xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 627f7eb200a4419d89b531d55fccd2ee3ffdcde0)
1 /*	$NetBSD: if_ale.c,v 1.40 2020/03/01 02:28:14 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.40 2020/03/01 02:28:14 thorpej Exp $");
36 
37 #include "vlan.h"
38 
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/endian.h>
42 #include <sys/systm.h>
43 #include <sys/types.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/queue.h>
47 #include <sys/kernel.h>
48 #include <sys/device.h>
49 #include <sys/callout.h>
50 #include <sys/socket.h>
51 
52 #include <sys/bus.h>
53 
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_llc.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alereg.h>
80 
81 static int	ale_match(device_t, cfdata_t, void *);
82 static void	ale_attach(device_t, device_t, void *);
83 static int	ale_detach(device_t, int);
84 
85 static int	ale_miibus_readreg(device_t, int, int, uint16_t *);
86 static int	ale_miibus_writereg(device_t, int, int, uint16_t);
87 static void	ale_miibus_statchg(struct ifnet *);
88 
89 static int	ale_init(struct ifnet *);
90 static void	ale_start(struct ifnet *);
91 static int	ale_ioctl(struct ifnet *, u_long, void *);
92 static void	ale_watchdog(struct ifnet *);
93 static int	ale_mediachange(struct ifnet *);
94 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
95 
96 static int	ale_intr(void *);
97 static int	ale_rxeof(struct ale_softc *sc);
98 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
99 		    uint32_t, uint32_t *);
100 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
101 static void	ale_txeof(struct ale_softc *);
102 
103 static int	ale_dma_alloc(struct ale_softc *);
104 static void	ale_dma_free(struct ale_softc *);
105 static int	ale_encap(struct ale_softc *, struct mbuf **);
106 static void	ale_init_rx_pages(struct ale_softc *);
107 static void	ale_init_tx_ring(struct ale_softc *);
108 
109 static void	ale_stop(struct ifnet *, int);
110 static void	ale_tick(void *);
111 static void	ale_get_macaddr(struct ale_softc *);
112 static void	ale_mac_config(struct ale_softc *);
113 static void	ale_phy_reset(struct ale_softc *);
114 static void	ale_reset(struct ale_softc *);
115 static void	ale_rxfilter(struct ale_softc *);
116 static void	ale_rxvlan(struct ale_softc *);
117 static void	ale_stats_clear(struct ale_softc *);
118 static void	ale_stats_update(struct ale_softc *);
119 static void	ale_stop_mac(struct ale_softc *);
120 
121 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
122 	ale_match, ale_attach, ale_detach, NULL);
123 
124 int aledebug = 0;
125 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
126 
127 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
128 
129 static int
130 ale_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
131 {
132 	struct ale_softc *sc = device_private(dev);
133 	uint32_t v;
134 	int i;
135 
136 	if (phy != sc->ale_phyaddr)
137 		return -1;
138 
139 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
140 		switch (reg) {
141 		case MII_100T2CR:
142 		case MII_100T2SR:
143 		case MII_EXTSR:
144 			*val = 0;
145 			return 0;
146 		default:
147 			break;
148 		}
149 	}
150 
151 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
152 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
153 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
154 		DELAY(5);
155 		v = CSR_READ_4(sc, ALE_MDIO);
156 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
157 			break;
158 	}
159 
160 	if (i == 0) {
161 		printf("%s: phy read timeout: phy %d, reg %d\n",
162 		    device_xname(sc->sc_dev), phy, reg);
163 		return ETIMEDOUT;
164 	}
165 
166 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
167 	return 0;
168 }
169 
170 static int
171 ale_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
172 {
173 	struct ale_softc *sc = device_private(dev);
174 	uint32_t v;
175 	int i;
176 
177 	if (phy != sc->ale_phyaddr)
178 		return -1;
179 
180 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
181 		switch (reg) {
182 		case MII_100T2CR:
183 		case MII_100T2SR:
184 		case MII_EXTSR:
185 			return 0;
186 		default:
187 			break;
188 		}
189 	}
190 
191 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
192 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
193 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
194 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
195 		DELAY(5);
196 		v = CSR_READ_4(sc, ALE_MDIO);
197 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
198 			break;
199 	}
200 
201 	if (i == 0) {
202 		printf("%s: phy write timeout: phy %d, reg %d\n",
203 		    device_xname(sc->sc_dev), phy, reg);
204 		return ETIMEDOUT;
205 	}
206 
207 	return 0;
208 }
209 
210 static void
211 ale_miibus_statchg(struct ifnet *ifp)
212 {
213 	struct ale_softc *sc = ifp->if_softc;
214 	struct mii_data *mii = &sc->sc_miibus;
215 	uint32_t reg;
216 
217 	if ((ifp->if_flags & IFF_RUNNING) == 0)
218 		return;
219 
220 	sc->ale_flags &= ~ALE_FLAG_LINK;
221 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
222 	    (IFM_ACTIVE | IFM_AVALID)) {
223 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
224 		case IFM_10_T:
225 		case IFM_100_TX:
226 			sc->ale_flags |= ALE_FLAG_LINK;
227 			break;
228 
229 		case IFM_1000_T:
230 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
231 				sc->ale_flags |= ALE_FLAG_LINK;
232 			break;
233 
234 		default:
235 			break;
236 		}
237 	}
238 
239 	/* Stop Rx/Tx MACs. */
240 	ale_stop_mac(sc);
241 
242 	/* Program MACs with resolved speed/duplex/flow-control. */
243 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
244 		ale_mac_config(sc);
245 		/* Reenable Tx/Rx MACs. */
246 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
247 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
248 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
249 	}
250 }
251 
252 void
253 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
254 {
255 	struct ale_softc *sc = ifp->if_softc;
256 	struct mii_data *mii = &sc->sc_miibus;
257 
258 	mii_pollstat(mii);
259 	ifmr->ifm_status = mii->mii_media_status;
260 	ifmr->ifm_active = mii->mii_media_active;
261 }
262 
263 int
264 ale_mediachange(struct ifnet *ifp)
265 {
266 	struct ale_softc *sc = ifp->if_softc;
267 	struct mii_data *mii = &sc->sc_miibus;
268 	int error;
269 
270 	if (mii->mii_instance != 0) {
271 		struct mii_softc *miisc;
272 
273 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
274 			mii_phy_reset(miisc);
275 	}
276 	error = mii_mediachg(mii);
277 
278 	return error;
279 }
280 
281 int
282 ale_match(device_t dev, cfdata_t match, void *aux)
283 {
284 	struct pci_attach_args *pa = aux;
285 
286 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
287 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
288 }
289 
290 void
291 ale_get_macaddr(struct ale_softc *sc)
292 {
293 	uint32_t ea[2], reg;
294 	int i, vpdc;
295 
296 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
297 	if ((reg & SPI_VPD_ENB) != 0) {
298 		reg &= ~SPI_VPD_ENB;
299 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
300 	}
301 
302 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
303 	    &vpdc, NULL)) {
304 		/*
305 		 * PCI VPD capability found, let TWSI reload EEPROM.
306 		 * This will set ethernet address of controller.
