xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_ale.c,v 1.15 2013/03/30 03:21:03 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.15 2013/03/30 03:21:03 christos Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <sys/rnd.h>
73 
74 #include <dev/mii/mii.h>
75 #include <dev/mii/miivar.h>
76 
77 #include <dev/pci/pcireg.h>
78 #include <dev/pci/pcivar.h>
79 #include <dev/pci/pcidevs.h>
80 
81 #include <dev/pci/if_alereg.h>
82 
83 static int	ale_match(device_t, cfdata_t, void *);
84 static void	ale_attach(device_t, device_t, void *);
85 static int	ale_detach(device_t, int);
86 
87 static int	ale_miibus_readreg(device_t, int, int);
88 static void	ale_miibus_writereg(device_t, int, int, int);
89 static void	ale_miibus_statchg(struct ifnet *);
90 
91 static int	ale_init(struct ifnet *);
92 static void	ale_start(struct ifnet *);
93 static int	ale_ioctl(struct ifnet *, u_long, void *);
94 static void	ale_watchdog(struct ifnet *);
95 static int	ale_mediachange(struct ifnet *);
96 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
97 
98 static int	ale_intr(void *);
99 static int	ale_rxeof(struct ale_softc *sc);
100 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
101 		    uint32_t, uint32_t *);
102 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
103 static void	ale_txeof(struct ale_softc *);
104 
105 static int	ale_dma_alloc(struct ale_softc *);
106 static void	ale_dma_free(struct ale_softc *);
107 static int	ale_encap(struct ale_softc *, struct mbuf **);
108 static void	ale_init_rx_pages(struct ale_softc *);
109 static void	ale_init_tx_ring(struct ale_softc *);
110 
111 static void	ale_stop(struct ifnet *, int);
112 static void	ale_tick(void *);
113 static void	ale_get_macaddr(struct ale_softc *);
114 static void	ale_mac_config(struct ale_softc *);
115 static void	ale_phy_reset(struct ale_softc *);
116 static void	ale_reset(struct ale_softc *);
117 static void	ale_rxfilter(struct ale_softc *);
118 static void	ale_rxvlan(struct ale_softc *);
119 static void	ale_stats_clear(struct ale_softc *);
120 static void	ale_stats_update(struct ale_softc *);
121 static void	ale_stop_mac(struct ale_softc *);
122 
123 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
124 	ale_match, ale_attach, ale_detach, NULL);
125 
126 int aledebug = 0;
127 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
128 
129 #define ETHER_ALIGN 2
130 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
131 
132 static int
133 ale_miibus_readreg(device_t dev, int phy, int reg)
134 {
135 	struct ale_softc *sc = device_private(dev);
136 	uint32_t v;
137 	int i;
138 
139 	if (phy != sc->ale_phyaddr)
140 		return 0;
141 
142 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
143 		switch (reg) {
144 		case MII_100T2CR:
145 		case MII_100T2SR:
146 		case MII_EXTSR:
147 			return 0;
148 		default:
149 			break;
150 		}
151 	}
152 
153 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
154 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
155 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
156 		DELAY(5);
157 		v = CSR_READ_4(sc, ALE_MDIO);
158 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
159 			break;
160 	}
161 
162 	if (i == 0) {
163 		printf("%s: phy read timeout: phy %d, reg %d\n",
164 		    device_xname(sc->sc_dev), phy, reg);
165 		return 0;
166 	}
167 
168 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
169 }
170 
171 static void
172 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
173 {
174 	struct ale_softc *sc = device_private(dev);
175 	uint32_t v;
176 	int i;
177 
178 	if (phy != sc->ale_phyaddr)
179 		return;
180 
181 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
182 		switch (reg) {
183 		case MII_100T2CR:
184 		case MII_100T2SR:
185 		case MII_EXTSR:
186 			return;
187 		default:
188 			break;
189 		}
190 	}
191 
192 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
193 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
194 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
195 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
196 		DELAY(5);
197 		v = CSR_READ_4(sc, ALE_MDIO);
198 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
199 			break;
200 	}
201 
202 	if (i == 0)
203 		printf("%s: phy write timeout: phy %d, reg %d\n",
204 		    device_xname(sc->sc_dev), phy, reg);
205 }
206 
207 static void
208 ale_miibus_statchg(struct ifnet *ifp)
209 {
210 	struct ale_softc *sc = ifp->if_softc;
211 	struct mii_data *mii = &sc->sc_miibus;
212 	uint32_t reg;
213 
214 	if ((ifp->if_flags & IFF_RUNNING) == 0)
215 		return;
216 
217 	sc->ale_flags &= ~ALE_FLAG_LINK;
218 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
219 	    (IFM_ACTIVE | IFM_AVALID)) {
220 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
221 		case IFM_10_T:
222 		case IFM_100_TX:
223 			sc->ale_flags |= ALE_FLAG_LINK;
224 			break;
225 
226 		case IFM_1000_T:
227 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
228 				sc->ale_flags |= ALE_FLAG_LINK;
229 			break;
230 
231 		default:
232 			break;
233 		}
234 	}
235 
236 	/* Stop Rx/Tx MACs. */
237 	ale_stop_mac(sc);
238 
239 	/* Program MACs with resolved speed/duplex/flow-control. */
240 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
241 		ale_mac_config(sc);
242 		/* Reenable Tx/Rx MACs. */
243 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
244 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
245 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
246 	}
247 }
248 
249 void
250 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
251 {
252 	struct ale_softc *sc = ifp->if_softc;
253 	struct mii_data *mii = &sc->sc_miibus;
254 
255 	mii_pollstat(mii);
256 	ifmr->ifm_status = mii->mii_media_status;
257 	ifmr->ifm_active = mii->mii_media_active;
258 }
259 
260 int
261 ale_mediachange(struct ifnet *ifp)
262 {
263 	struct ale_softc *sc = ifp->if_softc;
264 	struct mii_data *mii = &sc->sc_miibus;
265 	int error;
266 
267 	if (mii->mii_instance != 0) {
268 		struct mii_softc *miisc;
269 
270 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
271 			mii_phy_reset(miisc);
272 	}
273 	error = mii_mediachg(mii);
274 
275 	return error;
276 }
277 
278 int
279 ale_match(device_t dev, cfdata_t match, void *aux)
280 {
281 	struct pci_attach_args *pa = aux;
282 
283 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
284 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
285 }
286 
287 void
288 ale_get_macaddr(struct ale_softc *sc)
289 {
290 	uint32_t ea[2], reg;
291 	int i, vpdc;
292 
293 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
294 	if ((reg & SPI_VPD_ENB) != 0) {
295 		reg &= ~SPI_VPD_ENB;
296 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
297 	}
298 
299 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
300 	    &vpdc, NULL)) {
301 		/*
302 		 * PCI VPD capability found, let TWSI reload EEPROM.
303 		 * This will set ethernet address of controller.
