xref: /netbsd-src/sys/dev/pci/if_alc.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /*	$NetBSD: if_alc.c,v 1.25 2017/09/26 07:42:06 knakahara Exp $	*/
2 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
3 /*-
4  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31 
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35 
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49 
50 #include <sys/bus.h>
51 
52 #include <net/if.h>
53 #include <net/if_dl.h>
54 #include <net/if_llc.h>
55 #include <net/if_media.h>
56 #include <net/if_ether.h>
57 
58 #include <net/bpf.h>
59 
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #endif
66 
67 #include <net/if_types.h>
68 #include <net/if_vlanvar.h>
69 
70 #include <net/bpf.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/pci/pcireg.h>
76 #include <dev/pci/pcivar.h>
77 #include <dev/pci/pcidevs.h>
78 
79 #include <dev/pci/if_alcreg.h>
80 
81 /*
82  * Devices supported by this driver.
83  */
84 static struct alc_ident alc_ident_table[] = {
85 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
86 		"Atheros AR8131 PCIe Gigabit Ethernet" },
87 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
88 		"Atheros AR8132 PCIe Fast Ethernet" },
89 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
90 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
91 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
92 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
93 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
94 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
95 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
96 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
97 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
98 		"Atheros AR8161 PCIe Gigabit Ethernet" },
99 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
100 		"Atheros AR8162 PCIe Fast Ethernet" },
101 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
102 		"Atheros AR8171 PCIe Gigabit Ethernet" },
103 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
104 		"Atheros AR8172 PCIe Fast Ethernet" },
105 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
106 		"Killer E2200 Gigabit Ethernet" },
107 	{ 0, 0, 0, NULL },
108 };
109 
110 static int	alc_match(device_t, cfdata_t, void *);
111 static void	alc_attach(device_t, device_t, void *);
112 static int	alc_detach(device_t, int);
113 
114 static int	alc_init(struct ifnet *);
115 static int	alc_init_backend(struct ifnet *, bool);
116 static void	alc_start(struct ifnet *);
117 static int	alc_ioctl(struct ifnet *, u_long, void *);
118 static void	alc_watchdog(struct ifnet *);
119 static int	alc_mediachange(struct ifnet *);
120 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
121 
122 static void	alc_aspm(struct alc_softc *, int, int);
123 static void	alc_aspm_813x(struct alc_softc *, int);
124 static void	alc_aspm_816x(struct alc_softc *, int);
125 static void	alc_disable_l0s_l1(struct alc_softc *);
126 static int	alc_dma_alloc(struct alc_softc *);
127 static void	alc_dma_free(struct alc_softc *);
128 static void	alc_dsp_fixup(struct alc_softc *, int);
129 static int	alc_encap(struct alc_softc *, struct mbuf **);
130 static struct alc_ident *
131 		alc_find_ident(struct pci_attach_args *);
132 static void	alc_get_macaddr(struct alc_softc *);
133 static void	alc_get_macaddr_813x(struct alc_softc *);
134 static void	alc_get_macaddr_816x(struct alc_softc *);
135 static void	alc_get_macaddr_par(struct alc_softc *);
136 static void	alc_init_cmb(struct alc_softc *);
137 static void	alc_init_rr_ring(struct alc_softc *);
138 static int	alc_init_rx_ring(struct alc_softc *, bool);
139 static void	alc_init_smb(struct alc_softc *);
140 static void	alc_init_tx_ring(struct alc_softc *);
141 static int	alc_intr(void *);
142 static void	alc_mac_config(struct alc_softc *);
143 static uint32_t	alc_mii_readreg_813x(struct alc_softc *, int, int);
144 static uint32_t	alc_mii_readreg_816x(struct alc_softc *, int, int);
145 static void	alc_mii_writereg_813x(struct alc_softc *, int, int, int);
146 static void	alc_mii_writereg_816x(struct alc_softc *, int, int, int);
147 static int	alc_miibus_readreg(device_t, int, int);
148 static void	alc_miibus_statchg(struct ifnet *);
149 static void	alc_miibus_writereg(device_t, int, int, int);
150 static uint32_t	alc_miidbg_readreg(struct alc_softc *, int);
151 static void	alc_miidbg_writereg(struct alc_softc *, int, int);
152 static uint32_t	alc_miiext_readreg(struct alc_softc *, int, int);
153 static uint32_t	alc_miiext_writereg(struct alc_softc *, int, int, int);
154 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
155 static void	alc_phy_down(struct alc_softc *);
156 static void	alc_phy_reset(struct alc_softc *);
157 static void	alc_phy_reset_813x(struct alc_softc *);
158 static void	alc_phy_reset_816x(struct alc_softc *);
159 static void	alc_reset(struct alc_softc *);
160 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
161 static int	alc_rxintr(struct alc_softc *);
162 static void	alc_iff(struct alc_softc *);
163 static void	alc_rxvlan(struct alc_softc *);
164 static void	alc_start_queue(struct alc_softc *);
165 static void	alc_stats_clear(struct alc_softc *);
166 static void	alc_stats_update(struct alc_softc *);
167 static void	alc_stop(struct ifnet *, int);
168 static void	alc_stop_mac(struct alc_softc *);
169 static void	alc_stop_queue(struct alc_softc *);
170 static void	alc_tick(void *);
171 static void	alc_txeof(struct alc_softc *);
172 
173 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
174 
175 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
176     alc_match, alc_attach, alc_detach, NULL);
177 
178 int alcdebug = 0;
179 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
180 
181 #define ETHER_ALIGN		2
182 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
183 
184 static int
185 alc_miibus_readreg(device_t dev, int phy, int reg)
186 {
187 	struct alc_softc *sc = device_private(dev);
188 	int v;
189 
190 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
191 		v = alc_mii_readreg_816x(sc, phy, reg);
192 	else
193 		v = alc_mii_readreg_813x(sc, phy, reg);
194 	return (v);
195 }
196 
197 static uint32_t
198 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg)
199 {
200 	uint32_t v;
201 	int i;
202 
203 	if (phy != sc->alc_phyaddr)
204 		return (0);
205 
206 	/*
207 	 * For AR8132 fast ethernet controller, do not report 1000baseT
208 	 * capability to mii(4). Even though AR8132 uses the same
209 	 * model/revision number of F1 gigabit PHY, the PHY has no
210 	 * ability to establish 1000baseT link.
211 	 */
212 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
213 	    reg == MII_EXTSR)
214 		return 0;
215 
216 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
219 		DELAY(5);
220 		v = CSR_READ_4(sc, ALC_MDIO);
221 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222 			break;
223 	}
224 
225 	if (i == 0) {
226 		printf("%s: phy read timeout: phy %d, reg %d\n",
227 		    device_xname(sc->sc_dev), phy, reg);
228 		return (0);
229 	}
230 
231 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232 }
233 
234 static uint32_t
235 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg)
236 {
237 	uint32_t clk, v;
238 	int i;
239 
240 	if (phy != sc->alc_phyaddr)
241 		return (0);
242 
243 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
244 		clk = MDIO_CLK_25_128;
245 	else
246 		clk = MDIO_CLK_25_4;
247 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
248 	    MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
249 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
250 		DELAY(5);
251 		v = CSR_READ_4(sc, ALC_MDIO);
252 		if ((v & MDIO_OP_BUSY) == 0)
253 			break;
254 	}
255 
256 	if (i == 0) {
257 		printf("%s: phy read timeout: phy %d, reg %d\n",
258 		    device_xname(sc->sc_dev), phy, reg);
259 		return (0);
260 	}
261 
262 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
263 }
264 
265 static void
266 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
267 {
268 	struct alc_softc *sc = device_private(dev);
269 
270 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
271 		alc_mii_writereg_816x(sc, phy, reg, val);
272 	else
273 		alc_mii_writereg_813x(sc, phy, reg, val);
274 
275 	return;
276 }
277 
278 static void
279 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val)
280 {
281 	uint32_t v;
282 	int i;
283 
284 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
285 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
286 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
287 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
288 		DELAY(5);
289 		v = CSR_READ_4(sc, ALC_MDIO);
290 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
291 			break;
292 	}
293 
294 	if (i == 0)
295 		printf("%s: phy write timeout: phy %d, reg %d\n",
296 		    device_xname(sc->sc_dev), phy, reg);
297 
298 	return;
299 }
300 
301 static void
302 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val)
303 {
304 	uint32_t clk, v;
305 	int i;
306 
307 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
308 		clk = MDIO_CLK_25_128;
309 	else
310 		clk = MDIO_CLK_25_4;
311 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
312 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
313 	    MDIO_SUP_PREAMBLE | clk);
314 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
315 		DELAY(5);
316 		v = CSR_READ_4(sc, ALC_MDIO);
317 		if ((v & MDIO_OP_BUSY) == 0)
318 			break;
319 	}
320 
321 	if (i == 0)
322 		printf("%s: phy write timeout: phy %d, reg %d\n",
323 		    device_xname(sc->sc_dev), phy, reg);
324 
325 	return;
326 }
327 
328 static void
329 alc_miibus_statchg(struct ifnet *ifp)
330 {
331 	struct alc_softc *sc = ifp->if_softc;
332 	struct mii_data *mii = &sc->sc_miibus;
333 	uint32_t reg;
334 
335 	if ((ifp->if_flags & IFF_RUNNING) == 0)
336 		return;
337 
338 	sc->alc_flags &= ~ALC_FLAG_LINK;
339 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
340 	    (IFM_ACTIVE | IFM_AVALID)) {
341 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
342 		case IFM_10_T:
343 		case IFM_100_TX:
344 			sc->alc_flags |= ALC_FLAG_LINK;
345 			break;
346 		case IFM_1000_T:
347 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
348 				sc->alc_flags |= ALC_FLAG_LINK;
349 			break;
350 		default:
351 			break;
352 		}
353 	}
354 	/* Stop Rx/Tx MACs. */
355 	alc_stop_mac(sc);
356 
357 	/* Program MACs with resolved speed/duplex/flow-control. */
358 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
359 		alc_start_queue(sc);
360 		alc_mac_config(sc);
361 		/* Re-enable Tx/Rx MACs. */
362 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
363 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
364 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
365 	}
366 	alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
367 	alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
368 }
369 
370 static uint32_t
371 alc_miidbg_readreg(struct alc_softc *sc, int reg)
372 {
373 
374 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
375 	    reg);
376 	return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
377 	    ALC_MII_DBG_DATA));
378 }
379 
380 static void
381 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val)
382 {
383 
384 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
385 	    reg);
386 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val);
387 
388 	return;
389 }
390 
391 static uint32_t
392 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg)
393 {
394 	uint32_t clk, v;
395 	int i;
396 
397 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
398 	    EXT_MDIO_DEVADDR(devaddr));
399 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
400 		clk = MDIO_CLK_25_128;
401 	else
402 		clk = MDIO_CLK_25_4;
403 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
404 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
405 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
406 		DELAY(5);
407 		v = CSR_READ_4(sc, ALC_MDIO);
408 		if ((v & MDIO_OP_BUSY) == 0)
409 			break;
410 	}
411 
412 	if (i == 0) {
413 		printf("%s: phy ext read timeout: %d\n",
414 		    device_xname(sc->sc_dev), reg);
415 		return (0);
416 	}
417 
418 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
419 }
420 
421 static uint32_t
422 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val)
423 {
424 	uint32_t clk, v;
425 	int i;
426 
427 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
428 	    EXT_MDIO_DEVADDR(devaddr));
429 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
430 		clk = MDIO_CLK_25_128;
431 	else
432 		clk = MDIO_CLK_25_4;
433 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
434 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
435 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
436 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
437 		DELAY(5);
438 		v = CSR_READ_4(sc, ALC_MDIO);
439 		if ((v & MDIO_OP_BUSY) == 0)
440 			break;
441 	}
442 
443 	if (i == 0) {
444 		printf("%s: phy ext write timeout: reg %d\n",
445 		    device_xname(sc->sc_dev), reg);
446 		return (0);
447 	}
448 
449 	return (0);
450 }
451 
452 static void
453 alc_dsp_fixup(struct alc_softc *sc, int media)
454 {
455 	uint16_t agc, len, val;
456 
457 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
458 		return;
459 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
460 		return;
461 
462 	/*
463 	 * Vendor PHY magic.
