xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 3816d47b2c42fcd6e549e3407f842a5b1a1d23ad)
1 /*	$NetBSD: if_ale.c,v 1.9 2009/10/08 08:57:19 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.9 2009/10/08 08:57:19 cegger Exp $");
36 
37 #include "bpfilter.h"
38 #include "vlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52 
53 #include <sys/bus.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70 
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74 
75 #include <sys/rnd.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_alereg.h>
85 
86 static int	ale_match(device_t, cfdata_t, void *);
87 static void	ale_attach(device_t, device_t, void *);
88 static int	ale_detach(device_t, int);
89 
90 static int	ale_miibus_readreg(device_t, int, int);
91 static void	ale_miibus_writereg(device_t, int, int, int);
92 static void	ale_miibus_statchg(device_t);
93 
94 static int	ale_init(struct ifnet *);
95 static void	ale_start(struct ifnet *);
96 static int	ale_ioctl(struct ifnet *, u_long, void *);
97 static void	ale_watchdog(struct ifnet *);
98 static int	ale_mediachange(struct ifnet *);
99 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
100 
101 static int	ale_intr(void *);
102 static int	ale_rxeof(struct ale_softc *sc);
103 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 		    uint32_t, uint32_t *);
105 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void	ale_txeof(struct ale_softc *);
107 
108 static int	ale_dma_alloc(struct ale_softc *);
109 static void	ale_dma_free(struct ale_softc *);
110 static int	ale_encap(struct ale_softc *, struct mbuf **);
111 static void	ale_init_rx_pages(struct ale_softc *);
112 static void	ale_init_tx_ring(struct ale_softc *);
113 
114 static void	ale_stop(struct ifnet *, int);
115 static void	ale_tick(void *);
116 static void	ale_get_macaddr(struct ale_softc *);
117 static void	ale_mac_config(struct ale_softc *);
118 static void	ale_phy_reset(struct ale_softc *);
119 static void	ale_reset(struct ale_softc *);
120 static void	ale_rxfilter(struct ale_softc *);
121 static void	ale_rxvlan(struct ale_softc *);
122 static void	ale_stats_clear(struct ale_softc *);
123 static void	ale_stats_update(struct ale_softc *);
124 static void	ale_stop_mac(struct ale_softc *);
125 
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 	ale_match, ale_attach, ale_detach, NULL);
128 
129 int aledebug = 0;
130 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
131 
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 	struct ale_softc *sc = device_private(dev);
139 	uint32_t v;
140 	int i;
141 
142 	if (phy != sc->ale_phyaddr)
143 		return 0;
144 
145 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
146 		switch (reg) {
147 		case MII_100T2CR:
148 		case MII_100T2SR:
149 		case MII_EXTSR:
150 			return 0;
151 		default:
152 			break;
153 		}
154 	}
155 
156 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
157 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
158 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
159 		DELAY(5);
160 		v = CSR_READ_4(sc, ALE_MDIO);
161 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
162 			break;
163 	}
164 
165 	if (i == 0) {
166 		printf("%s: phy read timeout: phy %d, reg %d\n",
167 		    device_xname(sc->sc_dev), phy, reg);
168 		return 0;
169 	}
170 
171 	return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
172 }
173 
174 static void
175 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
176 {
177 	struct ale_softc *sc = device_private(dev);
178 	uint32_t v;
179 	int i;
180 
181 	if (phy != sc->ale_phyaddr)
182 		return;
183 
184 	if (sc->ale_flags & ALE_FLAG_FASTETHER) {
185 		switch (reg) {
186 		case MII_100T2CR:
187 		case MII_100T2SR:
188 		case MII_EXTSR:
189 			return;
190 		default:
191 			break;
192 		}
193 	}
194 
195 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
196 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
197 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
198 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
199 		DELAY(5);
200 		v = CSR_READ_4(sc, ALE_MDIO);
201 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
202 			break;
203 	}
204 
205 	if (i == 0)
206 		printf("%s: phy write timeout: phy %d, reg %d\n",
207 		    device_xname(sc->sc_dev), phy, reg);
208 }
209 
210 static void
211 ale_miibus_statchg(device_t dev)
212 {
213 	struct ale_softc *sc = device_private(dev);
214 	struct ifnet *ifp = &sc->sc_ec.ec_if;
215 	struct mii_data *mii;
216 	uint32_t reg;
217 
218 	if ((ifp->if_flags & IFF_RUNNING) == 0)
219 		return;
220 
221 	mii = &sc->sc_miibus;
222 
223 	sc->ale_flags &= ~ALE_FLAG_LINK;
224 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
225 	    (IFM_ACTIVE | IFM_AVALID)) {
226 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
227 		case IFM_10_T:
228 		case IFM_100_TX:
229 			sc->ale_flags |= ALE_FLAG_LINK;
230 			break;
231 
232 		case IFM_1000_T:
233 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
234 				sc->ale_flags |= ALE_FLAG_LINK;
235 			break;
236 
237 		default:
238 			break;
239 		}
240 	}
241 
242 	/* Stop Rx/Tx MACs. */
243 	ale_stop_mac(sc);
244 
245 	/* Program MACs with resolved speed/duplex/flow-control. */
246 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
247 		ale_mac_config(sc);
248 		/* Reenable Tx/Rx MACs. */
249 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
250 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
251 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
252 	}
253 }
254 
255 void
256 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
257 {
258 	struct ale_softc *sc = ifp->if_softc;
259 	struct mii_data *mii = &sc->sc_miibus;
260 
261 	mii_pollstat(mii);
262 	ifmr->ifm_status = mii->mii_media_status;
263 	ifmr->ifm_active = mii->mii_media_active;
264 }
265 
266 int
267 ale_mediachange(struct ifnet *ifp)
268 {
269 	struct ale_softc *sc = ifp->if_softc;
270 	struct mii_data *mii = &sc->sc_miibus;
271 	int error;
272 
273 	if (mii->mii_instance != 0) {
274 		struct mii_softc *miisc;
275 
276 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
277 			mii_phy_reset(miisc);
278 	}
279 	error = mii_mediachg(mii);
280 
281 	return error;
282 }
283 
284 int
285 ale_match(device_t dev, cfdata_t match, void *aux)
286 {
287 	struct pci_attach_args *pa = aux;
288 
289 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
290 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
291 }
292 
293 void
294 ale_get_macaddr(struct ale_softc *sc)
295 {
296 	uint32_t ea[2], reg;
297 	int i, vpdc;
298 
299 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
300 	if ((reg & SPI_VPD_ENB) != 0) {
301 		reg &= ~SPI_VPD_ENB;
302 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
303 	}
304 
305 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
306 	    &vpdc, NULL)) {
307 		/*
308 		 * PCI VPD capability found, let TWSI reload EEPROM.
309 		 * This will set ethernet address of controller.