304 		 */
305 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
306 		    TWSI_CTRL_SW_LD_START);
307 		for (i = 100; i > 0; i--) {
308 			DELAY(1000);
309 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
310 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
311 				break;
312 		}
313 		if (i == 0)
314 			printf("%s: reloading EEPROM timeout!\n",
315 			    device_xname(sc->sc_dev));
316 	} else {
317 		if (aledebug)
318 			printf("%s: PCI VPD capability not found!\n",
319 			    device_xname(sc->sc_dev));
320 	}
321 
322 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
323 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
324 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
325 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
326 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
327 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
328 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
329 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
330 }
331 
332 void
333 ale_phy_reset(struct ale_softc *sc)
334 {
335 	/* Reset magic from Linux. */
336 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
337 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
338 	    GPHY_CTRL_PHY_PLL_ON);
339 	DELAY(1000);
340 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
341 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
342 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
343 	DELAY(1000);
344 
345 #define	ATPHY_DBG_ADDR		0x1D
346 #define	ATPHY_DBG_DATA		0x1E
347 
348 	/* Enable hibernation mode. */
349 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
350 	    ATPHY_DBG_ADDR, 0x0B);
351 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
352 	    ATPHY_DBG_DATA, 0xBC00);
353 	/* Set Class A/B for all modes. */
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_ADDR, 0x00);
356 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
357 	    ATPHY_DBG_DATA, 0x02EF);
358 	/* Enable 10BT power saving. */
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_ADDR, 0x12);
361 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
362 	    ATPHY_DBG_DATA, 0x4C04);
363 	/* Adjust 1000T power. */
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_ADDR, 0x04);
366 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
367 	    ATPHY_DBG_DATA, 0x8BBB);
368 	/* 10BT center tap voltage. */
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_ADDR, 0x05);
371 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
372 	    ATPHY_DBG_DATA, 0x2C46);
373 
374 #undef	ATPHY_DBG_ADDR
375 #undef	ATPHY_DBG_DATA
376 	DELAY(1000);
377 }
378 
379 void
380 ale_attach(device_t parent, device_t self, void *aux)
381 {
382 	struct ale_softc *sc = device_private(self);
383 	struct pci_attach_args *pa = aux;
384 	pci_chipset_tag_t pc = pa->pa_pc;
385 	pci_intr_handle_t ih;
386 	const char *intrstr;
387 	struct ifnet *ifp;
388 	pcireg_t memtype;
389 	int mii_flags, error = 0;
390 	uint32_t rxf_len, txf_len;
391 	const char *chipname;
392 
393 	aprint_naive("\n");
394 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
395 
396 	sc->sc_dev = self;
397 	sc->sc_dmat = pa->pa_dmat;
398 	sc->sc_pct = pa->pa_pc;
399 	sc->sc_pcitag = pa->pa_tag;
400 
401 	/*
402 	 * Allocate IO memory
403 	 */
404 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
405 	switch (memtype) {
406 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
407 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
408 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
409 		break;
410 	default:
411 		aprint_error_dev(self, "invalid base address register\n");
412 		break;
413 	}
414 
415 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
416 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
417 		aprint_error_dev(self, "could not map mem space\n");
418 		return;
419 	}
420 
421 	if (pci_intr_map(pa, &ih) != 0) {
422 		aprint_error_dev(self, "could not map interrupt\n");
423 		goto fail;
424 	}
425 
426 	/*
427 	 * Allocate IRQ
428 	 */
429 	intrstr = pci_intr_string(sc->sc_pct, ih);
430 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
431 	if (sc->sc_irq_handle == NULL) {
432 		aprint_error_dev(self, "could not establish interrupt");
433 		if (intrstr != NULL)
434 			aprint_error(" at %s", intrstr);
435 		aprint_error("\n");
436 		goto fail;
437 	}
438 
439 	/* Set PHY address. */
440 	sc->ale_phyaddr = ALE_PHY_ADDR;
441 
442 	/* Reset PHY. */
443 	ale_phy_reset(sc);
444 
445 	/* Reset the ethernet controller. */
446 	ale_reset(sc);
447 
448 	/* Get PCI and chip id/revision. */
449 	sc->ale_rev = PCI_REVISION(pa->pa_class);
450 	if (sc->ale_rev >= 0xF0) {
451 		/* L2E Rev. B. AR8114 */
452 		sc->ale_flags |= ALE_FLAG_FASTETHER;
453 		chipname = "AR8114 (L2E RevB)";
454 	} else {
455 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
456 			/* L1E AR8121 */
457 			sc->ale_flags |= ALE_FLAG_JUMBO;
458 			chipname = "AR8121 (L1E)";
459 		} else {
460 			/* L2E Rev. A. AR8113 */
461 			sc->ale_flags |= ALE_FLAG_FASTETHER;
462 			chipname = "AR8113 (L2E RevA)";
463 		}
464 	}
465 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
466 
467 	/*
468 	 * All known controllers seems to require 4 bytes alignment
469 	 * of Tx buffers to make Tx checksum offload with custom
470 	 * checksum generation method work.
471 	 */
472 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
473 
474 	/*
475 	 * All known controllers seems to have issues on Rx checksum
476 	 * offload for fragmented IP datagrams.
477 	 */
478 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
479 
480 	/*
481 	 * Don't use Tx CMB. It is known to cause RRS update failure
482 	 * under certain circumstances. Typical phenomenon of the
483 	 * issue would be unexpected sequence number encountered in
484 	 * Rx handler.
