xref: /netbsd-src/sys/dev/pci/if_ale.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: if_ale.c,v 1.4 2009/07/28 06:02:34 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
30  */
31 
32 /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.4 2009/07/28 06:02:34 cegger Exp $");
36 
37 #include "bpfilter.h"
38 #include "vlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/endian.h>
43 #include <sys/systm.h>
44 #include <sys/types.h>
45 #include <sys/sockio.h>
46 #include <sys/mbuf.h>
47 #include <sys/queue.h>
48 #include <sys/kernel.h>
49 #include <sys/device.h>
50 #include <sys/callout.h>
51 #include <sys/socket.h>
52 
53 #include <sys/bus.h>
54 
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_llc.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 
61 #ifdef INET
62 #include <netinet/in.h>
63 #include <netinet/in_systm.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip.h>
66 #endif
67 
68 #include <net/if_types.h>
69 #include <net/if_vlanvar.h>
70 
71 #if NBPFILTER > 0
72 #include <net/bpf.h>
73 #endif
74 
75 #include <sys/rnd.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 
80 #include <dev/pci/pcireg.h>
81 #include <dev/pci/pcivar.h>
82 #include <dev/pci/pcidevs.h>
83 
84 #include <dev/pci/if_alereg.h>
85 
86 static int	ale_match(device_t, cfdata_t, void *);
87 static void	ale_attach(device_t, device_t, void *);
88 static int	ale_detach(device_t, int);
89 
90 static int	ale_miibus_readreg(device_t, int, int);
91 static void	ale_miibus_writereg(device_t, int, int, int);
92 static void	ale_miibus_statchg(device_t);
93 
94 static int	ale_init(struct ifnet *);
95 static void	ale_start(struct ifnet *);
96 static int	ale_ioctl(struct ifnet *, u_long, void *);
97 static void	ale_watchdog(struct ifnet *);
98 static int	ale_mediachange(struct ifnet *);
99 static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
100 
101 static int	ale_intr(void *);
102 static int	ale_rxeof(struct ale_softc *sc);
103 static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
104 		    uint32_t, uint32_t *);
105 static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
106 static void	ale_txeof(struct ale_softc *);
107 
108 static int	ale_dma_alloc(struct ale_softc *);
109 static void	ale_dma_free(struct ale_softc *);
110 static int	ale_encap(struct ale_softc *, struct mbuf **);
111 static void	ale_init_rx_pages(struct ale_softc *);
112 static void	ale_init_tx_ring(struct ale_softc *);
113 
114 static void	ale_stop(struct ifnet *, int);
115 static void	ale_tick(void *);
116 static void	ale_get_macaddr(struct ale_softc *);
117 static void	ale_mac_config(struct ale_softc *);
118 static void	ale_phy_reset(struct ale_softc *);
119 static void	ale_reset(struct ale_softc *);
120 static void	ale_rxfilter(struct ale_softc *);
121 static void	ale_rxvlan(struct ale_softc *);
122 static void	ale_stats_clear(struct ale_softc *);
123 static void	ale_stats_update(struct ale_softc *);
124 static void	ale_stop_mac(struct ale_softc *);
125 
126 CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
127 	ale_match, ale_attach, ale_detach, NULL);
128 
129 int aledebug = 0;
130 #define DPRINTF(x)	do { if (aledebug) printf x; } while (0)
131 
132 #define ETHER_ALIGN 2
133 #define ALE_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
134 
135 static int
136 ale_miibus_readreg(device_t dev, int phy, int reg)
137 {
138 	struct ale_softc *sc = device_private(dev);
139 	uint32_t v;
140 	int i;
141 
142 	if (phy != sc->ale_phyaddr)
143 		return 0;
144 
145 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
146 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
147 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
148 		DELAY(5);
149 		v = CSR_READ_4(sc, ALE_MDIO);
150 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
151 			break;
152 	}
153 
154 	if (i == 0) {
155 		printf("%s: phy read timeout: phy %d, reg %d\n",
156 		    device_xname(sc->sc_dev), phy, reg);
157 		return 0;
158 	}
159 
160 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
161 }
162 
163 static void
164 ale_miibus_writereg(device_t dev, int phy, int reg, int val)
165 {
166 	struct ale_softc *sc = device_private(dev);
167 	uint32_t v;
168 	int i;
169 
170 	if (phy != sc->ale_phyaddr)
171 		return;
172 
173 	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
174 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
175 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
176 	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
177 		DELAY(5);
178 		v = CSR_READ_4(sc, ALE_MDIO);
179 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
180 			break;
181 	}
182 
183 	if (i == 0)
184 		printf("%s: phy write timeout: phy %d, reg %d\n",
185 		    device_xname(sc->sc_dev), phy, reg);
186 }
187 
188 static void
189 ale_miibus_statchg(device_t dev)
190 {
191 	struct ale_softc *sc = device_private(dev);
192 	struct ifnet *ifp = &sc->sc_ec.ec_if;
193 	struct mii_data *mii;
194 	uint32_t reg;
195 
196 	if ((ifp->if_flags & IFF_RUNNING) == 0)
197 		return;
198 
199 	mii = &sc->sc_miibus;
200 
201 	sc->ale_flags &= ~ALE_FLAG_LINK;
202 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
203 	    (IFM_ACTIVE | IFM_AVALID)) {
204 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
205 		case IFM_10_T:
206 		case IFM_100_TX:
207 			sc->ale_flags |= ALE_FLAG_LINK;
208 			break;
209 
210 		case IFM_1000_T:
211 			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
212 				sc->ale_flags |= ALE_FLAG_LINK;
213 			break;
214 
215 		default:
216 			break;
217 		}
218 	}
219 
220 	/* Stop Rx/Tx MACs. */
221 	ale_stop_mac(sc);
222 
223 	/* Program MACs with resolved speed/duplex/flow-control. */
224 	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
225 		ale_mac_config(sc);
226 		/* Reenable Tx/Rx MACs. */
227 		reg = CSR_READ_4(sc, ALE_MAC_CFG);
228 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
229 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
230 	}
231 }
232 
233 void
234 ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
235 {
236 	struct ale_softc *sc = ifp->if_softc;
237 	struct mii_data *mii = &sc->sc_miibus;
238 
239 	mii_pollstat(mii);
240 	ifmr->ifm_status = mii->mii_media_status;
241 	ifmr->ifm_active = mii->mii_media_active;
242 }
243 
244 int
245 ale_mediachange(struct ifnet *ifp)
246 {
247 	struct ale_softc *sc = ifp->if_softc;
248 	struct mii_data *mii = &sc->sc_miibus;
249 	int error;
250 
251 	if (mii->mii_instance != 0) {
252 		struct mii_softc *miisc;
253 
254 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
255 			mii_phy_reset(miisc);
256 	}
257 	error = mii_mediachg(mii);
258 
259 	return error;
260 }
261 
262 int
263 ale_match(device_t dev, cfdata_t match, void *aux)
264 {
265 	struct pci_attach_args *pa = aux;
266 
267 	return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
268 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
269 }
270 
271 void
272 ale_get_macaddr(struct ale_softc *sc)
273 {
274 	uint32_t ea[2], reg;
275 	int i, vpdc;
276 
277 	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
278 	if ((reg & SPI_VPD_ENB) != 0) {
279 		reg &= ~SPI_VPD_ENB;
280 		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
281 	}
282 
283 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
284 	    &vpdc, NULL)) {
285 		/*
286 		 * PCI VPD capability found, let TWSI reload EEPROM.
287 		 * This will set ethernet address of controller.
