xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 93bf6008f8b7982c1d1a9486e4a4a0e687fe36eb)
1 /*-
2  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
28  */
29 
30 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 
48 #include <sys/bus.h>
49 
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_llc.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 
56 #ifdef INET
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #endif
62 
63 #include <net/if_types.h>
64 #include <net/if_vlanvar.h>
65 
66 #if NBPFILTER > 0
67 #include <net/bpf.h>
68 #endif
69 
70 #include <sys/rnd.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 static int	ale_match(device_t, cfdata_t, void *);
82 static void	ale_attach(device_t, device_t, void *);
83 static int	ale_detach(device_t, int);
84 
85 static int	ale_miibus_readreg(device_t, int, int);
86 static void	ale_miibus_writereg(device_t, int, int, int);
87 static void	ale_miibus_statchg(device_t);
88 
89 static int	ale_init(struct ifnet *);
90 static void	ale_start(struct ifnet *);
91 static int	ale_ioctl(struct ifnet *, u_long, void *);
92 static void	ale_watchdog(struct ifnet *);
93 static int	ale_mediachange(struct ifnet *);
94 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
95 
96 static int	ale_intr(void *);
97 static int	ale_rxeof(struct ale_softc *sc);
98 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 		    uint32_t, uint32_t *);
100 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void	ale_txeof(struct ale_softc *);
102 
103 static int	ale_dma_alloc(struct ale_softc *);
104 static void	ale_dma_free(struct ale_softc *);
105 static int	ale_encap(struct ale_softc *, struct mbuf **);
106 static void	ale_init_rx_pages(struct ale_softc *);
107 static void	ale_init_tx_ring(struct ale_softc *);
108 
109 static void	ale_stop(struct ifnet *, int);
110 static void	ale_tick(void *);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_mac_config(struct ale_softc *);
113 static void	ale_phy_reset(struct ale_softc *);
114 static void	ale_reset(struct ale_softc *);
115 static void	ale_rxfilter(struct ale_softc *);
116 static void	ale_rxvlan(struct ale_softc *);
117 static void	ale_stats_clear(struct ale_softc *);
118 static void	ale_stats_update(struct ale_softc *);
119 static void	ale_stop_mac(struct ale_softc *);
120 
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 	ale_match, ale_attach, ale_detach, NULL);
123 
124 int aledebug = 0;
125 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
126 
127 #define ETHER_ALIGN 2
128 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
129 
130 static int
131 ale_miibus_readreg(device_t dev, int phy, int reg)
132 {
133 	struct ale_softc *sc = device_private(dev);
134 	uint32_t v;
135 	int i;
136 
137 	if (phy != sc->ale_phyaddr)
138 		return 0;
139 
140 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
141 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
142 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
143 		DELAY(5);
144 		v = CSR_READ_4(sc, ALE_MDIO);
145 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
146 			break;
147 	}
148 
149 	if (i == 0) {
150 		printf("%s: phy read timeout: phy %d, reg %d\n",
151 		    device_xname(sc->sc_dev), phy, reg);
152 		return 0;
153 	}
154 
155 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
156 }
157 
158 static void
159 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
160 {
161 	struct ale_softc *sc = device_private(dev);
162 	uint32_t v;
163 	int i;
164 
165 	if (phy != sc->ale_phyaddr)
166 		return;
167 
168 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
169 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
170 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
171 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
172 		DELAY(5);
173 		v = CSR_READ_4(sc, ALE_MDIO);
174 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
175 			break;
176 	}
177 
178 	if (i == 0)
179 		printf("%s: phy write timeout: phy %d, reg %d\n",
180 		    device_xname(sc->sc_dev), phy, reg);
181 }
182 
183 static void
184 ale_miibus_statchg(device_t dev)
185 {
186 	struct ale_softc *sc = device_private(dev);
187 	struct ifnet *ifp = &sc->sc_ec.ec_if;
188 	struct mii_data *mii;
189 	uint32_t reg;
190 
191 	if ((ifp->if_flags & IFF_RUNNING) == 0)
192 		return;
193 
194 	mii = &sc->sc_miibus;
195 
196 	sc->ale_flags &= ~ALE_FLAG_LINK;
197 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
198 	    (IFM_ACTIVE | IFM_AVALID)) {
199 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
200 		case IFM_10_T:
201 		case IFM_100_TX:
202 			sc->ale_flags |= ALE_FLAG_LINK;
203 			break;
204 
205 		case IFM_1000_T:
206 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
207 				sc->ale_flags |= ALE_FLAG_LINK;
208 			break;
209 
210 		default:
211 			break;
212 		}
213 	}
214 
215 	/* Stop Rx/Tx MACs. */
216 	ale_stop_mac(sc);
217 
218 	/* Program MACs with resolved speed/duplex/flow-control. */
219 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
220 		ale_mac_config(sc);
221 		/* Reenable Tx/Rx MACs. */
222 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
223 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
224 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
225 	}
226 }
227 
228 void
229 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
230 {
231 	struct ale_softc *sc = ifp->if_softc;
232 	struct mii_data *mii = &sc->sc_miibus;
233 
234 	mii_pollstat(mii);
235 	ifmr->ifm_status = mii->mii_media_status;
236 	ifmr->ifm_active = mii->mii_media_active;
237 }
238 
239 int
240 ale_mediachange(struct ifnet *ifp)
241 {
242 	struct ale_softc *sc = ifp->if_softc;
243 	struct mii_data *mii = &sc->sc_miibus;
244 	int error;
245 
246 	if (mii->mii_instance != 0) {
247 		struct mii_softc *miisc;
248 
249 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
250 			mii_phy_reset(miisc);
251 	}
252 	error = mii_mediachg(mii);
253 
254 	return error;
255 }
256 
257 int
258 ale_match(device_t dev, cfdata_t match, void *aux)
259 {
260 	struct pci_attach_args *pa = aux;
261 
262 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
263 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
264 }
265 
266 void
267 ale_get_macaddr(struct ale_softc *sc)
268 {
269 	uint32_t ea[2], reg;
270 	int i, vpdc;
271 
272 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
273 	if ((reg & SPI_VPD_ENB) != 0) {
274 		reg &= ~SPI_VPD_ENB;
275 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
276 	}
277 
278 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
279 	    &vpdc, NULL)) {
280 		/*
281 		 * PCI VPD capability found, let TWSI reload EEPROM.
282 		 * This will set ethernet address of controller.