485 	 */
486 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
487 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
488 	    MASTER_CHIP_REV_SHIFT;
489 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
490 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
491 
492 	/*
493 	 * Uninitialized hardware returns an invalid chip id/revision
494 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
495 	 */
496 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
497 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
498 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
499 	    rxf_len == 0xFFFFFFF) {
500 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
501 		    "%u Rx FIFO -- not initialized?\n",
502 		    sc->ale_chip_rev, txf_len, rxf_len);
503 		goto fail;
504 	}
505 
506 	if (aledebug) {
507 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
508 		    txf_len, rxf_len);
509 	}
510 
511 	/* Set max allowable DMA size. */
512 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
513 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
514 
515 	callout_init(&sc->sc_tick_ch, 0);
516 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
517 
518 	error = ale_dma_alloc(sc);
519 	if (error)
520 		goto fail;
521 
522 	/* Load station address. */
523 	ale_get_macaddr(sc);
524 
525 	aprint_normal_dev(self, "Ethernet address %s\n",
526 	    ether_sprintf(sc->ale_eaddr));
527 
528 	ifp = &sc->sc_ec.ec_if;
529 	ifp->if_softc = sc;
530 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
531 	ifp->if_init = ale_init;
532 	ifp->if_ioctl = ale_ioctl;
533 	ifp->if_start = ale_start;
534 	ifp->if_stop = ale_stop;
535 	ifp->if_watchdog = ale_watchdog;
536 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
537 	IFQ_SET_READY(&ifp->if_snd);
538 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
539 
540 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
541 
542 #ifdef ALE_CHECKSUM
543 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
544 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
545 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
546 #endif
547 
548 #if NVLAN > 0
549 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
550 #endif
551 
552 	/* Set up MII bus. */
553 	sc->sc_miibus.mii_ifp = ifp;
554 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
555 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
556 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
557 
558 	sc->sc_ec.ec_mii = &sc->sc_miibus;
559 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
560 	    ale_mediastatus);
561 	mii_flags = 0;
562 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
563 		mii_flags |= MIIF_DOPAUSE;
564 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
565 	    MII_OFFSET_ANY, mii_flags);
566 
567 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
568 		aprint_error_dev(self, "no PHY found!\n");
569 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
570 		    0, NULL);
571 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
572 	} else
573 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
574 
575 	if_attach(ifp);
576 	ether_ifattach(ifp, sc->ale_eaddr);
577 
578 	if (pmf_device_register(self, NULL, NULL))
579 		pmf_class_network_register(self, ifp);
580 	else
581 		aprint_error_dev(self, "couldn't establish power handler\n");
582 
583 	return;
584 fail:
585 	ale_dma_free(sc);
586 	if (sc->sc_irq_handle != NULL) {
587 		pci_intr_disestablish(pc, sc->sc_irq_handle);
588 		sc->sc_irq_handle = NULL;
589 	}
590 	if (sc->sc_mem_size) {
591 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
592 		sc->sc_mem_size = 0;
593 	}
594 }
595 
596 static int
597 ale_detach(device_t self, int flags)
598 {
599 	struct ale_softc *sc = device_private(self);
600 	struct ifnet *ifp = &sc->sc_ec.ec_if;
601 	int s;
602 
603 	pmf_device_deregister(self);
604 	s = splnet();
605 	ale_stop(ifp, 0);
606 	splx(s);
607 
608 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
609 
610 	/* Delete all remaining media. */
611 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
612 
613 	ether_ifdetach(ifp);
614 	if_detach(ifp);
615 	ale_dma_free(sc);
616 
617 	if (sc->sc_irq_handle != NULL) {
618 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
619 		sc->sc_irq_handle = NULL;
620 	}
621 	if (sc->sc_mem_size) {
622 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
623 		sc->sc_mem_size = 0;
624 	}
625 
626 	return 0;
627 }
628 
629 
630 static int
631 ale_dma_alloc(struct ale_softc *sc)
632 {
633 	struct ale_txdesc *txd;
634 	int nsegs, error, guard_size, i;
635 
636 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
637 		guard_size = ALE_JUMBO_FRAMELEN;
638 	else
639 		guard_size = ALE_MAX_FRAMELEN;
640 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
641 	    ALE_RX_PAGE_ALIGN);
642 
643 	/*
644 	 * Create DMA stuffs for TX ring
645 	 */
646 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
647 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
648 	if (error) {
649 		sc->ale_cdata.ale_tx_ring_map = NULL;
650 		return ENOBUFS;
651 	}
652 
653 	/* Allocate DMA'able memory for TX ring */
654 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
655 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
656 	    &nsegs, BUS_DMA_WAITOK);
657 	if (error) {
658 		printf("%s: could not allocate DMA'able memory for Tx ring, "
659 		    "error = %i\n", device_xname(sc->sc_dev), error);
660 		return error;
661 	}
662 
663 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
664 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
665 	    BUS_DMA_NOWAIT);
666 	if (error)
667 		return ENOBUFS;
668 
669 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
670 
671 	/* Load the DMA map for Tx ring. */
672 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
673 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
674 	if (error) {
675 		printf("%s: could not load DMA'able memory for Tx ring.\n",
676 		    device_xname(sc->sc_dev));
677 		bus_dmamem_free(sc->sc_dmat,
678 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
679 		return error;
680 	}
681 	sc->ale_cdata.ale_tx_ring_paddr =
682 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
683 
684 	for (i = 0; i < ALE_RX_PAGES; i++) {
685 		/*
686 		 * Create DMA stuffs for RX pages
687 		 */
688 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
689 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
690 		    &sc->ale_cdata.ale_rx_page[i].page_map);
691 		if (error) {
692 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
693 			return ENOBUFS;
694 		}
695 
696 		/* Allocate DMA'able memory for RX pages */
697 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
698 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
699 		    1, &nsegs, BUS_DMA_WAITOK);
700 		if (error) {
701 			printf("%s: could not allocate DMA'able memory for "
702 			    "Rx ring.\n", device_xname(sc->sc_dev));
703 			return error;
704 		}
705 		error = bus_dmamem_map(sc->sc_dmat,
706 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
707 		    sc->ale_pagesize,
708 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
709 		    BUS_DMA_NOWAIT);
710 		if (error)
711 			return ENOBUFS;
712 
713 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
714 		    sc->ale_pagesize);
715 
716 		/* Load the DMA map for Rx pages. */
717 		error = bus_dmamap_load(sc->sc_dmat,
718 		    sc->ale_cdata.ale_rx_page[i].page_map,
719 		    sc->ale_cdata.ale_rx_page[i].page_addr,
720 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
721 		if (error) {
722 			printf("%s: could not load DMA'able memory for "
723 			    "Rx pages.\n", device_xname(sc->sc_dev));
724 			bus_dmamem_free(sc->sc_dmat,
725 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
726 			return error;
727 		}
728 		sc->ale_cdata.ale_rx_page[i].page_paddr =
729 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
730 	}
731 
732 	/*
733 	 * Create DMA stuffs for Tx CMB.
734 	 */
735 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
736 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
737 	if (error) {
738 		sc->ale_cdata.ale_tx_cmb_map = NULL;
739 		return ENOBUFS;
740 	}
741 
742 	/* Allocate DMA'able memory for Tx CMB. */
743 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
744 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
745 
746 	if (error) {
747 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
748 		    device_xname(sc->sc_dev));
749 		return error;
750 	}
751 
752 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
753 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
754 	    BUS_DMA_NOWAIT);
755 	if (error)
756 		return ENOBUFS;
757 
758 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
759 
760 	/* Load the DMA map for Tx CMB. */
761 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
762 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
763 	if (error) {
764 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
765 		    device_xname(sc->sc_dev));
766 		bus_dmamem_free(sc->sc_dmat,
767 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
768 		return error;
769 	}
770 
771 	sc->ale_cdata.ale_tx_cmb_paddr =
772 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
773 
774 	for (i = 0; i < ALE_RX_PAGES; i++) {
775 		/*
776 		 * Create DMA stuffs for Rx CMB.
