1 /* $NetBSD: if_alc.c,v 1.17 2015/11/24 23:30:04 leot Exp $ */ 2 /* $OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $ */ 3 /*- 4 * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */ 31 32 #ifdef _KERNEL_OPT 33 #include "vlan.h" 34 #endif 35 36 #include <sys/param.h> 37 #include <sys/proc.h> 38 #include <sys/endian.h> 39 #include <sys/systm.h> 40 #include <sys/types.h> 41 #include <sys/sockio.h> 42 #include <sys/mbuf.h> 43 #include <sys/queue.h> 44 #include <sys/kernel.h> 45 #include <sys/device.h> 46 #include <sys/callout.h> 47 #include <sys/socket.h> 48 #include <sys/module.h> 49 50 #include <sys/bus.h> 51 52 #include <net/if.h> 53 #include <net/if_dl.h> 54 #include <net/if_llc.h> 55 #include <net/if_media.h> 56 #include <net/if_ether.h> 57 58 #include <net/bpf.h> 59 60 #ifdef INET 61 #include <netinet/in.h> 62 #include <netinet/in_systm.h> 63 #include <netinet/in_var.h> 64 #include <netinet/ip.h> 65 #endif 66 67 #include <net/if_types.h> 68 #include <net/if_vlanvar.h> 69 70 #include <net/bpf.h> 71 72 #include <dev/mii/mii.h> 73 #include <dev/mii/miivar.h> 74 75 #include <dev/pci/pcireg.h> 76 #include <dev/pci/pcivar.h> 77 #include <dev/pci/pcidevs.h> 78 79 #include <dev/pci/if_alcreg.h> 80 81 /* 82 * Devices supported by this driver. 83 */ 84 static struct alc_ident alc_ident_table[] = { 85 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024, 86 "Atheros AR8131 PCIe Gigabit Ethernet" }, 87 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024, 88 "Atheros AR8132 PCIe Fast Ethernet" }, 89 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024, 90 "Atheros AR8151 v1.0 PCIe Gigabit Ethernet" }, 91 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024, 92 "Atheros AR8151 v2.0 PCIe Gigabit Ethernet" }, 93 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024, 94 "Atheros AR8152 v1.1 PCIe Fast Ethernet" }, 95 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024, 96 "Atheros AR8152 v2.0 PCIe Fast Ethernet" }, 97 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024, 98 "Atheros AR8161 PCIe Gigabit Ethernet" }, 99 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024, 100 "Atheros AR8162 PCIe Fast Ethernet" }, 101 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024, 102 "Atheros AR8171 PCIe Gigabit Ethernet" }, 103 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024, 104 "Atheros AR8172 PCIe Fast Ethernet" }, 105 { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024, 106 "Killer E2200 Gigabit Ethernet" }, 107 { 0, 0, 0, NULL }, 108 }; 109 110 static int alc_match(device_t, cfdata_t, void *); 111 static void alc_attach(device_t, device_t, void *); 112 static int alc_detach(device_t, int); 113 114 static int alc_init(struct ifnet *); 115 static int alc_init_backend(struct ifnet *, bool); 116 static void alc_start(struct ifnet *); 117 static int alc_ioctl(struct ifnet *, u_long, void *); 118 static void alc_watchdog(struct ifnet *); 119 static int alc_mediachange(struct ifnet *); 120 static void alc_mediastatus(struct ifnet *, struct ifmediareq *); 121 122 static void alc_aspm(struct alc_softc *, int, int); 123 static void alc_aspm_813x(struct alc_softc *, int); 124 static void alc_aspm_816x(struct alc_softc *, int); 125 static void alc_disable_l0s_l1(struct alc_softc *); 126 static int alc_dma_alloc(struct alc_softc *); 127 static void alc_dma_free(struct alc_softc *); 128 static void alc_dsp_fixup(struct alc_softc *, int); 129 static int alc_encap(struct alc_softc *, struct mbuf **); 130 static struct alc_ident * 131 alc_find_ident(struct pci_attach_args *); 132 static void alc_get_macaddr(struct alc_softc *); 133 static void alc_get_macaddr_813x(struct alc_softc *); 134 static void alc_get_macaddr_816x(struct alc_softc *); 135 static void alc_get_macaddr_par(struct alc_softc *); 136 static void alc_init_cmb(struct alc_softc *); 137 static void alc_init_rr_ring(struct alc_softc *); 138 static int alc_init_rx_ring(struct alc_softc *, bool); 139 static void alc_init_smb(struct alc_softc *); 140 static void alc_init_tx_ring(struct alc_softc *); 141 static int alc_intr(void *); 142 static void alc_mac_config(struct alc_softc *); 143 static uint32_t alc_mii_readreg_813x(struct alc_softc *, int, int); 144 static uint32_t alc_mii_readreg_816x(struct alc_softc *, int, int); 145 static void alc_mii_writereg_813x(struct alc_softc *, int, int, int); 146 static void alc_mii_writereg_816x(struct alc_softc *, int, int, int); 147 static int alc_miibus_readreg(device_t, int, int); 148 static void alc_miibus_statchg(struct ifnet *); 149 static void alc_miibus_writereg(device_t, int, int, int); 150 static uint32_t alc_miidbg_readreg(struct alc_softc *, int); 151 static void alc_miidbg_writereg(struct alc_softc *, int, int); 152 static uint32_t alc_miiext_readreg(struct alc_softc *, int, int); 153 static uint32_t alc_miiext_writereg(struct alc_softc *, int, int, int); 154 static int alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool); 155 static void alc_phy_down(struct alc_softc *); 156 static void alc_phy_reset(struct alc_softc *); 157 static void alc_phy_reset_813x(struct alc_softc *); 158 static void alc_phy_reset_816x(struct alc_softc *); 159 static void alc_reset(struct alc_softc *); 160 static void alc_rxeof(struct alc_softc *, struct rx_rdesc *); 161 static int alc_rxintr(struct alc_softc *); 162 static void alc_iff(struct alc_softc *); 163 static void alc_rxvlan(struct alc_softc *); 164 static void alc_start_queue(struct alc_softc *); 165 static void alc_stats_clear(struct alc_softc *); 166 static void alc_stats_update(struct alc_softc *); 167 static void alc_stop(struct ifnet *, int); 168 static void alc_stop_mac(struct alc_softc *); 169 static void alc_stop_queue(struct alc_softc *); 170 static void alc_tick(void *); 171 static void alc_txeof(struct alc_softc *); 172 173 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 }; 174 175 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc), 176 alc_match, alc_attach, alc_detach, NULL); 177 178 int alcdebug = 0; 179 #define DPRINTF(x) do { if (alcdebug) printf x; } while (0) 180 181 #define ETHER_ALIGN 2 182 #define ALC_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4) 183 184 static int 185 alc_miibus_readreg(device_t dev, int phy, int reg) 186 { 187 struct alc_softc *sc = device_private(dev); 188 int v; 189 190 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 191 v = alc_mii_readreg_816x(sc, phy, reg); 192 else 193 v = alc_mii_readreg_813x(sc, phy, reg); 194 return (v); 195 } 196 197 static uint32_t 198 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg) 199 { 200 uint32_t v; 201 int i; 202 203 if (phy != sc->alc_phyaddr) 204 return (0); 205 206 /* 207 * For AR8132 fast ethernet controller, do not report 1000baseT 208 * capability to mii(4). Even though AR8132 uses the same 209 * model/revision number of F1 gigabit PHY, the PHY has no 210 * ability to establish 1000baseT link. 211 */ 212 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && 213 reg == MII_EXTSR) 214 return 0; 215 216 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 217 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 218 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 219 DELAY(5); 220 v = CSR_READ_4(sc, ALC_MDIO); 221 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 222 break; 223 } 224 225 if (i == 0) { 226 printf("%s: phy read timeout: phy %d, reg %d\n", 227 device_xname(sc->sc_dev), phy, reg); 228 return (0); 229 } 230 231 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 232 } 233 234 static uint32_t 235 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg) 236 { 237 uint32_t clk, v; 238 int i; 239 240 if (phy != sc->alc_phyaddr) 241 return (0); 242 243 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) 244 clk = MDIO_CLK_25_128; 245 else 246 clk = MDIO_CLK_25_4; 247 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 248 MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg)); 249 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 250 DELAY(5); 251 v = CSR_READ_4(sc, ALC_MDIO); 252 if ((v & MDIO_OP_BUSY) == 0) 253 break; 254 } 255 256 if (i == 0) { 257 printf("%s: phy read timeout: phy %d, reg %d\n", 258 device_xname(sc->sc_dev), phy, reg); 259 return (0); 260 } 261 262 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 263 } 264 265 static void 266 alc_miibus_writereg(device_t dev, int phy, int reg, int val) 267 { 268 struct alc_softc *sc = device_private(dev); 269 270 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 271 alc_mii_writereg_816x(sc, phy, reg, val); 272 else 273 alc_mii_writereg_813x(sc, phy, reg, val); 274 275 return; 276 } 277 278 static void 279 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val) 280 { 281 uint32_t v; 282 int i; 283 284 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 285 (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | 286 MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); 287 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 288 DELAY(5); 289 v = CSR_READ_4(sc, ALC_MDIO); 290 if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) 291 break; 292 } 293 294 if (i == 0) 295 printf("%s: phy write timeout: phy %d, reg %d\n", 296 device_xname(sc->sc_dev), phy, reg); 297 298 return; 299 } 300 301 static void 302 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val) 303 { 304 uint32_t clk, v; 305 int i; 306 307 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) 308 clk = MDIO_CLK_25_128; 309 else 310 clk = MDIO_CLK_25_4; 311 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 312 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) | 313 MDIO_SUP_PREAMBLE | clk); 314 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 315 DELAY(5); 316 v = CSR_READ_4(sc, ALC_MDIO); 317 if ((v & MDIO_OP_BUSY) == 0) 318 break; 319 } 320 321 if (i == 0) 322 printf("%s: phy write timeout: phy %d, reg %d\n", 323 device_xname(sc->sc_dev), phy, reg); 324 325 return; 326 } 327 328 static void 329 alc_miibus_statchg(struct ifnet *ifp) 330 { 331 struct alc_softc *sc = ifp->if_softc; 332 struct mii_data *mii = &sc->sc_miibus; 333 uint32_t reg; 334 335 if ((ifp->if_flags & IFF_RUNNING) == 0) 336 return; 337 338 sc->alc_flags &= ~ALC_FLAG_LINK; 339 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 340 (IFM_ACTIVE | IFM_AVALID)) { 341 switch (IFM_SUBTYPE(mii->mii_media_active)) { 342 case IFM_10_T: 343 case IFM_100_TX: 344 sc->alc_flags |= ALC_FLAG_LINK; 345 break; 346 case IFM_1000_T: 347 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) 348 sc->alc_flags |= ALC_FLAG_LINK; 349 break; 350 default: 351 break; 352 } 353 } 354 /* Stop Rx/Tx MACs. */ 355 alc_stop_mac(sc); 356 357 /* Program MACs with resolved speed/duplex/flow-control. */ 358 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 359 alc_start_queue(sc); 360 alc_mac_config(sc); 361 /* Re-enable Tx/Rx MACs. */ 362 reg = CSR_READ_4(sc, ALC_MAC_CFG); 363 reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; 364 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 365 } 366 alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active)); 367 alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active)); 368 } 369 370 static uint32_t 371 alc_miidbg_readreg(struct alc_softc *sc, int reg) 372 { 373 374 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 375 reg); 376 return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 377 ALC_MII_DBG_DATA)); 378 } 379 380 static void 381 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val) 382 { 383 384 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 385 reg); 386 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val); 387 388 return; 389 } 390 391 static uint32_t 392 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg) 393 { 394 uint32_t clk, v; 395 int i; 396 397 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) | 398 EXT_MDIO_DEVADDR(devaddr)); 399 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) 400 clk = MDIO_CLK_25_128; 401 else 402 clk = MDIO_CLK_25_4; 403 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | 404 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT); 405 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 406 DELAY(5); 407 v = CSR_READ_4(sc, ALC_MDIO); 408 if ((v & MDIO_OP_BUSY) == 0) 409 break; 410 } 411 412 if (i == 0) { 413 printf("%s: phy ext read timeout: %d\n", 414 device_xname(sc->sc_dev), reg); 415 return (0); 416 } 417 418 return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); 419 } 420 421 static uint32_t 422 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val) 423 { 424 uint32_t clk, v; 425 int i; 426 427 CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) | 428 EXT_MDIO_DEVADDR(devaddr)); 429 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) 430 clk = MDIO_CLK_25_128; 431 else 432 clk = MDIO_CLK_25_4; 433 CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | 434 ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | 435 MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT); 436 for (i = ALC_PHY_TIMEOUT; i > 0; i--) { 437 DELAY(5); 438 v = CSR_READ_4(sc, ALC_MDIO); 439 if ((v & MDIO_OP_BUSY) == 0) 440 break; 441 } 442 443 if (i == 0) { 444 printf("%s: phy ext write timeout: reg %d\n", 445 device_xname(sc->sc_dev), reg); 446 return (0); 447 } 448 449 return (0); 450 } 451 452 static void 453 alc_dsp_fixup(struct alc_softc *sc, int media) 454 { 455 uint16_t agc, len, val; 456 457 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 458 return; 459 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0) 460 return; 461 462 /* 463 * Vendor PHY magic. 