283 		 */
284 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
285 		    TWSI_CTRL_SW_LD_START);
286 		for (i = 100; i > 0; i--) {
287 			DELAY(1000);
288 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
289 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
290 				break;
291 		}
292 		if (i == 0)
293 			printf("%s: reloading EEPROM timeout!\n",
294 			    device_xname(sc->sc_dev));
295 	} else {
296 		if (aledebug)
297 			printf("%s: PCI VPD capability not found!\n",
298 			    device_xname(sc->sc_dev));
299 	}
300 
301 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
302 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
303 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
304 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
305 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
306 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
307 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
308 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
309 }
310 
311 void
312 ale_phy_reset(struct ale_softc *sc)
313 {
314 	/* Reset magic from Linux. */
315 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
316 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
317 	    GPHY_CTRL_PHY_PLL_ON);
318 	DELAY(1000);
319 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
320 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
321 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
322 	DELAY(1000);
323 
324 #define	ATPHY_DBG_ADDR		0x1D
325 #define	ATPHY_DBG_DATA		0x1E
326 
327 	/* Enable hibernation mode. */
328 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
329 	    ATPHY_DBG_ADDR, 0x0B);
330 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
331 	    ATPHY_DBG_DATA, 0xBC00);
332 	/* Set Class A/B for all modes. */
333 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 	    ATPHY_DBG_ADDR, 0x00);
335 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 	    ATPHY_DBG_DATA, 0x02EF);
337 	/* Enable 10BT power saving. */
338 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 	    ATPHY_DBG_ADDR, 0x12);
340 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 	    ATPHY_DBG_DATA, 0x4C04);
342 	/* Adjust 1000T power. */
343 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 	    ATPHY_DBG_ADDR, 0x04);
345 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 	    ATPHY_DBG_ADDR, 0x8BBB);
347 	/* 10BT center tap voltage. */
348 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 	    ATPHY_DBG_ADDR, 0x05);
350 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 	    ATPHY_DBG_ADDR, 0x2C46);
352 
353 #undef	ATPHY_DBG_ADDR
354 #undef	ATPHY_DBG_DATA
355 	DELAY(1000);
356 }
357 
358 void
359 ale_attach(device_t parent, device_t self, void *aux)
360 {
361 	struct ale_softc *sc = device_private(self);
362 	struct pci_attach_args *pa = aux;
363 	pci_chipset_tag_t pc = pa->pa_pc;
364 	pci_intr_handle_t ih;
365 	const char *intrstr;
366 	struct ifnet *ifp;
367 	pcireg_t memtype;
368 	int error = 0;
369 	uint32_t rxf_len, txf_len;
370 
371 	aprint_naive("\n");
372 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
373 
374 	sc->sc_dev = self;
375 	sc->sc_dmat = pa->pa_dmat;
376 	sc->sc_pct = pa->pa_pc;
377 	sc->sc_pcitag = pa->pa_tag;
378 
379 	/*
380 	 * Allocate IO memory
381 	 */
382 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
383 	switch (memtype) {
384 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
385 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
386 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
387 		break;
388 	default:
389 		aprint_error_dev(self, "invalid base address register\n");
390 		break;
391 	}
392 
393 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
394 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
395 		aprint_error_dev(self, "could not map mem space\n");
396 		return;
397 	}
398 
399 	if (pci_intr_map(pa, &ih) != 0) {
400 		aprint_error_dev(self, "could not map interrupt\n");
401 		goto fail;
402 	}
403 
404 	/*
405 	 * Allocate IRQ
406 	 */
407 	intrstr = pci_intr_string(sc->sc_pct, ih);
408 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
409 	if (sc->sc_irq_handle == NULL) {
410 		aprint_error_dev(self, "could not establish interrupt");
411 		if (intrstr != NULL)
412 			aprint_error(" at %s", intrstr);
413 		aprint_error("\n");
414 		goto fail;
415 	}
416 	aprint_normal_dev(self, "%s\n", intrstr);
417 
418 	/* Set PHY address. */
419 	sc->ale_phyaddr = ALE_PHY_ADDR;
420 
421 	/* Reset PHY. */
422 	ale_phy_reset(sc);
423 
424 	/* Reset the ethernet controller. */
425 	ale_reset(sc);
426 
427 	/* Get PCI and chip id/revision. */
428 	sc->ale_rev = PCI_REVISION(pa->pa_class);
429 	if (sc->ale_rev >= 0xF0) {
430 		/* L2E Rev. B. AR8114 */
431 		sc->ale_flags |= ALE_FLAG_FASTETHER;
432 	} else {
433 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
434 			/* L1E AR8121 */
435 			sc->ale_flags |= ALE_FLAG_JUMBO;
436 		} else {
437 			/* L2E Rev. A. AR8113 */
438 			sc->ale_flags |= ALE_FLAG_FASTETHER;
439 		}
440 	}
441 
442 	/*
443 	 * All known controllers seems to require 4 bytes alignment
444 	 * of Tx buffers to make Tx checksum offload with custom
445 	 * checksum generation method work.
446 	 */
447 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
448 
449 	/*
450 	 * All known controllers seems to have issues on Rx checksum
451 	 * offload for fragmented IP datagrams.
452 	 */
453 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
454 
455 	/*
456 	 * Don't use Tx CMB. It is known to cause RRS update failure
457 	 * under certain circumstances. Typical phenomenon of the
458 	 * issue would be unexpected sequence number encountered in
459 	 * Rx handler.
460 	 */
461 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
462 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
463 	    MASTER_CHIP_REV_SHIFT;
464 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
465 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
466 
467 	/*
468 	 * Uninitialized hardware returns an invalid chip id/revision
469 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
470 	 */
471 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
472 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
473 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
474 	    rxf_len == 0xFFFFFFF) {
475 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
476 		    "%u Rx FIFO -- not initialized?\n",
477 		    sc->ale_chip_rev, txf_len, rxf_len);
478 		goto fail;
479 	}
480 
481 	if (aledebug) {
482 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
483 		    txf_len, rxf_len);
484 	}
485 
486 	/* Set max allowable DMA size. */
487 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
488 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
489 
490 	callout_init(&sc->sc_tick_ch, 0);
491 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
492 
493 	error = ale_dma_alloc(sc);
494 	if (error)
495 		goto fail;
496 
497 	/* Load station address. */
498 	ale_get_macaddr(sc);
499 
500 	aprint_normal_dev(self, "Ethernet address %s\n",
501 	    ether_sprintf(sc->ale_eaddr));
502 
503 	ifp = &sc->sc_ec.ec_if;
504 	ifp->if_softc = sc;
505 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
506 	ifp->if_init = ale_init;
507 	ifp->if_ioctl = ale_ioctl;
508 	ifp->if_start = ale_start;
509 	ifp->if_stop = ale_stop;
510 	ifp->if_watchdog = ale_watchdog;
511 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
