xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: if_ale.c,v 1.10 2010/01/19 22:07:00 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.10 2010/01/19 22:07:00 pooka Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <sys/rnd.h>
73 
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/if_alereg.h>
82 
83 static int	ale_match(device_t, cfdata_t, void *);
84 static void	ale_attach(device_t, device_t, void *);
85 static int	ale_detach(device_t, int);
86 
87 static int	ale_miibus_readreg(device_t, int, int);
88 static void	ale_miibus_writereg(device_t, int, int, int);
89 static void	ale_miibus_statchg(device_t);
90 
91 static int	ale_init(struct ifnet *);
92 static void	ale_start(struct ifnet *);
93 static int	ale_ioctl(struct ifnet *, u_long, void *);
94 static void	ale_watchdog(struct ifnet *);
95 static int	ale_mediachange(struct ifnet *);
96 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
97 
98 static int	ale_intr(void *);
99 static int	ale_rxeof(struct ale_softc *sc);
100 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 		    uint32_t, uint32_t *);
102 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void	ale_txeof(struct ale_softc *);
104 
105 static int	ale_dma_alloc(struct ale_softc *);
106 static void	ale_dma_free(struct ale_softc *);
107 static int	ale_encap(struct ale_softc *, struct mbuf **);
108 static void	ale_init_rx_pages(struct ale_softc *);
109 static void	ale_init_tx_ring(struct ale_softc *);
110 
111 static void	ale_stop(struct ifnet *, int);
112 static void	ale_tick(void *);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_mac_config(struct ale_softc *);
115 static void	ale_phy_reset(struct ale_softc *);
116 static void	ale_reset(struct ale_softc *);
117 static void	ale_rxfilter(struct ale_softc *);
118 static void	ale_rxvlan(struct ale_softc *);
119 static void	ale_stats_clear(struct ale_softc *);
120 static void	ale_stats_update(struct ale_softc *);
121 static void	ale_stop_mac(struct ale_softc *);
122 
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 	ale_match, ale_attach, ale_detach, NULL);
125 
126 int aledebug = 0;
127 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
128 
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 	struct ale_softc *sc = device_private(dev);
136 	uint32_t v;
137 	int i;
138 
139 	if (phy != sc->ale_phyaddr)
140 		return 0;
141 
142 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 		switch (reg) {
144 		case MII_100T2CR:
145 		case MII_100T2SR:
146 		case MII_EXTSR:
147 			return 0;
148 		default:
149 			break;
150 		}
151 	}
152 
153 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 		DELAY(5);
157 		v = CSR_READ_4(sc, ALE_MDIO);
158 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 			break;
160 	}
161 
162 	if (i == 0) {
163 		printf("%s: phy read timeout: phy %d, reg %d\n",
164 		    device_xname(sc->sc_dev), phy, reg);
165 		return 0;
166 	}
167 
168 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170 
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 	struct ale_softc *sc = device_private(dev);
175 	uint32_t v;
176 	int i;
177 
178 	if (phy != sc->ale_phyaddr)
179 		return;
180 
181 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 		switch (reg) {
183 		case MII_100T2CR:
184 		case MII_100T2SR:
185 		case MII_EXTSR:
186 			return;
187 		default:
188 			break;
189 		}
190 	}
191 
192 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(5);
197 		v = CSR_READ_4(sc, ALE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0)
203 		printf("%s: phy write timeout: phy %d, reg %d\n",
204 		    device_xname(sc->sc_dev), phy, reg);
205 }
206 
207 static void
208 ale_miibus_statchg(device_t dev)
209 {
210 	struct ale_softc *sc = device_private(dev);
211 	struct ifnet *ifp = &sc->sc_ec.ec_if;
212 	struct mii_data *mii;
213 	uint32_t reg;
214 
215 	if ((ifp->if_flags & IFF_RUNNING) == 0)
216 		return;
217 
218 	mii = &sc->sc_miibus;
219 
220 	sc->ale_flags &= ~ALE_FLAG_LINK;
221 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
222 	    (IFM_ACTIVE | IFM_AVALID)) {
223 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
224 		case IFM_10_T:
225 		case IFM_100_TX:
226 			sc->ale_flags |= ALE_FLAG_LINK;
227 			break;
228 
229 		case IFM_1000_T:
230 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
231 				sc->ale_flags |= ALE_FLAG_LINK;
232 			break;
233 
234 		default:
235 			break;
236 		}
237 	}
238 
239 	/* Stop Rx/Tx MACs. */
240 	ale_stop_mac(sc);
241 
242 	/* Program MACs with resolved speed/duplex/flow-control. */
243 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
244 		ale_mac_config(sc);
245 		/* Reenable Tx/Rx MACs. */
246 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
247 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
248 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
249 	}
250 }
251 
252 void
253 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
254 {
255 	struct ale_softc *sc = ifp->if_softc;
256 	struct mii_data *mii = &sc->sc_miibus;
257 
258 	mii_pollstat(mii);
259 	ifmr->ifm_status = mii->mii_media_status;
260 	ifmr->ifm_active = mii->mii_media_active;
261 }
262 
263 int
264 ale_mediachange(struct ifnet *ifp)
265 {
266 	struct ale_softc *sc = ifp->if_softc;
267 	struct mii_data *mii = &sc->sc_miibus;
268 	int error;
269 
270 	if (mii->mii_instance != 0) {
271 		struct mii_softc *miisc;
272 
273 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
274 			mii_phy_reset(miisc);
275 	}
276 	error = mii_mediachg(mii);
277 
278 	return error;
279 }
280 
281 int
282 ale_match(device_t dev, cfdata_t match, void *aux)
283 {
284 	struct pci_attach_args *pa = aux;
285 
286 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
287 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
288 }
289 
290 void
291 ale_get_macaddr(struct ale_softc *sc)
292 {
293 	uint32_t ea[2], reg;
294 	int i, vpdc;
295 
296 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
297 	if ((reg & SPI_VPD_ENB) != 0) {
298 		reg &= ~SPI_VPD_ENB;
299 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
300 	}
301 
302 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
303 	    &vpdc, NULL)) {
304 		/*
305 		 * PCI VPD capability found, let TWSI reload EEPROM.
306 		 * This will set ethernet address of controller.