464 * 1000BT/AZ, wrong cable length 465 */ 466 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 467 len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6); 468 len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) & 469 EXT_CLDCTL6_CAB_LEN_MASK; 470 /* XXX: used to be (alc >> shift) & mask which is 0 */ 471 agc = alc_miidbg_readreg(sc, MII_DBG_AGC) & DBG_AGC_2_VGA_MASK; 472 agc >>= DBG_AGC_2_VGA_SHIFT; 473 if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G && 474 agc > DBG_AGC_LONG1G_LIMT) || 475 (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT && 476 agc > DBG_AGC_LONG1G_LIMT)) { 477 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT, 478 DBG_AZ_ANADECT_LONG); 479 val = alc_miiext_readreg(sc, MII_EXT_ANEG, 480 MII_EXT_ANEG_AFE); 481 val |= ANEG_AFEE_10BT_100M_TH; 482 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, 483 val); 484 } else { 485 alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT, 486 DBG_AZ_ANADECT_DEFAULT); 487 val = alc_miiext_readreg(sc, MII_EXT_ANEG, 488 MII_EXT_ANEG_AFE); 489 val &= ~ANEG_AFEE_10BT_100M_TH; 490 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, 491 val); 492 } 493 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 && 494 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) { 495 if (media == IFM_1000_T) { 496 /* 497 * Giga link threshold, raise the tolerance of 498 * noise 50%. 499 */ 500 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB); 501 val &= ~DBG_MSE20DB_TH_MASK; 502 val |= (DBG_MSE20DB_TH_HI << 503 DBG_MSE20DB_TH_SHIFT); 504 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val); 505 } else if (media == IFM_100_TX) 506 alc_miidbg_writereg(sc, MII_DBG_MSE16DB, 507 DBG_MSE16DB_UP); 508 } 509 } else { 510 val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE); 511 val &= ~ANEG_AFEE_10BT_100M_TH; 512 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val); 513 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 && 514 AR816X_REV(sc->alc_rev) == AR816X_REV_B0) { 515 alc_miidbg_writereg(sc, MII_DBG_MSE16DB, 516 DBG_MSE16DB_DOWN); 517 val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB); 518 val &= ~DBG_MSE20DB_TH_MASK; 519 val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT); 520 alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val); 521 } 522 } 523 } 524 525 static void 526 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 527 { 528 struct alc_softc *sc = ifp->if_softc; 529 struct mii_data *mii = &sc->sc_miibus; 530 531 if ((ifp->if_flags & IFF_UP) == 0) 532 return; 533 534 mii_pollstat(mii); 535 ifmr->ifm_status = mii->mii_media_status; 536 ifmr->ifm_active = mii->mii_media_active; 537 } 538 539 static int 540 alc_mediachange(struct ifnet *ifp) 541 { 542 struct alc_softc *sc = ifp->if_softc; 543 struct mii_data *mii = &sc->sc_miibus; 544 int error; 545 546 if (mii->mii_instance != 0) { 547 struct mii_softc *miisc; 548 549 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 550 mii_phy_reset(miisc); 551 } 552 error = mii_mediachg(mii); 553 554 return (error); 555 } 556 557 static struct alc_ident * 558 alc_find_ident(struct pci_attach_args *pa) 559 { 560 struct alc_ident *ident; 561 uint16_t vendor, devid; 562 563 vendor = PCI_VENDOR(pa->pa_id); 564 devid = PCI_PRODUCT(pa->pa_id); 565 for (ident = alc_ident_table; ident->name != NULL; ident++) { 566 if (vendor == ident->vendorid && devid == ident->deviceid) 567 return (ident); 568 } 569 570 return (NULL); 571 } 572 573 static int 574 alc_match(device_t dev, cfdata_t match, void *aux) 575 { 576 struct pci_attach_args *pa = aux; 577 578 return alc_find_ident(pa) != NULL; 579 } 580 581 static void 582 alc_get_macaddr(struct alc_softc *sc) 583 { 584 585 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 586 alc_get_macaddr_816x(sc); 587 else 588 alc_get_macaddr_813x(sc); 589 } 590 591 static void 592 alc_get_macaddr_813x(struct alc_softc *sc) 593 { 594 uint32_t opt; 595 uint16_t val; 596 int eeprom, i; 597 598 eeprom = 0; 599 opt = CSR_READ_4(sc, ALC_OPT_CFG); 600 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 && 601 (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) { 602 /* 603 * EEPROM found, let TWSI reload EEPROM configuration. 604 * This will set ethernet address of controller. 605 */ 606 eeprom++; 607 switch (sc->alc_ident->deviceid) { 608 case PCI_PRODUCT_ATTANSIC_AR8131: 609 case PCI_PRODUCT_ATTANSIC_AR8132: 610 if ((opt & OPT_CFG_CLK_ENB) == 0) { 611 opt |= OPT_CFG_CLK_ENB; 612 CSR_WRITE_4(sc, ALC_OPT_CFG, opt); 613 CSR_READ_4(sc, ALC_OPT_CFG); 614 DELAY(1000); 615 } 616 break; 617 case PCI_PRODUCT_ATTANSIC_AR8151: 618 case PCI_PRODUCT_ATTANSIC_AR8151_V2: 619 case PCI_PRODUCT_ATTANSIC_AR8152_B: 620 case PCI_PRODUCT_ATTANSIC_AR8152_B2: 621 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 622 ALC_MII_DBG_ADDR, 0x00); 623 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 624 ALC_MII_DBG_DATA); 625 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 626 ALC_MII_DBG_DATA, val & 0xFF7F); 627 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 628 ALC_MII_DBG_ADDR, 0x3B); 629 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 630 ALC_MII_DBG_DATA); 631 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 632 ALC_MII_DBG_DATA, val | 0x0008); 633 DELAY(20); 634 break; 635 } 636 637 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, 638 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); 639 CSR_WRITE_4(sc, ALC_WOL_CFG, 0); 640 CSR_READ_4(sc, ALC_WOL_CFG); 641 642 CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) | 643 TWSI_CFG_SW_LD_START); 644 for (i = 100; i > 0; i--) { 645 DELAY(1000); 646 if ((CSR_READ_4(sc, ALC_TWSI_CFG) & 647 TWSI_CFG_SW_LD_START) == 0) 648 break; 649 } 650 if (i == 0) 651 printf("%s: reloading EEPROM timeout!\n", 652 device_xname(sc->sc_dev)); 653 } else { 654 if (alcdebug) 655 printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev)); 656 } 657 if (eeprom != 0) { 658 switch (sc->alc_ident->deviceid) { 659 case PCI_PRODUCT_ATTANSIC_AR8131: 660 case PCI_PRODUCT_ATTANSIC_AR8132: 661 if ((opt & OPT_CFG_CLK_ENB) != 0) { 662 opt &= ~OPT_CFG_CLK_ENB; 663 CSR_WRITE_4(sc, ALC_OPT_CFG, opt); 664 CSR_READ_4(sc, ALC_OPT_CFG); 665 DELAY(1000); 666 } 667 break; 668 case PCI_PRODUCT_ATTANSIC_AR8151: 669 case PCI_PRODUCT_ATTANSIC_AR8151_V2: 670 case PCI_PRODUCT_ATTANSIC_AR8152_B: 671 case PCI_PRODUCT_ATTANSIC_AR8152_B2: 672 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 673 ALC_MII_DBG_ADDR, 0x00); 674 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 675 ALC_MII_DBG_DATA); 676 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 677 ALC_MII_DBG_DATA, val | 0x0080); 678 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 679 ALC_MII_DBG_ADDR, 0x3B); 680 val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 681 ALC_MII_DBG_DATA); 682 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 683 ALC_MII_DBG_DATA, val & 0xFFF7); 684 DELAY(20); 685 break; 686 } 687 } 688 689 alc_get_macaddr_par(sc); 690 } 691 692 static void 693 alc_get_macaddr_816x(struct alc_softc *sc) 694 { 695 uint32_t reg; 696 int i, reloaded; 697 698 reloaded = 0; 699 /* Try to reload station address via TWSI. */ 700 for (i = 100; i > 0; i--) { 701 reg = CSR_READ_4(sc, ALC_SLD); 702 if ((reg & (SLD_PROGRESS | SLD_START)) == 0) 703 break; 704 DELAY(1000); 705 } 706 if (i != 0) { 707 CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START); 708 for (i = 100; i > 0; i--) { 709 DELAY(1000); 710 reg = CSR_READ_4(sc, ALC_SLD); 711 if ((reg & SLD_START) == 0) 712 break; 713 } 714 if (i != 0) 715 reloaded++; 716 else if (alcdebug) 717 printf("%s: reloading station address via TWSI timed out!\n", 718 device_xname(sc->sc_dev)); 719 } 720 721 /* Try to reload station address from EEPROM or FLASH. */ 722 if (reloaded == 0) { 723 reg = CSR_READ_4(sc, ALC_EEPROM_LD); 724 if ((reg & (EEPROM_LD_EEPROM_EXIST | 725 EEPROM_LD_FLASH_EXIST)) != 0) { 726 for (i = 100; i > 0; i--) { 727 reg = CSR_READ_4(sc, ALC_EEPROM_LD); 728 if ((reg & (EEPROM_LD_PROGRESS | 729 EEPROM_LD_START)) == 0) 730 break; 731 DELAY(1000); 732 } 733 if (i != 0) { 734 CSR_WRITE_4(sc, ALC_EEPROM_LD, reg | 735 EEPROM_LD_START); 736 for (i = 100; i > 0; i--) { 737 DELAY(1000); 738 reg = CSR_READ_4(sc, ALC_EEPROM_LD); 739 if ((reg & EEPROM_LD_START) == 0) 740 break; 741 } 742 } else if (alcdebug) 743 printf("%s: reloading EEPROM/FLASH timed out!\n", 744 device_xname(sc->sc_dev)); 745 } 746 } 747 748 alc_get_macaddr_par(sc); 749 } 750 751 752 static void 753 alc_get_macaddr_par(struct alc_softc *sc) 754 { 755 uint32_t ea[2]; 756 757 ea[0] = CSR_READ_4(sc, ALC_PAR0); 758 ea[1] = CSR_READ_4(sc, ALC_PAR1); 759 sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF; 760 sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF; 761 sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF; 762 sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF; 763 sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF; 764 sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF; 765 } 766 767 static void 768 alc_disable_l0s_l1(struct alc_softc *sc) 769 { 770 uint32_t pmcfg; 771 772 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 773 /* Another magic from vendor. */ 774 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 775 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 | 776 PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | 777 PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1); 778 pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | 779 PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB; 780 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 781 } 782 } 783 784 static void 785 alc_phy_reset(struct alc_softc *sc) 786 { 787 788 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 789 alc_phy_reset_816x(sc); 790 else 791 alc_phy_reset_813x(sc); 792 } 793 794 static void 795 alc_phy_reset_813x(struct alc_softc *sc) 796 { 797 uint16_t data; 798 799 /* Reset magic from Linux. */ 800 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET); 801 CSR_READ_2(sc, ALC_GPHY_CFG); 802 DELAY(10 * 1000); 803 804 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | 805 GPHY_CFG_SEL_ANA_RESET); 806 CSR_READ_2(sc, ALC_GPHY_CFG); 807 DELAY(10 * 1000); 808 809 /* DSP fixup, Vendor magic. */ 810 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) { 811 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 812 ALC_MII_DBG_ADDR, 0x000A); 813 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 814 ALC_MII_DBG_DATA); 815 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 816 ALC_MII_DBG_DATA, data & 0xDFFF); 817 } 818 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 || 819 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 || 820 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B || 821 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) { 822 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 823 ALC_MII_DBG_ADDR, 0x003B); 824 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 825 ALC_MII_DBG_DATA); 826 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 827 ALC_MII_DBG_DATA, data & 0xFFF7); 828 DELAY(20 * 1000); 829 } 830 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) { 831 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 832 ALC_MII_DBG_ADDR, 0x0029); 833 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 834 ALC_MII_DBG_DATA, 0x929D); 835 } 836 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 || 837 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 || 838 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 || 839 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) { 840 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 841 ALC_MII_DBG_ADDR, 0x0029); 842 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 843 ALC_MII_DBG_DATA, 0xB6DD); 844 } 845 846 /* Load DSP codes, vendor magic. */ 847 data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | 848 ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK); 849 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 850 ALC_MII_DBG_ADDR, MII_ANA_CFG18); 851 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 852 ALC_MII_DBG_DATA, data); 853 854 data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) | 855 ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | 856 ANA_SERDES_EN_LCKDT; 857 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 858 ALC_MII_DBG_ADDR, MII_ANA_CFG5); 859 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 860 ALC_MII_DBG_DATA, data); 861 862 data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) & 863 ANA_LONG_CABLE_TH_100_MASK) | 864 ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) & 865 ANA_SHORT_CABLE_TH_100_SHIFT) | 866 ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW; 867 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 868 ALC_MII_DBG_ADDR, MII_ANA_CFG54); 869 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 870 ALC_MII_DBG_DATA, data); 871 872 data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) | 873 ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) | 874 ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) | 875 ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK); 876 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 877 ALC_MII_DBG_ADDR, MII_ANA_CFG4); 878 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 879 ALC_MII_DBG_DATA, data); 880 881 data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) | 882 ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB | 883 ANA_OEN_125M; 884 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 885 ALC_MII_DBG_ADDR, MII_ANA_CFG0); 886 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 887 ALC_MII_DBG_DATA, data); 888 DELAY(1000); 889 890 /* Disable hibernation. */ 891 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 892 0x0029); 893 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 894 ALC_MII_DBG_DATA); 895 data &= ~0x8000; 896 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 897 data); 898 899 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 900 0x000B); 901 data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr, 902 ALC_MII_DBG_DATA); 903 data &= ~0x8000; 904 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 905 data); 906 } 907 908 static void 909 alc_phy_reset_816x(struct alc_softc *sc) 910 { 911 uint32_t val; 912 913 val = CSR_READ_4(sc, ALC_GPHY_CFG); 914 val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE | 915 GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON | 916 GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB); 917 val |= GPHY_CFG_SEL_ANA_RESET; 918 #ifdef notyet 919 val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET; 