512 	IFQ_SET_READY(&ifp->if_snd);
513 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
514 
515 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
516 
517 #ifdef ALE_CHECKSUM
518 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
519 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
520 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
521 #endif
522 
523 #if NVLAN > 0
524 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
525 #endif
526 
527 	/* Set up MII bus. */
528 	sc->sc_miibus.mii_ifp = ifp;
529 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
530 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
531 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
532 
533 	sc->sc_ec.ec_mii = &sc->sc_miibus;
534 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
535 	    ale_mediastatus);
536 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
537 	    MII_OFFSET_ANY, 0);
538 
539 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
540 		aprint_error_dev(self, "no PHY found!\n");
541 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
542 		    0, NULL);
543 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
544 	} else
545 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
546 
547 	if_attach(ifp);
548 	ether_ifattach(ifp, sc->ale_eaddr);
549 
550 	if (!pmf_device_register(self, NULL, NULL))
551 		aprint_error_dev(self, "couldn't establish power handler\n");
552 	else
553 		pmf_class_network_register(self, ifp);
554 
555 	return;
556 fail:
557 	ale_dma_free(sc);
558 	if (sc->sc_irq_handle != NULL) {
559 		pci_intr_disestablish(pc, sc->sc_irq_handle);
560 		sc->sc_irq_handle = NULL;
561 	}
562 	if (sc->sc_mem_size) {
563 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
564 		sc->sc_mem_size = 0;
565 	}
566 }
567 
568 static int
569 ale_detach(device_t self, int flags)
570 {
571 	struct ale_softc *sc = device_private(self);
572 	struct ifnet *ifp = &sc->sc_ec.ec_if;
573 	int s;
574 
575 	s = splnet();
576 	ale_stop(ifp, 0);
577 	splx(s);
578 
579 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
580 
581 	/* Delete all remaining media. */
582 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
583 
584 	ether_ifdetach(ifp);
585 	if_detach(ifp);
586 	ale_dma_free(sc);
587 
588 	if (sc->sc_irq_handle != NULL) {
589 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
590 		sc->sc_irq_handle = NULL;
591 	}
592 	if (sc->sc_mem_size) {
593 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
594 		sc->sc_mem_size = 0;
595 	}
596 
597 	return 0;
598 }
599 
600 
601 static int
602 ale_dma_alloc(struct ale_softc *sc)
603 {
604 	struct ale_txdesc *txd;
605 	int nsegs, error, guard_size, i;
606 
607 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
608 		guard_size = ALE_JUMBO_FRAMELEN;
609 	else
610 		guard_size = ALE_MAX_FRAMELEN;
611 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
612 	    ALE_RX_PAGE_ALIGN);
613 
614 	/*
615 	 * Create DMA stuffs for TX ring
616 	 */
617 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
618 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
619 	if (error) {
620 		sc->ale_cdata.ale_tx_ring_map = NULL;
621 		return ENOBUFS;
622 	}
623 
624 	/* Allocate DMA'able memory for TX ring */
625 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
626 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
627 	    &nsegs, BUS_DMA_WAITOK);
628 	if (error) {
629 		printf("%s: could not allocate DMA'able memory for Tx ring, "
630 		    "error = %i\n", device_xname(sc->sc_dev), error);
631 		return error;
632 	}
633 
634 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
635 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
636 	    BUS_DMA_NOWAIT);
637 	if (error)
638 		return ENOBUFS;
639 
640 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
641 
642 	/* Load the DMA map for Tx ring. */
643 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
644 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
645 	if (error) {
646 		printf("%s: could not load DMA'able memory for Tx ring.\n",
647 		    device_xname(sc->sc_dev));
648 		bus_dmamem_free(sc->sc_dmat,
649 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
650 		return error;
651 	}
652 	sc->ale_cdata.ale_tx_ring_paddr =
653 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
654 
655 	for (i = 0; i < ALE_RX_PAGES; i++) {
656 		/*
657 		 * Create DMA stuffs for RX pages
658 		 */
659 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
660 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
661 		    &sc->ale_cdata.ale_rx_page[i].page_map);
662 		if (error) {
663 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
664 			return ENOBUFS;
665 		}
666 
667 		/* Allocate DMA'able memory for RX pages */
668 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
669 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
670 		    1, &nsegs, BUS_DMA_WAITOK);
671 		if (error) {
672 			printf("%s: could not allocate DMA'able memory for "
673 			    "Rx ring.\n", device_xname(sc->sc_dev));
674 			return error;
675 		}
676 		error = bus_dmamem_map(sc->sc_dmat,
677 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
678 		    sc->ale_pagesize,
679 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
680 		    BUS_DMA_NOWAIT);
681 		if (error)
682 			return ENOBUFS;
683 
684 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
685 		    sc->ale_pagesize);
686 
687 		/* Load the DMA map for Rx pages. */
688 		error = bus_dmamap_load(sc->sc_dmat,
689 		    sc->ale_cdata.ale_rx_page[i].page_map,
690 		    sc->ale_cdata.ale_rx_page[i].page_addr,
691 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
692 		if (error) {
693 			printf("%s: could not load DMA'able memory for "
694 			    "Rx pages.\n", device_xname(sc->sc_dev));
695 			bus_dmamem_free(sc->sc_dmat,
696 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
697 			return error;
698 		}
699 		sc->ale_cdata.ale_rx_page[i].page_paddr =
700 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
701 	}
702 
703 	/*
704 	 * Create DMA stuffs for Tx CMB.
705 	 */
706 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
707 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
708 	if (error) {
709 		sc->ale_cdata.ale_tx_cmb_map = NULL;
710 		return ENOBUFS;
711 	}
712 
713 	/* Allocate DMA'able memory for Tx CMB. */
714 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
715 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
716 
717 	if (error) {
718 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
719 		    device_xname(sc->sc_dev));
720 		return error;
721 	}
722 
723 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
724 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
725 	    BUS_DMA_NOWAIT);
726 	if (error)
727 		return ENOBUFS;
728 
729 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
730 
731 	/* Load the DMA map for Tx CMB. */
732 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
733 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
734 	if (error) {
735 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
736 		    device_xname(sc->sc_dev));
737 		bus_dmamem_free(sc->sc_dmat,
738 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
739 		return error;
740 	}
741 
742 	sc->ale_cdata.ale_tx_cmb_paddr =
743 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
744 
745 	for (i = 0; i < ALE_RX_PAGES; i++) {
746 		/*
747 		 * Create DMA stuffs for Rx CMB.
