xref: /netbsd-src/sys/dev/pci/if_ale.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: if_ale.c,v 1.17 2014/03/29 19:28:24 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.17 2014/03/29 19:28:24 christos Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <sys/rnd.h>
73 
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/if_alereg.h>
82 
83 static int	ale_match(device_t, cfdata_t, void *);
84 static void	ale_attach(device_t, device_t, void *);
85 static int	ale_detach(device_t, int);
86 
87 static int	ale_miibus_readreg(device_t, int, int);
88 static void	ale_miibus_writereg(device_t, int, int, int);
89 static void	ale_miibus_statchg(struct ifnet *);
90 
91 static int	ale_init(struct ifnet *);
92 static void	ale_start(struct ifnet *);
93 static int	ale_ioctl(struct ifnet *, u_long, void *);
94 static void	ale_watchdog(struct ifnet *);
95 static int	ale_mediachange(struct ifnet *);
96 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
97 
98 static int	ale_intr(void *);
99 static int	ale_rxeof(struct ale_softc *sc);
100 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 		    uint32_t, uint32_t *);
102 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void	ale_txeof(struct ale_softc *);
104 
105 static int	ale_dma_alloc(struct ale_softc *);
106 static void	ale_dma_free(struct ale_softc *);
107 static int	ale_encap(struct ale_softc *, struct mbuf **);
108 static void	ale_init_rx_pages(struct ale_softc *);
109 static void	ale_init_tx_ring(struct ale_softc *);
110 
111 static void	ale_stop(struct ifnet *, int);
112 static void	ale_tick(void *);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_mac_config(struct ale_softc *);
115 static void	ale_phy_reset(struct ale_softc *);
116 static void	ale_reset(struct ale_softc *);
117 static void	ale_rxfilter(struct ale_softc *);
118 static void	ale_rxvlan(struct ale_softc *);
119 static void	ale_stats_clear(struct ale_softc *);
120 static void	ale_stats_update(struct ale_softc *);
121 static void	ale_stop_mac(struct ale_softc *);
122 
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 	ale_match, ale_attach, ale_detach, NULL);
125 
126 int aledebug = 0;
127 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
128 
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 	struct ale_softc *sc = device_private(dev);
136 	uint32_t v;
137 	int i;
138 
139 	if (phy != sc->ale_phyaddr)
140 		return 0;
141 
142 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 		switch (reg) {
144 		case MII_100T2CR:
145 		case MII_100T2SR:
146 		case MII_EXTSR:
147 			return 0;
148 		default:
149 			break;
150 		}
151 	}
152 
153 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 		DELAY(5);
157 		v = CSR_READ_4(sc, ALE_MDIO);
158 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 			break;
160 	}
161 
162 	if (i == 0) {
163 		printf("%s: phy read timeout: phy %d, reg %d\n",
164 		    device_xname(sc->sc_dev), phy, reg);
165 		return 0;
166 	}
167 
168 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170 
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 	struct ale_softc *sc = device_private(dev);
175 	uint32_t v;
176 	int i;
177 
178 	if (phy != sc->ale_phyaddr)
179 		return;
180 
181 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 		switch (reg) {
183 		case MII_100T2CR:
184 		case MII_100T2SR:
185 		case MII_EXTSR:
186 			return;
187 		default:
188 			break;
189 		}
190 	}
191 
192 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(5);
197 		v = CSR_READ_4(sc, ALE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0)
203 		printf("%s: phy write timeout: phy %d, reg %d\n",
204 		    device_xname(sc->sc_dev), phy, reg);
205 }
206 
207 static void
208 ale_miibus_statchg(struct ifnet *ifp)
209 {
210 	struct ale_softc *sc = ifp->if_softc;
211 	struct mii_data *mii = &sc->sc_miibus;
212 	uint32_t reg;
213 
214 	if ((ifp->if_flags & IFF_RUNNING) == 0)
215 		return;
216 
217 	sc->ale_flags &= ~ALE_FLAG_LINK;
218 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
219 	    (IFM_ACTIVE | IFM_AVALID)) {
220 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
221 		case IFM_10_T:
222 		case IFM_100_TX:
223 			sc->ale_flags |= ALE_FLAG_LINK;
224 			break;
225 
226 		case IFM_1000_T:
227 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
228 				sc->ale_flags |= ALE_FLAG_LINK;
229 			break;
230 
231 		default:
232 			break;
233 		}
234 	}
235 
236 	/* Stop Rx/Tx MACs. */
237 	ale_stop_mac(sc);
238 
239 	/* Program MACs with resolved speed/duplex/flow-control. */
240 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
241 		ale_mac_config(sc);
242 		/* Reenable Tx/Rx MACs. */
243 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
244 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
245 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
246 	}
247 }
248 
249 void
250 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
251 {
252 	struct ale_softc *sc = ifp->if_softc;
253 	struct mii_data *mii = &sc->sc_miibus;
254 
255 	mii_pollstat(mii);
256 	ifmr->ifm_status = mii->mii_media_status;
257 	ifmr->ifm_active = mii->mii_media_active;
258 }
259 
260 int
261 ale_mediachange(struct ifnet *ifp)
262 {
263 	struct ale_softc *sc = ifp->if_softc;
264 	struct mii_data *mii = &sc->sc_miibus;
265 	int error;
266 
267 	if (mii->mii_instance != 0) {
268 		struct mii_softc *miisc;
269 
270 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
271 			mii_phy_reset(miisc);
272 	}
273 	error = mii_mediachg(mii);
274 
275 	return error;
276 }
277 
278 int
279 ale_match(device_t dev, cfdata_t match, void *aux)
280 {
281 	struct pci_attach_args *pa = aux;
282 
283 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
284 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
285 }
286 
287 void
288 ale_get_macaddr(struct ale_softc *sc)
289 {
290 	uint32_t ea[2], reg;
291 	int i, vpdc;
292 
293 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
294 	if ((reg & SPI_VPD_ENB) != 0) {
295 		reg &= ~SPI_VPD_ENB;
296 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
297 	}
298 
299 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
300 	    &vpdc, NULL)) {
301 		/*
302 		 * PCI VPD capability found, let TWSI reload EEPROM.
303 		 * This will set ethernet address of controller.
