xref: /netbsd-src/sys/dev/pci/if_alc.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
2 /*-
3  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30 
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48 
49 #include <sys/bus.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <net/bpf.h>
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_alcreg.h>
81 
82 /*
83  * Devices supported by this driver.
84  */
85 static struct alc_ident alc_ident_table[] = {
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 		"Atheros AR8132 PCIe Fast Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 	{ 0, 0, 0, NULL },
99 };
100 
101 static int	alc_match(device_t, cfdata_t, void *);
102 static void	alc_attach(device_t, device_t, void *);
103 static int	alc_detach(device_t, int);
104 
105 static int	alc_init(struct ifnet *);
106 static void	alc_start(struct ifnet *);
107 static int	alc_ioctl(struct ifnet *, u_long, void *);
108 static void	alc_watchdog(struct ifnet *);
109 static int	alc_mediachange(struct ifnet *);
110 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
111 
112 static void	alc_aspm(struct alc_softc *, int);
113 static void	alc_disable_l0s_l1(struct alc_softc *);
114 static int	alc_dma_alloc(struct alc_softc *);
115 static void	alc_dma_free(struct alc_softc *);
116 static int	alc_encap(struct alc_softc *, struct mbuf **);
117 static struct alc_ident *
118 		alc_find_ident(struct pci_attach_args *);
119 static void	alc_get_macaddr(struct alc_softc *);
120 static void	alc_init_cmb(struct alc_softc *);
121 static void	alc_init_rr_ring(struct alc_softc *);
122 static int	alc_init_rx_ring(struct alc_softc *);
123 static void	alc_init_smb(struct alc_softc *);
124 static void	alc_init_tx_ring(struct alc_softc *);
125 static int	alc_intr(void *);
126 static void	alc_mac_config(struct alc_softc *);
127 static int	alc_miibus_readreg(device_t, int, int);
128 static void	alc_miibus_statchg(struct ifnet *);
129 static void	alc_miibus_writereg(device_t, int, int, int);
130 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, int);
131 static void	alc_phy_down(struct alc_softc *);
132 static void	alc_phy_reset(struct alc_softc *);
133 static void	alc_reset(struct alc_softc *);
134 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
135 static int	alc_rxintr(struct alc_softc *);
136 static void	alc_iff(struct alc_softc *);
137 static void	alc_rxvlan(struct alc_softc *);
138 static void	alc_start_queue(struct alc_softc *);
139 static void	alc_stats_clear(struct alc_softc *);
140 static void	alc_stats_update(struct alc_softc *);
141 static void	alc_stop(struct ifnet *, int);
142 static void	alc_stop_mac(struct alc_softc *);
143 static void	alc_stop_queue(struct alc_softc *);
144 static void	alc_tick(void *);
145 static void	alc_txeof(struct alc_softc *);
146 
147 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
148 
149 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
150     alc_match, alc_attach, alc_detach, NULL);
151 
152 int alcdebug = 0;
153 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
154 
155 #define ETHER_ALIGN		2
156 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
157 
158 static int
159 alc_miibus_readreg(device_t dev, int phy, int reg)
160 {
161 	struct alc_softc *sc = device_private(dev);
162 	uint32_t v;
163 	int i;
164 
165 	if (phy != sc->alc_phyaddr)
166 		return (0);
167 
168 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
169 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
170 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
171 		DELAY(5);
172 		v = CSR_READ_4(sc, ALC_MDIO);
173 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
174 			break;
175 	}
176 
177 	if (i == 0) {
178 		printf("%s: phy read timeout: phy %d, reg %d\n",
179 		    device_xname(sc->sc_dev), phy, reg);
180 		return (0);
181 	}
182 
183 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
184 }
185 
186 static void
187 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
188 {
189 	struct alc_softc *sc = device_private(dev);
190 	uint32_t v;
191 	int i;
192 
193 	if (phy != sc->alc_phyaddr)
194 		return;
195 
196 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
197 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
198 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
199 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
200 		DELAY(5);
201 		v = CSR_READ_4(sc, ALC_MDIO);
202 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
203 			break;
204 	}
205 
206 	if (i == 0)
207 		printf("%s: phy write timeout: phy %d, reg %d\n",
208 		    device_xname(sc->sc_dev), phy, reg);
209 }
210 
211 static void
212 alc_miibus_statchg(struct ifnet *ifp)
213 {
214 	struct alc_softc *sc = ifp->if_softc;
215 	struct mii_data *mii = &sc->sc_miibus;
216 	uint32_t reg;
217 
218 	if ((ifp->if_flags & IFF_RUNNING) == 0)
219 		return;
220 
221 	sc->alc_flags &= ~ALC_FLAG_LINK;
222 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
223 	    (IFM_ACTIVE | IFM_AVALID)) {
224 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
225 		case IFM_10_T:
226 		case IFM_100_TX:
227 			sc->alc_flags |= ALC_FLAG_LINK;
228 			break;
229 		case IFM_1000_T:
230 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
231 				sc->alc_flags |= ALC_FLAG_LINK;
232 			break;
233 		default:
234 			break;
235 		}
236 	}
237 	alc_stop_queue(sc);
238 	/* Stop Rx/Tx MACs. */
239 	alc_stop_mac(sc);
240 
241 	/* Program MACs with resolved speed/duplex/flow-control. */
242 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
243 		alc_start_queue(sc);
244 		alc_mac_config(sc);
245 		/* Re-enable Tx/Rx MACs. */
246 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
247 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
248 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
249 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
250 	}
251 }
252 
253 static void
254 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
255 {
256 	struct alc_softc *sc = ifp->if_softc;
257 	struct mii_data *mii = &sc->sc_miibus;
258 
259 	mii_pollstat(mii);
260 	ifmr->ifm_status = mii->mii_media_status;
261 	ifmr->ifm_active = mii->mii_media_active;
262 }
263 
264 static int
265 alc_mediachange(struct ifnet *ifp)
266 {
267 	struct alc_softc *sc = ifp->if_softc;
268 	struct mii_data *mii = &sc->sc_miibus;
269 	int error;
270 
271 	if (mii->mii_instance != 0) {
272 		struct mii_softc *miisc;
273 
274 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
275 			mii_phy_reset(miisc);
276 	}
277 	error = mii_mediachg(mii);
278 
279 	return (error);
280 }
281 
282 static struct alc_ident *
283 alc_find_ident(struct pci_attach_args *pa)
284 {
285 	struct alc_ident *ident;
286 	uint16_t vendor, devid;
287 
288 	vendor = PCI_VENDOR(pa->pa_id);
289 	devid = PCI_PRODUCT(pa->pa_id);
290 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
291 		if (vendor == ident->vendorid && devid == ident->deviceid)
292 			return (ident);
293 	}
294 
295 	return (NULL);
296 }
297 
298 static int
299 alc_match(device_t dev, cfdata_t match, void *aux)
300 {
301 	struct pci_attach_args *pa = aux;
302 
303 	return alc_find_ident(pa) != NULL;
304 }
305 
306 static void
307 alc_get_macaddr(struct alc_softc *sc)
308 {
309 	uint32_t ea[2], opt;
310 	uint16_t val;
311 	int eeprom, i;
312 
313 	eeprom = 0;
314 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
315 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
316 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
317 		/*
318 		 * EEPROM found, let TWSI reload EEPROM configuration.
319 		 * This will set ethernet address of controller.