288 		 */
289 		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
290 		    TWSI_CTRL_SW_LD_START);
291 		for (i = 100; i > 0; i--) {
292 			DELAY(1000);
293 			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
294 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
295 				break;
296 		}
297 		if (i == 0)
298 			printf("%s: reloading EEPROM timeout!\n",
299 			    device_xname(sc->sc_dev));
300 	} else {
301 		if (aledebug)
302 			printf("%s: PCI VPD capability not found!\n",
303 			    device_xname(sc->sc_dev));
304 	}
305 
306 	ea[0] = CSR_READ_4(sc, ALE_PAR0);
307 	ea[1] = CSR_READ_4(sc, ALE_PAR1);
308 	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
309 	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
310 	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
311 	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
312 	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
313 	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
314 }
315 
316 void
317 ale_phy_reset(struct ale_softc *sc)
318 {
319 	/* Reset magic from Linux. */
320 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
321 	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
322 	    GPHY_CTRL_PHY_PLL_ON);
323 	DELAY(1000);
324 	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
325 	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
326 	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
327 	DELAY(1000);
328 
329 #define	ATPHY_DBG_ADDR		0x1D
330 #define	ATPHY_DBG_DATA		0x1E
331 
332 	/* Enable hibernation mode. */
333 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
334 	    ATPHY_DBG_ADDR, 0x0B);
335 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
336 	    ATPHY_DBG_DATA, 0xBC00);
337 	/* Set Class A/B for all modes. */
338 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
339 	    ATPHY_DBG_ADDR, 0x00);
340 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
341 	    ATPHY_DBG_DATA, 0x02EF);
342 	/* Enable 10BT power saving. */
343 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
344 	    ATPHY_DBG_ADDR, 0x12);
345 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
346 	    ATPHY_DBG_DATA, 0x4C04);
347 	/* Adjust 1000T power. */
348 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
349 	    ATPHY_DBG_ADDR, 0x04);
350 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
351 	    ATPHY_DBG_ADDR, 0x8BBB);
352 	/* 10BT center tap voltage. */
353 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
354 	    ATPHY_DBG_ADDR, 0x05);
355 	ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
356 	    ATPHY_DBG_ADDR, 0x2C46);
357 
358 #undef	ATPHY_DBG_ADDR
359 #undef	ATPHY_DBG_DATA
360 	DELAY(1000);
361 }
362 
363 void
364 ale_attach(device_t parent, device_t self, void *aux)
365 {
366 	struct ale_softc *sc = device_private(self);
367 	struct pci_attach_args *pa = aux;
368 	pci_chipset_tag_t pc = pa->pa_pc;
369 	pci_intr_handle_t ih;
370 	const char *intrstr;
371 	struct ifnet *ifp;
372 	pcireg_t memtype;
373 	int error = 0;
374 	uint32_t rxf_len, txf_len;
375 	const char *chipname;
376 
377 	aprint_naive("\n");
378 	aprint_normal(": Attansic/Atheros L1E Ethernet\n");
379 
380 	sc->sc_dev = self;
381 	sc->sc_dmat = pa->pa_dmat;
382 	sc->sc_pct = pa->pa_pc;
383 	sc->sc_pcitag = pa->pa_tag;
384 
385 	/*
386 	 * Allocate IO memory
387 	 */
388 	memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
389 	switch (memtype) {
390 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
391 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
392 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
393 		break;
394 	default:
395 		aprint_error_dev(self, "invalid base address register\n");
396 		break;
397 	}
398 
399 	if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
400 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
401 		aprint_error_dev(self, "could not map mem space\n");
402 		return;
403 	}
404 
405 	if (pci_intr_map(pa, &ih) != 0) {
406 		aprint_error_dev(self, "could not map interrupt\n");
407 		goto fail;
408 	}
409 
410 	/*
411 	 * Allocate IRQ
412 	 */
413 	intrstr = pci_intr_string(sc->sc_pct, ih);
414 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
415 	if (sc->sc_irq_handle == NULL) {
416 		aprint_error_dev(self, "could not establish interrupt");
417 		if (intrstr != NULL)
418 			aprint_error(" at %s", intrstr);
419 		aprint_error("\n");
420 		goto fail;
421 	}
422 
423 	/* Set PHY address. */
424 	sc->ale_phyaddr = ALE_PHY_ADDR;
425 
426 	/* Reset PHY. */
427 	ale_phy_reset(sc);
428 
429 	/* Reset the ethernet controller. */
430 	ale_reset(sc);
431 
432 	/* Get PCI and chip id/revision. */
433 	sc->ale_rev = PCI_REVISION(pa->pa_class);
434 	if (sc->ale_rev >= 0xF0) {
435 		/* L2E Rev. B. AR8114 */
436 		sc->ale_flags |= ALE_FLAG_FASTETHER;
437 		chipname = "AR8114 (L2E RevB)";
438 	} else {
439 		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
440 			/* L1E AR8121 */
441 			sc->ale_flags |= ALE_FLAG_JUMBO;
442 			chipname = "AR8121 (L1E)";
443 		} else {
444 			/* L2E Rev. A. AR8113 */
445 			sc->ale_flags |= ALE_FLAG_FASTETHER;
446 			chipname = "AR8113 (L2E RevA)";
447 		}
448 	}
449 	aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
450 
451 	/*
452 	 * All known controllers seems to require 4 bytes alignment
453 	 * of Tx buffers to make Tx checksum offload with custom
454 	 * checksum generation method work.
455 	 */
456 	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
457 
458 	/*
459 	 * All known controllers seems to have issues on Rx checksum
460 	 * offload for fragmented IP datagrams.
461 	 */
462 	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
463 
464 	/*
465 	 * Don't use Tx CMB. It is known to cause RRS update failure
466 	 * under certain circumstances. Typical phenomenon of the
467 	 * issue would be unexpected sequence number encountered in
468 	 * Rx handler.