307 		 */
308 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
309 		    TWSI_CTRL_SW_LD_START);
310 		for (i = 100; i > 0; i--) {
311 			DELAY(1000);
312 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
313 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
314 				break;
315 		}
316 		if (i == 0)
317 			printf("%s: reloading EEPROM timeout!\n",
318 			    device_xname(sc->sc_dev));
319 	} else {
320 		if (aledebug)
321 			printf("%s: PCI VPD capability not found!\n",
322 			    device_xname(sc->sc_dev));
323 	}
324 
325 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
326 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
327 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
328 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
329 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
330 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
331 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
332 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
333 }
334 
335 void
336 ale_phy_reset(struct ale_softc *sc)
337 {
338 	/* Reset magic from Linux. */
339 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
340 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
341 	    GPHY_CTRL_PHY_PLL_ON);
342 	DELAY(1000);
343 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
344 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
345 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
346 	DELAY(1000);
347 
348 #define	ATPHY_DBG_ADDR		0x1D
349 #define	ATPHY_DBG_DATA		0x1E
350 
351 	/* Enable hibernation mode. */
352 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
353 	    ATPHY_DBG_ADDR, 0x0B);
354 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
355 	    ATPHY_DBG_DATA, 0xBC00);
356 	/* Set Class A/B for all modes. */
357 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_ADDR, 0x00);
359 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
360 	    ATPHY_DBG_DATA, 0x02EF);
361 	/* Enable 10BT power saving. */
362 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_ADDR, 0x12);
364 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
365 	    ATPHY_DBG_DATA, 0x4C04);
366 	/* Adjust 1000T power. */
367 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 	    ATPHY_DBG_ADDR, 0x04);
369 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
370 	    ATPHY_DBG_DATA, 0x8BBB);
371 	/* 10BT center tap voltage. */
372 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 	    ATPHY_DBG_ADDR, 0x05);
374 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
375 	    ATPHY_DBG_DATA, 0x2C46);
376 
377 #undef	ATPHY_DBG_ADDR
378 #undef	ATPHY_DBG_DATA
379 	DELAY(1000);
380 }
381 
382 void
383 ale_attach(device_t parent, device_t self, void *aux)
384 {
385 	struct ale_softc *sc = device_private(self);
386 	struct pci_attach_args *pa = aux;
387 	pci_chipset_tag_t pc = pa->pa_pc;
388 	pci_intr_handle_t ih;
389 	const char *intrstr;
390 	struct ifnet *ifp;
391 	struct mii_data * const mii = &sc->sc_miibus;
392 	pcireg_t memtype;
393 	int mii_flags, error = 0;
394 	uint32_t rxf_len, txf_len;
395 	const char *chipname;
396 	char intrbuf[PCI_INTRSTR_LEN];
397 
398 	aprint_naive("\n");
399 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
400 
401 	sc->sc_dev = self;
402 	sc->sc_dmat = pa->pa_dmat;
403 	sc->sc_pct = pa->pa_pc;
404 	sc->sc_pcitag = pa->pa_tag;
405 
406 	/*
407 	 * Allocate IO memory
408 	 */
409 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
410 	switch (memtype) {
411 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
412 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
413 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
414 		break;
415 	default:
416 		aprint_error_dev(self, "invalid base address register\n");
417 		break;
418 	}
419 
420 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
421 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
422 		aprint_error_dev(self, "could not map mem space\n");
423 		return;
424 	}
425 
426 	if (pci_intr_map(pa, &ih) != 0) {
427 		aprint_error_dev(self, "could not map interrupt\n");
428 		goto fail;
429 	}
430 
431 	/*
432 	 * Allocate IRQ
433 	 */
434 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
435 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, ale_intr,
436 	    sc, device_xname(self));
437 	if (sc->sc_irq_handle == NULL) {
438 		aprint_error_dev(self, "could not establish interrupt");
439 		if (intrstr != NULL)
440 			aprint_error(" at %s", intrstr);
441 		aprint_error("\n");
442 		goto fail;
443 	}
444 
445 	/* Set PHY address. */
446 	sc->ale_phyaddr = ALE_PHY_ADDR;
447 
448 	/* Reset PHY. */
449 	ale_phy_reset(sc);
450 
451 	/* Reset the ethernet controller. */
452 	ale_reset(sc);
453 
454 	/* Get PCI and chip id/revision. */
455 	sc->ale_rev = PCI_REVISION(pa->pa_class);
456 	if (sc->ale_rev >= 0xF0) {
457 		/* L2E Rev. B. AR8114 */
458 		sc->ale_flags |= ALE_FLAG_FASTETHER;
459 		chipname = "AR8114 (L2E RevB)";
460 	} else {
461 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 			/* L1E AR8121 */
463 			sc->ale_flags |= ALE_FLAG_JUMBO;
464 			chipname = "AR8121 (L1E)";
465 		} else {
466 			/* L2E Rev. A. AR8113 */
467 			sc->ale_flags |= ALE_FLAG_FASTETHER;
468 			chipname = "AR8113 (L2E RevA)";
469 		}
470 	}
471 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
472 
473 	/*
474 	 * All known controllers seems to require 4 bytes alignment
475 	 * of Tx buffers to make Tx checksum offload with custom
476 	 * checksum generation method work.
477 	 */
478 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
479 
480 	/*
481 	 * All known controllers seems to have issues on Rx checksum
482 	 * offload for fragmented IP datagrams.
483 	 */
484 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
485 
486 	/*
487 	 * Don't use Tx CMB. It is known to cause RRS update failure
488 	 * under certain circumstances. Typical phenomenon of the
489 	 * issue would be unexpected sequence number encountered in
490 	 * Rx handler.