320 		 */
321 		eeprom++;
322 		switch (sc->alc_ident->deviceid) {
323 		case PCI_PRODUCT_ATTANSIC_AR8131:
324 		case PCI_PRODUCT_ATTANSIC_AR8132:
325 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
326 				opt |= OPT_CFG_CLK_ENB;
327 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
328 				CSR_READ_4(sc, ALC_OPT_CFG);
329 				DELAY(1000);
330 			}
331 			break;
332 		case PCI_PRODUCT_ATTANSIC_AR8151:
333 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
334 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
335 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
336 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
337 			    ALC_MII_DBG_ADDR, 0x00);
338 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
339 			    ALC_MII_DBG_DATA);
340 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
341 			    ALC_MII_DBG_DATA, val & 0xFF7F);
342 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
343 			    ALC_MII_DBG_ADDR, 0x3B);
344 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
345 			    ALC_MII_DBG_DATA);
346 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
347 			    ALC_MII_DBG_DATA, val | 0x0008);
348 			DELAY(20);
349 			break;
350 		}
351 
352 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
353 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
354 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
355 		CSR_READ_4(sc, ALC_WOL_CFG);
356 
357 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
358 		    TWSI_CFG_SW_LD_START);
359 		for (i = 100; i > 0; i--) {
360 			DELAY(1000);
361 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
362 			    TWSI_CFG_SW_LD_START) == 0)
363 				break;
364 		}
365 		if (i == 0)
366 			printf("%s: reloading EEPROM timeout!\n",
367 			    device_xname(sc->sc_dev));
368 	} else {
369 		if (alcdebug)
370 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
371 	}
372 	if (eeprom != 0) {
373 		switch (sc->alc_ident->deviceid) {
374 		case PCI_PRODUCT_ATTANSIC_AR8131:
375 		case PCI_PRODUCT_ATTANSIC_AR8132:
376 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
377 				opt &= ~OPT_CFG_CLK_ENB;
378 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
379 				CSR_READ_4(sc, ALC_OPT_CFG);
380 				DELAY(1000);
381 			}
382 			break;
383 		case PCI_PRODUCT_ATTANSIC_AR8151:
384 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
385 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
386 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
387 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
388 			    ALC_MII_DBG_ADDR, 0x00);
389 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
390 			    ALC_MII_DBG_DATA);
391 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
392 			    ALC_MII_DBG_DATA, val | 0x0080);
393 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
394 			    ALC_MII_DBG_ADDR, 0x3B);
395 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
396 			    ALC_MII_DBG_DATA);
397 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
398 			    ALC_MII_DBG_DATA, val & 0xFFF7);
399 			DELAY(20);
400 			break;
401 		}
402 	}
403 
404 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
405 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
406 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
407 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
408 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
409 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
410 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
411 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
412 }
413 
414 static void
415 alc_disable_l0s_l1(struct alc_softc *sc)
416 {
417 	uint32_t pmcfg;
418 
419 	/* Another magic from vendor. */
420 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
421 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
422 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
423 	    PM_CFG_SERDES_PD_EX_L1);
424 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
425 	    PM_CFG_SERDES_L1_ENB;
426 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
427 }
428 
429 static void
430 alc_phy_reset(struct alc_softc *sc)
431 {
432 	uint16_t data;
433 
434 	/* Reset magic from Linux. */
435 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
436 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
437 	CSR_READ_2(sc, ALC_GPHY_CFG);
438 	DELAY(10 * 1000);
439 
440 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
441 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
442 	    GPHY_CFG_SEL_ANA_RESET);
443 	CSR_READ_2(sc, ALC_GPHY_CFG);
444 	DELAY(10 * 1000);
445 
446 	/* DSP fixup, Vendor magic. */
447 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
448 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
449 		    ALC_MII_DBG_ADDR, 0x000A);
450 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
451 		    ALC_MII_DBG_DATA);
452 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
453 		    ALC_MII_DBG_DATA, data & 0xDFFF);
454 	}
455 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
456 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
457 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
458 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
459 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
460 		    ALC_MII_DBG_ADDR, 0x003B);
461 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
462 		    ALC_MII_DBG_DATA);
463 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
464 		    ALC_MII_DBG_DATA, data & 0xFFF7);
465 		DELAY(20 * 1000);
466 	}
467 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
468 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
469 		    ALC_MII_DBG_ADDR, 0x0029);
470 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
471 		    ALC_MII_DBG_DATA, 0x929D);
472 	}
473 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
474 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
475 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
476 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
477 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
478 		    ALC_MII_DBG_ADDR, 0x0029);
479 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
480 		    ALC_MII_DBG_DATA, 0xB6DD);
481 	}
482 
483 	/* Load DSP codes, vendor magic. */
484 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
485 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
486 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
487 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
488 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
489 	    ALC_MII_DBG_DATA, data);
490 
491 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
492 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
493 	    ANA_SERDES_EN_LCKDT;
494 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
495 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
496 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
497 	    ALC_MII_DBG_DATA, data);
498 
499 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
500 	    ANA_LONG_CABLE_TH_100_MASK) |
501 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
502 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
503 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
504 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
505 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
506 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
507 	    ALC_MII_DBG_DATA, data);
508 
509 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
510 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
511 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
512 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
513 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
514 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
515 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
516 	    ALC_MII_DBG_DATA, data);
517 
518 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
519 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
520 	    ANA_OEN_125M;
521 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
522 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
523 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
524 	    ALC_MII_DBG_DATA, data);
525 	DELAY(1000);
526 }
527 
528 static void
529 alc_phy_down(struct alc_softc *sc)
530 {
531 	switch (sc->alc_ident->deviceid) {
532 	case PCI_PRODUCT_ATTANSIC_AR8151:
533 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
534 		/*
535 		 * GPHY power down caused more problems on AR8151 v2.0.
536 		 * When driver is reloaded after GPHY power down,
537 		 * accesses to PHY/MAC registers hung the system. Only
538 		 * cold boot recovered from it.  I'm not sure whether
539 		 * AR8151 v1.0 also requires this one though.  I don't
540 		 * have AR8151 v1.0 controller in hand.
541 		 * The only option left is to isolate the PHY and
542 		 * initiates power down the PHY which in turn saves
543 		 * more power when driver is unloaded.
544 		 */
545 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
546 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
547 		break;
548 	default:
549 		/* Force PHY down. */
550 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
551 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
552 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
553 		    GPHY_CFG_PWDOWN_HW);
554 		DELAY(1000);
555 		break;
556 	}
557 }
558 
559 static void
560 alc_aspm(struct alc_softc *sc, int media)
561 {
562 	uint32_t pmcfg;
563 	uint16_t linkcfg;
564 
565 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
566 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
567 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
568 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
569 		    PCI_PCIE_LCSR);
570 	else
571 		linkcfg = 0;
572 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
573 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
574 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
575 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
576 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
577 
578 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
579 		/* Disable extended sync except AR8152 B v1.0 */
580 		linkcfg &= ~0x80;
581 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
582 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
583 			linkcfg |= 0x80;
584 		CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
585 		    linkcfg);
586 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
587 		    PM_CFG_HOTRST);
588 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
589 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
590 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
591 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
592 		    PM_CFG_PM_REQ_TIMER_SHIFT);
593 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
594 	}
595 
596 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
597 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
598 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
599 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
600 			pmcfg |= PM_CFG_ASPM_L1_ENB;
601 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
602 			if (sc->alc_ident->deviceid ==
603 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
604 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
605 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
606 			    PM_CFG_SERDES_PLL_L1_ENB |
607 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
608 			pmcfg |= PM_CFG_CLK_SWH_L1;
609 			if (media == IFM_100_TX || media == IFM_1000_T) {
610 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
611 				switch (sc->alc_ident->deviceid) {
612 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
613 					pmcfg |= (7 <<
614 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
615 					break;
616 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
617 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
618 					pmcfg |= (4 <<
619 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
620 					break;
621 				default:
622 					pmcfg |= (15 <<
623 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
624 					break;
625 				}
626 			}
627 		} else {
628 			pmcfg |= PM_CFG_SERDES_L1_ENB |
629 			    PM_CFG_SERDES_PLL_L1_ENB |
630 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
631 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
632 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
633 		}
634 	} else {
635 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
636 		    PM_CFG_SERDES_PLL_L1_ENB);
637 		pmcfg |= PM_CFG_CLK_SWH_L1;
638 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
639 			pmcfg |= PM_CFG_ASPM_L1_ENB;
640 	}
641 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
642 }
643 
644 static void
645 alc_attach(device_t parent, device_t self, void *aux)
646 {
647 
648 	struct alc_softc *sc = device_private(self);
649 	struct pci_attach_args *pa = aux;
650 	pci_chipset_tag_t pc = pa->pa_pc;
651 	pci_intr_handle_t ih;
652 	const char *intrstr;
653 	struct ifnet *ifp;
654 	pcireg_t memtype;
655 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
656 	uint16_t burst;
657 	int base, mii_flags, state, error = 0;
658 	uint32_t cap, ctl, val;
659 
660 	sc->alc_ident = alc_find_ident(pa);
661 
662 	aprint_naive("\n");
663 	aprint_normal(": %s\n", sc->alc_ident->name);
664 
665 	sc->sc_dev = self;
666 	sc->sc_dmat = pa->pa_dmat;
667 	sc->sc_pct = pa->pa_pc;
668 	sc->sc_pcitag = pa->pa_tag;
669 
670 	/*
671 	 * Allocate IO memory
672 	 */
673 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
674 	switch (memtype) {
675 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
676 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
677 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
678 		break;
679 	default:
680 		aprint_error_dev(self, "invalid base address register\n");
681 		break;
682 	}
683 
684 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
685 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
686 		aprint_error_dev(self, "could not map mem space\n");
687 		return;
688 	}
689 
690 	if (pci_intr_map(pa, &ih) != 0) {
691 		printf(": can't map interrupt\n");
692 		goto fail;
693 	}
694 
695 	/*
696 	 * Allocate IRQ
697 	 */
698 	intrstr = pci_intr_string(sc->sc_pct, ih);
699 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
700 	if (sc->sc_irq_handle == NULL) {
701 		printf(": could not establish interrupt");
702 		if (intrstr != NULL)
703 			printf(" at %s", intrstr);
704 		printf("\n");
705 		goto fail;
706 	}
707 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
708 
709 	/* Set PHY address. */
710 	sc->alc_phyaddr = ALC_PHY_ADDR;
711 
712 	/* Initialize DMA parameters. */
713 	sc->alc_dma_rd_burst = 0;
714 	sc->alc_dma_wr_burst = 0;
715 	sc->alc_rcb = DMA_CFG_RCB_64;
716 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
717 	    &base, NULL)) {
718 		sc->alc_flags |= ALC_FLAG_PCIE;
719 		sc->alc_expcap = base;
720 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
721 		    base + PCI_PCIE_DCSR) >> 16;
722 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
723 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
724 		if (alcdebug) {
725 			printf("%s: Read request size : %u bytes.\n",
726 			    device_xname(sc->sc_dev),
727 			    alc_dma_burst[sc->alc_dma_rd_burst]);
728 			printf("%s: TLP payload size : %u bytes.\n",
729 			    device_xname(sc->sc_dev),
730 			    alc_dma_burst[sc->alc_dma_wr_burst]);
731 		}
732 		/* Clear data link and flow-control protocol error. */
733 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
734 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
735 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
736 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
737 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
738 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
739 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
740 		    PCIE_PHYMISC_FORCE_RCV_DET);
741 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
742 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
743 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
744 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
745 			    PCIE_PHYMISC2_SERDES_TH_MASK);
746 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
747 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
748 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
749 		}
750 		/* Disable ASPM L0S and L1. */
751 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
752 		    base + PCI_PCIE_LCAP) >> 16;
753 		if ((cap & 0x00000c00) != 0) {
754 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
755 			    base + PCI_PCIE_LCSR) >> 16;
756 			if ((ctl & 0x08) != 0)
757 				sc->alc_rcb = DMA_CFG_RCB_128;
758 			if (alcdebug)
759 				printf("%s: RCB %u bytes\n",
760 				    device_xname(sc->sc_dev),
761 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
762 			state = ctl & 0x03;
763 			if (state & 0x01)
764 				sc->alc_flags |= ALC_FLAG_L0S;
765 			if (state & 0x02)
766 				sc->alc_flags |= ALC_FLAG_L1S;
767 			if (alcdebug)
768 				printf("%s: ASPM %s %s\n",
769 				    device_xname(sc->sc_dev),
770 				    aspm_state[state],
771 				    state == 0 ? "disabled" : "enabled");
772 			alc_disable_l0s_l1(sc);
773 		} else {
774 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
775 		}
776 	}
777 
778 	/* Reset PHY. */
779 	alc_phy_reset(sc);
780 
781 	/* Reset the ethernet controller. */
782 	alc_reset(sc);
783 
784 	/*
785 	 * One odd thing is AR8132 uses the same PHY hardware(F1
786 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
787 	 * the PHY supports 1000Mbps but that's not true. The PHY
788 	 * used in AR8132 can't establish gigabit link even if it
789 	 * shows the same PHY model/revision number of AR8131.