748 		 */
749 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
750 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
751 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
752 		if (error) {
753 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
754 			return ENOBUFS;
755 		}
756 
757 		/* Allocate DMA'able memory for Rx CMB */
758 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
759 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
760 		    &nsegs, BUS_DMA_WAITOK);
761 		if (error) {
762 			printf("%s: could not allocate DMA'able memory for "
763 			    "Rx CMB\n", device_xname(sc->sc_dev));
764 			return error;
765 		}
766 		error = bus_dmamem_map(sc->sc_dmat,
767 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
768 		    ALE_RX_CMB_SZ,
769 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
770 		    BUS_DMA_NOWAIT);
771 		if (error)
772 			return ENOBUFS;
773 
774 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
775 
776 		/* Load the DMA map for Rx CMB */
777 		error = bus_dmamap_load(sc->sc_dmat,
778 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
779 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
780 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
781 		if (error) {
782 			printf("%s: could not load DMA'able memory for Rx CMB"
783 			    "\n", device_xname(sc->sc_dev));
784 			bus_dmamem_free(sc->sc_dmat,
785 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
786 			return error;
787 		}
788 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
789 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
790 	}
791 
792 
793 	/* Create DMA maps for Tx buffers. */
794 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
795 		txd = &sc->ale_cdata.ale_txdesc[i];
796 		txd->tx_m = NULL;
797 		txd->tx_dmamap = NULL;
798 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
799 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
800 		    &txd->tx_dmamap);
801 		if (error) {
802 			txd->tx_dmamap = NULL;
803 			printf("%s: could not create Tx dmamap.\n",
804 			    device_xname(sc->sc_dev));
805 			return error;
806 		}
807 	}
808 
809 	return 0;
810 }
811 
812 static void
813 ale_dma_free(struct ale_softc *sc)
814 {
815 	struct ale_txdesc *txd;
816 	int i;
817 
818 	/* Tx buffers. */
819 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
820 		txd = &sc->ale_cdata.ale_txdesc[i];
821 		if (txd->tx_dmamap != NULL) {
822 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
823 			txd->tx_dmamap = NULL;
824 		}
825 	}
826 
827 	/* Tx descriptor ring. */
828 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
829 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
830 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
831 	    sc->ale_cdata.ale_tx_ring != NULL)
832 		bus_dmamem_free(sc->sc_dmat,
833 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
834 	sc->ale_cdata.ale_tx_ring = NULL;
835 	sc->ale_cdata.ale_tx_ring_map = NULL;
836 
837 	/* Rx page block. */
838 	for (i = 0; i < ALE_RX_PAGES; i++) {
839 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
840 			bus_dmamap_unload(sc->sc_dmat,
841 			    sc->ale_cdata.ale_rx_page[i].page_map);
842 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
843 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
844 			bus_dmamem_free(sc->sc_dmat,
845 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
846 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
847 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
848 	}
849 
850 	/* Rx CMB. */
851 	for (i = 0; i < ALE_RX_PAGES; i++) {
852 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
853 			bus_dmamap_unload(sc->sc_dmat,
854 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
855 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
856 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
857 			bus_dmamem_free(sc->sc_dmat,
858 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
859 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
860 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
861 	}
862 
863 	/* Tx CMB. */
864 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
865 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
866 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
867 	    sc->ale_cdata.ale_tx_cmb != NULL)
868 		bus_dmamem_free(sc->sc_dmat,
869 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
870 	sc->ale_cdata.ale_tx_cmb = NULL;
871 	sc->ale_cdata.ale_tx_cmb_map = NULL;
872 
873 }
874 
875 static int
876 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
877 {
878 	struct ale_txdesc *txd, *txd_last;
879 	struct tx_desc *desc;
880 	struct mbuf *m;
881 	bus_dmamap_t map;
882 	uint32_t cflags, poff, vtag;
883 	int error, i, nsegs, prod;
884 #if NVLAN > 0
885 	struct m_tag *mtag;
886 #endif
887 
888 	m = *m_head;
889 	cflags = vtag = 0;
890 	poff = 0;
891 
892 	prod = sc->ale_cdata.ale_tx_prod;
893 	txd = &sc->ale_cdata.ale_txdesc[prod];
894 	txd_last = txd;
895 	map = txd->tx_dmamap;
896 
897 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
898 	if (error == EFBIG) {
899 		error = 0;
900 
901 		MGETHDR(m, M_DONTWAIT, MT_DATA);
902 		if (m == NULL) {
903 			printf("%s: can't defrag TX mbuf\n",
904 			    device_xname(sc->sc_dev));
905 			m_freem(*m_head);
906 			*m_head = NULL;
907 			return ENOBUFS;
908 		}
909 
910 		M_COPY_PKTHDR(m, *m_head);
911 		if ((*m_head)->m_pkthdr.len > MHLEN) {
912 			MCLGET(m, M_DONTWAIT);
913 			if (!(m->m_flags & M_EXT)) {
914 				m_freem(*m_head);
915 				m_freem(m);
916 				*m_head = NULL;
917 				return ENOBUFS;
918 			}
919 		}
920 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
921 		    mtod(m, void *));
922 		m_freem(*m_head);
923 		m->m_len = m->m_pkthdr.len;
924 		*m_head = m;
925 
926 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
927 		    BUS_DMA_NOWAIT);
928 
929 		if (error != 0) {
930 			printf("%s: could not load defragged TX mbuf\n",
931 			    device_xname(sc->sc_dev));
932 			if (!error) {
933 				bus_dmamap_unload(sc->sc_dmat, map);
934 				error = EFBIG;
935 			}
936 			m_freem(*m_head);
937 			*m_head = NULL;
938 			return error;
939 		}
940 	} else if (error) {
941 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
942 		return error;
943 	}
944 
945 	nsegs = map->dm_nsegs;
946 
947 	if (nsegs == 0) {
948 		m_freem(*m_head);
949 		*m_head = NULL;
950 		return EIO;
951 	}
952 
953 	/* Check descriptor overrun. */
954 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
955 		bus_dmamap_unload(sc->sc_dmat, map);
956 		return ENOBUFS;
957 	}
958 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
959 	    BUS_DMASYNC_PREWRITE);
960 
961 	m = *m_head;
962 	/* Configure Tx checksum offload. */
963 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
964 		/*
965 		 * AR81xx supports Tx custom checksum offload feature
966 		 * that offloads single 16bit checksum computation.
967 		 * So you can choose one among IP, TCP and UDP.
968 		 * Normally driver sets checksum start/insertion
969 		 * position from the information of TCP/UDP frame as
970 		 * TCP/UDP checksum takes more time than that of IP.
971 		 * However it seems that custom checksum offload
972 		 * requires 4 bytes aligned Tx buffers due to hardware
973 		 * bug.
974 		 * AR81xx also supports explicit Tx checksum computation
975 		 * if it is told that the size of IP header and TCP
976 		 * header(for UDP, the header size does not matter
977 		 * because it's fixed length). However with this scheme
978 		 * TSO does not work so you have to choose one either
979 		 * TSO or explicit Tx checksum offload. I chosen TSO
980 		 * plus custom checksum offload with work-around which
981 		 * will cover most common usage for this consumer
982 		 * ethernet controller. The work-around takes a lot of
983 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
984 		 * boundary, though.
985 		 */
986 		cflags |= ALE_TD_CXSUM;
987 		/* Set checksum start offset. */
988 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
989 	}
990 
991 #if NVLAN > 0
992 	/* Configure VLAN hardware tag insertion. */
993 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
994 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
995 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
996 		cflags |= ALE_TD_INSERT_VLAN_TAG;
997 	}
998 #endif
999 
1000 	desc = NULL;
1001 	for (i = 0; i < nsegs; i++) {
1002 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1003 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1004 		desc->len =
1005 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1006 		desc->flags = htole32(cflags);
1007 		sc->ale_cdata.ale_tx_cnt++;
1008 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1009 	}
1010 	/* Update producer index. */
1011 	sc->ale_cdata.ale_tx_prod = prod;
1012 
1013 	/* Finally set EOP on the last descriptor. */
1014 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1015 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1016 	desc->flags |= htole32(ALE_TD_EOP);
1017 
1018 	/* Swap dmamap of the first and the last. */
1019 	txd = &sc->ale_cdata.ale_txdesc[prod];
1020 	map = txd_last->tx_dmamap;
1021 	txd_last->tx_dmamap = txd->tx_dmamap;
1022 	txd->tx_dmamap = map;
1023 	txd->tx_m = m;
1024 
1025 	/* Sync descriptors. */
1026 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1027 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1028 
1029 	return 0;
1030 }
1031 
1032 static void
1033 ale_start(struct ifnet *ifp)
1034 {
1035         struct ale_softc *sc = ifp->if_softc;
1036 	struct mbuf *m_head;
1037 	int enq;
1038 
1039 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1040 		return;
1041 
1042 	/* Reclaim transmitted frames. */
1043 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1044 		ale_txeof(sc);
1045 
1046 	enq = 0;
1047 	for (;;) {
1048 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1049 		if (m_head == NULL)
1050 			break;
1051 
1052 		/*
1053 		 * Pack the data into the transmit ring. If we
1054 		 * don't have room, set the OACTIVE flag and wait
1055 		 * for the NIC to drain the ring.