310 		 */
311 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
312 		    TWSI_CTRL_SW_LD_START);
313 		for (i = 100; i > 0; i--) {
314 			DELAY(1000);
315 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
316 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
317 				break;
318 		}
319 		if (i == 0)
320 			printf("%s: reloading EEPROM timeout!\n",
321 			    device_xname(sc->sc_dev));
322 	} else {
323 		if (aledebug)
324 			printf("%s: PCI VPD capability not found!\n",
325 			    device_xname(sc->sc_dev));
326 	}
327 
328 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
329 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
330 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
331 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
332 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
333 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
334 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
335 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
336 }
337 
338 void
339 ale_phy_reset(struct ale_softc *sc)
340 {
341 	/* Reset magic from Linux. */
342 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
343 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
344 	    GPHY_CTRL_PHY_PLL_ON);
345 	DELAY(1000);
346 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
347 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
348 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
349 	DELAY(1000);
350 
351 #define	ATPHY_DBG_ADDR		0x1D
352 #define	ATPHY_DBG_DATA		0x1E
353 
354 	/* Enable hibernation mode. */
355 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 	    ATPHY_DBG_ADDR, 0x0B);
357 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
358 	    ATPHY_DBG_DATA, 0xBC00);
359 	/* Set Class A/B for all modes. */
360 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
361 	    ATPHY_DBG_ADDR, 0x00);
362 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
363 	    ATPHY_DBG_DATA, 0x02EF);
364 	/* Enable 10BT power saving. */
365 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
366 	    ATPHY_DBG_ADDR, 0x12);
367 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
368 	    ATPHY_DBG_DATA, 0x4C04);
369 	/* Adjust 1000T power. */
370 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
371 	    ATPHY_DBG_ADDR, 0x04);
372 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
373 	    ATPHY_DBG_ADDR, 0x8BBB);
374 	/* 10BT center tap voltage. */
375 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
376 	    ATPHY_DBG_ADDR, 0x05);
377 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
378 	    ATPHY_DBG_ADDR, 0x2C46);
379 
380 #undef	ATPHY_DBG_ADDR
381 #undef	ATPHY_DBG_DATA
382 	DELAY(1000);
383 }
384 
385 void
386 ale_attach(device_t parent, device_t self, void *aux)
387 {
388 	struct ale_softc *sc = device_private(self);
389 	struct pci_attach_args *pa = aux;
390 	pci_chipset_tag_t pc = pa->pa_pc;
391 	pci_intr_handle_t ih;
392 	const char *intrstr;
393 	struct ifnet *ifp;
394 	pcireg_t memtype;
395 	int mii_flags, error = 0;
396 	uint32_t rxf_len, txf_len;
397 	const char *chipname;
398 
399 	aprint_naive("\n");
400 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
401 
402 	sc->sc_dev = self;
403 	sc->sc_dmat = pa->pa_dmat;
404 	sc->sc_pct = pa->pa_pc;
405 	sc->sc_pcitag = pa->pa_tag;
406 
407 	/*
408 	 * Allocate IO memory
409 	 */
410 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
411 	switch (memtype) {
412 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
413 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
414 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
415 		break;
416 	default:
417 		aprint_error_dev(self, "invalid base address register\n");
418 		break;
419 	}
420 
421 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
422 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
423 		aprint_error_dev(self, "could not map mem space\n");
424 		return;
425 	}
426 
427 	if (pci_intr_map(pa, &ih) != 0) {
428 		aprint_error_dev(self, "could not map interrupt\n");
429 		goto fail;
430 	}
431 
432 	/*
433 	 * Allocate IRQ
434 	 */
435 	intrstr = pci_intr_string(sc->sc_pct, ih);
436 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
437 	if (sc->sc_irq_handle == NULL) {
438 		aprint_error_dev(self, "could not establish interrupt");
439 		if (intrstr != NULL)
440 			aprint_error(" at %s", intrstr);
441 		aprint_error("\n");
442 		goto fail;
443 	}
444 
445 	/* Set PHY address. */
446 	sc->ale_phyaddr = ALE_PHY_ADDR;
447 
448 	/* Reset PHY. */
449 	ale_phy_reset(sc);
450 
451 	/* Reset the ethernet controller. */
452 	ale_reset(sc);
453 
454 	/* Get PCI and chip id/revision. */
455 	sc->ale_rev = PCI_REVISION(pa->pa_class);
456 	if (sc->ale_rev >= 0xF0) {
457 		/* L2E Rev. B. AR8114 */
458 		sc->ale_flags |= ALE_FLAG_FASTETHER;
459 		chipname = "AR8114 (L2E RevB)";
460 	} else {
461 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
462 			/* L1E AR8121 */
463 			sc->ale_flags |= ALE_FLAG_JUMBO;
464 			chipname = "AR8121 (L1E)";
465 		} else {
466 			/* L2E Rev. A. AR8113 */
467 			sc->ale_flags |= ALE_FLAG_FASTETHER;
468 			chipname = "AR8113 (L2E RevA)";
469 		}
470 	}
471 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
472 
473 	/*
474 	 * All known controllers seems to require 4 bytes alignment
475 	 * of Tx buffers to make Tx checksum offload with custom
476 	 * checksum generation method work.
477 	 */
478 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
479 
480 	/*
481 	 * All known controllers seems to have issues on Rx checksum
482 	 * offload for fragmented IP datagrams.
483 	 */
484 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
485 
486 	/*
487 	 * Don't use Tx CMB. It is known to cause RRS update failure
488 	 * under certain circumstances. Typical phenomenon of the
489 	 * issue would be unexpected sequence number encountered in
490 	 * Rx handler.