790 	 */
791 	switch (sc->alc_ident->deviceid) {
792 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
793 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
794 		sc->alc_flags |= ALC_FLAG_APS;
795 		/* FALLTHROUGH */
796 	case PCI_PRODUCT_ATTANSIC_AR8132:
797 		sc->alc_flags |= ALC_FLAG_FASTETHER;
798 		break;
799 	case PCI_PRODUCT_ATTANSIC_AR8151:
800 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
801 		sc->alc_flags |= ALC_FLAG_APS;
802 		/* FALLTHROUGH */
803 	default:
804 		break;
805 	}
806 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
807 
808 	/*
809 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
810 	 * addition, Atheros said that enabling SMB wouldn't improve
811 	 * performance. However I think it's bad to access lots of
812 	 * registers to extract MAC statistics.
813 	 */
814 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
815 	/*
816 	 * Don't use Tx CMB. It is known to have silicon bug.
817 	 */
818 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
819 	sc->alc_rev = PCI_REVISION(pa->pa_class);
820 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
821 	    MASTER_CHIP_REV_SHIFT;
822 	if (alcdebug) {
823 		printf("%s: PCI device revision : 0x%04x\n",
824 		    device_xname(sc->sc_dev), sc->alc_rev);
825 		printf("%s: Chip id/revision : 0x%04x\n",
826 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
827 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
828 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
829 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
830 	}
831 
832 	error = alc_dma_alloc(sc);
833 	if (error)
834 		goto fail;
835 
836 	callout_init(&sc->sc_tick_ch, 0);
837 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
838 
839 	/* Load station address. */
840 	alc_get_macaddr(sc);
841 
842 	aprint_normal_dev(self, "Ethernet address %s\n",
843 	    ether_sprintf(sc->alc_eaddr));
844 
845 	ifp = &sc->sc_ec.ec_if;
846 	ifp->if_softc = sc;
847 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
848 	ifp->if_init = alc_init;
849 	ifp->if_ioctl = alc_ioctl;
850 	ifp->if_start = alc_start;
851 	ifp->if_stop = alc_stop;
852 	ifp->if_watchdog = alc_watchdog;
853 	ifp->if_baudrate = IF_Gbps(1);
854 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
855 	IFQ_SET_READY(&ifp->if_snd);
856 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
857 
858 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
859 
860 #ifdef ALC_CHECKSUM
861 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
862 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
863 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
864 #endif
865 
866 #if NVLAN > 0
867 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
868 #endif
869 
870 	/* Set up MII bus. */
871 	sc->sc_miibus.mii_ifp = ifp;
872 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
873 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
874 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
875 
876 	sc->sc_ec.ec_mii = &sc->sc_miibus;
877 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
878 	    alc_mediastatus);
879 	mii_flags = 0;
880 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
881 		mii_flags |= MIIF_DOPAUSE;
882 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
883 		MII_OFFSET_ANY, mii_flags);
884 
885 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
886 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
887 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
888 		    0, NULL);
889 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
890 	} else
891 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
892 
893 	if_attach(ifp);
894 	ether_ifattach(ifp, sc->alc_eaddr);
895 
896 	if (!pmf_device_register(self, NULL, NULL))
897 		aprint_error_dev(self, "couldn't establish power handler\n");
898 	else
899 		pmf_class_network_register(self, ifp);
900 
901 	return;
902 fail:
903 	alc_dma_free(sc);
904 	if (sc->sc_irq_handle != NULL) {
905 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
906 		sc->sc_irq_handle = NULL;
907 	}
908 	if (sc->sc_mem_size) {
909 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
910 		sc->sc_mem_size = 0;
911 	}
912 }
913 
914 static int
915 alc_detach(device_t self, int flags)
916 {
917 	struct alc_softc *sc = device_private(self);
918 	struct ifnet *ifp = &sc->sc_ec.ec_if;
919 	int s;
920 
921 	s = splnet();
922 	alc_stop(ifp, 0);
923 	splx(s);
924 
925 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
926 
927 	/* Delete all remaining media. */
928 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
929 
930 	ether_ifdetach(ifp);
931 	if_detach(ifp);
932 	alc_dma_free(sc);
933 
934 	alc_phy_down(sc);
935 	if (sc->sc_irq_handle != NULL) {
936 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
937 		sc->sc_irq_handle = NULL;
938 	}
939 	if (sc->sc_mem_size) {
940 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
941 		sc->sc_mem_size = 0;
942 	}
943 
944 	return (0);
945 }
946 
947 static int
948 alc_dma_alloc(struct alc_softc *sc)
949 {
950 	struct alc_txdesc *txd;
951 	struct alc_rxdesc *rxd;
952 	int nsegs, error, i;
953 
954 	/*
955 	 * Create DMA stuffs for TX ring
956 	 */
957 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
958 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
959 	if (error) {
960 		sc->alc_cdata.alc_tx_ring_map = NULL;
961 		return (ENOBUFS);
962 	}
963 
964 	/* Allocate DMA'able memory for TX ring */
965 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
966 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
967 	    &nsegs, BUS_DMA_NOWAIT);
968 	if (error) {
969 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
970 		    device_xname(sc->sc_dev));
971 		return error;
972 	}
973 
974 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
975 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
976 	    BUS_DMA_NOWAIT);
977 	if (error)
978 		return (ENOBUFS);
979 
980 	/* Load the DMA map for Tx ring. */
981 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
982 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
983 	if (error) {
984 		printf("%s: could not load DMA'able memory for Tx ring.\n",
985 		    device_xname(sc->sc_dev));
986 		bus_dmamem_free(sc->sc_dmat,
987 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
988 		return error;
989 	}
990 
991 	sc->alc_rdata.alc_tx_ring_paddr =
992 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
993 
994 	/*
995 	 * Create DMA stuffs for RX ring
996 	 */
997 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
998 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
999 	if (error)
1000 		return (ENOBUFS);
1001 
1002 	/* Allocate DMA'able memory for RX ring */
1003 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1004 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1005 	    &nsegs, BUS_DMA_NOWAIT);
1006 	if (error) {
1007 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1008 		    device_xname(sc->sc_dev));
1009 		return error;
1010 	}
1011 
1012 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1013 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1014 	    BUS_DMA_NOWAIT);
1015 	if (error)
1016 		return (ENOBUFS);
1017 
1018 	/* Load the DMA map for Rx ring. */
1019 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1020 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1021 	if (error) {
1022 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1023 		    device_xname(sc->sc_dev));
1024 		bus_dmamem_free(sc->sc_dmat,
1025 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1026 		return error;
1027 	}
1028 
1029 	sc->alc_rdata.alc_rx_ring_paddr =
1030 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1031 
1032 	/*
1033 	 * Create DMA stuffs for RX return ring
1034 	 */
1035 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1036 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1037 	if (error)
1038 		return (ENOBUFS);
1039 
1040 	/* Allocate DMA'able memory for RX return ring */
1041 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1042 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1043 	    &nsegs, BUS_DMA_NOWAIT);
1044 	if (error) {
1045 		printf("%s: could not allocate DMA'able memory for Rx "
1046 		    "return ring.\n", device_xname(sc->sc_dev));
1047 		return error;
1048 	}
1049 
1050 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1051 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1052 	    BUS_DMA_NOWAIT);
1053 	if (error)
1054 		return (ENOBUFS);
1055 
1056 	/*  Load the DMA map for Rx return ring. */
1057 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1058 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1059 	if (error) {
1060 		printf("%s: could not load DMA'able memory for Rx return ring."