464 	 * 1000BT/AZ, wrong cable length
465 	 */
466 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
467 		len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6);
468 		len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
469 		    EXT_CLDCTL6_CAB_LEN_MASK;
470 		/* XXX: used to be (alc >> shift) & mask which is 0 */
471 		agc = alc_miidbg_readreg(sc, MII_DBG_AGC) & DBG_AGC_2_VGA_MASK;
472 		agc >>= DBG_AGC_2_VGA_SHIFT;
473 		if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
474 		    agc > DBG_AGC_LONG1G_LIMT) ||
475 		    (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
476 		    agc > DBG_AGC_LONG1G_LIMT)) {
477 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
478 			    DBG_AZ_ANADECT_LONG);
479 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
480 			    MII_EXT_ANEG_AFE);
481 			val |= ANEG_AFEE_10BT_100M_TH;
482 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
483 			    val);
484 		} else {
485 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
486 			    DBG_AZ_ANADECT_DEFAULT);
487 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
488 			    MII_EXT_ANEG_AFE);
489 			val &= ~ANEG_AFEE_10BT_100M_TH;
490 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
491 			    val);
492 		}
493 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
494 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
495 			if (media == IFM_1000_T) {
496 				/*
497 				 * Giga link threshold, raise the tolerance of
498 				 * noise 50%.
499 				 */
500 				val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
501 				val &= ~DBG_MSE20DB_TH_MASK;
502 				val |= (DBG_MSE20DB_TH_HI <<
503 				    DBG_MSE20DB_TH_SHIFT);
504 				alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
505 			} else if (media == IFM_100_TX)
506 				alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
507 				    DBG_MSE16DB_UP);
508 		}
509 	} else {
510 		val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE);
511 		val &= ~ANEG_AFEE_10BT_100M_TH;
512 		alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
513 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 			alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
516 			    DBG_MSE16DB_DOWN);
517 			val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
518 			val &= ~DBG_MSE20DB_TH_MASK;
519 			val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
520 			alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
521 		}
522  	}
523 }
524 
525 static void
526 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
527 {
528 	struct alc_softc *sc = ifp->if_softc;
529 	struct mii_data *mii = &sc->sc_miibus;
530 
531 	if ((ifp->if_flags & IFF_UP) == 0)
532 		return;
533 
534 	mii_pollstat(mii);
535 	ifmr->ifm_status = mii->mii_media_status;
536 	ifmr->ifm_active = mii->mii_media_active;
537 }
538 
539 static int
540 alc_mediachange(struct ifnet *ifp)
541 {
542 	struct alc_softc *sc = ifp->if_softc;
543 	struct mii_data *mii = &sc->sc_miibus;
544 	int error;
545 
546 	if (mii->mii_instance != 0) {
547 		struct mii_softc *miisc;
548 
549 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
550 			mii_phy_reset(miisc);
551 	}
552 	error = mii_mediachg(mii);
553 
554 	return (error);
555 }
556 
557 static struct alc_ident *
558 alc_find_ident(struct pci_attach_args *pa)
559 {
560 	struct alc_ident *ident;
561 	uint16_t vendor, devid;
562 
563 	vendor = PCI_VENDOR(pa->pa_id);
564 	devid = PCI_PRODUCT(pa->pa_id);
565 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
566 		if (vendor == ident->vendorid && devid == ident->deviceid)
567 			return (ident);
568 	}
569 
570 	return (NULL);
571 }
572 
573 static int
574 alc_match(device_t dev, cfdata_t match, void *aux)
575 {
576 	struct pci_attach_args *pa = aux;
577 
578 	return alc_find_ident(pa) != NULL;
579 }
580 
581 static void
582 alc_get_macaddr(struct alc_softc *sc)
583 {
584 
585 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
586 		alc_get_macaddr_816x(sc);
587 	else
588 		alc_get_macaddr_813x(sc);
589 }
590 
591 static void
592 alc_get_macaddr_813x(struct alc_softc *sc)
593 {
594 	uint32_t opt;
595 	uint16_t val;
596 	int eeprom, i;
597 
598 	eeprom = 0;
599 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
600 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
601 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
602 		/*
603 		 * EEPROM found, let TWSI reload EEPROM configuration.
604 		 * This will set ethernet address of controller.
605 		 */
606 		eeprom++;
607 		switch (sc->alc_ident->deviceid) {
608 		case PCI_PRODUCT_ATTANSIC_AR8131:
609 		case PCI_PRODUCT_ATTANSIC_AR8132:
610 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
611 				opt |= OPT_CFG_CLK_ENB;
612 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
613 				CSR_READ_4(sc, ALC_OPT_CFG);
614 				DELAY(1000);
615 			}
616 			break;
617 		case PCI_PRODUCT_ATTANSIC_AR8151:
618 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
619 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
620 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
621 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
622 			    ALC_MII_DBG_ADDR, 0x00);
623 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
624 			    ALC_MII_DBG_DATA);
625 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
626 			    ALC_MII_DBG_DATA, val & 0xFF7F);
627 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
628 			    ALC_MII_DBG_ADDR, 0x3B);
629 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
630 			    ALC_MII_DBG_DATA);
631 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
632 			    ALC_MII_DBG_DATA, val | 0x0008);
633 			DELAY(20);
634 			break;
635 		}
636 
637 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
638 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
639 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
640 		CSR_READ_4(sc, ALC_WOL_CFG);
641 
642 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
643 		    TWSI_CFG_SW_LD_START);
644 		for (i = 100; i > 0; i--) {
645 			DELAY(1000);
646 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
647 			    TWSI_CFG_SW_LD_START) == 0)
648 				break;
649 		}
650 		if (i == 0)
651 			printf("%s: reloading EEPROM timeout!\n",
652 			    device_xname(sc->sc_dev));
653 	} else {
654 		if (alcdebug)
655 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
656 	}
657 	if (eeprom != 0) {
658 		switch (sc->alc_ident->deviceid) {
659 		case PCI_PRODUCT_ATTANSIC_AR8131:
660 		case PCI_PRODUCT_ATTANSIC_AR8132:
661 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
662 				opt &= ~OPT_CFG_CLK_ENB;
663 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
664 				CSR_READ_4(sc, ALC_OPT_CFG);
665 				DELAY(1000);
666 			}
667 			break;
668 		case PCI_PRODUCT_ATTANSIC_AR8151:
669 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
670 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
671 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
672 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
673 			    ALC_MII_DBG_ADDR, 0x00);
674 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
675 			    ALC_MII_DBG_DATA);
676 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
677 			    ALC_MII_DBG_DATA, val | 0x0080);
678 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
679 			    ALC_MII_DBG_ADDR, 0x3B);
680 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
681 			    ALC_MII_DBG_DATA);
682 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
683 			    ALC_MII_DBG_DATA, val & 0xFFF7);
684 			DELAY(20);
685 			break;
686 		}
687 	}
688 
689 	alc_get_macaddr_par(sc);
690 }
691 
692 static void
693 alc_get_macaddr_816x(struct alc_softc *sc)
694 {
695 	uint32_t reg;
696 	int i, reloaded;
697 
698 	reloaded = 0;
699 	/* Try to reload station address via TWSI. */
700 	for (i = 100; i > 0; i--) {
701 		reg = CSR_READ_4(sc, ALC_SLD);
702 		if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
703 			break;
704 		DELAY(1000);
705 	}
706 	if (i != 0) {
707 		CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
708 		for (i = 100; i > 0; i--) {
709 			DELAY(1000);
710 			reg = CSR_READ_4(sc, ALC_SLD);
711 			if ((reg & SLD_START) == 0)
712 				break;
713 		}
714 		if (i != 0)
715 			reloaded++;
716 		else if (alcdebug)
717 			printf("%s: reloading station address via TWSI timed out!\n",
718 			    device_xname(sc->sc_dev));
719 	}
720 
721 	/* Try to reload station address from EEPROM or FLASH. */
722 	if (reloaded == 0) {
723 		reg = CSR_READ_4(sc, ALC_EEPROM_LD);
724 		if ((reg & (EEPROM_LD_EEPROM_EXIST |
725 		    EEPROM_LD_FLASH_EXIST)) != 0) {
726 			for (i = 100; i > 0; i--) {
727 				reg = CSR_READ_4(sc, ALC_EEPROM_LD);
728 				if ((reg & (EEPROM_LD_PROGRESS |
729 				    EEPROM_LD_START)) == 0)
730 					break;
731 				DELAY(1000);
732 			}
733 			if (i != 0) {
734 				CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
735 				    EEPROM_LD_START);
736 				for (i = 100; i > 0; i--) {
737 					DELAY(1000);
738 					reg = CSR_READ_4(sc, ALC_EEPROM_LD);
739 					if ((reg & EEPROM_LD_START) == 0)
740 						break;
741 				}
742 			} else if (alcdebug)
743 				printf("%s: reloading EEPROM/FLASH timed out!\n",
744 			  	  device_xname(sc->sc_dev));
745 		}
746 	}
747 
748 	alc_get_macaddr_par(sc);
749 }
750 
751 
752 static void
753 alc_get_macaddr_par(struct alc_softc *sc)
754 {
755 	uint32_t ea[2];
756 
757 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
758 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
759 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
760 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
761 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
762 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
763 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
764 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
765 }
766 
767 static void
768 alc_disable_l0s_l1(struct alc_softc *sc)
769 {
770 	uint32_t pmcfg;
771 
772 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
773 		/* Another magic from vendor. */
774 		pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
775 		pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
776 		    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
777 		    PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
778 		pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
779 		    PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
780 		CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
781 	}
782 }
783 
784 static void
785 alc_phy_reset(struct alc_softc *sc)
786 {
787 
788 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
789 		alc_phy_reset_816x(sc);
790 	else
791 		alc_phy_reset_813x(sc);
792 }
793 
794 static void
795 alc_phy_reset_813x(struct alc_softc *sc)
796 {
797 	uint16_t data;
798 
799 	/* Reset magic from Linux. */
800 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
801 	CSR_READ_2(sc, ALC_GPHY_CFG);
802 	DELAY(10 * 1000);
803 
804 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
805 	    GPHY_CFG_SEL_ANA_RESET);
806 	CSR_READ_2(sc, ALC_GPHY_CFG);
807 	DELAY(10 * 1000);
808 
809 	/* DSP fixup, Vendor magic. */
810 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
811 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
812 		    ALC_MII_DBG_ADDR, 0x000A);
813 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
814 		    ALC_MII_DBG_DATA);
815 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
816 		    ALC_MII_DBG_DATA, data & 0xDFFF);
817 	}
818 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
819 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
820 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
821 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
822 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
823 		    ALC_MII_DBG_ADDR, 0x003B);
824 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
825 		    ALC_MII_DBG_DATA);
826 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
827 		    ALC_MII_DBG_DATA, data & 0xFFF7);
828 		DELAY(20 * 1000);
829 	}
830 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
831 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
832 		    ALC_MII_DBG_ADDR, 0x0029);
833 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
834 		    ALC_MII_DBG_DATA, 0x929D);
835 	}
836 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
837 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
838 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
839 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
840 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
841 		    ALC_MII_DBG_ADDR, 0x0029);
842 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
843 		    ALC_MII_DBG_DATA, 0xB6DD);
844 	}
845 
846 	/* Load DSP codes, vendor magic. */
847 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
848 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
849 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
850 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
851 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
852 	    ALC_MII_DBG_DATA, data);
853 
854 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
855 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
856 	    ANA_SERDES_EN_LCKDT;
857 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
858 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
859 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
860 	    ALC_MII_DBG_DATA, data);
861 
862 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
863 	    ANA_LONG_CABLE_TH_100_MASK) |
864 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
865 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
866 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
867 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
868 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
869 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
870 	    ALC_MII_DBG_DATA, data);
871 
872 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
873 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
874 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
875 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
876 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
877 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
878 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
879 	    ALC_MII_DBG_DATA, data);
880 
881 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
882 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
883 	    ANA_OEN_125M;
884 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
885 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
886 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
887 	    ALC_MII_DBG_DATA, data);
888 	DELAY(1000);
889 
890 	/* Disable hibernation. */
891 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
892 	    0x0029);
893 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
894 	    ALC_MII_DBG_DATA);
895 	data &= ~0x8000;
896 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
897 	    data);
898 
899 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
900 	    0x000B);
901 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
902 	    ALC_MII_DBG_DATA);
903 	data &= ~0x8000;
904 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
905 	    data);
906 }
907 
908 static void
909 alc_phy_reset_816x(struct alc_softc *sc)
910 {
911 	uint32_t val;
912 
913 	val = CSR_READ_4(sc, ALC_GPHY_CFG);
914 	val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
915 	    GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
916 	    GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
917 	val |= GPHY_CFG_SEL_ANA_RESET;
918 #ifdef notyet
919 	val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
920 #else
921 	/* Disable PHY hibernation. */
922 	val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
923 #endif
924 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
925 	DELAY(10);
926 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
927 	DELAY(800);
928 
929 	/* Vendor PHY magic. */
930 #ifdef notyet
931 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
932 	alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
933 	alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
934 	    EXT_VDRVBIAS_DEFAULT);
935 #else
936 	/* Disable PHY hibernation. */
937 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
938 	    DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
939 	alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
940 	    DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
941 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
942 #endif
943 
944 	/* XXX Disable EEE. */
945 	val = CSR_READ_4(sc, ALC_LPI_CTL);
946 	val &= ~LPI_CTL_ENB;
947 	CSR_WRITE_4(sc, ALC_LPI_CTL, val);
948 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
949 
950 	/* PHY power saving. */
951 	alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
952 	alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
953 	alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
954 	alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
955 	val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
956 	val &= ~DBG_GREENCFG2_GATE_DFSE_EN;
957 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
958 
959 	/* RTL8139C, 120m issue. */
960 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
961 	    ANEG_NLP78_120M_DEFAULT);
962 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
963 	    ANEG_S3DIG10_DEFAULT);
964 
965 	if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
966 		/* Turn off half amplitude. */
967 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3);
968 		val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
969 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val);
970 		/* Turn off Green feature. */
971 		val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
972 		val |= DBG_GREENCFG2_BP_GREEN;
973 		alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
974 		/* Turn off half bias. */
975 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5);
976 		val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
977 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val);
978 	}
979 }
980 
981 static void
982 alc_phy_down(struct alc_softc *sc)
983 {
984 	uint32_t gphy;
985 
986 	switch (sc->alc_ident->deviceid) {
987 	case PCI_PRODUCT_ATTANSIC_AR8161:
988 	case PCI_PRODUCT_ATTANSIC_E2200:
989 	case PCI_PRODUCT_ATTANSIC_AR8162:
990 	case PCI_PRODUCT_ATTANSIC_AR8171:
991 	case PCI_PRODUCT_ATTANSIC_AR8172:
992 		gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
993 		gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
994 		    GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
995 		gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
996 		    GPHY_CFG_SEL_ANA_RESET;
997 		gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
998 		CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
999 		break;
1000 	case PCI_PRODUCT_ATTANSIC_AR8151:
1001 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1002 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1003 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1004 		/*
1005 		 * GPHY power down caused more problems on AR8151 v2.0.