491 	 */
492 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494 	    MASTER_CHIP_REV_SHIFT;
495 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
496 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
497 
498 	/*
499 	 * Uninitialized hardware returns an invalid chip id/revision
500 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
501 	 */
502 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
503 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
504 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
505 	    rxf_len == 0xFFFFFFF) {
506 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
507 		    "%u Rx FIFO -- not initialized?\n",
508 		    sc->ale_chip_rev, txf_len, rxf_len);
509 		goto fail;
510 	}
511 
512 	if (aledebug) {
513 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
514 		    txf_len, rxf_len);
515 	}
516 
517 	/* Set max allowable DMA size. */
518 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
519 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
520 
521 	callout_init(&sc->sc_tick_ch, 0);
522 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
523 
524 	error = ale_dma_alloc(sc);
525 	if (error)
526 		goto fail;
527 
528 	/* Load station address. */
529 	ale_get_macaddr(sc);
530 
531 	aprint_normal_dev(self, "Ethernet address %s\n",
532 	    ether_sprintf(sc->ale_eaddr));
533 
534 	ifp = &sc->sc_ec.ec_if;
535 	ifp->if_softc = sc;
536 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 	ifp->if_init = ale_init;
538 	ifp->if_ioctl = ale_ioctl;
539 	ifp->if_start = ale_start;
540 	ifp->if_stop = ale_stop;
541 	ifp->if_watchdog = ale_watchdog;
542 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
543 	IFQ_SET_READY(&ifp->if_snd);
544 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
545 
546 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
547 
548 #ifdef ALE_CHECKSUM
549 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
550 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
551 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
552 #endif
553 
554 #if NVLAN > 0
555 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
556 #endif
557 
558 	/* Set up MII bus. */
559 	sc->sc_miibus.mii_ifp = ifp;
560 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
561 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
562 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
563 
564 	sc->sc_ec.ec_mii = &sc->sc_miibus;
565 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
566 	    ale_mediastatus);
567 	mii_flags = 0;
568 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
569 		mii_flags |= MIIF_DOPAUSE;
570 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
571 	    MII_OFFSET_ANY, mii_flags);
572 
573 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
574 		aprint_error_dev(self, "no PHY found!\n");
575 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
576 		    0, NULL);
577 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
578 	} else
579 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
580 
581 	if_attach(ifp);
582 	ether_ifattach(ifp, sc->ale_eaddr);
583 
584 	if (pmf_device_register(self, NULL, NULL))
585 		pmf_class_network_register(self, ifp);
586 	else
587 		aprint_error_dev(self, "couldn't establish power handler\n");
588 
589 	return;
590 fail:
591 	ale_dma_free(sc);
592 	if (sc->sc_irq_handle != NULL) {
593 		pci_intr_disestablish(pc, sc->sc_irq_handle);
594 		sc->sc_irq_handle = NULL;
595 	}
596 	if (sc->sc_mem_size) {
597 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
598 		sc->sc_mem_size = 0;
599 	}
600 }
601 
602 static int
603 ale_detach(device_t self, int flags)
604 {
605 	struct ale_softc *sc = device_private(self);
606 	struct ifnet *ifp = &sc->sc_ec.ec_if;
607 	int s;
608 
609 	pmf_device_deregister(self);
610 	s = splnet();
611 	ale_stop(ifp, 0);
612 	splx(s);
613 
614 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
615 
616 	/* Delete all remaining media. */
617 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
618 
619 	ether_ifdetach(ifp);
620 	if_detach(ifp);
621 	ale_dma_free(sc);
622 
623 	if (sc->sc_irq_handle != NULL) {
624 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
625 		sc->sc_irq_handle = NULL;
626 	}
627 	if (sc->sc_mem_size) {
628 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
629 		sc->sc_mem_size = 0;
630 	}
631 
632 	return 0;
633 }
634 
635 
636 static int
637 ale_dma_alloc(struct ale_softc *sc)
638 {
639 	struct ale_txdesc *txd;
640 	int nsegs, error, guard_size, i;
641 
642 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
643 		guard_size = ALE_JUMBO_FRAMELEN;
644 	else
645 		guard_size = ALE_MAX_FRAMELEN;
646 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
647 	    ALE_RX_PAGE_ALIGN);
648 
649 	/*
650 	 * Create DMA stuffs for TX ring
651 	 */
652 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
653 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
654 	if (error) {
655 		sc->ale_cdata.ale_tx_ring_map = NULL;
656 		return ENOBUFS;
657 	}
658 
659 	/* Allocate DMA'able memory for TX ring */
660 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
661 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
662 	    &nsegs, BUS_DMA_WAITOK);
663 	if (error) {
664 		printf("%s: could not allocate DMA'able memory for Tx ring, "
665 		    "error = %i\n", device_xname(sc->sc_dev), error);
666 		return error;
667 	}
668 
669 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
670 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
671 	    BUS_DMA_NOWAIT);
672 	if (error)
673 		return ENOBUFS;
674 
675 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
676 
677 	/* Load the DMA map for Tx ring. */
678 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
679 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
680 	if (error) {
681 		printf("%s: could not load DMA'able memory for Tx ring.\n",
682 		    device_xname(sc->sc_dev));
683 		bus_dmamem_free(sc->sc_dmat,
684 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
685 		return error;
686 	}
687 	sc->ale_cdata.ale_tx_ring_paddr =
688 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
689 
690 	for (i = 0; i < ALE_RX_PAGES; i++) {
691 		/*
692 		 * Create DMA stuffs for RX pages
693 		 */
694 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
695 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
696 		    &sc->ale_cdata.ale_rx_page[i].page_map);
697 		if (error) {
698 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
699 			return ENOBUFS;
700 		}
701 
702 		/* Allocate DMA'able memory for RX pages */
703 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
704 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
705 		    1, &nsegs, BUS_DMA_WAITOK);
706 		if (error) {
707 			printf("%s: could not allocate DMA'able memory for "
708 			    "Rx ring.\n", device_xname(sc->sc_dev));
709 			return error;
710 		}
711 		error = bus_dmamem_map(sc->sc_dmat,
712 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
713 		    sc->ale_pagesize,
714 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
715 		    BUS_DMA_NOWAIT);
716 		if (error)
717 			return ENOBUFS;
718 
719 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
720 		    sc->ale_pagesize);
721 
722 		/* Load the DMA map for Rx pages. */
723 		error = bus_dmamap_load(sc->sc_dmat,
724 		    sc->ale_cdata.ale_rx_page[i].page_map,
725 		    sc->ale_cdata.ale_rx_page[i].page_addr,
726 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
727 		if (error) {
728 			printf("%s: could not load DMA'able memory for "
729 			    "Rx pages.\n", device_xname(sc->sc_dev));
730 			bus_dmamem_free(sc->sc_dmat,
731 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
732 			return error;
733 		}
734 		sc->ale_cdata.ale_rx_page[i].page_paddr =
735 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
736 	}
737 
738 	/*
739 	 * Create DMA stuffs for Tx CMB.
740 	 */
741 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
742 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
743 	if (error) {
744 		sc->ale_cdata.ale_tx_cmb_map = NULL;
745 		return ENOBUFS;
746 	}
747 
748 	/* Allocate DMA'able memory for Tx CMB. */
749 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
750 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
751 
752 	if (error) {
753 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
754 		    device_xname(sc->sc_dev));
755 		return error;
756 	}
757 
758 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
759 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
760 	    BUS_DMA_NOWAIT);
761 	if (error)
762 		return ENOBUFS;
763 
764 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
765 
766 	/* Load the DMA map for Tx CMB. */
767 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
768 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
769 	if (error) {
770 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
771 		    device_xname(sc->sc_dev));
772 		bus_dmamem_free(sc->sc_dmat,
773 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
774 		return error;
775 	}
776 
777 	sc->ale_cdata.ale_tx_cmb_paddr =
778 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
779 
780 	for (i = 0; i < ALE_RX_PAGES; i++) {
781 		/*
782 		 * Create DMA stuffs for Rx CMB.