1061 		    "\n", device_xname(sc->sc_dev));
1062 		bus_dmamem_free(sc->sc_dmat,
1063 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1064 		return error;
1065 	}
1066 
1067 	sc->alc_rdata.alc_rr_ring_paddr =
1068 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1069 
1070 	/*
1071 	 * Create DMA stuffs for CMB block
1072 	 */
1073 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1074 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1075 	    &sc->alc_cdata.alc_cmb_map);
1076 	if (error)
1077 		return (ENOBUFS);
1078 
1079 	/* Allocate DMA'able memory for CMB block */
1080 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1081 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1082 	    &nsegs, BUS_DMA_NOWAIT);
1083 	if (error) {
1084 		printf("%s: could not allocate DMA'able memory for "
1085 		    "CMB block\n", device_xname(sc->sc_dev));
1086 		return error;
1087 	}
1088 
1089 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1090 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1091 	    BUS_DMA_NOWAIT);
1092 	if (error)
1093 		return (ENOBUFS);
1094 
1095 	/*  Load the DMA map for CMB block. */
1096 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1097 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1098 	    BUS_DMA_WAITOK);
1099 	if (error) {
1100 		printf("%s: could not load DMA'able memory for CMB block\n",
1101 		    device_xname(sc->sc_dev));
1102 		bus_dmamem_free(sc->sc_dmat,
1103 		    &sc->alc_rdata.alc_cmb_seg, 1);
1104 		return error;
1105 	}
1106 
1107 	sc->alc_rdata.alc_cmb_paddr =
1108 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1109 
1110 	/*
1111 	 * Create DMA stuffs for SMB block
1112 	 */
1113 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1114 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1115 	    &sc->alc_cdata.alc_smb_map);
1116 	if (error)
1117 		return (ENOBUFS);
1118 
1119 	/* Allocate DMA'able memory for SMB block */
1120 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1121 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1122 	    &nsegs, BUS_DMA_NOWAIT);
1123 	if (error) {
1124 		printf("%s: could not allocate DMA'able memory for "
1125 		    "SMB block\n", device_xname(sc->sc_dev));
1126 		return error;
1127 	}
1128 
1129 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1130 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1131 	    BUS_DMA_NOWAIT);
1132 	if (error)
1133 		return (ENOBUFS);
1134 
1135 	/*  Load the DMA map for SMB block */
1136 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1137 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1138 	    BUS_DMA_WAITOK);
1139 	if (error) {
1140 		printf("%s: could not load DMA'able memory for SMB block\n",
1141 		    device_xname(sc->sc_dev));
1142 		bus_dmamem_free(sc->sc_dmat,
1143 		    &sc->alc_rdata.alc_smb_seg, 1);
1144 		return error;
1145 	}
1146 
1147 	sc->alc_rdata.alc_smb_paddr =
1148 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1149 
1150 
1151 	/* Create DMA maps for Tx buffers. */
1152 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1153 		txd = &sc->alc_cdata.alc_txdesc[i];
1154 		txd->tx_m = NULL;
1155 		txd->tx_dmamap = NULL;
1156 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1157 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1158 		    &txd->tx_dmamap);
1159 		if (error) {
1160 			printf("%s: could not create Tx dmamap.\n",
1161 			    device_xname(sc->sc_dev));
1162 			return error;
1163 		}
1164 	}
1165 
1166 	/* Create DMA maps for Rx buffers. */
1167 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1168 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1169 	if (error) {
1170 		printf("%s: could not create spare Rx dmamap.\n",
1171 		    device_xname(sc->sc_dev));
1172 		return error;
1173 	}
1174 
1175 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1176 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1177 		rxd->rx_m = NULL;
1178 		rxd->rx_dmamap = NULL;
1179 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1180 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1181 		if (error) {
1182 			printf("%s: could not create Rx dmamap.\n",
1183 			    device_xname(sc->sc_dev));
1184 			return error;
1185 		}
1186 	}
1187 
1188 	return (0);
1189 }
1190 
1191 
1192 static void
1193 alc_dma_free(struct alc_softc *sc)
1194 {
1195 	struct alc_txdesc *txd;
1196 	struct alc_rxdesc *rxd;
1197 	int i;
1198 
1199 	/* Tx buffers */
1200 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1201 		txd = &sc->alc_cdata.alc_txdesc[i];
1202 		if (txd->tx_dmamap != NULL) {
1203 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1204 			txd->tx_dmamap = NULL;
1205 		}
1206 	}
1207 	/* Rx buffers */
1208 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1209 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1210 		if (rxd->rx_dmamap != NULL) {
1211 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1212 			rxd->rx_dmamap = NULL;
1213 		}
1214 	}
1215 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1216 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1217 		sc->alc_cdata.alc_rx_sparemap = NULL;
1218 	}
1219 
1220 	/* Tx ring. */
1221 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1222 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1223 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1224 	    sc->alc_rdata.alc_tx_ring != NULL)
1225 		bus_dmamem_free(sc->sc_dmat,
1226 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1227 	sc->alc_rdata.alc_tx_ring = NULL;
1228 	sc->alc_cdata.alc_tx_ring_map = NULL;
1229 
1230 	/* Rx ring. */
1231 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1232 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1233 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1234 	    sc->alc_rdata.alc_rx_ring != NULL)
1235 		bus_dmamem_free(sc->sc_dmat,
1236 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1237 	sc->alc_rdata.alc_rx_ring = NULL;
1238 	sc->alc_cdata.alc_rx_ring_map = NULL;
1239 
1240 	/* Rx return ring. */
1241 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1242 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1243 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1244 	    sc->alc_rdata.alc_rr_ring != NULL)
1245 		bus_dmamem_free(sc->sc_dmat,
1246 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1247 	sc->alc_rdata.alc_rr_ring = NULL;
1248 	sc->alc_cdata.alc_rr_ring_map = NULL;
1249 
1250 	/* CMB block */
1251 	if (sc->alc_cdata.alc_cmb_map != NULL)
1252 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1253 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1254 	    sc->alc_rdata.alc_cmb != NULL)
1255 		bus_dmamem_free(sc->sc_dmat,
1256 		    &sc->alc_rdata.alc_cmb_seg, 1);
1257 	sc->alc_rdata.alc_cmb = NULL;
1258 	sc->alc_cdata.alc_cmb_map = NULL;
1259 
1260 	/* SMB block */
1261 	if (sc->alc_cdata.alc_smb_map != NULL)
1262 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1263 	if (sc->alc_cdata.alc_smb_map != NULL &&
1264 	    sc->alc_rdata.alc_smb != NULL)
1265 		bus_dmamem_free(sc->sc_dmat,
1266 		    &sc->alc_rdata.alc_smb_seg, 1);
1267 	sc->alc_rdata.alc_smb = NULL;
1268 	sc->alc_cdata.alc_smb_map = NULL;
1269 }
1270 
1271 static int
1272 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1273 {
1274 	struct alc_txdesc *txd, *txd_last;
1275 	struct tx_desc *desc;
1276 	struct mbuf *m;
1277 	bus_dmamap_t map;
1278 	uint32_t cflags, poff, vtag;
1279 	int error, idx, nsegs, prod;
1280 #if NVLAN > 0
1281 	struct m_tag *mtag;
1282 #endif
1283 
1284 	m = *m_head;
1285 	cflags = vtag = 0;
1286 	poff = 0;
1287 
1288 	prod = sc->alc_cdata.alc_tx_prod;
1289 	txd = &sc->alc_cdata.alc_txdesc[prod];
1290 	txd_last = txd;
1291 	map = txd->tx_dmamap;
1292 
1293 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1294 
1295 	if (error == EFBIG) {
1296 		error = 0;
1297 
1298 		*m_head = m_pullup(*m_head, MHLEN);
1299 		if (*m_head == NULL) {
1300 			printf("%s: can't defrag TX mbuf\n",
1301 			    device_xname(sc->sc_dev));
1302 			return ENOBUFS;
1303 		}
1304 
1305 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1306 		    BUS_DMA_NOWAIT);
1307 
1308 		if (error != 0) {
1309 			printf("%s: could not load defragged TX mbuf\n",
1310 			    device_xname(sc->sc_dev));
1311 			m_freem(*m_head);
1312 			*m_head = NULL;
1313 			return error;
1314 		}
1315 	} else if (error) {
1316 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1317 		return (error);
1318 	}
1319 
1320 	nsegs = map->dm_nsegs;
1321 
1322 	if (nsegs == 0) {
1323 		m_freem(*m_head);
1324 		*m_head = NULL;
1325 		return (EIO);
1326 	}
1327 
1328 	/* Check descriptor overrun. */
1329 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1330 		bus_dmamap_unload(sc->sc_dmat, map);
1331 		return (ENOBUFS);
1332 	}
1333 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1334 	    BUS_DMASYNC_PREWRITE);
1335 
1336 	m = *m_head;
1337 	desc = NULL;
1338 	idx = 0;
1339 #if NVLAN > 0
1340 	/* Configure VLAN hardware tag insertion. */
1341 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1342 		vtag = htons(VLAN_TAG_VALUE(mtag));
1343 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1344 		cflags |= TD_INS_VLAN_TAG;
1345 	}
1346 #endif
1347 	/* Configure Tx checksum offload. */
1348 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1349 		cflags |= TD_CUSTOM_CSUM;
1350 		/* Set checksum start offset. */
1351 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1352 		    TD_PLOAD_OFFSET_MASK;
1353 	}
1354 	for (; idx < nsegs; idx++) {
1355 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1356 		desc->len =
1357 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1358 		desc->flags = htole32(cflags);
1359 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1360 		sc->alc_cdata.alc_tx_cnt++;
1361 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1362 	}
1363 	/* Update producer index. */
1364 	sc->alc_cdata.alc_tx_prod = prod;
1365 
1366 	/* Finally set EOP on the last descriptor. */
1367 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1368 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1369 	desc->flags |= htole32(TD_EOP);
1370 
1371 	/* Swap dmamap of the first and the last. */
1372 	txd = &sc->alc_cdata.alc_txdesc[prod];
1373 	map = txd_last->tx_dmamap;
1374 	txd_last->tx_dmamap = txd->tx_dmamap;
1375 	txd->tx_dmamap = map;
1376 	txd->tx_m = m;
1377 
1378 	return (0);
1379 }
1380 
1381 static void
1382 alc_start(struct ifnet *ifp)
1383 {
1384 	struct alc_softc *sc = ifp->if_softc;
1385 	struct mbuf *m_head;
1386 	int enq;
1387 
1388 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1389 		return;
1390 
1391 	/* Reclaim transmitted frames. */
1392 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1393 		alc_txeof(sc);
1394 
1395 	enq = 0;
1396 	for (;;) {
1397 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1398 		if (m_head == NULL)
1399 			break;
1400 
1401 		/*
1402 		 * Pack the data into the transmit ring. If we
1403 		 * don't have room, set the OACTIVE flag and wait
1404 		 * for the NIC to drain the ring.
