xref: /netbsd-src/sys/dev/pci/if_alc.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
2 /*-
3  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30 
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48 
49 #include <sys/bus.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <net/bpf.h>
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_alcreg.h>
81 
82 /*
83  * Devices supported by this driver.
84  */
85 static struct alc_ident alc_ident_table[] = {
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 		"Atheros AR8132 PCIe Fast Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 	{ 0, 0, 0, NULL },
99 };
100 
101 static int	alc_match(device_t, cfdata_t, void *);
102 static void	alc_attach(device_t, device_t, void *);
103 static int	alc_detach(device_t, int);
104 
105 static int	alc_init(struct ifnet *);
106 static int	alc_init_backend(struct ifnet *, bool);
107 static void	alc_start(struct ifnet *);
108 static int	alc_ioctl(struct ifnet *, u_long, void *);
109 static void	alc_watchdog(struct ifnet *);
110 static int	alc_mediachange(struct ifnet *);
111 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
112 
113 static void	alc_aspm(struct alc_softc *, int);
114 static void	alc_disable_l0s_l1(struct alc_softc *);
115 static int	alc_dma_alloc(struct alc_softc *);
116 static void	alc_dma_free(struct alc_softc *);
117 static int	alc_encap(struct alc_softc *, struct mbuf **);
118 static struct alc_ident *
119 		alc_find_ident(struct pci_attach_args *);
120 static void	alc_get_macaddr(struct alc_softc *);
121 static void	alc_init_cmb(struct alc_softc *);
122 static void	alc_init_rr_ring(struct alc_softc *);
123 static int	alc_init_rx_ring(struct alc_softc *, bool);
124 static void	alc_init_smb(struct alc_softc *);
125 static void	alc_init_tx_ring(struct alc_softc *);
126 static int	alc_intr(void *);
127 static void	alc_mac_config(struct alc_softc *);
128 static int	alc_miibus_readreg(device_t, int, int);
129 static void	alc_miibus_statchg(struct ifnet *);
130 static void	alc_miibus_writereg(device_t, int, int, int);
131 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
132 static void	alc_phy_down(struct alc_softc *);
133 static void	alc_phy_reset(struct alc_softc *);
134 static void	alc_reset(struct alc_softc *);
135 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
136 static int	alc_rxintr(struct alc_softc *);
137 static void	alc_iff(struct alc_softc *);
138 static void	alc_rxvlan(struct alc_softc *);
139 static void	alc_start_queue(struct alc_softc *);
140 static void	alc_stats_clear(struct alc_softc *);
141 static void	alc_stats_update(struct alc_softc *);
142 static void	alc_stop(struct ifnet *, int);
143 static void	alc_stop_mac(struct alc_softc *);
144 static void	alc_stop_queue(struct alc_softc *);
145 static void	alc_tick(void *);
146 static void	alc_txeof(struct alc_softc *);
147 
148 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
149 
150 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
151     alc_match, alc_attach, alc_detach, NULL);
152 
153 int alcdebug = 0;
154 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
155 
156 #define ETHER_ALIGN		2
157 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
158 
159 static int
160 alc_miibus_readreg(device_t dev, int phy, int reg)
161 {
162 	struct alc_softc *sc = device_private(dev);
163 	uint32_t v;
164 	int i;
165 
166 	if (phy != sc->alc_phyaddr)
167 		return (0);
168 
169 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
170 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
171 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
172 		DELAY(5);
173 		v = CSR_READ_4(sc, ALC_MDIO);
174 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
175 			break;
176 	}
177 
178 	if (i == 0) {
179 		printf("%s: phy read timeout: phy %d, reg %d\n",
180 		    device_xname(sc->sc_dev), phy, reg);
181 		return (0);
182 	}
183 
184 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
185 }
186 
187 static void
188 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
189 {
190 	struct alc_softc *sc = device_private(dev);
191 	uint32_t v;
192 	int i;
193 
194 	if (phy != sc->alc_phyaddr)
195 		return;
196 
197 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
198 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
199 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
200 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
201 		DELAY(5);
202 		v = CSR_READ_4(sc, ALC_MDIO);
203 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
204 			break;
205 	}
206 
207 	if (i == 0)
208 		printf("%s: phy write timeout: phy %d, reg %d\n",
209 		    device_xname(sc->sc_dev), phy, reg);
210 }
211 
212 static void
213 alc_miibus_statchg(struct ifnet *ifp)
214 {
215 	struct alc_softc *sc = ifp->if_softc;
216 	struct mii_data *mii = &sc->sc_miibus;
217 	uint32_t reg;
218 
219 	if ((ifp->if_flags & IFF_RUNNING) == 0)
220 		return;
221 
222 	sc->alc_flags &= ~ALC_FLAG_LINK;
223 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
224 	    (IFM_ACTIVE | IFM_AVALID)) {
225 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
226 		case IFM_10_T:
227 		case IFM_100_TX:
228 			sc->alc_flags |= ALC_FLAG_LINK;
229 			break;
230 		case IFM_1000_T:
231 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
232 				sc->alc_flags |= ALC_FLAG_LINK;
233 			break;
234 		default:
235 			break;
236 		}
237 	}
238 	alc_stop_queue(sc);
239 	/* Stop Rx/Tx MACs. */
240 	alc_stop_mac(sc);
241 
242 	/* Program MACs with resolved speed/duplex/flow-control. */
243 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
244 		alc_start_queue(sc);
245 		alc_mac_config(sc);
246 		/* Re-enable Tx/Rx MACs. */
247 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
248 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
249 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
250 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
251 	}
252 }
253 
254 static void
255 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
256 {
257 	struct alc_softc *sc = ifp->if_softc;
258 	struct mii_data *mii = &sc->sc_miibus;
259 
260 	mii_pollstat(mii);
261 	ifmr->ifm_status = mii->mii_media_status;
262 	ifmr->ifm_active = mii->mii_media_active;
263 }
264 
265 static int
266 alc_mediachange(struct ifnet *ifp)
267 {
268 	struct alc_softc *sc = ifp->if_softc;
269 	struct mii_data *mii = &sc->sc_miibus;
270 	int error;
271 
272 	if (mii->mii_instance != 0) {
273 		struct mii_softc *miisc;
274 
275 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
276 			mii_phy_reset(miisc);
277 	}
278 	error = mii_mediachg(mii);
279 
280 	return (error);
281 }
282 
283 static struct alc_ident *
284 alc_find_ident(struct pci_attach_args *pa)
285 {
286 	struct alc_ident *ident;
287 	uint16_t vendor, devid;
288 
289 	vendor = PCI_VENDOR(pa->pa_id);
290 	devid = PCI_PRODUCT(pa->pa_id);
291 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
292 		if (vendor == ident->vendorid && devid == ident->deviceid)
293 			return (ident);
294 	}
295 
296 	return (NULL);
297 }
298 
299 static int
300 alc_match(device_t dev, cfdata_t match, void *aux)
301 {
302 	struct pci_attach_args *pa = aux;
303 
304 	return alc_find_ident(pa) != NULL;
305 }
306 
307 static void
308 alc_get_macaddr(struct alc_softc *sc)
309 {
310 	uint32_t ea[2], opt;
311 	uint16_t val;
312 	int eeprom, i;
313 
314 	eeprom = 0;
315 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
316 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
317 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
318 		/*
319 		 * EEPROM found, let TWSI reload EEPROM configuration.
320 		 * This will set ethernet address of controller.