304 		 */
305 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
306 		    TWSI_CTRL_SW_LD_START);
307 		for (i = 100; i > 0; i--) {
308 			DELAY(1000);
309 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
310 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
311 				break;
312 		}
313 		if (i == 0)
314 			printf("%s: reloading EEPROM timeout!\n",
315 			    device_xname(sc->sc_dev));
316 	} else {
317 		if (aledebug)
318 			printf("%s: PCI VPD capability not found!\n",
319 			    device_xname(sc->sc_dev));
320 	}
321 
322 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
323 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
324 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
325 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
326 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
327 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
328 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
329 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
330 }
331 
332 void
333 ale_phy_reset(struct ale_softc *sc)
334 {
335 	/* Reset magic from Linux. */
336 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
337 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
338 	    GPHY_CTRL_PHY_PLL_ON);
339 	DELAY(1000);
340 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
341 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
342 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
343 	DELAY(1000);
344 
345 #define	ATPHY_DBG_ADDR		0x1D
346 #define	ATPHY_DBG_DATA		0x1E
347 
348 	/* Enable hibernation mode. */
349 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 	    ATPHY_DBG_ADDR, 0x0B);
351 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
352 	    ATPHY_DBG_DATA, 0xBC00);
353 	/* Set Class A/B for all modes. */
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_ADDR, 0x00);
356 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
357 	    ATPHY_DBG_DATA, 0x02EF);
358 	/* Enable 10BT power saving. */
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_ADDR, 0x12);
361 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
362 	    ATPHY_DBG_DATA, 0x4C04);
363 	/* Adjust 1000T power. */
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_ADDR, 0x04);
366 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
367 	    ATPHY_DBG_DATA, 0x8BBB);
368 	/* 10BT center tap voltage. */
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_ADDR, 0x05);
371 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
372 	    ATPHY_DBG_DATA, 0x2C46);
373 
374 #undef	ATPHY_DBG_ADDR
375 #undef	ATPHY_DBG_DATA
376 	DELAY(1000);
377 }
378 
379 void
380 ale_attach(device_t parent, device_t self, void *aux)
381 {
382 	struct ale_softc *sc = device_private(self);
383 	struct pci_attach_args *pa = aux;
384 	pci_chipset_tag_t pc = pa->pa_pc;
385 	pci_intr_handle_t ih;
386 	const char *intrstr;
387 	struct ifnet *ifp;
388 	pcireg_t memtype;
389 	int mii_flags, error = 0;
390 	uint32_t rxf_len, txf_len;
391 	const char *chipname;
392 	char intrbuf[PCI_INTRSTR_LEN];
393 
394 	aprint_naive("\n");
395 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
396 
397 	sc->sc_dev = self;
398 	sc->sc_dmat = pa->pa_dmat;
399 	sc->sc_pct = pa->pa_pc;
400 	sc->sc_pcitag = pa->pa_tag;
401 
402 	/*
403 	 * Allocate IO memory
404 	 */
405 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
406 	switch (memtype) {
407 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
408 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
409 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
410 		break;
411 	default:
412 		aprint_error_dev(self, "invalid base address register\n");
413 		break;
414 	}
415 
416 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
417 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
418 		aprint_error_dev(self, "could not map mem space\n");
419 		return;
420 	}
421 
422 	if (pci_intr_map(pa, &ih) != 0) {
423 		aprint_error_dev(self, "could not map interrupt\n");
424 		goto fail;
425 	}
426 
427 	/*
428 	 * Allocate IRQ
429 	 */
430 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
431 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
432 	if (sc->sc_irq_handle == NULL) {
433 		aprint_error_dev(self, "could not establish interrupt");
434 		if (intrstr != NULL)
435 			aprint_error(" at %s", intrstr);
436 		aprint_error("\n");
437 		goto fail;
438 	}
439 
440 	/* Set PHY address. */
441 	sc->ale_phyaddr = ALE_PHY_ADDR;
442 
443 	/* Reset PHY. */
444 	ale_phy_reset(sc);
445 
446 	/* Reset the ethernet controller. */
447 	ale_reset(sc);
448 
449 	/* Get PCI and chip id/revision. */
450 	sc->ale_rev = PCI_REVISION(pa->pa_class);
451 	if (sc->ale_rev >= 0xF0) {
452 		/* L2E Rev. B. AR8114 */
453 		sc->ale_flags |= ALE_FLAG_FASTETHER;
454 		chipname = "AR8114 (L2E RevB)";
455 	} else {
456 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
457 			/* L1E AR8121 */
458 			sc->ale_flags |= ALE_FLAG_JUMBO;
459 			chipname = "AR8121 (L1E)";
460 		} else {
461 			/* L2E Rev. A. AR8113 */
462 			sc->ale_flags |= ALE_FLAG_FASTETHER;
463 			chipname = "AR8113 (L2E RevA)";
464 		}
465 	}
466 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
467 
468 	/*
469 	 * All known controllers seems to require 4 bytes alignment
470 	 * of Tx buffers to make Tx checksum offload with custom
471 	 * checksum generation method work.
472 	 */
473 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
474 
475 	/*
476 	 * All known controllers seems to have issues on Rx checksum
477 	 * offload for fragmented IP datagrams.
478 	 */
479 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
480 
481 	/*
482 	 * Don't use Tx CMB. It is known to cause RRS update failure
483 	 * under certain circumstances. Typical phenomenon of the
484 	 * issue would be unexpected sequence number encountered in
485 	 * Rx handler.
486 	 */
487 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
488 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
489 	    MASTER_CHIP_REV_SHIFT;
490 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
491 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
492 
493 	/*
494 	 * Uninitialized hardware returns an invalid chip id/revision
495 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
496 	 */
497 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
498 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
499 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
500 	    rxf_len == 0xFFFFFFF) {
501 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
502 		    "%u Rx FIFO -- not initialized?\n",
503 		    sc->ale_chip_rev, txf_len, rxf_len);
504 		goto fail;
505 	}
506 
507 	if (aledebug) {
508 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
509 		    txf_len, rxf_len);
510 	}
511 
512 	/* Set max allowable DMA size. */
513 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
514 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
515 
516 	callout_init(&sc->sc_tick_ch, 0);
517 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
518 
519 	error = ale_dma_alloc(sc);
520 	if (error)
521 		goto fail;
522 
523 	/* Load station address. */
524 	ale_get_macaddr(sc);
525 
526 	aprint_normal_dev(self, "Ethernet address %s\n",
527 	    ether_sprintf(sc->ale_eaddr));
528 
529 	ifp = &sc->sc_ec.ec_if;
530 	ifp->if_softc = sc;
531 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
532 	ifp->if_init = ale_init;
533 	ifp->if_ioctl = ale_ioctl;
534 	ifp->if_start = ale_start;
535 	ifp->if_stop = ale_stop;
536 	ifp->if_watchdog = ale_watchdog;
537 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