920 #else 921 /* Disable PHY hibernation. */ 922 val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN); 923 #endif 924 CSR_WRITE_4(sc, ALC_GPHY_CFG, val); 925 DELAY(10); 926 CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET); 927 DELAY(800); 928 929 /* Vendor PHY magic. */ 930 #ifdef notyet 931 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT); 932 alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT); 933 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS, 934 EXT_VDRVBIAS_DEFAULT); 935 #else 936 /* Disable PHY hibernation. */ 937 alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, 938 DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB); 939 alc_miidbg_writereg(sc, MII_DBG_HIBNEG, 940 DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE)); 941 alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT); 942 #endif 943 944 /* XXX Disable EEE. */ 945 val = CSR_READ_4(sc, ALC_LPI_CTL); 946 val &= ~LPI_CTL_ENB; 947 CSR_WRITE_4(sc, ALC_LPI_CTL, val); 948 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0); 949 950 /* PHY power saving. */ 951 alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT); 952 alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT); 953 alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT); 954 alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT); 955 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2); 956 val &= ~DBG_GREENCFG2_GATE_DFSE_EN; 957 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val); 958 959 /* RTL8139C, 120m issue. */ 960 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78, 961 ANEG_NLP78_120M_DEFAULT); 962 alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10, 963 ANEG_S3DIG10_DEFAULT); 964 965 if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) { 966 /* Turn off half amplitude. */ 967 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3); 968 val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT; 969 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val); 970 /* Turn off Green feature. */ 971 val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2); 972 val |= DBG_GREENCFG2_BP_GREEN; 973 alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val); 974 /* Turn off half bias. */ 975 val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5); 976 val |= EXT_CLDCTL5_BP_VD_HLFBIAS; 977 alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val); 978 } 979 } 980 981 static void 982 alc_phy_down(struct alc_softc *sc) 983 { 984 uint32_t gphy; 985 986 switch (sc->alc_ident->deviceid) { 987 case PCI_PRODUCT_ATTANSIC_AR8161: 988 case PCI_PRODUCT_ATTANSIC_E2200: 989 case PCI_PRODUCT_ATTANSIC_AR8162: 990 case PCI_PRODUCT_ATTANSIC_AR8171: 991 case PCI_PRODUCT_ATTANSIC_AR8172: 992 gphy = CSR_READ_4(sc, ALC_GPHY_CFG); 993 gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE | 994 GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON); 995 gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | 996 GPHY_CFG_SEL_ANA_RESET; 997 gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW; 998 CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy); 999 break; 1000 case PCI_PRODUCT_ATTANSIC_AR8151: 1001 case PCI_PRODUCT_ATTANSIC_AR8151_V2: 1002 case PCI_PRODUCT_ATTANSIC_AR8152_B: 1003 case PCI_PRODUCT_ATTANSIC_AR8152_B2: 1004 /* 1005 * GPHY power down caused more problems on AR8151 v2.0. 1006 * When driver is reloaded after GPHY power down, 1007 * accesses to PHY/MAC registers hung the system. Only 1008 * cold boot recovered from it. I'm not sure whether 1009 * AR8151 v1.0 also requires this one though. I don't 1010 * have AR8151 v1.0 controller in hand. 1011 * The only option left is to isolate the PHY and 1012 * initiates power down the PHY which in turn saves 1013 * more power when driver is unloaded. 1014 */ 1015 alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, 1016 MII_BMCR, BMCR_ISO | BMCR_PDOWN); 1017 break; 1018 default: 1019 /* Force PHY down. */ 1020 CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | 1021 GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | 1022 GPHY_CFG_PWDOWN_HW); 1023 DELAY(1000); 1024 break; 1025 } 1026 } 1027 1028 static void 1029 alc_aspm(struct alc_softc *sc, int init, int media) 1030 { 1031 1032 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 1033 alc_aspm_816x(sc, init); 1034 else 1035 alc_aspm_813x(sc, media); 1036 } 1037 1038 static void 1039 alc_aspm_813x(struct alc_softc *sc, int media) 1040 { 1041 uint32_t pmcfg; 1042 uint16_t linkcfg; 1043 1044 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 1045 if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) == 1046 (ALC_FLAG_APS | ALC_FLAG_PCIE)) 1047 linkcfg = CSR_READ_2(sc, sc->alc_expcap + 1048 PCIE_LCSR); 1049 else 1050 linkcfg = 0; 1051 pmcfg &= ~PM_CFG_SERDES_PD_EX_L1; 1052 pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK); 1053 pmcfg |= PM_CFG_MAC_ASPM_CHK; 1054 pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT); 1055 pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); 1056 1057 if ((sc->alc_flags & ALC_FLAG_APS) != 0) { 1058 /* Disable extended sync except AR8152 B v1.0 */ 1059 linkcfg &= ~0x80; 1060 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B && 1061 sc->alc_rev == ATHEROS_AR8152_B_V10) 1062 linkcfg |= 0x80; 1063 CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR, 1064 linkcfg); 1065 pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB | 1066 PM_CFG_HOTRST); 1067 pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT << 1068 PM_CFG_L1_ENTRY_TIMER_SHIFT); 1069 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK; 1070 pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT << 1071 PM_CFG_PM_REQ_TIMER_SHIFT); 1072 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV; 1073 } 1074 1075 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 1076 if ((sc->alc_flags & ALC_FLAG_L0S) != 0) 1077 pmcfg |= PM_CFG_ASPM_L0S_ENB; 1078 if ((sc->alc_flags & ALC_FLAG_L1S) != 0) 1079 pmcfg |= PM_CFG_ASPM_L1_ENB; 1080 if ((sc->alc_flags & ALC_FLAG_APS) != 0) { 1081 if (sc->alc_ident->deviceid == 1082 PCI_PRODUCT_ATTANSIC_AR8152_B) 1083 pmcfg &= ~PM_CFG_ASPM_L0S_ENB; 1084 pmcfg &= ~(PM_CFG_SERDES_L1_ENB | 1085 PM_CFG_SERDES_PLL_L1_ENB | 1086 PM_CFG_SERDES_BUDS_RX_L1_ENB); 1087 pmcfg |= PM_CFG_CLK_SWH_L1; 1088 if (media == IFM_100_TX || media == IFM_1000_T) { 1089 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK; 1090 switch (sc->alc_ident->deviceid) { 1091 case PCI_PRODUCT_ATTANSIC_AR8152_B: 1092 pmcfg |= (7 << 1093 PM_CFG_L1_ENTRY_TIMER_SHIFT); 1094 break; 1095 case PCI_PRODUCT_ATTANSIC_AR8152_B2: 1096 case PCI_PRODUCT_ATTANSIC_AR8151_V2: 1097 pmcfg |= (4 << 1098 PM_CFG_L1_ENTRY_TIMER_SHIFT); 1099 break; 1100 default: 1101 pmcfg |= (15 << 1102 PM_CFG_L1_ENTRY_TIMER_SHIFT); 1103 break; 1104 } 1105 } 1106 } else { 1107 pmcfg |= PM_CFG_SERDES_L1_ENB | 1108 PM_CFG_SERDES_PLL_L1_ENB | 1109 PM_CFG_SERDES_BUDS_RX_L1_ENB; 1110 pmcfg &= ~(PM_CFG_CLK_SWH_L1 | 1111 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); 1112 } 1113 } else { 1114 pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB | 1115 PM_CFG_SERDES_PLL_L1_ENB); 1116 pmcfg |= PM_CFG_CLK_SWH_L1; 1117 if ((sc->alc_flags & ALC_FLAG_L1S) != 0) 1118 pmcfg |= PM_CFG_ASPM_L1_ENB; 1119 } 1120 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 1121 } 1122 1123 static void 1124 alc_aspm_816x(struct alc_softc *sc, int init) 1125 { 1126 uint32_t pmcfg; 1127 1128 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 1129 pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK; 1130 pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT; 1131 pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK; 1132 pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT; 1133 pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK; 1134 pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT; 1135 pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV; 1136 pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S | 1137 PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB | 1138 PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | 1139 PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB | 1140 PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST); 1141 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 && 1142 (sc->alc_rev & 0x01) != 0) 1143 pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB; 1144 if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { 1145 /* Link up, enable both L0s, L1s. */ 1146 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | 1147 PM_CFG_MAC_ASPM_CHK; 1148 } else { 1149 if (init != 0) 1150 pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | 1151 PM_CFG_MAC_ASPM_CHK; 1152 else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0) 1153 pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK; 1154 } 1155 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 1156 } 1157 1158 static void 1159 alc_attach(device_t parent, device_t self, void *aux) 1160 { 1161 1162 struct alc_softc *sc = device_private(self); 1163 struct pci_attach_args *pa = aux; 1164 pci_chipset_tag_t pc = pa->pa_pc; 1165 pci_intr_handle_t ih; 1166 const char *intrstr; 1167 struct ifnet *ifp; 1168 pcireg_t memtype; 1169 const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" }; 1170 uint16_t burst; 1171 int base, mii_flags, state, error = 0; 1172 uint32_t cap, ctl, val; 1173 char intrbuf[PCI_INTRSTR_LEN]; 1174 1175 sc->alc_ident = alc_find_ident(pa); 1176 1177 aprint_naive("\n"); 1178 aprint_normal(": %s\n", sc->alc_ident->name); 1179 1180 sc->sc_dev = self; 1181 sc->sc_dmat = pa->pa_dmat; 1182 sc->sc_pct = pa->pa_pc; 1183 sc->sc_pcitag = pa->pa_tag; 1184 1185 /* 1186 * Allocate IO memory 1187 */ 1188 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR); 1189 switch (memtype) { 1190 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: 1191 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M: 1192 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: 1193 break; 1194 default: 1195 aprint_error_dev(self, "invalid base address register\n"); 1196 break; 1197 } 1198 1199 if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, 1200 &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) { 1201 aprint_error_dev(self, "could not map mem space\n"); 1202 return; 1203 } 1204 1205 if (pci_intr_map(pa, &ih) != 0) { 1206 printf(": can't map interrupt\n"); 1207 goto fail; 1208 } 1209 1210 /* 1211 * Allocate IRQ 1212 */ 1213 intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf)); 1214 sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc); 1215 if (sc->sc_irq_handle == NULL) { 1216 printf(": could not establish interrupt"); 1217 if (intrstr != NULL) 1218 printf(" at %s", intrstr); 1219 printf("\n"); 1220 goto fail; 1221 } 1222 aprint_normal_dev(self, "interrupting at %s\n", intrstr); 1223 1224 /* Set PHY address. */ 1225 sc->alc_phyaddr = ALC_PHY_ADDR; 1226 1227 /* Initialize DMA parameters. */ 1228 sc->alc_dma_rd_burst = 0; 1229 sc->alc_dma_wr_burst = 0; 1230 sc->alc_rcb = DMA_CFG_RCB_64; 1231 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, 1232 &base, NULL)) { 1233 sc->alc_flags |= ALC_FLAG_PCIE; 1234 sc->alc_expcap = base; 1235 burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 1236 base + PCIE_DCSR) >> 16; 1237 sc->alc_dma_rd_burst = (burst & 0x7000) >> 12; 1238 sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5; 1239 if (alcdebug) { 1240 printf("%s: Read request size : %u bytes.\n", 1241 device_xname(sc->sc_dev), 1242 alc_dma_burst[sc->alc_dma_rd_burst]); 1243 printf("%s: TLP payload size : %u bytes.\n", 1244 device_xname(sc->sc_dev), 1245 alc_dma_burst[sc->alc_dma_wr_burst]); 1246 } 1247 if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024) 1248 sc->alc_dma_rd_burst = 3; 1249 if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024) 1250 sc->alc_dma_wr_burst = 3; 1251 1252 /* Clear data link and flow-control protocol error. */ 1253 val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV); 1254 val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP); 1255 CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val); 1256 1257 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 1258 CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, 1259 CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); 1260 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, 1261 CSR_READ_4(sc, ALC_PCIE_PHYMISC) | 1262 PCIE_PHYMISC_FORCE_RCV_DET); 1263 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B && 1264 sc->alc_rev == ATHEROS_AR8152_B_V10) { 1265 val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2); 1266 val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK | 1267 PCIE_PHYMISC2_SERDES_TH_MASK); 1268 val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT; 1269 val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT; 1270 CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val); 1271 } 1272 /* Disable ASPM L0S and L1. */ 1273 cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 1274 base + PCIE_LCAP) >> 16; 1275 if ((cap & 0x00000c00) != 0) { 1276 ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 1277 base + PCIE_LCSR) >> 16; 1278 if ((ctl & 0x08) != 0) 1279 sc->alc_rcb = DMA_CFG_RCB_128; 1280 if (alcdebug) 1281 printf("%s: RCB %u bytes\n", 1282 device_xname(sc->sc_dev), 1283 sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128); 1284 state = ctl & 0x03; 1285 if (state & 0x01) 1286 sc->alc_flags |= ALC_FLAG_L0S; 1287 if (state & 0x02) 1288 sc->alc_flags |= ALC_FLAG_L1S; 1289 if (alcdebug) 1290 printf("%s: ASPM %s %s\n", 1291 device_xname(sc->sc_dev), 1292 aspm_state[state], 1293 state == 0 ? "disabled" : "enabled"); 1294 alc_disable_l0s_l1(sc); 1295 } else { 1296 aprint_debug_dev(sc->sc_dev, "no ASPM support\n"); 1297 } 1298 } else { 1299 val = CSR_READ_4(sc, ALC_PDLL_TRNS1); 1300 val &= ~PDLL_TRNS1_D3PLLOFF_ENB; 1301 CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val); 1302 val = CSR_READ_4(sc, ALC_MASTER_CFG); 1303 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 && 1304 (sc->alc_rev & 0x01) != 0) { 1305 if ((val & MASTER_WAKEN_25M) == 0 || 1306 (val & MASTER_CLK_SEL_DIS) == 0) { 1307 val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS; 1308 CSR_WRITE_4(sc, ALC_MASTER_CFG, val); 1309 } 1310 } else { 1311 if ((val & MASTER_WAKEN_25M) == 0 || 1312 (val & MASTER_CLK_SEL_DIS) != 0) { 1313 val |= MASTER_WAKEN_25M; 1314 val &= ~MASTER_CLK_SEL_DIS; 1315 CSR_WRITE_4(sc, ALC_MASTER_CFG, val); 1316 } 1317 } 1318 } 1319 alc_aspm(sc, 1, IFM_UNKNOWN); 1320 } 1321 1322 /* Reset PHY. */ 1323 alc_phy_reset(sc); 1324 1325 /* Reset the ethernet controller. */ 1326 alc_stop_mac(sc); 1327 alc_reset(sc); 1328 1329 /* 1330 * One odd thing is AR8132 uses the same PHY hardware(F1 1331 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports 1332 * the PHY supports 1000Mbps but that's not true. The PHY 1333 * used in AR8132 can't establish gigabit link even if it 1334 * shows the same PHY model/revision number of AR8131. 