469 	 */
470 	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
471 	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
472 	    MASTER_CHIP_REV_SHIFT;
473 	aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
474 	aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
475 
476 	/*
477 	 * Uninitialized hardware returns an invalid chip id/revision
478 	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
479 	 */
480 	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
481 	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
482 	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
483 	    rxf_len == 0xFFFFFFF) {
484 		aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
485 		    "%u Rx FIFO -- not initialized?\n",
486 		    sc->ale_chip_rev, txf_len, rxf_len);
487 		goto fail;
488 	}
489 
490 	if (aledebug) {
491 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
492 		    txf_len, rxf_len);
493 	}
494 
495 	/* Set max allowable DMA size. */
496 	sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
497 	sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
498 
499 	callout_init(&sc->sc_tick_ch, 0);
500 	callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
501 
502 	error = ale_dma_alloc(sc);
503 	if (error)
504 		goto fail;
505 
506 	/* Load station address. */
507 	ale_get_macaddr(sc);
508 
509 	aprint_normal_dev(self, "Ethernet address %s\n",
510 	    ether_sprintf(sc->ale_eaddr));
511 
512 	ifp = &sc->sc_ec.ec_if;
513 	ifp->if_softc = sc;
514 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
515 	ifp->if_init = ale_init;
516 	ifp->if_ioctl = ale_ioctl;
517 	ifp->if_start = ale_start;
518 	ifp->if_stop = ale_stop;
519 	ifp->if_watchdog = ale_watchdog;
520 	IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
521 	IFQ_SET_READY(&ifp->if_snd);
522 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
523 
524 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
525 
526 #ifdef ALE_CHECKSUM
527 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
528 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
529 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
530 #endif
531 
532 #if NVLAN > 0
533 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
534 #endif
535 
536 	/* Set up MII bus. */
537 	sc->sc_miibus.mii_ifp = ifp;
538 	sc->sc_miibus.mii_readreg = ale_miibus_readreg;
539 	sc->sc_miibus.mii_writereg = ale_miibus_writereg;
540 	sc->sc_miibus.mii_statchg = ale_miibus_statchg;
541 
542 	sc->sc_ec.ec_mii = &sc->sc_miibus;
543 	ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
544 	    ale_mediastatus);
545 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
546 	    MII_OFFSET_ANY, 0);
547 
548 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
549 		aprint_error_dev(self, "no PHY found!\n");
550 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
551 		    0, NULL);
552 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
553 	} else
554 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
555 
556 	if_attach(ifp);
557 	ether_ifattach(ifp, sc->ale_eaddr);
558 
559 	if (!pmf_device_register(self, NULL, NULL))
560 		aprint_error_dev(self, "couldn't establish power handler\n");
561 	else
562 		pmf_class_network_register(self, ifp);
563 
564 	return;
565 fail:
566 	ale_dma_free(sc);
567 	if (sc->sc_irq_handle != NULL) {
568 		pci_intr_disestablish(pc, sc->sc_irq_handle);
569 		sc->sc_irq_handle = NULL;
570 	}
571 	if (sc->sc_mem_size) {
572 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
573 		sc->sc_mem_size = 0;
574 	}
575 }
576 
577 static int
578 ale_detach(device_t self, int flags)
579 {
580 	struct ale_softc *sc = device_private(self);
581 	struct ifnet *ifp = &sc->sc_ec.ec_if;
582 	int s;
583 
584 	pmf_device_deregister(self);
585 	s = splnet();
586 	ale_stop(ifp, 0);
587 	splx(s);
588 
589 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
590 
591 	/* Delete all remaining media. */
592 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
593 
594 	ether_ifdetach(ifp);
595 	if_detach(ifp);
596 	ale_dma_free(sc);
597 
598 	if (sc->sc_irq_handle != NULL) {
599 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
600 		sc->sc_irq_handle = NULL;
601 	}
602 	if (sc->sc_mem_size) {
603 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
604 		sc->sc_mem_size = 0;
605 	}
606 
607 	return 0;
608 }
609 
610 
611 static int
612 ale_dma_alloc(struct ale_softc *sc)
613 {
614 	struct ale_txdesc *txd;
615 	int nsegs, error, guard_size, i;
616 
617 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
618 		guard_size = ALE_JUMBO_FRAMELEN;
619 	else
620 		guard_size = ALE_MAX_FRAMELEN;
621 	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
622 	    ALE_RX_PAGE_ALIGN);
623 
624 	/*
625 	 * Create DMA stuffs for TX ring
626 	 */
627 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
628 	    ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
629 	if (error) {
630 		sc->ale_cdata.ale_tx_ring_map = NULL;
631 		return ENOBUFS;
632 	}
633 
634 	/* Allocate DMA'able memory for TX ring */
635 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
636 	    0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
637 	    &nsegs, BUS_DMA_WAITOK);
638 	if (error) {
639 		printf("%s: could not allocate DMA'able memory for Tx ring, "
640 		    "error = %i\n", device_xname(sc->sc_dev), error);
641 		return error;
642 	}
643 
644 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
645 	    nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
646 	    BUS_DMA_NOWAIT);
647 	if (error)
648 		return ENOBUFS;
649 
650 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
651 
652 	/* Load the DMA map for Tx ring. */
653 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
654 	    sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
655 	if (error) {
656 		printf("%s: could not load DMA'able memory for Tx ring.\n",
657 		    device_xname(sc->sc_dev));
658 		bus_dmamem_free(sc->sc_dmat,
659 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
660 		return error;
661 	}
662 	sc->ale_cdata.ale_tx_ring_paddr =
663 	    sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
664 
665 	for (i = 0; i < ALE_RX_PAGES; i++) {
666 		/*
667 		 * Create DMA stuffs for RX pages
668 		 */
669 		error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
670 		    sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
671 		    &sc->ale_cdata.ale_rx_page[i].page_map);
672 		if (error) {
673 			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
674 			return ENOBUFS;
675 		}
676 
677 		/* Allocate DMA'able memory for RX pages */
678 		error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
679 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
680 		    1, &nsegs, BUS_DMA_WAITOK);
681 		if (error) {
682 			printf("%s: could not allocate DMA'able memory for "
683 			    "Rx ring.\n", device_xname(sc->sc_dev));
684 			return error;
685 		}
686 		error = bus_dmamem_map(sc->sc_dmat,
687 		    &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
688 		    sc->ale_pagesize,
689 		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
690 		    BUS_DMA_NOWAIT);
691 		if (error)
692 			return ENOBUFS;
693 
694 		memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
695 		    sc->ale_pagesize);
696 
697 		/* Load the DMA map for Rx pages. */
698 		error = bus_dmamap_load(sc->sc_dmat,
699 		    sc->ale_cdata.ale_rx_page[i].page_map,
700 		    sc->ale_cdata.ale_rx_page[i].page_addr,
701 		    sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
702 		if (error) {
703 			printf("%s: could not load DMA'able memory for "
704 			    "Rx pages.\n", device_xname(sc->sc_dev));
705 			bus_dmamem_free(sc->sc_dmat,
706 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
707 			return error;
708 		}
709 		sc->ale_cdata.ale_rx_page[i].page_paddr =
710 		    sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
711 	}
712 
713 	/*
714 	 * Create DMA stuffs for Tx CMB.
715 	 */
716 	error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
717 	    ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
718 	if (error) {
719 		sc->ale_cdata.ale_tx_cmb_map = NULL;
720 		return ENOBUFS;
721 	}
722 
723 	/* Allocate DMA'able memory for Tx CMB. */
724 	error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
725 	    &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
726 
727 	if (error) {
728 		printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
729 		    device_xname(sc->sc_dev));
730 		return error;
731 	}
732 
733 	error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
734 	    nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
735 	    BUS_DMA_NOWAIT);
736 	if (error)
737 		return ENOBUFS;
738 
739 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
740 
741 	/* Load the DMA map for Tx CMB. */
742 	error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
743 	    sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
744 	if (error) {
745 		printf("%s: could not load DMA'able memory for Tx CMB.\n",
746 		    device_xname(sc->sc_dev));
747 		bus_dmamem_free(sc->sc_dmat,
748 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
749 		return error;
750 	}
751 
752 	sc->ale_cdata.ale_tx_cmb_paddr =
753 	    sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
754 
755 	for (i = 0; i < ALE_RX_PAGES; i++) {
756 		/*
757 		 * Create DMA stuffs for Rx CMB.