321 		 */
322 		eeprom++;
323 		switch (sc->alc_ident->deviceid) {
324 		case PCI_PRODUCT_ATTANSIC_AR8131:
325 		case PCI_PRODUCT_ATTANSIC_AR8132:
326 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
327 				opt |= OPT_CFG_CLK_ENB;
328 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
329 				CSR_READ_4(sc, ALC_OPT_CFG);
330 				DELAY(1000);
331 			}
332 			break;
333 		case PCI_PRODUCT_ATTANSIC_AR8151:
334 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
335 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
336 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
337 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
338 			    ALC_MII_DBG_ADDR, 0x00);
339 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
340 			    ALC_MII_DBG_DATA);
341 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
342 			    ALC_MII_DBG_DATA, val & 0xFF7F);
343 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
344 			    ALC_MII_DBG_ADDR, 0x3B);
345 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
346 			    ALC_MII_DBG_DATA);
347 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
348 			    ALC_MII_DBG_DATA, val | 0x0008);
349 			DELAY(20);
350 			break;
351 		}
352 
353 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
354 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
355 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
356 		CSR_READ_4(sc, ALC_WOL_CFG);
357 
358 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
359 		    TWSI_CFG_SW_LD_START);
360 		for (i = 100; i > 0; i--) {
361 			DELAY(1000);
362 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
363 			    TWSI_CFG_SW_LD_START) == 0)
364 				break;
365 		}
366 		if (i == 0)
367 			printf("%s: reloading EEPROM timeout!\n",
368 			    device_xname(sc->sc_dev));
369 	} else {
370 		if (alcdebug)
371 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
372 	}
373 	if (eeprom != 0) {
374 		switch (sc->alc_ident->deviceid) {
375 		case PCI_PRODUCT_ATTANSIC_AR8131:
376 		case PCI_PRODUCT_ATTANSIC_AR8132:
377 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
378 				opt &= ~OPT_CFG_CLK_ENB;
379 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
380 				CSR_READ_4(sc, ALC_OPT_CFG);
381 				DELAY(1000);
382 			}
383 			break;
384 		case PCI_PRODUCT_ATTANSIC_AR8151:
385 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
386 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
387 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
388 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
389 			    ALC_MII_DBG_ADDR, 0x00);
390 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
391 			    ALC_MII_DBG_DATA);
392 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
393 			    ALC_MII_DBG_DATA, val | 0x0080);
394 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
395 			    ALC_MII_DBG_ADDR, 0x3B);
396 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
397 			    ALC_MII_DBG_DATA);
398 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
399 			    ALC_MII_DBG_DATA, val & 0xFFF7);
400 			DELAY(20);
401 			break;
402 		}
403 	}
404 
405 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
406 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
407 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
408 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
409 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
410 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
411 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
412 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
413 }
414 
415 static void
416 alc_disable_l0s_l1(struct alc_softc *sc)
417 {
418 	uint32_t pmcfg;
419 
420 	/* Another magic from vendor. */
421 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
422 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
423 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
424 	    PM_CFG_SERDES_PD_EX_L1);
425 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
426 	    PM_CFG_SERDES_L1_ENB;
427 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
428 }
429 
430 static void
431 alc_phy_reset(struct alc_softc *sc)
432 {
433 	uint16_t data;
434 
435 	/* Reset magic from Linux. */
436 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
437 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
438 	CSR_READ_2(sc, ALC_GPHY_CFG);
439 	DELAY(10 * 1000);
440 
441 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
442 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
443 	    GPHY_CFG_SEL_ANA_RESET);
444 	CSR_READ_2(sc, ALC_GPHY_CFG);
445 	DELAY(10 * 1000);
446 
447 	/* DSP fixup, Vendor magic. */
448 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
449 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
450 		    ALC_MII_DBG_ADDR, 0x000A);
451 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
452 		    ALC_MII_DBG_DATA);
453 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
454 		    ALC_MII_DBG_DATA, data & 0xDFFF);
455 	}
456 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
457 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
458 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
459 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
460 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
461 		    ALC_MII_DBG_ADDR, 0x003B);
462 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
463 		    ALC_MII_DBG_DATA);
464 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
465 		    ALC_MII_DBG_DATA, data & 0xFFF7);
466 		DELAY(20 * 1000);
467 	}
468 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
469 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
470 		    ALC_MII_DBG_ADDR, 0x0029);
471 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
472 		    ALC_MII_DBG_DATA, 0x929D);
473 	}
474 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
475 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
476 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
477 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
478 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
479 		    ALC_MII_DBG_ADDR, 0x0029);
480 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
481 		    ALC_MII_DBG_DATA, 0xB6DD);
482 	}
483 
484 	/* Load DSP codes, vendor magic. */
485 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
486 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
487 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
488 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
489 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
490 	    ALC_MII_DBG_DATA, data);
491 
492 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
493 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
494 	    ANA_SERDES_EN_LCKDT;
495 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
496 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
497 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
498 	    ALC_MII_DBG_DATA, data);
499 
500 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
501 	    ANA_LONG_CABLE_TH_100_MASK) |
502 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
503 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
504 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
505 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
506 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
507 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
508 	    ALC_MII_DBG_DATA, data);
509 
510 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
511 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
512 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
513 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
514 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
515 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
516 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
517 	    ALC_MII_DBG_DATA, data);
518 
519 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
520 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
521 	    ANA_OEN_125M;
522 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
523 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
524 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
525 	    ALC_MII_DBG_DATA, data);
526 	DELAY(1000);
527 }
528 
529 static void
530 alc_phy_down(struct alc_softc *sc)
531 {
532 	switch (sc->alc_ident->deviceid) {
533 	case PCI_PRODUCT_ATTANSIC_AR8151:
534 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
535 		/*
536 		 * GPHY power down caused more problems on AR8151 v2.0.
537 		 * When driver is reloaded after GPHY power down,
538 		 * accesses to PHY/MAC registers hung the system. Only
539 		 * cold boot recovered from it.  I'm not sure whether
540 		 * AR8151 v1.0 also requires this one though.  I don't
541 		 * have AR8151 v1.0 controller in hand.
542 		 * The only option left is to isolate the PHY and
543 		 * initiates power down the PHY which in turn saves
544 		 * more power when driver is unloaded.
545 		 */
546 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
547 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
548 		break;
549 	default:
550 		/* Force PHY down. */
551 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
552 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
553 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
554 		    GPHY_CFG_PWDOWN_HW);
555 		DELAY(1000);
556 		break;
557 	}
558 }
559 
560 static void
561 alc_aspm(struct alc_softc *sc, int media)
562 {
563 	uint32_t pmcfg;
564 	uint16_t linkcfg;
565 
566 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
567 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
568 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
569 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
570 		    PCI_PCIE_LCSR);
571 	else
572 		linkcfg = 0;
573 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
574 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
575 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
576 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
577 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
578 
579 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
580 		/* Disable extended sync except AR8152 B v1.0 */
581 		linkcfg &= ~0x80;
582 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
583 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
584 			linkcfg |= 0x80;
585 		CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
586 		    linkcfg);
587 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
588 		    PM_CFG_HOTRST);
589 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
590 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
591 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
592 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
593 		    PM_CFG_PM_REQ_TIMER_SHIFT);
594 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
595 	}
596 
597 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
598 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
599 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
600 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
601 			pmcfg |= PM_CFG_ASPM_L1_ENB;
602 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
603 			if (sc->alc_ident->deviceid ==
604 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
605 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
606 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
607 			    PM_CFG_SERDES_PLL_L1_ENB |
608 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
609 			pmcfg |= PM_CFG_CLK_SWH_L1;
610 			if (media == IFM_100_TX || media == IFM_1000_T) {
611 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
612 				switch (sc->alc_ident->deviceid) {
613 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
614 					pmcfg |= (7 <<
615 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
616 					break;
617 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
619 					pmcfg |= (4 <<
620 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
621 					break;
622 				default:
623 					pmcfg |= (15 <<
624 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
625 					break;
626 				}
627 			}
628 		} else {
629 			pmcfg |= PM_CFG_SERDES_L1_ENB |
630 			    PM_CFG_SERDES_PLL_L1_ENB |
631 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
632 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
633 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
634 		}
635 	} else {
636 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
637 		    PM_CFG_SERDES_PLL_L1_ENB);
638 		pmcfg |= PM_CFG_CLK_SWH_L1;
639 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
640 			pmcfg |= PM_CFG_ASPM_L1_ENB;
641 	}
642 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
643 }
644 
645 static void
646 alc_attach(device_t parent, device_t self, void *aux)
647 {
648 
649 	struct alc_softc *sc = device_private(self);
650 	struct pci_attach_args *pa = aux;
651 	pci_chipset_tag_t pc = pa->pa_pc;
652 	pci_intr_handle_t ih;
653 	const char *intrstr;
654 	struct ifnet *ifp;
655 	pcireg_t memtype;
656 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
657 	uint16_t burst;
658 	int base, mii_flags, state, error = 0;
659 	uint32_t cap, ctl, val;
660 
661 	sc->alc_ident = alc_find_ident(pa);
662 
663 	aprint_naive("\n");
664 	aprint_normal(": %s\n", sc->alc_ident->name);
665 
666 	sc->sc_dev = self;
667 	sc->sc_dmat = pa->pa_dmat;
668 	sc->sc_pct = pa->pa_pc;
669 	sc->sc_pcitag = pa->pa_tag;
670 
671 	/*
672 	 * Allocate IO memory
673 	 */
674 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
675 	switch (memtype) {
676 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
677 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
679 		break;
680 	default:
681 		aprint_error_dev(self, "invalid base address register\n");
682 		break;
683 	}
684 
685 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
686 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
687 		aprint_error_dev(self, "could not map mem space\n");
688 		return;
689 	}
690 
691 	if (pci_intr_map(pa, &ih) != 0) {
692 		printf(": can't map interrupt\n");
693 		goto fail;
694 	}
695 
696 	/*
697 	 * Allocate IRQ
698 	 */
699 	intrstr = pci_intr_string(sc->sc_pct, ih);
700 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
701 	if (sc->sc_irq_handle == NULL) {
702 		printf(": could not establish interrupt");
703 		if (intrstr != NULL)
704 			printf(" at %s", intrstr);
705 		printf("\n");
706 		goto fail;
707 	}
708 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
709 
710 	/* Set PHY address. */
711 	sc->alc_phyaddr = ALC_PHY_ADDR;
712 
713 	/* Initialize DMA parameters. */
714 	sc->alc_dma_rd_burst = 0;
715 	sc->alc_dma_wr_burst = 0;
716 	sc->alc_rcb = DMA_CFG_RCB_64;
717 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
718 	    &base, NULL)) {
719 		sc->alc_flags |= ALC_FLAG_PCIE;
720 		sc->alc_expcap = base;
721 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
722 		    base + PCI_PCIE_DCSR) >> 16;
723 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
724 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
725 		if (alcdebug) {
726 			printf("%s: Read request size : %u bytes.\n",
727 			    device_xname(sc->sc_dev),
728 			    alc_dma_burst[sc->alc_dma_rd_burst]);
729 			printf("%s: TLP payload size : %u bytes.\n",
730 			    device_xname(sc->sc_dev),
731 			    alc_dma_burst[sc->alc_dma_wr_burst]);
732 		}
733 		/* Clear data link and flow-control protocol error. */
734 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
735 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
736 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
737 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
738 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
739 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
740 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
741 		    PCIE_PHYMISC_FORCE_RCV_DET);
742 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
743 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
744 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
745 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
746 			    PCIE_PHYMISC2_SERDES_TH_MASK);
747 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
748 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
749 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
750 		}
751 		/* Disable ASPM L0S and L1. */
752 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
753 		    base + PCI_PCIE_LCAP) >> 16;
754 		if ((cap & 0x00000c00) != 0) {
755 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
756 			    base + PCI_PCIE_LCSR) >> 16;
757 			if ((ctl & 0x08) != 0)
758 				sc->alc_rcb = DMA_CFG_RCB_128;
759 			if (alcdebug)
760 				printf("%s: RCB %u bytes\n",
761 				    device_xname(sc->sc_dev),
762 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
763 			state = ctl & 0x03;
764 			if (state & 0x01)
765 				sc->alc_flags |= ALC_FLAG_L0S;
766 			if (state & 0x02)
767 				sc->alc_flags |= ALC_FLAG_L1S;
768 			if (alcdebug)
769 				printf("%s: ASPM %s %s\n",
770 				    device_xname(sc->sc_dev),
771 				    aspm_state[state],
772 				    state == 0 ? "disabled" : "enabled");
773 			alc_disable_l0s_l1(sc);
774 		} else {
775 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
776 		}
777 	}
778 
779 	/* Reset PHY. */
780 	alc_phy_reset(sc);
781 
782 	/* Reset the ethernet controller. */
783 	alc_reset(sc);
784 
785 	/*
786 	 * One odd thing is AR8132 uses the same PHY hardware(F1
787 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
788 	 * the PHY supports 1000Mbps but that's not true. The PHY
789 	 * used in AR8132 can't establish gigabit link even if it
790 	 * shows the same PHY model/revision number of AR8131.