1006 		 * When driver is reloaded after GPHY power down,
1007 		 * accesses to PHY/MAC registers hung the system. Only
1008 		 * cold boot recovered from it.  I'm not sure whether
1009 		 * AR8151 v1.0 also requires this one though.  I don't
1010 		 * have AR8151 v1.0 controller in hand.
1011 		 * The only option left is to isolate the PHY and
1012 		 * initiates power down the PHY which in turn saves
1013 		 * more power when driver is unloaded.
1014 		 */
1015 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1016 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1017 		break;
1018 	default:
1019 		/* Force PHY down. */
1020 		CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1021 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1022 		    GPHY_CFG_PWDOWN_HW);
1023 		DELAY(1000);
1024 		break;
1025 	}
1026 }
1027 
1028 static void
1029 alc_aspm(struct alc_softc *sc, int init, int media)
1030 {
1031 
1032 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1033 		alc_aspm_816x(sc, init);
1034 	else
1035 		alc_aspm_813x(sc, media);
1036 }
1037 
1038 static void
1039 alc_aspm_813x(struct alc_softc *sc, int media)
1040 {
1041 	uint32_t pmcfg;
1042 	uint16_t linkcfg;
1043 
1044 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1045 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1046 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
1047 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1048 		    PCIE_LCSR);
1049 	else
1050 		linkcfg = 0;
1051 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1052 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1053 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
1054 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1055 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1056 
1057 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1058 		/* Disable extended sync except AR8152 B v1.0 */
1059 		linkcfg &= ~0x80;
1060 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1061 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
1062 			linkcfg |= 0x80;
1063 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1064 		    linkcfg);
1065 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1066 		    PM_CFG_HOTRST);
1067 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1068 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1069 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1070 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1071 		    PM_CFG_PM_REQ_TIMER_SHIFT);
1072 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1073 	}
1074 
1075 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1076 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1077 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
1078 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1079 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1080 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1081 			if (sc->alc_ident->deviceid ==
1082 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
1083 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1084 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1085 			    PM_CFG_SERDES_PLL_L1_ENB |
1086 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
1087 			pmcfg |= PM_CFG_CLK_SWH_L1;
1088 			if (media == IFM_100_TX || media == IFM_1000_T) {
1089 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1090 				switch (sc->alc_ident->deviceid) {
1091 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
1092 					pmcfg |= (7 <<
1093 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1094 					break;
1095 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1096 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1097 					pmcfg |= (4 <<
1098 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1099 					break;
1100 				default:
1101 					pmcfg |= (15 <<
1102 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1103 					break;
1104 				}
1105 			}
1106 		} else {
1107 			pmcfg |= PM_CFG_SERDES_L1_ENB |
1108 			    PM_CFG_SERDES_PLL_L1_ENB |
1109 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
1110 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1111 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1112 		}
1113 	} else {
1114 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1115 		    PM_CFG_SERDES_PLL_L1_ENB);
1116 		pmcfg |= PM_CFG_CLK_SWH_L1;
1117 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1118 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1119 	}
1120 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1121 }
1122 
1123 static void
1124 alc_aspm_816x(struct alc_softc *sc, int init)
1125 {
1126 	uint32_t pmcfg;
1127 
1128 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1129 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1130 	pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1131 	pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1132 	pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1133 	pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1134 	pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1135 	pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1136 	pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1137 	    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1138 	    PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1139 	    PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1140 	    PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1141 	if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1142 	    (sc->alc_rev & 0x01) != 0)
1143 		pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1144 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1145 		/* Link up, enable both L0s, L1s. */
1146 		pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1147 		    PM_CFG_MAC_ASPM_CHK;
1148 	} else {
1149 		if (init != 0)
1150 			pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1151 			    PM_CFG_MAC_ASPM_CHK;
1152 		else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1153 			pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1154 	}
1155 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1156 }
1157 
1158 static void
1159 alc_attach(device_t parent, device_t self, void *aux)
1160 {
1161 
1162 	struct alc_softc *sc = device_private(self);
1163 	struct pci_attach_args *pa = aux;
1164 	pci_chipset_tag_t pc = pa->pa_pc;
1165 	pci_intr_handle_t ih;
1166 	const char *intrstr;
1167 	struct ifnet *ifp;
1168 	pcireg_t memtype;
1169 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1170 	uint16_t burst;
1171 	int base, mii_flags, state, error = 0;
1172 	uint32_t cap, ctl, val;
1173 	char intrbuf[PCI_INTRSTR_LEN];
1174 
1175 	sc->alc_ident = alc_find_ident(pa);
1176 
1177 	aprint_naive("\n");
1178 	aprint_normal(": %s\n", sc->alc_ident->name);
1179 
1180 	sc->sc_dev = self;
1181 	sc->sc_dmat = pa->pa_dmat;
1182 	sc->sc_pct = pa->pa_pc;
1183 	sc->sc_pcitag = pa->pa_tag;
1184 
1185 	/*
1186 	 * Allocate IO memory
1187 	 */
1188 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1189 	switch (memtype) {
1190 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1191 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1192 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1193 		break;
1194 	default:
1195 		aprint_error_dev(self, "invalid base address register\n");
1196 		break;
1197 	}
1198 
1199 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1200 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1201 		aprint_error_dev(self, "could not map mem space\n");
1202 		return;
1203 	}
1204 
1205 	if (pci_intr_map(pa, &ih) != 0) {
1206 		printf(": can't map interrupt\n");
1207 		goto fail;
1208 	}
1209 
1210 	/*
1211 	 * Allocate IRQ
1212 	 */
1213 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1214 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
1215 	if (sc->sc_irq_handle == NULL) {
1216 		printf(": could not establish interrupt");
1217 		if (intrstr != NULL)
1218 			printf(" at %s", intrstr);
1219 		printf("\n");
1220 		goto fail;
1221 	}
1222 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1223 
1224 	/* Set PHY address. */
1225 	sc->alc_phyaddr = ALC_PHY_ADDR;
1226 
1227 	/* Initialize DMA parameters. */
1228 	sc->alc_dma_rd_burst = 0;
1229 	sc->alc_dma_wr_burst = 0;
1230 	sc->alc_rcb = DMA_CFG_RCB_64;
1231 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1232 	    &base, NULL)) {
1233 		sc->alc_flags |= ALC_FLAG_PCIE;
1234 		sc->alc_expcap = base;
1235 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1236 		    base + PCIE_DCSR) >> 16;
1237 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1238 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1239 		if (alcdebug) {
1240 			printf("%s: Read request size : %u bytes.\n",
1241 			    device_xname(sc->sc_dev),
1242 			    alc_dma_burst[sc->alc_dma_rd_burst]);
1243 			printf("%s: TLP payload size : %u bytes.\n",
1244 			    device_xname(sc->sc_dev),
1245 			    alc_dma_burst[sc->alc_dma_wr_burst]);
1246 		}
1247 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1248 			sc->alc_dma_rd_burst = 3;
1249 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1250 			sc->alc_dma_wr_burst = 3;
1251 
1252 		/* Clear data link and flow-control protocol error. */
1253 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1254 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1255 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1256 
1257 		if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1258  			CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1259  			    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1260  			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1261  			    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1262  			    PCIE_PHYMISC_FORCE_RCV_DET);
1263  			if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1264 			    sc->alc_rev == ATHEROS_AR8152_B_V10) {
1265  				val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1266  				val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1267  				    PCIE_PHYMISC2_SERDES_TH_MASK);
1268 				val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1269 				val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1270 				CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1271 			}
1272 			/* Disable ASPM L0S and L1. */
1273 			cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1274 			    base + PCIE_LCAP) >> 16;
1275 			if ((cap & PCIE_LCAP_ASPM) != 0) {
1276 				ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1277 				    base + PCIE_LCSR) >> 16;
1278 				if ((ctl & 0x08) != 0)
1279 					sc->alc_rcb = DMA_CFG_RCB_128;
1280 				if (alcdebug)
1281 					printf("%s: RCB %u bytes\n",
1282 					    device_xname(sc->sc_dev),
1283 					    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1284 				state = ctl & 0x03;
1285 				if (state & 0x01)
1286 					sc->alc_flags |= ALC_FLAG_L0S;
1287 				if (state & 0x02)
1288 					sc->alc_flags |= ALC_FLAG_L1S;
1289 				if (alcdebug)
1290 					printf("%s: ASPM %s %s\n",
1291 					    device_xname(sc->sc_dev),
1292 					    aspm_state[state],
1293 					    state == 0 ? "disabled" : "enabled");
1294 				alc_disable_l0s_l1(sc);
1295 			} else {
1296 				aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1297 			}
1298 		} else {
1299 			val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1300 			val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1301 			CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1302 			val = CSR_READ_4(sc, ALC_MASTER_CFG);
1303 			if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1304 			    (sc->alc_rev & 0x01) != 0) {
1305 				if ((val & MASTER_WAKEN_25M) == 0 ||
1306 				    (val & MASTER_CLK_SEL_DIS) == 0) {
1307 					val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1308 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1309 				}
1310 			} else {
1311 				if ((val & MASTER_WAKEN_25M) == 0 ||
1312 				    (val & MASTER_CLK_SEL_DIS) != 0) {
1313 					val |= MASTER_WAKEN_25M;
1314 					val &= ~MASTER_CLK_SEL_DIS;
1315 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1316 				}
1317 			}
1318 		}
1319 		alc_aspm(sc, 1, IFM_UNKNOWN);
1320 	}
1321 
1322 	/* Reset PHY. */
1323 	alc_phy_reset(sc);
1324 
1325 	/* Reset the ethernet controller. */
1326 	alc_stop_mac(sc);
1327 	alc_reset(sc);
1328 
1329 	/*
1330 	 * One odd thing is AR8132 uses the same PHY hardware(F1
1331 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1332 	 * the PHY supports 1000Mbps but that's not true. The PHY
1333 	 * used in AR8132 can't establish gigabit link even if it
1334 	 * shows the same PHY model/revision number of AR8131.
