
1316 
1317 	/* Re-enable interrupts. */
1318 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1319 	return 1;
1320 }
1321 
1322 static void
1323 ale_txeof(struct ale_softc *sc)
1324 {
1325 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1326 	struct ale_txdesc *txd;
1327 	uint32_t cons, prod;
1328 	int prog;
1329 
1330 	if (sc->ale_cdata.ale_tx_cnt == 0)
1331 		return;
1332 
1333 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1334 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1335 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1336 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1337 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1338 		    BUS_DMASYNC_POSTREAD);
1339 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1340 	} else
1341 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1342 	cons = sc->ale_cdata.ale_tx_cons;
1343 	/*
1344 	 * Go through our Tx list and free mbufs for those
1345 	 * frames which have been transmitted.
1346 	 */
1347 	for (prog = 0; cons != prod; prog++,
1348 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1349 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1350 			break;
1351 		prog++;
1352 		ifp->if_flags &= ~IFF_OACTIVE;
1353 		sc->ale_cdata.ale_tx_cnt--;
1354 		txd = &sc->ale_cdata.ale_txdesc[cons];
1355 		if (txd->tx_m != NULL) {
1356 			/* Reclaim transmitted mbufs. */
1357 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1358 			m_freem(txd->tx_m);
1359 			txd->tx_m = NULL;
1360 		}
1361 	}
1362 
1363 	if (prog > 0) {
1364 		sc->ale_cdata.ale_tx_cons = cons;
1365 		/*
1366 		 * Unarm watchdog timer only when there is no pending
1367 		 * Tx descriptors in queue.
1368 		 */
1369 		if (sc->ale_cdata.ale_tx_cnt == 0)
1370 			ifp->if_timer = 0;
1371 	}
1372 }
1373 
1374 static void
1375 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1376     uint32_t length, uint32_t *prod)
1377 {
1378 	struct ale_rx_page *rx_page;
1379 
1380 	rx_page = *page;
1381 	/* Update consumer position. */
1382 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1383 	    ALE_RX_PAGE_ALIGN);
1384 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1385 		/*
1386 		 * End of Rx page reached, let hardware reuse
1387 		 * this page.
1388 		 */
1389 		rx_page->cons = 0;
1390 		*rx_page->cmb_addr = 0;
1391 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1392 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1393 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1394 		    RXF_VALID);
1395 		/* Switch to alternate Rx page. */
1396 		sc->ale_cdata.ale_rx_curp ^= 1;
1397 		rx_page = *page =
1398 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1399 		/* Page flipped, sync CMB and Rx page. */
1400 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1401 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1402 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1403 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1404 		/* Sync completed, cache updated producer index. */
1405 		*prod = *rx_page->cmb_addr;
1406 	}
1407 }
1408 
1409 
1410 /*
1411  * It seems that AR81xx controller can compute partial checksum.
1412  * The partial checksum value can be used to accelerate checksum
1413  * computation for fragmented TCP/UDP packets. Upper network stack
1414  * already takes advantage of the partial checksum value in IP
1415  * reassembly stage. But I'm not sure the correctness of the
1416  * partial hardware checksum assistance due to lack of data sheet.
1417  * In addition, the Rx feature of controller that requires copying
1418  * for every frames effectively nullifies one of most nice offload
1419  * capability of controller.
1420  */
1421 static void
1422 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1423 {
1424 	if (status & ALE_RD_IPCSUM_NOK)
1425 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1426 
1427 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1428 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1429 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1430 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1431 		{
1432 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1433 		}
1434 	} else {
1435 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1436 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1437 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1438 			}
1439 		}
1440 	}
1441 	/*
1442 	 * Don't mark bad checksum for TCP/UDP frames
1443 	 * as fragmented frames may always have set
1444 	 * bad checksummed bit of frame status.