1335 */ 1336 switch (sc->alc_ident->deviceid) { 1337 case PCI_PRODUCT_ATTANSIC_AR8161: 1338 if (PCI_SUBSYS_ID(pci_conf_read( 1339 sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 && 1340 sc->alc_rev == 0) 1341 sc->alc_flags |= ALC_FLAG_LINK_WAR; 1342 /* FALLTHROUGH */ 1343 case PCI_PRODUCT_ATTANSIC_E2200: 1344 case PCI_PRODUCT_ATTANSIC_AR8171: 1345 sc->alc_flags |= ALC_FLAG_AR816X_FAMILY; 1346 break; 1347 case PCI_PRODUCT_ATTANSIC_AR8162: 1348 case PCI_PRODUCT_ATTANSIC_AR8172: 1349 sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY; 1350 break; 1351 case PCI_PRODUCT_ATTANSIC_AR8152_B: 1352 case PCI_PRODUCT_ATTANSIC_AR8152_B2: 1353 sc->alc_flags |= ALC_FLAG_APS; 1354 /* FALLTHROUGH */ 1355 case PCI_PRODUCT_ATTANSIC_AR8132: 1356 sc->alc_flags |= ALC_FLAG_FASTETHER; 1357 break; 1358 case PCI_PRODUCT_ATTANSIC_AR8151: 1359 case PCI_PRODUCT_ATTANSIC_AR8151_V2: 1360 sc->alc_flags |= ALC_FLAG_APS; 1361 /* FALLTHROUGH */ 1362 default: 1363 break; 1364 } 1365 sc->alc_flags |= ALC_FLAG_JUMBO; 1366 1367 /* 1368 * It seems that AR813x/AR815x has silicon bug for SMB. In 1369 * addition, Atheros said that enabling SMB wouldn't improve 1370 * performance. However I think it's bad to access lots of 1371 * registers to extract MAC statistics. 1372 */ 1373 sc->alc_flags |= ALC_FLAG_SMB_BUG; 1374 /* 1375 * Don't use Tx CMB. It is known to have silicon bug. 1376 */ 1377 sc->alc_flags |= ALC_FLAG_CMB_BUG; 1378 sc->alc_rev = PCI_REVISION(pa->pa_class); 1379 sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >> 1380 MASTER_CHIP_REV_SHIFT; 1381 if (alcdebug) { 1382 printf("%s: PCI device revision : 0x%04x\n", 1383 device_xname(sc->sc_dev), sc->alc_rev); 1384 printf("%s: Chip id/revision : 0x%04x\n", 1385 device_xname(sc->sc_dev), sc->alc_chip_rev); 1386 printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev), 1387 CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8, 1388 CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8); 1389 } 1390 1391 error = alc_dma_alloc(sc); 1392 if (error) 1393 goto fail; 1394 1395 callout_init(&sc->sc_tick_ch, 0); 1396 callout_setfunc(&sc->sc_tick_ch, alc_tick, sc); 1397 1398 /* Load station address. */ 1399 alc_get_macaddr(sc); 1400 1401 aprint_normal_dev(self, "Ethernet address %s\n", 1402 ether_sprintf(sc->alc_eaddr)); 1403 1404 ifp = &sc->sc_ec.ec_if; 1405 ifp->if_softc = sc; 1406 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1407 ifp->if_init = alc_init; 1408 ifp->if_ioctl = alc_ioctl; 1409 ifp->if_start = alc_start; 1410 ifp->if_stop = alc_stop; 1411 ifp->if_watchdog = alc_watchdog; 1412 IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1); 1413 IFQ_SET_READY(&ifp->if_snd); 1414 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 1415 1416 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU; 1417 1418 #ifdef ALC_CHECKSUM 1419 ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 1420 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 1421 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx; 1422 #endif 1423 1424 #if NVLAN > 0 1425 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING; 1426 #endif 1427 1428 /* 1429 * XXX 1430 * It seems enabling Tx checksum offloading makes more trouble. 1431 * Sometimes the controller does not receive any frames when 1432 * Tx checksum offloading is enabled. I'm not sure whether this 1433 * is a bug in Tx checksum offloading logic or I got broken 1434 * sample boards. To safety, don't enable Tx checksum offloading 1435 * by default but give chance to users to toggle it if they know 1436 * their controllers work without problems. 1437 * Fortunately, Tx checksum offloading for AR816x family 1438 * seems to work. 1439 */ 1440 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 1441 ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx; 1442 ifp->if_capabilities &= ~ALC_CSUM_FEATURES; 1443 } 1444 1445 /* Set up MII bus. */ 1446 sc->sc_miibus.mii_ifp = ifp; 1447 sc->sc_miibus.mii_readreg = alc_miibus_readreg; 1448 sc->sc_miibus.mii_writereg = alc_miibus_writereg; 1449 sc->sc_miibus.mii_statchg = alc_miibus_statchg; 1450 1451 sc->sc_ec.ec_mii = &sc->sc_miibus; 1452 ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange, 1453 alc_mediastatus); 1454 mii_flags = 0; 1455 if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0) 1456 mii_flags |= MIIF_DOPAUSE; 1457 mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, 1458 MII_OFFSET_ANY, mii_flags); 1459 1460 if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { 1461 printf("%s: no PHY found!\n", device_xname(sc->sc_dev)); 1462 ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 1463 0, NULL); 1464 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); 1465 } else 1466 ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); 1467 1468 if_attach(ifp); 1469 ether_ifattach(ifp, sc->alc_eaddr); 1470 1471 if (!pmf_device_register(self, NULL, NULL)) 1472 aprint_error_dev(self, "couldn't establish power handler\n"); 1473 else 1474 pmf_class_network_register(self, ifp); 1475 1476 return; 1477 fail: 1478 alc_dma_free(sc); 1479 if (sc->sc_irq_handle != NULL) { 1480 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 1481 sc->sc_irq_handle = NULL; 1482 } 1483 if (sc->sc_mem_size) { 1484 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 1485 sc->sc_mem_size = 0; 1486 } 1487 } 1488 1489 static int 1490 alc_detach(device_t self, int flags) 1491 { 1492 struct alc_softc *sc = device_private(self); 1493 struct ifnet *ifp = &sc->sc_ec.ec_if; 1494 int s; 1495 1496 s = splnet(); 1497 alc_stop(ifp, 0); 1498 splx(s); 1499 1500 mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); 1501 1502 /* Delete all remaining media. */ 1503 ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); 1504 1505 ether_ifdetach(ifp); 1506 if_detach(ifp); 1507 alc_dma_free(sc); 1508 1509 alc_phy_down(sc); 1510 if (sc->sc_irq_handle != NULL) { 1511 pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); 1512 sc->sc_irq_handle = NULL; 1513 } 1514 if (sc->sc_mem_size) { 1515 bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); 1516 sc->sc_mem_size = 0; 1517 } 1518 1519 return (0); 1520 } 1521 1522 static int 1523 alc_dma_alloc(struct alc_softc *sc) 1524 { 1525 struct alc_txdesc *txd; 1526 struct alc_rxdesc *rxd; 1527 int nsegs, error, i; 1528 1529 /* 1530 * Create DMA stuffs for TX ring 1531 */ 1532 error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1, 1533 ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map); 1534 if (error) { 1535 sc->alc_cdata.alc_tx_ring_map = NULL; 1536 return (ENOBUFS); 1537 } 1538 1539 /* Allocate DMA'able memory for TX ring */ 1540 error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ, 1541 ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1, 1542 &nsegs, BUS_DMA_NOWAIT); 1543 if (error) { 1544 printf("%s: could not allocate DMA'able memory for Tx ring.\n", 1545 device_xname(sc->sc_dev)); 1546 return error; 1547 } 1548 1549 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg, 1550 nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring, 1551 BUS_DMA_NOWAIT); 1552 if (error) 1553 return (ENOBUFS); 1554 1555 /* Load the DMA map for Tx ring. */ 1556 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 1557 sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK); 1558 if (error) { 1559 printf("%s: could not load DMA'able memory for Tx ring.\n", 1560 device_xname(sc->sc_dev)); 1561 bus_dmamem_free(sc->sc_dmat, 1562 &sc->alc_rdata.alc_tx_ring_seg, 1); 1563 return error; 1564 } 1565 1566 sc->alc_rdata.alc_tx_ring_paddr = 1567 sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr; 1568 1569 /* 1570 * Create DMA stuffs for RX ring 1571 */ 1572 error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1, 1573 ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map); 1574 if (error) 1575 return (ENOBUFS); 1576 1577 /* Allocate DMA'able memory for RX ring */ 1578 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ, 1579 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1, 1580 &nsegs, BUS_DMA_NOWAIT); 1581 if (error) { 1582 printf("%s: could not allocate DMA'able memory for Rx ring.\n", 1583 device_xname(sc->sc_dev)); 1584 return error; 1585 } 1586 1587 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg, 1588 nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring, 1589 BUS_DMA_NOWAIT); 1590 if (error) 1591 return (ENOBUFS); 1592 1593 /* Load the DMA map for Rx ring. */ 1594 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 1595 sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK); 1596 if (error) { 1597 printf("%s: could not load DMA'able memory for Rx ring.\n", 1598 device_xname(sc->sc_dev)); 1599 bus_dmamem_free(sc->sc_dmat, 1600 &sc->alc_rdata.alc_rx_ring_seg, 1); 1601 return error; 1602 } 1603 1604 sc->alc_rdata.alc_rx_ring_paddr = 1605 sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr; 1606 1607 /* 1608 * Create DMA stuffs for RX return ring 1609 */ 1610 error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1, 1611 ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map); 1612 if (error) 1613 return (ENOBUFS); 1614 1615 /* Allocate DMA'able memory for RX return ring */ 1616 error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ, 1617 ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1, 1618 &nsegs, BUS_DMA_NOWAIT); 1619 if (error) { 1620 printf("%s: could not allocate DMA'able memory for Rx " 1621 "return ring.\n", device_xname(sc->sc_dev)); 1622 return error; 1623 } 1624 1625 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg, 1626 nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring, 1627 BUS_DMA_NOWAIT); 1628 if (error) 1629 return (ENOBUFS); 1630 1631 /* Load the DMA map for Rx return ring. */ 1632 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 1633 sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK); 1634 if (error) { 1635 printf("%s: could not load DMA'able memory for Rx return ring." 1636 "\n", device_xname(sc->sc_dev)); 1637 bus_dmamem_free(sc->sc_dmat, 1638 &sc->alc_rdata.alc_rr_ring_seg, 1); 1639 return error; 1640 } 1641 1642 sc->alc_rdata.alc_rr_ring_paddr = 1643 sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr; 1644 1645 /* 1646 * Create DMA stuffs for CMB block 1647 */ 1648 error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1, 1649 ALC_CMB_SZ, 0, BUS_DMA_NOWAIT, 1650 &sc->alc_cdata.alc_cmb_map); 1651 if (error) 1652 return (ENOBUFS); 1653 1654 /* Allocate DMA'able memory for CMB block */ 1655 error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ, 1656 ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1, 1657 &nsegs, BUS_DMA_NOWAIT); 1658 if (error) { 1659 printf("%s: could not allocate DMA'able memory for " 1660 "CMB block\n", device_xname(sc->sc_dev)); 1661 return error; 1662 } 1663 1664 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg, 1665 nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb, 1666 BUS_DMA_NOWAIT); 1667 if (error) 1668 return (ENOBUFS); 1669 1670 /* Load the DMA map for CMB block. */ 1671 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 1672 sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL, 1673 BUS_DMA_WAITOK); 1674 if (error) { 1675 printf("%s: could not load DMA'able memory for CMB block\n", 1676 device_xname(sc->sc_dev)); 1677 bus_dmamem_free(sc->sc_dmat, 1678 &sc->alc_rdata.alc_cmb_seg, 1); 1679 return error; 1680 } 1681 1682 sc->alc_rdata.alc_cmb_paddr = 1683 sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr; 1684 1685 /* 1686 * Create DMA stuffs for SMB block 1687 */ 1688 error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1, 1689 ALC_SMB_SZ, 0, BUS_DMA_NOWAIT, 1690 &sc->alc_cdata.alc_smb_map); 1691 if (error) 1692 return (ENOBUFS); 1693 1694 /* Allocate DMA'able memory for SMB block */ 1695 error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ, 1696 ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1, 1697 &nsegs, BUS_DMA_NOWAIT); 1698 if (error) { 1699 printf("%s: could not allocate DMA'able memory for " 1700 "SMB block\n", device_xname(sc->sc_dev)); 1701 return error; 1702 } 1703 1704 error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg, 1705 nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb, 1706 BUS_DMA_NOWAIT); 1707 if (error) 1708 return (ENOBUFS); 1709 1710 /* Load the DMA map for SMB block */ 1711 error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 1712 sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL, 1713 BUS_DMA_WAITOK); 1714 if (error) { 1715 printf("%s: could not load DMA'able memory for SMB block\n", 1716 device_xname(sc->sc_dev)); 1717 bus_dmamem_free(sc->sc_dmat, 1718 &sc->alc_rdata.alc_smb_seg, 1); 1719 return error; 1720 } 1721 1722 sc->alc_rdata.alc_smb_paddr = 1723 sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr; 1724 1725 1726 /* Create DMA maps for Tx buffers. */ 1727 for (i = 0; i < ALC_TX_RING_CNT; i++) { 1728 txd = &sc->alc_cdata.alc_txdesc[i]; 1729 txd->tx_m = NULL; 1730 txd->tx_dmamap = NULL; 1731 error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE, 1732 ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, 1733 &txd->tx_dmamap); 1734 if (error) { 1735 printf("%s: could not create Tx dmamap.