xref: /netbsd-src/sys/dev/pci/if_alc.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
2 /*-
3  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30 
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48 
49 #include <sys/bus.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <net/bpf.h>
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_alcreg.h>
81 
82 /*
83  * Devices supported by this driver.
84  */
85 static struct alc_ident alc_ident_table[] = {
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 		"Atheros AR8132 PCIe Fast Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 	{ 0, 0, 0, NULL },
99 };
100 
101 static int	alc_match(device_t, cfdata_t, void *);
102 static void	alc_attach(device_t, device_t, void *);
103 static int	alc_detach(device_t, int);
104 
105 static int	alc_init(struct ifnet *);
106 static int	alc_init_backend(struct ifnet *, bool);
107 static void	alc_start(struct ifnet *);
108 static int	alc_ioctl(struct ifnet *, u_long, void *);
109 static void	alc_watchdog(struct ifnet *);
110 static int	alc_mediachange(struct ifnet *);
111 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
112 
113 static void	alc_aspm(struct alc_softc *, int);
114 static void	alc_disable_l0s_l1(struct alc_softc *);
115 static int	alc_dma_alloc(struct alc_softc *);
116 static void	alc_dma_free(struct alc_softc *);
117 static int	alc_encap(struct alc_softc *, struct mbuf **);
118 static struct alc_ident *
119 		alc_find_ident(struct pci_attach_args *);
120 static void	alc_get_macaddr(struct alc_softc *);
121 static void	alc_init_cmb(struct alc_softc *);
122 static void	alc_init_rr_ring(struct alc_softc *);
123 static int	alc_init_rx_ring(struct alc_softc *, bool);
124 static void	alc_init_smb(struct alc_softc *);
125 static void	alc_init_tx_ring(struct alc_softc *);
126 static int	alc_intr(void *);
127 static void	alc_mac_config(struct alc_softc *);
128 static int	alc_miibus_readreg(device_t, int, int);
129 static void	alc_miibus_statchg(struct ifnet *);
130 static void	alc_miibus_writereg(device_t, int, int, int);
131 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
132 static void	alc_phy_down(struct alc_softc *);
133 static void	alc_phy_reset(struct alc_softc *);
134 static void	alc_reset(struct alc_softc *);
135 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
136 static int	alc_rxintr(struct alc_softc *);
137 static void	alc_iff(struct alc_softc *);
138 static void	alc_rxvlan(struct alc_softc *);
139 static void	alc_start_queue(struct alc_softc *);
140 static void	alc_stats_clear(struct alc_softc *);
141 static void	alc_stats_update(struct alc_softc *);
142 static void	alc_stop(struct ifnet *, int);
143 static void	alc_stop_mac(struct alc_softc *);
144 static void	alc_stop_queue(struct alc_softc *);
145 static void	alc_tick(void *);
146 static void	alc_txeof(struct alc_softc *);
147 
148 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
149 
150 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
151     alc_match, alc_attach, alc_detach, NULL);
152 
153 int alcdebug = 0;
154 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
155 
156 #define ETHER_ALIGN		2
157 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
158 
159 static int
160 alc_miibus_readreg(device_t dev, int phy, int reg)
161 {
162 	struct alc_softc *sc = device_private(dev);
163 	uint32_t v;
164 	int i;
165 
166 	if (phy != sc->alc_phyaddr)
167 		return (0);
168 
169 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
170 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
171 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
172 		DELAY(5);
173 		v = CSR_READ_4(sc, ALC_MDIO);
174 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
175 			break;
176 	}
177 
178 	if (i == 0) {
179 		printf("%s: phy read timeout: phy %d, reg %d\n",
180 		    device_xname(sc->sc_dev), phy, reg);
181 		return (0);
182 	}
183 
184 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
185 }
186 
187 static void
188 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
189 {
190 	struct alc_softc *sc = device_private(dev);
191 	uint32_t v;
192 	int i;
193 
194 	if (phy != sc->alc_phyaddr)
195 		return;
196 
197 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
198 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
199 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
200 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
201 		DELAY(5);
202 		v = CSR_READ_4(sc, ALC_MDIO);
203 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
204 			break;
205 	}
206 
207 	if (i == 0)
208 		printf("%s: phy write timeout: phy %d, reg %d\n",
209 		    device_xname(sc->sc_dev), phy, reg);
210 }
211 
212 static void
213 alc_miibus_statchg(struct ifnet *ifp)
214 {
215 	struct alc_softc *sc = ifp->if_softc;
216 	struct mii_data *mii = &sc->sc_miibus;
217 	uint32_t reg;
218 
219 	if ((ifp->if_flags & IFF_RUNNING) == 0)
220 		return;
221 
222 	sc->alc_flags &= ~ALC_FLAG_LINK;
223 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
224 	    (IFM_ACTIVE | IFM_AVALID)) {
225 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
226 		case IFM_10_T:
227 		case IFM_100_TX:
228 			sc->alc_flags |= ALC_FLAG_LINK;
229 			break;
230 		case IFM_1000_T:
231 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
232 				sc->alc_flags |= ALC_FLAG_LINK;
233 			break;
234 		default:
235 			break;
236 		}
237 	}
238 	alc_stop_queue(sc);
239 	/* Stop Rx/Tx MACs. */
240 	alc_stop_mac(sc);
241 
242 	/* Program MACs with resolved speed/duplex/flow-control. */
243 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
244 		alc_start_queue(sc);
245 		alc_mac_config(sc);
246 		/* Re-enable Tx/Rx MACs. */
247 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
248 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
249 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
250 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
251 	}
252 }
253 
254 static void
255 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
256 {
257 	struct alc_softc *sc = ifp->if_softc;
258 	struct mii_data *mii = &sc->sc_miibus;
259 
260 	mii_pollstat(mii);
261 	ifmr->ifm_status = mii->mii_media_status;
262 	ifmr->ifm_active = mii->mii_media_active;
263 }
264 
265 static int
266 alc_mediachange(struct ifnet *ifp)
267 {
268 	struct alc_softc *sc = ifp->if_softc;
269 	struct mii_data *mii = &sc->sc_miibus;
270 	int error;
271 
272 	if (mii->mii_instance != 0) {
273 		struct mii_softc *miisc;
274 
275 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
276 			mii_phy_reset(miisc);
277 	}
278 	error = mii_mediachg(mii);
279 
280 	return (error);
281 }
282 
283 static struct alc_ident *
284 alc_find_ident(struct pci_attach_args *pa)
285 {
286 	struct alc_ident *ident;
287 	uint16_t vendor, devid;
288 
289 	vendor = PCI_VENDOR(pa->pa_id);
290 	devid = PCI_PRODUCT(pa->pa_id);
291 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
292 		if (vendor == ident->vendorid && devid == ident->deviceid)
293 			return (ident);
294 	}
295 
296 	return (NULL);
297 }
298 
299 static int
300 alc_match(device_t dev, cfdata_t match, void *aux)
301 {
302 	struct pci_attach_args *pa = aux;
303 
304 	return alc_find_ident(pa) != NULL;
305 }
306 
307 static void
308 alc_get_macaddr(struct alc_softc *sc)
309 {
310 	uint32_t ea[2], opt;
311 	uint16_t val;
312 	int eeprom, i;
313 
314 	eeprom = 0;
315 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
316 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
317 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
318 		/*
319 		 * EEPROM found, let TWSI reload EEPROM configuration.
320 		 * This will set ethernet address of controller.