791 	 */
792 	switch (sc->alc_ident->deviceid) {
793 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
794 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
795 		sc->alc_flags |= ALC_FLAG_APS;
796 		/* FALLTHROUGH */
797 	case PCI_PRODUCT_ATTANSIC_AR8132:
798 		sc->alc_flags |= ALC_FLAG_FASTETHER;
799 		break;
800 	case PCI_PRODUCT_ATTANSIC_AR8151:
801 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
802 		sc->alc_flags |= ALC_FLAG_APS;
803 		/* FALLTHROUGH */
804 	default:
805 		break;
806 	}
807 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
808 
809 	/*
810 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
811 	 * addition, Atheros said that enabling SMB wouldn't improve
812 	 * performance. However I think it's bad to access lots of
813 	 * registers to extract MAC statistics.
814 	 */
815 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
816 	/*
817 	 * Don't use Tx CMB. It is known to have silicon bug.
818 	 */
819 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
820 	sc->alc_rev = PCI_REVISION(pa->pa_class);
821 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
822 	    MASTER_CHIP_REV_SHIFT;
823 	if (alcdebug) {
824 		printf("%s: PCI device revision : 0x%04x\n",
825 		    device_xname(sc->sc_dev), sc->alc_rev);
826 		printf("%s: Chip id/revision : 0x%04x\n",
827 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
828 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
829 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
830 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
831 	}
832 
833 	error = alc_dma_alloc(sc);
834 	if (error)
835 		goto fail;
836 
837 	callout_init(&sc->sc_tick_ch, 0);
838 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
839 
840 	/* Load station address. */
841 	alc_get_macaddr(sc);
842 
843 	aprint_normal_dev(self, "Ethernet address %s\n",
844 	    ether_sprintf(sc->alc_eaddr));
845 
846 	ifp = &sc->sc_ec.ec_if;
847 	ifp->if_softc = sc;
848 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
849 	ifp->if_init = alc_init;
850 	ifp->if_ioctl = alc_ioctl;
851 	ifp->if_start = alc_start;
852 	ifp->if_stop = alc_stop;
853 	ifp->if_watchdog = alc_watchdog;
854 	ifp->if_baudrate = IF_Gbps(1);
855 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
856 	IFQ_SET_READY(&ifp->if_snd);
857 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
858 
859 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
860 
861 #ifdef ALC_CHECKSUM
862 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
863 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
864 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
865 #endif
866 
867 #if NVLAN > 0
868 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
869 #endif
870 
871 	/* Set up MII bus. */
872 	sc->sc_miibus.mii_ifp = ifp;
873 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
874 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
875 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
876 
877 	sc->sc_ec.ec_mii = &sc->sc_miibus;
878 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
879 	    alc_mediastatus);
880 	mii_flags = 0;
881 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
882 		mii_flags |= MIIF_DOPAUSE;
883 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
884 		MII_OFFSET_ANY, mii_flags);
885 
886 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
887 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
888 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
889 		    0, NULL);
890 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
891 	} else
892 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
893 
894 	if_attach(ifp);
895 	ether_ifattach(ifp, sc->alc_eaddr);
896 
897 	if (!pmf_device_register(self, NULL, NULL))
898 		aprint_error_dev(self, "couldn't establish power handler\n");
899 	else
900 		pmf_class_network_register(self, ifp);
901 
902 	return;
903 fail:
904 	alc_dma_free(sc);
905 	if (sc->sc_irq_handle != NULL) {
906 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
907 		sc->sc_irq_handle = NULL;
908 	}
909 	if (sc->sc_mem_size) {
910 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
911 		sc->sc_mem_size = 0;
912 	}
913 }
914 
915 static int
916 alc_detach(device_t self, int flags)
917 {
918 	struct alc_softc *sc = device_private(self);
919 	struct ifnet *ifp = &sc->sc_ec.ec_if;
920 	int s;
921 
922 	s = splnet();
923 	alc_stop(ifp, 0);
924 	splx(s);
925 
926 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
927 
928 	/* Delete all remaining media. */
929 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
930 
931 	ether_ifdetach(ifp);
932 	if_detach(ifp);
933 	alc_dma_free(sc);
934 
935 	alc_phy_down(sc);
936 	if (sc->sc_irq_handle != NULL) {
937 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
938 		sc->sc_irq_handle = NULL;
939 	}
940 	if (sc->sc_mem_size) {
941 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
942 		sc->sc_mem_size = 0;
943 	}
944 
945 	return (0);
946 }
947 
948 static int
949 alc_dma_alloc(struct alc_softc *sc)
950 {
951 	struct alc_txdesc *txd;
952 	struct alc_rxdesc *rxd;
953 	int nsegs, error, i;
954 
955 	/*
956 	 * Create DMA stuffs for TX ring
957 	 */
958 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
959 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
960 	if (error) {
961 		sc->alc_cdata.alc_tx_ring_map = NULL;
962 		return (ENOBUFS);
963 	}
964 
965 	/* Allocate DMA'able memory for TX ring */
966 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
967 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
968 	    &nsegs, BUS_DMA_NOWAIT);
969 	if (error) {
970 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
971 		    device_xname(sc->sc_dev));
972 		return error;
973 	}
974 
975 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
976 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
977 	    BUS_DMA_NOWAIT);
978 	if (error)
979 		return (ENOBUFS);
980 
981 	/* Load the DMA map for Tx ring. */
982 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
983 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
984 	if (error) {
985 		printf("%s: could not load DMA'able memory for Tx ring.\n",
986 		    device_xname(sc->sc_dev));
987 		bus_dmamem_free(sc->sc_dmat,
988 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
989 		return error;
990 	}
991 
992 	sc->alc_rdata.alc_tx_ring_paddr =
993 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
994 
995 	/*
996 	 * Create DMA stuffs for RX ring
997 	 */
998 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
999 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1000 	if (error)
1001 		return (ENOBUFS);
1002 
1003 	/* Allocate DMA'able memory for RX ring */
1004 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1005 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1006 	    &nsegs, BUS_DMA_NOWAIT);
1007 	if (error) {
1008 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1009 		    device_xname(sc->sc_dev));
1010 		return error;
1011 	}
1012 
1013 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1014 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1015 	    BUS_DMA_NOWAIT);
1016 	if (error)
1017 		return (ENOBUFS);
1018 
1019 	/* Load the DMA map for Rx ring. */
1020 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1021 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1022 	if (error) {
1023 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1024 		    device_xname(sc->sc_dev));
1025 		bus_dmamem_free(sc->sc_dmat,
1026 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1027 		return error;
1028 	}
1029 
1030 	sc->alc_rdata.alc_rx_ring_paddr =
1031 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1032 
1033 	/*
1034 	 * Create DMA stuffs for RX return ring
1035 	 */
1036 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1037 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1038 	if (error)
1039 		return (ENOBUFS);
1040 
1041 	/* Allocate DMA'able memory for RX return ring */
1042 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1043 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1044 	    &nsegs, BUS_DMA_NOWAIT);
1045 	if (error) {
1046 		printf("%s: could not allocate DMA'able memory for Rx "
1047 		    "return ring.\n", device_xname(sc->sc_dev));
1048 		return error;
1049 	}
1050 
1051 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1052 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1053 	    BUS_DMA_NOWAIT);
1054 	if (error)
1055 		return (ENOBUFS);
1056 
1057 	/*  Load the DMA map for Rx return ring. */
1058 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1059 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1060 	if (error) {
1061 		printf("%s: could not load DMA'able memory for Rx return ring."