538 	IFQ_SET_READY(&ifp->if_snd);
539 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
540 
541 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
542 
543 #ifdef ALE_CHECKSUM
544 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
545 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
546 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
547 #endif
548 
549 #if NVLAN > 0
550 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
551 #endif
552 
553 	/* Set up MII bus. */
554 	sc->sc_miibus.mii_ifp = ifp;
555 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
556 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
557 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
558 
559 	sc->sc_ec.ec_mii = &sc->sc_miibus;
560 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
561 	    ale_mediastatus);
562 	mii_flags = 0;
563 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
564 		mii_flags |= MIIF_DOPAUSE;
565 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
566 	    MII_OFFSET_ANY, mii_flags);
567 
568 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
569 		aprint_error_dev(self, "no PHY found!\n");
570 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
571 		    0, NULL);
572 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
573 	} else
574 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
575 
576 	if_attach(ifp);
577 	ether_ifattach(ifp, sc->ale_eaddr);
578 
579 	if (pmf_device_register(self, NULL, NULL))
580 		pmf_class_network_register(self, ifp);
581 	else
582 		aprint_error_dev(self, "couldn't establish power handler\n");
583 
584 	return;
585 fail:
586 	ale_dma_free(sc);
587 	if (sc->sc_irq_handle != NULL) {
588 		pci_intr_disestablish(pc, sc->sc_irq_handle);
589 		sc->sc_irq_handle = NULL;
590 	}
591 	if (sc->sc_mem_size) {
592 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
593 		sc->sc_mem_size = 0;
594 	}
595 }
596 
597 static int
598 ale_detach(device_t self, int flags)
599 {
600 	struct ale_softc *sc = device_private(self);
601 	struct ifnet *ifp = &sc->sc_ec.ec_if;
602 	int s;
603 
604 	pmf_device_deregister(self);
605 	s = splnet();
606 	ale_stop(ifp, 0);
607 	splx(s);
608 
609 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
610 
611 	/* Delete all remaining media. */
612 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
613 
614 	ether_ifdetach(ifp);
615 	if_detach(ifp);
616 	ale_dma_free(sc);
617 
618 	if (sc->sc_irq_handle != NULL) {
619 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
620 		sc->sc_irq_handle = NULL;
621 	}
622 	if (sc->sc_mem_size) {
623 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
624 		sc->sc_mem_size = 0;
625 	}
626 
627 	return 0;
628 }
629 
630 
631 static int
632 ale_dma_alloc(struct ale_softc *sc)
633 {
634 	struct ale_txdesc *txd;
635 	int nsegs, error, guard_size, i;
636 
637 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
638 		guard_size = ALE_JUMBO_FRAMELEN;
639 	else
640 		guard_size = ALE_MAX_FRAMELEN;
641 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
642 	    ALE_RX_PAGE_ALIGN);
643 
644 	/*
645 	 * Create DMA stuffs for TX ring
646 	 */
647 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
648 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
649 	if (error) {
650 		sc->ale_cdata.ale_tx_ring_map = NULL;
651 		return ENOBUFS;
652 	}
653 
654 	/* Allocate DMA'able memory for TX ring */
655 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
656 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
657 	    &nsegs, BUS_DMA_WAITOK);
658 	if (error) {
659 		printf("%s: could not allocate DMA'able memory for Tx ring, "
660 		    "error = %i\n", device_xname(sc->sc_dev), error);
661 		return error;
662 	}
663 
664 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
665 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
666 	    BUS_DMA_NOWAIT);
667 	if (error)
668 		return ENOBUFS;
669 
670 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
671 
672 	/* Load the DMA map for Tx ring. */
673 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
674 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
675 	if (error) {
676 		printf("%s: could not load DMA'able memory for Tx ring.\n",
677 		    device_xname(sc->sc_dev));
678 		bus_dmamem_free(sc->sc_dmat,
679 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
680 		return error;
681 	}
682 	sc->ale_cdata.ale_tx_ring_paddr =
683 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
684 
685 	for (i = 0; i < ALE_RX_PAGES; i++) {
686 		/*
687 		 * Create DMA stuffs for RX pages
688 		 */
689 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
690 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
691 		    &sc->ale_cdata.ale_rx_page[i].page_map);
692 		if (error) {
693 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
694 			return ENOBUFS;
695 		}
696 
697 		/* Allocate DMA'able memory for RX pages */
698 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
699 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
700 		    1, &nsegs, BUS_DMA_WAITOK);
701 		if (error) {
702 			printf("%s: could not allocate DMA'able memory for "
703 			    "Rx ring.\n", device_xname(sc->sc_dev));
704 			return error;
705 		}
706 		error = bus_dmamem_map(sc->sc_dmat,
707 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
708 		    sc->ale_pagesize,
709 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
710 		    BUS_DMA_NOWAIT);
711 		if (error)
712 			return ENOBUFS;
713 
714 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
715 		    sc->ale_pagesize);
716 
717 		/* Load the DMA map for Rx pages. */
718 		error = bus_dmamap_load(sc->sc_dmat,
719 		    sc->ale_cdata.ale_rx_page[i].page_map,
720 		    sc->ale_cdata.ale_rx_page[i].page_addr,
721 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
722 		if (error) {
723 			printf("%s: could not load DMA'able memory for "
724 			    "Rx pages.\n", device_xname(sc->sc_dev));
725 			bus_dmamem_free(sc->sc_dmat,
726 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
727 			return error;
728 		}
729 		sc->ale_cdata.ale_rx_page[i].page_paddr =
730 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
731 	}
732 
733 	/*
734 	 * Create DMA stuffs for Tx CMB.
735 	 */
736 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
737 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
738 	if (error) {
739 		sc->ale_cdata.ale_tx_cmb_map = NULL;
740 		return ENOBUFS;
741 	}
742 
743 	/* Allocate DMA'able memory for Tx CMB. */
744 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
745 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
746 
747 	if (error) {
748 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
749 		    device_xname(sc->sc_dev));
750 		return error;
751 	}
752 
753 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
754 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
755 	    BUS_DMA_NOWAIT);
756 	if (error)
757 		return ENOBUFS;
758 
759 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
760 
761 	/* Load the DMA map for Tx CMB. */
762 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
763 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
764 	if (error) {
765 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
766 		    device_xname(sc->sc_dev));
767 		bus_dmamem_free(sc->sc_dmat,
768 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
769 		return error;
770 	}
771 
772 	sc->ale_cdata.ale_tx_cmb_paddr =
773 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
774 
775 	for (i = 0; i < ALE_RX_PAGES; i++) {
776 		/*
777 		 * Create DMA stuffs for Rx CMB.