758 		 */
759 		error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
760 		    ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
761 		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
762 		if (error) {
763 			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
764 			return ENOBUFS;
765 		}
766 
767 		/* Allocate DMA'able memory for Rx CMB */
768 		error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
769 		    ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
770 		    &nsegs, BUS_DMA_WAITOK);
771 		if (error) {
772 			printf("%s: could not allocate DMA'able memory for "
773 			    "Rx CMB\n", device_xname(sc->sc_dev));
774 			return error;
775 		}
776 		error = bus_dmamem_map(sc->sc_dmat,
777 		    &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
778 		    ALE_RX_CMB_SZ,
779 		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
780 		    BUS_DMA_NOWAIT);
781 		if (error)
782 			return ENOBUFS;
783 
784 		memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
785 
786 		/* Load the DMA map for Rx CMB */
787 		error = bus_dmamap_load(sc->sc_dmat,
788 		    sc->ale_cdata.ale_rx_page[i].cmb_map,
789 		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
790 		    ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
791 		if (error) {
792 			printf("%s: could not load DMA'able memory for Rx CMB"
793 			    "\n", device_xname(sc->sc_dev));
794 			bus_dmamem_free(sc->sc_dmat,
795 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
796 			return error;
797 		}
798 		sc->ale_cdata.ale_rx_page[i].cmb_paddr =
799 		    sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
800 	}
801 
802 
803 	/* Create DMA maps for Tx buffers. */
804 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
805 		txd = &sc->ale_cdata.ale_txdesc[i];
806 		txd->tx_m = NULL;
807 		txd->tx_dmamap = NULL;
808 		error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
809 		    ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
810 		    &txd->tx_dmamap);
811 		if (error) {
812 			txd->tx_dmamap = NULL;
813 			printf("%s: could not create Tx dmamap.\n",
814 			    device_xname(sc->sc_dev));
815 			return error;
816 		}
817 	}
818 
819 	return 0;
820 }
821 
822 static void
823 ale_dma_free(struct ale_softc *sc)
824 {
825 	struct ale_txdesc *txd;
826 	int i;
827 
828 	/* Tx buffers. */
829 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
830 		txd = &sc->ale_cdata.ale_txdesc[i];
831 		if (txd->tx_dmamap != NULL) {
832 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
833 			txd->tx_dmamap = NULL;
834 		}
835 	}
836 
837 	/* Tx descriptor ring. */
838 	if (sc->ale_cdata.ale_tx_ring_map != NULL)
839 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
840 	if (sc->ale_cdata.ale_tx_ring_map != NULL &&
841 	    sc->ale_cdata.ale_tx_ring != NULL)
842 		bus_dmamem_free(sc->sc_dmat,
843 		    &sc->ale_cdata.ale_tx_ring_seg, 1);
844 	sc->ale_cdata.ale_tx_ring = NULL;
845 	sc->ale_cdata.ale_tx_ring_map = NULL;
846 
847 	/* Rx page block. */
848 	for (i = 0; i < ALE_RX_PAGES; i++) {
849 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
850 			bus_dmamap_unload(sc->sc_dmat,
851 			    sc->ale_cdata.ale_rx_page[i].page_map);
852 		if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
853 		    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
854 			bus_dmamem_free(sc->sc_dmat,
855 			    &sc->ale_cdata.ale_rx_page[i].page_seg, 1);
856 		sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
857 		sc->ale_cdata.ale_rx_page[i].page_map = NULL;
858 	}
859 
860 	/* Rx CMB. */
861 	for (i = 0; i < ALE_RX_PAGES; i++) {
862 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
863 			bus_dmamap_unload(sc->sc_dmat,
864 			    sc->ale_cdata.ale_rx_page[i].cmb_map);
865 		if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
866 		    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
867 			bus_dmamem_free(sc->sc_dmat,
868 			    &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
869 		sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
870 		sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
871 	}
872 
873 	/* Tx CMB. */
874 	if (sc->ale_cdata.ale_tx_cmb_map != NULL)
875 		bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
876 	if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
877 	    sc->ale_cdata.ale_tx_cmb != NULL)
878 		bus_dmamem_free(sc->sc_dmat,
879 		    &sc->ale_cdata.ale_tx_cmb_seg, 1);
880 	sc->ale_cdata.ale_tx_cmb = NULL;
881 	sc->ale_cdata.ale_tx_cmb_map = NULL;
882 
883 }
884 
885 static int
886 ale_encap(struct ale_softc *sc, struct mbuf **m_head)
887 {
888 	struct ale_txdesc *txd, *txd_last;
889 	struct tx_desc *desc;
890 	struct mbuf *m;
891 	bus_dmamap_t map;
892 	uint32_t cflags, poff, vtag;
893 	int error, i, nsegs, prod;
894 #if NVLAN > 0
895 	struct m_tag *mtag;
896 #endif
897 
898 	m = *m_head;
899 	cflags = vtag = 0;
900 	poff = 0;
901 
902 	prod = sc->ale_cdata.ale_tx_prod;
903 	txd = &sc->ale_cdata.ale_txdesc[prod];
904 	txd_last = txd;
905 	map = txd->tx_dmamap;
906 
907 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
908 	if (error == EFBIG) {
909 		error = 0;
910 
911 		MGETHDR(m, M_DONTWAIT, MT_DATA);
912 		if (m == NULL) {
913 			printf("%s: can't defrag TX mbuf\n",
914 			    device_xname(sc->sc_dev));
915 			m_freem(*m_head);
916 			*m_head = NULL;
917 			return ENOBUFS;
918 		}
919 
920 		M_COPY_PKTHDR(m, *m_head);
921 		if ((*m_head)->m_pkthdr.len > MHLEN) {
922 			MCLGET(m, M_DONTWAIT);
923 			if (!(m->m_flags & M_EXT)) {
924 				m_freem(*m_head);
925 				m_freem(m);
926 				*m_head = NULL;
927 				return ENOBUFS;
928 			}
929 		}
930 		m_copydata(*m_head, 0, (*m_head)->m_pkthdr.len,
931 		    mtod(m, void *));
932 		m_freem(*m_head);
933 		m->m_len = m->m_pkthdr.len;
934 		*m_head = m;
935 
936 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
937 		    BUS_DMA_NOWAIT);
938 
939 		if (error != 0) {
940 			printf("%s: could not load defragged TX mbuf\n",
941 			    device_xname(sc->sc_dev));
942 			if (!error) {
943 				bus_dmamap_unload(sc->sc_dmat, map);
944 				error = EFBIG;
945 			}
946 			m_freem(*m_head);
947 			*m_head = NULL;
948 			return error;
949 		}
950 	} else if (error) {
951 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
952 		return error;
953 	}
954 
955 	nsegs = map->dm_nsegs;
956 
957 	if (nsegs == 0) {
958 		m_freem(*m_head);
959 		*m_head = NULL;
960 		return EIO;
961 	}
962 
963 	/* Check descriptor overrun. */
964 	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
965 		bus_dmamap_unload(sc->sc_dmat, map);
966 		return ENOBUFS;
967 	}
968 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
969 	    BUS_DMASYNC_PREWRITE);
970 
971 	m = *m_head;
972 	/* Configure Tx checksum offload. */
973 	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
974 		/*
975 		 * AR81xx supports Tx custom checksum offload feature
976 		 * that offloads single 16bit checksum computation.
977 		 * So you can choose one among IP, TCP and UDP.
978 		 * Normally driver sets checksum start/insertion
979 		 * position from the information of TCP/UDP frame as
980 		 * TCP/UDP checksum takes more time than that of IP.
981 		 * However it seems that custom checksum offload
982 		 * requires 4 bytes aligned Tx buffers due to hardware
983 		 * bug.
984 		 * AR81xx also supports explicit Tx checksum computation
985 		 * if it is told that the size of IP header and TCP
986 		 * header(for UDP, the header size does not matter
987 		 * because it's fixed length). However with this scheme
988 		 * TSO does not work so you have to choose one either
989 		 * TSO or explicit Tx checksum offload. I chosen TSO
990 		 * plus custom checksum offload with work-around which
991 		 * will cover most common usage for this consumer
992 		 * ethernet controller. The work-around takes a lot of
993 		 * CPU cycles if Tx buffer is not aligned on 4 bytes
994 		 * boundary, though.
995 		 */
996 		cflags |= ALE_TD_CXSUM;
997 		/* Set checksum start offset. */
998 		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
999 	}
1000 
1001 #if NVLAN > 0
1002 	/* Configure VLAN hardware tag insertion. */
1003 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1004 		vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
1005 		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1006 		cflags |= ALE_TD_INSERT_VLAN_TAG;
1007 	}
1008 #endif
1009 
1010 	desc = NULL;
1011 	for (i = 0; i < nsegs; i++) {
1012 		desc = &sc->ale_cdata.ale_tx_ring[prod];
1013 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1014 		desc->len =
1015 		    htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1016 		desc->flags = htole32(cflags);
1017 		sc->ale_cdata.ale_tx_cnt++;
1018 		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1019 	}
1020 	/* Update producer index. */
1021 	sc->ale_cdata.ale_tx_prod = prod;
1022 
1023 	/* Finally set EOP on the last descriptor. */
1024 	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1025 	desc = &sc->ale_cdata.ale_tx_ring[prod];
1026 	desc->flags |= htole32(ALE_TD_EOP);
1027 
1028 	/* Swap dmamap of the first and the last. */
1029 	txd = &sc->ale_cdata.ale_txdesc[prod];
1030 	map = txd_last->tx_dmamap;
1031 	txd_last->tx_dmamap = txd->tx_dmamap;
1032 	txd->tx_dmamap = map;
1033 	txd->tx_m = m;
1034 
1035 	/* Sync descriptors. */
1036 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1037 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1038 
1039 	return 0;
1040 }
1041 
1042 static void
1043 ale_start(struct ifnet *ifp)
1044 {
1045         struct ale_softc *sc = ifp->if_softc;
1046 	struct mbuf *m_head;
1047 	int enq;
1048 
1049 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1050 		return;
1051 
1052 	/* Reclaim transmitted frames. */
1053 	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1054 		ale_txeof(sc);
1055 
1056 	enq = 0;
1057 	for (;;) {
1058 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1059 		if (m_head == NULL)
1060 			break;
1061 
1062 		/*
1063 		 * Pack the data into the transmit ring. If we
1064 		 * don't have room, set the OACTIVE flag and wait
1065 		 * for the NIC to drain the ring.