1335 	 */
1336 	switch (sc->alc_ident->deviceid) {
1337 	case PCI_PRODUCT_ATTANSIC_AR8161:
1338 		if (PCI_SUBSYS_ID(pci_conf_read(
1339 		   sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1340 		   sc->alc_rev == 0)
1341 			sc->alc_flags |= ALC_FLAG_LINK_WAR;
1342 		/* FALLTHROUGH */
1343 	case PCI_PRODUCT_ATTANSIC_E2200:
1344 	case PCI_PRODUCT_ATTANSIC_AR8171:
1345 		sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1346 		break;
1347 	case PCI_PRODUCT_ATTANSIC_AR8162:
1348 	case PCI_PRODUCT_ATTANSIC_AR8172:
1349 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1350 		break;
1351 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1352 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1353 		sc->alc_flags |= ALC_FLAG_APS;
1354 		/* FALLTHROUGH */
1355 	case PCI_PRODUCT_ATTANSIC_AR8132:
1356 		sc->alc_flags |= ALC_FLAG_FASTETHER;
1357 		break;
1358 	case PCI_PRODUCT_ATTANSIC_AR8151:
1359 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1360 		sc->alc_flags |= ALC_FLAG_APS;
1361 		/* FALLTHROUGH */
1362 	default:
1363 		break;
1364 	}
1365 	sc->alc_flags |= ALC_FLAG_JUMBO;
1366 
1367 	/*
1368 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
1369 	 * addition, Atheros said that enabling SMB wouldn't improve
1370 	 * performance. However I think it's bad to access lots of
1371 	 * registers to extract MAC statistics.
1372 	 */
1373 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
1374 	/*
1375 	 * Don't use Tx CMB. It is known to have silicon bug.
1376 	 */
1377 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
1378 	sc->alc_rev = PCI_REVISION(pa->pa_class);
1379 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1380 	    MASTER_CHIP_REV_SHIFT;
1381 	if (alcdebug) {
1382 		printf("%s: PCI device revision : 0x%04x\n",
1383 		    device_xname(sc->sc_dev), sc->alc_rev);
1384 		printf("%s: Chip id/revision : 0x%04x\n",
1385 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
1386 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1387 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1388 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1389 	}
1390 
1391 	error = alc_dma_alloc(sc);
1392 	if (error)
1393 		goto fail;
1394 
1395 	callout_init(&sc->sc_tick_ch, 0);
1396 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1397 
1398 	/* Load station address. */
1399 	alc_get_macaddr(sc);
1400 
1401 	aprint_normal_dev(self, "Ethernet address %s\n",
1402 	    ether_sprintf(sc->alc_eaddr));
1403 
1404 	ifp = &sc->sc_ec.ec_if;
1405 	ifp->if_softc = sc;
1406 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1407 	ifp->if_init = alc_init;
1408 	ifp->if_ioctl = alc_ioctl;
1409 	ifp->if_start = alc_start;
1410 	ifp->if_stop = alc_stop;
1411 	ifp->if_watchdog = alc_watchdog;
1412 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1413 	IFQ_SET_READY(&ifp->if_snd);
1414 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1415 
1416 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1417 
1418 #ifdef ALC_CHECKSUM
1419 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1420 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1421 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1422 #endif
1423 
1424 #if NVLAN > 0
1425 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1426 #endif
1427 
1428 	/*
1429 	 * XXX
1430 	 * It seems enabling Tx checksum offloading makes more trouble.
1431 	 * Sometimes the controller does not receive any frames when
1432 	 * Tx checksum offloading is enabled. I'm not sure whether this
1433 	 * is a bug in Tx checksum offloading logic or I got broken
1434 	 * sample boards. To safety, don't enable Tx checksum offloading
1435 	 * by default but give chance to users to toggle it if they know
1436 	 * their controllers work without problems.
1437 	 * Fortunately, Tx checksum offloading for AR816x family
1438 	 * seems to work.
1439 	 */
1440 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1441 		ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1442 		ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1443 	}
1444 
1445 	/* Set up MII bus. */
1446 	sc->sc_miibus.mii_ifp = ifp;
1447 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
1448 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
1449 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
1450 
1451 	sc->sc_ec.ec_mii = &sc->sc_miibus;
1452 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
1453 	    alc_mediastatus);
1454 	mii_flags = 0;
1455 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1456 		mii_flags |= MIIF_DOPAUSE;
1457 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
1458 		MII_OFFSET_ANY, mii_flags);
1459 
1460 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
1461 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1462 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
1463 		    0, NULL);
1464 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
1465 	} else
1466 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
1467 
1468 	if_attach(ifp);
1469 	if_deferred_start_init(ifp, NULL);
1470 	ether_ifattach(ifp, sc->alc_eaddr);
1471 
1472 	if (!pmf_device_register(self, NULL, NULL))
1473 		aprint_error_dev(self, "couldn't establish power handler\n");
1474 	else
1475 		pmf_class_network_register(self, ifp);
1476 
1477 	return;
1478 fail:
1479 	alc_dma_free(sc);
1480 	if (sc->sc_irq_handle != NULL) {
1481 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1482 		sc->sc_irq_handle = NULL;
1483 	}
1484 	if (sc->sc_mem_size) {
1485 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1486 		sc->sc_mem_size = 0;
1487 	}
1488 }
1489 
1490 static int
1491 alc_detach(device_t self, int flags)
1492 {
1493 	struct alc_softc *sc = device_private(self);
1494 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1495 	int s;
1496 
1497 	s = splnet();
1498 	alc_stop(ifp, 0);
1499 	splx(s);
1500 
1501 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1502 
1503 	/* Delete all remaining media. */
1504 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1505 
1506 	ether_ifdetach(ifp);
1507 	if_detach(ifp);
1508 	alc_dma_free(sc);
1509 
1510 	alc_phy_down(sc);
1511 	if (sc->sc_irq_handle != NULL) {
1512 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1513 		sc->sc_irq_handle = NULL;
1514 	}
1515 	if (sc->sc_mem_size) {
1516 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1517 		sc->sc_mem_size = 0;
1518 	}
1519 
1520 	return (0);
1521 }
1522 
1523 static int
1524 alc_dma_alloc(struct alc_softc *sc)
1525 {
1526 	struct alc_txdesc *txd;
1527 	struct alc_rxdesc *rxd;
1528 	int nsegs, error, i;
1529 
1530 	/*
1531 	 * Create DMA stuffs for TX ring
1532 	 */
1533 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1534 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1535 	if (error) {
1536 		sc->alc_cdata.alc_tx_ring_map = NULL;
1537 		return (ENOBUFS);
1538 	}
1539 
1540 	/* Allocate DMA'able memory for TX ring */
1541 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1542 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1543 	    &nsegs, BUS_DMA_NOWAIT);
1544 	if (error) {
1545 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1546 		    device_xname(sc->sc_dev));
1547 		return error;
1548 	}
1549 
1550 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1551 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1552 	    BUS_DMA_NOWAIT);
1553 	if (error)
1554 		return (ENOBUFS);
1555 
1556 	/* Load the DMA map for Tx ring. */
1557 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1558 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1559 	if (error) {
1560 		printf("%s: could not load DMA'able memory for Tx ring.\n",
1561 		    device_xname(sc->sc_dev));
1562 		bus_dmamem_free(sc->sc_dmat,
1563 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1564 		return error;
1565 	}
1566 
1567 	sc->alc_rdata.alc_tx_ring_paddr =
1568 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1569 
1570 	/*
1571 	 * Create DMA stuffs for RX ring
1572 	 */
1573 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1574 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1575 	if (error)
1576 		return (ENOBUFS);
1577 
1578 	/* Allocate DMA'able memory for RX ring */
1579 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1580 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1581 	    &nsegs, BUS_DMA_NOWAIT);
1582 	if (error) {
1583 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1584 		    device_xname(sc->sc_dev));
1585 		return error;
1586 	}
1587 
1588 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1589 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1590 	    BUS_DMA_NOWAIT);
1591 	if (error)
1592 		return (ENOBUFS);
1593 
1594 	/* Load the DMA map for Rx ring. */
1595 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1596 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1597 	if (error) {
1598 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1599 		    device_xname(sc->sc_dev));
1600 		bus_dmamem_free(sc->sc_dmat,
1601 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1602 		return error;
1603 	}
1604 
1605 	sc->alc_rdata.alc_rx_ring_paddr =
1606 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1607 
1608 	/*
1609 	 * Create DMA stuffs for RX return ring
1610 	 */
1611 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1612 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1613 	if (error)
1614 		return (ENOBUFS);
1615 
1616 	/* Allocate DMA'able memory for RX return ring */
1617 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1618 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1619 	    &nsegs, BUS_DMA_NOWAIT);
1620 	if (error) {
1621 		printf("%s: could not allocate DMA'able memory for Rx "
1622 		    "return ring.\n", device_xname(sc->sc_dev));
1623 		return error;
1624 	}
1625 
1626 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1627 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1628 	    BUS_DMA_NOWAIT);
1629 	if (error)
1630 		return (ENOBUFS);
1631 
1632 	/*  Load the DMA map for Rx return ring. */
1633 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1634 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1635 	if (error) {
1636 		printf("%s: could not load DMA'able memory for Rx return ring."
1637 		    "\n", device_xname(sc->sc_dev));
1638 		bus_dmamem_free(sc->sc_dmat,
1639 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1640 		return error;
1641 	}
1642 
1643 	sc->alc_rdata.alc_rr_ring_paddr =
1644 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1645 
1646 	/*
1647 	 * Create DMA stuffs for CMB block
1648 	 */
1649 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1650 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1651 	    &sc->alc_cdata.alc_cmb_map);
1652 	if (error)
1653 		return (ENOBUFS);
1654 
1655 	/* Allocate DMA'able memory for CMB block */
1656 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1657 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1658 	    &nsegs, BUS_DMA_NOWAIT);
1659 	if (error) {
1660 		printf("%s: could not allocate DMA'able memory for "
1661 		    "CMB block\n", device_xname(sc->sc_dev));
1662 		return error;
1663 	}
1664 
1665 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1666 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1667 	    BUS_DMA_NOWAIT);
1668 	if (error)
1669 		return (ENOBUFS);
1670 
1671 	/*  Load the DMA map for CMB block. */
1672 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1673 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1674 	    BUS_DMA_WAITOK);
1675 	if (error) {
1676 		printf("%s: could not load DMA'able memory for CMB block\n",
1677 		    device_xname(sc->sc_dev));
1678 		bus_dmamem_free(sc->sc_dmat,
1679 		    &sc->alc_rdata.alc_cmb_seg, 1);
1680 		return error;
1681 	}
1682 
1683 	sc->alc_rdata.alc_cmb_paddr =
1684 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1685 
1686 	/*
1687 	 * Create DMA stuffs for SMB block
1688 	 */
1689 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1690 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1691 	    &sc->alc_cdata.alc_smb_map);
1692 	if (error)
1693 		return (ENOBUFS);
1694 
1695 	/* Allocate DMA'able memory for SMB block */
1696 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1697 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1698 	    &nsegs, BUS_DMA_NOWAIT);
1699 	if (error) {
1700 		printf("%s: could not allocate DMA'able memory for "
1701 		    "SMB block\n", device_xname(sc->sc_dev));
1702 		return error;
1703 	}
1704 
1705 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1706 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1707 	    BUS_DMA_NOWAIT);
1708 	if (error)
1709 		return (ENOBUFS);
1710 
1711 	/*  Load the DMA map for SMB block */
1712 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1713 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1714 	    BUS_DMA_WAITOK);
1715 	if (error) {
1716 		printf("%s: could not load DMA'able memory for SMB block\n",
1717 		    device_xname(sc->sc_dev));
1718 		bus_dmamem_free(sc->sc_dmat,
1719 		    &sc->alc_rdata.alc_smb_seg, 1);
1720 		return error;
1721 	}
1722 
1723 	sc->alc_rdata.alc_smb_paddr =
1724 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1725 
1726 
1727 	/* Create DMA maps for Tx buffers. */
1728 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1729 		txd = &sc->alc_cdata.alc_txdesc[i];
1730 		txd->tx_m = NULL;
1731 		txd->tx_dmamap = NULL;
1732 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1733 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1734 		    &txd->tx_dmamap);
1735 		if (error) {
1736 			printf("%s: could not create Tx dmamap.\n",
1737 			    device_xname(sc->sc_dev));
1738 			return error;
1739 		}
1740 	}
1741 
1742 	/* Create DMA maps for Rx buffers. */