783 		 */
784 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
785 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
786 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
787 		if (error) {
788 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
789 			return ENOBUFS;
790 		}
791 
792 		/* Allocate DMA'able memory for Rx CMB */
793 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
794 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
795 		    &nsegs, BUS_DMA_WAITOK);
796 		if (error) {
797 			printf("%s: could not allocate DMA'able memory for "
798 			    "Rx CMB\n", device_xname(sc->sc_dev));
799 			return error;
800 		}
801 		error = bus_dmamem_map(sc->sc_dmat,
802 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
803 		    ALE_RX_CMB_SZ,
804 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
805 		    BUS_DMA_NOWAIT);
806 		if (error)
807 			return ENOBUFS;
808 
809 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
810 
811 		/* Load the DMA map for Rx CMB */
812 		error = bus_dmamap_load(sc->sc_dmat,
813 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
814 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
815 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
816 		if (error) {
817 			printf("%s: could not load DMA'able memory for Rx CMB"
818 			    "\n", device_xname(sc->sc_dev));
819 			bus_dmamem_free(sc->sc_dmat,
820 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
821 			return error;
822 		}
823 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
824 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
825 	}
826 
827 
828 	/* Create DMA maps for Tx buffers. */
829 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 		txd = &sc->ale_cdata.ale_txdesc[i];
831 		txd->tx_m = NULL;
832 		txd->tx_dmamap = NULL;
833 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
834 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
835 		    &txd->tx_dmamap);
836 		if (error) {
837 			txd->tx_dmamap = NULL;
838 			printf("%s: could not create Tx dmamap.\n",
839 			    device_xname(sc->sc_dev));
840 			return error;
841 		}
842 	}
843 
844 	return 0;
845 }
846 
847 static void
848 ale_dma_free(struct ale_softc *sc)
849 {
850 	struct ale_txdesc *txd;
851 	int i;
852 
853 	/* Tx buffers. */
854 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
855 		txd = &sc->ale_cdata.ale_txdesc[i];
856 		if (txd->tx_dmamap != NULL) {
857 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
858 			txd->tx_dmamap = NULL;
859 		}
860 	}
861 
862 	/* Tx descriptor ring. */
863 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
864 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
865 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
866 	    sc->ale_cdata.ale_tx_ring != NULL)
867 		bus_dmamem_free(sc->sc_dmat,
868 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
869 	sc->ale_cdata.ale_tx_ring = NULL;
870 	sc->ale_cdata.ale_tx_ring_map = NULL;
871 
872 	/* Rx page block. */
873 	for (i = 0; i < ALE_RX_PAGES; i++) {
874 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
875 			bus_dmamap_unload(sc->sc_dmat,
876 			    sc->ale_cdata.ale_rx_page[i].page_map);
877 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
878 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
879 			bus_dmamem_free(sc->sc_dmat,
880 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
881 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
882 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
883 	}
884 
885 	/* Rx CMB. */
886 	for (i = 0; i < ALE_RX_PAGES; i++) {
887 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
888 			bus_dmamap_unload(sc->sc_dmat,
889 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
890 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
891 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
892 			bus_dmamem_free(sc->sc_dmat,
893 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
894 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
895 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
896 	}
897 
898 	/* Tx CMB. */
899 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
900 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
901 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
902 	    sc->ale_cdata.ale_tx_cmb != NULL)
903 		bus_dmamem_free(sc->sc_dmat,
904 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
905 	sc->ale_cdata.ale_tx_cmb = NULL;
906 	sc->ale_cdata.ale_tx_cmb_map = NULL;
907 
908 }
909 
910 static int
911 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
912 {
913 	struct ale_txdesc *txd, *txd_last;
914 	struct tx_desc *desc;
915 	struct mbuf *m;
916 	bus_dmamap_t map;
917 	uint32_t cflags, poff, vtag;
918 	int error, i, nsegs, prod;
919 #if NVLAN > 0
920 	struct m_tag *mtag;
921 #endif
922 
923 	m = *m_head;
924 	cflags = vtag = 0;
925 	poff = 0;
926 
927 	prod = sc->ale_cdata.ale_tx_prod;
928 	txd = &sc->ale_cdata.ale_txdesc[prod];
929 	txd_last = txd;
930 	map = txd->tx_dmamap;
931 
932 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
933 	if (error == EFBIG) {
934 		error = 0;
935 
936 		*m_head = m_pullup(*m_head, MHLEN);
937 		if (*m_head == NULL) {
938 			printf("%s: can't defrag TX mbuf\n",
939 			    device_xname(sc->sc_dev));
940 			return ENOBUFS;
941 		}
942 
943 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
944 		    BUS_DMA_NOWAIT);
945 
946 		if (error != 0) {
947 			printf("%s: could not load defragged TX mbuf\n",
948 			    device_xname(sc->sc_dev));
949 			m_freem(*m_head);
950 			*m_head = NULL;
951 			return error;
952 		}
953 	} else if (error) {
954 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
955 		return error;
956 	}
957 
958 	nsegs = map->dm_nsegs;
959 
960 	if (nsegs == 0) {
961 		m_freem(*m_head);
962 		*m_head = NULL;
963 		return EIO;
964 	}
965 
966 	/* Check descriptor overrun. */
967 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
968 		bus_dmamap_unload(sc->sc_dmat, map);
969 		return ENOBUFS;
970 	}
971 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
972 	    BUS_DMASYNC_PREWRITE);
973 
974 	m = *m_head;
975 	/* Configure Tx checksum offload. */
976 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
977 		/*
978 		 * AR81xx supports Tx custom checksum offload feature
979 		 * that offloads single 16bit checksum computation.
980 		 * So you can choose one among IP, TCP and UDP.
981 		 * Normally driver sets checksum start/insertion
982 		 * position from the information of TCP/UDP frame as
983 		 * TCP/UDP checksum takes more time than that of IP.
984 		 * However it seems that custom checksum offload
985 		 * requires 4 bytes aligned Tx buffers due to hardware
986 		 * bug.
987 		 * AR81xx also supports explicit Tx checksum computation
988 		 * if it is told that the size of IP header and TCP
989 		 * header(for UDP, the header size does not matter
990 		 * because it's fixed length). However with this scheme
991 		 * TSO does not work so you have to choose one either
992 		 * TSO or explicit Tx checksum offload. I chosen TSO
993 		 * plus custom checksum offload with work-around which
994 		 * will cover most common usage for this consumer
995 		 * ethernet controller. The work-around takes a lot of
996 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
997 		 * boundary, though.
998 		 */
999 		cflags |= ALE_TD_CXSUM;
1000 		/* Set checksum start offset. */
1001 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1002 	}
1003 
1004 #if NVLAN > 0
1005 	/* Configure VLAN hardware tag insertion. */
1006 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1007 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1008 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1009 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1010 	}
1011 #endif
1012 
1013 	desc = NULL;
1014 	for (i = 0; i < nsegs; i++) {
1015 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1016 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1017 		desc->len =
1018 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1019 		desc->flags = htole32(cflags);
1020 		sc->ale_cdata.ale_tx_cnt++;
1021 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1022 	}
1023 	/* Update producer index. */
1024 	sc->ale_cdata.ale_tx_prod = prod;
1025 
1026 	/* Finally set EOP on the last descriptor. */
1027 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1028 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1029 	desc->flags |= htole32(ALE_TD_EOP);
1030 
1031 	/* Swap dmamap of the first and the last. */
1032 	txd = &sc->ale_cdata.ale_txdesc[prod];
1033 	map = txd_last->tx_dmamap;
1034 	txd_last->tx_dmamap = txd->tx_dmamap;
1035 	txd->tx_dmamap = map;
1036 	txd->tx_m = m;
1037 
1038 	/* Sync descriptors. */
1039 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1040 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1041 
1042 	return 0;
1043 }
1044 
1045 static void
1046 ale_start(struct ifnet *ifp)
1047 {
1048         struct ale_softc *sc = ifp->if_softc;
1049 	struct mbuf *m_head;
1050 	int enq;
1051 
1052 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1053 		return;
1054 
1055 	/* Reclaim transmitted frames. */
1056 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1057 		ale_txeof(sc);
1058 
1059 	enq = 0;
1060 	for (;;) {
1061 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1062 		if (m_head == NULL)
1063 			break;
1064 
1065 		/*
1066 		 * Pack the data into the transmit ring. If we
1067 		 * don't have room, set the OACTIVE flag and wait
1068 		 * for the NIC to drain the ring.