778 		 */
779 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
780 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
781 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
782 		if (error) {
783 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
784 			return ENOBUFS;
785 		}
786 
787 		/* Allocate DMA'able memory for Rx CMB */
788 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
789 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
790 		    &nsegs, BUS_DMA_WAITOK);
791 		if (error) {
792 			printf("%s: could not allocate DMA'able memory for "
793 			    "Rx CMB\n", device_xname(sc->sc_dev));
794 			return error;
795 		}
796 		error = bus_dmamem_map(sc->sc_dmat,
797 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
798 		    ALE_RX_CMB_SZ,
799 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
800 		    BUS_DMA_NOWAIT);
801 		if (error)
802 			return ENOBUFS;
803 
804 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
805 
806 		/* Load the DMA map for Rx CMB */
807 		error = bus_dmamap_load(sc->sc_dmat,
808 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
809 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
810 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
811 		if (error) {
812 			printf("%s: could not load DMA'able memory for Rx CMB"
813 			    "\n", device_xname(sc->sc_dev));
814 			bus_dmamem_free(sc->sc_dmat,
815 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
816 			return error;
817 		}
818 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
819 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
820 	}
821 
822 
823 	/* Create DMA maps for Tx buffers. */
824 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
825 		txd = &sc->ale_cdata.ale_txdesc[i];
826 		txd->tx_m = NULL;
827 		txd->tx_dmamap = NULL;
828 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
829 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
830 		    &txd->tx_dmamap);
831 		if (error) {
832 			txd->tx_dmamap = NULL;
833 			printf("%s: could not create Tx dmamap.\n",
834 			    device_xname(sc->sc_dev));
835 			return error;
836 		}
837 	}
838 
839 	return 0;
840 }
841 
842 static void
843 ale_dma_free(struct ale_softc *sc)
844 {
845 	struct ale_txdesc *txd;
846 	int i;
847 
848 	/* Tx buffers. */
849 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
850 		txd = &sc->ale_cdata.ale_txdesc[i];
851 		if (txd->tx_dmamap != NULL) {
852 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
853 			txd->tx_dmamap = NULL;
854 		}
855 	}
856 
857 	/* Tx descriptor ring. */
858 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
859 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
860 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
861 	    sc->ale_cdata.ale_tx_ring != NULL)
862 		bus_dmamem_free(sc->sc_dmat,
863 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
864 	sc->ale_cdata.ale_tx_ring = NULL;
865 	sc->ale_cdata.ale_tx_ring_map = NULL;
866 
867 	/* Rx page block. */
868 	for (i = 0; i < ALE_RX_PAGES; i++) {
869 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
870 			bus_dmamap_unload(sc->sc_dmat,
871 			    sc->ale_cdata.ale_rx_page[i].page_map);
872 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
873 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
874 			bus_dmamem_free(sc->sc_dmat,
875 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
876 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
877 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
878 	}
879 
880 	/* Rx CMB. */
881 	for (i = 0; i < ALE_RX_PAGES; i++) {
882 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
883 			bus_dmamap_unload(sc->sc_dmat,
884 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
885 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
886 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
887 			bus_dmamem_free(sc->sc_dmat,
888 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
889 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
890 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
891 	}
892 
893 	/* Tx CMB. */
894 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
895 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
896 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
897 	    sc->ale_cdata.ale_tx_cmb != NULL)
898 		bus_dmamem_free(sc->sc_dmat,
899 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
900 	sc->ale_cdata.ale_tx_cmb = NULL;
901 	sc->ale_cdata.ale_tx_cmb_map = NULL;
902 
903 }
904 
905 static int
906 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
907 {
908 	struct ale_txdesc *txd, *txd_last;
909 	struct tx_desc *desc;
910 	struct mbuf *m;
911 	bus_dmamap_t map;
912 	uint32_t cflags, poff, vtag;
913 	int error, i, nsegs, prod;
914 #if NVLAN > 0
915 	struct m_tag *mtag;
916 #endif
917 
918 	m = *m_head;
919 	cflags = vtag = 0;
920 	poff = 0;
921 
922 	prod = sc->ale_cdata.ale_tx_prod;
923 	txd = &sc->ale_cdata.ale_txdesc[prod];
924 	txd_last = txd;
925 	map = txd->tx_dmamap;
926 
927 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
928 	if (error == EFBIG) {
929 		error = 0;
930 
931 		*m_head = m_pullup(*m_head, MHLEN);
932 		if (*m_head == NULL) {
933 			printf("%s: can't defrag TX mbuf\n",
934 			    device_xname(sc->sc_dev));
935 			return ENOBUFS;
936 		}
937 
938 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
939 		    BUS_DMA_NOWAIT);
940 
941 		if (error != 0) {
942 			printf("%s: could not load defragged TX mbuf\n",
943 			    device_xname(sc->sc_dev));
944 			m_freem(*m_head);
945 			*m_head = NULL;
946 			return error;
947 		}
948 	} else if (error) {
949 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
950 		return error;
951 	}
952 
953 	nsegs = map->dm_nsegs;
954 
955 	if (nsegs == 0) {
956 		m_freem(*m_head);
957 		*m_head = NULL;
958 		return EIO;
959 	}
960 
961 	/* Check descriptor overrun. */
962 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
963 		bus_dmamap_unload(sc->sc_dmat, map);
964 		return ENOBUFS;
965 	}
966 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
967 	    BUS_DMASYNC_PREWRITE);
968 
969 	m = *m_head;
970 	/* Configure Tx checksum offload. */
971 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
972 		/*
973 		 * AR81xx supports Tx custom checksum offload feature
974 		 * that offloads single 16bit checksum computation.
975 		 * So you can choose one among IP, TCP and UDP.
976 		 * Normally driver sets checksum start/insertion
977 		 * position from the information of TCP/UDP frame as
978 		 * TCP/UDP checksum takes more time than that of IP.
979 		 * However it seems that custom checksum offload
980 		 * requires 4 bytes aligned Tx buffers due to hardware
981 		 * bug.
982 		 * AR81xx also supports explicit Tx checksum computation
983 		 * if it is told that the size of IP header and TCP
984 		 * header(for UDP, the header size does not matter
985 		 * because it's fixed length). However with this scheme
986 		 * TSO does not work so you have to choose one either
987 		 * TSO or explicit Tx checksum offload. I chosen TSO
988 		 * plus custom checksum offload with work-around which
989 		 * will cover most common usage for this consumer
990 		 * ethernet controller. The work-around takes a lot of
991 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
992 		 * boundary, though.
993 		 */
994 		cflags |= ALE_TD_CXSUM;
995 		/* Set checksum start offset. */
996 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
997 	}
998 
999 #if NVLAN > 0
1000 	/* Configure VLAN hardware tag insertion. */
1001 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1002 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1003 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1004 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1005 	}
1006 #endif
1007 
1008 	desc = NULL;
1009 	for (i = 0; i < nsegs; i++) {
1010 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1011 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1012 		desc->len =
1013 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1014 		desc->flags = htole32(cflags);
1015 		sc->ale_cdata.ale_tx_cnt++;
1016 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1017 	}
1018 	/* Update producer index. */
1019 	sc->ale_cdata.ale_tx_prod = prod;
1020 
1021 	/* Finally set EOP on the last descriptor. */
1022 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1023 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1024 	desc->flags |= htole32(ALE_TD_EOP);
1025 
1026 	/* Swap dmamap of the first and the last. */
1027 	txd = &sc->ale_cdata.ale_txdesc[prod];
1028 	map = txd_last->tx_dmamap;
1029 	txd_last->tx_dmamap = txd->tx_dmamap;
1030 	txd->tx_dmamap = map;
1031 	txd->tx_m = m;
1032 
1033 	/* Sync descriptors. */
1034 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1035 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1036 
1037 	return 0;
1038 }
1039 
1040 static void
1041 ale_start(struct ifnet *ifp)
1042 {
1043         struct ale_softc *sc = ifp->if_softc;
1044 	struct mbuf *m_head;
1045 	int enq;
1046 
1047 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1048 		return;
1049 
1050 	/* Reclaim transmitted frames. */
1051 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1052 		ale_txeof(sc);
1053 
1054 	enq = 0;
1055 	for (;;) {
1056 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1057 		if (m_head == NULL)
1058 			break;
1059 
1060 		/*
1061 		 * Pack the data into the transmit ring. If we
1062 		 * don't have room, set the OACTIVE flag and wait
1063 		 * for the NIC to drain the ring.