1743 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1744 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1745 	if (error) {
1746 		printf("%s: could not create spare Rx dmamap.\n",
1747 		    device_xname(sc->sc_dev));
1748 		return error;
1749 	}
1750 
1751 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1752 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1753 		rxd->rx_m = NULL;
1754 		rxd->rx_dmamap = NULL;
1755 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1756 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1757 		if (error) {
1758 			printf("%s: could not create Rx dmamap.\n",
1759 			    device_xname(sc->sc_dev));
1760 			return error;
1761 		}
1762 	}
1763 
1764 	return (0);
1765 }
1766 
1767 
1768 static void
1769 alc_dma_free(struct alc_softc *sc)
1770 {
1771 	struct alc_txdesc *txd;
1772 	struct alc_rxdesc *rxd;
1773 	int i;
1774 
1775 	/* Tx buffers */
1776 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1777 		txd = &sc->alc_cdata.alc_txdesc[i];
1778 		if (txd->tx_dmamap != NULL) {
1779 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1780 			txd->tx_dmamap = NULL;
1781 		}
1782 	}
1783 	/* Rx buffers */
1784 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1785 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1786 		if (rxd->rx_dmamap != NULL) {
1787 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1788 			rxd->rx_dmamap = NULL;
1789 		}
1790 	}
1791 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1792 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1793 		sc->alc_cdata.alc_rx_sparemap = NULL;
1794 	}
1795 
1796 	/* Tx ring. */
1797 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1798 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1799 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1800 	    sc->alc_rdata.alc_tx_ring != NULL)
1801 		bus_dmamem_free(sc->sc_dmat,
1802 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1803 	sc->alc_rdata.alc_tx_ring = NULL;
1804 	sc->alc_cdata.alc_tx_ring_map = NULL;
1805 
1806 	/* Rx ring. */
1807 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1808 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1809 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1810 	    sc->alc_rdata.alc_rx_ring != NULL)
1811 		bus_dmamem_free(sc->sc_dmat,
1812 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1813 	sc->alc_rdata.alc_rx_ring = NULL;
1814 	sc->alc_cdata.alc_rx_ring_map = NULL;
1815 
1816 	/* Rx return ring. */
1817 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1818 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1819 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1820 	    sc->alc_rdata.alc_rr_ring != NULL)
1821 		bus_dmamem_free(sc->sc_dmat,
1822 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1823 	sc->alc_rdata.alc_rr_ring = NULL;
1824 	sc->alc_cdata.alc_rr_ring_map = NULL;
1825 
1826 	/* CMB block */
1827 	if (sc->alc_cdata.alc_cmb_map != NULL)
1828 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1829 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1830 	    sc->alc_rdata.alc_cmb != NULL)
1831 		bus_dmamem_free(sc->sc_dmat,
1832 		    &sc->alc_rdata.alc_cmb_seg, 1);
1833 	sc->alc_rdata.alc_cmb = NULL;
1834 	sc->alc_cdata.alc_cmb_map = NULL;
1835 
1836 	/* SMB block */
1837 	if (sc->alc_cdata.alc_smb_map != NULL)
1838 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1839 	if (sc->alc_cdata.alc_smb_map != NULL &&
1840 	    sc->alc_rdata.alc_smb != NULL)
1841 		bus_dmamem_free(sc->sc_dmat,
1842 		    &sc->alc_rdata.alc_smb_seg, 1);
1843 	sc->alc_rdata.alc_smb = NULL;
1844 	sc->alc_cdata.alc_smb_map = NULL;
1845 }
1846 
1847 static int
1848 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1849 {
1850 	struct alc_txdesc *txd, *txd_last;
1851 	struct tx_desc *desc;
1852 	struct mbuf *m;
1853 	bus_dmamap_t map;
1854 	uint32_t cflags, poff, vtag;
1855 	int error, idx, nsegs, prod;
1856 
1857 	m = *m_head;
1858 	cflags = vtag = 0;
1859 	poff = 0;
1860 
1861 	prod = sc->alc_cdata.alc_tx_prod;
1862 	txd = &sc->alc_cdata.alc_txdesc[prod];
1863 	txd_last = txd;
1864 	map = txd->tx_dmamap;
1865 
1866 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1867 
1868 	if (error == EFBIG) {
1869 		error = 0;
1870 
1871 		*m_head = m_pullup(*m_head, MHLEN);
1872 		if (*m_head == NULL) {
1873 			printf("%s: can't defrag TX mbuf\n",
1874 			    device_xname(sc->sc_dev));
1875 			return ENOBUFS;
1876 		}
1877 
1878 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1879 		    BUS_DMA_NOWAIT);
1880 
1881 		if (error != 0) {
1882 			printf("%s: could not load defragged TX mbuf\n",
1883 			    device_xname(sc->sc_dev));
1884 			m_freem(*m_head);
1885 			*m_head = NULL;
1886 			return error;
1887 		}
1888 	} else if (error) {
1889 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1890 		return (error);
1891 	}
1892 
1893 	nsegs = map->dm_nsegs;
1894 
1895 	if (nsegs == 0) {
1896 		m_freem(*m_head);
1897 		*m_head = NULL;
1898 		return (EIO);
1899 	}
1900 
1901 	/* Check descriptor overrun. */
1902 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1903 		bus_dmamap_unload(sc->sc_dmat, map);
1904 		return (ENOBUFS);
1905 	}
1906 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1907 	    BUS_DMASYNC_PREWRITE);
1908 
1909 	m = *m_head;
1910 	desc = NULL;
1911 	idx = 0;
1912 #if NVLAN > 0
1913 	/* Configure VLAN hardware tag insertion. */
1914 	if (vlan_has_tag(m)) {
1915 		vtag = htons(vlan_get_tag(m));
1916 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1917 		cflags |= TD_INS_VLAN_TAG;
1918 	}
1919 #endif
1920 	/* Configure Tx checksum offload. */
1921 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1922 		cflags |= TD_CUSTOM_CSUM;
1923 		/* Set checksum start offset. */
1924 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1925 		    TD_PLOAD_OFFSET_MASK;
1926 	}
1927 	for (; idx < nsegs; idx++) {
1928 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1929 		desc->len =
1930 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1931 		desc->flags = htole32(cflags);
1932 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1933 		sc->alc_cdata.alc_tx_cnt++;
1934 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1935 	}
1936 	/* Update producer index. */
1937 	sc->alc_cdata.alc_tx_prod = prod;
1938 
1939 	/* Finally set EOP on the last descriptor. */
1940 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1941 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1942 	desc->flags |= htole32(TD_EOP);
1943 
1944 	/* Swap dmamap of the first and the last. */
1945 	txd = &sc->alc_cdata.alc_txdesc[prod];
1946 	map = txd_last->tx_dmamap;
1947 	txd_last->tx_dmamap = txd->tx_dmamap;
1948 	txd->tx_dmamap = map;
1949 	txd->tx_m = m;
1950 
1951 	return (0);
1952 }
1953 
1954 static void
1955 alc_start(struct ifnet *ifp)
1956 {
1957 	struct alc_softc *sc = ifp->if_softc;
1958 	struct mbuf *m_head;
1959 	int enq;
1960 
1961 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1962 		return;
1963 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
1964 		return;
1965 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1966 		return;
1967 
1968 	/* Reclaim transmitted frames. */
1969 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1970 		alc_txeof(sc);
1971 
1972 	enq = 0;
1973 	for (;;) {
1974 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1975 		if (m_head == NULL)
1976 			break;
1977 
1978 		/*
1979 		 * Pack the data into the transmit ring. If we
1980 		 * don't have room, set the OACTIVE flag and wait
1981 		 * for the NIC to drain the ring.
1982 		 */
1983 		if (alc_encap(sc, &m_head)) {
1984 			if (m_head == NULL)
1985 				break;
1986 			ifp->if_flags |= IFF_OACTIVE;
1987 			break;
1988 		}
1989 		enq = 1;
1990 
1991 		/*
1992 		 * If there's a BPF listener, bounce a copy of this frame
1993 		 * to him.
1994 		 */
1995 		bpf_mtap(ifp, m_head);
1996 	}
1997 
1998 	if (enq) {
1999 		/* Sync descriptors. */
2000 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2001 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2002 		    BUS_DMASYNC_PREWRITE);
2003 		/* Kick. Assume we're using normal Tx priority queue. */
2004 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2005 		    (sc->alc_cdata.alc_tx_prod <<
2006 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2007 		    MBOX_TD_PROD_LO_IDX_MASK);
2008 		/* Set a timeout in case the chip goes out to lunch. */
2009 		ifp->if_timer = ALC_TX_TIMEOUT;
2010 	}
2011 }
2012 
2013 static void
2014 alc_watchdog(struct ifnet *ifp)
2015 {
2016 	struct alc_softc *sc = ifp->if_softc;
2017 
2018 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2019 		printf("%s: watchdog timeout (missed link)\n",
2020 		    device_xname(sc->sc_dev));
2021 		ifp->if_oerrors++;
2022 		alc_init_backend(ifp, false);
2023 		return;
2024 	}
2025 
2026 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2027 	ifp->if_oerrors++;
2028 	alc_init_backend(ifp, false);
2029 	alc_start(ifp);
2030 }
2031 
2032 static int
2033 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2034 {
2035 	struct alc_softc *sc = ifp->if_softc;
2036 	struct mii_data *mii = &sc->sc_miibus;
2037 	struct ifreq *ifr = (struct ifreq *)data;
2038 	int s, error = 0;
2039 
2040 	s = splnet();
2041 
2042 	error = ether_ioctl(ifp, cmd, data);
2043 	switch (cmd) {
2044 	case SIOCSIFADDR:
2045 		ifp->if_flags |= IFF_UP;
2046 		if (!(ifp->if_flags & IFF_RUNNING))
2047 			alc_init(ifp);
2048 		break;
2049 
2050 	case SIOCSIFFLAGS:
2051 		if (ifp->if_flags & IFF_UP) {
2052 			if (ifp->if_flags & IFF_RUNNING)
2053 				error = ENETRESET;
2054 			else
2055 				alc_init(ifp);
2056 		} else {
2057 			if (ifp->if_flags & IFF_RUNNING)
2058 				alc_stop(ifp, 0);
2059 		}
2060 		break;
2061 
2062 	case SIOCSIFMEDIA:
2063 	case SIOCGIFMEDIA:
2064 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2065 		break;
2066 
2067 	default:
2068 		error = ether_ioctl(ifp, cmd, data);
2069 		break;
2070 	}
2071 
2072 	if (error == ENETRESET) {
2073 		if (ifp->if_flags & IFF_RUNNING)
2074 			alc_iff(sc);
2075 		error = 0;
2076 	}
2077 
2078 	splx(s);
2079 	return (error);
2080 }
2081 
2082 static void
2083 alc_mac_config(struct alc_softc *sc)
2084 {
2085 	struct mii_data *mii;
2086 	uint32_t reg;
2087 
2088 	mii = &sc->sc_miibus;
2089 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2090 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2091 	    MAC_CFG_SPEED_MASK);
2092 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2093 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2094 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2095 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2096 	/* Reprogram MAC with resolved speed/duplex. */
2097 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2098 	case IFM_10_T:
2099 	case IFM_100_TX:
2100 		reg |= MAC_CFG_SPEED_10_100;
2101 		break;
2102 	case IFM_1000_T:
2103 		reg |= MAC_CFG_SPEED_1000;
2104 		break;
2105 	}
2106 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2107 		reg |= MAC_CFG_FULL_DUPLEX;
2108 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2109 			reg |= MAC_CFG_TX_FC;
2110 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2111 			reg |= MAC_CFG_RX_FC;
2112 	}
2113 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2114 }
2115 
2116 static void
2117 alc_stats_clear(struct alc_softc *sc)
2118 {
2119 	struct smb sb, *smb;
2120 	uint32_t *reg;
2121 	int i;
2122 
2123 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2124 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2125 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2126 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2127 		smb = sc->alc_rdata.alc_smb;
2128 		/* Update done, clear. */
2129 		smb->updated = 0;
2130 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2131 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2132 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2133 	} else {
2134 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2135 		    reg++) {
2136 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2137 			i += sizeof(uint32_t);
2138 		}
2139 		/* Read Tx statistics. */
2140 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2141 		    reg++) {
2142 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2143 			i += sizeof(uint32_t);
2144 		}
2145 	}
2146 }
2147 
2148 static void
2149 alc_stats_update(struct alc_softc *sc)
2150 {
2151 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2152 	struct alc_hw_stats *stat;
2153 	struct smb sb, *smb;
2154 	uint32_t *reg;
2155 	int i;
2156 
2157 	stat = &sc->alc_stats;
2158 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2159 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2160 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2161 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2162 		smb = sc->alc_rdata.alc_smb;
2163 		if (smb->updated == 0)
2164 			return;
2165 	} else {
2166 		smb = &sb;
2167 		/* Read Rx statistics. */
2168 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2169 		    reg++) {
2170 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2171 			i += sizeof(uint32_t);
2172 		}
2173 		/* Read Tx statistics. */
2174 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2175 		    reg++) {
2176 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2177 			i += sizeof(uint32_t);
2178 		}
2179 	}
2180 
2181 	/* Rx stats. */
2182 	stat->rx_frames += smb->rx_frames;
2183 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2184 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2185 	stat->rx_pause_frames += smb->rx_pause_frames;
2186 	stat->rx_control_frames += smb->rx_control_frames;
2187 	stat->rx_crcerrs += smb->rx_crcerrs;
2188 	stat->rx_lenerrs += smb->rx_lenerrs;
2189 	stat->rx_bytes += smb->rx_bytes;
2190 	stat->rx_runts += smb->rx_runts;