1069 		 */
1070 		if (ale_encap(sc, &m_head)) {
1071 			if (m_head == NULL)
1072 				break;
1073 			IF_PREPEND(&ifp->if_snd, m_head);
1074 			ifp->if_flags |= IFF_OACTIVE;
1075 			break;
1076 		}
1077 		enq = 1;
1078 
1079 #if NBPFILTER > 0
1080 		/*
1081 		 * If there's a BPF listener, bounce a copy of this frame
1082 		 * to him.
1083 		 */
1084 		if (ifp->if_bpf != NULL)
1085 			bpf_mtap(ifp->if_bpf, m_head);
1086 #endif
1087 	}
1088 
1089 	if (enq) {
1090 		/* Kick. */
1091 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1092 		    sc->ale_cdata.ale_tx_prod);
1093 
1094 		/* Set a timeout in case the chip goes out to lunch. */
1095 		ifp->if_timer = ALE_TX_TIMEOUT;
1096 	}
1097 }
1098 
1099 static void
1100 ale_watchdog(struct ifnet *ifp)
1101 {
1102 	struct ale_softc *sc = ifp->if_softc;
1103 
1104 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1105 		printf("%s: watchdog timeout (missed link)\n",
1106 		    device_xname(sc->sc_dev));
1107 		ifp->if_oerrors++;
1108 		ale_init(ifp);
1109 		return;
1110 	}
1111 
1112 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1113 	ifp->if_oerrors++;
1114 	ale_init(ifp);
1115 
1116 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1117 		ale_start(ifp);
1118 }
1119 
1120 static int
1121 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1122 {
1123 	struct ale_softc *sc = ifp->if_softc;
1124 	int s, error;
1125 
1126 	s = splnet();
1127 
1128 	error = ether_ioctl(ifp, cmd, data);
1129 	if (error == ENETRESET) {
1130 		if (ifp->if_flags & IFF_RUNNING)
1131 			ale_rxfilter(sc);
1132 		error = 0;
1133 	}
1134 
1135 	splx(s);
1136 	return error;
1137 }
1138 
1139 static void
1140 ale_mac_config(struct ale_softc *sc)
1141 {
1142 	struct mii_data *mii;
1143 	uint32_t reg;
1144 
1145 	mii = &sc->sc_miibus;
1146 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1147 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1148 	    MAC_CFG_SPEED_MASK);
1149 
1150 	/* Reprogram MAC with resolved speed/duplex. */
1151 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1152 	case IFM_10_T:
1153 	case IFM_100_TX:
1154 		reg |= MAC_CFG_SPEED_10_100;
1155 		break;
1156 	case IFM_1000_T:
1157 		reg |= MAC_CFG_SPEED_1000;
1158 		break;
1159 	}
1160 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1161 		reg |= MAC_CFG_FULL_DUPLEX;
1162 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1163 			reg |= MAC_CFG_TX_FC;
1164 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1165 			reg |= MAC_CFG_RX_FC;
1166 	}
1167 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1168 }
1169 
1170 static void
1171 ale_stats_clear(struct ale_softc *sc)
1172 {
1173 	struct smb sb;
1174 	uint32_t *reg;
1175 	int i;
1176 
1177 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1178 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1179 		i += sizeof(uint32_t);
1180 	}
1181 	/* Read Tx statistics. */
1182 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1183 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1184 		i += sizeof(uint32_t);
1185 	}
1186 }
1187 
1188 static void
1189 ale_stats_update(struct ale_softc *sc)
1190 {
1191 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1192 	struct ale_hw_stats *stat;
1193 	struct smb sb, *smb;
1194 	uint32_t *reg;
1195 	int i;
1196 
1197 	stat = &sc->ale_stats;
1198 	smb = &sb;
1199 
1200 	/* Read Rx statistics. */
1201 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1202 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1203 		i += sizeof(uint32_t);
1204 	}
1205 	/* Read Tx statistics. */
1206 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1207 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1208 		i += sizeof(uint32_t);
1209 	}
1210 
1211 	/* Rx stats. */
1212 	stat->rx_frames += smb->rx_frames;
1213 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1214 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1215 	stat->rx_pause_frames += smb->rx_pause_frames;
1216 	stat->rx_control_frames += smb->rx_control_frames;
1217 	stat->rx_crcerrs += smb->rx_crcerrs;
1218 	stat->rx_lenerrs += smb->rx_lenerrs;
1219 	stat->rx_bytes += smb->rx_bytes;
1220 	stat->rx_runts += smb->rx_runts;
1221 	stat->rx_fragments += smb->rx_fragments;
1222 	stat->rx_pkts_64 += smb->rx_pkts_64;
1223 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1224 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1225 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1226 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1227 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1228 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1229 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1230 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1231 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1232 	stat->rx_alignerrs += smb->rx_alignerrs;
1233 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1234 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1235 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1236 
1237 	/* Tx stats. */
1238 	stat->tx_frames += smb->tx_frames;
1239 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1240 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1241 	stat->tx_pause_frames += smb->tx_pause_frames;
1242 	stat->tx_excess_defer += smb->tx_excess_defer;
1243 	stat->tx_control_frames += smb->tx_control_frames;
1244 	stat->tx_deferred += smb->tx_deferred;
1245 	stat->tx_bytes += smb->tx_bytes;
1246 	stat->tx_pkts_64 += smb->tx_pkts_64;
1247 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1248 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1249 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1250 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1251 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1252 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1253 	stat->tx_single_colls += smb->tx_single_colls;
1254 	stat->tx_multi_colls += smb->tx_multi_colls;
1255 	stat->tx_late_colls += smb->tx_late_colls;
1256 	stat->tx_excess_colls += smb->tx_excess_colls;
1257 	stat->tx_abort += smb->tx_abort;
1258 	stat->tx_underrun += smb->tx_underrun;
1259 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1260 	stat->tx_lenerrs += smb->tx_lenerrs;
1261 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1262 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1263 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1264 
1265 	/* Update counters in ifnet. */
1266 	ifp->if_opackets += smb->tx_frames;
1267 
1268 	ifp->if_collisions += smb->tx_single_colls +
1269 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1270 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1271 
1272 	/*
1273 	 * XXX
1274 	 * tx_pkts_truncated counter looks suspicious. It constantly
1275 	 * increments with no sign of Tx errors. This may indicate
1276 	 * the counter name is not correct one so I've removed the
1277 	 * counter in output errors.