491 	 */
492 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 	    MASTER_CHIP_REV_SHIFT;
495 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
497 
498 	/*
499 	 * Uninitialized hardware returns an invalid chip id/revision
500 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
501 	 */
502 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 	    rxf_len == 0xFFFFFFF) {
506 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 		    "%u Rx FIFO -- not initialized?\n",
508 		    sc->ale_chip_rev, txf_len, rxf_len);
509 		goto fail;
510 	}
511 
512 	if (aledebug) {
513 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 		    txf_len, rxf_len);
515 	}
516 
517 	/* Set max allowable DMA size. */
518 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
520 
521 	callout_init(&sc->sc_tick_ch, 0);
522 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
523 
524 	error = ale_dma_alloc(sc);
525 	if (error)
526 		goto fail;
527 
528 	/* Load station address. */
529 	ale_get_macaddr(sc);
530 
531 	aprint_normal_dev(self, "Ethernet address %s\n",
532 	    ether_sprintf(sc->ale_eaddr));
533 
534 	ifp = &sc->sc_ec.ec_if;
535 	ifp->if_softc = sc;
536 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 	ifp->if_init = ale_init;
538 	ifp->if_ioctl = ale_ioctl;
539 	ifp->if_start = ale_start;
540 	ifp->if_stop = ale_stop;
541 	ifp->if_watchdog = ale_watchdog;
542 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 	IFQ_SET_READY(&ifp->if_snd);
544 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
545 
546 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
547 
548 #ifdef ALE_CHECKSUM
549 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
552 #endif
553 
554 #if NVLAN > 0
555 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 	sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
557 #endif
558 
559 	/* Set up MII bus. */
560 	mii->mii_ifp = ifp;
561 	mii->mii_readreg = ale_miibus_readreg;
562 	mii->mii_writereg = ale_miibus_writereg;
563 	mii->mii_statchg = ale_miibus_statchg;
564 
565 	sc->sc_ec.ec_mii = mii;
566 	ifmedia_init(&mii->mii_media, 0, ale_mediachange, ale_mediastatus);
567 	mii_flags = 0;
568 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 		mii_flags |= MIIF_DOPAUSE;
570 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
571 	    MII_OFFSET_ANY, mii_flags);
572 
573 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
574 		aprint_error_dev(self, "no PHY found!\n");
575 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
576 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
577 	} else
578 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
579 
580 	if_attach(ifp);
581 	if_deferred_start_init(ifp, NULL);
582 	ether_ifattach(ifp, sc->ale_eaddr);
583 
584 	if (pmf_device_register(self, NULL, NULL))
585 		pmf_class_network_register(self, ifp);
586 	else
587 		aprint_error_dev(self, "couldn't establish power handler\n");
588 
589 	return;
590 fail:
591 	ale_dma_free(sc);
592 	if (sc->sc_irq_handle != NULL) {
593 		pci_intr_disestablish(pc, sc->sc_irq_handle);
594 		sc->sc_irq_handle = NULL;
595 	}
596 	if (sc->sc_mem_size) {
597 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
598 		sc->sc_mem_size = 0;
599 	}
600 }
601 
602 static int
603 ale_detach(device_t self, int flags)
604 {
605 	struct ale_softc *sc = device_private(self);
606 	struct ifnet *ifp = &sc->sc_ec.ec_if;
607 	int s;
608 
609 	pmf_device_deregister(self);
610 	s = splnet();
611 	ale_stop(ifp, 0);
612 	splx(s);
613 
614 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
615 
616 	ether_ifdetach(ifp);
617 	if_detach(ifp);
618 	ale_dma_free(sc);
619 
620 	/* Delete all remaining media. */
621 	ifmedia_fini(&sc->sc_miibus.mii_media);
622 
623 	if (sc->sc_irq_handle != NULL) {
624 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
625 		sc->sc_irq_handle = NULL;
626 	}
627 	if (sc->sc_mem_size) {
628 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
629 		sc->sc_mem_size = 0;
630 	}
631 
632 	return 0;
633 }
634 
635 
636 static int
637 ale_dma_alloc(struct ale_softc *sc)
638 {
639 	struct ale_txdesc *txd;
640 	int nsegs, error, guard_size, i;
641 
642 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
643 		guard_size = ALE_JUMBO_FRAMELEN;
644 	else
645 		guard_size = ALE_MAX_FRAMELEN;
646 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
647 	    ALE_RX_PAGE_ALIGN);
648 
649 	/*
650 	 * Create DMA stuffs for TX ring
651 	 */
652 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
653 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
654 	if (error) {
655 		sc->ale_cdata.ale_tx_ring_map = NULL;
656 		return ENOBUFS;
657 	}
658 
659 	/* Allocate DMA'able memory for TX ring */
660 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
661 	    PAGE_SIZE, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
662 	    &nsegs, BUS_DMA_WAITOK);
663 	if (error) {
664 		printf("%s: could not allocate DMA'able memory for Tx ring, "
665 		    "error = %i\n", device_xname(sc->sc_dev), error);
666 		return error;
667 	}
668 
669 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
670 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
671 	    BUS_DMA_NOWAIT);
672 	if (error)
673 		return ENOBUFS;
674 
675 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
676 
677 	/* Load the DMA map for Tx ring. */
678 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
679 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 	if (error) {
681 		printf("%s: could not load DMA'able memory for Tx ring.\n",
682 		    device_xname(sc->sc_dev));
683 		bus_dmamem_free(sc->sc_dmat,
684 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
685 		return error;
686 	}
687 	sc->ale_cdata.ale_tx_ring_paddr =
688 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
689 
690 	for (i = 0; i < ALE_RX_PAGES; i++) {
691 		/*
692 		 * Create DMA stuffs for RX pages
693 		 */
694 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
695 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
696 		    &sc->ale_cdata.ale_rx_page[i].page_map);
697 		if (error) {
698 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
699 			return ENOBUFS;
700 		}
701 
702 		/* Allocate DMA'able memory for RX pages */
703 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
704 		    PAGE_SIZE, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
705 		    1, &nsegs, BUS_DMA_WAITOK);
706 		if (error) {
707 			printf("%s: could not allocate DMA'able memory for "
708 			    "Rx ring.\n", device_xname(sc->sc_dev));
709 			return error;
710 		}
711 		error = bus_dmamem_map(sc->sc_dmat,
712 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
713 		    sc->ale_pagesize,
714 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
715 		    BUS_DMA_NOWAIT);
716 		if (error)
717 			return ENOBUFS;
718 
719 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
720 		    sc->ale_pagesize);
721 
722 		/* Load the DMA map for Rx pages. */
723 		error = bus_dmamap_load(sc->sc_dmat,
724 		    sc->ale_cdata.ale_rx_page[i].page_map,
725 		    sc->ale_cdata.ale_rx_page[i].page_addr,
726 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
727 		if (error) {
728 			printf("%s: could not load DMA'able memory for "
729 			    "Rx pages.\n", device_xname(sc->sc_dev));
730 			bus_dmamem_free(sc->sc_dmat,
731 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
732 			return error;
733 		}
734 		sc->ale_cdata.ale_rx_page[i].page_paddr =
735 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
736 	}
737 
738 	/*
739 	 * Create DMA stuffs for Tx CMB.
740 	 */
741 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
742 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
743 	if (error) {
744 		sc->ale_cdata.ale_tx_cmb_map = NULL;
745 		return ENOBUFS;
746 	}
747 
748 	/* Allocate DMA'able memory for Tx CMB. */
749 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, PAGE_SIZE, 0,
750 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
751 
752 	if (error) {
753 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 		    device_xname(sc->sc_dev));
755 		return error;
756 	}
757 
758 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
759 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
760 	    BUS_DMA_NOWAIT);
761 	if (error)
762 		return ENOBUFS;
763 
764 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
765 
766 	/* Load the DMA map for Tx CMB. */
767 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
768 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
769 	if (error) {
770 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 		    device_xname(sc->sc_dev));
772 		bus_dmamem_free(sc->sc_dmat,
773 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
774 		return error;
775 	}
776 
777 	sc->ale_cdata.ale_tx_cmb_paddr =
778 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
779 
780 	for (i = 0; i < ALE_RX_PAGES; i++) {
781 		/*
782 		 * Create DMA stuffs for Rx CMB.