1056 		 */
1057 		if (ale_encap(sc, &m_head)) {
1058 			if (m_head == NULL)
1059 				break;
1060 			ifp->if_flags |= IFF_OACTIVE;
1061 			break;
1062 		}
1063 		enq = 1;
1064 
1065 #if NBPFILTER > 0
1066 		/*
1067 		 * If there's a BPF listener, bounce a copy of this frame
1068 		 * to him.
1069 		 */
1070 		if (ifp->if_bpf != NULL)
1071 			bpf_mtap(ifp->if_bpf, m_head);
1072 #endif
1073 	}
1074 
1075 	if (enq) {
1076 		/* Kick. */
1077 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1078 		    sc->ale_cdata.ale_tx_prod);
1079 
1080 		/* Set a timeout in case the chip goes out to lunch. */
1081 		ifp->if_timer = ALE_TX_TIMEOUT;
1082 	}
1083 }
1084 
1085 static void
1086 ale_watchdog(struct ifnet *ifp)
1087 {
1088 	struct ale_softc *sc = ifp->if_softc;
1089 
1090 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1091 		printf("%s: watchdog timeout (missed link)\n",
1092 		    device_xname(sc->sc_dev));
1093 		ifp->if_oerrors++;
1094 		ale_init(ifp);
1095 		return;
1096 	}
1097 
1098 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1099 	ifp->if_oerrors++;
1100 	ale_init(ifp);
1101 
1102 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1103 		ale_start(ifp);
1104 }
1105 
1106 static int
1107 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1108 {
1109 	struct ale_softc *sc = ifp->if_softc;
1110 	int s, error;
1111 
1112 	s = splnet();
1113 
1114 	error = ether_ioctl(ifp, cmd, data);
1115 	if (error == ENETRESET) {
1116 		if (ifp->if_flags & IFF_RUNNING)
1117 			ale_rxfilter(sc);
1118 		error = 0;
1119 	}
1120 
1121 	splx(s);
1122 	return error;
1123 }
1124 
1125 static void
1126 ale_mac_config(struct ale_softc *sc)
1127 {
1128 	struct mii_data *mii;
1129 	uint32_t reg;
1130 
1131 	mii = &sc->sc_miibus;
1132 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1133 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1134 	    MAC_CFG_SPEED_MASK);
1135 
1136 	/* Reprogram MAC with resolved speed/duplex. */
1137 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1138 	case IFM_10_T:
1139 	case IFM_100_TX:
1140 		reg |= MAC_CFG_SPEED_10_100;
1141 		break;
1142 	case IFM_1000_T:
1143 		reg |= MAC_CFG_SPEED_1000;
1144 		break;
1145 	}
1146 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1147 		reg |= MAC_CFG_FULL_DUPLEX;
1148 #ifdef notyet
1149 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1150 			reg |= MAC_CFG_TX_FC;
1151 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1152 			reg |= MAC_CFG_RX_FC;
1153 #endif
1154 	}
1155 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1156 }
1157 
1158 static void
1159 ale_stats_clear(struct ale_softc *sc)
1160 {
1161 	struct smb sb;
1162 	uint32_t *reg;
1163 	int i;
1164 
1165 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1166 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1167 		i += sizeof(uint32_t);
1168 	}
1169 	/* Read Tx statistics. */
1170 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1171 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1172 		i += sizeof(uint32_t);
1173 	}
1174 }
1175 
1176 static void
1177 ale_stats_update(struct ale_softc *sc)
1178 {
1179 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1180 	struct ale_hw_stats *stat;
1181 	struct smb sb, *smb;
1182 	uint32_t *reg;
1183 	int i;
1184 
1185 	stat = &sc->ale_stats;
1186 	smb = &sb;
1187 
1188 	/* Read Rx statistics. */
1189 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1190 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1191 		i += sizeof(uint32_t);
1192 	}
1193 	/* Read Tx statistics. */
1194 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1195 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1196 		i += sizeof(uint32_t);
1197 	}
1198 
1199 	/* Rx stats. */
1200 	stat->rx_frames += smb->rx_frames;
1201 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1202 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1203 	stat->rx_pause_frames += smb->rx_pause_frames;
1204 	stat->rx_control_frames += smb->rx_control_frames;
1205 	stat->rx_crcerrs += smb->rx_crcerrs;
1206 	stat->rx_lenerrs += smb->rx_lenerrs;
1207 	stat->rx_bytes += smb->rx_bytes;
1208 	stat->rx_runts += smb->rx_runts;
1209 	stat->rx_fragments += smb->rx_fragments;
1210 	stat->rx_pkts_64 += smb->rx_pkts_64;
1211 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1212 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1213 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1214 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1215 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1216 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1217 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1218 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1219 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1220 	stat->rx_alignerrs += smb->rx_alignerrs;
1221 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1222 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1223 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1224 
1225 	/* Tx stats. */
1226 	stat->tx_frames += smb->tx_frames;
1227 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1228 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1229 	stat->tx_pause_frames += smb->tx_pause_frames;
1230 	stat->tx_excess_defer += smb->tx_excess_defer;
1231 	stat->tx_control_frames += smb->tx_control_frames;
1232 	stat->tx_deferred += smb->tx_deferred;
1233 	stat->tx_bytes += smb->tx_bytes;
1234 	stat->tx_pkts_64 += smb->tx_pkts_64;
1235 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1236 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1237 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1238 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1239 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1240 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1241 	stat->tx_single_colls += smb->tx_single_colls;
1242 	stat->tx_multi_colls += smb->tx_multi_colls;
1243 	stat->tx_late_colls += smb->tx_late_colls;
1244 	stat->tx_excess_colls += smb->tx_excess_colls;
1245 	stat->tx_abort += smb->tx_abort;
1246 	stat->tx_underrun += smb->tx_underrun;
1247 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1248 	stat->tx_lenerrs += smb->tx_lenerrs;
1249 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1250 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1251 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1252 
1253 	/* Update counters in ifnet. */
1254 	ifp->if_opackets += smb->tx_frames;
1255 
1256 	ifp->if_collisions += smb->tx_single_colls +
1257 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1258 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1259 
1260 	/*
1261 	 * XXX
1262 	 * tx_pkts_truncated counter looks suspicious. It constantly
1263 	 * increments with no sign of Tx errors. This may indicate
1264 	 * the counter name is not correct one so I've removed the
1265 	 * counter in output errors.