307 		 */
308 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
309 		    TWSI_CTRL_SW_LD_START);
310 		for (i = 100; i > 0; i--) {
311 			DELAY(1000);
312 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
313 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
314 				break;
315 		}
316 		if (i == 0)
317 			printf("%s: reloading EEPROM timeout!\n",
318 			    device_xname(sc->sc_dev));
319 	} else {
320 		if (aledebug)
321 			printf("%s: PCI VPD capability not found!\n",
322 			    device_xname(sc->sc_dev));
323 	}
324 
325 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
326 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
327 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
328 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
329 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
330 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
331 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
332 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
333 }
334 
335 void
336 ale_phy_reset(struct ale_softc *sc)
337 {
338 	/* Reset magic from Linux. */
339 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
340 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
341 	    GPHY_CTRL_PHY_PLL_ON);
342 	DELAY(1000);
343 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
344 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
345 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
346 	DELAY(1000);
347 
348 #define	ATPHY_DBG_ADDR		0x1D
349 #define	ATPHY_DBG_DATA		0x1E
350 
351 	/* Enable hibernation mode. */
352 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 	    ATPHY_DBG_ADDR, 0x0B);
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_DATA, 0xBC00);
356 	/* Set Class A/B for all modes. */
357 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_ADDR, 0x00);
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_DATA, 0x02EF);
361 	/* Enable 10BT power saving. */
362 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_ADDR, 0x12);
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_DATA, 0x4C04);
366 	/* Adjust 1000T power. */
367 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 	    ATPHY_DBG_ADDR, 0x04);
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_ADDR, 0x8BBB);
371 	/* 10BT center tap voltage. */
372 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 	    ATPHY_DBG_ADDR, 0x05);
374 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
375 	    ATPHY_DBG_ADDR, 0x2C46);
376 
377 #undef	ATPHY_DBG_ADDR
378 #undef	ATPHY_DBG_DATA
379 	DELAY(1000);
380 }
381 
382 void
383 ale_attach(device_t parent, device_t self, void *aux)
384 {
385 	struct ale_softc *sc = device_private(self);
386 	struct pci_attach_args *pa = aux;
387 	pci_chipset_tag_t pc = pa->pa_pc;
388 	pci_intr_handle_t ih;
389 	const char *intrstr;
390 	struct ifnet *ifp;
391 	pcireg_t memtype;
392 	int mii_flags, error = 0;
393 	uint32_t rxf_len, txf_len;
394 	const char *chipname;
395 
396 	aprint_naive("\n");
397 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
398 
399 	sc->sc_dev = self;
400 	sc->sc_dmat = pa->pa_dmat;
401 	sc->sc_pct = pa->pa_pc;
402 	sc->sc_pcitag = pa->pa_tag;
403 
404 	/*
405 	 * Allocate IO memory
406 	 */
407 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
408 	switch (memtype) {
409 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
410 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
411 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
412 		break;
413 	default:
414 		aprint_error_dev(self, "invalid base address register\n");
415 		break;
416 	}
417 
418 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
419 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
420 		aprint_error_dev(self, "could not map mem space\n");
421 		return;
422 	}
423 
424 	if (pci_intr_map(pa, &ih) != 0) {
425 		aprint_error_dev(self, "could not map interrupt\n");
426 		goto fail;
427 	}
428 
429 	/*
430 	 * Allocate IRQ
431 	 */
432 	intrstr = pci_intr_string(sc->sc_pct, ih);
433 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
434 	if (sc->sc_irq_handle == NULL) {
435 		aprint_error_dev(self, "could not establish interrupt");
436 		if (intrstr != NULL)
437 			aprint_error(" at %s", intrstr);
438 		aprint_error("\n");
439 		goto fail;
440 	}
441 
442 	/* Set PHY address. */
443 	sc->ale_phyaddr = ALE_PHY_ADDR;
444 
445 	/* Reset PHY. */
446 	ale_phy_reset(sc);
447 
448 	/* Reset the ethernet controller. */
449 	ale_reset(sc);
450 
451 	/* Get PCI and chip id/revision. */
452 	sc->ale_rev = PCI_REVISION(pa->pa_class);
453 	if (sc->ale_rev >= 0xF0) {
454 		/* L2E Rev. B. AR8114 */
455 		sc->ale_flags |= ALE_FLAG_FASTETHER;
456 		chipname = "AR8114 (L2E RevB)";
457 	} else {
458 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
459 			/* L1E AR8121 */
460 			sc->ale_flags |= ALE_FLAG_JUMBO;
461 			chipname = "AR8121 (L1E)";
462 		} else {
463 			/* L2E Rev. A. AR8113 */
464 			sc->ale_flags |= ALE_FLAG_FASTETHER;
465 			chipname = "AR8113 (L2E RevA)";
466 		}
467 	}
468 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
469 
470 	/*
471 	 * All known controllers seems to require 4 bytes alignment
472 	 * of Tx buffers to make Tx checksum offload with custom
473 	 * checksum generation method work.
474 	 */
475 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
476 
477 	/*
478 	 * All known controllers seems to have issues on Rx checksum
479 	 * offload for fragmented IP datagrams.
480 	 */
481 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
482 
483 	/*
484 	 * Don't use Tx CMB. It is known to cause RRS update failure
485 	 * under certain circumstances. Typical phenomenon of the
486 	 * issue would be unexpected sequence number encountered in
487 	 * Rx handler.
488 	 */
489 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
490 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
491 	    MASTER_CHIP_REV_SHIFT;
492 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
493 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
494 
495 	/*
496 	 * Uninitialized hardware returns an invalid chip id/revision
497 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
498 	 */
499 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
500 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
501 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
502 	    rxf_len == 0xFFFFFFF) {
503 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
504 		    "%u Rx FIFO -- not initialized?\n",
505 		    sc->ale_chip_rev, txf_len, rxf_len);
506 		goto fail;
507 	}
508 
509 	if (aledebug) {
510 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
511 		    txf_len, rxf_len);
512 	}
513 
514 	/* Set max allowable DMA size. */
515 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
516 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
517 
518 	callout_init(&sc->sc_tick_ch, 0);
519 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
520 
521 	error = ale_dma_alloc(sc);
522 	if (error)
523 		goto fail;
524 
525 	/* Load station address. */
526 	ale_get_macaddr(sc);
527 
528 	aprint_normal_dev(self, "Ethernet address %s\n",
529 	    ether_sprintf(sc->ale_eaddr));
530 
531 	ifp = &sc->sc_ec.ec_if;
532 	ifp->if_softc = sc;
533 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
534 	ifp->if_init = ale_init;
535 	ifp->if_ioctl = ale_ioctl;
536 	ifp->if_start = ale_start;
537 	ifp->if_stop = ale_stop;
538 	ifp->if_watchdog = ale_watchdog;
539 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
540 	IFQ_SET_READY(&ifp->if_snd);