1405 		 */
1406 		if (alc_encap(sc, &m_head)) {
1407 			if (m_head == NULL)
1408 				break;
1409 			ifp->if_flags |= IFF_OACTIVE;
1410 			break;
1411 		}
1412 		enq = 1;
1413 
1414 		/*
1415 		 * If there's a BPF listener, bounce a copy of this frame
1416 		 * to him.
1417 		 */
1418 		bpf_mtap(ifp, m_head);
1419 	}
1420 
1421 	if (enq) {
1422 		/* Sync descriptors. */
1423 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1424 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1425 		    BUS_DMASYNC_PREWRITE);
1426 		/* Kick. Assume we're using normal Tx priority queue. */
1427 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1428 		    (sc->alc_cdata.alc_tx_prod <<
1429 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
1430 		    MBOX_TD_PROD_LO_IDX_MASK);
1431 		/* Set a timeout in case the chip goes out to lunch. */
1432 		ifp->if_timer = ALC_TX_TIMEOUT;
1433 	}
1434 }
1435 
1436 static void
1437 alc_watchdog(struct ifnet *ifp)
1438 {
1439 	struct alc_softc *sc = ifp->if_softc;
1440 
1441 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1442 		printf("%s: watchdog timeout (missed link)\n",
1443 		    device_xname(sc->sc_dev));
1444 		ifp->if_oerrors++;
1445 		alc_init(ifp);
1446 		return;
1447 	}
1448 
1449 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1450 	ifp->if_oerrors++;
1451 	alc_init(ifp);
1452 
1453 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1454 		 alc_start(ifp);
1455 }
1456 
1457 static int
1458 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1459 {
1460 	struct alc_softc *sc = ifp->if_softc;
1461 	int s, error = 0;
1462 
1463 	s = splnet();
1464 
1465 	error = ether_ioctl(ifp, cmd, data);
1466 	if (error == ENETRESET) {
1467 		if (ifp->if_flags & IFF_RUNNING)
1468 			alc_iff(sc);
1469 		error = 0;
1470 	}
1471 
1472 	splx(s);
1473 	return (error);
1474 }
1475 
1476 static void
1477 alc_mac_config(struct alc_softc *sc)
1478 {
1479 	struct mii_data *mii;
1480 	uint32_t reg;
1481 
1482 	mii = &sc->sc_miibus;
1483 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1484 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1485 	    MAC_CFG_SPEED_MASK);
1486 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1487 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1488 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1489 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1490 	/* Reprogram MAC with resolved speed/duplex. */
1491 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1492 	case IFM_10_T:
1493 	case IFM_100_TX:
1494 		reg |= MAC_CFG_SPEED_10_100;
1495 		break;
1496 	case IFM_1000_T:
1497 		reg |= MAC_CFG_SPEED_1000;
1498 		break;
1499 	}
1500 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1501 		reg |= MAC_CFG_FULL_DUPLEX;
1502 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1503 			reg |= MAC_CFG_TX_FC;
1504 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1505 			reg |= MAC_CFG_RX_FC;
1506 	}
1507 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1508 }
1509 
1510 static void
1511 alc_stats_clear(struct alc_softc *sc)
1512 {
1513 	struct smb sb, *smb;
1514 	uint32_t *reg;
1515 	int i;
1516 
1517 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1518 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1519 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1520 		    BUS_DMASYNC_POSTREAD);
1521 		smb = sc->alc_rdata.alc_smb;
1522 		/* Update done, clear. */
1523 		smb->updated = 0;
1524 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1525 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1526 		    BUS_DMASYNC_PREWRITE);
1527 	} else {
1528 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1529 		    reg++) {
1530 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1531 			i += sizeof(uint32_t);
1532 		}
1533 		/* Read Tx statistics. */
1534 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1535 		    reg++) {
1536 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1537 			i += sizeof(uint32_t);
1538 		}
1539 	}
1540 }
1541 
1542 static void
1543 alc_stats_update(struct alc_softc *sc)
1544 {
1545 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1546 	struct alc_hw_stats *stat;
1547 	struct smb sb, *smb;
1548 	uint32_t *reg;
1549 	int i;
1550 
1551 	stat = &sc->alc_stats;
1552 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1553 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1554 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1555 		    BUS_DMASYNC_POSTREAD);
1556 		smb = sc->alc_rdata.alc_smb;
1557 		if (smb->updated == 0)
1558 			return;
1559 	} else {
1560 		smb = &sb;
1561 		/* Read Rx statistics. */
1562 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1563 		    reg++) {
1564 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1565 			i += sizeof(uint32_t);
1566 		}
1567 		/* Read Tx statistics. */
1568 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1569 		    reg++) {
1570 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1571 			i += sizeof(uint32_t);
1572 		}
1573 	}
1574 
1575 	/* Rx stats. */
1576 	stat->rx_frames += smb->rx_frames;
1577 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1578 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1579 	stat->rx_pause_frames += smb->rx_pause_frames;
1580 	stat->rx_control_frames += smb->rx_control_frames;
1581 	stat->rx_crcerrs += smb->rx_crcerrs;
1582 	stat->rx_lenerrs += smb->rx_lenerrs;
1583 	stat->rx_bytes += smb->rx_bytes;
1584 	stat->rx_runts += smb->rx_runts;
1585 	stat->rx_fragments += smb->rx_fragments;
1586 	stat->rx_pkts_64 += smb->rx_pkts_64;
1587 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1588 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1589 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1590 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1591 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1592 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1593 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1594 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1595 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1596 	stat->rx_alignerrs += smb->rx_alignerrs;
1597 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1598 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1599 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1600 
1601 	/* Tx stats. */
1602 	stat->tx_frames += smb->tx_frames;
1603 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1604 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1605 	stat->tx_pause_frames += smb->tx_pause_frames;
1606 	stat->tx_excess_defer += smb->tx_excess_defer;
1607 	stat->tx_control_frames += smb->tx_control_frames;
1608 	stat->tx_deferred += smb->tx_deferred;
1609 	stat->tx_bytes += smb->tx_bytes;
1610 	stat->tx_pkts_64 += smb->tx_pkts_64;
1611 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1612 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1613 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1614 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1615 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1616 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1617 	stat->tx_single_colls += smb->tx_single_colls;
1618 	stat->tx_multi_colls += smb->tx_multi_colls;
1619 	stat->tx_late_colls += smb->tx_late_colls;
1620 	stat->tx_excess_colls += smb->tx_excess_colls;
1621 	stat->tx_abort += smb->tx_abort;
1622 	stat->tx_underrun += smb->tx_underrun;
1623 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1624 	stat->tx_lenerrs += smb->tx_lenerrs;
1625 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1626 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1627 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1628 
1629 	/* Update counters in ifnet. */
1630 	ifp->if_opackets += smb->tx_frames;
1631 
1632 	ifp->if_collisions += smb->tx_single_colls +
1633 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1634 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1635 
1636 	/*
1637 	 * XXX
1638 	 * tx_pkts_truncated counter looks suspicious. It constantly
1639 	 * increments with no sign of Tx errors. This may indicate
1640 	 * the counter name is not correct one so I've removed the
1641 	 * counter in output errors.
1642 	 */
1643 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1644 	    smb->tx_underrun;
1645 
1646 	ifp->if_ipackets += smb->rx_frames;
1647 
1648 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1649 	    smb->rx_runts + smb->rx_pkts_truncated +
1650 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1651 	    smb->rx_alignerrs;
1652 
1653 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1654 		/* Update done, clear. */
1655 		smb->updated = 0;
1656 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1657 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1658 	}
1659 }
1660 
1661 static int
1662 alc_intr(void *arg)
1663 {
1664 	struct alc_softc *sc = arg;
1665 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1666 	uint32_t status;
1667 
1668 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
1669 	if ((status & ALC_INTRS) == 0)
1670 		return (0);
1671 
1672 	/* Acknowledge and disable interrupts. */
1673 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1674 
1675 	if (ifp->if_flags & IFF_RUNNING) {
1676 		if (status & INTR_RX_PKT) {
1677 			int error;
1678 
1679 			error = alc_rxintr(sc);
1680 			if (error) {
1681 				alc_init(ifp);
1682 				return (0);
1683 			}
1684 		}
1685 
1686 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1687 		    INTR_TXQ_TO_RST)) {
1688 			if (status & INTR_DMA_RD_TO_RST)
1689 				printf("%s: DMA read error! -- resetting\n",
1690 				    device_xname(sc->sc_dev));
1691 			if (status & INTR_DMA_WR_TO_RST)
1692 				printf("%s: DMA write error! -- resetting\n",
1693 				    device_xname(sc->sc_dev));
1694 			if (status & INTR_TXQ_TO_RST)
1695 				printf("%s: TxQ reset! -- resetting\n",
1696 				    device_xname(sc->sc_dev));
1697 			alc_init(ifp);
1698 			return (0);
1699 		}
1700 
1701 		alc_txeof(sc);
1702 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1703 			alc_start(ifp);
1704 	}
1705 
1706 	/* Re-enable interrupts. */
1707 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1708 	return (1);
1709 }
1710 
1711 static void
1712 alc_txeof(struct alc_softc *sc)
1713 {
1714 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1715 	struct alc_txdesc *txd;
1716 	uint32_t cons, prod;
1717 	int prog;
1718 
1719 	if (sc->alc_cdata.alc_tx_cnt == 0)
1720 		return;
1721 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1722 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1723 	    BUS_DMASYNC_POSTREAD);
1724 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1725 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1726 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
1727 		    BUS_DMASYNC_POSTREAD);
1728 		prod = sc->alc_rdata.alc_cmb->cons;
1729 	} else
1730 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1731 	/* Assume we're using normal Tx priority queue. */
1732 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1733 	    MBOX_TD_CONS_LO_IDX_SHIFT;
1734 	cons = sc->alc_cdata.alc_tx_cons;
1735 	/*
1736 	 * Go through our Tx list and free mbufs for those
1737 	 * frames which have been transmitted.