1266 	 */
1267 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1268 	    smb->tx_underrun;
1269 
1270 	ifp->if_ipackets += smb->rx_frames;
1271 
1272 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1273 	    smb->rx_runts + smb->rx_pkts_truncated +
1274 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1275 	    smb->rx_alignerrs;
1276 }
1277 
1278 static int
1279 ale_intr(void *xsc)
1280 {
1281 	struct ale_softc *sc = xsc;
1282 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1283 	uint32_t status;
1284 
1285 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1286 	if ((status & ALE_INTRS) == 0)
1287 		return 0;
1288 
1289 	/* Acknowledge and disable interrupts. */
1290 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1291 
1292 	if (ifp->if_flags & IFF_RUNNING) {
1293 		int error;
1294 
1295 		error = ale_rxeof(sc);
1296 		if (error) {
1297 			sc->ale_stats.reset_brk_seq++;
1298 			ale_init(ifp);
1299 			return 0;
1300 		}
1301 
1302 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1303 			if (status & INTR_DMA_RD_TO_RST)
1304 				printf("%s: DMA read error! -- resetting\n",
1305 				    device_xname(sc->sc_dev));
1306 			if (status & INTR_DMA_WR_TO_RST)
1307 				printf("%s: DMA write error! -- resetting\n",
1308 				    device_xname(sc->sc_dev));
1309 			ale_init(ifp);
1310 			return 0;
1311 		}
1312 
1313 		ale_txeof(sc);
1314 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1315 			ale_start(ifp);
1316 	}
1317 
1318 	/* Re-enable interrupts. */
1319 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1320 	return 1;
1321 }
1322 
1323 static void
1324 ale_txeof(struct ale_softc *sc)
1325 {
1326 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1327 	struct ale_txdesc *txd;
1328 	uint32_t cons, prod;
1329 	int prog;
1330 
1331 	if (sc->ale_cdata.ale_tx_cnt == 0)
1332 		return;
1333 
1334 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1335 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1336 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1337 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1338 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1339 		    BUS_DMASYNC_POSTREAD);
1340 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1341 	} else
1342 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1343 	cons = sc->ale_cdata.ale_tx_cons;
1344 	/*
1345 	 * Go through our Tx list and free mbufs for those
1346 	 * frames which have been transmitted.
1347 	 */
1348 	for (prog = 0; cons != prod; prog++,
1349 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1350 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1351 			break;
1352 		prog++;
1353 		ifp->if_flags &= ~IFF_OACTIVE;
1354 		sc->ale_cdata.ale_tx_cnt--;
1355 		txd = &sc->ale_cdata.ale_txdesc[cons];
1356 		if (txd->tx_m != NULL) {
1357 			/* Reclaim transmitted mbufs. */
1358 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1359 			m_freem(txd->tx_m);
1360 			txd->tx_m = NULL;
1361 		}
1362 	}
1363 
1364 	if (prog > 0) {
1365 		sc->ale_cdata.ale_tx_cons = cons;
1366 		/*
1367 		 * Unarm watchdog timer only when there is no pending
1368 		 * Tx descriptors in queue.
1369 		 */
1370 		if (sc->ale_cdata.ale_tx_cnt == 0)
1371 			ifp->if_timer = 0;
1372 	}
1373 }
1374 
1375 static void
1376 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1377     uint32_t length, uint32_t *prod)
1378 {
1379 	struct ale_rx_page *rx_page;
1380 
1381 	rx_page = *page;
1382 	/* Update consumer position. */
1383 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1384 	    ALE_RX_PAGE_ALIGN);
1385 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1386 		/*
1387 		 * End of Rx page reached, let hardware reuse
1388 		 * this page.
1389 		 */
1390 		rx_page->cons = 0;
1391 		*rx_page->cmb_addr = 0;
1392 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1393 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1394 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1395 		    RXF_VALID);
1396 		/* Switch to alternate Rx page. */
1397 		sc->ale_cdata.ale_rx_curp ^= 1;
1398 		rx_page = *page =
1399 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1400 		/* Page flipped, sync CMB and Rx page. */
1401 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1402 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1404 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1405 		/* Sync completed, cache updated producer index. */
1406 		*prod = *rx_page->cmb_addr;
1407 	}
1408 }
1409 
1410 
1411 /*
1412  * It seems that AR81xx controller can compute partial checksum.
1413  * The partial checksum value can be used to accelerate checksum
1414  * computation for fragmented TCP/UDP packets. Upper network stack
1415  * already takes advantage of the partial checksum value in IP
1416  * reassembly stage. But I'm not sure the correctness of the
1417  * partial hardware checksum assistance due to lack of data sheet.
1418  * In addition, the Rx feature of controller that requires copying
1419  * for every frames effectively nullifies one of most nice offload
1420  * capability of controller.
1421  */
1422 static void
1423 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1424 {
1425 	if (status & ALE_RD_IPCSUM_NOK)
1426 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1427 
1428 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1429 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1430 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1431 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1432 		{
1433 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1434 		}
1435 	} else {
1436 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1437 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1438 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1439 			}
1440 		}
1441 	}
1442 	/*
1443 	 * Don't mark bad checksum for TCP/UDP frames
1444 	 * as fragmented frames may always have set
1445 	 * bad checksummed bit of frame status.
1446 	 */
1447 }
1448 
1449 /* Process received frames. */
1450 static int
1451 ale_rxeof(struct ale_softc *sc)
1452 {
1453 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1454 	struct ale_rx_page *rx_page;
1455 	struct rx_rs *rs;
1456 	struct mbuf *m;
1457 	uint32_t length, prod, seqno, status;
1458 	int prog;
1459 
1460 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1461 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1462 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1463 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1464 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1465 	/*
1466 	 * Don't directly access producer index as hardware may
1467 	 * update it while Rx handler is in progress. It would
1468 	 * be even better if there is a way to let hardware
1469 	 * know how far driver processed its received frames.
1470 	 * Alternatively, hardware could provide a way to disable
1471 	 * CMB updates until driver acknowledges the end of CMB
1472 	 * access.
1473 	 */
1474 	prod = *rx_page->cmb_addr;
1475 	for (prog = 0; ; prog++) {
1476 		if (rx_page->cons >= prod)
1477 			break;
1478 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1479 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1480 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1481 			/*
1482 			 * Normally I believe this should not happen unless
1483 			 * severe driver bug or corrupted memory. However
1484 			 * it seems to happen under certain conditions which
1485 			 * is triggered by abrupt Rx events such as initiation
1486 			 * of bulk transfer of remote host. It's not easy to
1487 			 * reproduce this and I doubt it could be related
1488 			 * with FIFO overflow of hardware or activity of Tx
1489 			 * CMB updates. I also remember similar behaviour
1490 			 * seen on RealTek 8139 which uses resembling Rx
1491 			 * scheme.
1492 			 */
1493 			if (aledebug)
1494 				printf("%s: garbled seq: %u, expected: %u -- "
1495 				    "resetting!\n", device_xname(sc->sc_dev),
1496 				    seqno, sc->ale_cdata.ale_rx_seqno);
1497 			return EIO;
1498 		}
1499 		/* Frame received. */
1500 		sc->ale_cdata.ale_rx_seqno++;
1501 		length = ALE_RX_BYTES(le32toh(rs->length));
1502 		status = le32toh(rs->flags);
1503 		if (status & ALE_RD_ERROR) {
1504 			/*
1505 			 * We want to pass the following frames to upper
1506 			 * layer regardless of error status of Rx return
1507 			 * status.