321 		 */
322 		eeprom++;
323 		switch (sc->alc_ident->deviceid) {
324 		case PCI_PRODUCT_ATTANSIC_AR8131:
325 		case PCI_PRODUCT_ATTANSIC_AR8132:
326 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
327 				opt |= OPT_CFG_CLK_ENB;
328 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
329 				CSR_READ_4(sc, ALC_OPT_CFG);
330 				DELAY(1000);
331 			}
332 			break;
333 		case PCI_PRODUCT_ATTANSIC_AR8151:
334 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
335 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
336 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
337 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
338 			    ALC_MII_DBG_ADDR, 0x00);
339 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
340 			    ALC_MII_DBG_DATA);
341 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
342 			    ALC_MII_DBG_DATA, val & 0xFF7F);
343 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
344 			    ALC_MII_DBG_ADDR, 0x3B);
345 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
346 			    ALC_MII_DBG_DATA);
347 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
348 			    ALC_MII_DBG_DATA, val | 0x0008);
349 			DELAY(20);
350 			break;
351 		}
352 
353 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
354 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
355 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
356 		CSR_READ_4(sc, ALC_WOL_CFG);
357 
358 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
359 		    TWSI_CFG_SW_LD_START);
360 		for (i = 100; i > 0; i--) {
361 			DELAY(1000);
362 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
363 			    TWSI_CFG_SW_LD_START) == 0)
364 				break;
365 		}
366 		if (i == 0)
367 			printf("%s: reloading EEPROM timeout!\n",
368 			    device_xname(sc->sc_dev));
369 	} else {
370 		if (alcdebug)
371 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
372 	}
373 	if (eeprom != 0) {
374 		switch (sc->alc_ident->deviceid) {
375 		case PCI_PRODUCT_ATTANSIC_AR8131:
376 		case PCI_PRODUCT_ATTANSIC_AR8132:
377 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
378 				opt &= ~OPT_CFG_CLK_ENB;
379 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
380 				CSR_READ_4(sc, ALC_OPT_CFG);
381 				DELAY(1000);
382 			}
383 			break;
384 		case PCI_PRODUCT_ATTANSIC_AR8151:
385 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
386 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
387 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
388 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
389 			    ALC_MII_DBG_ADDR, 0x00);
390 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
391 			    ALC_MII_DBG_DATA);
392 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
393 			    ALC_MII_DBG_DATA, val | 0x0080);
394 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
395 			    ALC_MII_DBG_ADDR, 0x3B);
396 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
397 			    ALC_MII_DBG_DATA);
398 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
399 			    ALC_MII_DBG_DATA, val & 0xFFF7);
400 			DELAY(20);
401 			break;
402 		}
403 	}
404 
405 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
406 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
407 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
408 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
409 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
410 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
411 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
412 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
413 }
414 
415 static void
416 alc_disable_l0s_l1(struct alc_softc *sc)
417 {
418 	uint32_t pmcfg;
419 
420 	/* Another magic from vendor. */
421 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
422 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
423 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
424 	    PM_CFG_SERDES_PD_EX_L1);
425 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
426 	    PM_CFG_SERDES_L1_ENB;
427 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
428 }
429 
430 static void
431 alc_phy_reset(struct alc_softc *sc)
432 {
433 	uint16_t data;
434 
435 	/* Reset magic from Linux. */
436 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
437 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
438 	CSR_READ_2(sc, ALC_GPHY_CFG);
439 	DELAY(10 * 1000);
440 
441 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
442 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
443 	    GPHY_CFG_SEL_ANA_RESET);
444 	CSR_READ_2(sc, ALC_GPHY_CFG);
445 	DELAY(10 * 1000);
446 
447 	/* DSP fixup, Vendor magic. */
448 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
449 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
450 		    ALC_MII_DBG_ADDR, 0x000A);
451 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
452 		    ALC_MII_DBG_DATA);
453 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
454 		    ALC_MII_DBG_DATA, data & 0xDFFF);
455 	}
456 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
457 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
458 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
459 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
460 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
461 		    ALC_MII_DBG_ADDR, 0x003B);
462 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
463 		    ALC_MII_DBG_DATA);
464 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
465 		    ALC_MII_DBG_DATA, data & 0xFFF7);
466 		DELAY(20 * 1000);
467 	}
468 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
469 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
470 		    ALC_MII_DBG_ADDR, 0x0029);
471 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
472 		    ALC_MII_DBG_DATA, 0x929D);
473 	}
474 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
475 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
476 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
477 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
478 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
479 		    ALC_MII_DBG_ADDR, 0x0029);
480 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
481 		    ALC_MII_DBG_DATA, 0xB6DD);
482 	}
483 
484 	/* Load DSP codes, vendor magic. */
485 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
486 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
487 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
488 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
489 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
490 	    ALC_MII_DBG_DATA, data);
491 
492 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
493 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
494 	    ANA_SERDES_EN_LCKDT;
495 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
496 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
497 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
498 	    ALC_MII_DBG_DATA, data);
499 
500 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
501 	    ANA_LONG_CABLE_TH_100_MASK) |
502 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
503 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
504 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
505 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
506 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
507 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
508 	    ALC_MII_DBG_DATA, data);
509 
510 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
511 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
512 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
513 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
514 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
515 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
516 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
517 	    ALC_MII_DBG_DATA, data);
518 
519 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
520 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
521 	    ANA_OEN_125M;
522 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
523 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
524 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
525 	    ALC_MII_DBG_DATA, data);
526 	DELAY(1000);
527 }
528 
529 static void
530 alc_phy_down(struct alc_softc *sc)
531 {
532 	switch (sc->alc_ident->deviceid) {
533 	case PCI_PRODUCT_ATTANSIC_AR8151:
534 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
535 		/*
536 		 * GPHY power down caused more problems on AR8151 v2.0.
537 		 * When driver is reloaded after GPHY power down,
538 		 * accesses to PHY/MAC registers hung the system. Only
539 		 * cold boot recovered from it.  I'm not sure whether
540 		 * AR8151 v1.0 also requires this one though.  I don't
541 		 * have AR8151 v1.0 controller in hand.
542 		 * The only option left is to isolate the PHY and
543 		 * initiates power down the PHY which in turn saves
544 		 * more power when driver is unloaded.
545 		 */
546 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
547 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
548 		break;
549 	default:
550 		/* Force PHY down. */
551 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
552 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
553 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
554 		    GPHY_CFG_PWDOWN_HW);
555 		DELAY(1000);
556 		break;
557 	}
558 }
559 
560 static void
561 alc_aspm(struct alc_softc *sc, int media)
562 {
563 	uint32_t pmcfg;
564 	uint16_t linkcfg;
565 
566 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
567 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
568 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
569 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
570 		    PCIE_LCSR);
571 	else
572 		linkcfg = 0;
573 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
574 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
575 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
576 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
577 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
578 
579 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
580 		/* Disable extended sync except AR8152 B v1.0 */
581 		linkcfg &= ~0x80;
582 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
583 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
584 			linkcfg |= 0x80;
585 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
586 		    linkcfg);
587 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
588 		    PM_CFG_HOTRST);
589 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
590 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
591 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
592 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
593 		    PM_CFG_PM_REQ_TIMER_SHIFT);
594 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
595 	}
596 
597 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
598 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
599 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
600 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
601 			pmcfg |= PM_CFG_ASPM_L1_ENB;
602 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
603 			if (sc->alc_ident->deviceid ==
604 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
605 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
606 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
607 			    PM_CFG_SERDES_PLL_L1_ENB |
608 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
609 			pmcfg |= PM_CFG_CLK_SWH_L1;
610 			if (media == IFM_100_TX || media == IFM_1000_T) {
611 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
612 				switch (sc->alc_ident->deviceid) {
613 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
614 					pmcfg |= (7 <<
615 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
616 					break;
617 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
619 					pmcfg |= (4 <<
620 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
621 					break;
622 				default:
623 					pmcfg |= (15 <<
624 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
625 					break;
626 				}
627 			}
628 		} else {
629 			pmcfg |= PM_CFG_SERDES_L1_ENB |
630 			    PM_CFG_SERDES_PLL_L1_ENB |
631 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
632 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
633 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
634 		}
635 	} else {
636 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
637 		    PM_CFG_SERDES_PLL_L1_ENB);
638 		pmcfg |= PM_CFG_CLK_SWH_L1;
639 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
640 			pmcfg |= PM_CFG_ASPM_L1_ENB;
641 	}
642 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
643 }
644 
645 static void
646 alc_attach(device_t parent, device_t self, void *aux)
647 {
648 
649 	struct alc_softc *sc = device_private(self);
650 	struct pci_attach_args *pa = aux;
651 	pci_chipset_tag_t pc = pa->pa_pc;
652 	pci_intr_handle_t ih;
653 	const char *intrstr;
654 	struct ifnet *ifp;
655 	pcireg_t memtype;
656 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
657 	uint16_t burst;
658 	int base, mii_flags, state, error = 0;
659 	uint32_t cap, ctl, val;
660 	char intrbuf[PCI_INTRSTR_LEN];
661 
662 	sc->alc_ident = alc_find_ident(pa);
663 
664 	aprint_naive("\n");
665 	aprint_normal(": %s\n", sc->alc_ident->name);
666 
667 	sc->sc_dev = self;
668 	sc->sc_dmat = pa->pa_dmat;
669 	sc->sc_pct = pa->pa_pc;
670 	sc->sc_pcitag = pa->pa_tag;
671 
672 	/*
673 	 * Allocate IO memory
674 	 */
675 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
676 	switch (memtype) {
677 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
680 		break;
681 	default:
682 		aprint_error_dev(self, "invalid base address register\n");
683 		break;
684 	}
685 
686 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
687 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
688 		aprint_error_dev(self, "could not map mem space\n");
689 		return;
690 	}
691 
692 	if (pci_intr_map(pa, &ih) != 0) {
693 		printf(": can't map interrupt\n");
694 		goto fail;
695 	}
696 
697 	/*
698 	 * Allocate IRQ
699 	 */
700 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
701 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
702 	if (sc->sc_irq_handle == NULL) {
703 		printf(": could not establish interrupt");
704 		if (intrstr != NULL)
705 			printf(" at %s", intrstr);
706 		printf("\n");
707 		goto fail;
708 	}
709 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
710 
711 	/* Set PHY address. */
712 	sc->alc_phyaddr = ALC_PHY_ADDR;
713 
714 	/* Initialize DMA parameters. */
715 	sc->alc_dma_rd_burst = 0;
716 	sc->alc_dma_wr_burst = 0;
717 	sc->alc_rcb = DMA_CFG_RCB_64;
718 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
719 	    &base, NULL)) {
720 		sc->alc_flags |= ALC_FLAG_PCIE;
721 		sc->alc_expcap = base;
722 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
723 		    base + PCIE_DCSR) >> 16;
724 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
725 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
726 		if (alcdebug) {
727 			printf("%s: Read request size : %u bytes.\n",
728 			    device_xname(sc->sc_dev),
729 			    alc_dma_burst[sc->alc_dma_rd_burst]);
730 			printf("%s: TLP payload size : %u bytes.\n",
731 			    device_xname(sc->sc_dev),
732 			    alc_dma_burst[sc->alc_dma_wr_burst]);
733 		}
734 		/* Clear data link and flow-control protocol error. */
735 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
736 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
737 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
738 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
739 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
740 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
741 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
742 		    PCIE_PHYMISC_FORCE_RCV_DET);
743 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
744 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
745 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
746 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
747 			    PCIE_PHYMISC2_SERDES_TH_MASK);
748 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
749 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
750 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
751 		}
752 		/* Disable ASPM L0S and L1. */
753 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
754 		    base + PCIE_LCAP) >> 16;
755 		if ((cap & 0x00000c00) != 0) {
756 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
757 			    base + PCIE_LCSR) >> 16;
758 			if ((ctl & 0x08) != 0)
759 				sc->alc_rcb = DMA_CFG_RCB_128;
760 			if (alcdebug)
761 				printf("%s: RCB %u bytes\n",
762 				    device_xname(sc->sc_dev),
763 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
764 			state = ctl & 0x03;
765 			if (state & 0x01)
766 				sc->alc_flags |= ALC_FLAG_L0S;
767 			if (state & 0x02)
768 				sc->alc_flags |= ALC_FLAG_L1S;
769 			if (alcdebug)
770 				printf("%s: ASPM %s %s\n",
771 				    device_xname(sc->sc_dev),
772 				    aspm_state[state],
773 				    state == 0 ? "disabled" : "enabled");
774 			alc_disable_l0s_l1(sc);
775 		} else {
776 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
777 		}
778 	}
779 
780 	/* Reset PHY. */
781 	alc_phy_reset(sc);
782 
783 	/* Reset the ethernet controller. */
784 	alc_reset(sc);
785 
786 	/*
787 	 * One odd thing is AR8132 uses the same PHY hardware(F1
788 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
789 	 * the PHY supports 1000Mbps but that's not true. The PHY
790 	 * used in AR8132 can't establish gigabit link even if it
791 	 * shows the same PHY model/revision number of AR8131.