777 		 */
778 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
779 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
780 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
781 		if (error) {
782 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
783 			return ENOBUFS;
784 		}
785 
786 		/* Allocate DMA'able memory for Rx CMB */
787 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
788 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
789 		    &nsegs, BUS_DMA_WAITOK);
790 		if (error) {
791 			printf("%s: could not allocate DMA'able memory for "
792 			    "Rx CMB\n", device_xname(sc->sc_dev));
793 			return error;
794 		}
795 		error = bus_dmamem_map(sc->sc_dmat,
796 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
797 		    ALE_RX_CMB_SZ,
798 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
799 		    BUS_DMA_NOWAIT);
800 		if (error)
801 			return ENOBUFS;
802 
803 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
804 
805 		/* Load the DMA map for Rx CMB */
806 		error = bus_dmamap_load(sc->sc_dmat,
807 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
808 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
809 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
810 		if (error) {
811 			printf("%s: could not load DMA'able memory for Rx CMB"
812 			    "\n", device_xname(sc->sc_dev));
813 			bus_dmamem_free(sc->sc_dmat,
814 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
815 			return error;
816 		}
817 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
818 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
819 	}
820 
821 
822 	/* Create DMA maps for Tx buffers. */
823 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
824 		txd = &sc->ale_cdata.ale_txdesc[i];
825 		txd->tx_m = NULL;
826 		txd->tx_dmamap = NULL;
827 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
828 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
829 		    &txd->tx_dmamap);
830 		if (error) {
831 			txd->tx_dmamap = NULL;
832 			printf("%s: could not create Tx dmamap.\n",
833 			    device_xname(sc->sc_dev));
834 			return error;
835 		}
836 	}
837 
838 	return 0;
839 }
840 
841 static void
842 ale_dma_free(struct ale_softc *sc)
843 {
844 	struct ale_txdesc *txd;
845 	int i;
846 
847 	/* Tx buffers. */
848 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
849 		txd = &sc->ale_cdata.ale_txdesc[i];
850 		if (txd->tx_dmamap != NULL) {
851 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
852 			txd->tx_dmamap = NULL;
853 		}
854 	}
855 
856 	/* Tx descriptor ring. */
857 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
858 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
859 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
860 	    sc->ale_cdata.ale_tx_ring != NULL)
861 		bus_dmamem_free(sc->sc_dmat,
862 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
863 	sc->ale_cdata.ale_tx_ring = NULL;
864 	sc->ale_cdata.ale_tx_ring_map = NULL;
865 
866 	/* Rx page block. */
867 	for (i = 0; i < ALE_RX_PAGES; i++) {
868 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
869 			bus_dmamap_unload(sc->sc_dmat,
870 			    sc->ale_cdata.ale_rx_page[i].page_map);
871 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
872 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
873 			bus_dmamem_free(sc->sc_dmat,
874 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
875 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
876 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
877 	}
878 
879 	/* Rx CMB. */
880 	for (i = 0; i < ALE_RX_PAGES; i++) {
881 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
882 			bus_dmamap_unload(sc->sc_dmat,
883 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
884 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
885 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
886 			bus_dmamem_free(sc->sc_dmat,
887 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
888 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
889 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
890 	}
891 
892 	/* Tx CMB. */
893 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
894 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
895 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
896 	    sc->ale_cdata.ale_tx_cmb != NULL)
897 		bus_dmamem_free(sc->sc_dmat,
898 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
899 	sc->ale_cdata.ale_tx_cmb = NULL;
900 	sc->ale_cdata.ale_tx_cmb_map = NULL;
901 
902 }
903 
904 static int
905 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
906 {
907 	struct ale_txdesc *txd, *txd_last;
908 	struct tx_desc *desc;
909 	struct mbuf *m;
910 	bus_dmamap_t map;
911 	uint32_t cflags, poff, vtag;
912 	int error, i, nsegs, prod;
913 #if NVLAN > 0
914 	struct m_tag *mtag;
915 #endif
916 
917 	m = *m_head;
918 	cflags = vtag = 0;
919 	poff = 0;
920 
921 	prod = sc->ale_cdata.ale_tx_prod;
922 	txd = &sc->ale_cdata.ale_txdesc[prod];
923 	txd_last = txd;
924 	map = txd->tx_dmamap;
925 
926 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
927 	if (error == EFBIG) {
928 		error = 0;
929 
930 		*m_head = m_pullup(*m_head, MHLEN);
931 		if (*m_head == NULL) {
932 			printf("%s: can't defrag TX mbuf\n",
933 			    device_xname(sc->sc_dev));
934 			return ENOBUFS;
935 		}
936 
937 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
938 		    BUS_DMA_NOWAIT);
939 
940 		if (error != 0) {
941 			printf("%s: could not load defragged TX mbuf\n",
942 			    device_xname(sc->sc_dev));
943 			m_freem(*m_head);
944 			*m_head = NULL;
945 			return error;
946 		}
947 	} else if (error) {
948 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
949 		return error;
950 	}
951 
952 	nsegs = map->dm_nsegs;
953 
954 	if (nsegs == 0) {
955 		m_freem(*m_head);
956 		*m_head = NULL;
957 		return EIO;
958 	}
959 
960 	/* Check descriptor overrun. */
961 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
962 		bus_dmamap_unload(sc->sc_dmat, map);
963 		return ENOBUFS;
964 	}
965 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
966 	    BUS_DMASYNC_PREWRITE);
967 
968 	m = *m_head;
969 	/* Configure Tx checksum offload. */
970 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
971 		/*
972 		 * AR81xx supports Tx custom checksum offload feature
973 		 * that offloads single 16bit checksum computation.
974 		 * So you can choose one among IP, TCP and UDP.
975 		 * Normally driver sets checksum start/insertion
976 		 * position from the information of TCP/UDP frame as
977 		 * TCP/UDP checksum takes more time than that of IP.
978 		 * However it seems that custom checksum offload
979 		 * requires 4 bytes aligned Tx buffers due to hardware
980 		 * bug.
981 		 * AR81xx also supports explicit Tx checksum computation
982 		 * if it is told that the size of IP header and TCP
983 		 * header(for UDP, the header size does not matter
984 		 * because it's fixed length). However with this scheme
985 		 * TSO does not work so you have to choose one either
986 		 * TSO or explicit Tx checksum offload. I chosen TSO
987 		 * plus custom checksum offload with work-around which
988 		 * will cover most common usage for this consumer
989 		 * ethernet controller. The work-around takes a lot of
990 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
991 		 * boundary, though.
992 		 */
993 		cflags |= ALE_TD_CXSUM;
994 		/* Set checksum start offset. */
995 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
996 	}
997 
998 #if NVLAN > 0
999 	/* Configure VLAN hardware tag insertion. */
1000 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1001 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1002 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1003 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1004 	}
1005 #endif
1006 
1007 	desc = NULL;
1008 	for (i = 0; i < nsegs; i++) {
1009 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1010 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1011 		desc->len =
1012 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1013 		desc->flags = htole32(cflags);
1014 		sc->ale_cdata.ale_tx_cnt++;
1015 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1016 	}
1017 	/* Update producer index. */
1018 	sc->ale_cdata.ale_tx_prod = prod;
1019 
1020 	/* Finally set EOP on the last descriptor. */
1021 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1022 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1023 	desc->flags |= htole32(ALE_TD_EOP);
1024 
1025 	/* Swap dmamap of the first and the last. */
1026 	txd = &sc->ale_cdata.ale_txdesc[prod];
1027 	map = txd_last->tx_dmamap;
1028 	txd_last->tx_dmamap = txd->tx_dmamap;
1029 	txd->tx_dmamap = map;
1030 	txd->tx_m = m;
1031 
1032 	/* Sync descriptors. */
1033 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1034 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1035 
1036 	return 0;
1037 }
1038 
1039 static void
1040 ale_start(struct ifnet *ifp)
1041 {
1042         struct ale_softc *sc = ifp->if_softc;
1043 	struct mbuf *m_head;
1044 	int enq;
1045 
1046 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1047 		return;
1048 
1049 	/* Reclaim transmitted frames. */
1050 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1051 		ale_txeof(sc);
1052 
1053 	enq = 0;
1054 	for (;;) {
1055 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1056 		if (m_head == NULL)
1057 			break;
1058 
1059 		/*
1060 		 * Pack the data into the transmit ring. If we
1061 		 * don't have room, set the OACTIVE flag and wait
1062 		 * for the NIC to drain the ring.