1508 			 *
1509 			 *  o IP/TCP/UDP checksum is bad.
1510 			 *  o frame length and protocol specific length
1511 			 *     does not match.
1512 			 */
1513 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1514 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1515 			    ALE_RD_TRUNC)) {
1516 				ale_rx_update_page(sc, &rx_page, length, &prod);
1517 				continue;
1518 			}
1519 		}
1520 		/*
1521 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1522 		 * from hardware limitation). For jumbo frames we could
1523 		 * get a slightly better performance if driver use
1524 		 * m_getjcl(9) with proper buffer size argument. However
1525 		 * that would make code more complicated and I don't
1526 		 * think users would expect good Rx performance numbers
1527 		 * on these low-end consumer ethernet controller.
1528 		 */
1529 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1530 		    0, ifp, NULL);
1531 		if (m == NULL) {
1532 			ifp->if_iqdrops++;
1533 			ale_rx_update_page(sc, &rx_page, length, &prod);
1534 			continue;
1535 		}
1536 		if (status & ALE_RD_IPV4)
1537 			ale_rxcsum(sc, m, status);
1538 #if NVLAN > 0
1539 		if (status & ALE_RD_VLAN) {
1540 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1541 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1542 		}
1543 #endif
1544 
1545 
1546 #if NBPFILTER > 0
1547 		if (ifp->if_bpf)
1548 			bpf_mtap(ifp->if_bpf, m);
1549 #endif
1550 
1551 		/* Pass it to upper layer. */
1552 		ether_input(ifp, m);
1553 
1554 		ale_rx_update_page(sc, &rx_page, length, &prod);
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static void
1561 ale_tick(void *xsc)
1562 {
1563 	struct ale_softc *sc = xsc;
1564 	struct mii_data *mii = &sc->sc_miibus;
1565 	int s;
1566 
1567 	s = splnet();
1568 	mii_tick(mii);
1569 	ale_stats_update(sc);
1570 	splx(s);
1571 
1572 	callout_schedule(&sc->sc_tick_ch, hz);
1573 }
1574 
1575 static void
1576 ale_reset(struct ale_softc *sc)
1577 {
1578 	uint32_t reg;
1579 	int i;
1580 
1581 	/* Initialize PCIe module. From Linux. */
1582 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1583 
1584 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1585 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1586 		DELAY(10);
1587 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1588 			break;
1589 	}
1590 	if (i == 0)
1591 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1592 
1593 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1594 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1595 			break;
1596 		DELAY(10);
1597 	}
1598 
1599 	if (i == 0)
1600 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 		    reg);
1602 }
1603 
1604 static int
1605 ale_init(struct ifnet *ifp)
1606 {
1607 	struct ale_softc *sc = ifp->if_softc;
1608 	struct mii_data *mii;
1609 	uint8_t eaddr[ETHER_ADDR_LEN];
1610 	bus_addr_t paddr;
1611 	uint32_t reg, rxf_hi, rxf_lo;
1612 
1613 	/*
1614 	 * Cancel any pending I/O.
1615 	 */
1616 	ale_stop(ifp, 0);
1617 
1618 	/*
1619 	 * Reset the chip to a known state.
1620 	 */
1621 	ale_reset(sc);
1622 
1623 	/* Initialize Tx descriptors, DMA memory blocks. */
1624 	ale_init_rx_pages(sc);
1625 	ale_init_tx_ring(sc);
1626 
1627 	/* Reprogram the station address. */
1628 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1629 	CSR_WRITE_4(sc, ALE_PAR0,
1630 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1631 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1632 
1633 	/*
1634 	 * Clear WOL status and disable all WOL feature as WOL
1635 	 * would interfere Rx operation under normal environments.
1636 	 */
1637 	CSR_READ_4(sc, ALE_WOL_CFG);
1638 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1639 
1640 	/*
1641 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1642 	 * the same high address part of DMAable region.
1643 	 */
1644 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1645 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1646 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1647 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1648 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1649 
1650 	/* Set Rx page base address, note we use single queue. */
1651 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1652 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1653 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1654 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1655 
1656 	/* Set Tx/Rx CMB addresses. */
1657 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1658 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1659 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1660 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1661 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1662 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1663 
1664 	/* Mark RXF0 is valid. */
1665 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1666 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1667 	/*
1668 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1669 	 * multi-queue yet.
1670 	 */
1671 
1672 	/* Set Rx page size, excluding guard frame size. */
1673 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1674 
1675 	/* Tell hardware that we're ready to load DMA blocks. */
1676 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677 
1678 	/* Set Rx/Tx interrupt trigger threshold. */
1679 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1680 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1681 	/*
1682 	 * XXX
1683 	 * Set interrupt trigger timer, its purpose and relation
1684 	 * with interrupt moderation mechanism is not clear yet.
1685 	 */
1686 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1687 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1688 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1689 
1690 	/* Configure interrupt moderation timer. */
1691 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1692 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1693 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1694 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1695 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1696 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1697 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1698 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1699 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1700 		reg |= MASTER_IM_RX_TIMER_ENB;
1701 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1702 		reg |= MASTER_IM_TX_TIMER_ENB;
1703 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1704 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1705 
1706 	/* Set Maximum frame size of controller. */
1707 	if (ifp->if_mtu < ETHERMTU)
1708 		sc->ale_max_frame_size = ETHERMTU;
1709 	else
1710 		sc->ale_max_frame_size = ifp->if_mtu;
1711 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1712 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1713 
1714 	/* Configure IPG/IFG parameters. */
1715 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1716 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1717 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1718 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1719 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1720 
1721 	/* Set parameters for half-duplex media. */
1722 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1723 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1724 	    HDPX_CFG_LCOL_MASK) |
1725 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1726 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1727 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1728 	    HDPX_CFG_ABEBT_MASK) |
1729 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1730 	    HDPX_CFG_JAMIPG_MASK));
1731 
1732 	/* Configure Tx jumbo frame parameters. */
1733 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1734 		if (ifp->if_mtu < ETHERMTU)
1735 			reg = sc->ale_max_frame_size;
1736 		else if (ifp->if_mtu < 6 * 1024)
1737 			reg = (sc->ale_max_frame_size * 2) / 3;
1738 		else
1739 			reg = sc->ale_max_frame_size / 2;
1740 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1741 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1742 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1743 	}
1744 
1745 	/* Configure TxQ. */
1746 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1747 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1748 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1749 	    TXQ_CFG_TPD_BURST_MASK;
1750 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1751 
1752 	/* Configure Rx jumbo frame & flow control parameters. */
1753 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1754 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1755 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1756 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1757 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1758 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1759 		    RX_JUMBO_LKAH_MASK));
1760 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1761 		rxf_hi = (reg * 7) / 10;
1762 		rxf_lo = (reg * 3)/ 10;
1763 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1764 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1765 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1766 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1767 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1768 	}
1769 
1770 	/* Disable RSS. */
1771 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1772 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1773 
1774 	/* Configure RxQ. */
1775 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1776 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1777 
1778 	/* Configure DMA parameters. */
1779 	reg = 0;
1780 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1781 		reg |= DMA_CFG_TXCMB_ENB;
1782 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1783 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1784 	    sc->ale_dma_rd_burst | reg |
1785 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1786 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1787 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1788 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1789 	    DMA_CFG_WR_DELAY_CNT_MASK));
1790 
1791 	/*
1792 	 * Hardware can be configured to issue SMB interrupt based
1793 	 * on programmed interval. Since there is a callout that is
1794 	 * invoked for every hz in driver we use that instead of
1795 	 * relying on periodic SMB interrupt.