1064 		 */
1065 		if (ale_encap(sc, &m_head)) {
1066 			if (m_head == NULL)
1067 				break;
1068 			IF_PREPEND(&ifp->if_snd, m_head);
1069 			ifp->if_flags |= IFF_OACTIVE;
1070 			break;
1071 		}
1072 		enq = 1;
1073 
1074 		/*
1075 		 * If there's a BPF listener, bounce a copy of this frame
1076 		 * to him.
1077 		 */
1078 		bpf_mtap(ifp, m_head);
1079 	}
1080 
1081 	if (enq) {
1082 		/* Kick. */
1083 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1084 		    sc->ale_cdata.ale_tx_prod);
1085 
1086 		/* Set a timeout in case the chip goes out to lunch. */
1087 		ifp->if_timer = ALE_TX_TIMEOUT;
1088 	}
1089 }
1090 
1091 static void
1092 ale_watchdog(struct ifnet *ifp)
1093 {
1094 	struct ale_softc *sc = ifp->if_softc;
1095 
1096 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1097 		printf("%s: watchdog timeout (missed link)\n",
1098 		    device_xname(sc->sc_dev));
1099 		ifp->if_oerrors++;
1100 		ale_init(ifp);
1101 		return;
1102 	}
1103 
1104 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1105 	ifp->if_oerrors++;
1106 	ale_init(ifp);
1107 
1108 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1109 		ale_start(ifp);
1110 }
1111 
1112 static int
1113 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1114 {
1115 	struct ale_softc *sc = ifp->if_softc;
1116 	int s, error;
1117 
1118 	s = splnet();
1119 
1120 	error = ether_ioctl(ifp, cmd, data);
1121 	if (error == ENETRESET) {
1122 		if (ifp->if_flags & IFF_RUNNING)
1123 			ale_rxfilter(sc);
1124 		error = 0;
1125 	}
1126 
1127 	splx(s);
1128 	return error;
1129 }
1130 
1131 static void
1132 ale_mac_config(struct ale_softc *sc)
1133 {
1134 	struct mii_data *mii;
1135 	uint32_t reg;
1136 
1137 	mii = &sc->sc_miibus;
1138 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1139 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1140 	    MAC_CFG_SPEED_MASK);
1141 
1142 	/* Reprogram MAC with resolved speed/duplex. */
1143 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1144 	case IFM_10_T:
1145 	case IFM_100_TX:
1146 		reg |= MAC_CFG_SPEED_10_100;
1147 		break;
1148 	case IFM_1000_T:
1149 		reg |= MAC_CFG_SPEED_1000;
1150 		break;
1151 	}
1152 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1153 		reg |= MAC_CFG_FULL_DUPLEX;
1154 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1155 			reg |= MAC_CFG_TX_FC;
1156 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1157 			reg |= MAC_CFG_RX_FC;
1158 	}
1159 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1160 }
1161 
1162 static void
1163 ale_stats_clear(struct ale_softc *sc)
1164 {
1165 	struct smb sb;
1166 	uint32_t *reg;
1167 	int i;
1168 
1169 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1170 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1171 		i += sizeof(uint32_t);
1172 	}
1173 	/* Read Tx statistics. */
1174 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1175 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1176 		i += sizeof(uint32_t);
1177 	}
1178 }
1179 
1180 static void
1181 ale_stats_update(struct ale_softc *sc)
1182 {
1183 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1184 	struct ale_hw_stats *stat;
1185 	struct smb sb, *smb;
1186 	uint32_t *reg;
1187 	int i;
1188 
1189 	stat = &sc->ale_stats;
1190 	smb = &sb;
1191 
1192 	/* Read Rx statistics. */
1193 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1194 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1195 		i += sizeof(uint32_t);
1196 	}
1197 	/* Read Tx statistics. */
1198 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1199 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1200 		i += sizeof(uint32_t);
1201 	}
1202 
1203 	/* Rx stats. */
1204 	stat->rx_frames += smb->rx_frames;
1205 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1206 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1207 	stat->rx_pause_frames += smb->rx_pause_frames;
1208 	stat->rx_control_frames += smb->rx_control_frames;
1209 	stat->rx_crcerrs += smb->rx_crcerrs;
1210 	stat->rx_lenerrs += smb->rx_lenerrs;
1211 	stat->rx_bytes += smb->rx_bytes;
1212 	stat->rx_runts += smb->rx_runts;
1213 	stat->rx_fragments += smb->rx_fragments;
1214 	stat->rx_pkts_64 += smb->rx_pkts_64;
1215 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1216 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1217 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1218 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1219 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1220 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1221 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1222 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1223 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1224 	stat->rx_alignerrs += smb->rx_alignerrs;
1225 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1226 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1227 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1228 
1229 	/* Tx stats. */
1230 	stat->tx_frames += smb->tx_frames;
1231 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1232 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1233 	stat->tx_pause_frames += smb->tx_pause_frames;
1234 	stat->tx_excess_defer += smb->tx_excess_defer;
1235 	stat->tx_control_frames += smb->tx_control_frames;
1236 	stat->tx_deferred += smb->tx_deferred;
1237 	stat->tx_bytes += smb->tx_bytes;
1238 	stat->tx_pkts_64 += smb->tx_pkts_64;
1239 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1240 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1241 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1242 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1243 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1244 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1245 	stat->tx_single_colls += smb->tx_single_colls;
1246 	stat->tx_multi_colls += smb->tx_multi_colls;
1247 	stat->tx_late_colls += smb->tx_late_colls;
1248 	stat->tx_excess_colls += smb->tx_excess_colls;
1249 	stat->tx_abort += smb->tx_abort;
1250 	stat->tx_underrun += smb->tx_underrun;
1251 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1252 	stat->tx_lenerrs += smb->tx_lenerrs;
1253 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1254 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1255 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1256 
1257 	/* Update counters in ifnet. */
1258 	ifp->if_opackets += smb->tx_frames;
1259 
1260 	ifp->if_collisions += smb->tx_single_colls +
1261 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1262 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1263 
1264 	/*
1265 	 * XXX
1266 	 * tx_pkts_truncated counter looks suspicious. It constantly
1267 	 * increments with no sign of Tx errors. This may indicate
1268 	 * the counter name is not correct one so I've removed the
1269 	 * counter in output errors.