1062 		    "\n", device_xname(sc->sc_dev));
1063 		bus_dmamem_free(sc->sc_dmat,
1064 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1065 		return error;
1066 	}
1067 
1068 	sc->alc_rdata.alc_rr_ring_paddr =
1069 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1070 
1071 	/*
1072 	 * Create DMA stuffs for CMB block
1073 	 */
1074 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1075 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1076 	    &sc->alc_cdata.alc_cmb_map);
1077 	if (error)
1078 		return (ENOBUFS);
1079 
1080 	/* Allocate DMA'able memory for CMB block */
1081 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1082 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1083 	    &nsegs, BUS_DMA_NOWAIT);
1084 	if (error) {
1085 		printf("%s: could not allocate DMA'able memory for "
1086 		    "CMB block\n", device_xname(sc->sc_dev));
1087 		return error;
1088 	}
1089 
1090 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1091 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1092 	    BUS_DMA_NOWAIT);
1093 	if (error)
1094 		return (ENOBUFS);
1095 
1096 	/*  Load the DMA map for CMB block. */
1097 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1098 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1099 	    BUS_DMA_WAITOK);
1100 	if (error) {
1101 		printf("%s: could not load DMA'able memory for CMB block\n",
1102 		    device_xname(sc->sc_dev));
1103 		bus_dmamem_free(sc->sc_dmat,
1104 		    &sc->alc_rdata.alc_cmb_seg, 1);
1105 		return error;
1106 	}
1107 
1108 	sc->alc_rdata.alc_cmb_paddr =
1109 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1110 
1111 	/*
1112 	 * Create DMA stuffs for SMB block
1113 	 */
1114 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1115 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1116 	    &sc->alc_cdata.alc_smb_map);
1117 	if (error)
1118 		return (ENOBUFS);
1119 
1120 	/* Allocate DMA'able memory for SMB block */
1121 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1122 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1123 	    &nsegs, BUS_DMA_NOWAIT);
1124 	if (error) {
1125 		printf("%s: could not allocate DMA'able memory for "
1126 		    "SMB block\n", device_xname(sc->sc_dev));
1127 		return error;
1128 	}
1129 
1130 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1131 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1132 	    BUS_DMA_NOWAIT);
1133 	if (error)
1134 		return (ENOBUFS);
1135 
1136 	/*  Load the DMA map for SMB block */
1137 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1138 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1139 	    BUS_DMA_WAITOK);
1140 	if (error) {
1141 		printf("%s: could not load DMA'able memory for SMB block\n",
1142 		    device_xname(sc->sc_dev));
1143 		bus_dmamem_free(sc->sc_dmat,
1144 		    &sc->alc_rdata.alc_smb_seg, 1);
1145 		return error;
1146 	}
1147 
1148 	sc->alc_rdata.alc_smb_paddr =
1149 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1150 
1151 
1152 	/* Create DMA maps for Tx buffers. */
1153 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1154 		txd = &sc->alc_cdata.alc_txdesc[i];
1155 		txd->tx_m = NULL;
1156 		txd->tx_dmamap = NULL;
1157 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1158 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1159 		    &txd->tx_dmamap);
1160 		if (error) {
1161 			printf("%s: could not create Tx dmamap.\n",
1162 			    device_xname(sc->sc_dev));
1163 			return error;
1164 		}
1165 	}
1166 
1167 	/* Create DMA maps for Rx buffers. */
1168 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1169 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1170 	if (error) {
1171 		printf("%s: could not create spare Rx dmamap.\n",
1172 		    device_xname(sc->sc_dev));
1173 		return error;
1174 	}
1175 
1176 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1177 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1178 		rxd->rx_m = NULL;
1179 		rxd->rx_dmamap = NULL;
1180 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1181 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1182 		if (error) {
1183 			printf("%s: could not create Rx dmamap.\n",
1184 			    device_xname(sc->sc_dev));
1185 			return error;
1186 		}
1187 	}
1188 
1189 	return (0);
1190 }
1191 
1192 
1193 static void
1194 alc_dma_free(struct alc_softc *sc)
1195 {
1196 	struct alc_txdesc *txd;
1197 	struct alc_rxdesc *rxd;
1198 	int i;
1199 
1200 	/* Tx buffers */
1201 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1202 		txd = &sc->alc_cdata.alc_txdesc[i];
1203 		if (txd->tx_dmamap != NULL) {
1204 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1205 			txd->tx_dmamap = NULL;
1206 		}
1207 	}
1208 	/* Rx buffers */
1209 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1210 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1211 		if (rxd->rx_dmamap != NULL) {
1212 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1213 			rxd->rx_dmamap = NULL;
1214 		}
1215 	}
1216 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1217 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1218 		sc->alc_cdata.alc_rx_sparemap = NULL;
1219 	}
1220 
1221 	/* Tx ring. */
1222 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1223 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1224 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1225 	    sc->alc_rdata.alc_tx_ring != NULL)
1226 		bus_dmamem_free(sc->sc_dmat,
1227 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1228 	sc->alc_rdata.alc_tx_ring = NULL;
1229 	sc->alc_cdata.alc_tx_ring_map = NULL;
1230 
1231 	/* Rx ring. */
1232 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1233 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1234 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1235 	    sc->alc_rdata.alc_rx_ring != NULL)
1236 		bus_dmamem_free(sc->sc_dmat,
1237 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1238 	sc->alc_rdata.alc_rx_ring = NULL;
1239 	sc->alc_cdata.alc_rx_ring_map = NULL;
1240 
1241 	/* Rx return ring. */
1242 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1243 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1244 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1245 	    sc->alc_rdata.alc_rr_ring != NULL)
1246 		bus_dmamem_free(sc->sc_dmat,
1247 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1248 	sc->alc_rdata.alc_rr_ring = NULL;
1249 	sc->alc_cdata.alc_rr_ring_map = NULL;
1250 
1251 	/* CMB block */
1252 	if (sc->alc_cdata.alc_cmb_map != NULL)
1253 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1254 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1255 	    sc->alc_rdata.alc_cmb != NULL)
1256 		bus_dmamem_free(sc->sc_dmat,
1257 		    &sc->alc_rdata.alc_cmb_seg, 1);
1258 	sc->alc_rdata.alc_cmb = NULL;
1259 	sc->alc_cdata.alc_cmb_map = NULL;
1260 
1261 	/* SMB block */
1262 	if (sc->alc_cdata.alc_smb_map != NULL)
1263 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1264 	if (sc->alc_cdata.alc_smb_map != NULL &&
1265 	    sc->alc_rdata.alc_smb != NULL)
1266 		bus_dmamem_free(sc->sc_dmat,
1267 		    &sc->alc_rdata.alc_smb_seg, 1);
1268 	sc->alc_rdata.alc_smb = NULL;
1269 	sc->alc_cdata.alc_smb_map = NULL;
1270 }
1271 
1272 static int
1273 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1274 {
1275 	struct alc_txdesc *txd, *txd_last;
1276 	struct tx_desc *desc;
1277 	struct mbuf *m;
1278 	bus_dmamap_t map;
1279 	uint32_t cflags, poff, vtag;
1280 	int error, idx, nsegs, prod;
1281 #if NVLAN > 0
1282 	struct m_tag *mtag;
1283 #endif
1284 
1285 	m = *m_head;
1286 	cflags = vtag = 0;
1287 	poff = 0;
1288 
1289 	prod = sc->alc_cdata.alc_tx_prod;
1290 	txd = &sc->alc_cdata.alc_txdesc[prod];
1291 	txd_last = txd;
1292 	map = txd->tx_dmamap;
1293 
1294 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1295 
1296 	if (error == EFBIG) {
1297 		error = 0;
1298 
1299 		*m_head = m_pullup(*m_head, MHLEN);
1300 		if (*m_head == NULL) {
1301 			printf("%s: can't defrag TX mbuf\n",
1302 			    device_xname(sc->sc_dev));
1303 			return ENOBUFS;
1304 		}
1305 
1306 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1307 		    BUS_DMA_NOWAIT);
1308 
1309 		if (error != 0) {
1310 			printf("%s: could not load defragged TX mbuf\n",
1311 			    device_xname(sc->sc_dev));
1312 			m_freem(*m_head);
1313 			*m_head = NULL;
1314 			return error;
1315 		}
1316 	} else if (error) {
1317 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1318 		return (error);
1319 	}
1320 
1321 	nsegs = map->dm_nsegs;
1322 
1323 	if (nsegs == 0) {
1324 		m_freem(*m_head);
1325 		*m_head = NULL;
1326 		return (EIO);
1327 	}
1328 
1329 	/* Check descriptor overrun. */
1330 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1331 		bus_dmamap_unload(sc->sc_dmat, map);
1332 		return (ENOBUFS);
1333 	}
1334 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1335 	    BUS_DMASYNC_PREWRITE);
1336 
1337 	m = *m_head;
1338 	desc = NULL;
1339 	idx = 0;
1340 #if NVLAN > 0
1341 	/* Configure VLAN hardware tag insertion. */
1342 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1343 		vtag = htons(VLAN_TAG_VALUE(mtag));
1344 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1345 		cflags |= TD_INS_VLAN_TAG;
1346 	}
1347 #endif
1348 	/* Configure Tx checksum offload. */
1349 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1350 		cflags |= TD_CUSTOM_CSUM;
1351 		/* Set checksum start offset. */
1352 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1353 		    TD_PLOAD_OFFSET_MASK;
1354 	}
1355 	for (; idx < nsegs; idx++) {
1356 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1357 		desc->len =
1358 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1359 		desc->flags = htole32(cflags);
1360 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1361 		sc->alc_cdata.alc_tx_cnt++;
1362 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1363 	}
1364 	/* Update producer index. */
1365 	sc->alc_cdata.alc_tx_prod = prod;
1366 
1367 	/* Finally set EOP on the last descriptor. */
1368 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1369 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1370 	desc->flags |= htole32(TD_EOP);
1371 
1372 	/* Swap dmamap of the first and the last. */
1373 	txd = &sc->alc_cdata.alc_txdesc[prod];
1374 	map = txd_last->tx_dmamap;
1375 	txd_last->tx_dmamap = txd->tx_dmamap;
1376 	txd->tx_dmamap = map;
1377 	txd->tx_m = m;
1378 
1379 	return (0);
1380 }
1381 
1382 static void
1383 alc_start(struct ifnet *ifp)
1384 {
1385 	struct alc_softc *sc = ifp->if_softc;
1386 	struct mbuf *m_head;
1387 	int enq;
1388 
1389 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1390 		return;
1391 
1392 	/* Reclaim transmitted frames. */
1393 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1394 		alc_txeof(sc);
1395 
1396 	enq = 0;
1397 	for (;;) {
1398 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1399 		if (m_head == NULL)
1400 			break;
1401 
1402 		/*
1403 		 * Pack the data into the transmit ring. If we
1404 		 * don't have room, set the OACTIVE flag and wait
1405 		 * for the NIC to drain the ring.