541 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
542 
543 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
544 
545 #ifdef ALE_CHECKSUM
546 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
547 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
548 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 
551 #if NVLAN > 0
552 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
553 #endif
554 
555 	/* Set up MII bus. */
556 	sc->sc_miibus.mii_ifp = ifp;
557 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
558 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
559 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
560 
561 	sc->sc_ec.ec_mii = &sc->sc_miibus;
562 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
563 	    ale_mediastatus);
564 	mii_flags = 0;
565 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
566 		mii_flags |= MIIF_DOPAUSE;
567 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
568 	    MII_OFFSET_ANY, mii_flags);
569 
570 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
571 		aprint_error_dev(self, "no PHY found!\n");
572 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
573 		    0, NULL);
574 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
575 	} else
576 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
577 
578 	if_attach(ifp);
579 	ether_ifattach(ifp, sc->ale_eaddr);
580 
581 	if (pmf_device_register(self, NULL, NULL))
582 		pmf_class_network_register(self, ifp);
583 	else
584 		aprint_error_dev(self, "couldn't establish power handler\n");
585 
586 	return;
587 fail:
588 	ale_dma_free(sc);
589 	if (sc->sc_irq_handle != NULL) {
590 		pci_intr_disestablish(pc, sc->sc_irq_handle);
591 		sc->sc_irq_handle = NULL;
592 	}
593 	if (sc->sc_mem_size) {
594 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
595 		sc->sc_mem_size = 0;
596 	}
597 }
598 
599 static int
600 ale_detach(device_t self, int flags)
601 {
602 	struct ale_softc *sc = device_private(self);
603 	struct ifnet *ifp = &sc->sc_ec.ec_if;
604 	int s;
605 
606 	pmf_device_deregister(self);
607 	s = splnet();
608 	ale_stop(ifp, 0);
609 	splx(s);
610 
611 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
612 
613 	/* Delete all remaining media. */
614 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
615 
616 	ether_ifdetach(ifp);
617 	if_detach(ifp);
618 	ale_dma_free(sc);
619 
620 	if (sc->sc_irq_handle != NULL) {
621 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
622 		sc->sc_irq_handle = NULL;
623 	}
624 	if (sc->sc_mem_size) {
625 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
626 		sc->sc_mem_size = 0;
627 	}
628 
629 	return 0;
630 }
631 
632 
633 static int
634 ale_dma_alloc(struct ale_softc *sc)
635 {
636 	struct ale_txdesc *txd;
637 	int nsegs, error, guard_size, i;
638 
639 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
640 		guard_size = ALE_JUMBO_FRAMELEN;
641 	else
642 		guard_size = ALE_MAX_FRAMELEN;
643 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
644 	    ALE_RX_PAGE_ALIGN);
645 
646 	/*
647 	 * Create DMA stuffs for TX ring
648 	 */
649 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
650 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
651 	if (error) {
652 		sc->ale_cdata.ale_tx_ring_map = NULL;
653 		return ENOBUFS;
654 	}
655 
656 	/* Allocate DMA'able memory for TX ring */
657 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
658 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
659 	    &nsegs, BUS_DMA_WAITOK);
660 	if (error) {
661 		printf("%s: could not allocate DMA'able memory for Tx ring, "
662 		    "error = %i\n", device_xname(sc->sc_dev), error);
663 		return error;
664 	}
665 
666 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
667 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
668 	    BUS_DMA_NOWAIT);
669 	if (error)
670 		return ENOBUFS;
671 
672 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
673 
674 	/* Load the DMA map for Tx ring. */
675 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
676 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
677 	if (error) {
678 		printf("%s: could not load DMA'able memory for Tx ring.\n",
679 		    device_xname(sc->sc_dev));
680 		bus_dmamem_free(sc->sc_dmat,
681 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
682 		return error;
683 	}
684 	sc->ale_cdata.ale_tx_ring_paddr =
685 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
686 
687 	for (i = 0; i < ALE_RX_PAGES; i++) {
688 		/*
689 		 * Create DMA stuffs for RX pages
690 		 */
691 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
692 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
693 		    &sc->ale_cdata.ale_rx_page[i].page_map);
694 		if (error) {
695 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
696 			return ENOBUFS;
697 		}
698 
699 		/* Allocate DMA'able memory for RX pages */
700 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
701 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
702 		    1, &nsegs, BUS_DMA_WAITOK);
703 		if (error) {
704 			printf("%s: could not allocate DMA'able memory for "
705 			    "Rx ring.\n", device_xname(sc->sc_dev));
706 			return error;
707 		}
708 		error = bus_dmamem_map(sc->sc_dmat,
709 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
710 		    sc->ale_pagesize,
711 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
712 		    BUS_DMA_NOWAIT);
713 		if (error)
714 			return ENOBUFS;
715 
716 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
717 		    sc->ale_pagesize);
718 
719 		/* Load the DMA map for Rx pages. */
720 		error = bus_dmamap_load(sc->sc_dmat,
721 		    sc->ale_cdata.ale_rx_page[i].page_map,
722 		    sc->ale_cdata.ale_rx_page[i].page_addr,
723 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
724 		if (error) {
725 			printf("%s: could not load DMA'able memory for "
726 			    "Rx pages.\n", device_xname(sc->sc_dev));
727 			bus_dmamem_free(sc->sc_dmat,
728 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
729 			return error;
730 		}
731 		sc->ale_cdata.ale_rx_page[i].page_paddr =
732 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
733 	}
734 
735 	/*
736 	 * Create DMA stuffs for Tx CMB.
737 	 */
738 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
739 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
740 	if (error) {
741 		sc->ale_cdata.ale_tx_cmb_map = NULL;
742 		return ENOBUFS;
743 	}
744 
745 	/* Allocate DMA'able memory for Tx CMB. */
746 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
747 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
748 
749 	if (error) {
750 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
751 		    device_xname(sc->sc_dev));
752 		return error;
753 	}
754 
755 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
756 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
757 	    BUS_DMA_NOWAIT);
758 	if (error)
759 		return ENOBUFS;
760 
761 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
762 
763 	/* Load the DMA map for Tx CMB. */
764 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
765 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
766 	if (error) {
767 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
768 		    device_xname(sc->sc_dev));
769 		bus_dmamem_free(sc->sc_dmat,
770 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
771 		return error;
772 	}
773 
774 	sc->ale_cdata.ale_tx_cmb_paddr =
775 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
776 
777 	for (i = 0; i < ALE_RX_PAGES; i++) {
778 		/*
779 		 * Create DMA stuffs for Rx CMB.