792 	 */
793 	switch (sc->alc_ident->deviceid) {
794 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
795 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
796 		sc->alc_flags |= ALC_FLAG_APS;
797 		/* FALLTHROUGH */
798 	case PCI_PRODUCT_ATTANSIC_AR8132:
799 		sc->alc_flags |= ALC_FLAG_FASTETHER;
800 		break;
801 	case PCI_PRODUCT_ATTANSIC_AR8151:
802 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
803 		sc->alc_flags |= ALC_FLAG_APS;
804 		/* FALLTHROUGH */
805 	default:
806 		break;
807 	}
808 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
809 
810 	/*
811 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
812 	 * addition, Atheros said that enabling SMB wouldn't improve
813 	 * performance. However I think it's bad to access lots of
814 	 * registers to extract MAC statistics.
815 	 */
816 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
817 	/*
818 	 * Don't use Tx CMB. It is known to have silicon bug.
819 	 */
820 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
821 	sc->alc_rev = PCI_REVISION(pa->pa_class);
822 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
823 	    MASTER_CHIP_REV_SHIFT;
824 	if (alcdebug) {
825 		printf("%s: PCI device revision : 0x%04x\n",
826 		    device_xname(sc->sc_dev), sc->alc_rev);
827 		printf("%s: Chip id/revision : 0x%04x\n",
828 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
829 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
830 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
831 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
832 	}
833 
834 	error = alc_dma_alloc(sc);
835 	if (error)
836 		goto fail;
837 
838 	callout_init(&sc->sc_tick_ch, 0);
839 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
840 
841 	/* Load station address. */
842 	alc_get_macaddr(sc);
843 
844 	aprint_normal_dev(self, "Ethernet address %s\n",
845 	    ether_sprintf(sc->alc_eaddr));
846 
847 	ifp = &sc->sc_ec.ec_if;
848 	ifp->if_softc = sc;
849 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
850 	ifp->if_init = alc_init;
851 	ifp->if_ioctl = alc_ioctl;
852 	ifp->if_start = alc_start;
853 	ifp->if_stop = alc_stop;
854 	ifp->if_watchdog = alc_watchdog;
855 	ifp->if_baudrate = IF_Gbps(1);
856 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
857 	IFQ_SET_READY(&ifp->if_snd);
858 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
859 
860 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
861 
862 #ifdef ALC_CHECKSUM
863 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
864 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
865 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
866 #endif
867 
868 #if NVLAN > 0
869 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
870 #endif
871 
872 	/* Set up MII bus. */
873 	sc->sc_miibus.mii_ifp = ifp;
874 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
875 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
876 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
877 
878 	sc->sc_ec.ec_mii = &sc->sc_miibus;
879 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
880 	    alc_mediastatus);
881 	mii_flags = 0;
882 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
883 		mii_flags |= MIIF_DOPAUSE;
884 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
885 		MII_OFFSET_ANY, mii_flags);
886 
887 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
888 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
889 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
890 		    0, NULL);
891 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
892 	} else
893 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
894 
895 	if_attach(ifp);
896 	ether_ifattach(ifp, sc->alc_eaddr);
897 
898 	if (!pmf_device_register(self, NULL, NULL))
899 		aprint_error_dev(self, "couldn't establish power handler\n");
900 	else
901 		pmf_class_network_register(self, ifp);
902 
903 	return;
904 fail:
905 	alc_dma_free(sc);
906 	if (sc->sc_irq_handle != NULL) {
907 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
908 		sc->sc_irq_handle = NULL;
909 	}
910 	if (sc->sc_mem_size) {
911 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
912 		sc->sc_mem_size = 0;
913 	}
914 }
915 
916 static int
917 alc_detach(device_t self, int flags)
918 {
919 	struct alc_softc *sc = device_private(self);
920 	struct ifnet *ifp = &sc->sc_ec.ec_if;
921 	int s;
922 
923 	s = splnet();
924 	alc_stop(ifp, 0);
925 	splx(s);
926 
927 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
928 
929 	/* Delete all remaining media. */
930 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
931 
932 	ether_ifdetach(ifp);
933 	if_detach(ifp);
934 	alc_dma_free(sc);
935 
936 	alc_phy_down(sc);
937 	if (sc->sc_irq_handle != NULL) {
938 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
939 		sc->sc_irq_handle = NULL;
940 	}
941 	if (sc->sc_mem_size) {
942 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
943 		sc->sc_mem_size = 0;
944 	}
945 
946 	return (0);
947 }
948 
949 static int
950 alc_dma_alloc(struct alc_softc *sc)
951 {
952 	struct alc_txdesc *txd;
953 	struct alc_rxdesc *rxd;
954 	int nsegs, error, i;
955 
956 	/*
957 	 * Create DMA stuffs for TX ring
958 	 */
959 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
960 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
961 	if (error) {
962 		sc->alc_cdata.alc_tx_ring_map = NULL;
963 		return (ENOBUFS);
964 	}
965 
966 	/* Allocate DMA'able memory for TX ring */
967 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
968 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
969 	    &nsegs, BUS_DMA_NOWAIT);
970 	if (error) {
971 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
972 		    device_xname(sc->sc_dev));
973 		return error;
974 	}
975 
976 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
977 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
978 	    BUS_DMA_NOWAIT);
979 	if (error)
980 		return (ENOBUFS);
981 
982 	/* Load the DMA map for Tx ring. */
983 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
984 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
985 	if (error) {
986 		printf("%s: could not load DMA'able memory for Tx ring.\n",
987 		    device_xname(sc->sc_dev));
988 		bus_dmamem_free(sc->sc_dmat,
989 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
990 		return error;
991 	}
992 
993 	sc->alc_rdata.alc_tx_ring_paddr =
994 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
995 
996 	/*
997 	 * Create DMA stuffs for RX ring
998 	 */
999 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1000 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1001 	if (error)
1002 		return (ENOBUFS);
1003 
1004 	/* Allocate DMA'able memory for RX ring */
1005 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1006 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1007 	    &nsegs, BUS_DMA_NOWAIT);
1008 	if (error) {
1009 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1010 		    device_xname(sc->sc_dev));
1011 		return error;
1012 	}
1013 
1014 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1015 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1016 	    BUS_DMA_NOWAIT);
1017 	if (error)
1018 		return (ENOBUFS);
1019 
1020 	/* Load the DMA map for Rx ring. */
1021 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1022 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1023 	if (error) {
1024 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1025 		    device_xname(sc->sc_dev));
1026 		bus_dmamem_free(sc->sc_dmat,
1027 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1028 		return error;
1029 	}
1030 
1031 	sc->alc_rdata.alc_rx_ring_paddr =
1032 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1033 
1034 	/*
1035 	 * Create DMA stuffs for RX return ring
1036 	 */
1037 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1038 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1039 	if (error)
1040 		return (ENOBUFS);
1041 
1042 	/* Allocate DMA'able memory for RX return ring */
1043 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1044 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1045 	    &nsegs, BUS_DMA_NOWAIT);
1046 	if (error) {
1047 		printf("%s: could not allocate DMA'able memory for Rx "
1048 		    "return ring.\n", device_xname(sc->sc_dev));
1049 		return error;
1050 	}
1051 
1052 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1053 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1054 	    BUS_DMA_NOWAIT);
1055 	if (error)
1056 		return (ENOBUFS);
1057 
1058 	/*  Load the DMA map for Rx return ring. */
1059 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1060 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1061 	if (error) {
1062 		printf("%s: could not load DMA'able memory for Rx return ring."