1406 		 */
1407 		if (alc_encap(sc, &m_head)) {
1408 			if (m_head == NULL)
1409 				break;
1410 			ifp->if_flags |= IFF_OACTIVE;
1411 			break;
1412 		}
1413 		enq = 1;
1414 
1415 		/*
1416 		 * If there's a BPF listener, bounce a copy of this frame
1417 		 * to him.
1418 		 */
1419 		bpf_mtap(ifp, m_head);
1420 	}
1421 
1422 	if (enq) {
1423 		/* Sync descriptors. */
1424 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1425 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1426 		    BUS_DMASYNC_PREWRITE);
1427 		/* Kick. Assume we're using normal Tx priority queue. */
1428 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1429 		    (sc->alc_cdata.alc_tx_prod <<
1430 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
1431 		    MBOX_TD_PROD_LO_IDX_MASK);
1432 		/* Set a timeout in case the chip goes out to lunch. */
1433 		ifp->if_timer = ALC_TX_TIMEOUT;
1434 	}
1435 }
1436 
1437 static void
1438 alc_watchdog(struct ifnet *ifp)
1439 {
1440 	struct alc_softc *sc = ifp->if_softc;
1441 
1442 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1443 		printf("%s: watchdog timeout (missed link)\n",
1444 		    device_xname(sc->sc_dev));
1445 		ifp->if_oerrors++;
1446 		alc_init_backend(ifp, false);
1447 		return;
1448 	}
1449 
1450 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1451 	ifp->if_oerrors++;
1452 	alc_init_backend(ifp, false);
1453 
1454 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1455 		 alc_start(ifp);
1456 }
1457 
1458 static int
1459 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1460 {
1461 	struct alc_softc *sc = ifp->if_softc;
1462 	int s, error = 0;
1463 
1464 	s = splnet();
1465 
1466 	error = ether_ioctl(ifp, cmd, data);
1467 	if (error == ENETRESET) {
1468 		if (ifp->if_flags & IFF_RUNNING)
1469 			alc_iff(sc);
1470 		error = 0;
1471 	}
1472 
1473 	splx(s);
1474 	return (error);
1475 }
1476 
1477 static void
1478 alc_mac_config(struct alc_softc *sc)
1479 {
1480 	struct mii_data *mii;
1481 	uint32_t reg;
1482 
1483 	mii = &sc->sc_miibus;
1484 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1485 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1486 	    MAC_CFG_SPEED_MASK);
1487 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1488 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1489 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1490 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1491 	/* Reprogram MAC with resolved speed/duplex. */
1492 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1493 	case IFM_10_T:
1494 	case IFM_100_TX:
1495 		reg |= MAC_CFG_SPEED_10_100;
1496 		break;
1497 	case IFM_1000_T:
1498 		reg |= MAC_CFG_SPEED_1000;
1499 		break;
1500 	}
1501 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1502 		reg |= MAC_CFG_FULL_DUPLEX;
1503 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1504 			reg |= MAC_CFG_TX_FC;
1505 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1506 			reg |= MAC_CFG_RX_FC;
1507 	}
1508 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1509 }
1510 
1511 static void
1512 alc_stats_clear(struct alc_softc *sc)
1513 {
1514 	struct smb sb, *smb;
1515 	uint32_t *reg;
1516 	int i;
1517 
1518 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1519 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1520 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1521 		    BUS_DMASYNC_POSTREAD);
1522 		smb = sc->alc_rdata.alc_smb;
1523 		/* Update done, clear. */
1524 		smb->updated = 0;
1525 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1526 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1527 		    BUS_DMASYNC_PREWRITE);
1528 	} else {
1529 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1530 		    reg++) {
1531 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1532 			i += sizeof(uint32_t);
1533 		}
1534 		/* Read Tx statistics. */
1535 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1536 		    reg++) {
1537 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1538 			i += sizeof(uint32_t);
1539 		}
1540 	}
1541 }
1542 
1543 static void
1544 alc_stats_update(struct alc_softc *sc)
1545 {
1546 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1547 	struct alc_hw_stats *stat;
1548 	struct smb sb, *smb;
1549 	uint32_t *reg;
1550 	int i;
1551 
1552 	stat = &sc->alc_stats;
1553 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1554 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1555 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1556 		    BUS_DMASYNC_POSTREAD);
1557 		smb = sc->alc_rdata.alc_smb;
1558 		if (smb->updated == 0)
1559 			return;
1560 	} else {
1561 		smb = &sb;
1562 		/* Read Rx statistics. */
1563 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1564 		    reg++) {
1565 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1566 			i += sizeof(uint32_t);
1567 		}
1568 		/* Read Tx statistics. */
1569 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1570 		    reg++) {
1571 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1572 			i += sizeof(uint32_t);
1573 		}
1574 	}
1575 
1576 	/* Rx stats. */
1577 	stat->rx_frames += smb->rx_frames;
1578 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1579 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1580 	stat->rx_pause_frames += smb->rx_pause_frames;
1581 	stat->rx_control_frames += smb->rx_control_frames;
1582 	stat->rx_crcerrs += smb->rx_crcerrs;
1583 	stat->rx_lenerrs += smb->rx_lenerrs;
1584 	stat->rx_bytes += smb->rx_bytes;
1585 	stat->rx_runts += smb->rx_runts;
1586 	stat->rx_fragments += smb->rx_fragments;
1587 	stat->rx_pkts_64 += smb->rx_pkts_64;
1588 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1589 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1590 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1591 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1592 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1593 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1594 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1595 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1596 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1597 	stat->rx_alignerrs += smb->rx_alignerrs;
1598 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1599 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1600 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1601 
1602 	/* Tx stats. */
1603 	stat->tx_frames += smb->tx_frames;
1604 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1605 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1606 	stat->tx_pause_frames += smb->tx_pause_frames;
1607 	stat->tx_excess_defer += smb->tx_excess_defer;
1608 	stat->tx_control_frames += smb->tx_control_frames;
1609 	stat->tx_deferred += smb->tx_deferred;
1610 	stat->tx_bytes += smb->tx_bytes;
1611 	stat->tx_pkts_64 += smb->tx_pkts_64;
1612 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1613 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1614 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1615 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1616 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1617 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1618 	stat->tx_single_colls += smb->tx_single_colls;
1619 	stat->tx_multi_colls += smb->tx_multi_colls;
1620 	stat->tx_late_colls += smb->tx_late_colls;
1621 	stat->tx_excess_colls += smb->tx_excess_colls;
1622 	stat->tx_abort += smb->tx_abort;
1623 	stat->tx_underrun += smb->tx_underrun;
1624 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1625 	stat->tx_lenerrs += smb->tx_lenerrs;
1626 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1627 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1628 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1629 
1630 	/* Update counters in ifnet. */
1631 	ifp->if_opackets += smb->tx_frames;
1632 
1633 	ifp->if_collisions += smb->tx_single_colls +
1634 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1635 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1636 
1637 	/*
1638 	 * XXX
1639 	 * tx_pkts_truncated counter looks suspicious. It constantly
1640 	 * increments with no sign of Tx errors. This may indicate
1641 	 * the counter name is not correct one so I've removed the
1642 	 * counter in output errors.
1643 	 */
1644 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1645 	    smb->tx_underrun;
1646 
1647 	ifp->if_ipackets += smb->rx_frames;
1648 
1649 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1650 	    smb->rx_runts + smb->rx_pkts_truncated +
1651 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1652 	    smb->rx_alignerrs;
1653 
1654 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1655 		/* Update done, clear. */
1656 		smb->updated = 0;
1657 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1658 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1659 	}
1660 }
1661 
1662 static int
1663 alc_intr(void *arg)
1664 {
1665 	struct alc_softc *sc = arg;
1666 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1667 	uint32_t status;
1668 
1669 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
1670 	if ((status & ALC_INTRS) == 0)
1671 		return (0);
1672 
1673 	/* Acknowledge and disable interrupts. */
1674 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1675 
1676 	if (ifp->if_flags & IFF_RUNNING) {
1677 		if (status & INTR_RX_PKT) {
1678 			int error;
1679 
1680 			error = alc_rxintr(sc);
1681 			if (error) {
1682 				alc_init_backend(ifp, false);
1683 				return (0);
1684 			}
1685 		}
1686 
1687 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1688 		    INTR_TXQ_TO_RST)) {
1689 			if (status & INTR_DMA_RD_TO_RST)
1690 				printf("%s: DMA read error! -- resetting\n",
1691 				    device_xname(sc->sc_dev));
1692 			if (status & INTR_DMA_WR_TO_RST)
1693 				printf("%s: DMA write error! -- resetting\n",
1694 				    device_xname(sc->sc_dev));
1695 			if (status & INTR_TXQ_TO_RST)
1696 				printf("%s: TxQ reset! -- resetting\n",
1697 				    device_xname(sc->sc_dev));
1698 			alc_init_backend(ifp, false);
1699 			return (0);
1700 		}
1701 
1702 		alc_txeof(sc);
1703 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1704 			alc_start(ifp);
1705 	}
1706 
1707 	/* Re-enable interrupts. */
1708 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1709 	return (1);
1710 }
1711 
1712 static void
1713 alc_txeof(struct alc_softc *sc)
1714 {
1715 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1716 	struct alc_txdesc *txd;
1717 	uint32_t cons, prod;
1718 	int prog;
1719 
1720 	if (sc->alc_cdata.alc_tx_cnt == 0)
1721 		return;
1722 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1723 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1724 	    BUS_DMASYNC_POSTREAD);
1725 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1726 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1727 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
1728 		    BUS_DMASYNC_POSTREAD);
1729 		prod = sc->alc_rdata.alc_cmb->cons;
1730 	} else
1731 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1732 	/* Assume we're using normal Tx priority queue. */
1733 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1734 	    MBOX_TD_CONS_LO_IDX_SHIFT;
1735 	cons = sc->alc_cdata.alc_tx_cons;
1736 	/*
1737 	 * Go through our Tx list and free mbufs for those
1738 	 * frames which have been transmitted.