780 		 */
781 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
782 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
783 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
784 		if (error) {
785 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
786 			return ENOBUFS;
787 		}
788 
789 		/* Allocate DMA'able memory for Rx CMB */
790 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
791 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
792 		    &nsegs, BUS_DMA_WAITOK);
793 		if (error) {
794 			printf("%s: could not allocate DMA'able memory for "
795 			    "Rx CMB\n", device_xname(sc->sc_dev));
796 			return error;
797 		}
798 		error = bus_dmamem_map(sc->sc_dmat,
799 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
800 		    ALE_RX_CMB_SZ,
801 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
802 		    BUS_DMA_NOWAIT);
803 		if (error)
804 			return ENOBUFS;
805 
806 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
807 
808 		/* Load the DMA map for Rx CMB */
809 		error = bus_dmamap_load(sc->sc_dmat,
810 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
811 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
812 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
813 		if (error) {
814 			printf("%s: could not load DMA'able memory for Rx CMB"
815 			    "\n", device_xname(sc->sc_dev));
816 			bus_dmamem_free(sc->sc_dmat,
817 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
818 			return error;
819 		}
820 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
821 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
822 	}
823 
824 
825 	/* Create DMA maps for Tx buffers. */
826 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
827 		txd = &sc->ale_cdata.ale_txdesc[i];
828 		txd->tx_m = NULL;
829 		txd->tx_dmamap = NULL;
830 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
831 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
832 		    &txd->tx_dmamap);
833 		if (error) {
834 			txd->tx_dmamap = NULL;
835 			printf("%s: could not create Tx dmamap.\n",
836 			    device_xname(sc->sc_dev));
837 			return error;
838 		}
839 	}
840 
841 	return 0;
842 }
843 
844 static void
845 ale_dma_free(struct ale_softc *sc)
846 {
847 	struct ale_txdesc *txd;
848 	int i;
849 
850 	/* Tx buffers. */
851 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
852 		txd = &sc->ale_cdata.ale_txdesc[i];
853 		if (txd->tx_dmamap != NULL) {
854 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
855 			txd->tx_dmamap = NULL;
856 		}
857 	}
858 
859 	/* Tx descriptor ring. */
860 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
861 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
862 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
863 	    sc->ale_cdata.ale_tx_ring != NULL)
864 		bus_dmamem_free(sc->sc_dmat,
865 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
866 	sc->ale_cdata.ale_tx_ring = NULL;
867 	sc->ale_cdata.ale_tx_ring_map = NULL;
868 
869 	/* Rx page block. */
870 	for (i = 0; i < ALE_RX_PAGES; i++) {
871 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
872 			bus_dmamap_unload(sc->sc_dmat,
873 			    sc->ale_cdata.ale_rx_page[i].page_map);
874 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
875 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
876 			bus_dmamem_free(sc->sc_dmat,
877 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
878 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
879 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
880 	}
881 
882 	/* Rx CMB. */
883 	for (i = 0; i < ALE_RX_PAGES; i++) {
884 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
885 			bus_dmamap_unload(sc->sc_dmat,
886 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
887 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
888 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
889 			bus_dmamem_free(sc->sc_dmat,
890 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
891 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
892 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
893 	}
894 
895 	/* Tx CMB. */
896 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
897 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
898 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
899 	    sc->ale_cdata.ale_tx_cmb != NULL)
900 		bus_dmamem_free(sc->sc_dmat,
901 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
902 	sc->ale_cdata.ale_tx_cmb = NULL;
903 	sc->ale_cdata.ale_tx_cmb_map = NULL;
904 
905 }
906 
907 static int
908 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
909 {
910 	struct ale_txdesc *txd, *txd_last;
911 	struct tx_desc *desc;
912 	struct mbuf *m;
913 	bus_dmamap_t map;
914 	uint32_t cflags, poff, vtag;
915 	int error, i, nsegs, prod;
916 #if NVLAN > 0
917 	struct m_tag *mtag;
918 #endif
919 
920 	m = *m_head;
921 	cflags = vtag = 0;
922 	poff = 0;
923 
924 	prod = sc->ale_cdata.ale_tx_prod;
925 	txd = &sc->ale_cdata.ale_txdesc[prod];
926 	txd_last = txd;
927 	map = txd->tx_dmamap;
928 
929 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
930 	if (error == EFBIG) {
931 		error = 0;
932 
933 		*m_head = m_pullup(*m_head, MHLEN);
934 		if (*m_head == NULL) {
935 			printf("%s: can't defrag TX mbuf\n",
936 			    device_xname(sc->sc_dev));
937 			return ENOBUFS;
938 		}
939 
940 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
941 		    BUS_DMA_NOWAIT);
942 
943 		if (error != 0) {
944 			printf("%s: could not load defragged TX mbuf\n",
945 			    device_xname(sc->sc_dev));
946 			m_freem(*m_head);
947 			*m_head = NULL;
948 			return error;
949 		}
950 	} else if (error) {
951 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
952 		return error;
953 	}
954 
955 	nsegs = map->dm_nsegs;
956 
957 	if (nsegs == 0) {
958 		m_freem(*m_head);
959 		*m_head = NULL;
960 		return EIO;
961 	}
962 
963 	/* Check descriptor overrun. */
964 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
965 		bus_dmamap_unload(sc->sc_dmat, map);
966 		return ENOBUFS;
967 	}
968 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
969 	    BUS_DMASYNC_PREWRITE);
970 
971 	m = *m_head;
972 	/* Configure Tx checksum offload. */
973 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
974 		/*
975 		 * AR81xx supports Tx custom checksum offload feature
976 		 * that offloads single 16bit checksum computation.
977 		 * So you can choose one among IP, TCP and UDP.
978 		 * Normally driver sets checksum start/insertion
979 		 * position from the information of TCP/UDP frame as
980 		 * TCP/UDP checksum takes more time than that of IP.
981 		 * However it seems that custom checksum offload
982 		 * requires 4 bytes aligned Tx buffers due to hardware
983 		 * bug.
984 		 * AR81xx also supports explicit Tx checksum computation
985 		 * if it is told that the size of IP header and TCP
986 		 * header(for UDP, the header size does not matter
987 		 * because it's fixed length). However with this scheme
988 		 * TSO does not work so you have to choose one either
989 		 * TSO or explicit Tx checksum offload. I chosen TSO
990 		 * plus custom checksum offload with work-around which
991 		 * will cover most common usage for this consumer
992 		 * ethernet controller. The work-around takes a lot of
993 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
994 		 * boundary, though.
995 		 */
996 		cflags |= ALE_TD_CXSUM;
997 		/* Set checksum start offset. */
998 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
999 	}
1000 
1001 #if NVLAN > 0
1002 	/* Configure VLAN hardware tag insertion. */
1003 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1004 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1005 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1006 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1007 	}
1008 #endif
1009 
1010 	desc = NULL;
1011 	for (i = 0; i < nsegs; i++) {
1012 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1013 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1014 		desc->len =
1015 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1016 		desc->flags = htole32(cflags);
1017 		sc->ale_cdata.ale_tx_cnt++;
1018 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1019 	}
1020 	/* Update producer index. */
1021 	sc->ale_cdata.ale_tx_prod = prod;
1022 
1023 	/* Finally set EOP on the last descriptor. */
1024 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1025 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1026 	desc->flags |= htole32(ALE_TD_EOP);
1027 
1028 	/* Swap dmamap of the first and the last. */
1029 	txd = &sc->ale_cdata.ale_txdesc[prod];
1030 	map = txd_last->tx_dmamap;
1031 	txd_last->tx_dmamap = txd->tx_dmamap;
1032 	txd->tx_dmamap = map;
1033 	txd->tx_m = m;
1034 
1035 	/* Sync descriptors. */
1036 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1037 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1038 
1039 	return 0;
1040 }
1041 
1042 static void
1043 ale_start(struct ifnet *ifp)
1044 {
1045         struct ale_softc *sc = ifp->if_softc;
1046 	struct mbuf *m_head;
1047 	int enq;
1048 
1049 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1050 		return;
1051 
1052 	/* Reclaim transmitted frames. */
1053 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1054 		ale_txeof(sc);
1055 
1056 	enq = 0;
1057 	for (;;) {
1058 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1059 		if (m_head == NULL)
1060 			break;
1061 
1062 		/*
1063 		 * Pack the data into the transmit ring. If we
1064 		 * don't have room, set the OACTIVE flag and wait
1065 		 * for the NIC to drain the ring.