2191 	stat->rx_fragments += smb->rx_fragments;
2192 	stat->rx_pkts_64 += smb->rx_pkts_64;
2193 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2194 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2195 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2196 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2197 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2198 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2199 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2200 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2201 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2202 	stat->rx_alignerrs += smb->rx_alignerrs;
2203 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2204 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2205 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2206 
2207 	/* Tx stats. */
2208 	stat->tx_frames += smb->tx_frames;
2209 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2210 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2211 	stat->tx_pause_frames += smb->tx_pause_frames;
2212 	stat->tx_excess_defer += smb->tx_excess_defer;
2213 	stat->tx_control_frames += smb->tx_control_frames;
2214 	stat->tx_deferred += smb->tx_deferred;
2215 	stat->tx_bytes += smb->tx_bytes;
2216 	stat->tx_pkts_64 += smb->tx_pkts_64;
2217 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2218 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2219 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2220 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2221 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2222 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2223 	stat->tx_single_colls += smb->tx_single_colls;
2224 	stat->tx_multi_colls += smb->tx_multi_colls;
2225 	stat->tx_late_colls += smb->tx_late_colls;
2226 	stat->tx_excess_colls += smb->tx_excess_colls;
2227 	stat->tx_underrun += smb->tx_underrun;
2228 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2229 	stat->tx_lenerrs += smb->tx_lenerrs;
2230 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2231 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2232 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2233 
2234 	/* Update counters in ifnet. */
2235 	ifp->if_opackets += smb->tx_frames;
2236 
2237 	ifp->if_collisions += smb->tx_single_colls +
2238 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2239 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2240 
2241 	ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2242 	    smb->tx_underrun + smb->tx_pkts_truncated;
2243 
2244 	ifp->if_ipackets += smb->rx_frames;
2245 
2246 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2247 	    smb->rx_runts + smb->rx_pkts_truncated +
2248 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2249 	    smb->rx_alignerrs;
2250 
2251 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2252 		/* Update done, clear. */
2253 		smb->updated = 0;
2254 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2255 		sc->alc_cdata.alc_smb_map->dm_mapsize,
2256 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2257 	}
2258 }
2259 
2260 static int
2261 alc_intr(void *arg)
2262 {
2263 	struct alc_softc *sc = arg;
2264 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2265 	uint32_t status;
2266 
2267 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2268 	if ((status & ALC_INTRS) == 0)
2269 		return (0);
2270 
2271 	/* Acknowledge and disable interrupts. */
2272 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2273 
2274 	if (ifp->if_flags & IFF_RUNNING) {
2275 		if (status & INTR_RX_PKT) {
2276 			int error;
2277 
2278 			error = alc_rxintr(sc);
2279 			if (error) {
2280 				alc_init_backend(ifp, false);
2281 				return (0);
2282 			}
2283 		}
2284 
2285 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2286 		    INTR_TXQ_TO_RST)) {
2287 			if (status & INTR_DMA_RD_TO_RST)
2288 				printf("%s: DMA read error! -- resetting\n",
2289 				    device_xname(sc->sc_dev));
2290 			if (status & INTR_DMA_WR_TO_RST)
2291 				printf("%s: DMA write error! -- resetting\n",
2292 				    device_xname(sc->sc_dev));
2293 			if (status & INTR_TXQ_TO_RST)
2294 				printf("%s: TxQ reset! -- resetting\n",
2295 				    device_xname(sc->sc_dev));
2296 			alc_init_backend(ifp, false);
2297 			return (0);
2298 		}
2299 
2300 		alc_txeof(sc);
2301 		if_schedule_deferred_start(ifp);
2302 	}
2303 
2304 	/* Re-enable interrupts. */
2305 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2306 	return (1);
2307 }
2308 
2309 static void
2310 alc_txeof(struct alc_softc *sc)
2311 {
2312 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2313 	struct alc_txdesc *txd;
2314 	uint32_t cons, prod;
2315 	int prog;
2316 
2317 	if (sc->alc_cdata.alc_tx_cnt == 0)
2318 		return;
2319 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2320 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2321 	    BUS_DMASYNC_POSTREAD);
2322 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2323 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2324 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
2325 		    BUS_DMASYNC_POSTREAD);
2326 		prod = sc->alc_rdata.alc_cmb->cons;
2327 	} else
2328 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2329 	/* Assume we're using normal Tx priority queue. */
2330 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2331 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2332 	cons = sc->alc_cdata.alc_tx_cons;
2333 	/*
2334 	 * Go through our Tx list and free mbufs for those
2335 	 * frames which have been transmitted.
2336 	 */
2337 	for (prog = 0; cons != prod; prog++,
2338 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2339 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2340 			break;
2341 		prog++;
2342 		ifp->if_flags &= ~IFF_OACTIVE;
2343 		sc->alc_cdata.alc_tx_cnt--;
2344 		txd = &sc->alc_cdata.alc_txdesc[cons];
2345 		if (txd->tx_m != NULL) {
2346 			/* Reclaim transmitted mbufs. */
2347 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2348 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2349 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2350 			m_freem(txd->tx_m);
2351 			txd->tx_m = NULL;
2352 		}
2353 	}
2354 
2355 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2356 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2357 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2358 	sc->alc_cdata.alc_tx_cons = cons;
2359 	/*
2360 	 * Unarm watchdog timer only when there is no pending
2361 	 * frames in Tx queue.
2362 	 */
2363 	if (sc->alc_cdata.alc_tx_cnt == 0)
2364 		ifp->if_timer = 0;
2365 }
2366 
2367 static int
2368 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2369 {
2370 	struct mbuf *m;
2371 	bus_dmamap_t map;
2372 	int error;
2373 
2374 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2375 	if (m == NULL)
2376 		return (ENOBUFS);
2377 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2378 	if (!(m->m_flags & M_EXT)) {
2379 		m_freem(m);
2380 		return (ENOBUFS);
2381 	}
2382 
2383 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2384 
2385 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2386 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2387 
2388 	if (error != 0) {
2389 		m_freem(m);
2390 
2391 		if (init)
2392 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2393 
2394 		return (error);
2395 	}
2396 
2397 	if (rxd->rx_m != NULL) {
2398 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2399 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2400 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2401 	}
2402 	map = rxd->rx_dmamap;
2403 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2404 	sc->alc_cdata.alc_rx_sparemap = map;
2405 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2406 	    BUS_DMASYNC_PREREAD);
2407 	rxd->rx_m = m;
2408 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2409 	return (0);
2410 }
2411 
2412 static int
2413 alc_rxintr(struct alc_softc *sc)
2414 {
2415 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2416 	struct rx_rdesc *rrd;
2417 	uint32_t nsegs, status;
2418 	int rr_cons, prog;
2419 
2420 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2421 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2422 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2423 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2424 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2425 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2426 	rr_cons = sc->alc_cdata.alc_rr_cons;
2427 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2428 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2429 		status = le32toh(rrd->status);
2430 		if ((status & RRD_VALID) == 0)
2431 			break;
2432 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2433 		if (nsegs == 0) {
2434 			/* This should not happen! */
2435 			if (alcdebug)
2436 				printf("%s: unexpected segment count -- "
2437 				    "resetting\n", device_xname(sc->sc_dev));
2438 			return (EIO);
2439 		}
2440 		alc_rxeof(sc, rrd);
2441 		/* Clear Rx return status. */
2442 		rrd->status = 0;
2443 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2444 		sc->alc_cdata.alc_rx_cons += nsegs;
2445 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2446 		prog += nsegs;
2447 	}
2448 
2449 	if (prog > 0) {
2450 		/* Update the consumer index. */
2451 		sc->alc_cdata.alc_rr_cons = rr_cons;
2452 		/* Sync Rx return descriptors. */
2453 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2454 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2455 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2456 		/*
2457 		 * Sync updated Rx descriptors such that controller see
2458 		 * modified buffer addresses.
2459 		 */
2460 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2461 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2462 		    BUS_DMASYNC_PREWRITE);
2463 		/*
2464 		 * Let controller know availability of new Rx buffers.
2465 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2466 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2467 		 * only when Rx buffer pre-fetching is required. In
2468 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2469 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2470 		 * it still seems that pre-fetching needs more
2471 		 * experimentation.
2472 		 */
2473 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2474 		    sc->alc_cdata.alc_rx_cons);
2475 	}
2476 
2477 	return (0);
2478 }
2479 
2480 /* Receive a frame. */
2481 static void
2482 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2483 {
2484 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2485 	struct alc_rxdesc *rxd;
2486 	struct mbuf *mp, *m;
2487 	uint32_t rdinfo, status;
2488 	int count, nsegs, rx_cons;
2489 
2490 	status = le32toh(rrd->status);
2491 	rdinfo = le32toh(rrd->rdinfo);
2492 	rx_cons = RRD_RD_IDX(rdinfo);
2493 	nsegs = RRD_RD_CNT(rdinfo);
2494 
2495 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2496 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2497 		/*
2498 		 * We want to pass the following frames to upper
2499 		 * layer regardless of error status of Rx return
2500 		 * ring.
2501 		 *
2502 		 *  o IP/TCP/UDP checksum is bad.
2503 		 *  o frame length and protocol specific length
2504 		 *     does not match.
2505 		 *
2506 		 *  Force network stack compute checksum for
2507 		 *  errored frames.
2508 		 */
2509 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2510 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2511 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2512 			return;
2513 	}
2514 
2515 	for (count = 0; count < nsegs; count++,
2516 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2517 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2518 		mp = rxd->rx_m;
2519 		/* Add a new receive buffer to the ring. */
2520 		if (alc_newbuf(sc, rxd, false) != 0) {
2521 			ifp->if_iqdrops++;
2522 			/* Reuse Rx buffers. */
2523 			if (sc->alc_cdata.alc_rxhead != NULL)
2524 				m_freem(sc->alc_cdata.alc_rxhead);
2525 			break;
2526 		}
2527 
2528 		/*
2529 		 * Assume we've received a full sized frame.
2530 		 * Actual size is fixed when we encounter the end of
2531 		 * multi-segmented frame.
2532 		 */
2533 		mp->m_len = sc->alc_buf_size;
2534 
2535 		/* Chain received mbufs. */
2536 		if (sc->alc_cdata.alc_rxhead == NULL) {
2537 			sc->alc_cdata.alc_rxhead = mp;
2538 			sc->alc_cdata.alc_rxtail = mp;
2539 		} else {
2540 			mp->m_flags &= ~M_PKTHDR;
2541 			sc->alc_cdata.alc_rxprev_tail =
2542 			    sc->alc_cdata.alc_rxtail;
2543 			sc->alc_cdata.alc_rxtail->m_next = mp;
2544 			sc->alc_cdata.alc_rxtail = mp;
2545 		}
2546 
2547 		if (count == nsegs - 1) {
2548 			/* Last desc. for this frame. */
2549 			m = sc->alc_cdata.alc_rxhead;
2550 			m->m_flags |= M_PKTHDR;
2551 			/*
2552 			 * It seems that L1C/L2C controller has no way
2553 			 * to tell hardware to strip CRC bytes.
2554 			 */
2555 			m->m_pkthdr.len =
2556 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2557 			if (nsegs > 1) {
2558 				/* Set last mbuf size. */
2559 				mp->m_len = sc->alc_cdata.alc_rxlen -
2560 				    (nsegs - 1) * sc->alc_buf_size;
2561 				/* Remove the CRC bytes in chained mbufs. */
2562 				if (mp->m_len <= ETHER_CRC_LEN) {
2563 					sc->alc_cdata.alc_rxtail =
2564 					    sc->alc_cdata.alc_rxprev_tail;
2565 					sc->alc_cdata.alc_rxtail->m_len -=
2566 					    (ETHER_CRC_LEN - mp->m_len);
2567 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2568 					m_freem(mp);
2569 				} else {
2570 					mp->m_len -= ETHER_CRC_LEN;
2571 				}
2572 			} else
2573 				m->m_len = m->m_pkthdr.len;
2574 			m_set_rcvif(m, ifp);
2575 #if NVLAN > 0
2576 			/*
2577 			 * Due to hardware bugs, Rx checksum offloading
2578 			 * was intentionally disabled.