783 		 */
784 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
785 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
786 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
787 		if (error) {
788 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
789 			return ENOBUFS;
790 		}
791 
792 		/* Allocate DMA'able memory for Rx CMB */
793 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
794 		    PAGE_SIZE, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
795 		    &nsegs, BUS_DMA_WAITOK);
796 		if (error) {
797 			printf("%s: could not allocate DMA'able memory for "
798 			    "Rx CMB\n", device_xname(sc->sc_dev));
799 			return error;
800 		}
801 		error = bus_dmamem_map(sc->sc_dmat,
802 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
803 		    ALE_RX_CMB_SZ,
804 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
805 		    BUS_DMA_NOWAIT);
806 		if (error)
807 			return ENOBUFS;
808 
809 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
810 
811 		/* Load the DMA map for Rx CMB */
812 		error = bus_dmamap_load(sc->sc_dmat,
813 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
814 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
815 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
816 		if (error) {
817 			printf("%s: could not load DMA'able memory for Rx CMB"
818 			    "\n", device_xname(sc->sc_dev));
819 			bus_dmamem_free(sc->sc_dmat,
820 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
821 			return error;
822 		}
823 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
824 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
825 	}
826 
827 
828 	/* Create DMA maps for Tx buffers. */
829 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 		txd = &sc->ale_cdata.ale_txdesc[i];
831 		txd->tx_m = NULL;
832 		txd->tx_dmamap = NULL;
833 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
834 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
835 		    &txd->tx_dmamap);
836 		if (error) {
837 			txd->tx_dmamap = NULL;
838 			printf("%s: could not create Tx dmamap.\n",
839 			    device_xname(sc->sc_dev));
840 			return error;
841 		}
842 	}
843 
844 	return 0;
845 }
846 
847 static void
848 ale_dma_free(struct ale_softc *sc)
849 {
850 	struct ale_txdesc *txd;
851 	int i;
852 
853 	/* Tx buffers. */
854 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
855 		txd = &sc->ale_cdata.ale_txdesc[i];
856 		if (txd->tx_dmamap != NULL) {
857 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
858 			txd->tx_dmamap = NULL;
859 		}
860 	}
861 
862 	/* Tx descriptor ring. */
863 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
864 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
865 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
866 	    sc->ale_cdata.ale_tx_ring != NULL)
867 		bus_dmamem_free(sc->sc_dmat,
868 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
869 	sc->ale_cdata.ale_tx_ring = NULL;
870 	sc->ale_cdata.ale_tx_ring_map = NULL;
871 
872 	/* Rx page block. */
873 	for (i = 0; i < ALE_RX_PAGES; i++) {
874 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
875 			bus_dmamap_unload(sc->sc_dmat,
876 			    sc->ale_cdata.ale_rx_page[i].page_map);
877 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
878 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
879 			bus_dmamem_free(sc->sc_dmat,
880 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
881 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
882 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
883 	}
884 
885 	/* Rx CMB. */
886 	for (i = 0; i < ALE_RX_PAGES; i++) {
887 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
888 			bus_dmamap_unload(sc->sc_dmat,
889 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
890 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
891 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
892 			bus_dmamem_free(sc->sc_dmat,
893 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
894 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
895 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
896 	}
897 
898 	/* Tx CMB. */
899 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
900 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
901 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
902 	    sc->ale_cdata.ale_tx_cmb != NULL)
903 		bus_dmamem_free(sc->sc_dmat,
904 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
905 	sc->ale_cdata.ale_tx_cmb = NULL;
906 	sc->ale_cdata.ale_tx_cmb_map = NULL;
907 
908 }
909 
910 static int
911 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
912 {
913 	struct ale_txdesc *txd, *txd_last;
914 	struct tx_desc *desc;
915 	struct mbuf *m;
916 	bus_dmamap_t map;
917 	uint32_t cflags, poff, vtag;
918 	int error, i, nsegs, prod;
919 
920 	m = *m_head;
921 	cflags = vtag = 0;
922 	poff = 0;
923 
924 	prod = sc->ale_cdata.ale_tx_prod;
925 	txd = &sc->ale_cdata.ale_txdesc[prod];
926 	txd_last = txd;
927 	map = txd->tx_dmamap;
928 
929 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
930 	if (error == EFBIG) {
931 		error = 0;
932 
933 		*m_head = m_pullup(*m_head, MHLEN);
934 		if (*m_head == NULL) {
935 			printf("%s: can't defrag TX mbuf\n",
936 			    device_xname(sc->sc_dev));
937 			return ENOBUFS;
938 		}
939 
940 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
941 		    BUS_DMA_NOWAIT);
942 
943 		if (error != 0) {
944 			printf("%s: could not load defragged TX mbuf\n",
945 			    device_xname(sc->sc_dev));
946 			m_freem(*m_head);
947 			*m_head = NULL;
948 			return error;
949 		}
950 	} else if (error) {
951 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
952 		return error;
953 	}
954 
955 	nsegs = map->dm_nsegs;
956 
957 	if (nsegs == 0) {
958 		m_freem(*m_head);
959 		*m_head = NULL;
960 		return EIO;
961 	}
962 
963 	/* Check descriptor overrun. */
964 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
965 		bus_dmamap_unload(sc->sc_dmat, map);
966 		return ENOBUFS;
967 	}
968 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
969 	    BUS_DMASYNC_PREWRITE);
970 
971 	m = *m_head;
972 	/* Configure Tx checksum offload. */
973 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
974 		/*
975 		 * AR81xx supports Tx custom checksum offload feature
976 		 * that offloads single 16bit checksum computation.
977 		 * So you can choose one among IP, TCP and UDP.
978 		 * Normally driver sets checksum start/insertion
979 		 * position from the information of TCP/UDP frame as
980 		 * TCP/UDP checksum takes more time than that of IP.
981 		 * However it seems that custom checksum offload
982 		 * requires 4 bytes aligned Tx buffers due to hardware
983 		 * bug.
984 		 * AR81xx also supports explicit Tx checksum computation
985 		 * if it is told that the size of IP header and TCP
986 		 * header(for UDP, the header size does not matter
987 		 * because it's fixed length). However with this scheme
988 		 * TSO does not work so you have to choose one either
989 		 * TSO or explicit Tx checksum offload. I chosen TSO
990 		 * plus custom checksum offload with work-around which
991 		 * will cover most common usage for this consumer
992 		 * ethernet controller. The work-around takes a lot of
993 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
994 		 * boundary, though.
995 		 */
996 		cflags |= ALE_TD_CXSUM;
997 		/* Set checksum start offset. */
998 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
999 	}
1000 
1001 #if NVLAN > 0
1002 	/* Configure VLAN hardware tag insertion. */
1003 	if (vlan_has_tag(m)) {
1004 		vtag = ALE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
1005 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1006 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1007 	}
1008 #endif
1009 
1010 	desc = NULL;
1011 	for (i = 0; i < nsegs; i++) {
1012 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1013 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1014 		desc->len =
1015 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1016 		desc->flags = htole32(cflags);
1017 		sc->ale_cdata.ale_tx_cnt++;
1018 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1019 	}
1020 	/* Update producer index. */
1021 	sc->ale_cdata.ale_tx_prod = prod;
1022 
1023 	/* Finally set EOP on the last descriptor. */
1024 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1025 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1026 	desc->flags |= htole32(ALE_TD_EOP);
1027 
1028 	/* Swap dmamap of the first and the last. */
1029 	txd = &sc->ale_cdata.ale_txdesc[prod];
1030 	map = txd_last->tx_dmamap;
1031 	txd_last->tx_dmamap = txd->tx_dmamap;
1032 	txd->tx_dmamap = map;
1033 	txd->tx_m = m;
1034 
1035 	/* Sync descriptors. */
1036 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1037 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1038 
1039 	return 0;
1040 }
1041 
1042 static void
1043 ale_start(struct ifnet *ifp)
1044 {
1045 	struct ale_softc *sc = ifp->if_softc;
1046 	struct mbuf *m_head;
1047 	int enq;
1048 
1049 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1050 		return;
1051 
1052 	/* Reclaim transmitted frames. */
1053 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1054 		ale_txeof(sc);
1055 
1056 	enq = 0;
1057 	for (;;) {
1058 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1059 		if (m_head == NULL)
1060 			break;
1061 
1062 		/*
1063 		 * Pack the data into the transmit ring. If we
1064 		 * don't have room, set the OACTIVE flag and wait
1065 		 * for the NIC to drain the ring.