1739 	 */
1740 	for (prog = 0; cons != prod; prog++,
1741 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1742 		if (sc->alc_cdata.alc_tx_cnt <= 0)
1743 			break;
1744 		prog++;
1745 		ifp->if_flags &= ~IFF_OACTIVE;
1746 		sc->alc_cdata.alc_tx_cnt--;
1747 		txd = &sc->alc_cdata.alc_txdesc[cons];
1748 		if (txd->tx_m != NULL) {
1749 			/* Reclaim transmitted mbufs. */
1750 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1751 			m_freem(txd->tx_m);
1752 			txd->tx_m = NULL;
1753 		}
1754 	}
1755 
1756 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1757 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1758 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1759 	sc->alc_cdata.alc_tx_cons = cons;
1760 	/*
1761 	 * Unarm watchdog timer only when there is no pending
1762 	 * frames in Tx queue.
1763 	 */
1764 	if (sc->alc_cdata.alc_tx_cnt == 0)
1765 		ifp->if_timer = 0;
1766 }
1767 
1768 static int
1769 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
1770 {
1771 	struct mbuf *m;
1772 	bus_dmamap_t map;
1773 	int error;
1774 
1775 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1776 	if (m == NULL)
1777 		return (ENOBUFS);
1778 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1779 	if (!(m->m_flags & M_EXT)) {
1780 		m_freem(m);
1781 		return (ENOBUFS);
1782 	}
1783 
1784 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1785 
1786 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
1787 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1788 
1789 	if (error != 0) {
1790 		if (!error) {
1791 			bus_dmamap_unload(sc->sc_dmat,
1792 			    sc->alc_cdata.alc_rx_sparemap);
1793 			error = EFBIG;
1794 			printf("%s: too many segments?!\n",
1795 			    device_xname(sc->sc_dev));
1796 		}
1797 		m_freem(m);
1798 
1799 		if (init)
1800 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1801 
1802 		return (error);
1803 	}
1804 
1805 	if (rxd->rx_m != NULL) {
1806 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1807 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1808 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1809 	}
1810 	map = rxd->rx_dmamap;
1811 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1812 	sc->alc_cdata.alc_rx_sparemap = map;
1813 	rxd->rx_m = m;
1814 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1815 	return (0);
1816 }
1817 
1818 static int
1819 alc_rxintr(struct alc_softc *sc)
1820 {
1821 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1822 	struct rx_rdesc *rrd;
1823 	uint32_t nsegs, status;
1824 	int rr_cons, prog;
1825 
1826 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1827 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1828 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1829 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1830 	rr_cons = sc->alc_cdata.alc_rr_cons;
1831 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1832 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1833 		status = le32toh(rrd->status);
1834 		if ((status & RRD_VALID) == 0)
1835 			break;
1836 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1837 		if (nsegs == 0) {
1838 			/* This should not happen! */
1839 			if (alcdebug)
1840 				printf("%s: unexpected segment count -- "
1841 				    "resetting\n", device_xname(sc->sc_dev));
1842 			return (EIO);
1843 		}
1844 		alc_rxeof(sc, rrd);
1845 		/* Clear Rx return status. */
1846 		rrd->status = 0;
1847 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1848 		sc->alc_cdata.alc_rx_cons += nsegs;
1849 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1850 		prog += nsegs;
1851 	}
1852 
1853 	if (prog > 0) {
1854 		/* Update the consumer index. */
1855 		sc->alc_cdata.alc_rr_cons = rr_cons;
1856 		/* Sync Rx return descriptors. */
1857 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1858 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1859 		    BUS_DMASYNC_PREWRITE);
1860 		/*
1861 		 * Sync updated Rx descriptors such that controller see
1862 		 * modified buffer addresses.
1863 		 */
1864 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1865 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1866 		    BUS_DMASYNC_PREWRITE);
1867 		/*
1868 		 * Let controller know availability of new Rx buffers.
1869 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1870 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1871 		 * only when Rx buffer pre-fetching is required. In
1872 		 * addition we already set ALC_RX_RD_FREE_THRESH to
1873 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1874 		 * it still seems that pre-fetching needs more
1875 		 * experimentation.
1876 		 */
1877 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1878 		    sc->alc_cdata.alc_rx_cons);
1879 	}
1880 
1881 	return (0);
1882 }
1883 
1884 /* Receive a frame. */
1885 static void
1886 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1887 {
1888 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1889 	struct alc_rxdesc *rxd;
1890 	struct mbuf *mp, *m;
1891 	uint32_t rdinfo, status;
1892 	int count, nsegs, rx_cons;
1893 
1894 	status = le32toh(rrd->status);
1895 	rdinfo = le32toh(rrd->rdinfo);
1896 	rx_cons = RRD_RD_IDX(rdinfo);
1897 	nsegs = RRD_RD_CNT(rdinfo);
1898 
1899 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1900 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1901 		/*
1902 		 * We want to pass the following frames to upper
1903 		 * layer regardless of error status of Rx return
1904 		 * ring.
1905 		 *
1906 		 *  o IP/TCP/UDP checksum is bad.
1907 		 *  o frame length and protocol specific length
1908 		 *     does not match.
1909 		 *
1910 		 *  Force network stack compute checksum for
1911 		 *  errored frames.
1912 		 */
1913 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1914 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1915 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1916 			return;
1917 	}
1918 
1919 	for (count = 0; count < nsegs; count++,
1920 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1921 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1922 		mp = rxd->rx_m;
1923 		/* Add a new receive buffer to the ring. */
1924 		if (alc_newbuf(sc, rxd, false) != 0) {
1925 			ifp->if_iqdrops++;
1926 			/* Reuse Rx buffers. */
1927 			if (sc->alc_cdata.alc_rxhead != NULL)
1928 				m_freem(sc->alc_cdata.alc_rxhead);
1929 			break;
1930 		}
1931 
1932 		/*
1933 		 * Assume we've received a full sized frame.
1934 		 * Actual size is fixed when we encounter the end of
1935 		 * multi-segmented frame.
1936 		 */
1937 		mp->m_len = sc->alc_buf_size;
1938 
1939 		/* Chain received mbufs. */
1940 		if (sc->alc_cdata.alc_rxhead == NULL) {
1941 			sc->alc_cdata.alc_rxhead = mp;
1942 			sc->alc_cdata.alc_rxtail = mp;
1943 		} else {
1944 			mp->m_flags &= ~M_PKTHDR;
1945 			sc->alc_cdata.alc_rxprev_tail =
1946 			    sc->alc_cdata.alc_rxtail;
1947 			sc->alc_cdata.alc_rxtail->m_next = mp;
1948 			sc->alc_cdata.alc_rxtail = mp;
1949 		}
1950 
1951 		if (count == nsegs - 1) {
1952 			/* Last desc. for this frame. */
1953 			m = sc->alc_cdata.alc_rxhead;
1954 			m->m_flags |= M_PKTHDR;
1955 			/*
1956 			 * It seems that L1C/L2C controller has no way
1957 			 * to tell hardware to strip CRC bytes.
1958 			 */
1959 			m->m_pkthdr.len =
1960 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1961 			if (nsegs > 1) {
1962 				/* Set last mbuf size. */
1963 				mp->m_len = sc->alc_cdata.alc_rxlen -
1964 				    (nsegs - 1) * sc->alc_buf_size;
1965 				/* Remove the CRC bytes in chained mbufs. */
1966 				if (mp->m_len <= ETHER_CRC_LEN) {
1967 					sc->alc_cdata.alc_rxtail =
1968 					    sc->alc_cdata.alc_rxprev_tail;
1969 					sc->alc_cdata.alc_rxtail->m_len -=
1970 					    (ETHER_CRC_LEN - mp->m_len);
1971 					sc->alc_cdata.alc_rxtail->m_next = NULL;
1972 					m_freem(mp);
1973 				} else {
1974 					mp->m_len -= ETHER_CRC_LEN;
1975 				}
1976 			} else
1977 				m->m_len = m->m_pkthdr.len;
1978 			m->m_pkthdr.rcvif = ifp;
1979 #if NVLAN > 0
1980 			/*
1981 			 * Due to hardware bugs, Rx checksum offloading
1982 			 * was intentionally disabled.