1063 		    "\n", device_xname(sc->sc_dev));
1064 		bus_dmamem_free(sc->sc_dmat,
1065 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1066 		return error;
1067 	}
1068 
1069 	sc->alc_rdata.alc_rr_ring_paddr =
1070 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1071 
1072 	/*
1073 	 * Create DMA stuffs for CMB block
1074 	 */
1075 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1076 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1077 	    &sc->alc_cdata.alc_cmb_map);
1078 	if (error)
1079 		return (ENOBUFS);
1080 
1081 	/* Allocate DMA'able memory for CMB block */
1082 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1083 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1084 	    &nsegs, BUS_DMA_NOWAIT);
1085 	if (error) {
1086 		printf("%s: could not allocate DMA'able memory for "
1087 		    "CMB block\n", device_xname(sc->sc_dev));
1088 		return error;
1089 	}
1090 
1091 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1092 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1093 	    BUS_DMA_NOWAIT);
1094 	if (error)
1095 		return (ENOBUFS);
1096 
1097 	/*  Load the DMA map for CMB block. */
1098 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1099 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1100 	    BUS_DMA_WAITOK);
1101 	if (error) {
1102 		printf("%s: could not load DMA'able memory for CMB block\n",
1103 		    device_xname(sc->sc_dev));
1104 		bus_dmamem_free(sc->sc_dmat,
1105 		    &sc->alc_rdata.alc_cmb_seg, 1);
1106 		return error;
1107 	}
1108 
1109 	sc->alc_rdata.alc_cmb_paddr =
1110 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1111 
1112 	/*
1113 	 * Create DMA stuffs for SMB block
1114 	 */
1115 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1116 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1117 	    &sc->alc_cdata.alc_smb_map);
1118 	if (error)
1119 		return (ENOBUFS);
1120 
1121 	/* Allocate DMA'able memory for SMB block */
1122 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1123 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1124 	    &nsegs, BUS_DMA_NOWAIT);
1125 	if (error) {
1126 		printf("%s: could not allocate DMA'able memory for "
1127 		    "SMB block\n", device_xname(sc->sc_dev));
1128 		return error;
1129 	}
1130 
1131 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1132 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1133 	    BUS_DMA_NOWAIT);
1134 	if (error)
1135 		return (ENOBUFS);
1136 
1137 	/*  Load the DMA map for SMB block */
1138 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1139 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1140 	    BUS_DMA_WAITOK);
1141 	if (error) {
1142 		printf("%s: could not load DMA'able memory for SMB block\n",
1143 		    device_xname(sc->sc_dev));
1144 		bus_dmamem_free(sc->sc_dmat,
1145 		    &sc->alc_rdata.alc_smb_seg, 1);
1146 		return error;
1147 	}
1148 
1149 	sc->alc_rdata.alc_smb_paddr =
1150 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1151 
1152 
1153 	/* Create DMA maps for Tx buffers. */
1154 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1155 		txd = &sc->alc_cdata.alc_txdesc[i];
1156 		txd->tx_m = NULL;
1157 		txd->tx_dmamap = NULL;
1158 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1159 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1160 		    &txd->tx_dmamap);
1161 		if (error) {
1162 			printf("%s: could not create Tx dmamap.\n",
1163 			    device_xname(sc->sc_dev));
1164 			return error;
1165 		}
1166 	}
1167 
1168 	/* Create DMA maps for Rx buffers. */
1169 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1170 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1171 	if (error) {
1172 		printf("%s: could not create spare Rx dmamap.\n",
1173 		    device_xname(sc->sc_dev));
1174 		return error;
1175 	}
1176 
1177 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1178 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1179 		rxd->rx_m = NULL;
1180 		rxd->rx_dmamap = NULL;
1181 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1182 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1183 		if (error) {
1184 			printf("%s: could not create Rx dmamap.\n",
1185 			    device_xname(sc->sc_dev));
1186 			return error;
1187 		}
1188 	}
1189 
1190 	return (0);
1191 }
1192 
1193 
1194 static void
1195 alc_dma_free(struct alc_softc *sc)
1196 {
1197 	struct alc_txdesc *txd;
1198 	struct alc_rxdesc *rxd;
1199 	int i;
1200 
1201 	/* Tx buffers */
1202 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1203 		txd = &sc->alc_cdata.alc_txdesc[i];
1204 		if (txd->tx_dmamap != NULL) {
1205 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1206 			txd->tx_dmamap = NULL;
1207 		}
1208 	}
1209 	/* Rx buffers */
1210 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1211 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1212 		if (rxd->rx_dmamap != NULL) {
1213 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1214 			rxd->rx_dmamap = NULL;
1215 		}
1216 	}
1217 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1218 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1219 		sc->alc_cdata.alc_rx_sparemap = NULL;
1220 	}
1221 
1222 	/* Tx ring. */
1223 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1224 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1225 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1226 	    sc->alc_rdata.alc_tx_ring != NULL)
1227 		bus_dmamem_free(sc->sc_dmat,
1228 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1229 	sc->alc_rdata.alc_tx_ring = NULL;
1230 	sc->alc_cdata.alc_tx_ring_map = NULL;
1231 
1232 	/* Rx ring. */
1233 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1234 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1235 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1236 	    sc->alc_rdata.alc_rx_ring != NULL)
1237 		bus_dmamem_free(sc->sc_dmat,
1238 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1239 	sc->alc_rdata.alc_rx_ring = NULL;
1240 	sc->alc_cdata.alc_rx_ring_map = NULL;
1241 
1242 	/* Rx return ring. */
1243 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1244 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1245 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1246 	    sc->alc_rdata.alc_rr_ring != NULL)
1247 		bus_dmamem_free(sc->sc_dmat,
1248 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1249 	sc->alc_rdata.alc_rr_ring = NULL;
1250 	sc->alc_cdata.alc_rr_ring_map = NULL;
1251 
1252 	/* CMB block */
1253 	if (sc->alc_cdata.alc_cmb_map != NULL)
1254 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1255 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1256 	    sc->alc_rdata.alc_cmb != NULL)
1257 		bus_dmamem_free(sc->sc_dmat,
1258 		    &sc->alc_rdata.alc_cmb_seg, 1);
1259 	sc->alc_rdata.alc_cmb = NULL;
1260 	sc->alc_cdata.alc_cmb_map = NULL;
1261 
1262 	/* SMB block */
1263 	if (sc->alc_cdata.alc_smb_map != NULL)
1264 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1265 	if (sc->alc_cdata.alc_smb_map != NULL &&
1266 	    sc->alc_rdata.alc_smb != NULL)
1267 		bus_dmamem_free(sc->sc_dmat,
1268 		    &sc->alc_rdata.alc_smb_seg, 1);
1269 	sc->alc_rdata.alc_smb = NULL;
1270 	sc->alc_cdata.alc_smb_map = NULL;
1271 }
1272 
1273 static int
1274 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1275 {
1276 	struct alc_txdesc *txd, *txd_last;
1277 	struct tx_desc *desc;
1278 	struct mbuf *m;
1279 	bus_dmamap_t map;
1280 	uint32_t cflags, poff, vtag;
1281 	int error, idx, nsegs, prod;
1282 #if NVLAN > 0
1283 	struct m_tag *mtag;
1284 #endif
1285 
1286 	m = *m_head;
1287 	cflags = vtag = 0;
1288 	poff = 0;
1289 
1290 	prod = sc->alc_cdata.alc_tx_prod;
1291 	txd = &sc->alc_cdata.alc_txdesc[prod];
1292 	txd_last = txd;
1293 	map = txd->tx_dmamap;
1294 
1295 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1296 
1297 	if (error == EFBIG) {
1298 		error = 0;
1299 
1300 		*m_head = m_pullup(*m_head, MHLEN);
1301 		if (*m_head == NULL) {
1302 			printf("%s: can't defrag TX mbuf\n",
1303 			    device_xname(sc->sc_dev));
1304 			return ENOBUFS;
1305 		}
1306 
1307 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1308 		    BUS_DMA_NOWAIT);
1309 
1310 		if (error != 0) {
1311 			printf("%s: could not load defragged TX mbuf\n",
1312 			    device_xname(sc->sc_dev));
1313 			m_freem(*m_head);
1314 			*m_head = NULL;
1315 			return error;
1316 		}
1317 	} else if (error) {
1318 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1319 		return (error);
1320 	}
1321 
1322 	nsegs = map->dm_nsegs;
1323 
1324 	if (nsegs == 0) {
1325 		m_freem(*m_head);
1326 		*m_head = NULL;
1327 		return (EIO);
1328 	}
1329 
1330 	/* Check descriptor overrun. */
1331 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1332 		bus_dmamap_unload(sc->sc_dmat, map);
1333 		return (ENOBUFS);
1334 	}
1335 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1336 	    BUS_DMASYNC_PREWRITE);
1337 
1338 	m = *m_head;
1339 	desc = NULL;
1340 	idx = 0;
1341 #if NVLAN > 0
1342 	/* Configure VLAN hardware tag insertion. */
1343 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1344 		vtag = htons(VLAN_TAG_VALUE(mtag));
1345 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1346 		cflags |= TD_INS_VLAN_TAG;
1347 	}
1348 #endif
1349 	/* Configure Tx checksum offload. */
1350 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1351 		cflags |= TD_CUSTOM_CSUM;
1352 		/* Set checksum start offset. */
1353 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1354 		    TD_PLOAD_OFFSET_MASK;
1355 	}
1356 	for (; idx < nsegs; idx++) {
1357 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1358 		desc->len =
1359 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1360 		desc->flags = htole32(cflags);
1361 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1362 		sc->alc_cdata.alc_tx_cnt++;
1363 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1364 	}
1365 	/* Update producer index. */
1366 	sc->alc_cdata.alc_tx_prod = prod;
1367 
1368 	/* Finally set EOP on the last descriptor. */
1369 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1370 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1371 	desc->flags |= htole32(TD_EOP);
1372 
1373 	/* Swap dmamap of the first and the last. */
1374 	txd = &sc->alc_cdata.alc_txdesc[prod];
1375 	map = txd_last->tx_dmamap;
1376 	txd_last->tx_dmamap = txd->tx_dmamap;
1377 	txd->tx_dmamap = map;
1378 	txd->tx_m = m;
1379 
1380 	return (0);
1381 }
1382 
1383 static void
1384 alc_start(struct ifnet *ifp)
1385 {
1386 	struct alc_softc *sc = ifp->if_softc;
1387 	struct mbuf *m_head;
1388 	int enq;
1389 
1390 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1391 		return;
1392 
1393 	/* Reclaim transmitted frames. */
1394 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1395 		alc_txeof(sc);
1396 
1397 	enq = 0;
1398 	for (;;) {
1399 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1400 		if (m_head == NULL)
1401 			break;
1402 
1403 		/*
1404 		 * Pack the data into the transmit ring. If we
1405 		 * don't have room, set the OACTIVE flag and wait
1406 		 * for the NIC to drain the ring.