1063 		 */
1064 		if (ale_encap(sc, &m_head)) {
1065 			if (m_head == NULL)
1066 				break;
1067 			IF_PREPEND(&ifp->if_snd, m_head);
1068 			ifp->if_flags |= IFF_OACTIVE;
1069 			break;
1070 		}
1071 		enq = 1;
1072 
1073 		/*
1074 		 * If there's a BPF listener, bounce a copy of this frame
1075 		 * to him.
1076 		 */
1077 		bpf_mtap(ifp, m_head);
1078 	}
1079 
1080 	if (enq) {
1081 		/* Kick. */
1082 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1083 		    sc->ale_cdata.ale_tx_prod);
1084 
1085 		/* Set a timeout in case the chip goes out to lunch. */
1086 		ifp->if_timer = ALE_TX_TIMEOUT;
1087 	}
1088 }
1089 
1090 static void
1091 ale_watchdog(struct ifnet *ifp)
1092 {
1093 	struct ale_softc *sc = ifp->if_softc;
1094 
1095 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1096 		printf("%s: watchdog timeout (missed link)\n",
1097 		    device_xname(sc->sc_dev));
1098 		ifp->if_oerrors++;
1099 		ale_init(ifp);
1100 		return;
1101 	}
1102 
1103 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1104 	ifp->if_oerrors++;
1105 	ale_init(ifp);
1106 
1107 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1108 		ale_start(ifp);
1109 }
1110 
1111 static int
1112 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1113 {
1114 	struct ale_softc *sc = ifp->if_softc;
1115 	int s, error;
1116 
1117 	s = splnet();
1118 
1119 	error = ether_ioctl(ifp, cmd, data);
1120 	if (error == ENETRESET) {
1121 		if (ifp->if_flags & IFF_RUNNING)
1122 			ale_rxfilter(sc);
1123 		error = 0;
1124 	}
1125 
1126 	splx(s);
1127 	return error;
1128 }
1129 
1130 static void
1131 ale_mac_config(struct ale_softc *sc)
1132 {
1133 	struct mii_data *mii;
1134 	uint32_t reg;
1135 
1136 	mii = &sc->sc_miibus;
1137 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1138 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1139 	    MAC_CFG_SPEED_MASK);
1140 
1141 	/* Reprogram MAC with resolved speed/duplex. */
1142 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1143 	case IFM_10_T:
1144 	case IFM_100_TX:
1145 		reg |= MAC_CFG_SPEED_10_100;
1146 		break;
1147 	case IFM_1000_T:
1148 		reg |= MAC_CFG_SPEED_1000;
1149 		break;
1150 	}
1151 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1152 		reg |= MAC_CFG_FULL_DUPLEX;
1153 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1154 			reg |= MAC_CFG_TX_FC;
1155 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1156 			reg |= MAC_CFG_RX_FC;
1157 	}
1158 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1159 }
1160 
1161 static void
1162 ale_stats_clear(struct ale_softc *sc)
1163 {
1164 	struct smb sb;
1165 	uint32_t *reg;
1166 	int i;
1167 
1168 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1169 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1170 		i += sizeof(uint32_t);
1171 	}
1172 	/* Read Tx statistics. */
1173 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1174 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1175 		i += sizeof(uint32_t);
1176 	}
1177 }
1178 
1179 static void
1180 ale_stats_update(struct ale_softc *sc)
1181 {
1182 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1183 	struct ale_hw_stats *stat;
1184 	struct smb sb, *smb;
1185 	uint32_t *reg;
1186 	int i;
1187 
1188 	stat = &sc->ale_stats;
1189 	smb = &sb;
1190 
1191 	/* Read Rx statistics. */
1192 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1193 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1194 		i += sizeof(uint32_t);
1195 	}
1196 	/* Read Tx statistics. */
1197 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1198 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1199 		i += sizeof(uint32_t);
1200 	}
1201 
1202 	/* Rx stats. */
1203 	stat->rx_frames += smb->rx_frames;
1204 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1205 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1206 	stat->rx_pause_frames += smb->rx_pause_frames;
1207 	stat->rx_control_frames += smb->rx_control_frames;
1208 	stat->rx_crcerrs += smb->rx_crcerrs;
1209 	stat->rx_lenerrs += smb->rx_lenerrs;
1210 	stat->rx_bytes += smb->rx_bytes;
1211 	stat->rx_runts += smb->rx_runts;
1212 	stat->rx_fragments += smb->rx_fragments;
1213 	stat->rx_pkts_64 += smb->rx_pkts_64;
1214 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1215 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1216 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1217 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1218 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1219 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1220 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1221 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1222 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1223 	stat->rx_alignerrs += smb->rx_alignerrs;
1224 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1225 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1226 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1227 
1228 	/* Tx stats. */
1229 	stat->tx_frames += smb->tx_frames;
1230 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1231 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1232 	stat->tx_pause_frames += smb->tx_pause_frames;
1233 	stat->tx_excess_defer += smb->tx_excess_defer;
1234 	stat->tx_control_frames += smb->tx_control_frames;
1235 	stat->tx_deferred += smb->tx_deferred;
1236 	stat->tx_bytes += smb->tx_bytes;
1237 	stat->tx_pkts_64 += smb->tx_pkts_64;
1238 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1239 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1240 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1241 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1242 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1243 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1244 	stat->tx_single_colls += smb->tx_single_colls;
1245 	stat->tx_multi_colls += smb->tx_multi_colls;
1246 	stat->tx_late_colls += smb->tx_late_colls;
1247 	stat->tx_excess_colls += smb->tx_excess_colls;
1248 	stat->tx_abort += smb->tx_abort;
1249 	stat->tx_underrun += smb->tx_underrun;
1250 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1251 	stat->tx_lenerrs += smb->tx_lenerrs;
1252 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1253 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1254 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1255 
1256 	/* Update counters in ifnet. */
1257 	ifp->if_opackets += smb->tx_frames;
1258 
1259 	ifp->if_collisions += smb->tx_single_colls +
1260 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1261 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1262 
1263 	/*
1264 	 * XXX
1265 	 * tx_pkts_truncated counter looks suspicious. It constantly
1266 	 * increments with no sign of Tx errors. This may indicate
1267 	 * the counter name is not correct one so I've removed the
1268 	 * counter in output errors.