1066 		 */
1067 		if (ale_encap(sc, &m_head)) {
1068 			if (m_head == NULL)
1069 				break;
1070 			ifp->if_flags |= IFF_OACTIVE;
1071 			break;
1072 		}
1073 		enq = 1;
1074 
1075 #if NBPFILTER > 0
1076 		/*
1077 		 * If there's a BPF listener, bounce a copy of this frame
1078 		 * to him.
1079 		 */
1080 		if (ifp->if_bpf != NULL)
1081 			bpf_mtap(ifp->if_bpf, m_head);
1082 #endif
1083 	}
1084 
1085 	if (enq) {
1086 		/* Kick. */
1087 		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1088 		    sc->ale_cdata.ale_tx_prod);
1089 
1090 		/* Set a timeout in case the chip goes out to lunch. */
1091 		ifp->if_timer = ALE_TX_TIMEOUT;
1092 	}
1093 }
1094 
1095 static void
1096 ale_watchdog(struct ifnet *ifp)
1097 {
1098 	struct ale_softc *sc = ifp->if_softc;
1099 
1100 	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1101 		printf("%s: watchdog timeout (missed link)\n",
1102 		    device_xname(sc->sc_dev));
1103 		ifp->if_oerrors++;
1104 		ale_init(ifp);
1105 		return;
1106 	}
1107 
1108 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1109 	ifp->if_oerrors++;
1110 	ale_init(ifp);
1111 
1112 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1113 		ale_start(ifp);
1114 }
1115 
1116 static int
1117 ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1118 {
1119 	struct ale_softc *sc = ifp->if_softc;
1120 	int s, error;
1121 
1122 	s = splnet();
1123 
1124 	error = ether_ioctl(ifp, cmd, data);
1125 	if (error == ENETRESET) {
1126 		if (ifp->if_flags & IFF_RUNNING)
1127 			ale_rxfilter(sc);
1128 		error = 0;
1129 	}
1130 
1131 	splx(s);
1132 	return error;
1133 }
1134 
1135 static void
1136 ale_mac_config(struct ale_softc *sc)
1137 {
1138 	struct mii_data *mii;
1139 	uint32_t reg;
1140 
1141 	mii = &sc->sc_miibus;
1142 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1143 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1144 	    MAC_CFG_SPEED_MASK);
1145 
1146 	/* Reprogram MAC with resolved speed/duplex. */
1147 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1148 	case IFM_10_T:
1149 	case IFM_100_TX:
1150 		reg |= MAC_CFG_SPEED_10_100;
1151 		break;
1152 	case IFM_1000_T:
1153 		reg |= MAC_CFG_SPEED_1000;
1154 		break;
1155 	}
1156 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1157 		reg |= MAC_CFG_FULL_DUPLEX;
1158 #ifdef notyet
1159 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1160 			reg |= MAC_CFG_TX_FC;
1161 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1162 			reg |= MAC_CFG_RX_FC;
1163 #endif
1164 	}
1165 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1166 }
1167 
1168 static void
1169 ale_stats_clear(struct ale_softc *sc)
1170 {
1171 	struct smb sb;
1172 	uint32_t *reg;
1173 	int i;
1174 
1175 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1176 		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1177 		i += sizeof(uint32_t);
1178 	}
1179 	/* Read Tx statistics. */
1180 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1181 		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1182 		i += sizeof(uint32_t);
1183 	}
1184 }
1185 
1186 static void
1187 ale_stats_update(struct ale_softc *sc)
1188 {
1189 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1190 	struct ale_hw_stats *stat;
1191 	struct smb sb, *smb;
1192 	uint32_t *reg;
1193 	int i;
1194 
1195 	stat = &sc->ale_stats;
1196 	smb = &sb;
1197 
1198 	/* Read Rx statistics. */
1199 	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
1200 		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
1201 		i += sizeof(uint32_t);
1202 	}
1203 	/* Read Tx statistics. */
1204 	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
1205 		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
1206 		i += sizeof(uint32_t);
1207 	}
1208 
1209 	/* Rx stats. */
1210 	stat->rx_frames += smb->rx_frames;
1211 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1212 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1213 	stat->rx_pause_frames += smb->rx_pause_frames;
1214 	stat->rx_control_frames += smb->rx_control_frames;
1215 	stat->rx_crcerrs += smb->rx_crcerrs;
1216 	stat->rx_lenerrs += smb->rx_lenerrs;
1217 	stat->rx_bytes += smb->rx_bytes;
1218 	stat->rx_runts += smb->rx_runts;
1219 	stat->rx_fragments += smb->rx_fragments;
1220 	stat->rx_pkts_64 += smb->rx_pkts_64;
1221 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1222 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1223 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1224 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1225 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1226 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1227 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1228 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1229 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1230 	stat->rx_alignerrs += smb->rx_alignerrs;
1231 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1232 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1233 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1234 
1235 	/* Tx stats. */
1236 	stat->tx_frames += smb->tx_frames;
1237 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1238 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1239 	stat->tx_pause_frames += smb->tx_pause_frames;
1240 	stat->tx_excess_defer += smb->tx_excess_defer;
1241 	stat->tx_control_frames += smb->tx_control_frames;
1242 	stat->tx_deferred += smb->tx_deferred;
1243 	stat->tx_bytes += smb->tx_bytes;
1244 	stat->tx_pkts_64 += smb->tx_pkts_64;
1245 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1246 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1247 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1248 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1249 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1250 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1251 	stat->tx_single_colls += smb->tx_single_colls;
1252 	stat->tx_multi_colls += smb->tx_multi_colls;
1253 	stat->tx_late_colls += smb->tx_late_colls;
1254 	stat->tx_excess_colls += smb->tx_excess_colls;
1255 	stat->tx_abort += smb->tx_abort;
1256 	stat->tx_underrun += smb->tx_underrun;
1257 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1258 	stat->tx_lenerrs += smb->tx_lenerrs;
1259 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1260 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1261 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1262 
1263 	/* Update counters in ifnet. */
1264 	ifp->if_opackets += smb->tx_frames;
1265 
1266 	ifp->if_collisions += smb->tx_single_colls +
1267 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1268 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1269 
1270 	/*
1271 	 * XXX
1272 	 * tx_pkts_truncated counter looks suspicious. It constantly
1273 	 * increments with no sign of Tx errors. This may indicate
1274 	 * the counter name is not correct one so I've removed the
1275 	 * counter in output errors.