1407 		 */
1408 		if (alc_encap(sc, &m_head)) {
1409 			if (m_head == NULL)
1410 				break;
1411 			ifp->if_flags |= IFF_OACTIVE;
1412 			break;
1413 		}
1414 		enq = 1;
1415 
1416 		/*
1417 		 * If there's a BPF listener, bounce a copy of this frame
1418 		 * to him.
1419 		 */
1420 		bpf_mtap(ifp, m_head);
1421 	}
1422 
1423 	if (enq) {
1424 		/* Sync descriptors. */
1425 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1426 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1427 		    BUS_DMASYNC_PREWRITE);
1428 		/* Kick. Assume we're using normal Tx priority queue. */
1429 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1430 		    (sc->alc_cdata.alc_tx_prod <<
1431 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
1432 		    MBOX_TD_PROD_LO_IDX_MASK);
1433 		/* Set a timeout in case the chip goes out to lunch. */
1434 		ifp->if_timer = ALC_TX_TIMEOUT;
1435 	}
1436 }
1437 
1438 static void
1439 alc_watchdog(struct ifnet *ifp)
1440 {
1441 	struct alc_softc *sc = ifp->if_softc;
1442 
1443 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1444 		printf("%s: watchdog timeout (missed link)\n",
1445 		    device_xname(sc->sc_dev));
1446 		ifp->if_oerrors++;
1447 		alc_init_backend(ifp, false);
1448 		return;
1449 	}
1450 
1451 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1452 	ifp->if_oerrors++;
1453 	alc_init_backend(ifp, false);
1454 
1455 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1456 		 alc_start(ifp);
1457 }
1458 
1459 static int
1460 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1461 {
1462 	struct alc_softc *sc = ifp->if_softc;
1463 	int s, error = 0;
1464 
1465 	s = splnet();
1466 
1467 	error = ether_ioctl(ifp, cmd, data);
1468 	if (error == ENETRESET) {
1469 		if (ifp->if_flags & IFF_RUNNING)
1470 			alc_iff(sc);
1471 		error = 0;
1472 	}
1473 
1474 	splx(s);
1475 	return (error);
1476 }
1477 
1478 static void
1479 alc_mac_config(struct alc_softc *sc)
1480 {
1481 	struct mii_data *mii;
1482 	uint32_t reg;
1483 
1484 	mii = &sc->sc_miibus;
1485 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1486 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1487 	    MAC_CFG_SPEED_MASK);
1488 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1489 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1490 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1491 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1492 	/* Reprogram MAC with resolved speed/duplex. */
1493 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1494 	case IFM_10_T:
1495 	case IFM_100_TX:
1496 		reg |= MAC_CFG_SPEED_10_100;
1497 		break;
1498 	case IFM_1000_T:
1499 		reg |= MAC_CFG_SPEED_1000;
1500 		break;
1501 	}
1502 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1503 		reg |= MAC_CFG_FULL_DUPLEX;
1504 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1505 			reg |= MAC_CFG_TX_FC;
1506 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1507 			reg |= MAC_CFG_RX_FC;
1508 	}
1509 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1510 }
1511 
1512 static void
1513 alc_stats_clear(struct alc_softc *sc)
1514 {
1515 	struct smb sb, *smb;
1516 	uint32_t *reg;
1517 	int i;
1518 
1519 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1520 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1521 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1522 		    BUS_DMASYNC_POSTREAD);
1523 		smb = sc->alc_rdata.alc_smb;
1524 		/* Update done, clear. */
1525 		smb->updated = 0;
1526 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1527 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1528 		    BUS_DMASYNC_PREWRITE);
1529 	} else {
1530 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1531 		    reg++) {
1532 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1533 			i += sizeof(uint32_t);
1534 		}
1535 		/* Read Tx statistics. */
1536 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1537 		    reg++) {
1538 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1539 			i += sizeof(uint32_t);
1540 		}
1541 	}
1542 }
1543 
1544 static void
1545 alc_stats_update(struct alc_softc *sc)
1546 {
1547 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1548 	struct alc_hw_stats *stat;
1549 	struct smb sb, *smb;
1550 	uint32_t *reg;
1551 	int i;
1552 
1553 	stat = &sc->alc_stats;
1554 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1555 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1556 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1557 		    BUS_DMASYNC_POSTREAD);
1558 		smb = sc->alc_rdata.alc_smb;
1559 		if (smb->updated == 0)
1560 			return;
1561 	} else {
1562 		smb = &sb;
1563 		/* Read Rx statistics. */
1564 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1565 		    reg++) {
1566 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1567 			i += sizeof(uint32_t);
1568 		}
1569 		/* Read Tx statistics. */
1570 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1571 		    reg++) {
1572 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1573 			i += sizeof(uint32_t);
1574 		}
1575 	}
1576 
1577 	/* Rx stats. */
1578 	stat->rx_frames += smb->rx_frames;
1579 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1580 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1581 	stat->rx_pause_frames += smb->rx_pause_frames;
1582 	stat->rx_control_frames += smb->rx_control_frames;
1583 	stat->rx_crcerrs += smb->rx_crcerrs;
1584 	stat->rx_lenerrs += smb->rx_lenerrs;
1585 	stat->rx_bytes += smb->rx_bytes;
1586 	stat->rx_runts += smb->rx_runts;
1587 	stat->rx_fragments += smb->rx_fragments;
1588 	stat->rx_pkts_64 += smb->rx_pkts_64;
1589 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1590 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1591 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1592 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1593 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1594 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1595 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1596 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1597 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1598 	stat->rx_alignerrs += smb->rx_alignerrs;
1599 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1600 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1601 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1602 
1603 	/* Tx stats. */
1604 	stat->tx_frames += smb->tx_frames;
1605 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1606 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1607 	stat->tx_pause_frames += smb->tx_pause_frames;
1608 	stat->tx_excess_defer += smb->tx_excess_defer;
1609 	stat->tx_control_frames += smb->tx_control_frames;
1610 	stat->tx_deferred += smb->tx_deferred;
1611 	stat->tx_bytes += smb->tx_bytes;
1612 	stat->tx_pkts_64 += smb->tx_pkts_64;
1613 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1614 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1615 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1616 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1617 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1618 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1619 	stat->tx_single_colls += smb->tx_single_colls;
1620 	stat->tx_multi_colls += smb->tx_multi_colls;
1621 	stat->tx_late_colls += smb->tx_late_colls;
1622 	stat->tx_excess_colls += smb->tx_excess_colls;
1623 	stat->tx_abort += smb->tx_abort;
1624 	stat->tx_underrun += smb->tx_underrun;
1625 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1626 	stat->tx_lenerrs += smb->tx_lenerrs;
1627 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1628 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1629 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1630 
1631 	/* Update counters in ifnet. */
1632 	ifp->if_opackets += smb->tx_frames;
1633 
1634 	ifp->if_collisions += smb->tx_single_colls +
1635 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1636 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1637 
1638 	/*
1639 	 * XXX
1640 	 * tx_pkts_truncated counter looks suspicious. It constantly
1641 	 * increments with no sign of Tx errors. This may indicate
1642 	 * the counter name is not correct one so I've removed the
1643 	 * counter in output errors.
1644 	 */
1645 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1646 	    smb->tx_underrun;
1647 
1648 	ifp->if_ipackets += smb->rx_frames;
1649 
1650 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1651 	    smb->rx_runts + smb->rx_pkts_truncated +
1652 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1653 	    smb->rx_alignerrs;
1654 
1655 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1656 		/* Update done, clear. */
1657 		smb->updated = 0;
1658 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1659 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1660 	}
1661 }
1662 
1663 static int
1664 alc_intr(void *arg)
1665 {
1666 	struct alc_softc *sc = arg;
1667 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1668 	uint32_t status;
1669 
1670 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
1671 	if ((status & ALC_INTRS) == 0)
1672 		return (0);
1673 
1674 	/* Acknowledge and disable interrupts. */
1675 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1676 
1677 	if (ifp->if_flags & IFF_RUNNING) {
1678 		if (status & INTR_RX_PKT) {
1679 			int error;
1680 
1681 			error = alc_rxintr(sc);
1682 			if (error) {
1683 				alc_init_backend(ifp, false);
1684 				return (0);
1685 			}
1686 		}
1687 
1688 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1689 		    INTR_TXQ_TO_RST)) {
1690 			if (status & INTR_DMA_RD_TO_RST)
1691 				printf("%s: DMA read error! -- resetting\n",
1692 				    device_xname(sc->sc_dev));
1693 			if (status & INTR_DMA_WR_TO_RST)
1694 				printf("%s: DMA write error! -- resetting\n",
1695 				    device_xname(sc->sc_dev));
1696 			if (status & INTR_TXQ_TO_RST)
1697 				printf("%s: TxQ reset! -- resetting\n",
1698 				    device_xname(sc->sc_dev));
1699 			alc_init_backend(ifp, false);
1700 			return (0);
1701 		}
1702 
1703 		alc_txeof(sc);
1704 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1705 			alc_start(ifp);
1706 	}
1707 
1708 	/* Re-enable interrupts. */
1709 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1710 	return (1);
1711 }
1712 
1713 static void
1714 alc_txeof(struct alc_softc *sc)
1715 {
1716 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1717 	struct alc_txdesc *txd;
1718 	uint32_t cons, prod;
1719 	int prog;
1720 
1721 	if (sc->alc_cdata.alc_tx_cnt == 0)
1722 		return;
1723 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1724 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1725 	    BUS_DMASYNC_POSTREAD);
1726 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1727 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1728 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
1729 		    BUS_DMASYNC_POSTREAD);
1730 		prod = sc->alc_rdata.alc_cmb->cons;
1731 	} else
1732 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1733 	/* Assume we're using normal Tx priority queue. */
1734 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1735 	    MBOX_TD_CONS_LO_IDX_SHIFT;
1736 	cons = sc->alc_cdata.alc_tx_cons;
1737 	/*
1738 	 * Go through our Tx list and free mbufs for those
1739 	 * frames which have been transmitted.