1269 	 */
1270 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1271 	    smb->tx_underrun;
1272 
1273 	ifp->if_ipackets += smb->rx_frames;
1274 
1275 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1276 	    smb->rx_runts + smb->rx_pkts_truncated +
1277 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1278 	    smb->rx_alignerrs;
1279 }
1280 
1281 static int
1282 ale_intr(void *xsc)
1283 {
1284 	struct ale_softc *sc = xsc;
1285 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1286 	uint32_t status;
1287 
1288 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1289 	if ((status & ALE_INTRS) == 0)
1290 		return 0;
1291 
1292 	/* Acknowledge and disable interrupts. */
1293 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1294 
1295 	if (ifp->if_flags & IFF_RUNNING) {
1296 		int error;
1297 
1298 		error = ale_rxeof(sc);
1299 		if (error) {
1300 			sc->ale_stats.reset_brk_seq++;
1301 			ale_init(ifp);
1302 			return 0;
1303 		}
1304 
1305 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1306 			if (status & INTR_DMA_RD_TO_RST)
1307 				printf("%s: DMA read error! -- resetting\n",
1308 				    device_xname(sc->sc_dev));
1309 			if (status & INTR_DMA_WR_TO_RST)
1310 				printf("%s: DMA write error! -- resetting\n",
1311 				    device_xname(sc->sc_dev));
1312 			ale_init(ifp);
1313 			return 0;
1314 		}
1315 
1316 		ale_txeof(sc);
1317 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1318 			ale_start(ifp);
1319 	}
1320 
1321 	/* Re-enable interrupts. */
1322 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1323 	return 1;
1324 }
1325 
1326 static void
1327 ale_txeof(struct ale_softc *sc)
1328 {
1329 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1330 	struct ale_txdesc *txd;
1331 	uint32_t cons, prod;
1332 	int prog;
1333 
1334 	if (sc->ale_cdata.ale_tx_cnt == 0)
1335 		return;
1336 
1337 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1338 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1339 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1340 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1341 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1342 		    BUS_DMASYNC_POSTREAD);
1343 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1344 	} else
1345 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1346 	cons = sc->ale_cdata.ale_tx_cons;
1347 	/*
1348 	 * Go through our Tx list and free mbufs for those
1349 	 * frames which have been transmitted.
1350 	 */
1351 	for (prog = 0; cons != prod; prog++,
1352 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1353 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1354 			break;
1355 		prog++;
1356 		ifp->if_flags &= ~IFF_OACTIVE;
1357 		sc->ale_cdata.ale_tx_cnt--;
1358 		txd = &sc->ale_cdata.ale_txdesc[cons];
1359 		if (txd->tx_m != NULL) {
1360 			/* Reclaim transmitted mbufs. */
1361 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1362 			m_freem(txd->tx_m);
1363 			txd->tx_m = NULL;
1364 		}
1365 	}
1366 
1367 	if (prog > 0) {
1368 		sc->ale_cdata.ale_tx_cons = cons;
1369 		/*
1370 		 * Unarm watchdog timer only when there is no pending
1371 		 * Tx descriptors in queue.
1372 		 */
1373 		if (sc->ale_cdata.ale_tx_cnt == 0)
1374 			ifp->if_timer = 0;
1375 	}
1376 }
1377 
1378 static void
1379 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1380     uint32_t length, uint32_t *prod)
1381 {
1382 	struct ale_rx_page *rx_page;
1383 
1384 	rx_page = *page;
1385 	/* Update consumer position. */
1386 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1387 	    ALE_RX_PAGE_ALIGN);
1388 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1389 		/*
1390 		 * End of Rx page reached, let hardware reuse
1391 		 * this page.
1392 		 */
1393 		rx_page->cons = 0;
1394 		*rx_page->cmb_addr = 0;
1395 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1396 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1397 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1398 		    RXF_VALID);
1399 		/* Switch to alternate Rx page. */
1400 		sc->ale_cdata.ale_rx_curp ^= 1;
1401 		rx_page = *page =
1402 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1403 		/* Page flipped, sync CMB and Rx page. */
1404 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1405 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1406 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1407 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1408 		/* Sync completed, cache updated producer index. */
1409 		*prod = *rx_page->cmb_addr;
1410 	}
1411 }
1412 
1413 
1414 /*
1415  * It seems that AR81xx controller can compute partial checksum.
1416  * The partial checksum value can be used to accelerate checksum
1417  * computation for fragmented TCP/UDP packets. Upper network stack
1418  * already takes advantage of the partial checksum value in IP
1419  * reassembly stage. But I'm not sure the correctness of the
1420  * partial hardware checksum assistance due to lack of data sheet.
1421  * In addition, the Rx feature of controller that requires copying
1422  * for every frames effectively nullifies one of most nice offload
1423  * capability of controller.
1424  */
1425 static void
1426 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1427 {
1428 	if (status & ALE_RD_IPCSUM_NOK)
1429 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1430 
1431 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1432 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1433 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1434 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1435 		{
1436 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1437 		}
1438 	} else {
1439 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1440 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1441 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1442 			}
1443 		}
1444 	}
1445 	/*
1446 	 * Don't mark bad checksum for TCP/UDP frames
1447 	 * as fragmented frames may always have set
1448 	 * bad checksummed bit of frame status.
1449 	 */
1450 }
1451 
1452 /* Process received frames. */
1453 static int
1454 ale_rxeof(struct ale_softc *sc)
1455 {
1456 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1457 	struct ale_rx_page *rx_page;
1458 	struct rx_rs *rs;
1459 	struct mbuf *m;
1460 	uint32_t length, prod, seqno, status;
1461 	int prog;
1462 
1463 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1464 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1465 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1466 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1467 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1468 	/*
1469 	 * Don't directly access producer index as hardware may
1470 	 * update it while Rx handler is in progress. It would
1471 	 * be even better if there is a way to let hardware
1472 	 * know how far driver processed its received frames.
1473 	 * Alternatively, hardware could provide a way to disable
1474 	 * CMB updates until driver acknowledges the end of CMB
1475 	 * access.
1476 	 */
1477 	prod = *rx_page->cmb_addr;
1478 	for (prog = 0; ; prog++) {
1479 		if (rx_page->cons >= prod)
1480 			break;
1481 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1482 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1483 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1484 			/*
1485 			 * Normally I believe this should not happen unless
1486 			 * severe driver bug or corrupted memory. However
1487 			 * it seems to happen under certain conditions which
1488 			 * is triggered by abrupt Rx events such as initiation
1489 			 * of bulk transfer of remote host. It's not easy to
1490 			 * reproduce this and I doubt it could be related
1491 			 * with FIFO overflow of hardware or activity of Tx
1492 			 * CMB updates. I also remember similar behaviour
1493 			 * seen on RealTek 8139 which uses resembling Rx
1494 			 * scheme.
1495 			 */
1496 			if (aledebug)
1497 				printf("%s: garbled seq: %u, expected: %u -- "
1498 				    "resetting!\n", device_xname(sc->sc_dev),
1499 				    seqno, sc->ale_cdata.ale_rx_seqno);
1500 			return EIO;
1501 		}
1502 		/* Frame received. */
1503 		sc->ale_cdata.ale_rx_seqno++;
1504 		length = ALE_RX_BYTES(le32toh(rs->length));
1505 		status = le32toh(rs->flags);
1506 		if (status & ALE_RD_ERROR) {
1507 			/*
1508 			 * We want to pass the following frames to upper
1509 			 * layer regardless of error status of Rx return
1510 			 * status.