1276 	 */
1277 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1278 	    smb->tx_underrun;
1279 
1280 	ifp->if_ipackets += smb->rx_frames;
1281 
1282 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1283 	    smb->rx_runts + smb->rx_pkts_truncated +
1284 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1285 	    smb->rx_alignerrs;
1286 }
1287 
1288 static int
1289 ale_intr(void *xsc)
1290 {
1291 	struct ale_softc *sc = xsc;
1292 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1293 	uint32_t status;
1294 
1295 	status = CSR_READ_4(sc, ALE_INTR_STATUS);
1296 	if ((status & ALE_INTRS) == 0)
1297 		return 0;
1298 
1299 	/* Acknowledge and disable interrupts. */
1300 	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
1301 
1302 	if (ifp->if_flags & IFF_RUNNING) {
1303 		int error;
1304 
1305 		error = ale_rxeof(sc);
1306 		if (error) {
1307 			sc->ale_stats.reset_brk_seq++;
1308 			ale_init(ifp);
1309 			return 0;
1310 		}
1311 
1312 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
1313 			if (status & INTR_DMA_RD_TO_RST)
1314 				printf("%s: DMA read error! -- resetting\n",
1315 				    device_xname(sc->sc_dev));
1316 			if (status & INTR_DMA_WR_TO_RST)
1317 				printf("%s: DMA write error! -- resetting\n",
1318 				    device_xname(sc->sc_dev));
1319 			ale_init(ifp);
1320 			return 0;
1321 		}
1322 
1323 		ale_txeof(sc);
1324 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1325 			ale_start(ifp);
1326 	}
1327 
1328 	/* Re-enable interrupts. */
1329 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
1330 	return 1;
1331 }
1332 
1333 static void
1334 ale_txeof(struct ale_softc *sc)
1335 {
1336 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1337 	struct ale_txdesc *txd;
1338 	uint32_t cons, prod;
1339 	int prog;
1340 
1341 	if (sc->ale_cdata.ale_tx_cnt == 0)
1342 		return;
1343 
1344 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1345 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1346 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
1347 		bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1348 		    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
1349 		    BUS_DMASYNC_POSTREAD);
1350 		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
1351 	} else
1352 		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
1353 	cons = sc->ale_cdata.ale_tx_cons;
1354 	/*
1355 	 * Go through our Tx list and free mbufs for those
1356 	 * frames which have been transmitted.
1357 	 */
1358 	for (prog = 0; cons != prod; prog++,
1359 	     ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
1360 		if (sc->ale_cdata.ale_tx_cnt <= 0)
1361 			break;
1362 		prog++;
1363 		ifp->if_flags &= ~IFF_OACTIVE;
1364 		sc->ale_cdata.ale_tx_cnt--;
1365 		txd = &sc->ale_cdata.ale_txdesc[cons];
1366 		if (txd->tx_m != NULL) {
1367 			/* Reclaim transmitted mbufs. */
1368 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1369 			m_freem(txd->tx_m);
1370 			txd->tx_m = NULL;
1371 		}
1372 	}
1373 
1374 	if (prog > 0) {
1375 		sc->ale_cdata.ale_tx_cons = cons;
1376 		/*
1377 		 * Unarm watchdog timer only when there is no pending
1378 		 * Tx descriptors in queue.
1379 		 */
1380 		if (sc->ale_cdata.ale_tx_cnt == 0)
1381 			ifp->if_timer = 0;
1382 	}
1383 }
1384 
1385 static void
1386 ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
1387     uint32_t length, uint32_t *prod)
1388 {
1389 	struct ale_rx_page *rx_page;
1390 
1391 	rx_page = *page;
1392 	/* Update consumer position. */
1393 	rx_page->cons += roundup(length + sizeof(struct rx_rs),
1394 	    ALE_RX_PAGE_ALIGN);
1395 	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
1396 		/*
1397 		 * End of Rx page reached, let hardware reuse
1398 		 * this page.
1399 		 */
1400 		rx_page->cons = 0;
1401 		*rx_page->cmb_addr = 0;
1402 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1403 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1404 		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
1405 		    RXF_VALID);
1406 		/* Switch to alternate Rx page. */
1407 		sc->ale_cdata.ale_rx_curp ^= 1;
1408 		rx_page = *page =
1409 		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1410 		/* Page flipped, sync CMB and Rx page. */
1411 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1412 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1413 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1414 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1415 		/* Sync completed, cache updated producer index. */
1416 		*prod = *rx_page->cmb_addr;
1417 	}
1418 }
1419 
1420 
1421 /*
1422  * It seems that AR81xx controller can compute partial checksum.
1423  * The partial checksum value can be used to accelerate checksum
1424  * computation for fragmented TCP/UDP packets. Upper network stack
1425  * already takes advantage of the partial checksum value in IP
1426  * reassembly stage. But I'm not sure the correctness of the
1427  * partial hardware checksum assistance due to lack of data sheet.
1428  * In addition, the Rx feature of controller that requires copying
1429  * for every frames effectively nullifies one of most nice offload
1430  * capability of controller.
1431  */
1432 static void
1433 ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
1434 {
1435 	if (status & ALE_RD_IPCSUM_NOK)
1436 		m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1437 
1438 	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
1439 		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
1440 		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
1441 		    (status & ALE_RD_TCP_UDPCSUM_NOK))
1442 		{
1443 			m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1444 		}
1445 	} else {
1446 		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
1447 			if (status & ALE_RD_TCP_UDPCSUM_NOK) {
1448 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1449 			}
1450 		}
1451 	}
1452 	/*
1453 	 * Don't mark bad checksum for TCP/UDP frames
1454 	 * as fragmented frames may always have set
1455 	 * bad checksummed bit of frame status.
1456 	 */
1457 }
1458 
1459 /* Process received frames. */
1460 static int
1461 ale_rxeof(struct ale_softc *sc)
1462 {
1463 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1464 	struct ale_rx_page *rx_page;
1465 	struct rx_rs *rs;
1466 	struct mbuf *m;
1467 	uint32_t length, prod, seqno, status;
1468 	int prog;
1469 
1470 	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
1471 	bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1472 	    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1473 	bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1474 	    rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1475 	/*
1476 	 * Don't directly access producer index as hardware may
1477 	 * update it while Rx handler is in progress. It would
1478 	 * be even better if there is a way to let hardware
1479 	 * know how far driver processed its received frames.
1480 	 * Alternatively, hardware could provide a way to disable
1481 	 * CMB updates until driver acknowledges the end of CMB
1482 	 * access.
1483 	 */
1484 	prod = *rx_page->cmb_addr;
1485 	for (prog = 0; ; prog++) {
1486 		if (rx_page->cons >= prod)
1487 			break;
1488 		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
1489 		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
1490 		if (sc->ale_cdata.ale_rx_seqno != seqno) {
1491 			/*
1492 			 * Normally I believe this should not happen unless
1493 			 * severe driver bug or corrupted memory. However
1494 			 * it seems to happen under certain conditions which
1495 			 * is triggered by abrupt Rx events such as initiation
1496 			 * of bulk transfer of remote host. It's not easy to
1497 			 * reproduce this and I doubt it could be related
1498 			 * with FIFO overflow of hardware or activity of Tx
1499 			 * CMB updates. I also remember similar behaviour
1500 			 * seen on RealTek 8139 which uses resembling Rx
1501 			 * scheme.
1502 			 */
1503 			if (aledebug)
1504 				printf("%s: garbled seq: %u, expected: %u -- "
1505 				    "resetting!\n", device_xname(sc->sc_dev),
1506 				    seqno, sc->ale_cdata.ale_rx_seqno);
1507 			return EIO;
1508 		}
1509 		/* Frame received. */
1510 		sc->ale_cdata.ale_rx_seqno++;
1511 		length = ALE_RX_BYTES(le32toh(rs->length));
1512 		status = le32toh(rs->flags);
1513 		if (status & ALE_RD_ERROR) {
1514 			/*
1515 			 * We want to pass the following frames to upper
1516 			 * layer regardless of error status of Rx return
1517 			 * status.
1518 			 *
1519 			 *  o IP/TCP/UDP checksum is bad.
1520 			 *  o frame length and protocol specific length
1521 			 *     does not match.