1445 	 */
1446 }
1447 
1448 /* Process received frames. */
1449 static int
1450 ale_rxeof(struct ale_softc *sc)
1451 {
1452 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1453 	struct ale_rx_page *rx_page;
1454 	struct rx_rs *rs;
1455 	struct mbuf *m;
1456 	uint32_t length, prod, seqno, status;
1457 	int prog;
1458 
1459 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1460 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1461 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1462 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1463 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1464 	/*
1465 	 * Don't directly access producer index as hardware may
1466 	 * update it while Rx handler is in progress. It would
1467 	 * be even better if there is a way to let hardware
1468 	 * know how far driver processed its received frames.
1469 	 * Alternatively, hardware could provide a way to disable
1470 	 * CMB updates until driver acknowledges the end of CMB
1471 	 * access.
1472 	 */
1473 	prod = *rx_page->cmb_addr;
1474 	for (prog = 0; ; prog++) {
1475 		if (rx_page->cons >= prod)
1476 			break;
1477 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1478 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1479 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1480 			/*
1481 			 * Normally I believe this should not happen unless
1482 			 * severe driver bug or corrupted memory. However
1483 			 * it seems to happen under certain conditions which
1484 			 * is triggered by abrupt Rx events such as initiation
1485 			 * of bulk transfer of remote host. It's not easy to
1486 			 * reproduce this and I doubt it could be related
1487 			 * with FIFO overflow of hardware or activity of Tx
1488 			 * CMB updates. I also remember similar behaviour
1489 			 * seen on RealTek 8139 which uses resembling Rx
1490 			 * scheme.
1491 			 */
1492 			if (aledebug)
1493 				printf("%s: garbled seq: %u, expected: %u -- "
1494 				    "resetting!\n", device_xname(sc->sc_dev),
1495 				    seqno, sc->ale_cdata.ale_rx_seqno);
1496 			return EIO;
1497 		}
1498 		/* Frame received. */
1499 		sc->ale_cdata.ale_rx_seqno++;
1500 		length = ALE_RX_BYTES(le32toh(rs->length));
1501 		status = le32toh(rs->flags);
1502 		if (status & ALE_RD_ERROR) {
1503 			/*
1504 			 * We want to pass the following frames to upper
1505 			 * layer regardless of error status of Rx return
1506 			 * status.
1507 			 *
1508 			 *  o IP/TCP/UDP checksum is bad.
1509 			 *  o frame length and protocol specific length
1510 			 *     does not match.
1511 			 */
1512 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1513 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1514 			    ALE_RD_TRUNC)) {
1515 				ale_rx_update_page(sc, &rx_page, length, &prod);
1516 				continue;
1517 			}
1518 		}
1519 		/*
1520 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1521 		 * from hardware limitation). For jumbo frames we could
1522 		 * get a slightly better performance if driver use
1523 		 * m_getjcl(9) with proper buffer size argument. However
1524 		 * that would make code more complicated and I don't
1525 		 * think users would expect good Rx performance numbers
1526 		 * on these low-end consumer ethernet controller.
1527 		 */
1528 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1529 		    0, ifp, NULL);
1530 		if (m == NULL) {
1531 			ifp->if_iqdrops++;
1532 			ale_rx_update_page(sc, &rx_page, length, &prod);
1533 			continue;
1534 		}
1535 		if (status & ALE_RD_IPV4)
1536 			ale_rxcsum(sc, m, status);
1537 #if NVLAN > 0
1538 		if (status & ALE_RD_VLAN) {
1539 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1540 			vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1541 		}
1542 #endif
1543 
1544 		/* Pass it to upper layer. */
1545 		if_percpuq_enqueue(ifp->if_percpuq, m);
1546 
1547 		ale_rx_update_page(sc, &rx_page, length, &prod);
1548 	}
1549 
1550 	return 0;
1551 }
1552 
1553 static void
1554 ale_tick(void *xsc)
1555 {
1556 	struct ale_softc *sc = xsc;
1557 	struct mii_data *mii = &sc->sc_miibus;
1558 	int s;
1559 
1560 	s = splnet();
1561 	mii_tick(mii);
1562 	ale_stats_update(sc);
1563 	splx(s);
1564 
1565 	callout_schedule(&sc->sc_tick_ch, hz);
1566 }
1567 
1568 static void
1569 ale_reset(struct ale_softc *sc)
1570 {
1571 	uint32_t reg;
1572 	int i;
1573 
1574 	/* Initialize PCIe module. From Linux. */
1575 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1576 
1577 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1578 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1579 		DELAY(10);
1580 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1581 			break;
1582 	}
1583 	if (i == 0)
1584 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1585 
1586 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1587 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1588 			break;
1589 		DELAY(10);
1590 	}
1591 
1592 	if (i == 0)
1593 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1594 		    reg);
1595 }
1596 
1597 static int
1598 ale_init(struct ifnet *ifp)
1599 {
1600 	struct ale_softc *sc = ifp->if_softc;
1601 	struct mii_data *mii;
1602 	uint8_t eaddr[ETHER_ADDR_LEN];
1603 	bus_addr_t paddr;
1604 	uint32_t reg, rxf_hi, rxf_lo;
1605 
1606 	/*
1607 	 * Cancel any pending I/O.