1983 			 */
1984 			if (status & RRD_VLAN_TAG) {
1985 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1986 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1987 			}
1988 #endif
1989 
1990 			bpf_mtap(ifp, m);
1991 
1992 			{
1993 			/* Pass it on. */
1994 			ether_input(ifp, m);
1995 			}
1996 		}
1997 	}
1998 	/* Reset mbuf chains. */
1999 	ALC_RXCHAIN_RESET(sc);
2000 }
2001 
2002 static void
2003 alc_tick(void *xsc)
2004 {
2005 	struct alc_softc *sc = xsc;
2006 	struct mii_data *mii = &sc->sc_miibus;
2007 	int s;
2008 
2009 	s = splnet();
2010 	mii_tick(mii);
2011 	alc_stats_update(sc);
2012 	splx(s);
2013 
2014 	callout_schedule(&sc->sc_tick_ch, hz);
2015 }
2016 
2017 static void
2018 alc_reset(struct alc_softc *sc)
2019 {
2020 	uint32_t reg;
2021 	int i;
2022 
2023 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2024 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2025 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2026 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2027 		DELAY(10);
2028 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2029 			break;
2030 	}
2031 	if (i == 0)
2032 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2033 
2034 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2035 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2036 			break;
2037 		DELAY(10);
2038 	}
2039 
2040 	if (i == 0)
2041 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2042 		    reg);
2043 }
2044 
2045 static int
2046 alc_init(struct ifnet *ifp)
2047 {
2048 
2049 	return alc_init_backend(ifp, true);
2050 }
2051 
2052 static int
2053 alc_init_backend(struct ifnet *ifp, bool init)
2054 {
2055 	struct alc_softc *sc = ifp->if_softc;
2056 	struct mii_data *mii;
2057 	uint8_t eaddr[ETHER_ADDR_LEN];
2058 	bus_addr_t paddr;
2059 	uint32_t reg, rxf_hi, rxf_lo;
2060 	int error;
2061 
2062 	/*
2063 	 * Cancel any pending I/O.
2064 	 */
2065 	alc_stop(ifp, 0);
2066 	/*
2067 	 * Reset the chip to a known state.
2068 	 */
2069 	alc_reset(sc);
2070 
2071 	/* Initialize Rx descriptors. */
2072 	error = alc_init_rx_ring(sc, init);
2073 	if (error != 0) {
2074 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2075 		alc_stop(ifp, 0);
2076 		return (error);
2077 	}
2078 	alc_init_rr_ring(sc);
2079 	alc_init_tx_ring(sc);
2080 	alc_init_cmb(sc);
2081 	alc_init_smb(sc);
2082 
2083 	/* Enable all clocks. */
2084 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2085 
2086 	/* Reprogram the station address. */
2087 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2088 	CSR_WRITE_4(sc, ALC_PAR0,
2089 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2090 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2091 	/*
2092 	 * Clear WOL status and disable all WOL feature as WOL
2093 	 * would interfere Rx operation under normal environments.
2094 	 */
2095 	CSR_READ_4(sc, ALC_WOL_CFG);
2096 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2097 	/* Set Tx descriptor base addresses. */
2098 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2099 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2100 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2101 	/* We don't use high priority ring. */
2102 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2103 	/* Set Tx descriptor counter. */
2104 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2105 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2106 	/* Set Rx descriptor base addresses. */
2107 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2108 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2109 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2110 	/* We use one Rx ring. */
2111 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2112 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2113 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2114 	/* Set Rx descriptor counter. */
2115 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2116 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2117 
2118 	/*
2119 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2120 	 * if it do not fit the buffer size. Rx return descriptor holds
2121 	 * a counter that indicates how many fragments were made by the
2122 	 * hardware. The buffer size should be multiple of 8 bytes.
2123 	 * Since hardware has limit on the size of buffer size, always
2124 	 * use the maximum value.
2125 	 * For strict-alignment architectures make sure to reduce buffer
2126 	 * size by 8 bytes to make room for alignment fixup.
2127 	 */
2128 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2129 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2130 
2131 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2132 	/* Set Rx return descriptor base addresses. */
2133 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2134 	/* We use one Rx return ring. */
2135 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2136 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2137 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2138 	/* Set Rx return descriptor counter. */
2139 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2140 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2141 	paddr = sc->alc_rdata.alc_cmb_paddr;
2142 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2143 	paddr = sc->alc_rdata.alc_smb_paddr;
2144 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2145 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2146 
2147 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2148 		/* Reconfigure SRAM - Vendor magic. */
2149 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2150 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2151 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2152 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2153 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2154 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2155 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2156 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2157 	}
2158 
2159 	/* Tell hardware that we're ready to load DMA blocks. */
2160 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2161 
2162 	/* Configure interrupt moderation timer. */
2163 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2164 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2165 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2166 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2167 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2168 	/*
2169 	 * We don't want to automatic interrupt clear as task queue
2170 	 * for the interrupt should know interrupt status.
2171 	 */
2172 	reg = MASTER_SA_TIMER_ENB;
2173 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2174 		reg |= MASTER_IM_RX_TIMER_ENB;
2175 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2176 		reg |= MASTER_IM_TX_TIMER_ENB;
2177 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2178 	/*
2179 	 * Disable interrupt re-trigger timer. We don't want automatic
2180 	 * re-triggering of un-ACKed interrupts.
2181 	 */
2182 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2183 	/* Configure CMB. */
2184 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2185 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2186 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2187 	else
2188 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2189 	/*
2190 	 * Hardware can be configured to issue SMB interrupt based
2191 	 * on programmed interval. Since there is a callout that is
2192 	 * invoked for every hz in driver we use that instead of
2193 	 * relying on periodic SMB interrupt.
2194 	 */
2195 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2196 	/* Clear MAC statistics. */
2197 	alc_stats_clear(sc);
2198 
2199 	/*
2200 	 * Always use maximum frame size that controller can support.
2201 	 * Otherwise received frames that has larger frame length
2202 	 * than alc(4) MTU would be silently dropped in hardware. This
2203 	 * would make path-MTU discovery hard as sender wouldn't get
2204 	 * any responses from receiver. alc(4) supports
2205 	 * multi-fragmented frames on Rx path so it has no issue on
2206 	 * assembling fragmented frames. Using maximum frame size also
2207 	 * removes the need to reinitialize hardware when interface
2208 	 * MTU configuration was changed.
2209 	 *
2210 	 * Be conservative in what you do, be liberal in what you
2211 	 * accept from others - RFC 793.
2212 	 */
2213 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2214 
2215 	/* Disable header split(?) */
2216 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2217 
2218 	/* Configure IPG/IFG parameters. */
2219 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2220 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2221 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2222 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2223 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2224 	/* Set parameters for half-duplex media. */
2225 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
2226 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2227 	    HDPX_CFG_LCOL_MASK) |
2228 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2229 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2230 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2231 	    HDPX_CFG_ABEBT_MASK) |
2232 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2233 	    HDPX_CFG_JAMIPG_MASK));
2234 	/*
2235 	 * Set TSO/checksum offload threshold. For frames that is
2236 	 * larger than this threshold, hardware wouldn't do
2237 	 * TSO/checksum offloading.
2238 	 */
2239 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2240 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2241 	    TSO_OFFLOAD_THRESH_MASK);
2242 	/* Configure TxQ. */
2243 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2244 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2245 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2246 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2247 		reg >>= 1;
2248 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2249 	    TXQ_CFG_TD_BURST_MASK;
2250 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2251 
2252 	/* Configure Rx free descriptor pre-fetching. */
2253 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2254 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2255 	    RX_RD_FREE_THRESH_HI_MASK) |
2256 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2257 	    RX_RD_FREE_THRESH_LO_MASK));
2258 
2259 	/*
2260 	 * Configure flow control parameters.
2261 	 * XON  : 80% of Rx FIFO
2262 	 * XOFF : 30% of Rx FIFO
2263 	 */
2264 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2265 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2266 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2267 		rxf_hi = (reg * 8) / 10;
2268 		rxf_lo = (reg * 3) / 10;
2269 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2270 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2271 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
2272 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2273 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2274 	}
2275 
2276 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2277 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2278 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2279 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2280 		    SERDES_PHY_CLK_SLOWDOWN);
2281 
2282 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
2283 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2284 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2285 
2286 	/* Configure RxQ. */
2287 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2288 	    RXQ_CFG_RD_BURST_MASK;
2289 	reg |= RXQ_CFG_RSS_MODE_DIS;
2290 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2291 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2292 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2293 
2294 	/* Configure DMA parameters. */
2295 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2296 	reg |= sc->alc_rcb;
2297 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2298 		reg |= DMA_CFG_CMB_ENB;
2299 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2300 		reg |= DMA_CFG_SMB_ENB;
2301 	else
2302 		reg |= DMA_CFG_SMB_DIS;
2303 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2304 	    DMA_CFG_RD_BURST_SHIFT;
2305 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2306 	    DMA_CFG_WR_BURST_SHIFT;
2307 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2308 	    DMA_CFG_RD_DELAY_CNT_MASK;
2309 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2310 	    DMA_CFG_WR_DELAY_CNT_MASK;
2311 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2312 
2313 	/*
2314 	 * Configure Tx/Rx MACs.
2315 	 *  - Auto-padding for short frames.
2316 	 *  - Enable CRC generation.
2317 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2318 	 *  is followed after detection of link establishment.
2319 	 *  AR813x/AR815x always does checksum computation regardless
2320 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2321 	 *  have bug in protocol field in Rx return structure so
2322 	 *  these controllers can't handle fragmented frames. Disable
2323 	 *  Rx checksum offloading until there is a newer controller
2324 	 *  that has sane implementation.