1066 		 */
1067 		if (ale_encap(sc, &m_head)) {
1068 			if (m_head == NULL)
1069 				break;
1070 			IF_PREPEND(&ifp->if_snd, m_head);
1071 			ifp->if_flags |= IFF_OACTIVE;
1072 			break;
1073 		}
1074 		enq = 1;
1075 
1076 		/*
1077 		 * If there's a BPF listener, bounce a copy of this frame
1078 		 * to him.
1079 		 */
1080 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1081 	}
1082 
1083 	if (enq) {
1084 		/* Kick. */
1085 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1086 		    sc->ale_cdata.ale_tx_prod);
1087 
1088 		/* Set a timeout in case the chip goes out to lunch. */
1089 		ifp->if_timer = ALE_TX_TIMEOUT;
1090 	}
1091 }
1092 
1093 static void
1094 ale_watchdog(struct ifnet *ifp)
1095 {
1096 	struct ale_softc *sc = ifp->if_softc;
1097 
1098 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1099 		printf("%s: watchdog timeout (missed link)\n",
1100 		    device_xname(sc->sc_dev));
1101 		if_statinc(ifp, if_oerrors);
1102 		ale_init(ifp);
1103 		return;
1104 	}
1105 
1106 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1107 	if_statinc(ifp, if_oerrors);
1108 	ale_init(ifp);
1109 
1110 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1111 		ale_start(ifp);
1112 }
1113 
1114 static int
1115 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1116 {
1117 	struct ale_softc *sc = ifp->if_softc;
1118 	int s, error;
1119 
1120 	s = splnet();
1121 
1122 	error = ether_ioctl(ifp, cmd, data);
1123 	if (error == ENETRESET) {
1124 		if (ifp->if_flags & IFF_RUNNING)
1125 			ale_rxfilter(sc);
1126 		error = 0;
1127 	}
1128 
1129 	splx(s);
1130 	return error;
1131 }
1132 
1133 static void
1134 ale_mac_config(struct ale_softc *sc)
1135 {
1136 	struct mii_data *mii;
1137 	uint32_t reg;
1138 
1139 	mii = &sc->sc_miibus;
1140 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1141 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1142 	    MAC_CFG_SPEED_MASK);
1143 
1144 	/* Reprogram MAC with resolved speed/duplex. */
1145 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1146 	case IFM_10_T:
1147 	case IFM_100_TX:
1148 		reg |= MAC_CFG_SPEED_10_100;
1149 		break;
1150 	case IFM_1000_T:
1151 		reg |= MAC_CFG_SPEED_1000;
1152 		break;
1153 	}
1154 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1155 		reg |= MAC_CFG_FULL_DUPLEX;
1156 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1157 			reg |= MAC_CFG_TX_FC;
1158 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1159 			reg |= MAC_CFG_RX_FC;
1160 	}
1161 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1162 }
1163 
1164 static void
1165 ale_stats_clear(struct ale_softc *sc)
1166 {
1167 	struct smb sb;
1168 	uint32_t *reg;
1169 	int i;
1170 
1171 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1172 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1173 		i += sizeof(uint32_t);
1174 	}
1175 	/* Read Tx statistics. */
1176 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1177 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1178 		i += sizeof(uint32_t);
1179 	}
1180 }
1181 
1182 static void
1183 ale_stats_update(struct ale_softc *sc)
1184 {
1185 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1186 	struct ale_hw_stats *stat;
1187 	struct smb sb, *smb;
1188 	uint32_t *reg;
1189 	int i;
1190 
1191 	stat = &sc->ale_stats;
1192 	smb = &sb;
1193 
1194 	/* Read Rx statistics. */
1195 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1196 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1197 		i += sizeof(uint32_t);
1198 	}
1199 	/* Read Tx statistics. */
1200 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1201 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1202 		i += sizeof(uint32_t);
1203 	}
1204 
1205 	/* Rx stats. */
1206 	stat->rx_frames += smb->rx_frames;
1207 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1208 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1209 	stat->rx_pause_frames += smb->rx_pause_frames;
1210 	stat->rx_control_frames += smb->rx_control_frames;
1211 	stat->rx_crcerrs += smb->rx_crcerrs;
1212 	stat->rx_lenerrs += smb->rx_lenerrs;
1213 	stat->rx_bytes += smb->rx_bytes;
1214 	stat->rx_runts += smb->rx_runts;
1215 	stat->rx_fragments += smb->rx_fragments;
1216 	stat->rx_pkts_64 += smb->rx_pkts_64;
1217 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1218 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1219 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1220 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1221 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1222 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1223 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1224 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1225 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1226 	stat->rx_alignerrs += smb->rx_alignerrs;
1227 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1228 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1229 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1230 
1231 	/* Tx stats. */
1232 	stat->tx_frames += smb->tx_frames;
1233 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1234 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1235 	stat->tx_pause_frames += smb->tx_pause_frames;
1236 	stat->tx_excess_defer += smb->tx_excess_defer;
1237 	stat->tx_control_frames += smb->tx_control_frames;
1238 	stat->tx_deferred += smb->tx_deferred;
1239 	stat->tx_bytes += smb->tx_bytes;
1240 	stat->tx_pkts_64 += smb->tx_pkts_64;
1241 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1242 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1243 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1244 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1245 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1246 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1247 	stat->tx_single_colls += smb->tx_single_colls;
1248 	stat->tx_multi_colls += smb->tx_multi_colls;
1249 	stat->tx_late_colls += smb->tx_late_colls;
1250 	stat->tx_excess_colls += smb->tx_excess_colls;
1251 	stat->tx_abort += smb->tx_abort;
1252 	stat->tx_underrun += smb->tx_underrun;
1253 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1254 	stat->tx_lenerrs += smb->tx_lenerrs;
1255 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1256 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1257 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1258 
1259 	/* Update counters in ifnet. */
1260 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1261 
1262 	if_statadd_ref(nsr, if_opackets, smb->tx_frames);
1263 
1264 	if_statadd_ref(nsr, if_collisions,
1265 	    smb->tx_single_colls +
1266 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1267 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT);
1268 
1269 	/*
1270 	 * XXX
1271 	 * tx_pkts_truncated counter looks suspicious. It constantly
1272 	 * increments with no sign of Tx errors. This may indicate
1273 	 * the counter name is not correct one so I've removed the
1274 	 * counter in output errors.