1278 	 */
1279 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1280 	    smb->tx_underrun;
1281 
1282 	ifp->if_ipackets += smb->rx_frames;
1283 
1284 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1285 	    smb->rx_runts + smb->rx_pkts_truncated +
1286 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1287 	    smb->rx_alignerrs;
1288 }
1289 
1290 static int
1291 ale_intr(void *xsc)
1292 {
1293 	struct ale_softc *sc = xsc;
1294 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1295 	uint32_t status;
1296 
1297 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1298 	if ((status & ALE_INTRS) == 0)
1299 		return 0;
1300 
1301 	/* Acknowledge and disable interrupts. */
1302 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1303 
1304 	if (ifp->if_flags & IFF_RUNNING) {
1305 		int error;
1306 
1307 		error = ale_rxeof(sc);
1308 		if (error) {
1309 			sc->ale_stats.reset_brk_seq++;
1310 			ale_init(ifp);
1311 			return 0;
1312 		}
1313 
1314 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1315 			if (status & INTR_DMA_RD_TO_RST)
1316 				printf("%s: DMA read error! -- resetting\n",
1317 				    device_xname(sc->sc_dev));
1318 			if (status & INTR_DMA_WR_TO_RST)
1319 				printf("%s: DMA write error! -- resetting\n",
1320 				    device_xname(sc->sc_dev));
1321 			ale_init(ifp);
1322 			return 0;
1323 		}
1324 
1325 		ale_txeof(sc);
1326 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1327 			ale_start(ifp);
1328 	}
1329 
1330 	/* Re-enable interrupts. */
1331 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1332 	return 1;
1333 }
1334 
1335 static void
1336 ale_txeof(struct ale_softc *sc)
1337 {
1338 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1339 	struct ale_txdesc *txd;
1340 	uint32_t cons, prod;
1341 	int prog;
1342 
1343 	if (sc->ale_cdata.ale_tx_cnt == 0)
1344 		return;
1345 
1346 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1347 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1348 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1349 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1350 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1351 		    BUS_DMASYNC_POSTREAD);
1352 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1353 	} else
1354 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1355 	cons = sc->ale_cdata.ale_tx_cons;
1356 	/*
1357 	 * Go through our Tx list and free mbufs for those
1358 	 * frames which have been transmitted.
1359 	 */
1360 	for (prog = 0; cons != prod; prog++,
1361 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1362 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1363 			break;
1364 		prog++;
1365 		ifp->if_flags &= ~IFF_OACTIVE;
1366 		sc->ale_cdata.ale_tx_cnt--;
1367 		txd = &sc->ale_cdata.ale_txdesc[cons];
1368 		if (txd->tx_m != NULL) {
1369 			/* Reclaim transmitted mbufs. */
1370 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1371 			m_freem(txd->tx_m);
1372 			txd->tx_m = NULL;
1373 		}
1374 	}
1375 
1376 	if (prog > 0) {
1377 		sc->ale_cdata.ale_tx_cons = cons;
1378 		/*
1379 		 * Unarm watchdog timer only when there is no pending
1380 		 * Tx descriptors in queue.
1381 		 */
1382 		if (sc->ale_cdata.ale_tx_cnt == 0)
1383 			ifp->if_timer = 0;
1384 	}
1385 }
1386 
1387 static void
1388 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1389     uint32_t length, uint32_t *prod)
1390 {
1391 	struct ale_rx_page *rx_page;
1392 
1393 	rx_page = *page;
1394 	/* Update consumer position. */
1395 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1396 	    ALE_RX_PAGE_ALIGN);
1397 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1398 		/*
1399 		 * End of Rx page reached, let hardware reuse
1400 		 * this page.
1401 		 */
1402 		rx_page->cons = 0;
1403 		*rx_page->cmb_addr = 0;
1404 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1405 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1406 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1407 		    RXF_VALID);
1408 		/* Switch to alternate Rx page. */
1409 		sc->ale_cdata.ale_rx_curp ^= 1;
1410 		rx_page = *page =
1411 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1412 		/* Page flipped, sync CMB and Rx page. */
1413 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1414 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1415 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1416 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1417 		/* Sync completed, cache updated producer index. */
1418 		*prod = *rx_page->cmb_addr;
1419 	}
1420 }
1421 
1422 
1423 /*
1424  * It seems that AR81xx controller can compute partial checksum.
1425  * The partial checksum value can be used to accelerate checksum
1426  * computation for fragmented TCP/UDP packets. Upper network stack
1427  * already takes advantage of the partial checksum value in IP
1428  * reassembly stage. But I'm not sure the correctness of the
1429  * partial hardware checksum assistance due to lack of data sheet.
1430  * In addition, the Rx feature of controller that requires copying
1431  * for every frames effectively nullifies one of most nice offload
1432  * capability of controller.
1433  */
1434 static void
1435 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1436 {
1437 	if (status & ALE_RD_IPCSUM_NOK)
1438 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1439 
1440 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1441 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1442 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1443 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1444 		{
1445 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1446 		}
1447 	} else {
1448 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1449 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1450 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1451 			}
1452 		}
1453 	}
1454 	/*
1455 	 * Don't mark bad checksum for TCP/UDP frames
1456 	 * as fragmented frames may always have set
1457 	 * bad checksummed bit of frame status.
1458 	 */
1459 }
1460 
1461 /* Process received frames. */
1462 static int
1463 ale_rxeof(struct ale_softc *sc)
1464 {
1465 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1466 	struct ale_rx_page *rx_page;
1467 	struct rx_rs *rs;
1468 	struct mbuf *m;
1469 	uint32_t length, prod, seqno, status;
1470 	int prog;
1471 
1472 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1473 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1474 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1475 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1476 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1477 	/*
1478 	 * Don't directly access producer index as hardware may
1479 	 * update it while Rx handler is in progress. It would
1480 	 * be even better if there is a way to let hardware
1481 	 * know how far driver processed its received frames.
1482 	 * Alternatively, hardware could provide a way to disable
1483 	 * CMB updates until driver acknowledges the end of CMB
1484 	 * access.
1485 	 */
1486 	prod = *rx_page->cmb_addr;
1487 	for (prog = 0; ; prog++) {
1488 		if (rx_page->cons >= prod)
1489 			break;
1490 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1491 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1492 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1493 			/*
1494 			 * Normally I believe this should not happen unless
1495 			 * severe driver bug or corrupted memory. However
1496 			 * it seems to happen under certain conditions which
1497 			 * is triggered by abrupt Rx events such as initiation
1498 			 * of bulk transfer of remote host. It's not easy to
1499 			 * reproduce this and I doubt it could be related
1500 			 * with FIFO overflow of hardware or activity of Tx
1501 			 * CMB updates. I also remember similar behaviour
1502 			 * seen on RealTek 8139 which uses resembling Rx
1503 			 * scheme.
1504 			 */
1505 			if (aledebug)
1506 				printf("%s: garbled seq: %u, expected: %u -- "
1507 				    "resetting!\n", device_xname(sc->sc_dev),
1508 				    seqno, sc->ale_cdata.ale_rx_seqno);
1509 			return EIO;
1510 		}
1511 		/* Frame received. */
1512 		sc->ale_cdata.ale_rx_seqno++;
1513 		length = ALE_RX_BYTES(le32toh(rs->length));
1514 		status = le32toh(rs->flags);
1515 		if (status & ALE_RD_ERROR) {
1516 			/*
1517 			 * We want to pass the following frames to upper
1518 			 * layer regardless of error status of Rx return
1519 			 * status.