1066 		 */
1067 		if (ale_encap(sc, &m_head)) {
1068 			if (m_head == NULL)
1069 				break;
1070 			IF_PREPEND(&ifp->if_snd, m_head);
1071 			ifp->if_flags |= IFF_OACTIVE;
1072 			break;
1073 		}
1074 		enq = 1;
1075 
1076 		/*
1077 		 * If there's a BPF listener, bounce a copy of this frame
1078 		 * to him.
1079 		 */
1080 		if (ifp->if_bpf != NULL)
1081 			bpf_ops->bpf_mtap(ifp->if_bpf, m_head);
1082 	}
1083 
1084 	if (enq) {
1085 		/* Kick. */
1086 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1087 		    sc->ale_cdata.ale_tx_prod);
1088 
1089 		/* Set a timeout in case the chip goes out to lunch. */
1090 		ifp->if_timer = ALE_TX_TIMEOUT;
1091 	}
1092 }
1093 
1094 static void
1095 ale_watchdog(struct ifnet *ifp)
1096 {
1097 	struct ale_softc *sc = ifp->if_softc;
1098 
1099 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1100 		printf("%s: watchdog timeout (missed link)\n",
1101 		    device_xname(sc->sc_dev));
1102 		ifp->if_oerrors++;
1103 		ale_init(ifp);
1104 		return;
1105 	}
1106 
1107 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1108 	ifp->if_oerrors++;
1109 	ale_init(ifp);
1110 
1111 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1112 		ale_start(ifp);
1113 }
1114 
1115 static int
1116 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1117 {
1118 	struct ale_softc *sc = ifp->if_softc;
1119 	int s, error;
1120 
1121 	s = splnet();
1122 
1123 	error = ether_ioctl(ifp, cmd, data);
1124 	if (error == ENETRESET) {
1125 		if (ifp->if_flags & IFF_RUNNING)
1126 			ale_rxfilter(sc);
1127 		error = 0;
1128 	}
1129 
1130 	splx(s);
1131 	return error;
1132 }
1133 
1134 static void
1135 ale_mac_config(struct ale_softc *sc)
1136 {
1137 	struct mii_data *mii;
1138 	uint32_t reg;
1139 
1140 	mii = &sc->sc_miibus;
1141 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1142 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1143 	    MAC_CFG_SPEED_MASK);
1144 
1145 	/* Reprogram MAC with resolved speed/duplex. */
1146 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1147 	case IFM_10_T:
1148 	case IFM_100_TX:
1149 		reg |= MAC_CFG_SPEED_10_100;
1150 		break;
1151 	case IFM_1000_T:
1152 		reg |= MAC_CFG_SPEED_1000;
1153 		break;
1154 	}
1155 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1156 		reg |= MAC_CFG_FULL_DUPLEX;
1157 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1158 			reg |= MAC_CFG_TX_FC;
1159 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1160 			reg |= MAC_CFG_RX_FC;
1161 	}
1162 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1163 }
1164 
1165 static void
1166 ale_stats_clear(struct ale_softc *sc)
1167 {
1168 	struct smb sb;
1169 	uint32_t *reg;
1170 	int i;
1171 
1172 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1173 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1174 		i += sizeof(uint32_t);
1175 	}
1176 	/* Read Tx statistics. */
1177 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1178 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1179 		i += sizeof(uint32_t);
1180 	}
1181 }
1182 
1183 static void
1184 ale_stats_update(struct ale_softc *sc)
1185 {
1186 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1187 	struct ale_hw_stats *stat;
1188 	struct smb sb, *smb;
1189 	uint32_t *reg;
1190 	int i;
1191 
1192 	stat = &sc->ale_stats;
1193 	smb = &sb;
1194 
1195 	/* Read Rx statistics. */
1196 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1197 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1198 		i += sizeof(uint32_t);
1199 	}
1200 	/* Read Tx statistics. */
1201 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1202 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1203 		i += sizeof(uint32_t);
1204 	}
1205 
1206 	/* Rx stats. */
1207 	stat->rx_frames += smb->rx_frames;
1208 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1209 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1210 	stat->rx_pause_frames += smb->rx_pause_frames;
1211 	stat->rx_control_frames += smb->rx_control_frames;
1212 	stat->rx_crcerrs += smb->rx_crcerrs;
1213 	stat->rx_lenerrs += smb->rx_lenerrs;
1214 	stat->rx_bytes += smb->rx_bytes;
1215 	stat->rx_runts += smb->rx_runts;
1216 	stat->rx_fragments += smb->rx_fragments;
1217 	stat->rx_pkts_64 += smb->rx_pkts_64;
1218 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1219 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1220 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1221 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1222 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1223 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1224 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1225 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1226 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1227 	stat->rx_alignerrs += smb->rx_alignerrs;
1228 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1229 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1230 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1231 
1232 	/* Tx stats. */
1233 	stat->tx_frames += smb->tx_frames;
1234 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1235 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1236 	stat->tx_pause_frames += smb->tx_pause_frames;
1237 	stat->tx_excess_defer += smb->tx_excess_defer;
1238 	stat->tx_control_frames += smb->tx_control_frames;
1239 	stat->tx_deferred += smb->tx_deferred;
1240 	stat->tx_bytes += smb->tx_bytes;
1241 	stat->tx_pkts_64 += smb->tx_pkts_64;
1242 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1243 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1244 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1245 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1246 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1247 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1248 	stat->tx_single_colls += smb->tx_single_colls;
1249 	stat->tx_multi_colls += smb->tx_multi_colls;
1250 	stat->tx_late_colls += smb->tx_late_colls;
1251 	stat->tx_excess_colls += smb->tx_excess_colls;
1252 	stat->tx_abort += smb->tx_abort;
1253 	stat->tx_underrun += smb->tx_underrun;
1254 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1255 	stat->tx_lenerrs += smb->tx_lenerrs;
1256 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1257 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1258 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1259 
1260 	/* Update counters in ifnet. */
1261 	ifp->if_opackets += smb->tx_frames;
1262 
1263 	ifp->if_collisions += smb->tx_single_colls +
1264 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1265 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1266 
1267 	/*
1268 	 * XXX
1269 	 * tx_pkts_truncated counter looks suspicious. It constantly
1270 	 * increments with no sign of Tx errors. This may indicate
1271 	 * the counter name is not correct one so I've removed the
1272 	 * counter in output errors.