1275 	 */
1276 	if_statadd_ref(nsr, if_oerrors,
1277 	    smb->tx_abort + smb->tx_late_colls +
1278 	    smb->tx_underrun);
1279 
1280 	if_statadd_ref(nsr, if_ierrors,
1281 	    smb->rx_crcerrs + smb->rx_lenerrs +
1282 	    smb->rx_runts + smb->rx_pkts_truncated +
1283 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1284 	    smb->rx_alignerrs);
1285 
1286 	IF_STAT_PUTREF(ifp);
1287 }
1288 
1289 static int
1290 ale_intr(void *xsc)
1291 {
1292 	struct ale_softc *sc = xsc;
1293 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1294 	uint32_t status;
1295 
1296 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1297 	if ((status & ALE_INTRS) == 0)
1298 		return 0;
1299 
1300 	/* Acknowledge and disable interrupts. */
1301 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1302 
1303 	if (ifp->if_flags & IFF_RUNNING) {
1304 		int error;
1305 
1306 		error = ale_rxeof(sc);
1307 		if (error) {
1308 			sc->ale_stats.reset_brk_seq++;
1309 			ale_init(ifp);
1310 			return 0;
1311 		}
1312 
1313 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1314 			if (status & INTR_DMA_RD_TO_RST)
1315 				printf("%s: DMA read error! -- resetting\n",
1316 				    device_xname(sc->sc_dev));
1317 			if (status & INTR_DMA_WR_TO_RST)
1318 				printf("%s: DMA write error! -- resetting\n",
1319 				    device_xname(sc->sc_dev));
1320 			ale_init(ifp);
1321 			return 0;
1322 		}
1323 
1324 		ale_txeof(sc);
1325 		if_schedule_deferred_start(ifp);
1326 	}
1327 
1328 	/* Re-enable interrupts. */
1329 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1330 	return 1;
1331 }
1332 
1333 static void
1334 ale_txeof(struct ale_softc *sc)
1335 {
1336 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1337 	struct ale_txdesc *txd;
1338 	uint32_t cons, prod;
1339 	int prog;
1340 
1341 	if (sc->ale_cdata.ale_tx_cnt == 0)
1342 		return;
1343 
1344 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1345 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1346 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1347 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1348 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1349 		    BUS_DMASYNC_POSTREAD);
1350 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1351 	} else
1352 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1353 	cons = sc->ale_cdata.ale_tx_cons;
1354 	/*
1355 	 * Go through our Tx list and free mbufs for those
1356 	 * frames which have been transmitted.
1357 	 */
1358 	for (prog = 0; cons != prod; prog++,
1359 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1360 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1361 			break;
1362 		prog++;
1363 		ifp->if_flags &= ~IFF_OACTIVE;
1364 		sc->ale_cdata.ale_tx_cnt--;
1365 		txd = &sc->ale_cdata.ale_txdesc[cons];
1366 		if (txd->tx_m != NULL) {
1367 			/* Reclaim transmitted mbufs. */
1368 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1369 			m_freem(txd->tx_m);
1370 			txd->tx_m = NULL;
1371 		}
1372 	}
1373 
1374 	if (prog > 0) {
1375 		sc->ale_cdata.ale_tx_cons = cons;
1376 		/*
1377 		 * Unarm watchdog timer only when there is no pending
1378 		 * Tx descriptors in queue.
1379 		 */
1380 		if (sc->ale_cdata.ale_tx_cnt == 0)
1381 			ifp->if_timer = 0;
1382 	}
1383 }
1384 
1385 static void
1386 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1387     uint32_t length, uint32_t *prod)
1388 {
1389 	struct ale_rx_page *rx_page;
1390 
1391 	rx_page = *page;
1392 	/* Update consumer position. */
1393 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1394 	    ALE_RX_PAGE_ALIGN);
1395 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1396 		/*
1397 		 * End of Rx page reached, let hardware reuse
1398 		 * this page.
1399 		 */
1400 		rx_page->cons = 0;
1401 		*rx_page->cmb_addr = 0;
1402 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1403 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1404 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1405 		    RXF_VALID);
1406 		/* Switch to alternate Rx page. */
1407 		sc->ale_cdata.ale_rx_curp ^= 1;
1408 		rx_page = *page =
1409 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1410 		/* Page flipped, sync CMB and Rx page. */
1411 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1412 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1413 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1414 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1415 		/* Sync completed, cache updated producer index. */
1416 		*prod = *rx_page->cmb_addr;
1417 	}
1418 }
1419 
1420 
1421 /*
1422  * It seems that AR81xx controller can compute partial checksum.
1423  * The partial checksum value can be used to accelerate checksum
1424  * computation for fragmented TCP/UDP packets. Upper network stack
1425  * already takes advantage of the partial checksum value in IP
1426  * reassembly stage. But I'm not sure the correctness of the
1427  * partial hardware checksum assistance due to lack of data sheet.
1428  * In addition, the Rx feature of controller that requires copying
1429  * for every frames effectively nullifies one of most nice offload
1430  * capability of controller.
1431  */
1432 static void
1433 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1434 {
1435 	if (status & ALE_RD_IPCSUM_NOK)
1436 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1437 
1438 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1439 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1440 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1441 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1442 		{
1443 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1444 		}
1445 	} else {
1446 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1447 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1448 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1449 			}
1450 		}
1451 	}
1452 	/*
1453 	 * Don't mark bad checksum for TCP/UDP frames
1454 	 * as fragmented frames may always have set
1455 	 * bad checksummed bit of frame status.
1456 	 */
1457 }
1458 
1459 /* Process received frames. */
1460 static int
1461 ale_rxeof(struct ale_softc *sc)
1462 {
1463 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1464 	struct ale_rx_page *rx_page;
1465 	struct rx_rs *rs;
1466 	struct mbuf *m;
1467 	uint32_t length, prod, seqno, status;
1468 	int prog;
1469 
1470 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1471 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1472 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1473 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1474 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1475 	/*
1476 	 * Don't directly access producer index as hardware may
1477 	 * update it while Rx handler is in progress. It would
1478 	 * be even better if there is a way to let hardware
1479 	 * know how far driver processed its received frames.
1480 	 * Alternatively, hardware could provide a way to disable
1481 	 * CMB updates until driver acknowledges the end of CMB
1482 	 * access.
1483 	 */
1484 	prod = *rx_page->cmb_addr;
1485 	for (prog = 0; ; prog++) {
1486 		if (rx_page->cons >= prod)
1487 			break;
1488 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1489 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1490 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1491 			/*
1492 			 * Normally I believe this should not happen unless
1493 			 * severe driver bug or corrupted memory. However
1494 			 * it seems to happen under certain conditions which
1495 			 * is triggered by abrupt Rx events such as initiation
1496 			 * of bulk transfer of remote host. It's not easy to
1497 			 * reproduce this and I doubt it could be related
1498 			 * with FIFO overflow of hardware or activity of Tx
1499 			 * CMB updates. I also remember similar behaviour
1500 			 * seen on RealTek 8139 which uses resembling Rx
1501 			 * scheme.
1502 			 */
1503 			if (aledebug)
1504 				printf("%s: garbled seq: %u, expected: %u -- "
1505 				    "resetting!\n", device_xname(sc->sc_dev),
1506 				    seqno, sc->ale_cdata.ale_rx_seqno);
1507 			return EIO;
1508 		}
1509 		/* Frame received. */
1510 		sc->ale_cdata.ale_rx_seqno++;
1511 		length = ALE_RX_BYTES(le32toh(rs->length));
1512 		status = le32toh(rs->flags);
1513 		if (status & ALE_RD_ERROR) {
1514 			/*
1515 			 * We want to pass the following frames to upper
1516 			 * layer regardless of error status of Rx return
1517 			 * status.