2579 			 */
2580 			if (status & RRD_VLAN_TAG) {
2581 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2582 				vlan_set_tag(m, ntohs(vtag));
2583 			}
2584 #endif
2585 
2586 			/* Pass it on. */
2587 			if_percpuq_enqueue(ifp->if_percpuq, m);
2588 		}
2589 	}
2590 	/* Reset mbuf chains. */
2591 	ALC_RXCHAIN_RESET(sc);
2592 }
2593 
2594 static void
2595 alc_tick(void *xsc)
2596 {
2597 	struct alc_softc *sc = xsc;
2598 	struct mii_data *mii = &sc->sc_miibus;
2599 	int s;
2600 
2601 	s = splnet();
2602 	mii_tick(mii);
2603 	alc_stats_update(sc);
2604 	splx(s);
2605 
2606 	callout_schedule(&sc->sc_tick_ch, hz);
2607 }
2608 
2609 static void
2610 alc_osc_reset(struct alc_softc *sc)
2611 {
2612 	uint32_t reg;
2613 
2614 	reg = CSR_READ_4(sc, ALC_MISC3);
2615 	reg &= ~MISC3_25M_BY_SW;
2616 	reg |= MISC3_25M_NOTO_INTNL;
2617 	CSR_WRITE_4(sc, ALC_MISC3, reg);
2618 
2619 	reg = CSR_READ_4(sc, ALC_MISC);
2620 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2621 		/*
2622 		 * Restore over-current protection default value.
2623 		 * This value could be reset by MAC reset.
2624 		 */
2625 		reg &= ~MISC_PSW_OCP_MASK;
2626 		reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2627 		reg &= ~MISC_INTNLOSC_OPEN;
2628 		CSR_WRITE_4(sc, ALC_MISC, reg);
2629 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2630 		reg = CSR_READ_4(sc, ALC_MISC2);
2631 		reg &= ~MISC2_CALB_START;
2632 		CSR_WRITE_4(sc, ALC_MISC2, reg);
2633 		CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2634 
2635 	} else {
2636 		reg &= ~MISC_INTNLOSC_OPEN;
2637 		/* Disable isolate for revision A devices. */
2638 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2639 			reg &= ~MISC_ISO_ENB;
2640 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2641 		CSR_WRITE_4(sc, ALC_MISC, reg);
2642 	}
2643 
2644 	DELAY(20);
2645 }
2646 
2647 static void
2648 alc_reset(struct alc_softc *sc)
2649 {
2650 	uint32_t pmcfg, reg;
2651 	int i;
2652 
2653 	pmcfg = 0;
2654 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2655 		/* Reset workaround. */
2656 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2657 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2658 		    (sc->alc_rev & 0x01) != 0) {
2659 			/* Disable L0s/L1s before reset. */
2660 			pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2661 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2662 			    != 0) {
2663 				pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2664 				    PM_CFG_ASPM_L1_ENB);
2665 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2666 			}
2667 		}
2668 	}
2669 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2670 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2671 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2672 
2673 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2674 		for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2675 			DELAY(10);
2676 			if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2677 				break;
2678 		}
2679 		if (i == 0)
2680 			printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2681 	}
2682 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2683 		DELAY(10);
2684 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2685 			break;
2686 	}
2687 	if (i == 0)
2688 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2689 
2690 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2691 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2692 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2693 		    IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2694 			break;
2695 		DELAY(10);
2696 	}
2697 	if (i == 0)
2698 		printf("%s: reset timeout(0x%08x)!\n",
2699 		    device_xname(sc->sc_dev), reg);
2700 
2701 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2702 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2703 		    (sc->alc_rev & 0x01) != 0) {
2704 			reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2705 			reg |= MASTER_CLK_SEL_DIS;
2706 			CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2707 			/* Restore L0s/L1s config. */
2708 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2709 			    != 0)
2710 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2711 		}
2712 
2713 		alc_osc_reset(sc);
2714 		reg = CSR_READ_4(sc, ALC_MISC3);
2715 		reg &= ~MISC3_25M_BY_SW;
2716 		reg |= MISC3_25M_NOTO_INTNL;
2717 		CSR_WRITE_4(sc, ALC_MISC3, reg);
2718 		reg = CSR_READ_4(sc, ALC_MISC);
2719 		reg &= ~MISC_INTNLOSC_OPEN;
2720 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2721 			reg &= ~MISC_ISO_ENB;
2722 		CSR_WRITE_4(sc, ALC_MISC, reg);
2723 		DELAY(20);
2724 	}
2725 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2726 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2727 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2728 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2729 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2730 		    SERDES_PHY_CLK_SLOWDOWN);
2731 }
2732 
2733 static int
2734 alc_init(struct ifnet *ifp)
2735 {
2736 
2737 	return alc_init_backend(ifp, true);
2738 }
2739 
2740 static int
2741 alc_init_backend(struct ifnet *ifp, bool init)
2742 {
2743 	struct alc_softc *sc = ifp->if_softc;
2744 	struct mii_data *mii;
2745 	uint8_t eaddr[ETHER_ADDR_LEN];
2746 	bus_addr_t paddr;
2747 	uint32_t reg, rxf_hi, rxf_lo;
2748 	int error;
2749 
2750 	/*
2751 	 * Cancel any pending I/O.
2752 	 */
2753 	alc_stop(ifp, 0);
2754 	/*
2755 	 * Reset the chip to a known state.
2756 	 */
2757 	alc_reset(sc);
2758 
2759 	/* Initialize Rx descriptors. */
2760 	error = alc_init_rx_ring(sc, init);
2761 	if (error != 0) {
2762 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2763 		alc_stop(ifp, 0);
2764 		return (error);
2765 	}
2766 	alc_init_rr_ring(sc);
2767 	alc_init_tx_ring(sc);
2768 	alc_init_cmb(sc);
2769 	alc_init_smb(sc);
2770 
2771 	/* Enable all clocks. */
2772 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2773 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2774 		    CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2775 		    CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2776 		    CLK_GATING_RXMAC_ENB);
2777 		if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2778 			CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2779 			    IDLE_DECISN_TIMER_DEFAULT_1MS);
2780 	} else
2781 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2782 
2783 
2784 	/* Reprogram the station address. */
2785 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2786 	CSR_WRITE_4(sc, ALC_PAR0,
2787 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2788 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2789 	/*
2790 	 * Clear WOL status and disable all WOL feature as WOL
2791 	 * would interfere Rx operation under normal environments.
2792 	 */
2793 	CSR_READ_4(sc, ALC_WOL_CFG);
2794 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2795 	/* Set Tx descriptor base addresses. */
2796 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2797 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2798 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2799 	/* We don't use high priority ring. */
2800 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2801 	/* Set Tx descriptor counter. */
2802 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2803 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2804 	/* Set Rx descriptor base addresses. */
2805 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2806 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2807 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2808 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2809 		/* We use one Rx ring. */
2810 		CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2811 		CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2812 		CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2813 	}
2814 	/* Set Rx descriptor counter. */
2815 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2816 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2817 
2818 	/*
2819 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2820 	 * if it do not fit the buffer size. Rx return descriptor holds
2821 	 * a counter that indicates how many fragments were made by the
2822 	 * hardware. The buffer size should be multiple of 8 bytes.
2823 	 * Since hardware has limit on the size of buffer size, always
2824 	 * use the maximum value.
2825 	 * For strict-alignment architectures make sure to reduce buffer
2826 	 * size by 8 bytes to make room for alignment fixup.
2827 	 */
2828 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2829 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2830 
2831 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2832 	/* Set Rx return descriptor base addresses. */
2833 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2834 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2835 		/* We use one Rx return ring. */
2836 		CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2837 		CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2838 		CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2839 	}\
2840 	/* Set Rx return descriptor counter. */
2841 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2842 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2843 	paddr = sc->alc_rdata.alc_cmb_paddr;
2844 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2845 	paddr = sc->alc_rdata.alc_smb_paddr;
2846 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2847 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2848 
2849 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2850 		/* Reconfigure SRAM - Vendor magic. */
2851 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2852 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2853 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2854 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2855 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2856 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2857 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2858 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2859 	}
2860 
2861 	/* Tell hardware that we're ready to load DMA blocks. */
2862 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2863 
2864 	/* Configure interrupt moderation timer. */
2865 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2866 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2867 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2868 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2869 		reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2870 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2871 	/*
2872 	 * We don't want to automatic interrupt clear as task queue
2873 	 * for the interrupt should know interrupt status.
2874 	 */
2875 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2876 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2877 	reg |= MASTER_SA_TIMER_ENB;
2878 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2879 		reg |= MASTER_IM_RX_TIMER_ENB;
2880 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2881 	    ALC_USECS(sc->alc_int_tx_mod) != 0)
2882 		reg |= MASTER_IM_TX_TIMER_ENB;
2883 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2884 	/*
2885 	 * Disable interrupt re-trigger timer. We don't want automatic
2886 	 * re-triggering of un-ACKed interrupts.
2887 	 */
2888 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2889 	/* Configure CMB. */
2890 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2891 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2892 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2893 		    ALC_USECS(sc->alc_int_tx_mod));
2894 	} else {
2895 		if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2896 			CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2897 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2898 		} else
2899 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2900 	}
2901 	/*
2902 	 * Hardware can be configured to issue SMB interrupt based
2903 	 * on programmed interval. Since there is a callout that is
2904 	 * invoked for every hz in driver we use that instead of
2905 	 * relying on periodic SMB interrupt.
2906 	 */
2907 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2908 	/* Clear MAC statistics. */
2909 	alc_stats_clear(sc);
2910 
2911 	/*
2912 	 * Always use maximum frame size that controller can support.
2913 	 * Otherwise received frames that has larger frame length
2914 	 * than alc(4) MTU would be silently dropped in hardware. This
2915 	 * would make path-MTU discovery hard as sender wouldn't get
2916 	 * any responses from receiver. alc(4) supports
2917 	 * multi-fragmented frames on Rx path so it has no issue on
2918 	 * assembling fragmented frames. Using maximum frame size also
2919 	 * removes the need to reinitialize hardware when interface
2920 	 * MTU configuration was changed.
2921 	 *
2922 	 * Be conservative in what you do, be liberal in what you
2923 	 * accept from others - RFC 793.
2924 	 */
2925 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2926 
2927 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2928 		/* Disable header split(?) */
2929 		CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2930 
2931 		/* Configure IPG/IFG parameters. */
2932 		CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2933 		    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2934 		    IPG_IFG_IPGT_MASK) |
2935 		    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2936 		    IPG_IFG_MIFG_MASK) |
2937 		    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2938 		    IPG_IFG_IPG1_MASK) |
2939 		    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2940 		    IPG_IFG_IPG2_MASK));
2941 		/* Set parameters for half-duplex media. */
2942 		CSR_WRITE_4(sc, ALC_HDPX_CFG,
2943 		    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2944 		    HDPX_CFG_LCOL_MASK) |
2945 		    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2946 		    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2947 		    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2948 		    HDPX_CFG_ABEBT_MASK) |
2949 		    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2950 		    HDPX_CFG_JAMIPG_MASK));
2951 	}
2952 
2953 	/*
2954 	 * Set TSO/checksum offload threshold. For frames that is
2955 	 * larger than this threshold, hardware wouldn't do
2956 	 * TSO/checksum offloading.
2957 	 */
2958 	reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2959 	    TSO_OFFLOAD_THRESH_MASK;
2960 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2961 		reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2962 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2963 	/* Configure TxQ. */
2964 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2965 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2966 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2967 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2968 		reg >>= 1;
2969 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2970 	    TXQ_CFG_TD_BURST_MASK;
2971 	reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
2972 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2973 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2974 		reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
2975 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
2976 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
2977 		    HQTD_CFG_BURST_ENB);
2978 		CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
2979 		reg = WRR_PRI_RESTRICT_NONE;
2980 		reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
2981 		    WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
2982 		    WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
2983 		    WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
2984 		CSR_WRITE_4(sc, ALC_WRR, reg);
2985 	} else {
2986 		/* Configure Rx free descriptor pre-fetching. */
2987 		CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2988 		    ((RX_RD_FREE_THRESH_HI_DEFAULT <<
2989 		    RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
2990 		    ((RX_RD_FREE_THRESH_LO_DEFAULT <<
2991 		    RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
2992 	}
2993 
2994 	/*
2995 	 * Configure flow control parameters.