1740 	 */
1741 	for (prog = 0; cons != prod; prog++,
1742 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1743 		if (sc->alc_cdata.alc_tx_cnt <= 0)
1744 			break;
1745 		prog++;
1746 		ifp->if_flags &= ~IFF_OACTIVE;
1747 		sc->alc_cdata.alc_tx_cnt--;
1748 		txd = &sc->alc_cdata.alc_txdesc[cons];
1749 		if (txd->tx_m != NULL) {
1750 			/* Reclaim transmitted mbufs. */
1751 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1752 			m_freem(txd->tx_m);
1753 			txd->tx_m = NULL;
1754 		}
1755 	}
1756 
1757 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1758 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1759 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1760 	sc->alc_cdata.alc_tx_cons = cons;
1761 	/*
1762 	 * Unarm watchdog timer only when there is no pending
1763 	 * frames in Tx queue.
1764 	 */
1765 	if (sc->alc_cdata.alc_tx_cnt == 0)
1766 		ifp->if_timer = 0;
1767 }
1768 
1769 static int
1770 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
1771 {
1772 	struct mbuf *m;
1773 	bus_dmamap_t map;
1774 	int error;
1775 
1776 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1777 	if (m == NULL)
1778 		return (ENOBUFS);
1779 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1780 	if (!(m->m_flags & M_EXT)) {
1781 		m_freem(m);
1782 		return (ENOBUFS);
1783 	}
1784 
1785 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1786 
1787 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
1788 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1789 
1790 	if (error != 0) {
1791 		if (!error) {
1792 			bus_dmamap_unload(sc->sc_dmat,
1793 			    sc->alc_cdata.alc_rx_sparemap);
1794 			error = EFBIG;
1795 			printf("%s: too many segments?!\n",
1796 			    device_xname(sc->sc_dev));
1797 		}
1798 		m_freem(m);
1799 
1800 		if (init)
1801 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1802 
1803 		return (error);
1804 	}
1805 
1806 	if (rxd->rx_m != NULL) {
1807 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1808 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1809 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1810 	}
1811 	map = rxd->rx_dmamap;
1812 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1813 	sc->alc_cdata.alc_rx_sparemap = map;
1814 	rxd->rx_m = m;
1815 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1816 	return (0);
1817 }
1818 
1819 static int
1820 alc_rxintr(struct alc_softc *sc)
1821 {
1822 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1823 	struct rx_rdesc *rrd;
1824 	uint32_t nsegs, status;
1825 	int rr_cons, prog;
1826 
1827 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1828 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1829 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1830 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1831 	rr_cons = sc->alc_cdata.alc_rr_cons;
1832 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1833 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1834 		status = le32toh(rrd->status);
1835 		if ((status & RRD_VALID) == 0)
1836 			break;
1837 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1838 		if (nsegs == 0) {
1839 			/* This should not happen! */
1840 			if (alcdebug)
1841 				printf("%s: unexpected segment count -- "
1842 				    "resetting\n", device_xname(sc->sc_dev));
1843 			return (EIO);
1844 		}
1845 		alc_rxeof(sc, rrd);
1846 		/* Clear Rx return status. */
1847 		rrd->status = 0;
1848 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1849 		sc->alc_cdata.alc_rx_cons += nsegs;
1850 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1851 		prog += nsegs;
1852 	}
1853 
1854 	if (prog > 0) {
1855 		/* Update the consumer index. */
1856 		sc->alc_cdata.alc_rr_cons = rr_cons;
1857 		/* Sync Rx return descriptors. */
1858 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1859 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1860 		    BUS_DMASYNC_PREWRITE);
1861 		/*
1862 		 * Sync updated Rx descriptors such that controller see
1863 		 * modified buffer addresses.
1864 		 */
1865 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1866 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1867 		    BUS_DMASYNC_PREWRITE);
1868 		/*
1869 		 * Let controller know availability of new Rx buffers.
1870 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1871 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1872 		 * only when Rx buffer pre-fetching is required. In
1873 		 * addition we already set ALC_RX_RD_FREE_THRESH to
1874 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1875 		 * it still seems that pre-fetching needs more
1876 		 * experimentation.
1877 		 */
1878 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1879 		    sc->alc_cdata.alc_rx_cons);
1880 	}
1881 
1882 	return (0);
1883 }
1884 
1885 /* Receive a frame. */
1886 static void
1887 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1888 {
1889 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1890 	struct alc_rxdesc *rxd;
1891 	struct mbuf *mp, *m;
1892 	uint32_t rdinfo, status;
1893 	int count, nsegs, rx_cons;
1894 
1895 	status = le32toh(rrd->status);
1896 	rdinfo = le32toh(rrd->rdinfo);
1897 	rx_cons = RRD_RD_IDX(rdinfo);
1898 	nsegs = RRD_RD_CNT(rdinfo);
1899 
1900 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1901 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1902 		/*
1903 		 * We want to pass the following frames to upper
1904 		 * layer regardless of error status of Rx return
1905 		 * ring.
1906 		 *
1907 		 *  o IP/TCP/UDP checksum is bad.
1908 		 *  o frame length and protocol specific length
1909 		 *     does not match.
1910 		 *
1911 		 *  Force network stack compute checksum for
1912 		 *  errored frames.
1913 		 */
1914 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1915 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1916 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1917 			return;
1918 	}
1919 
1920 	for (count = 0; count < nsegs; count++,
1921 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1922 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1923 		mp = rxd->rx_m;
1924 		/* Add a new receive buffer to the ring. */
1925 		if (alc_newbuf(sc, rxd, false) != 0) {
1926 			ifp->if_iqdrops++;
1927 			/* Reuse Rx buffers. */
1928 			if (sc->alc_cdata.alc_rxhead != NULL)
1929 				m_freem(sc->alc_cdata.alc_rxhead);
1930 			break;
1931 		}
1932 
1933 		/*
1934 		 * Assume we've received a full sized frame.
1935 		 * Actual size is fixed when we encounter the end of
1936 		 * multi-segmented frame.
1937 		 */
1938 		mp->m_len = sc->alc_buf_size;
1939 
1940 		/* Chain received mbufs. */
1941 		if (sc->alc_cdata.alc_rxhead == NULL) {
1942 			sc->alc_cdata.alc_rxhead = mp;
1943 			sc->alc_cdata.alc_rxtail = mp;
1944 		} else {
1945 			mp->m_flags &= ~M_PKTHDR;
1946 			sc->alc_cdata.alc_rxprev_tail =
1947 			    sc->alc_cdata.alc_rxtail;
1948 			sc->alc_cdata.alc_rxtail->m_next = mp;
1949 			sc->alc_cdata.alc_rxtail = mp;
1950 		}
1951 
1952 		if (count == nsegs - 1) {
1953 			/* Last desc. for this frame. */
1954 			m = sc->alc_cdata.alc_rxhead;
1955 			m->m_flags |= M_PKTHDR;
1956 			/*
1957 			 * It seems that L1C/L2C controller has no way
1958 			 * to tell hardware to strip CRC bytes.
1959 			 */
1960 			m->m_pkthdr.len =
1961 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1962 			if (nsegs > 1) {
1963 				/* Set last mbuf size. */
1964 				mp->m_len = sc->alc_cdata.alc_rxlen -
1965 				    (nsegs - 1) * sc->alc_buf_size;
1966 				/* Remove the CRC bytes in chained mbufs. */
1967 				if (mp->m_len <= ETHER_CRC_LEN) {
1968 					sc->alc_cdata.alc_rxtail =
1969 					    sc->alc_cdata.alc_rxprev_tail;
1970 					sc->alc_cdata.alc_rxtail->m_len -=
1971 					    (ETHER_CRC_LEN - mp->m_len);
1972 					sc->alc_cdata.alc_rxtail->m_next = NULL;
1973 					m_freem(mp);
1974 				} else {
1975 					mp->m_len -= ETHER_CRC_LEN;
1976 				}
1977 			} else
1978 				m->m_len = m->m_pkthdr.len;
1979 			m->m_pkthdr.rcvif = ifp;
1980 #if NVLAN > 0
1981 			/*
1982 			 * Due to hardware bugs, Rx checksum offloading
1983 			 * was intentionally disabled.