1518 			 *
1519 			 *  o IP/TCP/UDP checksum is bad.
1520 			 *  o frame length and protocol specific length
1521 			 *     does not match.
1522 			 */
1523 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1524 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1525 			    ALE_RD_TRUNC)) {
1526 				ale_rx_update_page(sc, &rx_page, length, &prod);
1527 				continue;
1528 			}
1529 		}
1530 		/*
1531 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1532 		 * from hardware limitation). For jumbo frames we could
1533 		 * get a slightly better performance if driver use
1534 		 * m_getjcl(9) with proper buffer size argument. However
1535 		 * that would make code more complicated and I don't
1536 		 * think users would expect good Rx performance numbers
1537 		 * on these low-end consumer ethernet controller.
1538 		 */
1539 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1540 		    0, ifp);
1541 		if (m == NULL) {
1542 			if_statinc(ifp, if_iqdrops);
1543 			ale_rx_update_page(sc, &rx_page, length, &prod);
1544 			continue;
1545 		}
1546 		if (status & ALE_RD_IPV4)
1547 			ale_rxcsum(sc, m, status);
1548 #if NVLAN > 0
1549 		if (status & ALE_RD_VLAN) {
1550 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1551 			vlan_set_tag(m, ALE_RX_VLAN_TAG(vtags));
1552 		}
1553 #endif
1554 
1555 		/* Pass it to upper layer. */
1556 		if_percpuq_enqueue(ifp->if_percpuq, m);
1557 
1558 		ale_rx_update_page(sc, &rx_page, length, &prod);
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 static void
1565 ale_tick(void *xsc)
1566 {
1567 	struct ale_softc *sc = xsc;
1568 	struct mii_data *mii = &sc->sc_miibus;
1569 	int s;
1570 
1571 	s = splnet();
1572 	mii_tick(mii);
1573 	ale_stats_update(sc);
1574 	splx(s);
1575 
1576 	callout_schedule(&sc->sc_tick_ch, hz);
1577 }
1578 
1579 static void
1580 ale_reset(struct ale_softc *sc)
1581 {
1582 	uint32_t reg;
1583 	int i;
1584 
1585 	/* Initialize PCIe module. From Linux. */
1586 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1587 
1588 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1589 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1590 		DELAY(10);
1591 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1592 			break;
1593 	}
1594 	if (i == 0)
1595 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1596 
1597 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1598 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1599 			break;
1600 		DELAY(10);
1601 	}
1602 
1603 	if (i == 0)
1604 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1605 		    reg);
1606 }
1607 
1608 static int
1609 ale_init(struct ifnet *ifp)
1610 {
1611 	struct ale_softc *sc = ifp->if_softc;
1612 	struct mii_data *mii;
1613 	uint8_t eaddr[ETHER_ADDR_LEN];
1614 	bus_addr_t paddr;
1615 	uint32_t reg, rxf_hi, rxf_lo;
1616 
1617 	/*
1618 	 * Cancel any pending I/O.
1619 	 */
1620 	ale_stop(ifp, 0);
1621 
1622 	/*
1623 	 * Reset the chip to a known state.
1624 	 */
1625 	ale_reset(sc);
1626 
1627 	/* Initialize Tx descriptors, DMA memory blocks. */
1628 	ale_init_rx_pages(sc);
1629 	ale_init_tx_ring(sc);
1630 
1631 	/* Reprogram the station address. */
1632 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1633 	CSR_WRITE_4(sc, ALE_PAR0,
1634 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1635 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1636 
1637 	/*
1638 	 * Clear WOL status and disable all WOL feature as WOL
1639 	 * would interfere Rx operation under normal environments.
1640 	 */
1641 	CSR_READ_4(sc, ALE_WOL_CFG);
1642 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1643 
1644 	/*
1645 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1646 	 * the same high address part of DMAable region.
1647 	 */
1648 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1649 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1650 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1651 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1652 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1653 
1654 	/* Set Rx page base address, note we use single queue. */
1655 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1656 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1657 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1658 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1659 
1660 	/* Set Tx/Rx CMB addresses. */
1661 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1662 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1663 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1664 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1665 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1666 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1667 
1668 	/* Mark RXF0 is valid. */
1669 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1670 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1671 	/*
1672 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1673 	 * multi-queue yet.
1674 	 */
1675 
1676 	/* Set Rx page size, excluding guard frame size. */
1677 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1678 
1679 	/* Tell hardware that we're ready to load DMA blocks. */
1680 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1681 
1682 	/* Set Rx/Tx interrupt trigger threshold. */
1683 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1684 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1685 	/*
1686 	 * XXX
1687 	 * Set interrupt trigger timer, its purpose and relation
1688 	 * with interrupt moderation mechanism is not clear yet.
1689 	 */
1690 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1691 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1692 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1693 
1694 	/* Configure interrupt moderation timer. */
1695 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1696 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1697 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1698 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1699 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1700 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1701 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1702 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1703 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1704 		reg |= MASTER_IM_RX_TIMER_ENB;
1705 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1706 		reg |= MASTER_IM_TX_TIMER_ENB;
1707 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1708 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1709 
1710 	/* Set Maximum frame size of controller. */
1711 	if (ifp->if_mtu < ETHERMTU)
1712 		sc->ale_max_frame_size = ETHERMTU;
1713 	else
1714 		sc->ale_max_frame_size = ifp->if_mtu;
1715 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1716 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1717 
1718 	/* Configure IPG/IFG parameters. */
1719 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1720 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1721 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1722 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1723 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1724 
1725 	/* Set parameters for half-duplex media. */
1726 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1727 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1728 	    HDPX_CFG_LCOL_MASK) |
1729 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1730 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1731 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1732 	    HDPX_CFG_ABEBT_MASK) |
1733 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1734 	    HDPX_CFG_JAMIPG_MASK));
1735 
1736 	/* Configure Tx jumbo frame parameters. */
1737 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1738 		if (ifp->if_mtu < ETHERMTU)
1739 			reg = sc->ale_max_frame_size;
1740 		else if (ifp->if_mtu < 6 * 1024)
1741 			reg = (sc->ale_max_frame_size * 2) / 3;
1742 		else
1743 			reg = sc->ale_max_frame_size / 2;
1744 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1745 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1746 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1747 	}
1748 
1749 	/* Configure TxQ. */
1750 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1751 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1752 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1753 	    TXQ_CFG_TPD_BURST_MASK;
1754 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1755 
1756 	/* Configure Rx jumbo frame & flow control parameters. */
1757 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1758 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1759 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1760 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1761 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1762 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1763 		    RX_JUMBO_LKAH_MASK));
1764 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1765 		rxf_hi = (reg * 7) / 10;
1766 		rxf_lo = (reg * 3)/ 10;
1767 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1768 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1769 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1770 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1771 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1772 	}
1773 
1774 	/* Disable RSS. */
1775 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1776 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1777 
1778 	/* Configure RxQ. */
1779 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1780 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1781 
1782 	/* Configure DMA parameters. */
1783 	reg = 0;
1784 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1785 		reg |= DMA_CFG_TXCMB_ENB;
1786 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1787 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1788 	    sc->ale_dma_rd_burst | reg |
1789 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1790 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1791 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1792 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1793 	    DMA_CFG_WR_DELAY_CNT_MASK));
1794 
1795 	/*
1796 	 * Hardware can be configured to issue SMB interrupt based
1797 	 * on programmed interval. Since there is a callout that is
1798 	 * invoked for every hz in driver we use that instead of
1799 	 * relying on periodic SMB interrupt.