\n", 1736 device_xname(sc->sc_dev)); 1737 return error; 1738 } 1739 } 1740 1741 /* Create DMA maps for Rx buffers. */ 1742 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 1743 BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap); 1744 if (error) { 1745 printf("%s: could not create spare Rx dmamap.\n", 1746 device_xname(sc->sc_dev)); 1747 return error; 1748 } 1749 1750 for (i = 0; i < ALC_RX_RING_CNT; i++) { 1751 rxd = &sc->alc_cdata.alc_rxdesc[i]; 1752 rxd->rx_m = NULL; 1753 rxd->rx_dmamap = NULL; 1754 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 1755 MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap); 1756 if (error) { 1757 printf("%s: could not create Rx dmamap.\n", 1758 device_xname(sc->sc_dev)); 1759 return error; 1760 } 1761 } 1762 1763 return (0); 1764 } 1765 1766 1767 static void 1768 alc_dma_free(struct alc_softc *sc) 1769 { 1770 struct alc_txdesc *txd; 1771 struct alc_rxdesc *rxd; 1772 int i; 1773 1774 /* Tx buffers */ 1775 for (i = 0; i < ALC_TX_RING_CNT; i++) { 1776 txd = &sc->alc_cdata.alc_txdesc[i]; 1777 if (txd->tx_dmamap != NULL) { 1778 bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); 1779 txd->tx_dmamap = NULL; 1780 } 1781 } 1782 /* Rx buffers */ 1783 for (i = 0; i < ALC_RX_RING_CNT; i++) { 1784 rxd = &sc->alc_cdata.alc_rxdesc[i]; 1785 if (rxd->rx_dmamap != NULL) { 1786 bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap); 1787 rxd->rx_dmamap = NULL; 1788 } 1789 } 1790 if (sc->alc_cdata.alc_rx_sparemap != NULL) { 1791 bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap); 1792 sc->alc_cdata.alc_rx_sparemap = NULL; 1793 } 1794 1795 /* Tx ring. */ 1796 if (sc->alc_cdata.alc_tx_ring_map != NULL) 1797 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map); 1798 if (sc->alc_cdata.alc_tx_ring_map != NULL && 1799 sc->alc_rdata.alc_tx_ring != NULL) 1800 bus_dmamem_free(sc->sc_dmat, 1801 &sc->alc_rdata.alc_tx_ring_seg, 1); 1802 sc->alc_rdata.alc_tx_ring = NULL; 1803 sc->alc_cdata.alc_tx_ring_map = NULL; 1804 1805 /* Rx ring. */ 1806 if (sc->alc_cdata.alc_rx_ring_map != NULL) 1807 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map); 1808 if (sc->alc_cdata.alc_rx_ring_map != NULL && 1809 sc->alc_rdata.alc_rx_ring != NULL) 1810 bus_dmamem_free(sc->sc_dmat, 1811 &sc->alc_rdata.alc_rx_ring_seg, 1); 1812 sc->alc_rdata.alc_rx_ring = NULL; 1813 sc->alc_cdata.alc_rx_ring_map = NULL; 1814 1815 /* Rx return ring. */ 1816 if (sc->alc_cdata.alc_rr_ring_map != NULL) 1817 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map); 1818 if (sc->alc_cdata.alc_rr_ring_map != NULL && 1819 sc->alc_rdata.alc_rr_ring != NULL) 1820 bus_dmamem_free(sc->sc_dmat, 1821 &sc->alc_rdata.alc_rr_ring_seg, 1); 1822 sc->alc_rdata.alc_rr_ring = NULL; 1823 sc->alc_cdata.alc_rr_ring_map = NULL; 1824 1825 /* CMB block */ 1826 if (sc->alc_cdata.alc_cmb_map != NULL) 1827 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map); 1828 if (sc->alc_cdata.alc_cmb_map != NULL && 1829 sc->alc_rdata.alc_cmb != NULL) 1830 bus_dmamem_free(sc->sc_dmat, 1831 &sc->alc_rdata.alc_cmb_seg, 1); 1832 sc->alc_rdata.alc_cmb = NULL; 1833 sc->alc_cdata.alc_cmb_map = NULL; 1834 1835 /* SMB block */ 1836 if (sc->alc_cdata.alc_smb_map != NULL) 1837 bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map); 1838 if (sc->alc_cdata.alc_smb_map != NULL && 1839 sc->alc_rdata.alc_smb != NULL) 1840 bus_dmamem_free(sc->sc_dmat, 1841 &sc->alc_rdata.alc_smb_seg, 1); 1842 sc->alc_rdata.alc_smb = NULL; 1843 sc->alc_cdata.alc_smb_map = NULL; 1844 } 1845 1846 static int 1847 alc_encap(struct alc_softc *sc, struct mbuf **m_head) 1848 { 1849 struct alc_txdesc *txd, *txd_last; 1850 struct tx_desc *desc; 1851 struct mbuf *m; 1852 bus_dmamap_t map; 1853 uint32_t cflags, poff, vtag; 1854 int error, idx, nsegs, prod; 1855 #if NVLAN > 0 1856 struct m_tag *mtag; 1857 #endif 1858 1859 m = *m_head; 1860 cflags = vtag = 0; 1861 poff = 0; 1862 1863 prod = sc->alc_cdata.alc_tx_prod; 1864 txd = &sc->alc_cdata.alc_txdesc[prod]; 1865 txd_last = txd; 1866 map = txd->tx_dmamap; 1867 1868 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); 1869 1870 if (error == EFBIG) { 1871 error = 0; 1872 1873 *m_head = m_pullup(*m_head, MHLEN); 1874 if (*m_head == NULL) { 1875 printf("%s: can't defrag TX mbuf\n", 1876 device_xname(sc->sc_dev)); 1877 return ENOBUFS; 1878 } 1879 1880 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, 1881 BUS_DMA_NOWAIT); 1882 1883 if (error != 0) { 1884 printf("%s: could not load defragged TX mbuf\n", 1885 device_xname(sc->sc_dev)); 1886 m_freem(*m_head); 1887 *m_head = NULL; 1888 return error; 1889 } 1890 } else if (error) { 1891 printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev)); 1892 return (error); 1893 } 1894 1895 nsegs = map->dm_nsegs; 1896 1897 if (nsegs == 0) { 1898 m_freem(*m_head); 1899 *m_head = NULL; 1900 return (EIO); 1901 } 1902 1903 /* Check descriptor overrun. */ 1904 if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) { 1905 bus_dmamap_unload(sc->sc_dmat, map); 1906 return (ENOBUFS); 1907 } 1908 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1909 BUS_DMASYNC_PREWRITE); 1910 1911 m = *m_head; 1912 desc = NULL; 1913 idx = 0; 1914 #if NVLAN > 0 1915 /* Configure VLAN hardware tag insertion. */ 1916 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) { 1917 vtag = htons(VLAN_TAG_VALUE(mtag)); 1918 vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK; 1919 cflags |= TD_INS_VLAN_TAG; 1920 } 1921 #endif 1922 /* Configure Tx checksum offload. */ 1923 if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) { 1924 cflags |= TD_CUSTOM_CSUM; 1925 /* Set checksum start offset. */ 1926 cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) & 1927 TD_PLOAD_OFFSET_MASK; 1928 } 1929 for (; idx < nsegs; idx++) { 1930 desc = &sc->alc_rdata.alc_tx_ring[prod]; 1931 desc->len = 1932 htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag); 1933 desc->flags = htole32(cflags); 1934 desc->addr = htole64(map->dm_segs[idx].ds_addr); 1935 sc->alc_cdata.alc_tx_cnt++; 1936 ALC_DESC_INC(prod, ALC_TX_RING_CNT); 1937 } 1938 /* Update producer index. */ 1939 sc->alc_cdata.alc_tx_prod = prod; 1940 1941 /* Finally set EOP on the last descriptor. */ 1942 prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT; 1943 desc = &sc->alc_rdata.alc_tx_ring[prod]; 1944 desc->flags |= htole32(TD_EOP); 1945 1946 /* Swap dmamap of the first and the last. */ 1947 txd = &sc->alc_cdata.alc_txdesc[prod]; 1948 map = txd_last->tx_dmamap; 1949 txd_last->tx_dmamap = txd->tx_dmamap; 1950 txd->tx_dmamap = map; 1951 txd->tx_m = m; 1952 1953 return (0); 1954 } 1955 1956 static void 1957 alc_start(struct ifnet *ifp) 1958 { 1959 struct alc_softc *sc = ifp->if_softc; 1960 struct mbuf *m_head; 1961 int enq; 1962 1963 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1964 return; 1965 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) 1966 return; 1967 if (IFQ_IS_EMPTY(&ifp->if_snd)) 1968 return; 1969 1970 /* Reclaim transmitted frames. */ 1971 if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT) 1972 alc_txeof(sc); 1973 1974 enq = 0; 1975 for (;;) { 1976 IFQ_DEQUEUE(&ifp->if_snd, m_head); 1977 if (m_head == NULL) 1978 break; 1979 1980 /* 1981 * Pack the data into the transmit ring. If we 1982 * don't have room, set the OACTIVE flag and wait 1983 * for the NIC to drain the ring. 1984 */ 1985 if (alc_encap(sc, &m_head)) { 1986 if (m_head == NULL) 1987 break; 1988 ifp->if_flags |= IFF_OACTIVE; 1989 break; 1990 } 1991 enq = 1; 1992 1993 /* 1994 * If there's a BPF listener, bounce a copy of this frame 1995 * to him. 1996 */ 1997 bpf_mtap(ifp, m_head); 1998 } 1999 2000 if (enq) { 2001 /* Sync descriptors. */ 2002 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, 2003 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, 2004 BUS_DMASYNC_PREWRITE); 2005 /* Kick. Assume we're using normal Tx priority queue. */ 2006 CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX, 2007 (sc->alc_cdata.alc_tx_prod << 2008 MBOX_TD_PROD_LO_IDX_SHIFT) & 2009 MBOX_TD_PROD_LO_IDX_MASK); 2010 /* Set a timeout in case the chip goes out to lunch. */ 2011 ifp->if_timer = ALC_TX_TIMEOUT; 2012 } 2013 } 2014 2015 static void 2016 alc_watchdog(struct ifnet *ifp) 2017 { 2018 struct alc_softc *sc = ifp->if_softc; 2019 2020 if ((sc->alc_flags & ALC_FLAG_LINK) == 0) { 2021 printf("%s: watchdog timeout (missed link)\n", 2022 device_xname(sc->sc_dev)); 2023 ifp->if_oerrors++; 2024 alc_init_backend(ifp, false); 2025 return; 2026 } 2027 2028 printf("%s: watchdog timeout\n", device_xname(sc->sc_dev)); 2029 ifp->if_oerrors++; 2030 alc_init_backend(ifp, false); 2031 alc_start(ifp); 2032 } 2033 2034 static int 2035 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data) 2036 { 2037 struct alc_softc *sc = ifp->if_softc; 2038 struct mii_data *mii = &sc->sc_miibus; 2039 struct ifreq *ifr = (struct ifreq *)data; 2040 int s, error = 0; 2041 2042 s = splnet(); 2043 2044 error = ether_ioctl(ifp, cmd, data); 2045 switch (cmd) { 2046 case SIOCSIFADDR: 2047 ifp->if_flags |= IFF_UP; 2048 if (!(ifp->if_flags & IFF_RUNNING)) 2049 alc_init(ifp); 2050 break; 2051 2052 case SIOCSIFFLAGS: 2053 if (ifp->if_flags & IFF_UP) { 2054 if (ifp->if_flags & IFF_RUNNING) 2055 error = ENETRESET; 2056 else 2057 alc_init(ifp); 2058 } else { 2059 if (ifp->if_flags & IFF_RUNNING) 2060 alc_stop(ifp, 0); 2061 } 2062 break; 2063 2064 case SIOCSIFMEDIA: 2065 case SIOCGIFMEDIA: 2066 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); 2067 break; 2068 2069 default: 2070 error = ether_ioctl(ifp, cmd, data); 2071 break; 2072 } 2073 2074 if (error == ENETRESET) { 2075 if (ifp->if_flags & IFF_RUNNING) 2076 alc_iff(sc); 2077 error = 0; 2078 } 2079 2080 splx(s); 2081 return (error); 2082 } 2083 2084 static void 2085 alc_mac_config(struct alc_softc *sc) 2086 { 2087 struct mii_data *mii; 2088 uint32_t reg; 2089 2090 mii = &sc->sc_miibus; 2091 reg = CSR_READ_4(sc, ALC_MAC_CFG); 2092 reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | 2093 MAC_CFG_SPEED_MASK); 2094 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 || 2095 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 || 2096 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) 2097 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; 2098 /* Reprogram MAC with resolved speed/duplex. */ 2099 switch (IFM_SUBTYPE(mii->mii_media_active)) { 2100 case IFM_10_T: 2101 case IFM_100_TX: 2102 reg |= MAC_CFG_SPEED_10_100; 2103 break; 2104 case IFM_1000_T: 2105 reg |= MAC_CFG_SPEED_1000; 2106 break; 2107 } 2108 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 2109 reg |= MAC_CFG_FULL_DUPLEX; 2110 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) 2111 reg |= MAC_CFG_TX_FC; 2112 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) 2113 reg |= MAC_CFG_RX_FC; 2114 } 2115 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 2116 } 2117 2118 static void 2119 alc_stats_clear(struct alc_softc *sc) 2120 { 2121 struct smb sb, *smb; 2122 uint32_t *reg; 2123 int i; 2124 2125 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2126 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, 2127 sc->alc_cdata.alc_smb_map->dm_mapsize, 2128 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2129 smb = sc->alc_rdata.alc_smb; 2130 /* Update done, clear. */ 2131 smb->updated = 0; 2132 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, 2133 sc->alc_cdata.alc_smb_map->dm_mapsize, 2134 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2135 } else { 2136 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; 2137 reg++) { 2138 CSR_READ_4(sc, ALC_RX_MIB_BASE + i); 2139 i += sizeof(uint32_t); 2140 } 2141 /* Read Tx statistics. */ 2142 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; 2143 reg++) { 2144 CSR_READ_4(sc, ALC_TX_MIB_BASE + i); 2145 i += sizeof(uint32_t); 2146 } 2147 } 2148 } 2149 2150 static void 2151 alc_stats_update(struct alc_softc *sc) 2152 { 2153 struct ifnet *ifp = &sc->sc_ec.ec_if; 2154 struct alc_hw_stats *stat; 2155 struct smb sb, *smb; 2156 uint32_t *reg; 2157 int i; 2158 2159 stat = &sc->alc_stats; 2160 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2161 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, 2162 sc->alc_cdata.alc_smb_map->dm_mapsize, 2163 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2164 smb = sc->alc_rdata.alc_smb; 2165 if (smb->updated == 0) 2166 return; 2167 } else { 2168 smb = &sb; 2169 /* Read Rx statistics. */ 2170 for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; 2171 reg++) { 2172 *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i); 2173 i += sizeof(uint32_t); 2174 } 2175 /* Read Tx statistics. */ 2176 for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; 2177 reg++) { 2178 *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i); 2179 i += sizeof(uint32_t); 2180 } 2181 } 2182 2183 /* Rx stats. */ 2184 stat->rx_frames += smb->rx_frames; 2185 stat->rx_bcast_frames += smb->rx_bcast_frames; 2186 stat->rx_mcast_frames += smb->rx_mcast_frames; 2187 stat->rx_pause_frames += smb->rx_pause_frames; 2188 stat->rx_control_frames += smb->rx_control_frames; 2189 stat->rx_crcerrs += smb->rx_crcerrs; 2190 stat->rx_lenerrs += smb->rx_lenerrs; 2191 stat->rx_bytes += smb->rx_bytes; 2192 stat->rx_runts += smb->rx_runts; 2193 stat->rx_fragments += smb->rx_fragments; 2194 stat->rx_pkts_64 += smb->rx_pkts_64; 2195 stat->rx_pkts_65_127 += smb->rx_pkts_65_127; 2196 stat->rx_pkts_128_255 += smb->rx_pkts_128_255; 2197 stat->rx_pkts_256_511 += smb->rx_pkts_256_511; 2198 stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; 2199 stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; 2200 stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; 2201 stat->rx_pkts_truncated += smb->rx_pkts_truncated; 2202 stat->rx_fifo_oflows += smb->rx_fifo_oflows; 2203 stat->rx_rrs_errs += smb->rx_rrs_errs; 2204 stat->rx_alignerrs += smb->rx_alignerrs; 2205 stat->rx_bcast_bytes += smb->rx_bcast_bytes; 2206 stat->rx_mcast_bytes += smb->rx_mcast_bytes; 2207 stat->rx_pkts_filtered += smb->rx_pkts_filtered; 2208 2209 /* Tx stats. */ 2210 stat->tx_frames += smb->tx_frames; 2211 stat->tx_bcast_frames += smb->tx_bcast_frames; 2212 stat->tx_mcast_frames += smb->tx_mcast_frames; 2213 stat->tx_pause_frames += smb->tx_pause_frames; 2214 stat->tx_excess_defer += smb->tx_excess_defer; 2215 stat->tx_control_frames += smb->tx_control_frames; 2216 stat->tx_deferred += smb->tx_deferred; 2217 stat->tx_bytes += smb->tx_bytes; 2218 stat->tx_pkts_64 += smb->tx_pkts_64; 2219 stat->tx_pkts_65_127 += smb->tx_pkts_65_127; 2220 stat->tx_pkts_128_255 += smb->tx_pkts_128_255; 2221 stat->tx_pkts_256_511 += smb->tx_pkts_256_511; 2222 stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; 2223 stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; 2224 stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; 2225 stat->tx_single_colls += smb->tx_single_colls; 2226 stat->tx_multi_colls += smb->tx_multi_colls; 2227 stat->tx_late_colls += smb->tx_late_colls; 2228 stat->tx_excess_colls += smb->tx_excess_colls; 2229 stat->tx_underrun += smb->tx_underrun; 2230 stat->tx_desc_underrun += smb->tx_desc_underrun; 2231 stat->tx_lenerrs += smb->tx_lenerrs; 2232 stat->tx_pkts_truncated += smb->tx_pkts_truncated; 2233 stat->tx_bcast_bytes += smb->tx_bcast_bytes; 2234 stat->tx_mcast_bytes += smb->tx_mcast_bytes; 2235 2236 /* Update counters in ifnet. */ 2237 ifp->if_opackets += smb->tx_frames; 2238 2239 ifp->if_collisions += smb->tx_single_colls + 2240 smb->tx_multi_colls * 2 + smb->tx_late_colls + 2241 smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; 2242 2243 ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls + 2244 smb->tx_underrun + smb->tx_pkts_truncated; 2245 2246 ifp->if_ipackets += smb->rx_frames; 2247 2248 ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + 2249 smb->rx_runts + smb->rx_pkts_truncated + 2250 smb->rx_fifo_oflows + smb->rx_rrs_errs + 2251 smb->rx_alignerrs; 2252 2253 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { 2254 /* Update done, clear. */ 2255 smb->updated = 0; 2256 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, 2257 sc->alc_cdata.alc_smb_map->dm_mapsize, 2258 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2259 } 2260 } 2261 2262 static int 2263 alc_intr(void *arg) 2264 { 2265 struct alc_softc *sc = arg; 2266 struct ifnet *ifp = &sc->sc_ec.ec_if; 2267 uint32_t status; 2268 2269 status = CSR_READ_4(sc, ALC_INTR_STATUS); 2270 if ((status & ALC_INTRS) == 0) 2271 return (0); 2272 2273 /* Acknowledge and disable interrupts. */ 2274 CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT); 2275 2276 if (ifp->if_flags & IFF_RUNNING) { 2277 if (status & INTR_RX_PKT) { 2278 int error; 2279 2280 error = alc_rxintr(sc); 2281 if (error) { 2282 alc_init_backend(ifp, false); 2283 return (0); 2284 } 2285 } 2286 2287 if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST | 2288 INTR_TXQ_TO_RST)) { 2289 if (status & INTR_DMA_RD_TO_RST) 2290 printf("%s: DMA read error! -- resetting\n", 2291 device_xname(sc->sc_dev)); 2292 if (status & INTR_DMA_WR_TO_RST) 2293 printf("%s: DMA write error! -- resetting\n", 2294 device_xname(sc->sc_dev)); 2295 if (status & INTR_TXQ_TO_RST) 2296 printf("%s: TxQ reset! -- resetting\n", 2297 device_xname(sc->sc_dev)); 2298 alc_init_backend(ifp, false); 2299 return (0); 2300 } 2301 2302 alc_txeof(sc); 2303 if (!IFQ_IS_EMPTY(&ifp->if_snd)) 2304 alc_start(ifp); 2305 } 2306 2307 /* Re-enable interrupts. */ 2308 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF); 2309 return (1); 2310 } 2311 2312 static void 2313 alc_txeof(struct alc_softc *sc) 2314 { 2315 struct ifnet *ifp = &sc->sc_ec.ec_if; 2316 struct alc_txdesc *txd; 2317 uint32_t cons, prod; 2318 int prog; 2319 2320 if (sc->alc_cdata.alc_tx_cnt == 0) 2321 return; 2322 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, 2323 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, 2324 BUS_DMASYNC_POSTREAD); 2325 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { 2326 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, 2327 sc->alc_cdata.alc_cmb_map->dm_mapsize, 2328 BUS_DMASYNC_POSTREAD); 2329 prod = sc->alc_rdata.alc_cmb->cons; 2330 } else 2331 prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX); 2332 /* Assume we're using normal Tx priority queue. */ 2333 prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >> 2334 MBOX_TD_CONS_LO_IDX_SHIFT; 2335 cons = sc->alc_cdata.alc_tx_cons; 2336 /* 2337 * Go through our Tx list and free mbufs for those 2338 * frames which have been transmitted. 2339 */ 2340 for (prog = 0; cons != prod; prog++, 2341 ALC_DESC_INC(cons, ALC_TX_RING_CNT)) { 2342 if (sc->alc_cdata.alc_tx_cnt <= 0) 2343 break; 2344 prog++; 2345 ifp->if_flags &= ~IFF_OACTIVE; 2346 sc->alc_cdata.alc_tx_cnt--; 2347 txd = &sc->alc_cdata.alc_txdesc[cons]; 2348 if (txd->tx_m != NULL) { 2349 /* Reclaim transmitted mbufs. */ 2350 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, 2351 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 2352 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 2353 m_freem(txd->tx_m); 2354 txd->tx_m = NULL; 2355 } 2356 } 2357 2358 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) 2359 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, 2360 sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD); 2361 sc->alc_cdata.alc_tx_cons = cons; 2362 /* 2363 * Unarm watchdog timer only when there is no pending 2364 * frames in Tx queue. 2365 */ 2366 if (sc->alc_cdata.alc_tx_cnt == 0) 2367 ifp->if_timer = 0; 2368 } 2369 2370 static int 2371 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init) 2372 { 2373 struct mbuf *m; 2374 bus_dmamap_t map; 2375 int error; 2376 2377 MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA); 2378 if (m == NULL) 2379 return (ENOBUFS); 2380 MCLGET(m, init ? M_WAITOK : M_DONTWAIT); 2381 if (!(m->m_flags & M_EXT)) { 2382 m_freem(m); 2383 return (ENOBUFS); 2384 } 2385 2386 m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX; 2387 2388 error = bus_dmamap_load_mbuf(sc->sc_dmat, 2389 sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT); 2390 2391 if (error != 0) { 2392 if (!error) { 2393 bus_dmamap_unload(sc->sc_dmat, 2394 sc->alc_cdata.alc_rx_sparemap); 2395 error = EFBIG; 2396 printf("%s: too many segments?!\n", 2397 device_xname(sc->sc_dev)); 2398 } 2399 m_freem(m); 2400 2401 if (init) 2402 printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev)); 2403 2404 return (error); 2405 } 2406 2407 if (rxd->rx_m != NULL) { 2408 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, 2409 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 2410 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 2411 } 2412 map = rxd->rx_dmamap; 2413 rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap; 2414 sc->alc_cdata.alc_rx_sparemap = map; 2415 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, 2416 BUS_DMASYNC_PREREAD); 2417 rxd->rx_m = m; 2418 rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr); 2419 return (0); 2420 } 2421 2422 static int 2423 alc_rxintr(struct alc_softc *sc) 2424 { 2425 struct ifnet *ifp = &sc->sc_ec.ec_if; 2426 struct rx_rdesc *rrd; 2427 uint32_t nsegs, status; 2428 int rr_cons, prog; 2429 2430 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, 2431 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, 2432 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2433 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, 2434 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, 2435 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2436 rr_cons = sc->alc_cdata.alc_rr_cons; 2437 for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) { 2438 rrd = &sc->alc_rdata.alc_rr_ring[rr_cons]; 2439 status = le32toh(rrd->status); 2440 if ((status & RRD_VALID) == 0) 2441 break; 2442 nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo)); 2443 if (nsegs == 0) { 2444 /* This should not happen! */ 2445 if (alcdebug) 2446 printf("%s: unexpected segment count -- " 2447 "resetting\n", device_xname(sc->sc_dev)); 2448 return (EIO); 2449 } 2450 alc_rxeof(sc, rrd); 2451 /* Clear Rx return status. */ 2452 rrd->status = 0; 2453 ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT); 2454 sc->alc_cdata.alc_rx_cons += nsegs; 2455 sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT; 2456 prog += nsegs; 2457 } 2458 2459 if (prog > 0) { 2460 /* Update the consumer index. */ 2461 sc->alc_cdata.alc_rr_cons = rr_cons; 2462 /* Sync Rx return descriptors. */ 2463 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, 2464 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, 2465 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2466 /* 2467 * Sync updated Rx descriptors such that controller see 2468 * modified buffer addresses. 2469 */ 2470 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, 2471 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, 2472 BUS_DMASYNC_PREWRITE); 2473 /* 2474 * Let controller know availability of new Rx buffers. 2475 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors 2476 * it may be possible to update ALC_MBOX_RD0_PROD_IDX 2477 * only when Rx buffer pre-fetching is required. In 2478 * addition we already set ALC_RX_RD_FREE_THRESH to 2479 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However 2480 * it still seems that pre-fetching needs more 2481 * experimentation. 2482 */ 2483 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 2484 sc->alc_cdata.alc_rx_cons); 2485 } 2486 2487 return (0); 2488 } 2489 2490 /* Receive a frame. */ 2491 static void 2492 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd) 2493 { 2494 struct ifnet *ifp = &sc->sc_ec.ec_if; 2495 struct alc_rxdesc *rxd; 2496 struct mbuf *mp, *m; 2497 uint32_t rdinfo, status; 2498 int count, nsegs, rx_cons; 2499 2500 status = le32toh(rrd->status); 2501 rdinfo = le32toh(rrd->rdinfo); 2502 rx_cons = RRD_RD_IDX(rdinfo); 2503 nsegs = RRD_RD_CNT(rdinfo); 2504 2505 sc->alc_cdata.alc_rxlen = RRD_BYTES(status); 2506 if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) { 2507 /* 2508 * We want to pass the following frames to upper 2509 * layer regardless of error status of Rx return 2510 * ring. 2511 * 2512 * o IP/TCP/UDP checksum is bad. 2513 * o frame length and protocol specific length 2514 * does not match. 2515 * 2516 * Force network stack compute checksum for 2517 * errored frames. 2518 */ 2519 status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK; 2520 if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN | 2521 RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0) 2522 return; 2523 } 2524 2525 for (count = 0; count < nsegs; count++, 2526 ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) { 2527 rxd = &sc->alc_cdata.alc_rxdesc[rx_cons]; 2528 mp = rxd->rx_m; 2529 /* Add a new receive buffer to the ring. */ 2530 if (alc_newbuf(sc, rxd, false) != 0) { 2531 ifp->if_iqdrops++; 2532 /* Reuse Rx buffers. */ 2533 if (sc->alc_cdata.alc_rxhead != NULL) 2534 m_freem(sc->alc_cdata.alc_rxhead); 2535 break; 2536 } 2537 2538 /* 2539 * Assume we've received a full sized frame. 2540 * Actual size is fixed when we encounter the end of 2541 * multi-segmented frame. 2542 */ 2543 mp->m_len = sc->alc_buf_size; 2544 2545 /* Chain received mbufs. */ 2546 if (sc->alc_cdata.alc_rxhead == NULL) { 2547 sc->alc_cdata.alc_rxhead = mp; 2548 sc->alc_cdata.alc_rxtail = mp; 2549 } else { 2550 mp->m_flags &= ~M_PKTHDR; 2551 sc->alc_cdata.alc_rxprev_tail = 2552 sc->alc_cdata.alc_rxtail; 2553 sc->alc_cdata.alc_rxtail->m_next = mp; 2554 sc->alc_cdata.alc_rxtail = mp; 2555 } 2556 2557 if (count == nsegs - 1) { 2558 /* Last desc. for this frame. */ 2559 m = sc->alc_cdata.alc_rxhead; 2560 m->m_flags |= M_PKTHDR; 2561 /* 2562 * It seems that L1C/L2C controller has no way 2563 * to tell hardware to strip CRC bytes. 2564 */ 2565 m->m_pkthdr.len = 2566 sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN; 2567 if (nsegs > 1) { 2568 /* Set last mbuf size. */ 2569 mp->m_len = sc->alc_cdata.alc_rxlen - 2570 (nsegs - 1) * sc->alc_buf_size; 2571 /* Remove the CRC bytes in chained mbufs. */ 2572 if (mp->m_len <= ETHER_CRC_LEN) { 2573 sc->alc_cdata.alc_rxtail = 2574 sc->alc_cdata.alc_rxprev_tail; 2575 sc->alc_cdata.alc_rxtail->m_len -= 2576 (ETHER_CRC_LEN - mp->m_len); 2577 sc->alc_cdata.alc_rxtail->m_next = NULL; 2578 m_freem(mp); 2579 } else { 2580 mp->m_len -= ETHER_CRC_LEN; 2581 } 2582 } else 2583 m->m_len = m->m_pkthdr.len; 2584 m->m_pkthdr.rcvif = ifp; 2585 #if NVLAN > 0 2586 /* 2587 * Due to hardware bugs, Rx checksum offloading 2588 * was intentionally disabled. 2589 */ 2590 if (status & RRD_VLAN_TAG) { 2591 u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag)); 2592 VLAN_INPUT_TAG(ifp, m, ntohs(vtag), ); 2593 } 2594 #endif 2595 2596 bpf_mtap(ifp, m); 2597 2598 /* Pass it on. */ 2599 (*ifp->if_input)(ifp, m); 2600 } 2601 } 2602 /* Reset mbuf chains. */ 2603 ALC_RXCHAIN_RESET(sc); 2604 } 2605 2606 static void 2607 alc_tick(void *xsc) 2608 { 2609 struct alc_softc *sc = xsc; 2610 struct mii_data *mii = &sc->sc_miibus; 2611 int s; 2612 2613 s = splnet(); 2614 mii_tick(mii); 2615 alc_stats_update(sc); 2616 splx(s); 2617 2618 callout_schedule(&sc->sc_tick_ch, hz); 2619 } 2620 2621 static void 2622 alc_osc_reset(struct alc_softc *sc) 2623 { 2624 uint32_t reg; 2625 2626 reg = CSR_READ_4(sc, ALC_MISC3); 2627 reg &= ~MISC3_25M_BY_SW; 2628 reg |= MISC3_25M_NOTO_INTNL; 2629 CSR_WRITE_4(sc, ALC_MISC3, reg); 2630 2631 reg = CSR_READ_4(sc, ALC_MISC); 2632 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) { 2633 /* 2634 * Restore over-current protection default value. 2635 * This value could be reset by MAC reset. 