1511 			 *
1512 			 *  o IP/TCP/UDP checksum is bad.
1513 			 *  o frame length and protocol specific length
1514 			 *     does not match.
1515 			 */
1516 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1517 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1518 			    ALE_RD_TRUNC)) {
1519 				ale_rx_update_page(sc, &rx_page, length, &prod);
1520 				continue;
1521 			}
1522 		}
1523 		/*
1524 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1525 		 * from hardware limitation). For jumbo frames we could
1526 		 * get a slightly better performance if driver use
1527 		 * m_getjcl(9) with proper buffer size argument. However
1528 		 * that would make code more complicated and I don't
1529 		 * think users would expect good Rx performance numbers
1530 		 * on these low-end consumer ethernet controller.
1531 		 */
1532 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1533 		    0, ifp, NULL);
1534 		if (m == NULL) {
1535 			ifp->if_iqdrops++;
1536 			ale_rx_update_page(sc, &rx_page, length, &prod);
1537 			continue;
1538 		}
1539 		if (status & ALE_RD_IPV4)
1540 			ale_rxcsum(sc, m, status);
1541 #if NVLAN > 0
1542 		if (status & ALE_RD_VLAN) {
1543 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1544 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1545 		}
1546 #endif
1547 
1548 
1549 		bpf_mtap(ifp, m);
1550 
1551 		/* Pass it to upper layer. */
1552 		ether_input(ifp, m);
1553 
1554 		ale_rx_update_page(sc, &rx_page, length, &prod);
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 static void
1561 ale_tick(void *xsc)
1562 {
1563 	struct ale_softc *sc = xsc;
1564 	struct mii_data *mii = &sc->sc_miibus;
1565 	int s;
1566 
1567 	s = splnet();
1568 	mii_tick(mii);
1569 	ale_stats_update(sc);
1570 	splx(s);
1571 
1572 	callout_schedule(&sc->sc_tick_ch, hz);
1573 }
1574 
1575 static void
1576 ale_reset(struct ale_softc *sc)
1577 {
1578 	uint32_t reg;
1579 	int i;
1580 
1581 	/* Initialize PCIe module. From Linux. */
1582 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1583 
1584 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1585 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1586 		DELAY(10);
1587 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1588 			break;
1589 	}
1590 	if (i == 0)
1591 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1592 
1593 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1594 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1595 			break;
1596 		DELAY(10);
1597 	}
1598 
1599 	if (i == 0)
1600 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1601 		    reg);
1602 }
1603 
1604 static int
1605 ale_init(struct ifnet *ifp)
1606 {
1607 	struct ale_softc *sc = ifp->if_softc;
1608 	struct mii_data *mii;
1609 	uint8_t eaddr[ETHER_ADDR_LEN];
1610 	bus_addr_t paddr;
1611 	uint32_t reg, rxf_hi, rxf_lo;
1612 
1613 	/*
1614 	 * Cancel any pending I/O.
1615 	 */
1616 	ale_stop(ifp, 0);
1617 
1618 	/*
1619 	 * Reset the chip to a known state.
1620 	 */
1621 	ale_reset(sc);
1622 
1623 	/* Initialize Tx descriptors, DMA memory blocks. */
1624 	ale_init_rx_pages(sc);
1625 	ale_init_tx_ring(sc);
1626 
1627 	/* Reprogram the station address. */
1628 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1629 	CSR_WRITE_4(sc, ALE_PAR0,
1630 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1631 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1632 
1633 	/*
1634 	 * Clear WOL status and disable all WOL feature as WOL
1635 	 * would interfere Rx operation under normal environments.
1636 	 */
1637 	CSR_READ_4(sc, ALE_WOL_CFG);
1638 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1639 
1640 	/*
1641 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1642 	 * the same high address part of DMAable region.
1643 	 */
1644 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1645 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1646 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1647 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1648 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1649 
1650 	/* Set Rx page base address, note we use single queue. */
1651 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1652 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1653 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1654 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1655 
1656 	/* Set Tx/Rx CMB addresses. */
1657 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1658 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1659 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1660 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1661 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1662 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1663 
1664 	/* Mark RXF0 is valid. */
1665 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1666 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1667 	/*
1668 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1669 	 * multi-queue yet.
1670 	 */
1671 
1672 	/* Set Rx page size, excluding guard frame size. */
1673 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1674 
1675 	/* Tell hardware that we're ready to load DMA blocks. */
1676 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1677 
1678 	/* Set Rx/Tx interrupt trigger threshold. */
1679 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1680 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1681 	/*
1682 	 * XXX
1683 	 * Set interrupt trigger timer, its purpose and relation
1684 	 * with interrupt moderation mechanism is not clear yet.
1685 	 */
1686 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1687 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1688 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1689 
1690 	/* Configure interrupt moderation timer. */
1691 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1692 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1693 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1694 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1695 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1696 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1697 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1698 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1699 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1700 		reg |= MASTER_IM_RX_TIMER_ENB;
1701 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1702 		reg |= MASTER_IM_TX_TIMER_ENB;
1703 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1704 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1705 
1706 	/* Set Maximum frame size of controller. */
1707 	if (ifp->if_mtu < ETHERMTU)
1708 		sc->ale_max_frame_size = ETHERMTU;
1709 	else
1710 		sc->ale_max_frame_size = ifp->if_mtu;
1711 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1712 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1713 
1714 	/* Configure IPG/IFG parameters. */
1715 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1716 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1717 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1718 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1719 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1720 
1721 	/* Set parameters for half-duplex media. */
1722 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1723 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1724 	    HDPX_CFG_LCOL_MASK) |
1725 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1726 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1727 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1728 	    HDPX_CFG_ABEBT_MASK) |
1729 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1730 	    HDPX_CFG_JAMIPG_MASK));
1731 
1732 	/* Configure Tx jumbo frame parameters. */
1733 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1734 		if (ifp->if_mtu < ETHERMTU)
1735 			reg = sc->ale_max_frame_size;
1736 		else if (ifp->if_mtu < 6 * 1024)
1737 			reg = (sc->ale_max_frame_size * 2) / 3;
1738 		else
1739 			reg = sc->ale_max_frame_size / 2;
1740 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1741 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1742 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1743 	}
1744 
1745 	/* Configure TxQ. */
1746 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1747 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1748 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1749 	    TXQ_CFG_TPD_BURST_MASK;
1750 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1751 
1752 	/* Configure Rx jumbo frame & flow control parameters. */
1753 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1754 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1755 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1756 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1757 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1758 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1759 		    RX_JUMBO_LKAH_MASK));
1760 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1761 		rxf_hi = (reg * 7) / 10;
1762 		rxf_lo = (reg * 3)/ 10;
1763 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1764 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1765 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1766 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1767 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1768 	}
1769 
1770 	/* Disable RSS. */
1771 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1772 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1773 
1774 	/* Configure RxQ. */
1775 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1776 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1777 
1778 	/* Configure DMA parameters. */
1779 	reg = 0;
1780 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1781 		reg |= DMA_CFG_TXCMB_ENB;
1782 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1783 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1784 	    sc->ale_dma_rd_burst | reg |
1785 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1786 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1787 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1788 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1789 	    DMA_CFG_WR_DELAY_CNT_MASK));
1790 
1791 	/*
1792 	 * Hardware can be configured to issue SMB interrupt based
1793 	 * on programmed interval. Since there is a callout that is
1794 	 * invoked for every hz in driver we use that instead of
1795 	 * relying on periodic SMB interrupt.