1800 	 */
1801 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1802 
1803 	/* Clear MAC statistics. */
1804 	ale_stats_clear(sc);
1805 
1806 	/*
1807 	 * Configure Tx/Rx MACs.
1808 	 *  - Auto-padding for short frames.
1809 	 *  - Enable CRC generation.
1810 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1811 	 *  is followed after detection of link establishment.
1812 	 *  AR81xx always does checksum computation regardless of
1813 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1814 	 *  cause Rx handling issue for fragmented IP datagrams due
1815 	 *  to silicon bug.
1816 	 */
1817 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1818 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1819 	    MAC_CFG_PREAMBLE_MASK);
1820 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1821 		reg |= MAC_CFG_SPEED_10_100;
1822 	else
1823 		reg |= MAC_CFG_SPEED_1000;
1824 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1825 
1826 	/* Set up the receive filter. */
1827 	ale_rxfilter(sc);
1828 	ale_rxvlan(sc);
1829 
1830 	/* Acknowledge all pending interrupts and clear it. */
1831 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1832 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1833 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1834 
1835 	sc->ale_flags &= ~ALE_FLAG_LINK;
1836 
1837 	/* Switch to the current media. */
1838 	mii = &sc->sc_miibus;
1839 	mii_mediachg(mii);
1840 
1841 	callout_schedule(&sc->sc_tick_ch, hz);
1842 
1843 	ifp->if_flags |= IFF_RUNNING;
1844 	ifp->if_flags &= ~IFF_OACTIVE;
1845 
1846 	return 0;
1847 }
1848 
1849 static void
1850 ale_stop(struct ifnet *ifp, int disable)
1851 {
1852 	struct ale_softc *sc = ifp->if_softc;
1853 	struct ale_txdesc *txd;
1854 	uint32_t reg;
1855 	int i;
1856 
1857 	callout_stop(&sc->sc_tick_ch);
1858 
1859 	/*
1860 	 * Mark the interface down and cancel the watchdog timer.
1861 	 */
1862 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1863 	ifp->if_timer = 0;
1864 
1865 	sc->ale_flags &= ~ALE_FLAG_LINK;
1866 
1867 	ale_stats_update(sc);
1868 
1869 	mii_down(&sc->sc_miibus);
1870 
1871 	/* Disable interrupts. */
1872 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1873 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1874 
1875 	/* Disable queue processing and DMA. */
1876 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1877 	reg &= ~TXQ_CFG_ENB;
1878 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1879 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1880 	reg &= ~RXQ_CFG_ENB;
1881 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1882 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1883 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1884 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1885 	DELAY(1000);
1886 
1887 	/* Stop Rx/Tx MACs. */
1888 	ale_stop_mac(sc);
1889 
1890 	/* Disable interrupts again? XXX */
1891 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1892 
1893 	/*
1894 	 * Free TX mbufs still in the queues.
1895 	 */
1896 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1897 		txd = &sc->ale_cdata.ale_txdesc[i];
1898 		if (txd->tx_m != NULL) {
1899 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1900 			m_freem(txd->tx_m);
1901 			txd->tx_m = NULL;
1902 		}
1903 	}
1904 }
1905 
1906 static void
1907 ale_stop_mac(struct ale_softc *sc)
1908 {
1909 	uint32_t reg;
1910 	int i;
1911 
1912 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1913 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1914 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1915 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1916 	}
1917 
1918 	for (i = ALE_TIMEOUT; i > 0; i--) {
1919 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1920 		if (reg == 0)
1921 			break;
1922 		DELAY(10);
1923 	}
1924 	if (i == 0)
1925 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1926 		    device_xname(sc->sc_dev), reg);
1927 }
1928 
1929 static void
1930 ale_init_tx_ring(struct ale_softc *sc)
1931 {
1932 	struct ale_txdesc *txd;
1933 	int i;
1934 
1935 	sc->ale_cdata.ale_tx_prod = 0;
1936 	sc->ale_cdata.ale_tx_cons = 0;
1937 	sc->ale_cdata.ale_tx_cnt = 0;
1938 
1939 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1940 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1941 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1942 		txd = &sc->ale_cdata.ale_txdesc[i];
1943 		txd->tx_m = NULL;
1944 	}
1945 	*sc->ale_cdata.ale_tx_cmb = 0;
1946 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1947 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1948 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1949 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1950 }
1951 
1952 static void
1953 ale_init_rx_pages(struct ale_softc *sc)
1954 {
1955 	struct ale_rx_page *rx_page;
1956 	int i;
1957 
1958 	sc->ale_cdata.ale_rx_seqno = 0;
1959 	sc->ale_cdata.ale_rx_curp = 0;
1960 
1961 	for (i = 0; i < ALE_RX_PAGES; i++) {
1962 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1963 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1964 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1965 		rx_page->cons = 0;
1966 		*rx_page->cmb_addr = 0;
1967 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1968 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1969 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1970 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1971 	}
1972 }
1973 
1974 static void
1975 ale_rxvlan(struct ale_softc *sc)
1976 {
1977 	uint32_t reg;
1978 
1979 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1980 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1981 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
1982 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1983 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1984 }
1985 
1986 static void
1987 ale_rxfilter(struct ale_softc *sc)
1988 {
1989 	struct ethercom *ec = &sc->sc_ec;
1990 	struct ifnet *ifp = &ec->ec_if;
1991 	struct ether_multi *enm;
1992 	struct ether_multistep step;
1993 	uint32_t crc;
1994 	uint32_t mchash[2];
1995 	uint32_t rxcfg;
1996 
1997 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
1998 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
1999 	ifp->if_flags &= ~IFF_ALLMULTI;
2000 
2001 	/*
2002 	 * Always accept broadcast frames.
2003 	 */
2004 	rxcfg |= MAC_CFG_BCAST;
2005 
2006 	/* Program new filter. */
2007 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2008 		goto update;
2009 
2010 	memset(mchash, 0, sizeof(mchash));
2011 
2012 	ETHER_LOCK(ec);
2013 	ETHER_FIRST_MULTI(step, ec, enm);
2014 	while (enm != NULL) {
2015 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2016 			/* XXX Use ETHER_F_ALLMULTI in future. */
2017 			ifp->if_flags |= IFF_ALLMULTI;
2018 			ETHER_UNLOCK(ec);
2019 			goto update;
2020 		}
2021 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2022 		mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
2023 		ETHER_NEXT_MULTI(step, enm);
2024 	}
2025 	ETHER_UNLOCK(ec);
2026 
2027 update:
2028 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2029 		if (ifp->if_flags & IFF_PROMISC) {
2030 			rxcfg |= MAC_CFG_PROMISC;
2031 			/* XXX Use ETHER_F_ALLMULTI in future. */
2032 			ifp->if_flags |= IFF_ALLMULTI;
2033 		} else
2034 			rxcfg |= MAC_CFG_ALLMULTI;
2035 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2036 	}
2037 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2038 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2039 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2040 }
2041