1270 	 */
1271 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1272 	    smb->tx_underrun;
1273 
1274 	ifp->if_ipackets += smb->rx_frames;
1275 
1276 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1277 	    smb->rx_runts + smb->rx_pkts_truncated +
1278 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1279 	    smb->rx_alignerrs;
1280 }
1281 
1282 static int
1283 ale_intr(void *xsc)
1284 {
1285 	struct ale_softc *sc = xsc;
1286 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1287 	uint32_t status;
1288 
1289 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1290 	if ((status & ALE_INTRS) == 0)
1291 		return 0;
1292 
1293 	/* Acknowledge and disable interrupts. */
1294 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1295 
1296 	if (ifp->if_flags & IFF_RUNNING) {
1297 		int error;
1298 
1299 		error = ale_rxeof(sc);
1300 		if (error) {
1301 			sc->ale_stats.reset_brk_seq++;
1302 			ale_init(ifp);
1303 			return 0;
1304 		}
1305 
1306 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1307 			if (status & INTR_DMA_RD_TO_RST)
1308 				printf("%s: DMA read error! -- resetting\n",
1309 				    device_xname(sc->sc_dev));
1310 			if (status & INTR_DMA_WR_TO_RST)
1311 				printf("%s: DMA write error! -- resetting\n",
1312 				    device_xname(sc->sc_dev));
1313 			ale_init(ifp);
1314 			return 0;
1315 		}
1316 
1317 		ale_txeof(sc);
1318 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1319 			ale_start(ifp);
1320 	}
1321 
1322 	/* Re-enable interrupts. */
1323 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1324 	return 1;
1325 }
1326 
1327 static void
1328 ale_txeof(struct ale_softc *sc)
1329 {
1330 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1331 	struct ale_txdesc *txd;
1332 	uint32_t cons, prod;
1333 	int prog;
1334 
1335 	if (sc->ale_cdata.ale_tx_cnt == 0)
1336 		return;
1337 
1338 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1339 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1340 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1341 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1342 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1343 		    BUS_DMASYNC_POSTREAD);
1344 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1345 	} else
1346 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1347 	cons = sc->ale_cdata.ale_tx_cons;
1348 	/*
1349 	 * Go through our Tx list and free mbufs for those
1350 	 * frames which have been transmitted.
1351 	 */
1352 	for (prog = 0; cons != prod; prog++,
1353 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1354 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1355 			break;
1356 		prog++;
1357 		ifp->if_flags &= ~IFF_OACTIVE;
1358 		sc->ale_cdata.ale_tx_cnt--;
1359 		txd = &sc->ale_cdata.ale_txdesc[cons];
1360 		if (txd->tx_m != NULL) {
1361 			/* Reclaim transmitted mbufs. */
1362 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1363 			m_freem(txd->tx_m);
1364 			txd->tx_m = NULL;
1365 		}
1366 	}
1367 
1368 	if (prog > 0) {
1369 		sc->ale_cdata.ale_tx_cons = cons;
1370 		/*
1371 		 * Unarm watchdog timer only when there is no pending
1372 		 * Tx descriptors in queue.
1373 		 */
1374 		if (sc->ale_cdata.ale_tx_cnt == 0)
1375 			ifp->if_timer = 0;
1376 	}
1377 }
1378 
1379 static void
1380 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1381     uint32_t length, uint32_t *prod)
1382 {
1383 	struct ale_rx_page *rx_page;
1384 
1385 	rx_page = *page;
1386 	/* Update consumer position. */
1387 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1388 	    ALE_RX_PAGE_ALIGN);
1389 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1390 		/*
1391 		 * End of Rx page reached, let hardware reuse
1392 		 * this page.
1393 		 */
1394 		rx_page->cons = 0;
1395 		*rx_page->cmb_addr = 0;
1396 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1397 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1398 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1399 		    RXF_VALID);
1400 		/* Switch to alternate Rx page. */
1401 		sc->ale_cdata.ale_rx_curp ^= 1;
1402 		rx_page = *page =
1403 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1404 		/* Page flipped, sync CMB and Rx page. */
1405 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1406 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1407 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1408 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 		/* Sync completed, cache updated producer index. */
1410 		*prod = *rx_page->cmb_addr;
1411 	}
1412 }
1413 
1414 
1415 /*
1416  * It seems that AR81xx controller can compute partial checksum.
1417  * The partial checksum value can be used to accelerate checksum
1418  * computation for fragmented TCP/UDP packets. Upper network stack
1419  * already takes advantage of the partial checksum value in IP
1420  * reassembly stage. But I'm not sure the correctness of the
1421  * partial hardware checksum assistance due to lack of data sheet.
1422  * In addition, the Rx feature of controller that requires copying
1423  * for every frames effectively nullifies one of most nice offload
1424  * capability of controller.
1425  */
1426 static void
1427 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1428 {
1429 	if (status & ALE_RD_IPCSUM_NOK)
1430 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1431 
1432 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1433 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1434 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1435 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1436 		{
1437 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1438 		}
1439 	} else {
1440 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1441 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1442 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1443 			}
1444 		}
1445 	}
1446 	/*
1447 	 * Don't mark bad checksum for TCP/UDP frames
1448 	 * as fragmented frames may always have set
1449 	 * bad checksummed bit of frame status.
1450 	 */
1451 }
1452 
1453 /* Process received frames. */
1454 static int
1455 ale_rxeof(struct ale_softc *sc)
1456 {
1457 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1458 	struct ale_rx_page *rx_page;
1459 	struct rx_rs *rs;
1460 	struct mbuf *m;
1461 	uint32_t length, prod, seqno, status;
1462 	int prog;
1463 
1464 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1465 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1466 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1467 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1468 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1469 	/*
1470 	 * Don't directly access producer index as hardware may
1471 	 * update it while Rx handler is in progress. It would
1472 	 * be even better if there is a way to let hardware
1473 	 * know how far driver processed its received frames.
1474 	 * Alternatively, hardware could provide a way to disable
1475 	 * CMB updates until driver acknowledges the end of CMB
1476 	 * access.
1477 	 */
1478 	prod = *rx_page->cmb_addr;
1479 	for (prog = 0; ; prog++) {
1480 		if (rx_page->cons >= prod)
1481 			break;
1482 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1483 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1484 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1485 			/*
1486 			 * Normally I believe this should not happen unless
1487 			 * severe driver bug or corrupted memory. However
1488 			 * it seems to happen under certain conditions which
1489 			 * is triggered by abrupt Rx events such as initiation
1490 			 * of bulk transfer of remote host. It's not easy to
1491 			 * reproduce this and I doubt it could be related
1492 			 * with FIFO overflow of hardware or activity of Tx
1493 			 * CMB updates. I also remember similar behaviour
1494 			 * seen on RealTek 8139 which uses resembling Rx
1495 			 * scheme.
1496 			 */
1497 			if (aledebug)
1498 				printf("%s: garbled seq: %u, expected: %u -- "
1499 				    "resetting!\n", device_xname(sc->sc_dev),
1500 				    seqno, sc->ale_cdata.ale_rx_seqno);
1501 			return EIO;
1502 		}
1503 		/* Frame received. */
1504 		sc->ale_cdata.ale_rx_seqno++;
1505 		length = ALE_RX_BYTES(le32toh(rs->length));
1506 		status = le32toh(rs->flags);
1507 		if (status & ALE_RD_ERROR) {
1508 			/*
1509 			 * We want to pass the following frames to upper
1510 			 * layer regardless of error status of Rx return
1511 			 * status.