2996 	 * XON  : 80% of Rx FIFO
2997 	 * XOFF : 30% of Rx FIFO
2998 	 */
2999 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3000 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3001 		reg &= SRAM_RX_FIFO_LEN_MASK;
3002 		reg *= 8;
3003 		if (reg > 8 * 1024)
3004 			reg -= RX_FIFO_PAUSE_816X_RSVD;
3005 		else
3006 			reg -= RX_BUF_SIZE_MAX;
3007 		reg /= 8;
3008 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3009 		    ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3010 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3011 		    (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3012 		    RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3013 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
3014 	} else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3015 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3016 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3017 		rxf_hi = (reg * 8) / 10;
3018 		rxf_lo = (reg * 3) / 10;
3019 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3020 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3021 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3022 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3023 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3024 	}
3025 
3026 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3027 		/* Disable RSS until I understand L1C/L2C's RSS logic. */
3028 		CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3029 		CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3030 	}
3031 
3032 	/* Configure RxQ. */
3033 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3034 	    RXQ_CFG_RD_BURST_MASK;
3035 	reg |= RXQ_CFG_RSS_MODE_DIS;
3036 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3037 		reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3038 		    RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3039 		    RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3040 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3041 	    sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3042  		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3043 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3044 
3045 	/* Configure DMA parameters. */
3046 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3047 	reg |= sc->alc_rcb;
3048 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3049 		reg |= DMA_CFG_CMB_ENB;
3050 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3051 		reg |= DMA_CFG_SMB_ENB;
3052 	else
3053 		reg |= DMA_CFG_SMB_DIS;
3054 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3055 	    DMA_CFG_RD_BURST_SHIFT;
3056 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3057 	    DMA_CFG_WR_BURST_SHIFT;
3058 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3059 	    DMA_CFG_RD_DELAY_CNT_MASK;
3060 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3061 	    DMA_CFG_WR_DELAY_CNT_MASK;
3062 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3063 		switch (AR816X_REV(sc->alc_rev)) {
3064 		case AR816X_REV_A0:
3065 		case AR816X_REV_A1:
3066 			reg |= DMA_CFG_RD_CHNL_SEL_1;
3067 			break;
3068 		case AR816X_REV_B0:
3069 			/* FALLTHROUGH */
3070 		default:
3071 			reg |= DMA_CFG_RD_CHNL_SEL_3;
3072 			break;
3073 		}
3074 	}
3075 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3076 
3077 	/*
3078 	 * Configure Tx/Rx MACs.
3079 	 *  - Auto-padding for short frames.
3080 	 *  - Enable CRC generation.
3081 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3082 	 *  is followed after detection of link establishment.
3083 	 *  AR813x/AR815x always does checksum computation regardless
3084 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3085 	 *  have bug in protocol field in Rx return structure so
3086 	 *  these controllers can't handle fragmented frames. Disable
3087 	 *  Rx checksum offloading until there is a newer controller
3088 	 *  that has sane implementation.
3089 	 */
3090 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3091 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3092 	    MAC_CFG_PREAMBLE_MASK);
3093 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3094 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3095 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3096 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3097 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3098 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3099 		reg |= MAC_CFG_SPEED_10_100;
3100 	else
3101 		reg |= MAC_CFG_SPEED_1000;
3102 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3103 
3104 	/* Set up the receive filter. */
3105 	alc_iff(sc);
3106 	alc_rxvlan(sc);
3107 
3108 	/* Acknowledge all pending interrupts and clear it. */
3109 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3110 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3111 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3112 
3113 	sc->alc_flags &= ~ALC_FLAG_LINK;
3114 	/* Switch to the current media. */
3115 	mii = &sc->sc_miibus;
3116 	mii_mediachg(mii);
3117 
3118 	callout_schedule(&sc->sc_tick_ch, hz);
3119 
3120 	ifp->if_flags |= IFF_RUNNING;
3121 	ifp->if_flags &= ~IFF_OACTIVE;
3122 
3123 	return (0);
3124 }
3125 
3126 static void
3127 alc_stop(struct ifnet *ifp, int disable)
3128 {
3129 	struct alc_softc *sc = ifp->if_softc;
3130 	struct alc_txdesc *txd;
3131 	struct alc_rxdesc *rxd;
3132 	uint32_t reg;
3133 	int i;
3134 
3135 	callout_stop(&sc->sc_tick_ch);
3136 
3137 	/*
3138 	 * Mark the interface down and cancel the watchdog timer.
3139 	 */
3140 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3141 	ifp->if_timer = 0;
3142 
3143 	sc->alc_flags &= ~ALC_FLAG_LINK;
3144 
3145 	alc_stats_update(sc);
3146 
3147 	mii_down(&sc->sc_miibus);
3148 
3149 	/* Disable interrupts. */
3150 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3151 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3152 
3153 	/* Disable DMA. */
3154 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3155 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3156 	reg |= DMA_CFG_SMB_DIS;
3157 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3158 	DELAY(1000);
3159 
3160 	/* Stop Rx/Tx MACs. */
3161 	alc_stop_mac(sc);
3162 
3163 	/* Disable interrupts which might be touched in taskq handler. */
3164 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3165 
3166 	/* Disable L0s/L1s */
3167 	alc_aspm(sc, 0, IFM_UNKNOWN);
3168 
3169 	/* Reclaim Rx buffers that have been processed. */
3170 	if (sc->alc_cdata.alc_rxhead != NULL)
3171 		m_freem(sc->alc_cdata.alc_rxhead);
3172 	ALC_RXCHAIN_RESET(sc);
3173 	/*
3174 	 * Free Tx/Rx mbufs still in the queues.
3175 	 */
3176 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3177 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3178 		if (rxd->rx_m != NULL) {
3179 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3180 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3181 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3182 			m_freem(rxd->rx_m);
3183 			rxd->rx_m = NULL;
3184 		}
3185 	}
3186 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3187 		txd = &sc->alc_cdata.alc_txdesc[i];
3188 		if (txd->tx_m != NULL) {
3189 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3190 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3191 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3192 			m_freem(txd->tx_m);
3193 			txd->tx_m = NULL;
3194 		}
3195 	}
3196 }
3197 
3198 static void
3199 alc_stop_mac(struct alc_softc *sc)
3200 {
3201 	uint32_t reg;
3202 	int i;
3203 
3204 	alc_stop_queue(sc);
3205 	/* Disable Rx/Tx MAC. */
3206 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3207 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3208 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3209 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3210 	}
3211 	for (i = ALC_TIMEOUT; i > 0; i--) {
3212 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3213 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3214 			break;
3215 		DELAY(10);
3216 	}
3217 	if (i == 0)
3218 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3219 		    device_xname(sc->sc_dev), reg);
3220 }
3221 
3222 static void
3223 alc_start_queue(struct alc_softc *sc)
3224 {
3225 	uint32_t qcfg[] = {
3226 		0,
3227 		RXQ_CFG_QUEUE0_ENB,
3228 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3229 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3230 		RXQ_CFG_ENB
3231 	};
3232 	uint32_t cfg;
3233 
3234 	/* Enable RxQ. */
3235 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3236 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3237 		cfg &= ~RXQ_CFG_ENB;
3238 		cfg |= qcfg[1];
3239 	} else
3240 		cfg |= RXQ_CFG_QUEUE0_ENB;
3241 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3242 	/* Enable TxQ. */
3243 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3244 	cfg |= TXQ_CFG_ENB;
3245 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3246 }
3247 
3248 static void
3249 alc_stop_queue(struct alc_softc *sc)
3250 {
3251 	uint32_t reg;
3252 	int i;
3253 
3254 	/* Disable RxQ. */
3255 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3256 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3257 		if ((reg & RXQ_CFG_ENB) != 0) {
3258 			reg &= ~RXQ_CFG_ENB;
3259 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3260 		}
3261 	} else {
3262 		if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3263 			reg &= ~RXQ_CFG_QUEUE0_ENB;
3264 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3265 		}
3266  	}
3267 	/* Disable TxQ. */
3268 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3269 	if ((reg & TXQ_CFG_ENB) != 0) {
3270 		reg &= ~TXQ_CFG_ENB;
3271 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3272 	}
3273 	DELAY(40);
3274 	for (i = ALC_TIMEOUT; i > 0; i--) {
3275 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3276 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3277 			break;
3278 		DELAY(10);
3279 	}
3280 	if (i == 0)
3281 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3282 		    device_xname(sc->sc_dev), reg);
3283 }
3284 
3285 static void
3286 alc_init_tx_ring(struct alc_softc *sc)
3287 {
3288 	struct alc_ring_data *rd;
3289 	struct alc_txdesc *txd;
3290 	int i;
3291 
3292 	sc->alc_cdata.alc_tx_prod = 0;
3293 	sc->alc_cdata.alc_tx_cons = 0;
3294 	sc->alc_cdata.alc_tx_cnt = 0;
3295 
3296 	rd = &sc->alc_rdata;
3297 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3298 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3299 		txd = &sc->alc_cdata.alc_txdesc[i];
3300 		txd->tx_m = NULL;
3301 	}
3302 
3303 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3304 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3305 }
3306 
3307 static int
3308 alc_init_rx_ring(struct alc_softc *sc, bool init)
3309 {
3310 	struct alc_ring_data *rd;
3311 	struct alc_rxdesc *rxd;
3312 	int i;
3313 
3314 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3315 	rd = &sc->alc_rdata;
3316 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3317 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3318 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3319 		rxd->rx_m = NULL;
3320 		rxd->rx_desc = &rd->alc_rx_ring[i];
3321 		if (alc_newbuf(sc, rxd, init) != 0)
3322 			return (ENOBUFS);
3323 	}
3324 
3325 	/*
3326 	 * Since controller does not update Rx descriptors, driver
3327 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3328 	 * is enough to ensure coherence.
3329 	 */
3330 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3331 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3332 	/* Let controller know availability of new Rx buffers. */
3333 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3334 
3335 	return (0);
3336 }
3337 
3338 static void
3339 alc_init_rr_ring(struct alc_softc *sc)
3340 {
3341 	struct alc_ring_data *rd;
3342 
3343 	sc->alc_cdata.alc_rr_cons = 0;
3344 	ALC_RXCHAIN_RESET(sc);
3345 
3346 	rd = &sc->alc_rdata;
3347 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3348 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3349 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3350 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3351 }
3352 
3353 static void
3354 alc_init_cmb(struct alc_softc *sc)
3355 {
3356 	struct alc_ring_data *rd;
3357 
3358 	rd = &sc->alc_rdata;
3359 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3360 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3361 	    sc->alc_cdata.alc_cmb_map->dm_mapsize,
3362 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3363 }
3364 
3365 static void
3366 alc_init_smb(struct alc_softc *sc)
3367 {
3368 	struct alc_ring_data *rd;
3369 
3370 	rd = &sc->alc_rdata;
3371 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
3372 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3373 	    sc->alc_cdata.alc_smb_map->dm_mapsize,
3374 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3375 }
3376 
3377 static void
3378 alc_rxvlan(struct alc_softc *sc)
3379 {
3380 	uint32_t reg;
3381 
3382 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3383 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3384 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3385 	else
3386 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3387 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3388 }
3389 
3390 static void
3391 alc_iff(struct alc_softc *sc)
3392 {
3393 	struct ethercom *ec = &sc->sc_ec;
3394 	struct ifnet *ifp = &ec->ec_if;
3395 	struct ether_multi *enm;
3396 	struct ether_multistep step;
3397 	uint32_t crc;
3398 	uint32_t mchash[2];
3399 	uint32_t rxcfg;
3400 
3401 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3402 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3403 	ifp->if_flags &= ~IFF_ALLMULTI;
3404 
3405 	/*
3406 	 * Always accept broadcast frames.
3407 	 */
3408 	rxcfg |= MAC_CFG_BCAST;
3409 
3410 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
3411 		ifp->if_flags |= IFF_ALLMULTI;
3412 		if (ifp->if_flags & IFF_PROMISC)
3413 			rxcfg |= MAC_CFG_PROMISC;
3414 		else
3415 			rxcfg |= MAC_CFG_ALLMULTI;
3416 		mchash[0] = mchash[1] = 0xFFFFFFFF;
3417 	} else {
3418 		/* Program new filter. */
3419 		memset(mchash, 0, sizeof(mchash));
3420 
3421 		ETHER_FIRST_MULTI(step, ec, enm);
3422 		while (enm != NULL) {
3423 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3424 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3425 			ETHER_NEXT_MULTI(step, enm);
3426 		}
3427 	}
3428 
3429 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3430 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3431 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3432 }
3433 
3434 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3435 
3436 #ifdef _MODULE
3437 #include "ioconf.c"
3438 #endif
3439 
3440 static int
3441 if_alc_modcmd(modcmd_t cmd, void *opaque)
3442 {
3443 	int error = 0;
3444 
3445 	switch (cmd) {
3446 	case MODULE_CMD_INIT:
3447 #ifdef _MODULE
3448 		error = config_init_component(cfdriver_ioconf_if_alc,
3449 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3450 #endif
3451 		return error;
3452 	case MODULE_CMD_FINI:
3453 #ifdef _MODULE
3454 		error = config_fini_component(cfdriver_ioconf_if_alc,
3455 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3456 #endif
3457 		return error;
3458 	default:
3459 		return ENOTTY;
3460 	}
3461 }
3462