1796 	 */
1797 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1798 
1799 	/* Clear MAC statistics. */
1800 	ale_stats_clear(sc);
1801 
1802 	/*
1803 	 * Configure Tx/Rx MACs.
1804 	 *  - Auto-padding for short frames.
1805 	 *  - Enable CRC generation.
1806 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1807 	 *  is followed after detection of link establishment.
1808 	 *  AR81xx always does checksum computation regardless of
1809 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1810 	 *  cause Rx handling issue for fragmented IP datagrams due
1811 	 *  to silicon bug.
1812 	 */
1813 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1814 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1815 	    MAC_CFG_PREAMBLE_MASK);
1816 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1817 		reg |= MAC_CFG_SPEED_10_100;
1818 	else
1819 		reg |= MAC_CFG_SPEED_1000;
1820 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1821 
1822 	/* Set up the receive filter. */
1823 	ale_rxfilter(sc);
1824 	ale_rxvlan(sc);
1825 
1826 	/* Acknowledge all pending interrupts and clear it. */
1827 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1828 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1829 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1830 
1831 	sc->ale_flags &= ~ALE_FLAG_LINK;
1832 
1833 	/* Switch to the current media. */
1834 	mii = &sc->sc_miibus;
1835 	mii_mediachg(mii);
1836 
1837 	callout_schedule(&sc->sc_tick_ch, hz);
1838 
1839 	ifp->if_flags |= IFF_RUNNING;
1840 	ifp->if_flags &= ~IFF_OACTIVE;
1841 
1842 	return 0;
1843 }
1844 
1845 static void
1846 ale_stop(struct ifnet *ifp, int disable)
1847 {
1848 	struct ale_softc *sc = ifp->if_softc;
1849 	struct ale_txdesc *txd;
1850 	uint32_t reg;
1851 	int i;
1852 
1853 	callout_stop(&sc->sc_tick_ch);
1854 
1855 	/*
1856 	 * Mark the interface down and cancel the watchdog timer.
1857 	 */
1858 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1859 	ifp->if_timer = 0;
1860 
1861 	sc->ale_flags &= ~ALE_FLAG_LINK;
1862 
1863 	ale_stats_update(sc);
1864 
1865 	mii_down(&sc->sc_miibus);
1866 
1867 	/* Disable interrupts. */
1868 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1869 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1870 
1871 	/* Disable queue processing and DMA. */
1872 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1873 	reg &= ~TXQ_CFG_ENB;
1874 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1875 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1876 	reg &= ~RXQ_CFG_ENB;
1877 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1878 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1879 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1880 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1881 	DELAY(1000);
1882 
1883 	/* Stop Rx/Tx MACs. */
1884 	ale_stop_mac(sc);
1885 
1886 	/* Disable interrupts again? XXX */
1887 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1888 
1889 	/*
1890 	 * Free TX mbufs still in the queues.
1891 	 */
1892 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1893 		txd = &sc->ale_cdata.ale_txdesc[i];
1894 		if (txd->tx_m != NULL) {
1895 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1896 			m_freem(txd->tx_m);
1897 			txd->tx_m = NULL;
1898 		}
1899         }
1900 }
1901 
1902 static void
1903 ale_stop_mac(struct ale_softc *sc)
1904 {
1905 	uint32_t reg;
1906 	int i;
1907 
1908 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1909 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1910 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1911 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1912 	}
1913 
1914 	for (i = ALE_TIMEOUT; i > 0; i--) {
1915 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1916 		if (reg == 0)
1917 			break;
1918 		DELAY(10);
1919 	}
1920 	if (i == 0)
1921 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1922 		    device_xname(sc->sc_dev), reg);
1923 }
1924 
1925 static void
1926 ale_init_tx_ring(struct ale_softc *sc)
1927 {
1928 	struct ale_txdesc *txd;
1929 	int i;
1930 
1931 	sc->ale_cdata.ale_tx_prod = 0;
1932 	sc->ale_cdata.ale_tx_cons = 0;
1933 	sc->ale_cdata.ale_tx_cnt = 0;
1934 
1935 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1936 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1937 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1938 		txd = &sc->ale_cdata.ale_txdesc[i];
1939 		txd->tx_m = NULL;
1940 	}
1941 	*sc->ale_cdata.ale_tx_cmb = 0;
1942 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1943 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1944 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1945 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1946 }
1947 
1948 static void
1949 ale_init_rx_pages(struct ale_softc *sc)
1950 {
1951 	struct ale_rx_page *rx_page;
1952 	int i;
1953 
1954 	sc->ale_cdata.ale_rx_seqno = 0;
1955 	sc->ale_cdata.ale_rx_curp = 0;
1956 
1957 	for (i = 0; i < ALE_RX_PAGES; i++) {
1958 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1959 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1960 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1961 		rx_page->cons = 0;
1962 		*rx_page->cmb_addr = 0;
1963 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1964 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1965 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1966 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1967 	}
1968 }
1969 
1970 static void
1971 ale_rxvlan(struct ale_softc *sc)
1972 {
1973 	uint32_t reg;
1974 
1975 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1976 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1977 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1978 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1979 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1980 }
1981 
1982 static void
1983 ale_rxfilter(struct ale_softc *sc)
1984 {
1985 	struct ethercom *ec = &sc->sc_ec;
1986 	struct ifnet *ifp = &ec->ec_if;
1987 	struct ether_multi *enm;
1988 	struct ether_multistep step;
1989 	uint32_t crc;
1990 	uint32_t mchash[2];
1991 	uint32_t rxcfg;
1992 
1993 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1994 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1995 	ifp->if_flags &= ~IFF_ALLMULTI;
1996 
1997 	/*
1998 	 * Always accept broadcast frames.
1999 	 */
2000 	rxcfg |= MAC_CFG_BCAST;
2001 
2002 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2003 		ifp->if_flags |= IFF_ALLMULTI;
2004 		if (ifp->if_flags & IFF_PROMISC)
2005 			rxcfg |= MAC_CFG_PROMISC;
2006 		else
2007 			rxcfg |= MAC_CFG_ALLMULTI;
2008 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2009 	} else {
2010 		/* Program new filter. */
2011 		memset(mchash, 0, sizeof(mchash));
2012 
2013 		ETHER_FIRST_MULTI(step, ec, enm);
2014 		while (enm != NULL) {
2015 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2016 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2017 			ETHER_NEXT_MULTI(step, enm);
2018 		}
2019 	}
2020 
2021 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2022 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2023 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2024 }
2025