1608 	 */
1609 	ale_stop(ifp, 0);
1610 
1611 	/*
1612 	 * Reset the chip to a known state.
1613 	 */
1614 	ale_reset(sc);
1615 
1616 	/* Initialize Tx descriptors, DMA memory blocks. */
1617 	ale_init_rx_pages(sc);
1618 	ale_init_tx_ring(sc);
1619 
1620 	/* Reprogram the station address. */
1621 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1622 	CSR_WRITE_4(sc, ALE_PAR0,
1623 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1624 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1625 
1626 	/*
1627 	 * Clear WOL status and disable all WOL feature as WOL
1628 	 * would interfere Rx operation under normal environments.
1629 	 */
1630 	CSR_READ_4(sc, ALE_WOL_CFG);
1631 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1632 
1633 	/*
1634 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1635 	 * the same high address part of DMAable region.
1636 	 */
1637 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1638 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1639 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1640 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1641 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1642 
1643 	/* Set Rx page base address, note we use single queue. */
1644 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1645 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1646 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1647 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1648 
1649 	/* Set Tx/Rx CMB addresses. */
1650 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1651 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1652 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1653 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1654 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1655 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1656 
1657 	/* Mark RXF0 is valid. */
1658 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1659 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1660 	/*
1661 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1662 	 * multi-queue yet.
1663 	 */
1664 
1665 	/* Set Rx page size, excluding guard frame size. */
1666 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1667 
1668 	/* Tell hardware that we're ready to load DMA blocks. */
1669 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1670 
1671 	/* Set Rx/Tx interrupt trigger threshold. */
1672 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1673 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1674 	/*
1675 	 * XXX
1676 	 * Set interrupt trigger timer, its purpose and relation
1677 	 * with interrupt moderation mechanism is not clear yet.
1678 	 */
1679 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1680 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1681 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1682 
1683 	/* Configure interrupt moderation timer. */
1684 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1685 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1686 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1687 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1688 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1689 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1690 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1691 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1692 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1693 		reg |= MASTER_IM_RX_TIMER_ENB;
1694 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1695 		reg |= MASTER_IM_TX_TIMER_ENB;
1696 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1697 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1698 
1699 	/* Set Maximum frame size of controller. */
1700 	if (ifp->if_mtu < ETHERMTU)
1701 		sc->ale_max_frame_size = ETHERMTU;
1702 	else
1703 		sc->ale_max_frame_size = ifp->if_mtu;
1704 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1705 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1706 
1707 	/* Configure IPG/IFG parameters. */
1708 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1709 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1710 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1711 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1712 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1713 
1714 	/* Set parameters for half-duplex media. */
1715 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1716 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1717 	    HDPX_CFG_LCOL_MASK) |
1718 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1719 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1720 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1721 	    HDPX_CFG_ABEBT_MASK) |
1722 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1723 	    HDPX_CFG_JAMIPG_MASK));
1724 
1725 	/* Configure Tx jumbo frame parameters. */
1726 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1727 		if (ifp->if_mtu < ETHERMTU)
1728 			reg = sc->ale_max_frame_size;
1729 		else if (ifp->if_mtu < 6 * 1024)
1730 			reg = (sc->ale_max_frame_size * 2) / 3;
1731 		else
1732 			reg = sc->ale_max_frame_size / 2;
1733 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1734 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1735 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1736 	}