1522 			 */
1523 			if (status & (ALE_RD_CRC | ALE_RD_CODE |
1524 			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
1525 			    ALE_RD_TRUNC)) {
1526 				ale_rx_update_page(sc, &rx_page, length, &prod);
1527 				continue;
1528 			}
1529 		}
1530 		/*
1531 		 * m_devget(9) is major bottle-neck of ale(4)(It comes
1532 		 * from hardware limitation). For jumbo frames we could
1533 		 * get a slightly better performance if driver use
1534 		 * m_getjcl(9) with proper buffer size argument. However
1535 		 * that would make code more complicated and I don't
1536 		 * think users would expect good Rx performance numbers
1537 		 * on these low-end consumer ethernet controller.
1538 		 */
1539 		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
1540 		    0, ifp, NULL);
1541 		if (m == NULL) {
1542 			ifp->if_iqdrops++;
1543 			ale_rx_update_page(sc, &rx_page, length, &prod);
1544 			continue;
1545 		}
1546 		if (status & ALE_RD_IPV4)
1547 			ale_rxcsum(sc, m, status);
1548 #if NVLAN > 0
1549 		if (status & ALE_RD_VLAN) {
1550 			uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
1551 			VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
1552 		}
1553 #endif
1554 
1555 
1556 #if NBPFILTER > 0
1557 		if (ifp->if_bpf)
1558 			bpf_mtap(ifp->if_bpf, m);
1559 #endif
1560 
1561 		/* Pass it to upper layer. */
1562 		ether_input(ifp, m);
1563 
1564 		ale_rx_update_page(sc, &rx_page, length, &prod);
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static void
1571 ale_tick(void *xsc)
1572 {
1573 	struct ale_softc *sc = xsc;
1574 	struct mii_data *mii = &sc->sc_miibus;
1575 	int s;
1576 
1577 	s = splnet();
1578 	mii_tick(mii);
1579 	ale_stats_update(sc);
1580 	splx(s);
1581 
1582 	callout_schedule(&sc->sc_tick_ch, hz);
1583 }
1584 
1585 static void
1586 ale_reset(struct ale_softc *sc)
1587 {
1588 	uint32_t reg;
1589 	int i;
1590 
1591 	/* Initialize PCIe module. From Linux. */
1592 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1593 
1594 	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
1595 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1596 		DELAY(10);
1597 		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
1598 			break;
1599 	}
1600 	if (i == 0)
1601 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
1602 
1603 	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
1604 		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
1605 			break;
1606 		DELAY(10);
1607 	}
1608 
1609 	if (i == 0)
1610 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
1611 		    reg);
1612 }
1613 
1614 static int
1615 ale_init(struct ifnet *ifp)
1616 {
1617 	struct ale_softc *sc = ifp->if_softc;
1618 	struct mii_data *mii;
1619 	uint8_t eaddr[ETHER_ADDR_LEN];
1620 	bus_addr_t paddr;
1621 	uint32_t reg, rxf_hi, rxf_lo;
1622 
1623 	/*
1624 	 * Cancel any pending I/O.
1625 	 */
1626 	ale_stop(ifp, 0);
1627 
1628 	/*
1629 	 * Reset the chip to a known state.
1630 	 */
1631 	ale_reset(sc);
1632 
1633 	/* Initialize Tx descriptors, DMA memory blocks. */
1634 	ale_init_rx_pages(sc);
1635 	ale_init_tx_ring(sc);
1636 
1637 	/* Reprogram the station address. */
1638 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
1639 	CSR_WRITE_4(sc, ALE_PAR0,
1640 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1641 	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
1642 
1643 	/*
1644 	 * Clear WOL status and disable all WOL feature as WOL
1645 	 * would interfere Rx operation under normal environments.
1646 	 */
1647 	CSR_READ_4(sc, ALE_WOL_CFG);
1648 	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1649 
1650 	/*
1651 	 * Set Tx descriptor/RXF0/CMB base addresses. They share
1652 	 * the same high address part of DMAable region.
1653 	 */
1654 	paddr = sc->ale_cdata.ale_tx_ring_paddr;
1655 	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
1656 	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
1657 	CSR_WRITE_4(sc, ALE_TPD_CNT,
1658 	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
1659 
1660 	/* Set Rx page base address, note we use single queue. */
1661 	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
1662 	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
1663 	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
1664 	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
1665 
1666 	/* Set Tx/Rx CMB addresses. */
1667 	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
1668 	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
1669 	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
1670 	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
1671 	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
1672 	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
1673 
1674 	/* Mark RXF0 is valid. */
1675 	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
1676 	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
1677 	/*
1678 	 * No need to initialize RFX1/RXF2/RXF3. We don't use
1679 	 * multi-queue yet.
1680 	 */
1681 
1682 	/* Set Rx page size, excluding guard frame size. */
1683 	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
1684 
1685 	/* Tell hardware that we're ready to load DMA blocks. */
1686 	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
1687 
1688 	/* Set Rx/Tx interrupt trigger threshold. */
1689 	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
1690 	    (4 << INT_TRIG_TX_THRESH_SHIFT));
1691 	/*
1692 	 * XXX
1693 	 * Set interrupt trigger timer, its purpose and relation
1694 	 * with interrupt moderation mechanism is not clear yet.
1695 	 */
1696 	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
1697 	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
1698 	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
1699 
1700 	/* Configure interrupt moderation timer. */
1701 	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
1702 	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
1703 	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
1704 	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
1705 	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
1706 	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
1707 	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
1708 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
1709 	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
1710 		reg |= MASTER_IM_RX_TIMER_ENB;
1711 	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
1712 		reg |= MASTER_IM_TX_TIMER_ENB;
1713 	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
1714 	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
1715 
1716 	/* Set Maximum frame size of controller. */
1717 	if (ifp->if_mtu < ETHERMTU)
1718 		sc->ale_max_frame_size = ETHERMTU;
1719 	else
1720 		sc->ale_max_frame_size = ifp->if_mtu;
1721 	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1722 	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
1723 
1724 	/* Configure IPG/IFG parameters. */
1725 	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
1726 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
1727 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1728 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1729 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
1730 
1731 	/* Set parameters for half-duplex media. */
1732 	CSR_WRITE_4(sc, ALE_HDPX_CFG,
1733 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1734 	    HDPX_CFG_LCOL_MASK) |
1735 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1736 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1737 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1738 	    HDPX_CFG_ABEBT_MASK) |
1739 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1740 	    HDPX_CFG_JAMIPG_MASK));
1741 
1742 	/* Configure Tx jumbo frame parameters. */
1743 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1744 		if (ifp->if_mtu < ETHERMTU)
1745 			reg = sc->ale_max_frame_size;
1746 		else if (ifp->if_mtu < 6 * 1024)
1747 			reg = (sc->ale_max_frame_size * 2) / 3;
1748 		else
1749 			reg = sc->ale_max_frame_size / 2;
1750 		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
1751 		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
1752 		    TX_JUMBO_THRESH_UNIT_SHIFT);
1753 	}
1754 
1755 	/* Configure TxQ. */
1756 	reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
1757 	    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
1758 	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1759 	    TXQ_CFG_TPD_BURST_MASK;
1760 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
1761 
1762 	/* Configure Rx jumbo frame & flow control parameters. */
1763 	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
1764 		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
1765 		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
1766 		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
1767 		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
1768 		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
1769 		    RX_JUMBO_LKAH_MASK));
1770 		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
1771 		rxf_hi = (reg * 7) / 10;
1772 		rxf_lo = (reg * 3)/ 10;
1773 		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
1774 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
1775 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
1776 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
1777 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
1778 	}
1779 
1780 	/* Disable RSS. */
1781 	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
1782 	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
1783 
1784 	/* Configure RxQ. */
1785 	CSR_WRITE_4(sc, ALE_RXQ_CFG,
1786 	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1787 
1788 	/* Configure DMA parameters. */
1789 	reg = 0;
1790 	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
1791 		reg |= DMA_CFG_TXCMB_ENB;
1792 	CSR_WRITE_4(sc, ALE_DMA_CFG,
1793 	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
1794 	    sc->ale_dma_rd_burst | reg |
1795 	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
1796 	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
1797 	    DMA_CFG_RD_DELAY_CNT_MASK) |
1798 	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
1799 	    DMA_CFG_WR_DELAY_CNT_MASK));
1800 
1801 	/*
1802 	 * Hardware can be configured to issue SMB interrupt based
1803 	 * on programmed interval. Since there is a callout that is
1804 	 * invoked for every hz in driver we use that instead of
1805 	 * relying on periodic SMB interrupt.
