xref: /netbsd-src/sys/dev/pci/if_alc.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
2 /*-
3  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice unmodified, this list of conditions, and the following
11  *    disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
30 
31 #ifdef _KERNEL_OPT
32 #include "vlan.h"
33 #endif
34 
35 #include <sys/param.h>
36 #include <sys/proc.h>
37 #include <sys/endian.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/sockio.h>
41 #include <sys/mbuf.h>
42 #include <sys/queue.h>
43 #include <sys/kernel.h>
44 #include <sys/device.h>
45 #include <sys/callout.h>
46 #include <sys/socket.h>
47 #include <sys/module.h>
48 
49 #include <sys/bus.h>
50 
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_llc.h>
54 #include <net/if_media.h>
55 #include <net/if_ether.h>
56 
57 #include <net/bpf.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <net/bpf.h>
70 
71 #include <sys/rnd.h>
72 
73 #include <dev/mii/mii.h>
74 #include <dev/mii/miivar.h>
75 
76 #include <dev/pci/pcireg.h>
77 #include <dev/pci/pcivar.h>
78 #include <dev/pci/pcidevs.h>
79 
80 #include <dev/pci/if_alcreg.h>
81 
82 /*
83  * Devices supported by this driver.
84  */
85 static struct alc_ident alc_ident_table[] = {
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
87 		"Atheros AR8131 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
89 		"Atheros AR8132 PCIe Fast Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
91 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
93 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
95 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
97 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
98 	{ 0, 0, 0, NULL },
99 };
100 
101 static int	alc_match(device_t, cfdata_t, void *);
102 static void	alc_attach(device_t, device_t, void *);
103 static int	alc_detach(device_t, int);
104 
105 static int	alc_init(struct ifnet *);
106 static void	alc_start(struct ifnet *);
107 static int	alc_ioctl(struct ifnet *, u_long, void *);
108 static void	alc_watchdog(struct ifnet *);
109 static int	alc_mediachange(struct ifnet *);
110 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
111 
112 static void	alc_aspm(struct alc_softc *, int);
113 static void	alc_disable_l0s_l1(struct alc_softc *);
114 static int	alc_dma_alloc(struct alc_softc *);
115 static void	alc_dma_free(struct alc_softc *);
116 static int	alc_encap(struct alc_softc *, struct mbuf **);
117 static struct alc_ident *
118 		alc_find_ident(struct pci_attach_args *);
119 static void	alc_get_macaddr(struct alc_softc *);
120 static void	alc_init_cmb(struct alc_softc *);
121 static void	alc_init_rr_ring(struct alc_softc *);
122 static int	alc_init_rx_ring(struct alc_softc *);
123 static void	alc_init_smb(struct alc_softc *);
124 static void	alc_init_tx_ring(struct alc_softc *);
125 static int	alc_intr(void *);
126 static void	alc_mac_config(struct alc_softc *);
127 static int	alc_miibus_readreg(device_t, int, int);
128 static void	alc_miibus_statchg(device_t);
129 static void	alc_miibus_writereg(device_t, int, int, int);
130 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, int);
131 static void	alc_phy_down(struct alc_softc *);
132 static void	alc_phy_reset(struct alc_softc *);
133 static void	alc_reset(struct alc_softc *);
134 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
135 static int	alc_rxintr(struct alc_softc *);
136 static void	alc_iff(struct alc_softc *);
137 static void	alc_rxvlan(struct alc_softc *);
138 static void	alc_start_queue(struct alc_softc *);
139 static void	alc_stats_clear(struct alc_softc *);
140 static void	alc_stats_update(struct alc_softc *);
141 static void	alc_stop(struct ifnet *, int);
142 static void	alc_stop_mac(struct alc_softc *);
143 static void	alc_stop_queue(struct alc_softc *);
144 static void	alc_tick(void *);
145 static void	alc_txeof(struct alc_softc *);
146 
147 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
148 
149 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
150     alc_match, alc_attach, alc_detach, NULL);
151 
152 int alcdebug = 0;
153 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
154 
155 #define ETHER_ALIGN		2
156 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
157 
158 static int
159 alc_miibus_readreg(device_t dev, int phy, int reg)
160 {
161 	struct alc_softc *sc = device_private(dev);
162 	uint32_t v;
163 	int i;
164 
165 	if (phy != sc->alc_phyaddr)
166 		return (0);
167 
168 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
169 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
170 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
171 		DELAY(5);
172 		v = CSR_READ_4(sc, ALC_MDIO);
173 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
174 			break;
175 	}
176 
177 	if (i == 0) {
178 		printf("%s: phy read timeout: phy %d, reg %d\n",
179 		    device_xname(sc->sc_dev), phy, reg);
180 		return (0);
181 	}
182 
183 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
184 }
185 
186 static void
187 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
188 {
189 	struct alc_softc *sc = device_private(dev);
190 	uint32_t v;
191 	int i;
192 
193 	if (phy != sc->alc_phyaddr)
194 		return;
195 
196 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
197 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
198 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
199 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
200 		DELAY(5);
201 		v = CSR_READ_4(sc, ALC_MDIO);