1796 	 */
1797 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1798 
1799 	/* Clear MAC statistics. */
1800 	ale_stats_clear(sc);
1801 
1802 	/*
1803 	 * Configure Tx/Rx MACs.
1804 	 *  - Auto-padding for short frames.
1805 	 *  - Enable CRC generation.
1806 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1807 	 *  is followed after detection of link establishment.
1808 	 *  AR81xx always does checksum computation regardless of
1809 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1810 	 *  cause Rx handling issue for fragmented IP datagrams due
1811 	 *  to silicon bug.
1812 	 */
1813 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1814 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1815 	    MAC_CFG_PREAMBLE_MASK);
1816 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1817 		reg |= MAC_CFG_SPEED_10_100;
1818 	else
1819 		reg |= MAC_CFG_SPEED_1000;
1820 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1821 
1822 	/* Set up the receive filter. */
1823 	ale_rxfilter(sc);
1824 	ale_rxvlan(sc);
1825 
1826 	/* Acknowledge all pending interrupts and clear it. */
1827 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1828 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1829 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1830 
1831 	sc->ale_flags &= ~ALE_FLAG_LINK;
1832 
1833 	/* Switch to the current media. */
1834 	mii = &sc->sc_miibus;
1835 	mii_mediachg(mii);
1836 
1837 	callout_schedule(&sc->sc_tick_ch, hz);
1838 
1839 	ifp->if_flags |= IFF_RUNNING;
1840 	ifp->if_flags &= ~IFF_OACTIVE;
1841 
1842 	return 0;
1843 }
1844 
1845 static void
1846 ale_stop(struct ifnet *ifp, int disable)
1847 {
1848 	struct ale_softc *sc = ifp->if_softc;
1849 	struct ale_txdesc *txd;
1850 	uint32_t reg;
1851 	int i;
1852 
1853 	callout_stop(&sc->sc_tick_ch);
1854 
1855 	/*
1856 	 * Mark the interface down and cancel the watchdog timer.
1857 	 */
1858 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 	ifp->if_timer = 0;
1860 
1861 	sc->ale_flags &= ~ALE_FLAG_LINK;
1862 
1863 	ale_stats_update(sc);
1864 
1865 	mii_down(&sc->sc_miibus);
1866 
1867 	/* Disable interrupts. */
1868 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1869 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1870 
1871 	/* Disable queue processing and DMA. */
1872 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1873 	reg &= ~TXQ_CFG_ENB;
1874 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1875 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1876 	reg &= ~RXQ_CFG_ENB;
1877 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1878 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1879 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1880 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1881 	DELAY(1000);
1882 
1883 	/* Stop Rx/Tx MACs. */
1884 	ale_stop_mac(sc);
1885 
1886 	/* Disable interrupts again? XXX */
1887 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1888 
1889 	/*
1890 	 * Free TX mbufs still in the queues.
1891 	 */
1892 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1893 		txd = &sc->ale_cdata.ale_txdesc[i];
1894 		if (txd->tx_m != NULL) {
1895 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1896 			m_freem(txd->tx_m);
1897 			txd->tx_m = NULL;
1898 		}
1899         }
1900 }
1901 
1902 static void
1903 ale_stop_mac(struct ale_softc *sc)
1904 {
1905 	uint32_t reg;
1906 	int i;
1907 
1908 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1909 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1910 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1911 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1912 	}
1913 
1914 	for (i = ALE_TIMEOUT; i > 0; i--) {
1915 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1916 		if (reg == 0)
1917 			break;
1918 		DELAY(10);
1919 	}
1920 	if (i == 0)
1921 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1922 		    device_xname(sc->sc_dev), reg);
1923 }
1924 
1925 static void
1926 ale_init_tx_ring(struct ale_softc *sc)
1927 {
1928 	struct ale_txdesc *txd;
1929 	int i;
1930 
1931 	sc->ale_cdata.ale_tx_prod = 0;
1932 	sc->ale_cdata.ale_tx_cons = 0;
1933 	sc->ale_cdata.ale_tx_cnt = 0;
1934 
1935 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1936 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1937 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1938 		txd = &sc->ale_cdata.ale_txdesc[i];
1939 		txd->tx_m = NULL;
1940 	}
1941 	*sc->ale_cdata.ale_tx_cmb = 0;
1942 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1943 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1944 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1945 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1946 }
1947 
1948 static void
1949 ale_init_rx_pages(struct ale_softc *sc)
1950 {
1951 	struct ale_rx_page *rx_page;
1952 	int i;
1953 
1954 	sc->ale_cdata.ale_rx_seqno = 0;
1955 	sc->ale_cdata.ale_rx_curp = 0;
1956 
1957 	for (i = 0; i < ALE_RX_PAGES; i++) {
1958 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1959 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1960 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1961 		rx_page->cons = 0;
1962 		*rx_page->cmb_addr = 0;
1963 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1964 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1965 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1966 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1967 	}
1968 }
1969 
1970 static void
1971 ale_rxvlan(struct ale_softc *sc)
1972 {
1973 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1974 	uint32_t reg;
1975 
1976 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1977 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1978 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1979 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1980 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1981 }
1982 
1983 static void
1984 ale_rxfilter(struct ale_softc *sc)
1985 {
1986 	struct ethercom *ec = &sc->sc_ec;
1987 	struct ifnet *ifp = &ec->ec_if;
1988 	struct ether_multi *enm;
1989 	struct ether_multistep step;
1990 	uint32_t crc;
1991 	uint32_t mchash[2];
1992 	uint32_t rxcfg;
1993 
1994 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1995 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1996 
1997 	/*
1998 	 * Always accept broadcast frames.
1999 	 */
2000 	rxcfg |= MAC_CFG_BCAST;
2001 
2002 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2003 	    ec->ec_multicnt > 0) {
2004 allmulti:
2005 		if (ifp->if_flags & IFF_PROMISC)
2006 			rxcfg |= MAC_CFG_PROMISC;
2007 		else
2008 			rxcfg |= MAC_CFG_ALLMULTI;
2009 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2010 	} else {
2011 		/* Program new filter. */
2012 		memset(mchash, 0, sizeof(mchash));
2013 
2014 		ETHER_FIRST_MULTI(step, ec, enm);
2015 		while (enm != NULL) {
2016 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2017 			    ETHER_ADDR_LEN)) {
2018 			    	ifp->if_flags |= IFF_ALLMULTI;
2019 				goto allmulti;
2020 			}
2021 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022 
2023 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2024 			ETHER_NEXT_MULTI(step, enm);
2025 		}
2026 	}
2027 
2028 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2029 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2030 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2031 }
2032