2636 */ 2637 reg &= ~MISC_PSW_OCP_MASK; 2638 reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT); 2639 reg &= ~MISC_INTNLOSC_OPEN; 2640 CSR_WRITE_4(sc, ALC_MISC, reg); 2641 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN); 2642 reg = CSR_READ_4(sc, ALC_MISC2); 2643 reg &= ~MISC2_CALB_START; 2644 CSR_WRITE_4(sc, ALC_MISC2, reg); 2645 CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START); 2646 2647 } else { 2648 reg &= ~MISC_INTNLOSC_OPEN; 2649 /* Disable isolate for revision A devices. */ 2650 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1) 2651 reg &= ~MISC_ISO_ENB; 2652 CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN); 2653 CSR_WRITE_4(sc, ALC_MISC, reg); 2654 } 2655 2656 DELAY(20); 2657 } 2658 2659 static void 2660 alc_reset(struct alc_softc *sc) 2661 { 2662 uint32_t pmcfg, reg; 2663 int i; 2664 2665 pmcfg = 0; 2666 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2667 /* Reset workaround. */ 2668 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1); 2669 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 && 2670 (sc->alc_rev & 0x01) != 0) { 2671 /* Disable L0s/L1s before reset. */ 2672 pmcfg = CSR_READ_4(sc, ALC_PM_CFG); 2673 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB)) 2674 != 0) { 2675 pmcfg &= ~(PM_CFG_ASPM_L0S_ENB | 2676 PM_CFG_ASPM_L1_ENB); 2677 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 2678 } 2679 } 2680 } 2681 reg = CSR_READ_4(sc, ALC_MASTER_CFG); 2682 reg |= MASTER_OOB_DIS_OFF | MASTER_RESET; 2683 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); 2684 2685 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2686 for (i = ALC_RESET_TIMEOUT; i > 0; i--) { 2687 DELAY(10); 2688 if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0) 2689 break; 2690 } 2691 if (i == 0) 2692 printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev)); 2693 } 2694 for (i = ALC_RESET_TIMEOUT; i > 0; i--) { 2695 DELAY(10); 2696 if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0) 2697 break; 2698 } 2699 if (i == 0) 2700 printf("%s: master reset timeout!\n", device_xname(sc->sc_dev)); 2701 2702 for (i = ALC_RESET_TIMEOUT; i > 0; i--) { 2703 reg = CSR_READ_4(sc, ALC_IDLE_STATUS); 2704 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC | 2705 IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0) 2706 break; 2707 DELAY(10); 2708 } 2709 if (i == 0) 2710 printf("%s: reset timeout(0x%08x)!\n", 2711 device_xname(sc->sc_dev), reg); 2712 2713 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2714 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 && 2715 (sc->alc_rev & 0x01) != 0) { 2716 reg = CSR_READ_4(sc, ALC_MASTER_CFG); 2717 reg |= MASTER_CLK_SEL_DIS; 2718 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); 2719 /* Restore L0s/L1s config. */ 2720 if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB)) 2721 != 0) 2722 CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); 2723 } 2724 2725 alc_osc_reset(sc); 2726 reg = CSR_READ_4(sc, ALC_MISC3); 2727 reg &= ~MISC3_25M_BY_SW; 2728 reg |= MISC3_25M_NOTO_INTNL; 2729 CSR_WRITE_4(sc, ALC_MISC3, reg); 2730 reg = CSR_READ_4(sc, ALC_MISC); 2731 reg &= ~MISC_INTNLOSC_OPEN; 2732 if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1) 2733 reg &= ~MISC_ISO_ENB; 2734 CSR_WRITE_4(sc, ALC_MISC, reg); 2735 DELAY(20); 2736 } 2737 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 || 2738 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B || 2739 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2) 2740 CSR_WRITE_4(sc, ALC_SERDES_LOCK, 2741 CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN | 2742 SERDES_PHY_CLK_SLOWDOWN); 2743 } 2744 2745 static int 2746 alc_init(struct ifnet *ifp) 2747 { 2748 2749 return alc_init_backend(ifp, true); 2750 } 2751 2752 static int 2753 alc_init_backend(struct ifnet *ifp, bool init) 2754 { 2755 struct alc_softc *sc = ifp->if_softc; 2756 struct mii_data *mii; 2757 uint8_t eaddr[ETHER_ADDR_LEN]; 2758 bus_addr_t paddr; 2759 uint32_t reg, rxf_hi, rxf_lo; 2760 int error; 2761 2762 /* 2763 * Cancel any pending I/O. 2764 */ 2765 alc_stop(ifp, 0); 2766 /* 2767 * Reset the chip to a known state. 2768 */ 2769 alc_reset(sc); 2770 2771 /* Initialize Rx descriptors. */ 2772 error = alc_init_rx_ring(sc, init); 2773 if (error != 0) { 2774 printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev)); 2775 alc_stop(ifp, 0); 2776 return (error); 2777 } 2778 alc_init_rr_ring(sc); 2779 alc_init_tx_ring(sc); 2780 alc_init_cmb(sc); 2781 alc_init_smb(sc); 2782 2783 /* Enable all clocks. */ 2784 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2785 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB | 2786 CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB | 2787 CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB | 2788 CLK_GATING_RXMAC_ENB); 2789 if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) 2790 CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER, 2791 IDLE_DECISN_TIMER_DEFAULT_1MS); 2792 } else 2793 CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0); 2794 2795 2796 /* Reprogram the station address. */ 2797 memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr)); 2798 CSR_WRITE_4(sc, ALC_PAR0, 2799 eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); 2800 CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]); 2801 /* 2802 * Clear WOL status and disable all WOL feature as WOL 2803 * would interfere Rx operation under normal environments. 2804 */ 2805 CSR_READ_4(sc, ALC_WOL_CFG); 2806 CSR_WRITE_4(sc, ALC_WOL_CFG, 0); 2807 /* Set Tx descriptor base addresses. */ 2808 paddr = sc->alc_rdata.alc_tx_ring_paddr; 2809 CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 2810 CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 2811 /* We don't use high priority ring. */ 2812 CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0); 2813 /* Set Tx descriptor counter. */ 2814 CSR_WRITE_4(sc, ALC_TD_RING_CNT, 2815 (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK); 2816 /* Set Rx descriptor base addresses. */ 2817 paddr = sc->alc_rdata.alc_rx_ring_paddr; 2818 CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 2819 CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 2820 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 2821 /* We use one Rx ring. */ 2822 CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0); 2823 CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0); 2824 CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0); 2825 } 2826 /* Set Rx descriptor counter. */ 2827 CSR_WRITE_4(sc, ALC_RD_RING_CNT, 2828 (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK); 2829 2830 /* 2831 * Let hardware split jumbo frames into alc_max_buf_sized chunks. 2832 * if it do not fit the buffer size. Rx return descriptor holds 2833 * a counter that indicates how many fragments were made by the 2834 * hardware. The buffer size should be multiple of 8 bytes. 2835 * Since hardware has limit on the size of buffer size, always 2836 * use the maximum value. 2837 * For strict-alignment architectures make sure to reduce buffer 2838 * size by 8 bytes to make room for alignment fixup. 2839 */ 2840 sc->alc_buf_size = RX_BUF_SIZE_MAX; 2841 CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size); 2842 2843 paddr = sc->alc_rdata.alc_rr_ring_paddr; 2844 /* Set Rx return descriptor base addresses. */ 2845 CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); 2846 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 2847 /* We use one Rx return ring. */ 2848 CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0); 2849 CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0); 2850 CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0); 2851 }\ 2852 /* Set Rx return descriptor counter. */ 2853 CSR_WRITE_4(sc, ALC_RRD_RING_CNT, 2854 (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK); 2855 paddr = sc->alc_rdata.alc_cmb_paddr; 2856 CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); 2857 paddr = sc->alc_rdata.alc_smb_paddr; 2858 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); 2859 CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); 2860 2861 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) { 2862 /* Reconfigure SRAM - Vendor magic. */ 2863 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0); 2864 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100); 2865 CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000); 2866 CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0); 2867 CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0); 2868 CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0); 2869 CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000); 2870 CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000); 2871 } 2872 2873 /* Tell hardware that we're ready to load DMA blocks. */ 2874 CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD); 2875 2876 /* Configure interrupt moderation timer. */ 2877 sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; 2878 sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; 2879 reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT; 2880 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) 2881 reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT; 2882 CSR_WRITE_4(sc, ALC_IM_TIMER, reg); 2883 /* 2884 * We don't want to automatic interrupt clear as task queue 2885 * for the interrupt should know interrupt status. 2886 */ 2887 reg = CSR_READ_4(sc, ALC_MASTER_CFG); 2888 reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); 2889 reg |= MASTER_SA_TIMER_ENB; 2890 if (ALC_USECS(sc->alc_int_rx_mod) != 0) 2891 reg |= MASTER_IM_RX_TIMER_ENB; 2892 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 && 2893 ALC_USECS(sc->alc_int_tx_mod) != 0) 2894 reg |= MASTER_IM_TX_TIMER_ENB; 2895 CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); 2896 /* 2897 * Disable interrupt re-trigger timer. We don't want automatic 2898 * re-triggering of un-ACKed interrupts. 2899 */ 2900 CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0)); 2901 /* Configure CMB. */ 2902 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2903 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3); 2904 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, 2905 ALC_USECS(sc->alc_int_tx_mod)); 2906 } else { 2907 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { 2908 CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4); 2909 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000)); 2910 } else 2911 CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0)); 2912 } 2913 /* 2914 * Hardware can be configured to issue SMB interrupt based 2915 * on programmed interval. Since there is a callout that is 2916 * invoked for every hz in driver we use that instead of 2917 * relying on periodic SMB interrupt. 2918 */ 2919 CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0)); 2920 /* Clear MAC statistics. */ 2921 alc_stats_clear(sc); 2922 2923 /* 2924 * Always use maximum frame size that controller can support. 2925 * Otherwise received frames that has larger frame length 2926 * than alc(4) MTU would be silently dropped in hardware. This 2927 * would make path-MTU discovery hard as sender wouldn't get 2928 * any responses from receiver. alc(4) supports 2929 * multi-fragmented frames on Rx path so it has no issue on 2930 * assembling fragmented frames. Using maximum frame size also 2931 * removes the need to reinitialize hardware when interface 2932 * MTU configuration was changed. 2933 * 2934 * Be conservative in what you do, be liberal in what you 2935 * accept from others - RFC 793. 2936 */ 2937 CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen); 2938 2939 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 2940 /* Disable header split(?) */ 2941 CSR_WRITE_4(sc, ALC_HDS_CFG, 0); 2942 2943 /* Configure IPG/IFG parameters. */ 2944 CSR_WRITE_4(sc, ALC_IPG_IFG_CFG, 2945 ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & 2946 IPG_IFG_IPGT_MASK) | 2947 ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & 2948 IPG_IFG_MIFG_MASK) | 2949 ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & 2950 IPG_IFG_IPG1_MASK) | 2951 ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & 2952 IPG_IFG_IPG2_MASK)); 2953 /* Set parameters for half-duplex media. */ 2954 CSR_WRITE_4(sc, ALC_HDPX_CFG, 2955 ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & 2956 HDPX_CFG_LCOL_MASK) | 2957 ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & 2958 HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | 2959 ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & 2960 HDPX_CFG_ABEBT_MASK) | 2961 ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & 2962 HDPX_CFG_JAMIPG_MASK)); 2963 } 2964 2965 /* 2966 * Set TSO/checksum offload threshold. For frames that is 2967 * larger than this threshold, hardware wouldn't do 2968 * TSO/checksum offloading. 2969 */ 2970 reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) & 2971 TSO_OFFLOAD_THRESH_MASK; 2972 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 2973 reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB; 2974 CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg); 2975 /* Configure TxQ. */ 2976 reg = (alc_dma_burst[sc->alc_dma_rd_burst] << 2977 TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK; 2978 if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B || 2979 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) 2980 reg >>= 1; 2981 reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) & 2982 TXQ_CFG_TD_BURST_MASK; 2983 reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB; 2984 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE); 2985 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 2986 reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT | 2987 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT | 2988 TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT | 2989 HQTD_CFG_BURST_ENB); 2990 CSR_WRITE_4(sc, ALC_HQTD_CFG, reg); 2991 reg = WRR_PRI_RESTRICT_NONE; 2992 reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT | 2993 WRR_PRI_DEFAULT << WRR_PRI1_SHIFT | 2994 WRR_PRI_DEFAULT << WRR_PRI2_SHIFT | 2995 WRR_PRI_DEFAULT << WRR_PRI3_SHIFT); 2996 CSR_WRITE_4(sc, ALC_WRR, reg); 2997 } else { 2998 /* Configure Rx free descriptor pre-fetching. */ 2999 CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH, 3000 ((RX_RD_FREE_THRESH_HI_DEFAULT << 3001 RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) | 3002 ((RX_RD_FREE_THRESH_LO_DEFAULT << 3003 RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK)); 3004 } 3005 3006 /* 3007 * Configure flow control parameters. 