1738 	 */
1739 	for (prog = 0; cons != prod; prog++,
1740 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1741 		if (sc->alc_cdata.alc_tx_cnt <= 0)
1742 			break;
1743 		prog++;
1744 		ifp->if_flags &= ~IFF_OACTIVE;
1745 		sc->alc_cdata.alc_tx_cnt--;
1746 		txd = &sc->alc_cdata.alc_txdesc[cons];
1747 		if (txd->tx_m != NULL) {
1748 			/* Reclaim transmitted mbufs. */
1749 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1750 			m_freem(txd->tx_m);
1751 			txd->tx_m = NULL;
1752 		}
1753 	}
1754 
1755 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1756 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1757 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1758 	sc->alc_cdata.alc_tx_cons = cons;
1759 	/*
1760 	 * Unarm watchdog timer only when there is no pending
1761 	 * frames in Tx queue.
1762 	 */
1763 	if (sc->alc_cdata.alc_tx_cnt == 0)
1764 		ifp->if_timer = 0;
1765 }
1766 
1767 static int
1768 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, int init)
1769 {
1770 	struct mbuf *m;
1771 	bus_dmamap_t map;
1772 	int error;
1773 
1774 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1775 	if (m == NULL)
1776 		return (ENOBUFS);
1777 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1778 	if (!(m->m_flags & M_EXT)) {
1779 		m_freem(m);
1780 		return (ENOBUFS);
1781 	}
1782 
1783 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1784 
1785 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
1786 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1787 
1788 	if (error != 0) {
1789 		if (!error) {
1790 			bus_dmamap_unload(sc->sc_dmat,
1791 			    sc->alc_cdata.alc_rx_sparemap);
1792 			error = EFBIG;
1793 			printf("%s: too many segments?!\n",
1794 			    device_xname(sc->sc_dev));
1795 		}
1796 		m_freem(m);
1797 
1798 		if (init)
1799 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1800 
1801 		return (error);
1802 	}
1803 
1804 	if (rxd->rx_m != NULL) {
1805 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1806 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1807 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1808 	}
1809 	map = rxd->rx_dmamap;
1810 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1811 	sc->alc_cdata.alc_rx_sparemap = map;
1812 	rxd->rx_m = m;
1813 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1814 	return (0);
1815 }
1816 
1817 static int
1818 alc_rxintr(struct alc_softc *sc)
1819 {
1820 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1821 	struct rx_rdesc *rrd;
1822 	uint32_t nsegs, status;
1823 	int rr_cons, prog;
1824 
1825 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1826 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1827 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1828 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1829 	rr_cons = sc->alc_cdata.alc_rr_cons;
1830 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1831 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1832 		status = le32toh(rrd->status);
1833 		if ((status & RRD_VALID) == 0)
1834 			break;
1835 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1836 		if (nsegs == 0) {
1837 			/* This should not happen! */
1838 			if (alcdebug)
1839 				printf("%s: unexpected segment count -- "
1840 				    "resetting\n", device_xname(sc->sc_dev));
1841 			return (EIO);
1842 		}
1843 		alc_rxeof(sc, rrd);
1844 		/* Clear Rx return status. */
1845 		rrd->status = 0;
1846 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1847 		sc->alc_cdata.alc_rx_cons += nsegs;
1848 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1849 		prog += nsegs;
1850 	}
1851 
1852 	if (prog > 0) {
1853 		/* Update the consumer index. */
1854 		sc->alc_cdata.alc_rr_cons = rr_cons;
1855 		/* Sync Rx return descriptors. */
1856 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1857 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1858 		    BUS_DMASYNC_PREWRITE);
1859 		/*
1860 		 * Sync updated Rx descriptors such that controller see
1861 		 * modified buffer addresses.
1862 		 */
1863 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1864 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1865 		    BUS_DMASYNC_PREWRITE);
1866 		/*
1867 		 * Let controller know availability of new Rx buffers.
1868 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1869 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1870 		 * only when Rx buffer pre-fetching is required. In
1871 		 * addition we already set ALC_RX_RD_FREE_THRESH to
1872 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1873 		 * it still seems that pre-fetching needs more
1874 		 * experimentation.
1875 		 */
1876 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1877 		    sc->alc_cdata.alc_rx_cons);
1878 	}
1879 
1880 	return (0);
1881 }
1882 
1883 /* Receive a frame. */
1884 static void
1885 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1886 {
1887 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1888 	struct alc_rxdesc *rxd;
1889 	struct mbuf *mp, *m;
1890 	uint32_t rdinfo, status;
1891 	int count, nsegs, rx_cons;
1892 
1893 	status = le32toh(rrd->status);
1894 	rdinfo = le32toh(rrd->rdinfo);
1895 	rx_cons = RRD_RD_IDX(rdinfo);
1896 	nsegs = RRD_RD_CNT(rdinfo);
1897 
1898 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1899 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1900 		/*
1901 		 * We want to pass the following frames to upper
1902 		 * layer regardless of error status of Rx return
1903 		 * ring.
1904 		 *
1905 		 *  o IP/TCP/UDP checksum is bad.
1906 		 *  o frame length and protocol specific length
1907 		 *     does not match.
1908 		 *
1909 		 *  Force network stack compute checksum for
1910 		 *  errored frames.
1911 		 */
1912 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1913 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1914 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1915 			return;
1916 	}
1917 
1918 	for (count = 0; count < nsegs; count++,
1919 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1920 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1921 		mp = rxd->rx_m;
1922 		/* Add a new receive buffer to the ring. */
1923 		if (alc_newbuf(sc, rxd, 0) != 0) {
1924 			ifp->if_iqdrops++;
1925 			/* Reuse Rx buffers. */
1926 			if (sc->alc_cdata.alc_rxhead != NULL)
1927 				m_freem(sc->alc_cdata.alc_rxhead);
1928 			break;
1929 		}
1930 
1931 		/*
1932 		 * Assume we've received a full sized frame.
1933 		 * Actual size is fixed when we encounter the end of
1934 		 * multi-segmented frame.
1935 		 */
1936 		mp->m_len = sc->alc_buf_size;
1937 
1938 		/* Chain received mbufs. */
1939 		if (sc->alc_cdata.alc_rxhead == NULL) {
1940 			sc->alc_cdata.alc_rxhead = mp;
1941 			sc->alc_cdata.alc_rxtail = mp;
1942 		} else {
1943 			mp->m_flags &= ~M_PKTHDR;
1944 			sc->alc_cdata.alc_rxprev_tail =
1945 			    sc->alc_cdata.alc_rxtail;
1946 			sc->alc_cdata.alc_rxtail->m_next = mp;
1947 			sc->alc_cdata.alc_rxtail = mp;
1948 		}
1949 
1950 		if (count == nsegs - 1) {
1951 			/* Last desc. for this frame. */
1952 			m = sc->alc_cdata.alc_rxhead;
1953 			m->m_flags |= M_PKTHDR;
1954 			/*
1955 			 * It seems that L1C/L2C controller has no way
1956 			 * to tell hardware to strip CRC bytes.
1957 			 */
1958 			m->m_pkthdr.len =
1959 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1960 			if (nsegs > 1) {
1961 				/* Set last mbuf size. */
1962 				mp->m_len = sc->alc_cdata.alc_rxlen -
1963 				    (nsegs - 1) * sc->alc_buf_size;
1964 				/* Remove the CRC bytes in chained mbufs. */
1965 				if (mp->m_len <= ETHER_CRC_LEN) {
1966 					sc->alc_cdata.alc_rxtail =
1967 					    sc->alc_cdata.alc_rxprev_tail;
1968 					sc->alc_cdata.alc_rxtail->m_len -=
1969 					    (ETHER_CRC_LEN - mp->m_len);
1970 					sc->alc_cdata.alc_rxtail->m_next = NULL;
1971 					m_freem(mp);
1972 				} else {
1973 					mp->m_len -= ETHER_CRC_LEN;
1974 				}
1975 			} else
1976 				m->m_len = m->m_pkthdr.len;
1977 			m->m_pkthdr.rcvif = ifp;
1978 #if NVLAN > 0
1979 			/*
1980 			 * Due to hardware bugs, Rx checksum offloading
1981 			 * was intentionally disabled.