1806 	 */
1807 	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
1808 
1809 	/* Clear MAC statistics. */
1810 	ale_stats_clear(sc);
1811 
1812 	/*
1813 	 * Configure Tx/Rx MACs.
1814 	 *  - Auto-padding for short frames.
1815 	 *  - Enable CRC generation.
1816 	 *  Actual reconfiguration of MAC for resolved speed/duplex
1817 	 *  is followed after detection of link establishment.
1818 	 *  AR81xx always does checksum computation regardless of
1819 	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
1820 	 *  cause Rx handling issue for fragmented IP datagrams due
1821 	 *  to silicon bug.
1822 	 */
1823 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
1824 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1825 	    MAC_CFG_PREAMBLE_MASK);
1826 	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
1827 		reg |= MAC_CFG_SPEED_10_100;
1828 	else
1829 		reg |= MAC_CFG_SPEED_1000;
1830 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1831 
1832 	/* Set up the receive filter. */
1833 	ale_rxfilter(sc);
1834 	ale_rxvlan(sc);
1835 
1836 	/* Acknowledge all pending interrupts and clear it. */
1837 	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
1838 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1839 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
1840 
1841 	sc->ale_flags &= ~ALE_FLAG_LINK;
1842 
1843 	/* Switch to the current media. */
1844 	mii = &sc->sc_miibus;
1845 	mii_mediachg(mii);
1846 
1847 	callout_schedule(&sc->sc_tick_ch, hz);
1848 
1849 	ifp->if_flags |= IFF_RUNNING;
1850 	ifp->if_flags &= ~IFF_OACTIVE;
1851 
1852 	return 0;
1853 }
1854 
1855 static void
1856 ale_stop(struct ifnet *ifp, int disable)
1857 {
1858 	struct ale_softc *sc = ifp->if_softc;
1859 	struct ale_txdesc *txd;
1860 	uint32_t reg;
1861 	int i;
1862 
1863 	callout_stop(&sc->sc_tick_ch);
1864 
1865 	/*
1866 	 * Mark the interface down and cancel the watchdog timer.
1867 	 */
1868 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1869 	ifp->if_timer = 0;
1870 
1871 	sc->ale_flags &= ~ALE_FLAG_LINK;
1872 
1873 	ale_stats_update(sc);
1874 
1875 	mii_down(&sc->sc_miibus);
1876 
1877 	/* Disable interrupts. */
1878 	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
1879 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1880 
1881 	/* Disable queue processing and DMA. */
1882 	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
1883 	reg &= ~TXQ_CFG_ENB;
1884 	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
1885 	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
1886 	reg &= ~RXQ_CFG_ENB;
1887 	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
1888 	reg = CSR_READ_4(sc, ALE_DMA_CFG);
1889 	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
1890 	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
1891 	DELAY(1000);
1892 
1893 	/* Stop Rx/Tx MACs. */
1894 	ale_stop_mac(sc);
1895 
1896 	/* Disable interrupts again? XXX */
1897 	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
1898 
1899 	/*
1900 	 * Free TX mbufs still in the queues.
1901 	 */
1902 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1903 		txd = &sc->ale_cdata.ale_txdesc[i];
1904 		if (txd->tx_m != NULL) {
1905 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1906 			m_freem(txd->tx_m);
1907 			txd->tx_m = NULL;
1908 		}
1909         }
1910 }
1911 
1912 static void
1913 ale_stop_mac(struct ale_softc *sc)
1914 {
1915 	uint32_t reg;
1916 	int i;
1917 
1918 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1919 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
1920 		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1921 		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1922 	}
1923 
1924 	for (i = ALE_TIMEOUT; i > 0; i--) {
1925 		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
1926 		if (reg == 0)
1927 			break;
1928 		DELAY(10);
1929 	}
1930 	if (i == 0)
1931 		printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
1932 		    device_xname(sc->sc_dev), reg);
1933 }
1934 
1935 static void
1936 ale_init_tx_ring(struct ale_softc *sc)
1937 {
1938 	struct ale_txdesc *txd;
1939 	int i;
1940 
1941 	sc->ale_cdata.ale_tx_prod = 0;
1942 	sc->ale_cdata.ale_tx_cons = 0;
1943 	sc->ale_cdata.ale_tx_cnt = 0;
1944 
1945 	memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
1946 	memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
1947 	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1948 		txd = &sc->ale_cdata.ale_txdesc[i];
1949 		txd->tx_m = NULL;
1950 	}
1951 	*sc->ale_cdata.ale_tx_cmb = 0;
1952 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
1953 	    sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1954 	bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
1955 	    sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1956 }
1957 
1958 static void
1959 ale_init_rx_pages(struct ale_softc *sc)
1960 {
1961 	struct ale_rx_page *rx_page;
1962 	int i;
1963 
1964 	sc->ale_cdata.ale_rx_seqno = 0;
1965 	sc->ale_cdata.ale_rx_curp = 0;
1966 
1967 	for (i = 0; i < ALE_RX_PAGES; i++) {
1968 		rx_page = &sc->ale_cdata.ale_rx_page[i];
1969 		memset(rx_page->page_addr, 0, sc->ale_pagesize);
1970 		memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
1971 		rx_page->cons = 0;
1972 		*rx_page->cmb_addr = 0;
1973 		bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
1974 		    rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1975 		bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
1976 		    rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1977 	}
1978 }
1979 
1980 static void
1981 ale_rxvlan(struct ale_softc *sc)
1982 {
1983 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1984 	uint32_t reg;
1985 
1986 	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1987 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
1988 	if (ifp->if_capabilities & ETHERCAP_VLAN_HWTAGGING)
1989 		reg |= MAC_CFG_VLAN_TAG_STRIP;
1990 	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1991 }
1992 
1993 static void
1994 ale_rxfilter(struct ale_softc *sc)
1995 {
1996 	struct ethercom *ec = &sc->sc_ec;
1997 	struct ifnet *ifp = &ec->ec_if;
1998 	struct ether_multi *enm;
1999 	struct ether_multistep step;
2000 	uint32_t crc;
2001 	uint32_t mchash[2];
2002 	uint32_t rxcfg;
2003 
2004 	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
2005 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2006 
2007 	/*
2008 	 * Always accept broadcast frames.
2009 	 */
2010 	rxcfg |= MAC_CFG_BCAST;
2011 
2012 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC ||
2013 	    ec->ec_multicnt > 0) {
2014 allmulti:
2015 		if (ifp->if_flags & IFF_PROMISC)
2016 			rxcfg |= MAC_CFG_PROMISC;
2017 		else
2018 			rxcfg |= MAC_CFG_ALLMULTI;
2019 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2020 	} else {
2021 		/* Program new filter. */
2022 		memset(mchash, 0, sizeof(mchash));
2023 
2024 		ETHER_FIRST_MULTI(step, ec, enm);
2025 		while (enm != NULL) {
2026 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
2027 			    ETHER_ADDR_LEN)) {
2028 			    	ifp->if_flags |= IFF_ALLMULTI;
2029 				goto allmulti;
2030 			}
2031 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2032 
2033 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2034 			ETHER_NEXT_MULTI(step, enm);
2035 		}
2036 	}
2037 
2038 	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
2039 	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
2040 	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
2041 }
2042