1512 			 *
1513 			 *  o IP/TCP/UDP checksum is bad.
1514 			 *  o frame length and protocol specific length
1515 			 *     does not match.
1516 			 */
1517 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1518 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1519 			    ALE_RD_TRUNC)) {
1520 				ale_rx_update_page(sc, &rx_page, length, &prod);
1521 				continue;
1522 			}
1523 		}
1524 		/*
1525 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1526 		 * from hardware limitation). For jumbo frames we could
1527 		 * get a slightly better performance if driver use
1528 		 * m_getjcl(9) with proper buffer size argument. However
1529 		 * that would make code more complicated and I don't
1530 		 * think users would expect good Rx performance numbers
1531 		 * on these low-end consumer ethernet controller.
1532 		 */
1533 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1534 		    0, ifp, NULL);
1535 		if (m == NULL) {
1536 			ifp->if_iqdrops++;
1537 			ale_rx_update_page(sc, &rx_page, length, &prod);
1538 			continue;
1539 		}
1540 		if (status & ALE_RD_IPV4)
1541 			ale_rxcsum(sc, m, status);
1542 #if NVLAN > 0
1543 		if (status & ALE_RD_VLAN) {
1544 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1545 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1546 		}
1547 #endif
1548 
1549 
1550 		bpf_mtap(ifp, m);
1551 
1552 		/* Pass it to upper layer. */
1553 		(*ifp->if_input)(ifp, m);
1554 
1555 		ale_rx_update_page(sc, &rx_page, length, &prod);
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 static void
1562 ale_tick(void *xsc)
1563 {
1564 	struct ale_softc *sc = xsc;
1565 	struct mii_data *mii = &sc->sc_miibus;
1566 	int s;
1567 
1568 	s = splnet();
1569 	mii_tick(mii);
1570 	ale_stats_update(sc);
1571 	splx(s);
1572 
1573 	callout_schedule(&sc->sc_tick_ch, hz);
1574 }
1575 
1576 static void
1577 ale_reset(struct ale_softc *sc)
1578 {
1579 	uint32_t reg;
1580 	int i;
1581 
1582 	/* Initialize PCIe module. From Linux. */
1583 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1584 
1585 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1586 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1587 		DELAY(10);
1588 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1589 			break;
1590 	}
1591 	if (i == 0)
1592 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1593 
1594 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1595 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1596 			break;
1597 		DELAY(10);
1598 	}
1599 
1600 	if (i == 0)
1601 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1602 		    reg);
1603 }
1604 
1605 static int
1606 ale_init(struct ifnet *ifp)
1607 {
1608 	struct ale_softc *sc = ifp->if_softc;
1609 	struct mii_data *mii;
1610 	uint8_t eaddr[ETHER_ADDR_LEN];
1611 	bus_addr_t paddr;
1612 	uint32_t reg, rxf_hi, rxf_lo;
1613 
1614 	/*
1615 	 * Cancel any pending I/O.
1616 	 */
1617 	ale_stop(ifp, 0);
1618 
1619 	/*
1620 	 * Reset the chip to a known state.
1621 	 */
1622 	ale_reset(sc);
1623 
1624 	/* Initialize Tx descriptors, DMA memory blocks. */
1625 	ale_init_rx_pages(sc);
1626 	ale_init_tx_ring(sc);
1627 
1628 	/* Reprogram the station address. */
1629 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1630 	CSR_WRITE_4(sc, ALE_PAR0,
1631 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1632 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1633 
1634 	/*
1635 	 * Clear WOL status and disable all WOL feature as WOL
1636 	 * would interfere Rx operation under normal environments.
1637 	 */
1638 	CSR_READ_4(sc, ALE_WOL_CFG);
1639 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1640 
1641 	/*
1642 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1643 	 * the same high address part of DMAable region.
1644 	 */
1645 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1646 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1647 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1648 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1649 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1650 
1651 	/* Set Rx page base address, note we use single queue. */
1652 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1653 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1654 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1655 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1656 
1657 	/* Set Tx/Rx CMB addresses. */
1658 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1659 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1660 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1661 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1662 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1663 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1664 
1665 	/* Mark RXF0 is valid. */
1666 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1667 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1668 	/*
1669 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1670 	 * multi-queue yet.
1671 	 */
1672 
1673 	/* Set Rx page size, excluding guard frame size. */
1674 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1675 
1676 	/* Tell hardware that we're ready to load DMA blocks. */
1677 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1678 
1679 	/* Set Rx/Tx interrupt trigger threshold. */
1680 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1681 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1682 	/*
1683 	 * XXX
1684 	 * Set interrupt trigger timer, its purpose and relation
1685 	 * with interrupt moderation mechanism is not clear yet.
1686 	 */
1687 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1688 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1689 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1690 
1691 	/* Configure interrupt moderation timer. */
1692 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1693 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1694 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1695 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1696 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1697 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1698 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1699 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1700 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1701 		reg |= MASTER_IM_RX_TIMER_ENB;
1702 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1703 		reg |= MASTER_IM_TX_TIMER_ENB;
1704 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1705 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1706 
1707 	/* Set Maximum frame size of controller. */
1708 	if (ifp->if_mtu < ETHERMTU)
1709 		sc->ale_max_frame_size = ETHERMTU;
1710 	else
1711 		sc->ale_max_frame_size = ifp->if_mtu;
1712 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1713 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1714 
1715 	/* Configure IPG/IFG parameters. */
1716 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1717 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1718 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1719 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1720 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1721 
1722 	/* Set parameters for half-duplex media. */
1723 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1724 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1725 	    HDPX_CFG_LCOL_MASK) |
1726 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1727 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1728 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1729 	    HDPX_CFG_ABEBT_MASK) |
1730 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1731 	    HDPX_CFG_JAMIPG_MASK));
1732 
1733 	/* Configure Tx jumbo frame parameters. */
1734 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1735 		if (ifp->if_mtu < ETHERMTU)
1736 			reg = sc->ale_max_frame_size;
1737 		else if (ifp->if_mtu < 6 * 1024)
1738 			reg = (sc->ale_max_frame_size * 2) / 3;
1739 		else
1740 			reg = sc->ale_max_frame_size / 2;
1741 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1742 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1743 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1744 	}
1745 
1746 	/* Configure TxQ. */
1747 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1748 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1749 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1750 	    TXQ_CFG_TPD_BURST_MASK;
1751 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1752 
1753 	/* Configure Rx jumbo frame & flow control parameters. */
1754 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1755 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1756 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1757 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1758 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1759 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1760 		    RX_JUMBO_LKAH_MASK));
1761 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1762 		rxf_hi = (reg * 7) / 10;
1763 		rxf_lo = (reg * 3)/ 10;
1764 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1765 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1766 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1767 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1768 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1769 	}
1770 
1771 	/* Disable RSS. */
1772 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1773 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1774 
1775 	/* Configure RxQ. */
1776 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1777 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1778 
1779 	/* Configure DMA parameters. */
1780 	reg = 0;
1781 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1782 		reg |= DMA_CFG_TXCMB_ENB;
1783 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1784 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1785 	    sc->ale_dma_rd_burst | reg |
1786 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1787 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1788 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1789 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1790 	    DMA_CFG_WR_DELAY_CNT_MASK));
1791 
1792 	/*
1793 	 * Hardware can be configured to issue SMB interrupt based
1794 	 * on programmed interval. Since there is a callout that is
1795 	 * invoked for every hz in driver we use that instead of
1796 	 * relying on periodic SMB interrupt.