1982 			 */
1983 			if (status & RRD_VLAN_TAG) {
1984 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1985 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1986 			}
1987 #endif
1988 
1989 			bpf_mtap(ifp, m);
1990 
1991 			{
1992 			/* Pass it on. */
1993 			ether_input(ifp, m);
1994 			}
1995 		}
1996 	}
1997 	/* Reset mbuf chains. */
1998 	ALC_RXCHAIN_RESET(sc);
1999 }
2000 
2001 static void
2002 alc_tick(void *xsc)
2003 {
2004 	struct alc_softc *sc = xsc;
2005 	struct mii_data *mii = &sc->sc_miibus;
2006 	int s;
2007 
2008 	s = splnet();
2009 	mii_tick(mii);
2010 	alc_stats_update(sc);
2011 	splx(s);
2012 
2013 	callout_schedule(&sc->sc_tick_ch, hz);
2014 }
2015 
2016 static void
2017 alc_reset(struct alc_softc *sc)
2018 {
2019 	uint32_t reg;
2020 	int i;
2021 
2022 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2023 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2024 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2025 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2026 		DELAY(10);
2027 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2028 			break;
2029 	}
2030 	if (i == 0)
2031 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2032 
2033 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2034 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2035 			break;
2036 		DELAY(10);
2037 	}
2038 
2039 	if (i == 0)
2040 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2041 		    reg);
2042 }
2043 
2044 static int
2045 alc_init(struct ifnet *ifp)
2046 {
2047 	struct alc_softc *sc = ifp->if_softc;
2048 	struct mii_data *mii;
2049 	uint8_t eaddr[ETHER_ADDR_LEN];
2050 	bus_addr_t paddr;
2051 	uint32_t reg, rxf_hi, rxf_lo;
2052 	int error;
2053 
2054 	/*
2055 	 * Cancel any pending I/O.
2056 	 */
2057 	alc_stop(ifp, 0);
2058 	/*
2059 	 * Reset the chip to a known state.
2060 	 */
2061 	alc_reset(sc);
2062 
2063 	/* Initialize Rx descriptors. */
2064 	error = alc_init_rx_ring(sc);
2065 	if (error != 0) {
2066 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2067 		alc_stop(ifp, 0);
2068 		return (error);
2069 	}
2070 	alc_init_rr_ring(sc);
2071 	alc_init_tx_ring(sc);
2072 	alc_init_cmb(sc);
2073 	alc_init_smb(sc);
2074 
2075 	/* Enable all clocks. */
2076 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2077 
2078 	/* Reprogram the station address. */
2079 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2080 	CSR_WRITE_4(sc, ALC_PAR0,
2081 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2082 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2083 	/*
2084 	 * Clear WOL status and disable all WOL feature as WOL
2085 	 * would interfere Rx operation under normal environments.
2086 	 */
2087 	CSR_READ_4(sc, ALC_WOL_CFG);
2088 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2089 	/* Set Tx descriptor base addresses. */
2090 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2091 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2092 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2093 	/* We don't use high priority ring. */
2094 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2095 	/* Set Tx descriptor counter. */
2096 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2097 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2098 	/* Set Rx descriptor base addresses. */
2099 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2100 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2101 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2102 	/* We use one Rx ring. */
2103 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2104 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2105 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2106 	/* Set Rx descriptor counter. */
2107 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2108 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2109 
2110 	/*
2111 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2112 	 * if it do not fit the buffer size. Rx return descriptor holds
2113 	 * a counter that indicates how many fragments were made by the
2114 	 * hardware. The buffer size should be multiple of 8 bytes.
2115 	 * Since hardware has limit on the size of buffer size, always
2116 	 * use the maximum value.
2117 	 * For strict-alignment architectures make sure to reduce buffer
2118 	 * size by 8 bytes to make room for alignment fixup.
2119 	 */
2120 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2121 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2122 
2123 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2124 	/* Set Rx return descriptor base addresses. */
2125 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2126 	/* We use one Rx return ring. */
2127 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2128 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2129 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2130 	/* Set Rx return descriptor counter. */
2131 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2132 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2133 	paddr = sc->alc_rdata.alc_cmb_paddr;
2134 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2135 	paddr = sc->alc_rdata.alc_smb_paddr;
2136 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2137 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2138 
2139 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2140 		/* Reconfigure SRAM - Vendor magic. */
2141 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2142 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2143 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2144 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2145 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2146 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2147 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2148 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2149 	}
2150 
2151 	/* Tell hardware that we're ready to load DMA blocks. */
2152 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2153 
2154 	/* Configure interrupt moderation timer. */
2155 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2156 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2157 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2158 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2159 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2160 	/*
2161 	 * We don't want to automatic interrupt clear as task queue
2162 	 * for the interrupt should know interrupt status.
2163 	 */
2164 	reg = MASTER_SA_TIMER_ENB;
2165 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2166 		reg |= MASTER_IM_RX_TIMER_ENB;
2167 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2168 		reg |= MASTER_IM_TX_TIMER_ENB;
2169 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2170 	/*
2171 	 * Disable interrupt re-trigger timer. We don't want automatic
2172 	 * re-triggering of un-ACKed interrupts.
2173 	 */
2174 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2175 	/* Configure CMB. */
2176 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2177 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2178 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2179 	else
2180 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2181 	/*
2182 	 * Hardware can be configured to issue SMB interrupt based
2183 	 * on programmed interval. Since there is a callout that is
2184 	 * invoked for every hz in driver we use that instead of
2185 	 * relying on periodic SMB interrupt.
2186 	 */
2187 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2188 	/* Clear MAC statistics. */
2189 	alc_stats_clear(sc);
2190 
2191 	/*
2192 	 * Always use maximum frame size that controller can support.
2193 	 * Otherwise received frames that has larger frame length
2194 	 * than alc(4) MTU would be silently dropped in hardware. This
2195 	 * would make path-MTU discovery hard as sender wouldn't get
2196 	 * any responses from receiver. alc(4) supports
2197 	 * multi-fragmented frames on Rx path so it has no issue on
2198 	 * assembling fragmented frames. Using maximum frame size also
2199 	 * removes the need to reinitialize hardware when interface
2200 	 * MTU configuration was changed.
2201 	 *
2202 	 * Be conservative in what you do, be liberal in what you
2203 	 * accept from others - RFC 793.
2204 	 */
2205 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2206 
2207 	/* Disable header split(?) */
2208 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2209 
2210 	/* Configure IPG/IFG parameters. */
2211 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2212 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2213 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2214 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2215 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2216 	/* Set parameters for half-duplex media. */
2217 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
2218 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2219 	    HDPX_CFG_LCOL_MASK) |
2220 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2221 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2222 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2223 	    HDPX_CFG_ABEBT_MASK) |
2224 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2225 	    HDPX_CFG_JAMIPG_MASK));
2226 	/*
2227 	 * Set TSO/checksum offload threshold. For frames that is
2228 	 * larger than this threshold, hardware wouldn't do
2229 	 * TSO/checksum offloading.
2230 	 */
2231 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2232 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2233 	    TSO_OFFLOAD_THRESH_MASK);
2234 	/* Configure TxQ. */
2235 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2236 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2237 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2238 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2239 		reg >>= 1;
2240 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2241 	    TXQ_CFG_TD_BURST_MASK;
2242 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2243 
2244 	/* Configure Rx free descriptor pre-fetching. */
2245 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2246 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2247 	    RX_RD_FREE_THRESH_HI_MASK) |
2248 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2249 	    RX_RD_FREE_THRESH_LO_MASK));
2250 
2251 	/*
2252 	 * Configure flow control parameters.
2253 	 * XON  : 80% of Rx FIFO
2254 	 * XOFF : 30% of Rx FIFO
2255 	 */
2256 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2257 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2258 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2259 		rxf_hi = (reg * 8) / 10;
2260 		rxf_lo = (reg * 3) / 10;
2261 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2262 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2263 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
2264 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2265 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2266 	}
2267 
2268 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2269 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2270 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2271 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2272 		    SERDES_PHY_CLK_SLOWDOWN);
2273 
2274 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
2275 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2276 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2277 
2278 	/* Configure RxQ. */
2279 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2280 	    RXQ_CFG_RD_BURST_MASK;
2281 	reg |= RXQ_CFG_RSS_MODE_DIS;
2282 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2283 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2284 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2285 
2286 	/* Configure DMA parameters. */
2287 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2288 	reg |= sc->alc_rcb;
2289 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2290 		reg |= DMA_CFG_CMB_ENB;
2291 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2292 		reg |= DMA_CFG_SMB_ENB;
2293 	else
2294 		reg |= DMA_CFG_SMB_DIS;
2295 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2296 	    DMA_CFG_RD_BURST_SHIFT;
2297 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2298 	    DMA_CFG_WR_BURST_SHIFT;
2299 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2300 	    DMA_CFG_RD_DELAY_CNT_MASK;
2301 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2302 	    DMA_CFG_WR_DELAY_CNT_MASK;
2303 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2304 
2305 	/*
2306 	 * Configure Tx/Rx MACs.
2307 	 *  - Auto-padding for short frames.
2308 	 *  - Enable CRC generation.
2309 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2310 	 *  is followed after detection of link establishment.
2311 	 *  AR813x/AR815x always does checksum computation regardless
2312 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2313 	 *  have bug in protocol field in Rx return structure so
2314 	 *  these controllers can't handle fragmented frames. Disable
2315 	 *  Rx checksum offloading until there is a newer controller
2316 	 *  that has sane implementation.