3008 * XON : 80% of Rx FIFO 3009 * XOFF : 30% of Rx FIFO 3010 */ 3011 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 3012 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN); 3013 reg &= SRAM_RX_FIFO_LEN_MASK; 3014 reg *= 8; 3015 if (reg > 8 * 1024) 3016 reg -= RX_FIFO_PAUSE_816X_RSVD; 3017 else 3018 reg -= RX_BUF_SIZE_MAX; 3019 reg /= 8; 3020 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH, 3021 ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 3022 RX_FIFO_PAUSE_THRESH_LO_MASK) | 3023 (((RX_FIFO_PAUSE_816X_RSVD / 8) << 3024 RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 3025 RX_FIFO_PAUSE_THRESH_HI_MASK)); 3026 } else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 || 3027 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) { 3028 reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN); 3029 rxf_hi = (reg * 8) / 10; 3030 rxf_lo = (reg * 3) / 10; 3031 CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH, 3032 ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & 3033 RX_FIFO_PAUSE_THRESH_LO_MASK) | 3034 ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & 3035 RX_FIFO_PAUSE_THRESH_HI_MASK)); 3036 } 3037 3038 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 3039 /* Disable RSS until I understand L1C/L2C's RSS logic. */ 3040 CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0); 3041 CSR_WRITE_4(sc, ALC_RSS_CPU, 0); 3042 } 3043 3044 /* Configure RxQ. */ 3045 reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & 3046 RXQ_CFG_RD_BURST_MASK; 3047 reg |= RXQ_CFG_RSS_MODE_DIS; 3048 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) 3049 reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT << 3050 RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) & 3051 RXQ_CFG_816X_IDT_TBL_SIZE_MASK; 3052 if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 && 3053 sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2) 3054 reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M; 3055 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); 3056 3057 /* Configure DMA parameters. */ 3058 reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI; 3059 reg |= sc->alc_rcb; 3060 if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) 3061 reg |= DMA_CFG_CMB_ENB; 3062 if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) 3063 reg |= DMA_CFG_SMB_ENB; 3064 else 3065 reg |= DMA_CFG_SMB_DIS; 3066 reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) << 3067 DMA_CFG_RD_BURST_SHIFT; 3068 reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) << 3069 DMA_CFG_WR_BURST_SHIFT; 3070 reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & 3071 DMA_CFG_RD_DELAY_CNT_MASK; 3072 reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & 3073 DMA_CFG_WR_DELAY_CNT_MASK; 3074 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) { 3075 switch (AR816X_REV(sc->alc_rev)) { 3076 case AR816X_REV_A0: 3077 case AR816X_REV_A1: 3078 reg |= DMA_CFG_RD_CHNL_SEL_1; 3079 break; 3080 case AR816X_REV_B0: 3081 /* FALLTHROUGH */ 3082 default: 3083 reg |= DMA_CFG_RD_CHNL_SEL_3; 3084 break; 3085 } 3086 } 3087 CSR_WRITE_4(sc, ALC_DMA_CFG, reg); 3088 3089 /* 3090 * Configure Tx/Rx MACs. 3091 * - Auto-padding for short frames. 3092 * - Enable CRC generation. 3093 * Actual reconfiguration of MAC for resolved speed/duplex 3094 * is followed after detection of link establishment. 3095 * AR813x/AR815x always does checksum computation regardless 3096 * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to 3097 * have bug in protocol field in Rx return structure so 3098 * these controllers can't handle fragmented frames. Disable 3099 * Rx checksum offloading until there is a newer controller 3100 * that has sane implementation. 3101 */ 3102 reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | 3103 ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & 3104 MAC_CFG_PREAMBLE_MASK); 3105 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 || 3106 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 || 3107 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 || 3108 sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) 3109 reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; 3110 if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0) 3111 reg |= MAC_CFG_SPEED_10_100; 3112 else 3113 reg |= MAC_CFG_SPEED_1000; 3114 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3115 3116 /* Set up the receive filter. */ 3117 alc_iff(sc); 3118 alc_rxvlan(sc); 3119 3120 /* Acknowledge all pending interrupts and clear it. */ 3121 CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS); 3122 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3123 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0); 3124 3125 sc->alc_flags &= ~ALC_FLAG_LINK; 3126 /* Switch to the current media. */ 3127 mii = &sc->sc_miibus; 3128 mii_mediachg(mii); 3129 3130 callout_schedule(&sc->sc_tick_ch, hz); 3131 3132 ifp->if_flags |= IFF_RUNNING; 3133 ifp->if_flags &= ~IFF_OACTIVE; 3134 3135 return (0); 3136 } 3137 3138 static void 3139 alc_stop(struct ifnet *ifp, int disable) 3140 { 3141 struct alc_softc *sc = ifp->if_softc; 3142 struct alc_txdesc *txd; 3143 struct alc_rxdesc *rxd; 3144 uint32_t reg; 3145 int i; 3146 3147 callout_stop(&sc->sc_tick_ch); 3148 3149 /* 3150 * Mark the interface down and cancel the watchdog timer. 3151 */ 3152 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 3153 ifp->if_timer = 0; 3154 3155 sc->alc_flags &= ~ALC_FLAG_LINK; 3156 3157 alc_stats_update(sc); 3158 3159 mii_down(&sc->sc_miibus); 3160 3161 /* Disable interrupts. */ 3162 CSR_WRITE_4(sc, ALC_INTR_MASK, 0); 3163 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3164 3165 /* Disable DMA. */ 3166 reg = CSR_READ_4(sc, ALC_DMA_CFG); 3167 reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB); 3168 reg |= DMA_CFG_SMB_DIS; 3169 CSR_WRITE_4(sc, ALC_DMA_CFG, reg); 3170 DELAY(1000); 3171 3172 /* Stop Rx/Tx MACs. */ 3173 alc_stop_mac(sc); 3174 3175 /* Disable interrupts which might be touched in taskq handler. */ 3176 CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); 3177 3178 /* Disable L0s/L1s */ 3179 alc_aspm(sc, 0, IFM_UNKNOWN); 3180 3181 /* Reclaim Rx buffers that have been processed. */ 3182 if (sc->alc_cdata.alc_rxhead != NULL) 3183 m_freem(sc->alc_cdata.alc_rxhead); 3184 ALC_RXCHAIN_RESET(sc); 3185 /* 3186 * Free Tx/Rx mbufs still in the queues. 3187 */ 3188 for (i = 0; i < ALC_RX_RING_CNT; i++) { 3189 rxd = &sc->alc_cdata.alc_rxdesc[i]; 3190 if (rxd->rx_m != NULL) { 3191 bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, 3192 rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 3193 bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); 3194 m_freem(rxd->rx_m); 3195 rxd->rx_m = NULL; 3196 } 3197 } 3198 for (i = 0; i < ALC_TX_RING_CNT; i++) { 3199 txd = &sc->alc_cdata.alc_txdesc[i]; 3200 if (txd->tx_m != NULL) { 3201 bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, 3202 txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 3203 bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); 3204 m_freem(txd->tx_m); 3205 txd->tx_m = NULL; 3206 } 3207 } 3208 } 3209 3210 static void 3211 alc_stop_mac(struct alc_softc *sc) 3212 { 3213 uint32_t reg; 3214 int i; 3215 3216 alc_stop_queue(sc); 3217 /* Disable Rx/Tx MAC. */ 3218 reg = CSR_READ_4(sc, ALC_MAC_CFG); 3219 if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { 3220 reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); 3221 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3222 } 3223 for (i = ALC_TIMEOUT; i > 0; i--) { 3224 reg = CSR_READ_4(sc, ALC_IDLE_STATUS); 3225 if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0) 3226 break; 3227 DELAY(10); 3228 } 3229 if (i == 0) 3230 printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n", 3231 device_xname(sc->sc_dev), reg); 3232 } 3233 3234 static void 3235 alc_start_queue(struct alc_softc *sc) 3236 { 3237 uint32_t qcfg[] = { 3238 0, 3239 RXQ_CFG_QUEUE0_ENB, 3240 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB, 3241 RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB, 3242 RXQ_CFG_ENB 3243 }; 3244 uint32_t cfg; 3245 3246 /* Enable RxQ. */ 3247 cfg = CSR_READ_4(sc, ALC_RXQ_CFG); 3248 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 3249 cfg &= ~RXQ_CFG_ENB; 3250 cfg |= qcfg[1]; 3251 } else 3252 cfg |= RXQ_CFG_QUEUE0_ENB; 3253 CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg); 3254 /* Enable TxQ. */ 3255 cfg = CSR_READ_4(sc, ALC_TXQ_CFG); 3256 cfg |= TXQ_CFG_ENB; 3257 CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg); 3258 } 3259 3260 static void 3261 alc_stop_queue(struct alc_softc *sc) 3262 { 3263 uint32_t reg; 3264 int i; 3265 3266 /* Disable RxQ. */ 3267 reg = CSR_READ_4(sc, ALC_RXQ_CFG); 3268 if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) { 3269 if ((reg & RXQ_CFG_ENB) != 0) { 3270 reg &= ~RXQ_CFG_ENB; 3271 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); 3272 } 3273 } else { 3274 if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) { 3275 reg &= ~RXQ_CFG_QUEUE0_ENB; 3276 CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); 3277 } 3278 } 3279 /* Disable TxQ. */ 3280 reg = CSR_READ_4(sc, ALC_TXQ_CFG); 3281 if ((reg & TXQ_CFG_ENB) != 0) { 3282 reg &= ~TXQ_CFG_ENB; 3283 CSR_WRITE_4(sc, ALC_TXQ_CFG, reg); 3284 } 3285 DELAY(40); 3286 for (i = ALC_TIMEOUT; i > 0; i--) { 3287 reg = CSR_READ_4(sc, ALC_IDLE_STATUS); 3288 if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0) 3289 break; 3290 DELAY(10); 3291 } 3292 if (i == 0) 3293 printf("%s: could not disable RxQ/TxQ (0x%08x)!\n", 3294 device_xname(sc->sc_dev), reg); 3295 } 3296 3297 static void 3298 alc_init_tx_ring(struct alc_softc *sc) 3299 { 3300 struct alc_ring_data *rd; 3301 struct alc_txdesc *txd; 3302 int i; 3303 3304 sc->alc_cdata.alc_tx_prod = 0; 3305 sc->alc_cdata.alc_tx_cons = 0; 3306 sc->alc_cdata.alc_tx_cnt = 0; 3307 3308 rd = &sc->alc_rdata; 3309 memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ); 3310 for (i = 0; i < ALC_TX_RING_CNT; i++) { 3311 txd = &sc->alc_cdata.alc_txdesc[i]; 3312 txd->tx_m = NULL; 3313 } 3314 3315 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, 3316 sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 3317 } 3318 3319 static int 3320 alc_init_rx_ring(struct alc_softc *sc, bool init) 3321 { 3322 struct alc_ring_data *rd; 3323 struct alc_rxdesc *rxd; 3324 int i; 3325 3326 sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1; 3327 rd = &sc->alc_rdata; 3328 memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ); 3329 for (i = 0; i < ALC_RX_RING_CNT; i++) { 3330 rxd = &sc->alc_cdata.alc_rxdesc[i]; 3331 rxd->rx_m = NULL; 3332 rxd->rx_desc = &rd->alc_rx_ring[i]; 3333 if (alc_newbuf(sc, rxd, init) != 0) 3334 return (ENOBUFS); 3335 } 3336 3337 /* 3338 * Since controller does not update Rx descriptors, driver 3339 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE 3340 * is enough to ensure coherence. 3341 */ 3342 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, 3343 sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); 3344 /* Let controller know availability of new Rx buffers. */ 3345 CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); 3346 3347 return (0); 3348 } 3349 3350 static void 3351 alc_init_rr_ring(struct alc_softc *sc) 3352 { 3353 struct alc_ring_data *rd; 3354 3355 sc->alc_cdata.alc_rr_cons = 0; 3356 ALC_RXCHAIN_RESET(sc); 3357 3358 rd = &sc->alc_rdata; 3359 memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ); 3360 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, 3361 sc->alc_cdata.alc_rr_ring_map->dm_mapsize, 3362 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3363 } 3364 3365 static void 3366 alc_init_cmb(struct alc_softc *sc) 3367 { 3368 struct alc_ring_data *rd; 3369 3370 rd = &sc->alc_rdata; 3371 memset(rd->alc_cmb, 0, ALC_CMB_SZ); 3372 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, 3373 sc->alc_cdata.alc_cmb_map->dm_mapsize, 3374 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3375 } 3376 3377 static void 3378 alc_init_smb(struct alc_softc *sc) 3379 { 3380 struct alc_ring_data *rd; 3381 3382 rd = &sc->alc_rdata; 3383 memset(rd->alc_smb, 0, ALC_SMB_SZ); 3384 bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, 3385 sc->alc_cdata.alc_smb_map->dm_mapsize, 3386 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 3387 } 3388 3389 static void 3390 alc_rxvlan(struct alc_softc *sc) 3391 { 3392 uint32_t reg; 3393 3394 reg = CSR_READ_4(sc, ALC_MAC_CFG); 3395 if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING) 3396 reg |= MAC_CFG_VLAN_TAG_STRIP; 3397 else 3398 reg &= ~MAC_CFG_VLAN_TAG_STRIP; 3399 CSR_WRITE_4(sc, ALC_MAC_CFG, reg); 3400 } 3401 3402 static void 3403 alc_iff(struct alc_softc *sc) 3404 { 3405 struct ethercom *ec = &sc->sc_ec; 3406 struct ifnet *ifp = &ec->ec_if; 3407 struct ether_multi *enm; 3408 struct ether_multistep step; 3409 uint32_t crc; 3410 uint32_t mchash[2]; 3411 uint32_t rxcfg; 3412 3413 rxcfg = CSR_READ_4(sc, ALC_MAC_CFG); 3414 rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); 3415 ifp->if_flags &= ~IFF_ALLMULTI; 3416 3417 /* 3418 * Always accept broadcast frames. 3419 */ 3420 rxcfg |= MAC_CFG_BCAST; 3421 3422 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) { 3423 ifp->if_flags |= IFF_ALLMULTI; 3424 if (ifp->if_flags & IFF_PROMISC) 3425 rxcfg |= MAC_CFG_PROMISC; 3426 else 3427 rxcfg |= MAC_CFG_ALLMULTI; 3428 mchash[0] = mchash[1] = 0xFFFFFFFF; 3429 } else { 3430 /* Program new filter. */ 3431 memset(mchash, 0, sizeof(mchash)); 3432 3433 ETHER_FIRST_MULTI(step, ec, enm); 3434 while (enm != NULL) { 3435 crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); 3436 mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); 3437 ETHER_NEXT_MULTI(step, enm); 3438 } 3439 } 3440 3441 CSR_WRITE_4(sc, ALC_MAR0, mchash[0]); 3442 CSR_WRITE_4(sc, ALC_MAR1, mchash[1]); 3443 CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg); 3444 } 3445 3446 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci"); 3447 3448 #ifdef _MODULE 3449 #include "ioconf.c" 3450 #endif 3451 3452 static int 3453 if_alc_modcmd(modcmd_t cmd, void *opaque) 3454 { 3455 int error = 0; 3456 3457 switch (cmd) { 3458 case MODULE_CMD_INIT: 3459 #ifdef _MODULE 3460 error = config_init_component(cfdriver_ioconf_if_alc, 3461 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc); 3462 #endif 3463 return error; 3464 case MODULE_CMD_FINI: 3465 #ifdef _MODULE 3466 error = config_fini_component(cfdriver_ioconf_if_alc, 3467 cfattach_ioconf_if_alc, cfdata_ioconf_if_alc); 3468 #endif 3469 return error; 3470 default: 3471 return ENOTTY; 3472 } 3473 } 3474