1984 			 */
1985 			if (status & RRD_VLAN_TAG) {
1986 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1987 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1988 			}
1989 #endif
1990 
1991 			bpf_mtap(ifp, m);
1992 
1993 			/* Pass it on. */
1994 			(*ifp->if_input)(ifp, m);
1995 		}
1996 	}
1997 	/* Reset mbuf chains. */
1998 	ALC_RXCHAIN_RESET(sc);
1999 }
2000 
2001 static void
2002 alc_tick(void *xsc)
2003 {
2004 	struct alc_softc *sc = xsc;
2005 	struct mii_data *mii = &sc->sc_miibus;
2006 	int s;
2007 
2008 	s = splnet();
2009 	mii_tick(mii);
2010 	alc_stats_update(sc);
2011 	splx(s);
2012 
2013 	callout_schedule(&sc->sc_tick_ch, hz);
2014 }
2015 
2016 static void
2017 alc_reset(struct alc_softc *sc)
2018 {
2019 	uint32_t reg;
2020 	int i;
2021 
2022 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2023 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2024 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2025 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2026 		DELAY(10);
2027 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2028 			break;
2029 	}
2030 	if (i == 0)
2031 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2032 
2033 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2034 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2035 			break;
2036 		DELAY(10);
2037 	}
2038 
2039 	if (i == 0)
2040 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2041 		    reg);
2042 }
2043 
2044 static int
2045 alc_init(struct ifnet *ifp)
2046 {
2047 
2048 	return alc_init_backend(ifp, true);
2049 }
2050 
2051 static int
2052 alc_init_backend(struct ifnet *ifp, bool init)
2053 {
2054 	struct alc_softc *sc = ifp->if_softc;
2055 	struct mii_data *mii;
2056 	uint8_t eaddr[ETHER_ADDR_LEN];
2057 	bus_addr_t paddr;
2058 	uint32_t reg, rxf_hi, rxf_lo;
2059 	int error;
2060 
2061 	/*
2062 	 * Cancel any pending I/O.
2063 	 */
2064 	alc_stop(ifp, 0);
2065 	/*
2066 	 * Reset the chip to a known state.
2067 	 */
2068 	alc_reset(sc);
2069 
2070 	/* Initialize Rx descriptors. */
2071 	error = alc_init_rx_ring(sc, init);
2072 	if (error != 0) {
2073 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2074 		alc_stop(ifp, 0);
2075 		return (error);
2076 	}
2077 	alc_init_rr_ring(sc);
2078 	alc_init_tx_ring(sc);
2079 	alc_init_cmb(sc);
2080 	alc_init_smb(sc);
2081 
2082 	/* Enable all clocks. */
2083 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2084 
2085 	/* Reprogram the station address. */
2086 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2087 	CSR_WRITE_4(sc, ALC_PAR0,
2088 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2089 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2090 	/*
2091 	 * Clear WOL status and disable all WOL feature as WOL
2092 	 * would interfere Rx operation under normal environments.
2093 	 */
2094 	CSR_READ_4(sc, ALC_WOL_CFG);
2095 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2096 	/* Set Tx descriptor base addresses. */
2097 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2098 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2099 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2100 	/* We don't use high priority ring. */
2101 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2102 	/* Set Tx descriptor counter. */
2103 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2104 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2105 	/* Set Rx descriptor base addresses. */
2106 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2107 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2108 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2109 	/* We use one Rx ring. */
2110 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2111 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2112 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2113 	/* Set Rx descriptor counter. */
2114 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2115 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2116 
2117 	/*
2118 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2119 	 * if it do not fit the buffer size. Rx return descriptor holds
2120 	 * a counter that indicates how many fragments were made by the
2121 	 * hardware. The buffer size should be multiple of 8 bytes.
2122 	 * Since hardware has limit on the size of buffer size, always
2123 	 * use the maximum value.
2124 	 * For strict-alignment architectures make sure to reduce buffer
2125 	 * size by 8 bytes to make room for alignment fixup.
2126 	 */
2127 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2128 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2129 
2130 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2131 	/* Set Rx return descriptor base addresses. */
2132 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2133 	/* We use one Rx return ring. */
2134 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2135 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2136 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2137 	/* Set Rx return descriptor counter. */
2138 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2139 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2140 	paddr = sc->alc_rdata.alc_cmb_paddr;
2141 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2142 	paddr = sc->alc_rdata.alc_smb_paddr;
2143 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2144 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2145 
2146 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2147 		/* Reconfigure SRAM - Vendor magic. */
2148 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2149 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2150 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2151 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2152 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2153 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2154 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2155 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2156 	}
2157 
2158 	/* Tell hardware that we're ready to load DMA blocks. */
2159 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2160 
2161 	/* Configure interrupt moderation timer. */
2162 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2163 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2164 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2165 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2166 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2167 	/*
2168 	 * We don't want to automatic interrupt clear as task queue
2169 	 * for the interrupt should know interrupt status.
2170 	 */
2171 	reg = MASTER_SA_TIMER_ENB;
2172 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2173 		reg |= MASTER_IM_RX_TIMER_ENB;
2174 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2175 		reg |= MASTER_IM_TX_TIMER_ENB;
2176 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2177 	/*
2178 	 * Disable interrupt re-trigger timer. We don't want automatic
2179 	 * re-triggering of un-ACKed interrupts.
2180 	 */
2181 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2182 	/* Configure CMB. */
2183 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2184 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2185 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2186 	else
2187 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2188 	/*
2189 	 * Hardware can be configured to issue SMB interrupt based
2190 	 * on programmed interval. Since there is a callout that is
2191 	 * invoked for every hz in driver we use that instead of
2192 	 * relying on periodic SMB interrupt.
2193 	 */
2194 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2195 	/* Clear MAC statistics. */
2196 	alc_stats_clear(sc);
2197 
2198 	/*
2199 	 * Always use maximum frame size that controller can support.
2200 	 * Otherwise received frames that has larger frame length
2201 	 * than alc(4) MTU would be silently dropped in hardware. This
2202 	 * would make path-MTU discovery hard as sender wouldn't get
2203 	 * any responses from receiver. alc(4) supports
2204 	 * multi-fragmented frames on Rx path so it has no issue on
2205 	 * assembling fragmented frames. Using maximum frame size also
2206 	 * removes the need to reinitialize hardware when interface
2207 	 * MTU configuration was changed.
2208 	 *
2209 	 * Be conservative in what you do, be liberal in what you
2210 	 * accept from others - RFC 793.
2211 	 */
2212 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2213 
2214 	/* Disable header split(?) */
2215 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2216 
2217 	/* Configure IPG/IFG parameters. */
2218 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2219 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2220 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2221 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2222 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2223 	/* Set parameters for half-duplex media. */
2224 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
2225 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2226 	    HDPX_CFG_LCOL_MASK) |
2227 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2228 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2229 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2230 	    HDPX_CFG_ABEBT_MASK) |
2231 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2232 	    HDPX_CFG_JAMIPG_MASK));
2233 	/*
2234 	 * Set TSO/checksum offload threshold. For frames that is
2235 	 * larger than this threshold, hardware wouldn't do
2236 	 * TSO/checksum offloading.
2237 	 */
2238 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2239 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2240 	    TSO_OFFLOAD_THRESH_MASK);
2241 	/* Configure TxQ. */
2242 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2243 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2244 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2245 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2246 		reg >>= 1;
2247 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2248 	    TXQ_CFG_TD_BURST_MASK;
2249 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2250 
2251 	/* Configure Rx free descriptor pre-fetching. */
2252 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2253 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2254 	    RX_RD_FREE_THRESH_HI_MASK) |
2255 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2256 	    RX_RD_FREE_THRESH_LO_MASK));
2257 
2258 	/*
2259 	 * Configure flow control parameters.
2260 	 * XON  : 80% of Rx FIFO
2261 	 * XOFF : 30% of Rx FIFO
2262 	 */
2263 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2264 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2265 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2266 		rxf_hi = (reg * 8) / 10;
2267 		rxf_lo = (reg * 3) / 10;
2268 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2269 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2270 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
2271 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2272 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2273 	}
2274 
2275 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2276 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2277 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2278 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2279 		    SERDES_PHY_CLK_SLOWDOWN);
2280 
2281 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
2282 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2283 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2284 
2285 	/* Configure RxQ. */
2286 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2287 	    RXQ_CFG_RD_BURST_MASK;
2288 	reg |= RXQ_CFG_RSS_MODE_DIS;
2289 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2290 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2291 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2292 
2293 	/* Configure DMA parameters. */
2294 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2295 	reg |= sc->alc_rcb;
2296 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2297 		reg |= DMA_CFG_CMB_ENB;
2298 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2299 		reg |= DMA_CFG_SMB_ENB;
2300 	else
2301 		reg |= DMA_CFG_SMB_DIS;
2302 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2303 	    DMA_CFG_RD_BURST_SHIFT;
2304 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2305 	    DMA_CFG_WR_BURST_SHIFT;
2306 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2307 	    DMA_CFG_RD_DELAY_CNT_MASK;
2308 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2309 	    DMA_CFG_WR_DELAY_CNT_MASK;
2310 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2311 
2312 	/*
2313 	 * Configure Tx/Rx MACs.
2314 	 *  - Auto-padding for short frames.
2315 	 *  - Enable CRC generation.
2316 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2317 	 *  is followed after detection of link establishment.
2318 	 *  AR813x/AR815x always does checksum computation regardless
2319 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2320 	 *  have bug in protocol field in Rx return structure so
2321 	 *  these controllers can't handle fragmented frames. Disable
2322 	 *  Rx checksum offloading until there is a newer controller
2323 	 *  that has sane implementation.