1273 	 */
1274 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1275 	    smb->tx_underrun;
1276 
1277 	ifp->if_ipackets += smb->rx_frames;
1278 
1279 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1280 	    smb->rx_runts + smb->rx_pkts_truncated +
1281 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1282 	    smb->rx_alignerrs;
1283 }
1284 
1285 static int
1286 ale_intr(void *xsc)
1287 {
1288 	struct ale_softc *sc = xsc;
1289 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1290 	uint32_t status;
1291 
1292 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1293 	if ((status & ALE_INTRS) == 0)
1294 		return 0;
1295 
1296 	/* Acknowledge and disable interrupts. */
1297 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1298 
1299 	if (ifp->if_flags & IFF_RUNNING) {
1300 		int error;
1301 
1302 		error = ale_rxeof(sc);
1303 		if (error) {
1304 			sc->ale_stats.reset_brk_seq++;
1305 			ale_init(ifp);
1306 			return 0;
1307 		}
1308 
1309 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1310 			if (status & INTR_DMA_RD_TO_RST)
1311 				printf("%s: DMA read error! -- resetting\n",
1312 				    device_xname(sc->sc_dev));
1313 			if (status & INTR_DMA_WR_TO_RST)
1314 				printf("%s: DMA write error! -- resetting\n",
1315 				    device_xname(sc->sc_dev));
1316 			ale_init(ifp);
1317 			return 0;
1318 		}
1319 
1320 		ale_txeof(sc);
1321 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1322 			ale_start(ifp);
1323 	}
1324 
1325 	/* Re-enable interrupts. */
1326 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1327 	return 1;
1328 }
1329 
1330 static void
1331 ale_txeof(struct ale_softc *sc)
1332 {
1333 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1334 	struct ale_txdesc *txd;
1335 	uint32_t cons, prod;
1336 	int prog;
1337 
1338 	if (sc->ale_cdata.ale_tx_cnt == 0)
1339 		return;
1340 
1341 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1342 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1343 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1344 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1345 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1346 		    BUS_DMASYNC_POSTREAD);
1347 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1348 	} else
1349 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1350 	cons = sc->ale_cdata.ale_tx_cons;
1351 	/*
1352 	 * Go through our Tx list and free mbufs for those
1353 	 * frames which have been transmitted.
1354 	 */
1355 	for (prog = 0; cons != prod; prog++,
1356 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1357 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1358 			break;
1359 		prog++;
1360 		ifp->if_flags &= ~IFF_OACTIVE;
1361 		sc->ale_cdata.ale_tx_cnt--;
1362 		txd = &sc->ale_cdata.ale_txdesc[cons];
1363 		if (txd->tx_m != NULL) {
1364 			/* Reclaim transmitted mbufs. */
1365 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1366 			m_freem(txd->tx_m);
1367 			txd->tx_m = NULL;
1368 		}
1369 	}
1370 
1371 	if (prog > 0) {
1372 		sc->ale_cdata.ale_tx_cons = cons;
1373 		/*
1374 		 * Unarm watchdog timer only when there is no pending
1375 		 * Tx descriptors in queue.
1376 		 */
1377 		if (sc->ale_cdata.ale_tx_cnt == 0)
1378 			ifp->if_timer = 0;
1379 	}
1380 }
1381 
1382 static void
1383 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1384     uint32_t length, uint32_t *prod)
1385 {
1386 	struct ale_rx_page *rx_page;
1387 
1388 	rx_page = *page;
1389 	/* Update consumer position. */
1390 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1391 	    ALE_RX_PAGE_ALIGN);
1392 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1393 		/*
1394 		 * End of Rx page reached, let hardware reuse
1395 		 * this page.
1396 		 */
1397 		rx_page->cons = 0;
1398 		*rx_page->cmb_addr = 0;
1399 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1400 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1401 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1402 		    RXF_VALID);
1403 		/* Switch to alternate Rx page. */
1404 		sc->ale_cdata.ale_rx_curp ^= 1;
1405 		rx_page = *page =
1406 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1407 		/* Page flipped, sync CMB and Rx page. */
1408 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1409 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1410 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1411 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1412 		/* Sync completed, cache updated producer index. */
1413 		*prod = *rx_page->cmb_addr;
1414 	}
1415 }
1416 
1417 
1418 /*
1419  * It seems that AR81xx controller can compute partial checksum.
1420  * The partial checksum value can be used to accelerate checksum
1421  * computation for fragmented TCP/UDP packets. Upper network stack
1422  * already takes advantage of the partial checksum value in IP
1423  * reassembly stage. But I'm not sure the correctness of the
1424  * partial hardware checksum assistance due to lack of data sheet.
1425  * In addition, the Rx feature of controller that requires copying
1426  * for every frames effectively nullifies one of most nice offload
1427  * capability of controller.
1428  */
1429 static void
1430 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1431 {
1432 	if (status & ALE_RD_IPCSUM_NOK)
1433 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1434 
1435 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1436 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1437 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1438 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1439 		{
1440 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1441 		}
1442 	} else {
1443 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1444 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1445 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1446 			}
1447 		}
1448 	}
1449 	/*
1450 	 * Don't mark bad checksum for TCP/UDP frames
1451 	 * as fragmented frames may always have set
1452 	 * bad checksummed bit of frame status.
1453 	 */
1454 }
1455 
1456 /* Process received frames. */
1457 static int
1458 ale_rxeof(struct ale_softc *sc)
1459 {
1460 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1461 	struct ale_rx_page *rx_page;
1462 	struct rx_rs *rs;
1463 	struct mbuf *m;
1464 	uint32_t length, prod, seqno, status;
1465 	int prog;
1466 
1467 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1468 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1469 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1470 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1471 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1472 	/*
1473 	 * Don't directly access producer index as hardware may
1474 	 * update it while Rx handler is in progress. It would
1475 	 * be even better if there is a way to let hardware
1476 	 * know how far driver processed its received frames.
1477 	 * Alternatively, hardware could provide a way to disable
1478 	 * CMB updates until driver acknowledges the end of CMB
1479 	 * access.
1480 	 */
1481 	prod = *rx_page->cmb_addr;
1482 	for (prog = 0; ; prog++) {
1483 		if (rx_page->cons >= prod)
1484 			break;
1485 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1486 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1487 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1488 			/*
1489 			 * Normally I believe this should not happen unless
1490 			 * severe driver bug or corrupted memory. However
1491 			 * it seems to happen under certain conditions which
1492 			 * is triggered by abrupt Rx events such as initiation
1493 			 * of bulk transfer of remote host. It's not easy to
1494 			 * reproduce this and I doubt it could be related
1495 			 * with FIFO overflow of hardware or activity of Tx
1496 			 * CMB updates. I also remember similar behaviour
1497 			 * seen on RealTek 8139 which uses resembling Rx
1498 			 * scheme.
1499 			 */
1500 			if (aledebug)
1501 				printf("%s: garbled seq: %u, expected: %u -- "
1502 				    "resetting!\n", device_xname(sc->sc_dev),
1503 				    seqno, sc->ale_cdata.ale_rx_seqno);
1504 			return EIO;
1505 		}
1506 		/* Frame received. */
1507 		sc->ale_cdata.ale_rx_seqno++;
1508 		length = ALE_RX_BYTES(le32toh(rs->length));
1509 		status = le32toh(rs->flags);
1510 		if (status & ALE_RD_ERROR) {
1511 			/*
1512 			 * We want to pass the following frames to upper
1513 			 * layer regardless of error status of Rx return
1514 			 * status.