2317 	 */
2318 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2319 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2320 	    MAC_CFG_PREAMBLE_MASK);
2321 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2322 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2323 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2324 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2325 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2326 		reg |= MAC_CFG_SPEED_10_100;
2327 	else
2328 		reg |= MAC_CFG_SPEED_1000;
2329 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2330 
2331 	/* Set up the receive filter. */
2332 	alc_iff(sc);
2333 	alc_rxvlan(sc);
2334 
2335 	/* Acknowledge all pending interrupts and clear it. */
2336 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2337 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2338 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2339 
2340 	sc->alc_flags &= ~ALC_FLAG_LINK;
2341 	/* Switch to the current media. */
2342 	mii = &sc->sc_miibus;
2343 	mii_mediachg(mii);
2344 
2345 	callout_schedule(&sc->sc_tick_ch, hz);
2346 
2347 	ifp->if_flags |= IFF_RUNNING;
2348 	ifp->if_flags &= ~IFF_OACTIVE;
2349 
2350 	return (0);
2351 }
2352 
2353 static void
2354 alc_stop(struct ifnet *ifp, int disable)
2355 {
2356 	struct alc_softc *sc = ifp->if_softc;
2357 	struct alc_txdesc *txd;
2358 	struct alc_rxdesc *rxd;
2359 	uint32_t reg;
2360 	int i;
2361 
2362 	callout_stop(&sc->sc_tick_ch);
2363 
2364 	/*
2365 	 * Mark the interface down and cancel the watchdog timer.
2366 	 */
2367 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2368 	ifp->if_timer = 0;
2369 
2370 	sc->alc_flags &= ~ALC_FLAG_LINK;
2371 
2372 	alc_stats_update(sc);
2373 
2374 	mii_down(&sc->sc_miibus);
2375 
2376 	/* Disable interrupts. */
2377 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2378 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2379 	alc_stop_queue(sc);
2380 
2381 	/* Disable DMA. */
2382 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
2383 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2384 	reg |= DMA_CFG_SMB_DIS;
2385 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2386 	DELAY(1000);
2387 
2388 	/* Stop Rx/Tx MACs. */
2389 	alc_stop_mac(sc);
2390 
2391 	/* Disable interrupts which might be touched in taskq handler. */
2392 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2393 
2394 	/* Reclaim Rx buffers that have been processed. */
2395 	if (sc->alc_cdata.alc_rxhead != NULL)
2396 		m_freem(sc->alc_cdata.alc_rxhead);
2397 	ALC_RXCHAIN_RESET(sc);
2398 	/*
2399 	 * Free Tx/Rx mbufs still in the queues.
2400 	 */
2401 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2402 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2403 		if (rxd->rx_m != NULL) {
2404 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2405 			m_freem(rxd->rx_m);
2406 			rxd->rx_m = NULL;
2407 		}
2408 	}
2409 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2410 		txd = &sc->alc_cdata.alc_txdesc[i];
2411 		if (txd->tx_m != NULL) {
2412 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2413 			m_freem(txd->tx_m);
2414 			txd->tx_m = NULL;
2415 		}
2416 	}
2417 }
2418 
2419 static void
2420 alc_stop_mac(struct alc_softc *sc)
2421 {
2422 	uint32_t reg;
2423 	int i;
2424 
2425 	/* Disable Rx/Tx MAC. */
2426 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2427 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2428 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2429 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2430 	}
2431 	for (i = ALC_TIMEOUT; i > 0; i--) {
2432 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2433 		if (reg == 0)
2434 			break;
2435 		DELAY(10);
2436 	}
2437 	if (i == 0)
2438 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2439 		    device_xname(sc->sc_dev), reg);
2440 }
2441 
2442 static void
2443 alc_start_queue(struct alc_softc *sc)
2444 {
2445 	uint32_t qcfg[] = {
2446 		0,
2447 		RXQ_CFG_QUEUE0_ENB,
2448 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2449 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2450 		RXQ_CFG_ENB
2451 	};
2452 	uint32_t cfg;
2453 
2454 	/* Enable RxQ. */
2455 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2456 	cfg &= ~RXQ_CFG_ENB;
2457 	cfg |= qcfg[1];
2458 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2459 	/* Enable TxQ. */
2460 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2461 	cfg |= TXQ_CFG_ENB;
2462 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2463 }
2464 
2465 static void
2466 alc_stop_queue(struct alc_softc *sc)
2467 {
2468 	uint32_t reg;
2469 	int i;
2470 
2471 	/* Disable RxQ. */
2472 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2473 	if ((reg & RXQ_CFG_ENB) != 0) {
2474 		reg &= ~RXQ_CFG_ENB;
2475 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2476 	}
2477 	/* Disable TxQ. */
2478 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2479 	if ((reg & TXQ_CFG_ENB) != 0) {
2480 		reg &= ~TXQ_CFG_ENB;
2481 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2482 	}
2483 	for (i = ALC_TIMEOUT; i > 0; i--) {
2484 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2485 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2486 			break;
2487 		DELAY(10);
2488 	}
2489 	if (i == 0)
2490 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2491 		    device_xname(sc->sc_dev), reg);
2492 }
2493 
2494 static void
2495 alc_init_tx_ring(struct alc_softc *sc)
2496 {
2497 	struct alc_ring_data *rd;
2498 	struct alc_txdesc *txd;
2499 	int i;
2500 
2501 	sc->alc_cdata.alc_tx_prod = 0;
2502 	sc->alc_cdata.alc_tx_cons = 0;
2503 	sc->alc_cdata.alc_tx_cnt = 0;
2504 
2505 	rd = &sc->alc_rdata;
2506 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2507 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2508 		txd = &sc->alc_cdata.alc_txdesc[i];
2509 		txd->tx_m = NULL;
2510 	}
2511 
2512 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2513 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2514 }
2515 
2516 static int
2517 alc_init_rx_ring(struct alc_softc *sc)
2518 {
2519 	struct alc_ring_data *rd;
2520 	struct alc_rxdesc *rxd;
2521 	int i;
2522 
2523 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2524 	rd = &sc->alc_rdata;
2525 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2526 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2527 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2528 		rxd->rx_m = NULL;
2529 		rxd->rx_desc = &rd->alc_rx_ring[i];
2530 		if (alc_newbuf(sc, rxd, 1) != 0)
2531 			return (ENOBUFS);
2532 	}
2533 
2534 	/*
2535 	 * Since controller does not update Rx descriptors, driver
2536 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2537 	 * is enough to ensure coherence.
2538 	 */
2539 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2540 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2541 	/* Let controller know availability of new Rx buffers. */
2542 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2543 
2544 	return (0);
2545 }
2546 
2547 static void
2548 alc_init_rr_ring(struct alc_softc *sc)
2549 {
2550 	struct alc_ring_data *rd;
2551 
2552 	sc->alc_cdata.alc_rr_cons = 0;
2553 	ALC_RXCHAIN_RESET(sc);
2554 
2555 	rd = &sc->alc_rdata;
2556 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2557 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2558 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2559 }
2560 
2561 static void
2562 alc_init_cmb(struct alc_softc *sc)
2563 {
2564 	struct alc_ring_data *rd;
2565 
2566 	rd = &sc->alc_rdata;
2567 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2568 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2569 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2570 }
2571 
2572 static void
2573 alc_init_smb(struct alc_softc *sc)
2574 {
2575 	struct alc_ring_data *rd;
2576 
2577 	rd = &sc->alc_rdata;
2578 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
2579 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2580 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2581 }
2582 
2583 static void
2584 alc_rxvlan(struct alc_softc *sc)
2585 {
2586 	uint32_t reg;
2587 
2588 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2589 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2590 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2591 	else
2592 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2593 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2594 }
2595 
2596 static void
2597 alc_iff(struct alc_softc *sc)
2598 {
2599 	struct ethercom *ec = &sc->sc_ec;
2600 	struct ifnet *ifp = &ec->ec_if;
2601 	struct ether_multi *enm;
2602 	struct ether_multistep step;
2603 	uint32_t crc;
2604 	uint32_t mchash[2];
2605 	uint32_t rxcfg;
2606 
2607 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2608 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2609 	ifp->if_flags &= ~IFF_ALLMULTI;
2610 
2611 	/*
2612 	 * Always accept broadcast frames.
2613 	 */
2614 	rxcfg |= MAC_CFG_BCAST;
2615 
2616 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2617 		ifp->if_flags |= IFF_ALLMULTI;
2618 		if (ifp->if_flags & IFF_PROMISC)
2619 			rxcfg |= MAC_CFG_PROMISC;
2620 		else
2621 			rxcfg |= MAC_CFG_ALLMULTI;
2622 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2623 	} else {
2624 		/* Program new filter. */
2625 		memset(mchash, 0, sizeof(mchash));
2626 
2627 		ETHER_FIRST_MULTI(step, ec, enm);
2628 		while (enm != NULL) {
2629 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2630 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2631 			ETHER_NEXT_MULTI(step, enm);
2632 		}
2633 	}
2634 
2635 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2636 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2637 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2638 }
2639 
2640 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
2641 
2642 #ifdef _MODULE
2643 #include "ioconf.c"
2644 #endif
2645 
2646 static int
2647 if_alc_modcmd(modcmd_t cmd, void *opaque)
2648 {
2649 	int error = 0;
2650 
2651 	switch (cmd) {
2652 	case MODULE_CMD_INIT:
2653 #ifdef _MODULE
2654 		error = config_init_component(cfdriver_ioconf_if_alc,
2655 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2656 #endif
2657 		return error;
2658 	case MODULE_CMD_FINI:
2659 #ifdef _MODULE
2660 		error = config_fini_component(cfdriver_ioconf_if_alc,
2661 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2662 #endif
2663 		return error;
2664 	default:
2665 		return ENOTTY;
2666 	}
2667 }
2668