2325 	 */
2326 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2327 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2328 	    MAC_CFG_PREAMBLE_MASK);
2329 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2330 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2331 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2332 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2333 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2334 		reg |= MAC_CFG_SPEED_10_100;
2335 	else
2336 		reg |= MAC_CFG_SPEED_1000;
2337 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2338 
2339 	/* Set up the receive filter. */
2340 	alc_iff(sc);
2341 	alc_rxvlan(sc);
2342 
2343 	/* Acknowledge all pending interrupts and clear it. */
2344 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2345 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2346 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2347 
2348 	sc->alc_flags &= ~ALC_FLAG_LINK;
2349 	/* Switch to the current media. */
2350 	mii = &sc->sc_miibus;
2351 	mii_mediachg(mii);
2352 
2353 	callout_schedule(&sc->sc_tick_ch, hz);
2354 
2355 	ifp->if_flags |= IFF_RUNNING;
2356 	ifp->if_flags &= ~IFF_OACTIVE;
2357 
2358 	return (0);
2359 }
2360 
2361 static void
2362 alc_stop(struct ifnet *ifp, int disable)
2363 {
2364 	struct alc_softc *sc = ifp->if_softc;
2365 	struct alc_txdesc *txd;
2366 	struct alc_rxdesc *rxd;
2367 	uint32_t reg;
2368 	int i;
2369 
2370 	callout_stop(&sc->sc_tick_ch);
2371 
2372 	/*
2373 	 * Mark the interface down and cancel the watchdog timer.
2374 	 */
2375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2376 	ifp->if_timer = 0;
2377 
2378 	sc->alc_flags &= ~ALC_FLAG_LINK;
2379 
2380 	alc_stats_update(sc);
2381 
2382 	mii_down(&sc->sc_miibus);
2383 
2384 	/* Disable interrupts. */
2385 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2386 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2387 	alc_stop_queue(sc);
2388 
2389 	/* Disable DMA. */
2390 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
2391 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2392 	reg |= DMA_CFG_SMB_DIS;
2393 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2394 	DELAY(1000);
2395 
2396 	/* Stop Rx/Tx MACs. */
2397 	alc_stop_mac(sc);
2398 
2399 	/* Disable interrupts which might be touched in taskq handler. */
2400 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2401 
2402 	/* Reclaim Rx buffers that have been processed. */
2403 	if (sc->alc_cdata.alc_rxhead != NULL)
2404 		m_freem(sc->alc_cdata.alc_rxhead);
2405 	ALC_RXCHAIN_RESET(sc);
2406 	/*
2407 	 * Free Tx/Rx mbufs still in the queues.
2408 	 */
2409 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2410 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2411 		if (rxd->rx_m != NULL) {
2412 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2413 			m_freem(rxd->rx_m);
2414 			rxd->rx_m = NULL;
2415 		}
2416 	}
2417 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2418 		txd = &sc->alc_cdata.alc_txdesc[i];
2419 		if (txd->tx_m != NULL) {
2420 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2421 			m_freem(txd->tx_m);
2422 			txd->tx_m = NULL;
2423 		}
2424 	}
2425 }
2426 
2427 static void
2428 alc_stop_mac(struct alc_softc *sc)
2429 {
2430 	uint32_t reg;
2431 	int i;
2432 
2433 	/* Disable Rx/Tx MAC. */
2434 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2435 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2436 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2437 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2438 	}
2439 	for (i = ALC_TIMEOUT; i > 0; i--) {
2440 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2441 		if (reg == 0)
2442 			break;
2443 		DELAY(10);
2444 	}
2445 	if (i == 0)
2446 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2447 		    device_xname(sc->sc_dev), reg);
2448 }
2449 
2450 static void
2451 alc_start_queue(struct alc_softc *sc)
2452 {
2453 	uint32_t qcfg[] = {
2454 		0,
2455 		RXQ_CFG_QUEUE0_ENB,
2456 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2457 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2458 		RXQ_CFG_ENB
2459 	};
2460 	uint32_t cfg;
2461 
2462 	/* Enable RxQ. */
2463 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2464 	cfg &= ~RXQ_CFG_ENB;
2465 	cfg |= qcfg[1];
2466 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2467 	/* Enable TxQ. */
2468 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2469 	cfg |= TXQ_CFG_ENB;
2470 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2471 }
2472 
2473 static void
2474 alc_stop_queue(struct alc_softc *sc)
2475 {
2476 	uint32_t reg;
2477 	int i;
2478 
2479 	/* Disable RxQ. */
2480 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2481 	if ((reg & RXQ_CFG_ENB) != 0) {
2482 		reg &= ~RXQ_CFG_ENB;
2483 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2484 	}
2485 	/* Disable TxQ. */
2486 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2487 	if ((reg & TXQ_CFG_ENB) != 0) {
2488 		reg &= ~TXQ_CFG_ENB;
2489 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2490 	}
2491 	for (i = ALC_TIMEOUT; i > 0; i--) {
2492 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2493 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2494 			break;
2495 		DELAY(10);
2496 	}
2497 	if (i == 0)
2498 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2499 		    device_xname(sc->sc_dev), reg);
2500 }
2501 
2502 static void
2503 alc_init_tx_ring(struct alc_softc *sc)
2504 {
2505 	struct alc_ring_data *rd;
2506 	struct alc_txdesc *txd;
2507 	int i;
2508 
2509 	sc->alc_cdata.alc_tx_prod = 0;
2510 	sc->alc_cdata.alc_tx_cons = 0;
2511 	sc->alc_cdata.alc_tx_cnt = 0;
2512 
2513 	rd = &sc->alc_rdata;
2514 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2515 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2516 		txd = &sc->alc_cdata.alc_txdesc[i];
2517 		txd->tx_m = NULL;
2518 	}
2519 
2520 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2521 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2522 }
2523 
2524 static int
2525 alc_init_rx_ring(struct alc_softc *sc, bool init)
2526 {
2527 	struct alc_ring_data *rd;
2528 	struct alc_rxdesc *rxd;
2529 	int i;
2530 
2531 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2532 	rd = &sc->alc_rdata;
2533 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2534 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2535 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2536 		rxd->rx_m = NULL;
2537 		rxd->rx_desc = &rd->alc_rx_ring[i];
2538 		if (alc_newbuf(sc, rxd, init) != 0)
2539 			return (ENOBUFS);
2540 	}
2541 
2542 	/*
2543 	 * Since controller does not update Rx descriptors, driver
2544 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2545 	 * is enough to ensure coherence.
2546 	 */
2547 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2548 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2549 	/* Let controller know availability of new Rx buffers. */
2550 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2551 
2552 	return (0);
2553 }
2554 
2555 static void
2556 alc_init_rr_ring(struct alc_softc *sc)
2557 {
2558 	struct alc_ring_data *rd;
2559 
2560 	sc->alc_cdata.alc_rr_cons = 0;
2561 	ALC_RXCHAIN_RESET(sc);
2562 
2563 	rd = &sc->alc_rdata;
2564 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2565 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2566 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2567 }
2568 
2569 static void
2570 alc_init_cmb(struct alc_softc *sc)
2571 {
2572 	struct alc_ring_data *rd;
2573 
2574 	rd = &sc->alc_rdata;
2575 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2576 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2577 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2578 }
2579 
2580 static void
2581 alc_init_smb(struct alc_softc *sc)
2582 {
2583 	struct alc_ring_data *rd;
2584 
2585 	rd = &sc->alc_rdata;
2586 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
2587 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2588 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2589 }
2590 
2591 static void
2592 alc_rxvlan(struct alc_softc *sc)
2593 {
2594 	uint32_t reg;
2595 
2596 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2597 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2598 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2599 	else
2600 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2601 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2602 }
2603 
2604 static void
2605 alc_iff(struct alc_softc *sc)
2606 {
2607 	struct ethercom *ec = &sc->sc_ec;
2608 	struct ifnet *ifp = &ec->ec_if;
2609 	struct ether_multi *enm;
2610 	struct ether_multistep step;
2611 	uint32_t crc;
2612 	uint32_t mchash[2];
2613 	uint32_t rxcfg;
2614 
2615 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2616 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2617 	ifp->if_flags &= ~IFF_ALLMULTI;
2618 
2619 	/*
2620 	 * Always accept broadcast frames.
2621 	 */
2622 	rxcfg |= MAC_CFG_BCAST;
2623 
2624 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2625 		ifp->if_flags |= IFF_ALLMULTI;
2626 		if (ifp->if_flags & IFF_PROMISC)
2627 			rxcfg |= MAC_CFG_PROMISC;
2628 		else
2629 			rxcfg |= MAC_CFG_ALLMULTI;
2630 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2631 	} else {
2632 		/* Program new filter. */
2633 		memset(mchash, 0, sizeof(mchash));
2634 
2635 		ETHER_FIRST_MULTI(step, ec, enm);
2636 		while (enm != NULL) {
2637 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2638 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2639 			ETHER_NEXT_MULTI(step, enm);
2640 		}
2641 	}
2642 
2643 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2644 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2645 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2646 }
2647 
2648 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
2649 
2650 #ifdef _MODULE
2651 #include "ioconf.c"
2652 #endif
2653 
2654 static int
2655 if_alc_modcmd(modcmd_t cmd, void *opaque)
2656 {
2657 	int error = 0;
2658 
2659 	switch (cmd) {
2660 	case MODULE_CMD_INIT:
2661 #ifdef _MODULE
2662 		error = config_init_component(cfdriver_ioconf_if_alc,
2663 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2664 #endif
2665 		return error;
2666 	case MODULE_CMD_FINI:
2667 #ifdef _MODULE
2668 		error = config_fini_component(cfdriver_ioconf_if_alc,
2669 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2670 #endif
2671 		return error;
2672 	default:
2673 		return ENOTTY;
2674 	}
2675 }
2676