1520 			 *
1521 			 *  o IP/TCP/UDP checksum is bad.
1522 			 *  o frame length and protocol specific length
1523 			 *     does not match.
1524 			 */
1525 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1526 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1527 			    ALE_RD_TRUNC)) {
1528 				ale_rx_update_page(sc, &rx_page, length, &prod);
1529 				continue;
1530 			}
1531 		}
1532 		/*
1533 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1534 		 * from hardware limitation). For jumbo frames we could
1535 		 * get a slightly better performance if driver use
1536 		 * m_getjcl(9) with proper buffer size argument. However
1537 		 * that would make code more complicated and I don't
1538 		 * think users would expect good Rx performance numbers
1539 		 * on these low-end consumer ethernet controller.
1540 		 */
1541 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1542 		    0, ifp, NULL);
1543 		if (m == NULL) {
1544 			ifp->if_iqdrops++;
1545 			ale_rx_update_page(sc, &rx_page, length, &prod);
1546 			continue;
1547 		}
1548 		if (status & ALE_RD_IPV4)
1549 			ale_rxcsum(sc, m, status);
1550 #if NVLAN > 0
1551 		if (status & ALE_RD_VLAN) {
1552 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1553 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1554 		}
1555 #endif
1556 
1557 
1558 #if NBPFILTER > 0
1559 		if (ifp->if_bpf)
1560 			bpf_mtap(ifp->if_bpf, m);
1561 #endif
1562 
1563 		/* Pass it to upper layer. */
1564 		ether_input(ifp, m);
1565 
1566 		ale_rx_update_page(sc, &rx_page, length, &prod);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static void
1573 ale_tick(void *xsc)
1574 {
1575 	struct ale_softc *sc = xsc;
1576 	struct mii_data *mii = &sc->sc_miibus;
1577 	int s;
1578 
1579 	s = splnet();
1580 	mii_tick(mii);
1581 	ale_stats_update(sc);
1582 	splx(s);
1583 
1584 	callout_schedule(&sc->sc_tick_ch, hz);
1585 }
1586 
1587 static void
1588 ale_reset(struct ale_softc *sc)
1589 {
1590 	uint32_t reg;
1591 	int i;
1592 
1593 	/* Initialize PCIe module. From Linux. */
1594 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1595 
1596 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1597 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1598 		DELAY(10);
1599 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1600 			break;
1601 	}
1602 	if (i == 0)
1603 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1604 
1605 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1606 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1607 			break;
1608 		DELAY(10);
1609 	}
1610 
1611 	if (i == 0)
1612 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1613 		    reg);
1614 }
1615 
1616 static int
1617 ale_init(struct ifnet *ifp)
1618 {
1619 	struct ale_softc *sc = ifp->if_softc;
1620 	struct mii_data *mii;
1621 	uint8_t eaddr[ETHER_ADDR_LEN];
1622 	bus_addr_t paddr;
1623 	uint32_t reg, rxf_hi, rxf_lo;
1624 
1625 	/*
1626 	 * Cancel any pending I/O.
1627 	 */
1628 	ale_stop(ifp, 0);
1629 
1630 	/*
1631 	 * Reset the chip to a known state.
1632 	 */
1633 	ale_reset(sc);
1634 
1635 	/* Initialize Tx descriptors, DMA memory blocks. */
1636 	ale_init_rx_pages(sc);
1637 	ale_init_tx_ring(sc);
1638 
1639 	/* Reprogram the station address. */
1640 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1641 	CSR_WRITE_4(sc, ALE_PAR0,
1642 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1643 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1644 
1645 	/*
1646 	 * Clear WOL status and disable all WOL feature as WOL
1647 	 * would interfere Rx operation under normal environments.
1648 	 */
1649 	CSR_READ_4(sc, ALE_WOL_CFG);
1650 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1651 
1652 	/*
1653 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1654 	 * the same high address part of DMAable region.
1655 	 */
1656 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1657 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1658 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1659 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1660 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1661 
1662 	/* Set Rx page base address, note we use single queue. */
1663 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1664 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1665 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1666 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1667 
1668 	/* Set Tx/Rx CMB addresses. */
1669 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1670 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1671 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1672 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1673 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1674 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1675 
1676 	/* Mark RXF0 is valid. */
1677 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1678 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1679 	/*
1680 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1681 	 * multi-queue yet.
1682 	 */
1683 
1684 	/* Set Rx page size, excluding guard frame size. */
1685 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1686 
1687 	/* Tell hardware that we're ready to load DMA blocks. */
1688 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1689 
1690 	/* Set Rx/Tx interrupt trigger threshold. */
1691 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1692 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1693 	/*
1694 	 * XXX
1695 	 * Set interrupt trigger timer, its purpose and relation
1696 	 * with interrupt moderation mechanism is not clear yet.
1697 	 */
1698 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1699 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1700 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1701 
1702 	/* Configure interrupt moderation timer. */
1703 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1704 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1705 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1706 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1707 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1708 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1709 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1710 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1711 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1712 		reg |= MASTER_IM_RX_TIMER_ENB;
1713 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1714 		reg |= MASTER_IM_TX_TIMER_ENB;
1715 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1716 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1717 
1718 	/* Set Maximum frame size of controller. */
1719 	if (ifp->if_mtu < ETHERMTU)
1720 		sc->ale_max_frame_size = ETHERMTU;
1721 	else
1722 		sc->ale_max_frame_size = ifp->if_mtu;
1723 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1724 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1725 
1726 	/* Configure IPG/IFG parameters. */
1727 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1728 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1729 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1730 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1731 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1732 
1733 	/* Set parameters for half-duplex media. */
1734 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1735 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1736 	    HDPX_CFG_LCOL_MASK) |
1737 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1738 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1739 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1740 	    HDPX_CFG_ABEBT_MASK) |
1741 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1742 	    HDPX_CFG_JAMIPG_MASK));
1743 
1744 	/* Configure Tx jumbo frame parameters. */
1745 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1746 		if (ifp->if_mtu < ETHERMTU)
1747 			reg = sc->ale_max_frame_size;
1748 		else if (ifp->if_mtu < 6 * 1024)
1749 			reg = (sc->ale_max_frame_size * 2) / 3;
1750 		else
1751 			reg = sc->ale_max_frame_size / 2;
1752 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1753 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1754 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1755 	}
1756 
1757 	/* Configure TxQ. */
1758 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1759 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1760 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1761 	    TXQ_CFG_TPD_BURST_MASK;
1762 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1763 
1764 	/* Configure Rx jumbo frame & flow control parameters. */
1765 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1766 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1767 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1768 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1769 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1770 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1771 		    RX_JUMBO_LKAH_MASK));
1772 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1773 		rxf_hi = (reg * 7) / 10;
1774 		rxf_lo = (reg * 3)/ 10;
1775 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1776 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1777 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1778 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1779 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1780 	}
1781 
1782 	/* Disable RSS. */
1783 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1784 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1785 
1786 	/* Configure RxQ. */
1787 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1788 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1789 
1790 	/* Configure DMA parameters. */
1791 	reg = 0;
1792 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1793 		reg |= DMA_CFG_TXCMB_ENB;
1794 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1795 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1796 	    sc->ale_dma_rd_burst | reg |
1797 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1798 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1799 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1800 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1801 	    DMA_CFG_WR_DELAY_CNT_MASK));
1802 
1803 	/*
1804 	 * Hardware can be configured to issue SMB interrupt based
1805 	 * on programmed interval. Since there is a callout that is
1806 	 * invoked for every hz in driver we use that instead of
1807 	 * relying on periodic SMB interrupt.