2324 	 */
2325 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2326 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2327 	    MAC_CFG_PREAMBLE_MASK);
2328 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2329 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2330 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2331 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2332 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2333 		reg |= MAC_CFG_SPEED_10_100;
2334 	else
2335 		reg |= MAC_CFG_SPEED_1000;
2336 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2337 
2338 	/* Set up the receive filter. */
2339 	alc_iff(sc);
2340 	alc_rxvlan(sc);
2341 
2342 	/* Acknowledge all pending interrupts and clear it. */
2343 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2344 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2345 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2346 
2347 	sc->alc_flags &= ~ALC_FLAG_LINK;
2348 	/* Switch to the current media. */
2349 	mii = &sc->sc_miibus;
2350 	mii_mediachg(mii);
2351 
2352 	callout_schedule(&sc->sc_tick_ch, hz);
2353 
2354 	ifp->if_flags |= IFF_RUNNING;
2355 	ifp->if_flags &= ~IFF_OACTIVE;
2356 
2357 	return (0);
2358 }
2359 
2360 static void
2361 alc_stop(struct ifnet *ifp, int disable)
2362 {
2363 	struct alc_softc *sc = ifp->if_softc;
2364 	struct alc_txdesc *txd;
2365 	struct alc_rxdesc *rxd;
2366 	uint32_t reg;
2367 	int i;
2368 
2369 	callout_stop(&sc->sc_tick_ch);
2370 
2371 	/*
2372 	 * Mark the interface down and cancel the watchdog timer.
2373 	 */
2374 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2375 	ifp->if_timer = 0;
2376 
2377 	sc->alc_flags &= ~ALC_FLAG_LINK;
2378 
2379 	alc_stats_update(sc);
2380 
2381 	mii_down(&sc->sc_miibus);
2382 
2383 	/* Disable interrupts. */
2384 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2385 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2386 	alc_stop_queue(sc);
2387 
2388 	/* Disable DMA. */
2389 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
2390 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2391 	reg |= DMA_CFG_SMB_DIS;
2392 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2393 	DELAY(1000);
2394 
2395 	/* Stop Rx/Tx MACs. */
2396 	alc_stop_mac(sc);
2397 
2398 	/* Disable interrupts which might be touched in taskq handler. */
2399 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2400 
2401 	/* Reclaim Rx buffers that have been processed. */
2402 	if (sc->alc_cdata.alc_rxhead != NULL)
2403 		m_freem(sc->alc_cdata.alc_rxhead);
2404 	ALC_RXCHAIN_RESET(sc);
2405 	/*
2406 	 * Free Tx/Rx mbufs still in the queues.
2407 	 */
2408 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2409 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2410 		if (rxd->rx_m != NULL) {
2411 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2412 			m_freem(rxd->rx_m);
2413 			rxd->rx_m = NULL;
2414 		}
2415 	}
2416 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2417 		txd = &sc->alc_cdata.alc_txdesc[i];
2418 		if (txd->tx_m != NULL) {
2419 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2420 			m_freem(txd->tx_m);
2421 			txd->tx_m = NULL;
2422 		}
2423 	}
2424 }
2425 
2426 static void
2427 alc_stop_mac(struct alc_softc *sc)
2428 {
2429 	uint32_t reg;
2430 	int i;
2431 
2432 	/* Disable Rx/Tx MAC. */
2433 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2434 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2435 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2436 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2437 	}
2438 	for (i = ALC_TIMEOUT; i > 0; i--) {
2439 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2440 		if (reg == 0)
2441 			break;
2442 		DELAY(10);
2443 	}
2444 	if (i == 0)
2445 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2446 		    device_xname(sc->sc_dev), reg);
2447 }
2448 
2449 static void
2450 alc_start_queue(struct alc_softc *sc)
2451 {
2452 	uint32_t qcfg[] = {
2453 		0,
2454 		RXQ_CFG_QUEUE0_ENB,
2455 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2456 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2457 		RXQ_CFG_ENB
2458 	};
2459 	uint32_t cfg;
2460 
2461 	/* Enable RxQ. */
2462 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2463 	cfg &= ~RXQ_CFG_ENB;
2464 	cfg |= qcfg[1];
2465 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2466 	/* Enable TxQ. */
2467 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2468 	cfg |= TXQ_CFG_ENB;
2469 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2470 }
2471 
2472 static void
2473 alc_stop_queue(struct alc_softc *sc)
2474 {
2475 	uint32_t reg;
2476 	int i;
2477 
2478 	/* Disable RxQ. */
2479 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2480 	if ((reg & RXQ_CFG_ENB) != 0) {
2481 		reg &= ~RXQ_CFG_ENB;
2482 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2483 	}
2484 	/* Disable TxQ. */
2485 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2486 	if ((reg & TXQ_CFG_ENB) != 0) {
2487 		reg &= ~TXQ_CFG_ENB;
2488 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2489 	}
2490 	for (i = ALC_TIMEOUT; i > 0; i--) {
2491 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2492 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2493 			break;
2494 		DELAY(10);
2495 	}
2496 	if (i == 0)
2497 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2498 		    device_xname(sc->sc_dev), reg);
2499 }
2500 
2501 static void
2502 alc_init_tx_ring(struct alc_softc *sc)
2503 {
2504 	struct alc_ring_data *rd;
2505 	struct alc_txdesc *txd;
2506 	int i;
2507 
2508 	sc->alc_cdata.alc_tx_prod = 0;
2509 	sc->alc_cdata.alc_tx_cons = 0;
2510 	sc->alc_cdata.alc_tx_cnt = 0;
2511 
2512 	rd = &sc->alc_rdata;
2513 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2514 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2515 		txd = &sc->alc_cdata.alc_txdesc[i];
2516 		txd->tx_m = NULL;
2517 	}
2518 
2519 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2520 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2521 }
2522 
2523 static int
2524 alc_init_rx_ring(struct alc_softc *sc, bool init)
2525 {
2526 	struct alc_ring_data *rd;
2527 	struct alc_rxdesc *rxd;
2528 	int i;
2529 
2530 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2531 	rd = &sc->alc_rdata;
2532 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2533 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2534 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2535 		rxd->rx_m = NULL;
2536 		rxd->rx_desc = &rd->alc_rx_ring[i];
2537 		if (alc_newbuf(sc, rxd, init) != 0)
2538 			return (ENOBUFS);
2539 	}
2540 
2541 	/*
2542 	 * Since controller does not update Rx descriptors, driver
2543 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2544 	 * is enough to ensure coherence.
2545 	 */
2546 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2547 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2548 	/* Let controller know availability of new Rx buffers. */
2549 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2550 
2551 	return (0);
2552 }
2553 
2554 static void
2555 alc_init_rr_ring(struct alc_softc *sc)
2556 {
2557 	struct alc_ring_data *rd;
2558 
2559 	sc->alc_cdata.alc_rr_cons = 0;
2560 	ALC_RXCHAIN_RESET(sc);
2561 
2562 	rd = &sc->alc_rdata;
2563 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2564 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2565 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2566 }
2567 
2568 static void
2569 alc_init_cmb(struct alc_softc *sc)
2570 {
2571 	struct alc_ring_data *rd;
2572 
2573 	rd = &sc->alc_rdata;
2574 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2575 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2576 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2577 }
2578 
2579 static void
2580 alc_init_smb(struct alc_softc *sc)
2581 {
2582 	struct alc_ring_data *rd;
2583 
2584 	rd = &sc->alc_rdata;
2585 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
2586 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2587 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2588 }
2589 
2590 static void
2591 alc_rxvlan(struct alc_softc *sc)
2592 {
2593 	uint32_t reg;
2594 
2595 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2596 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2597 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2598 	else
2599 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2600 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2601 }
2602 
2603 static void
2604 alc_iff(struct alc_softc *sc)
2605 {
2606 	struct ethercom *ec = &sc->sc_ec;
2607 	struct ifnet *ifp = &ec->ec_if;
2608 	struct ether_multi *enm;
2609 	struct ether_multistep step;
2610 	uint32_t crc;
2611 	uint32_t mchash[2];
2612 	uint32_t rxcfg;
2613 
2614 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2615 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2616 	ifp->if_flags &= ~IFF_ALLMULTI;
2617 
2618 	/*
2619 	 * Always accept broadcast frames.
2620 	 */
2621 	rxcfg |= MAC_CFG_BCAST;
2622 
2623 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2624 		ifp->if_flags |= IFF_ALLMULTI;
2625 		if (ifp->if_flags & IFF_PROMISC)
2626 			rxcfg |= MAC_CFG_PROMISC;
2627 		else
2628 			rxcfg |= MAC_CFG_ALLMULTI;
2629 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2630 	} else {
2631 		/* Program new filter. */
2632 		memset(mchash, 0, sizeof(mchash));
2633 
2634 		ETHER_FIRST_MULTI(step, ec, enm);
2635 		while (enm != NULL) {
2636 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2637 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2638 			ETHER_NEXT_MULTI(step, enm);
2639 		}
2640 	}
2641 
2642 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2643 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2644 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2645 }
2646 
2647 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
2648 
2649 #ifdef _MODULE
2650 #include "ioconf.c"
2651 #endif
2652 
2653 static int
2654 if_alc_modcmd(modcmd_t cmd, void *opaque)
2655 {
2656 	int error = 0;
2657 
2658 	switch (cmd) {
2659 	case MODULE_CMD_INIT:
2660 #ifdef _MODULE
2661 		error = config_init_component(cfdriver_ioconf_if_alc,
2662 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2663 #endif
2664 		return error;
2665 	case MODULE_CMD_FINI:
2666 #ifdef _MODULE
2667 		error = config_fini_component(cfdriver_ioconf_if_alc,
2668 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2669 #endif
2670 		return error;
2671 	default:
2672 		return ENOTTY;
2673 	}
2674 }
2675