1797 	 */
1798 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1799 
1800 	/* Clear MAC statistics. */
1801 	ale_stats_clear(sc);
1802 
1803 	/*
1804 	 * Configure Tx/Rx MACs.
1805 	 *  - Auto-padding for short frames.
1806 	 *  - Enable CRC generation.
1807 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1808 	 *  is followed after detection of link establishment.
1809 	 *  AR81xx always does checksum computation regardless of
1810 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1811 	 *  cause Rx handling issue for fragmented IP datagrams due
1812 	 *  to silicon bug.
1813 	 */
1814 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1815 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1816 	    MAC_CFG_PREAMBLE_MASK);
1817 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1818 		reg |= MAC_CFG_SPEED_10_100;
1819 	else
1820 		reg |= MAC_CFG_SPEED_1000;
1821 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1822 
1823 	/* Set up the receive filter. */
1824 	ale_rxfilter(sc);
1825 	ale_rxvlan(sc);
1826 
1827 	/* Acknowledge all pending interrupts and clear it. */
1828 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1829 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1830 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1831 
1832 	sc->ale_flags &= ~ALE_FLAG_LINK;
1833 
1834 	/* Switch to the current media. */
1835 	mii = &sc->sc_miibus;
1836 	mii_mediachg(mii);
1837 
1838 	callout_schedule(&sc->sc_tick_ch, hz);
1839 
1840 	ifp->if_flags |= IFF_RUNNING;
1841 	ifp->if_flags &= ~IFF_OACTIVE;
1842 
1843 	return 0;
1844 }
1845 
1846 static void
1847 ale_stop(struct ifnet *ifp, int disable)
1848 {
1849 	struct ale_softc *sc = ifp->if_softc;
1850 	struct ale_txdesc *txd;
1851 	uint32_t reg;
1852 	int i;
1853 
1854 	callout_stop(&sc->sc_tick_ch);
1855 
1856 	/*
1857 	 * Mark the interface down and cancel the watchdog timer.
1858 	 */
1859 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1860 	ifp->if_timer = 0;
1861 
1862 	sc->ale_flags &= ~ALE_FLAG_LINK;
1863 
1864 	ale_stats_update(sc);
1865 
1866 	mii_down(&sc->sc_miibus);
1867 
1868 	/* Disable interrupts. */
1869 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1870 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1871 
1872 	/* Disable queue processing and DMA. */
1873 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1874 	reg &= ~TXQ_CFG_ENB;
1875 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1876 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1877 	reg &= ~RXQ_CFG_ENB;
1878 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1879 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1880 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1881 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1882 	DELAY(1000);
1883 
1884 	/* Stop Rx/Tx MACs. */
1885 	ale_stop_mac(sc);
1886 
1887 	/* Disable interrupts again? XXX */
1888 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1889 
1890 	/*
1891 	 * Free TX mbufs still in the queues.
1892 	 */
1893 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1894 		txd = &sc->ale_cdata.ale_txdesc[i];
1895 		if (txd->tx_m != NULL) {
1896 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1897 			m_freem(txd->tx_m);
1898 			txd->tx_m = NULL;
1899 		}
1900         }
1901 }
1902 
1903 static void
1904 ale_stop_mac(struct ale_softc *sc)
1905 {
1906 	uint32_t reg;
1907 	int i;
1908 
1909 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1910 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1911 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1912 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1913 	}
1914 
1915 	for (i = ALE_TIMEOUT; i > 0; i--) {
1916 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1917 		if (reg == 0)
1918 			break;
1919 		DELAY(10);
1920 	}
1921 	if (i == 0)
1922 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1923 		    device_xname(sc->sc_dev), reg);
1924 }
1925 
1926 static void
1927 ale_init_tx_ring(struct ale_softc *sc)
1928 {
1929 	struct ale_txdesc *txd;
1930 	int i;
1931 
1932 	sc->ale_cdata.ale_tx_prod = 0;
1933 	sc->ale_cdata.ale_tx_cons = 0;
1934 	sc->ale_cdata.ale_tx_cnt = 0;
1935 
1936 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1937 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1938 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1939 		txd = &sc->ale_cdata.ale_txdesc[i];
1940 		txd->tx_m = NULL;
1941 	}
1942 	*sc->ale_cdata.ale_tx_cmb = 0;
1943 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1944 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1945 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1946 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1947 }
1948 
1949 static void
1950 ale_init_rx_pages(struct ale_softc *sc)
1951 {
1952 	struct ale_rx_page *rx_page;
1953 	int i;
1954 
1955 	sc->ale_cdata.ale_rx_seqno = 0;
1956 	sc->ale_cdata.ale_rx_curp = 0;
1957 
1958 	for (i = 0; i < ALE_RX_PAGES; i++) {
1959 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1960 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1961 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1962 		rx_page->cons = 0;
1963 		*rx_page->cmb_addr = 0;
1964 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1965 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1966 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1967 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1968 	}
1969 }
1970 
1971 static void
1972 ale_rxvlan(struct ale_softc *sc)
1973 {
1974 	uint32_t reg;
1975 
1976 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1977 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1978 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1979 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1980 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1981 }
1982 
1983 static void
1984 ale_rxfilter(struct ale_softc *sc)
1985 {
1986 	struct ethercom *ec = &sc->sc_ec;
1987 	struct ifnet *ifp = &ec->ec_if;
1988 	struct ether_multi *enm;
1989 	struct ether_multistep step;
1990 	uint32_t crc;
1991 	uint32_t mchash[2];
1992 	uint32_t rxcfg;
1993 
1994 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1995 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1996 	ifp->if_flags &= ~IFF_ALLMULTI;
1997 
1998 	/*
1999 	 * Always accept broadcast frames.
2000 	 */
2001 	rxcfg |= MAC_CFG_BCAST;
2002 
2003 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2004 		ifp->if_flags |= IFF_ALLMULTI;
2005 		if (ifp->if_flags & IFF_PROMISC)
2006 			rxcfg |= MAC_CFG_PROMISC;
2007 		else
2008 			rxcfg |= MAC_CFG_ALLMULTI;
2009 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2010 	} else {
2011 		/* Program new filter. */
2012 		memset(mchash, 0, sizeof(mchash));
2013 
2014 		ETHER_FIRST_MULTI(step, ec, enm);
2015 		while (enm != NULL) {
2016 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2017 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2018 			ETHER_NEXT_MULTI(step, enm);
2019 		}
2020 	}
2021 
2022 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2023 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2024 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2025 }
2026