1808 	 */
1809 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1810 
1811 	/* Clear MAC statistics. */
1812 	ale_stats_clear(sc);
1813 
1814 	/*
1815 	 * Configure Tx/Rx MACs.
1816 	 *  - Auto-padding for short frames.
1817 	 *  - Enable CRC generation.
1818 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1819 	 *  is followed after detection of link establishment.
1820 	 *  AR81xx always does checksum computation regardless of
1821 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1822 	 *  cause Rx handling issue for fragmented IP datagrams due
1823 	 *  to silicon bug.
1824 	 */
1825 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1826 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1827 	    MAC_CFG_PREAMBLE_MASK);
1828 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1829 		reg |= MAC_CFG_SPEED_10_100;
1830 	else
1831 		reg |= MAC_CFG_SPEED_1000;
1832 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1833 
1834 	/* Set up the receive filter. */
1835 	ale_rxfilter(sc);
1836 	ale_rxvlan(sc);
1837 
1838 	/* Acknowledge all pending interrupts and clear it. */
1839 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1840 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1841 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1842 
1843 	sc->ale_flags &= ~ALE_FLAG_LINK;
1844 
1845 	/* Switch to the current media. */
1846 	mii = &sc->sc_miibus;
1847 	mii_mediachg(mii);
1848 
1849 	callout_schedule(&sc->sc_tick_ch, hz);
1850 
1851 	ifp->if_flags |= IFF_RUNNING;
1852 	ifp->if_flags &= ~IFF_OACTIVE;
1853 
1854 	return 0;
1855 }
1856 
1857 static void
1858 ale_stop(struct ifnet *ifp, int disable)
1859 {
1860 	struct ale_softc *sc = ifp->if_softc;
1861 	struct ale_txdesc *txd;
1862 	uint32_t reg;
1863 	int i;
1864 
1865 	callout_stop(&sc->sc_tick_ch);
1866 
1867 	/*
1868 	 * Mark the interface down and cancel the watchdog timer.
1869 	 */
1870 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1871 	ifp->if_timer = 0;
1872 
1873 	sc->ale_flags &= ~ALE_FLAG_LINK;
1874 
1875 	ale_stats_update(sc);
1876 
1877 	mii_down(&sc->sc_miibus);
1878 
1879 	/* Disable interrupts. */
1880 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1881 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1882 
1883 	/* Disable queue processing and DMA. */
1884 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1885 	reg &= ~TXQ_CFG_ENB;
1886 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1887 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1888 	reg &= ~RXQ_CFG_ENB;
1889 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1890 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1891 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1892 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1893 	DELAY(1000);
1894 
1895 	/* Stop Rx/Tx MACs. */
1896 	ale_stop_mac(sc);
1897 
1898 	/* Disable interrupts again? XXX */
1899 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1900 
1901 	/*
1902 	 * Free TX mbufs still in the queues.
1903 	 */
1904 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1905 		txd = &sc->ale_cdata.ale_txdesc[i];
1906 		if (txd->tx_m != NULL) {
1907 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1908 			m_freem(txd->tx_m);
1909 			txd->tx_m = NULL;
1910 		}
1911         }
1912 }
1913 
1914 static void
1915 ale_stop_mac(struct ale_softc *sc)
1916 {
1917 	uint32_t reg;
1918 	int i;
1919 
1920 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1921 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1922 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1923 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1924 	}
1925 
1926 	for (i = ALE_TIMEOUT; i > 0; i--) {
1927 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1928 		if (reg == 0)
1929 			break;
1930 		DELAY(10);
1931 	}
1932 	if (i == 0)
1933 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1934 		    device_xname(sc->sc_dev), reg);
1935 }
1936 
1937 static void
1938 ale_init_tx_ring(struct ale_softc *sc)
1939 {
1940 	struct ale_txdesc *txd;
1941 	int i;
1942 
1943 	sc->ale_cdata.ale_tx_prod = 0;
1944 	sc->ale_cdata.ale_tx_cons = 0;
1945 	sc->ale_cdata.ale_tx_cnt = 0;
1946 
1947 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1948 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1949 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1950 		txd = &sc->ale_cdata.ale_txdesc[i];
1951 		txd->tx_m = NULL;
1952 	}
1953 	*sc->ale_cdata.ale_tx_cmb = 0;
1954 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1955 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1956 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1957 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1958 }
1959 
1960 static void
1961 ale_init_rx_pages(struct ale_softc *sc)
1962 {
1963 	struct ale_rx_page *rx_page;
1964 	int i;
1965 
1966 	sc->ale_cdata.ale_rx_seqno = 0;
1967 	sc->ale_cdata.ale_rx_curp = 0;
1968 
1969 	for (i = 0; i < ALE_RX_PAGES; i++) {
1970 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1971 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1972 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1973 		rx_page->cons = 0;
1974 		*rx_page->cmb_addr = 0;
1975 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1976 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1978 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1979 	}
1980 }
1981 
1982 static void
1983 ale_rxvlan(struct ale_softc *sc)
1984 {
1985 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1986 	uint32_t reg;
1987 
1988 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1989 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1990 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1991 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1992 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1993 }
1994 
1995 static void
1996 ale_rxfilter(struct ale_softc *sc)
1997 {
1998 	struct ethercom *ec = &sc->sc_ec;
1999 	struct ifnet *ifp = &ec->ec_if;
2000 	struct ether_multi *enm;
2001 	struct ether_multistep step;
2002 	uint32_t crc;
2003 	uint32_t mchash[2];
2004 	uint32_t rxcfg;
2005 
2006 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2007 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2008 	ifp->if_flags &= ~IFF_ALLMULTI;
2009 
2010 	/*
2011 	 * Always accept broadcast frames.
2012 	 */
2013 	rxcfg |= MAC_CFG_BCAST;
2014 
2015 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2016 		ifp->if_flags |= IFF_ALLMULTI;
2017 		if (ifp->if_flags & IFF_PROMISC)
2018 			rxcfg |= MAC_CFG_PROMISC;
2019 		else
2020 			rxcfg |= MAC_CFG_ALLMULTI;
2021 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2022 	} else {
2023 		/* Program new filter. */
2024 		memset(mchash, 0, sizeof(mchash));
2025 
2026 		ETHER_FIRST_MULTI(step, ec, enm);
2027 		while (enm != NULL) {
2028 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2029 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2030 			ETHER_NEXT_MULTI(step, enm);
2031 		}
2032 	}
2033 
2034 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2035 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2036 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2037 }
2038