1515 			 *
1516 			 *  o IP/TCP/UDP checksum is bad.
1517 			 *  o frame length and protocol specific length
1518 			 *     does not match.
1519 			 */
1520 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1521 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1522 			    ALE_RD_TRUNC)) {
1523 				ale_rx_update_page(sc, &rx_page, length, &prod);
1524 				continue;
1525 			}
1526 		}
1527 		/*
1528 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1529 		 * from hardware limitation). For jumbo frames we could
1530 		 * get a slightly better performance if driver use
1531 		 * m_getjcl(9) with proper buffer size argument. However
1532 		 * that would make code more complicated and I don't
1533 		 * think users would expect good Rx performance numbers
1534 		 * on these low-end consumer ethernet controller.
1535 		 */
1536 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1537 		    0, ifp, NULL);
1538 		if (m == NULL) {
1539 			ifp->if_iqdrops++;
1540 			ale_rx_update_page(sc, &rx_page, length, &prod);
1541 			continue;
1542 		}
1543 		if (status & ALE_RD_IPV4)
1544 			ale_rxcsum(sc, m, status);
1545 #if NVLAN > 0
1546 		if (status & ALE_RD_VLAN) {
1547 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1548 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1549 		}
1550 #endif
1551 
1552 
1553 		if (ifp->if_bpf)
1554 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
1555 
1556 		/* Pass it to upper layer. */
1557 		ether_input(ifp, m);
1558 
1559 		ale_rx_update_page(sc, &rx_page, length, &prod);
1560 	}
1561 
1562 	return 0;
1563 }
1564 
1565 static void
1566 ale_tick(void *xsc)
1567 {
1568 	struct ale_softc *sc = xsc;
1569 	struct mii_data *mii = &sc->sc_miibus;
1570 	int s;
1571 
1572 	s = splnet();
1573 	mii_tick(mii);
1574 	ale_stats_update(sc);
1575 	splx(s);
1576 
1577 	callout_schedule(&sc->sc_tick_ch, hz);
1578 }
1579 
1580 static void
1581 ale_reset(struct ale_softc *sc)
1582 {
1583 	uint32_t reg;
1584 	int i;
1585 
1586 	/* Initialize PCIe module. From Linux. */
1587 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1588 
1589 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1590 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1591 		DELAY(10);
1592 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1593 			break;
1594 	}
1595 	if (i == 0)
1596 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1597 
1598 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1599 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1600 			break;
1601 		DELAY(10);
1602 	}
1603 
1604 	if (i == 0)
1605 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1606 		    reg);
1607 }
1608 
1609 static int
1610 ale_init(struct ifnet *ifp)
1611 {
1612 	struct ale_softc *sc = ifp->if_softc;
1613 	struct mii_data *mii;
1614 	uint8_t eaddr[ETHER_ADDR_LEN];
1615 	bus_addr_t paddr;
1616 	uint32_t reg, rxf_hi, rxf_lo;
1617 
1618 	/*
1619 	 * Cancel any pending I/O.
1620 	 */
1621 	ale_stop(ifp, 0);
1622 
1623 	/*
1624 	 * Reset the chip to a known state.
1625 	 */
1626 	ale_reset(sc);
1627 
1628 	/* Initialize Tx descriptors, DMA memory blocks. */
1629 	ale_init_rx_pages(sc);
1630 	ale_init_tx_ring(sc);
1631 
1632 	/* Reprogram the station address. */
1633 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1634 	CSR_WRITE_4(sc, ALE_PAR0,
1635 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1636 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1637 
1638 	/*
1639 	 * Clear WOL status and disable all WOL feature as WOL
1640 	 * would interfere Rx operation under normal environments.
1641 	 */
1642 	CSR_READ_4(sc, ALE_WOL_CFG);
1643 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1644 
1645 	/*
1646 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1647 	 * the same high address part of DMAable region.
1648 	 */
1649 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1650 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1651 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1652 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1653 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1654 
1655 	/* Set Rx page base address, note we use single queue. */
1656 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1657 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1658 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1659 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1660 
1661 	/* Set Tx/Rx CMB addresses. */
1662 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1663 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1664 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1665 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1666 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1667 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1668 
1669 	/* Mark RXF0 is valid. */
1670 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1671 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1672 	/*
1673 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1674 	 * multi-queue yet.
1675 	 */
1676 
1677 	/* Set Rx page size, excluding guard frame size. */
1678 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1679 
1680 	/* Tell hardware that we're ready to load DMA blocks. */
1681 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1682 
1683 	/* Set Rx/Tx interrupt trigger threshold. */
1684 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1685 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1686 	/*
1687 	 * XXX
1688 	 * Set interrupt trigger timer, its purpose and relation
1689 	 * with interrupt moderation mechanism is not clear yet.
1690 	 */
1691 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1692 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1693 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1694 
1695 	/* Configure interrupt moderation timer. */
1696 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1697 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1698 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1699 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1700 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1701 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1702 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1703 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1704 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1705 		reg |= MASTER_IM_RX_TIMER_ENB;
1706 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1707 		reg |= MASTER_IM_TX_TIMER_ENB;
1708 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1709 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1710 
1711 	/* Set Maximum frame size of controller. */
1712 	if (ifp->if_mtu < ETHERMTU)
1713 		sc->ale_max_frame_size = ETHERMTU;
1714 	else
1715 		sc->ale_max_frame_size = ifp->if_mtu;
1716 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1717 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1718 
1719 	/* Configure IPG/IFG parameters. */
1720 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1721 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1722 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1723 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1724 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1725 
1726 	/* Set parameters for half-duplex media. */
1727 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1728 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1729 	    HDPX_CFG_LCOL_MASK) |
1730 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1731 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1732 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1733 	    HDPX_CFG_ABEBT_MASK) |
1734 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1735 	    HDPX_CFG_JAMIPG_MASK));
1736 
1737 	/* Configure Tx jumbo frame parameters. */
1738 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1739 		if (ifp->if_mtu < ETHERMTU)
1740 			reg = sc->ale_max_frame_size;
1741 		else if (ifp->if_mtu < 6 * 1024)
1742 			reg = (sc->ale_max_frame_size * 2) / 3;
1743 		else
1744 			reg = sc->ale_max_frame_size / 2;
1745 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1746 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1747 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1748 	}
1749 
1750 	/* Configure TxQ. */
1751 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1752 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1753 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1754 	    TXQ_CFG_TPD_BURST_MASK;
1755 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1756 
1757 	/* Configure Rx jumbo frame & flow control parameters. */
1758 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1759 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1760 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1761 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1762 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1763 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1764 		    RX_JUMBO_LKAH_MASK));
1765 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1766 		rxf_hi = (reg * 7) / 10;
1767 		rxf_lo = (reg * 3)/ 10;
1768 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1769 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1770 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1771 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1772 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1773 	}
1774 
1775 	/* Disable RSS. */
1776 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1777 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1778 
1779 	/* Configure RxQ. */
1780 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1781 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1782 
1783 	/* Configure DMA parameters. */
1784 	reg = 0;
1785 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1786 		reg |= DMA_CFG_TXCMB_ENB;
1787 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1788 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1789 	    sc->ale_dma_rd_burst | reg |
1790 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1791 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1792 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1793 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1794 	    DMA_CFG_WR_DELAY_CNT_MASK));
1795 
1796 	/*
1797 	 * Hardware can be configured to issue SMB interrupt based
1798 	 * on programmed interval. Since there is a callout that is
1799 	 * invoked for every hz in driver we use that instead of
1800 	 * relying on periodic SMB interrupt.