1737 
1738 	/* Configure TxQ. */
1739 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1740 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1741 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1742 	    TXQ_CFG_TPD_BURST_MASK;
1743 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1744 
1745 	/* Configure Rx jumbo frame & flow control parameters. */
1746 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1747 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1748 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1749 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1750 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1751 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1752 		    RX_JUMBO_LKAH_MASK));
1753 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1754 		rxf_hi = (reg * 7) / 10;
1755 		rxf_lo = (reg * 3)/ 10;
1756 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1757 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1758 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1759 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1760 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1761 	}
1762 
1763 	/* Disable RSS. */
1764 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1765 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1766 
1767 	/* Configure RxQ. */
1768 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1769 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1770 
1771 	/* Configure DMA parameters. */
1772 	reg = 0;
1773 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1774 		reg |= DMA_CFG_TXCMB_ENB;
1775 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1776 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1777 	    sc->ale_dma_rd_burst | reg |
1778 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1779 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1780 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1781 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1782 	    DMA_CFG_WR_DELAY_CNT_MASK));
1783 
1784 	/*
1785 	 * Hardware can be configured to issue SMB interrupt based
1786 	 * on programmed interval. Since there is a callout that is
1787 	 * invoked for every hz in driver we use that instead of
1788 	 * relying on periodic SMB interrupt.
1789 	 */
1790 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1791 
1792 	/* Clear MAC statistics. */
1793 	ale_stats_clear(sc);
1794 
1795 	/*
1796 	 * Configure Tx/Rx MACs.
1797 	 *  - Auto-padding for short frames.
1798 	 *  - Enable CRC generation.
1799 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1800 	 *  is followed after detection of link establishment.
1801 	 *  AR81xx always does checksum computation regardless of
1802 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1803 	 *  cause Rx handling issue for fragmented IP datagrams due
1804 	 *  to silicon bug.
1805 	 */
1806 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1807 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1808 	    MAC_CFG_PREAMBLE_MASK);
1809 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1810 		reg |= MAC_CFG_SPEED_10_100;
1811 	else
1812 		reg |= MAC_CFG_SPEED_1000;
1813 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1814 
1815 	/* Set up the receive filter. */
1816 	ale_rxfilter(sc);
1817 	ale_rxvlan(sc);
1818 
1819 	/* Acknowledge all pending interrupts and clear it. */
1820 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1821 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1822 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1823 
1824 	sc->ale_flags &= ~ALE_FLAG_LINK;
1825 
1826 	/* Switch to the current media. */
1827 	mii = &sc->sc_miibus;
1828 	mii_mediachg(mii);
1829 
1830 	callout_schedule(&sc->sc_tick_ch, hz);
1831 
1832 	ifp->if_flags |= IFF_RUNNING;
1833 	ifp->if_flags &= ~IFF_OACTIVE;
1834 
1835 	return 0;
1836 }
1837 
1838 static void
1839 ale_stop(struct ifnet *ifp, int disable)
1840 {
1841 	struct ale_softc *sc = ifp->if_softc;
1842 	struct ale_txdesc *txd;
1843 	uint32_t reg;
1844 	int i;
1845 
1846 	callout_stop(&sc->sc_tick_ch);
1847 
1848 	/*
1849 	 * Mark the interface down and cancel the watchdog timer.
1850 	 */
1851 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1852 	ifp->if_timer = 0;
1853 
1854 	sc->ale_flags &= ~ALE_FLAG_LINK;
1855 
1856 	ale_stats_update(sc);
1857 
1858 	mii_down(&sc->sc_miibus);
1859 
1860 	/* Disable interrupts. */
1861 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1862 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1863 
1864 	/* Disable queue processing and DMA. */
1865 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1866 	reg &= ~TXQ_CFG_ENB;
1867 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1868 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1869 	reg &= ~RXQ_CFG_ENB;
1870 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1871 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1872 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1873 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1874 	DELAY(1000);
1875 
1876 	/* Stop Rx/Tx MACs. */
1877 	ale_stop_mac(sc);
1878 
1879 	/* Disable interrupts again? XXX */
1880 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1881 
1882 	/*
1883 	 * Free TX mbufs still in the queues.