1801 	 */
1802 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1803 
1804 	/* Clear MAC statistics. */
1805 	ale_stats_clear(sc);
1806 
1807 	/*
1808 	 * Configure Tx/Rx MACs.
1809 	 *  - Auto-padding for short frames.
1810 	 *  - Enable CRC generation.
1811 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1812 	 *  is followed after detection of link establishment.
1813 	 *  AR81xx always does checksum computation regardless of
1814 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1815 	 *  cause Rx handling issue for fragmented IP datagrams due
1816 	 *  to silicon bug.
1817 	 */
1818 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1819 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1820 	    MAC_CFG_PREAMBLE_MASK);
1821 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1822 		reg |= MAC_CFG_SPEED_10_100;
1823 	else
1824 		reg |= MAC_CFG_SPEED_1000;
1825 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1826 
1827 	/* Set up the receive filter. */
1828 	ale_rxfilter(sc);
1829 	ale_rxvlan(sc);
1830 
1831 	/* Acknowledge all pending interrupts and clear it. */
1832 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1833 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1834 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1835 
1836 	sc->ale_flags &= ~ALE_FLAG_LINK;
1837 
1838 	/* Switch to the current media. */
1839 	mii = &sc->sc_miibus;
1840 	mii_mediachg(mii);
1841 
1842 	callout_schedule(&sc->sc_tick_ch, hz);
1843 
1844 	ifp->if_flags |= IFF_RUNNING;
1845 	ifp->if_flags &= ~IFF_OACTIVE;
1846 
1847 	return 0;
1848 }
1849 
1850 static void
1851 ale_stop(struct ifnet *ifp, int disable)
1852 {
1853 	struct ale_softc *sc = ifp->if_softc;
1854 	struct ale_txdesc *txd;
1855 	uint32_t reg;
1856 	int i;
1857 
1858 	callout_stop(&sc->sc_tick_ch);
1859 
1860 	/*
1861 	 * Mark the interface down and cancel the watchdog timer.
1862 	 */
1863 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1864 	ifp->if_timer = 0;
1865 
1866 	sc->ale_flags &= ~ALE_FLAG_LINK;
1867 
1868 	ale_stats_update(sc);
1869 
1870 	mii_down(&sc->sc_miibus);
1871 
1872 	/* Disable interrupts. */
1873 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1874 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1875 
1876 	/* Disable queue processing and DMA. */
1877 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1878 	reg &= ~TXQ_CFG_ENB;
1879 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1880 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1881 	reg &= ~RXQ_CFG_ENB;
1882 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1883 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1884 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1885 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1886 	DELAY(1000);
1887 
1888 	/* Stop Rx/Tx MACs. */
1889 	ale_stop_mac(sc);
1890 
1891 	/* Disable interrupts again? XXX */
1892 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1893 
1894 	/*
1895 	 * Free TX mbufs still in the queues.
1896 	 */
1897 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1898 		txd = &sc->ale_cdata.ale_txdesc[i];
1899 		if (txd->tx_m != NULL) {
1900 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1901 			m_freem(txd->tx_m);
1902 			txd->tx_m = NULL;
1903 		}
1904         }
1905 }
1906 
1907 static void
1908 ale_stop_mac(struct ale_softc *sc)
1909 {
1910 	uint32_t reg;
1911 	int i;
1912 
1913 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1914 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1915 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1916 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1917 	}
1918 
1919 	for (i = ALE_TIMEOUT; i > 0; i--) {
1920 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1921 		if (reg == 0)
1922 			break;
1923 		DELAY(10);
1924 	}
1925 	if (i == 0)
1926 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1927 		    device_xname(sc->sc_dev), reg);
1928 }
1929 
1930 static void
1931 ale_init_tx_ring(struct ale_softc *sc)
1932 {
1933 	struct ale_txdesc *txd;
1934 	int i;
1935 
1936 	sc->ale_cdata.ale_tx_prod = 0;
1937 	sc->ale_cdata.ale_tx_cons = 0;
1938 	sc->ale_cdata.ale_tx_cnt = 0;
1939 
1940 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1941 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1942 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1943 		txd = &sc->ale_cdata.ale_txdesc[i];
1944 		txd->tx_m = NULL;
1945 	}
1946 	*sc->ale_cdata.ale_tx_cmb = 0;
1947 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1948 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1949 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1950 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1951 }
1952 
1953 static void
1954 ale_init_rx_pages(struct ale_softc *sc)
1955 {
1956 	struct ale_rx_page *rx_page;
1957 	int i;
1958 
1959 	sc->ale_cdata.ale_rx_seqno = 0;
1960 	sc->ale_cdata.ale_rx_curp = 0;
1961 
1962 	for (i = 0; i < ALE_RX_PAGES; i++) {
1963 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1964 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1965 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1966 		rx_page->cons = 0;
1967 		*rx_page->cmb_addr = 0;
1968 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1969 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1970 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1971 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1972 	}
1973 }
1974 
1975 static void
1976 ale_rxvlan(struct ale_softc *sc)
1977 {
1978 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1979 	uint32_t reg;
1980 
1981 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1982 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1983 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1984 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1985 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1986 }
1987 
1988 static void
1989 ale_rxfilter(struct ale_softc *sc)
1990 {
1991 	struct ethercom *ec = &sc->sc_ec;
1992 	struct ifnet *ifp = &ec->ec_if;
1993 	struct ether_multi *enm;
1994 	struct ether_multistep step;
1995 	uint32_t crc;
1996 	uint32_t mchash[2];
1997 	uint32_t rxcfg;
1998 
1999 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2000 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2001 	ifp->if_flags &= ~IFF_ALLMULTI;
2002 
2003 	/*
2004 	 * Always accept broadcast frames.
2005 	 */
2006 	rxcfg |= MAC_CFG_BCAST;
2007 
2008 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2009 		ifp->if_flags |= IFF_ALLMULTI;
2010 		if (ifp->if_flags & IFF_PROMISC)
2011 			rxcfg |= MAC_CFG_PROMISC;
2012 		else
2013 			rxcfg |= MAC_CFG_ALLMULTI;
2014 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2015 	} else {
2016 		/* Program new filter. */
2017 		memset(mchash, 0, sizeof(mchash));
2018 
2019 		ETHER_FIRST_MULTI(step, ec, enm);
2020 		while (enm != NULL) {
2021 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2022 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2023 			ETHER_NEXT_MULTI(step, enm);
2024 		}
2025 	}
2026 
2027 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2028 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2029 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2030 }
2031