1884 	 */
1885 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1886 		txd = &sc->ale_cdata.ale_txdesc[i];
1887 		if (txd->tx_m != NULL) {
1888 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1889 			m_freem(txd->tx_m);
1890 			txd->tx_m = NULL;
1891 		}
1892         }
1893 }
1894 
1895 static void
1896 ale_stop_mac(struct ale_softc *sc)
1897 {
1898 	uint32_t reg;
1899 	int i;
1900 
1901 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1902 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1903 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1904 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1905 	}
1906 
1907 	for (i = ALE_TIMEOUT; i > 0; i--) {
1908 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1909 		if (reg == 0)
1910 			break;
1911 		DELAY(10);
1912 	}
1913 	if (i == 0)
1914 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1915 		    device_xname(sc->sc_dev), reg);
1916 }
1917 
1918 static void
1919 ale_init_tx_ring(struct ale_softc *sc)
1920 {
1921 	struct ale_txdesc *txd;
1922 	int i;
1923 
1924 	sc->ale_cdata.ale_tx_prod = 0;
1925 	sc->ale_cdata.ale_tx_cons = 0;
1926 	sc->ale_cdata.ale_tx_cnt = 0;
1927 
1928 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1929 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1930 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1931 		txd = &sc->ale_cdata.ale_txdesc[i];
1932 		txd->tx_m = NULL;
1933 	}
1934 	*sc->ale_cdata.ale_tx_cmb = 0;
1935 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1936 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1937 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1938 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1939 }
1940 
1941 static void
1942 ale_init_rx_pages(struct ale_softc *sc)
1943 {
1944 	struct ale_rx_page *rx_page;
1945 	int i;
1946 
1947 	sc->ale_cdata.ale_rx_seqno = 0;
1948 	sc->ale_cdata.ale_rx_curp = 0;
1949 
1950 	for (i = 0; i < ALE_RX_PAGES; i++) {
1951 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1952 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1953 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1954 		rx_page->cons = 0;
1955 		*rx_page->cmb_addr = 0;
1956 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1957 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1958 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1959 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1960 	}
1961 }
1962 
1963 static void
1964 ale_rxvlan(struct ale_softc *sc)
1965 {
1966 	uint32_t reg;
1967 
1968 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1969 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1970 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1971 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1972 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1973 }
1974 
1975 static void
1976 ale_rxfilter(struct ale_softc *sc)
1977 {
1978 	struct ethercom *ec = &sc->sc_ec;
1979 	struct ifnet *ifp = &ec->ec_if;
1980 	struct ether_multi *enm;
1981 	struct ether_multistep step;
1982 	uint32_t crc;
1983 	uint32_t mchash[2];
1984 	uint32_t rxcfg;
1985 
1986 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1987 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1988 	ifp->if_flags &= ~IFF_ALLMULTI;
1989 
1990 	/*
1991 	 * Always accept broadcast frames.
1992 	 */
1993 	rxcfg |= MAC_CFG_BCAST;
1994 
1995 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1996 		ifp->if_flags |= IFF_ALLMULTI;
1997 		if (ifp->if_flags & IFF_PROMISC)
1998 			rxcfg |= MAC_CFG_PROMISC;
1999 		else
2000 			rxcfg |= MAC_CFG_ALLMULTI;
2001 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2002 	} else {
2003 		/* Program new filter. */
2004 		memset(mchash, 0, sizeof(mchash));
2005 
2006 		ETHER_FIRST_MULTI(step, ec, enm);
2007 		while (enm != NULL) {
2008 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2009 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2010 			ETHER_NEXT_MULTI(step, enm);
2011 		}
2012 	}
2013 
2014 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2015 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2016 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2017 }
2018