202 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
203 			break;
204 	}
205 
206 	if (i == 0)
207 		printf("%s: phy write timeout: phy %d, reg %d\n",
208 		    device_xname(sc->sc_dev), phy, reg);
209 }
210 
211 static void
212 alc_miibus_statchg(device_t dev)
213 {
214 	struct alc_softc *sc = device_private(dev);
215 	struct ifnet *ifp = &sc->sc_ec.ec_if;
216 	struct mii_data *mii;
217 	uint32_t reg;
218 
219 	if ((ifp->if_flags & IFF_RUNNING) == 0)
220 		return;
221 
222 	mii = &sc->sc_miibus;
223 
224 	sc->alc_flags &= ~ALC_FLAG_LINK;
225 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
226 	    (IFM_ACTIVE | IFM_AVALID)) {
227 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
228 		case IFM_10_T:
229 		case IFM_100_TX:
230 			sc->alc_flags |= ALC_FLAG_LINK;
231 			break;
232 		case IFM_1000_T:
233 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
234 				sc->alc_flags |= ALC_FLAG_LINK;
235 			break;
236 		default:
237 			break;
238 		}
239 	}
240 	alc_stop_queue(sc);
241 	/* Stop Rx/Tx MACs. */
242 	alc_stop_mac(sc);
243 
244 	/* Program MACs with resolved speed/duplex/flow-control. */
245 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
246 		alc_start_queue(sc);
247 		alc_mac_config(sc);
248 		/* Re-enable Tx/Rx MACs. */
249 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
250 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
251 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
252 		alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active));
253 	}
254 }
255 
256 static void
257 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
258 {
259 	struct alc_softc *sc = ifp->if_softc;
260 	struct mii_data *mii = &sc->sc_miibus;
261 
262 	mii_pollstat(mii);
263 	ifmr->ifm_status = mii->mii_media_status;
264 	ifmr->ifm_active = mii->mii_media_active;
265 }
266 
267 static int
268 alc_mediachange(struct ifnet *ifp)
269 {
270 	struct alc_softc *sc = ifp->if_softc;
271 	struct mii_data *mii = &sc->sc_miibus;
272 	int error;
273 
274 	if (mii->mii_instance != 0) {
275 		struct mii_softc *miisc;
276 
277 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
278 			mii_phy_reset(miisc);
279 	}
280 	error = mii_mediachg(mii);
281 
282 	return (error);
283 }
284 
285 static struct alc_ident *
286 alc_find_ident(struct pci_attach_args *pa)
287 {
288 	struct alc_ident *ident;
289 	uint16_t vendor, devid;
290 
291 	vendor = PCI_VENDOR(pa->pa_id);
292 	devid = PCI_PRODUCT(pa->pa_id);
293 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
294 		if (vendor == ident->vendorid && devid == ident->deviceid)
295 			return (ident);
296 	}
297 
298 	return (NULL);
299 }
300 
301 static int
302 alc_match(device_t dev, cfdata_t match, void *aux)
303 {
304 	struct pci_attach_args *pa = aux;
305 
306 	return alc_find_ident(pa) != NULL;
307 }
308 
309 static void
310 alc_get_macaddr(struct alc_softc *sc)
311 {
312 	uint32_t ea[2], opt;
313 	uint16_t val;
314 	int eeprom, i;
315 
316 	eeprom = 0;
317 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
318 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
319 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
320 		/*
321 		 * EEPROM found, let TWSI reload EEPROM configuration.
322 		 * This will set ethernet address of controller.
323 		 */
324 		eeprom++;
325 		switch (sc->alc_ident->deviceid) {
326 		case PCI_PRODUCT_ATTANSIC_AR8131:
327 		case PCI_PRODUCT_ATTANSIC_AR8132:
328 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
329 				opt |= OPT_CFG_CLK_ENB;
330 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
331 				CSR_READ_4(sc, ALC_OPT_CFG);
332 				DELAY(1000);
333 			}
334 			break;
335 		case PCI_PRODUCT_ATTANSIC_AR8151:
336 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
337 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
338 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
339 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
340 			    ALC_MII_DBG_ADDR, 0x00);
341 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
342 			    ALC_MII_DBG_DATA);
343 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
344 			    ALC_MII_DBG_DATA, val & 0xFF7F);
345 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
346 			    ALC_MII_DBG_ADDR, 0x3B);
347 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
348 			    ALC_MII_DBG_DATA);
349 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
350 			    ALC_MII_DBG_DATA, val | 0x0008);
351 			DELAY(20);
352 			break;
353 		}
354 
355 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
356 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
357 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
358 		CSR_READ_4(sc, ALC_WOL_CFG);
359 
360 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
361 		    TWSI_CFG_SW_LD_START);
362 		for (i = 100; i > 0; i--) {
363 			DELAY(1000);
364 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
365 			    TWSI_CFG_SW_LD_START) == 0)
366 				break;
367 		}
368 		if (i == 0)
369 			printf("%s: reloading EEPROM timeout!\n",
370 			    device_xname(sc->sc_dev));
371 	} else {
372 		if (alcdebug)
373 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
374 	}
375 	if (eeprom != 0) {
376 		switch (sc->alc_ident->deviceid) {
377 		case PCI_PRODUCT_ATTANSIC_AR8131:
378 		case PCI_PRODUCT_ATTANSIC_AR8132:
379 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
380 				opt &= ~OPT_CFG_CLK_ENB;
381 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
382 				CSR_READ_4(sc, ALC_OPT_CFG);
383 				DELAY(1000);
384 			}
385 			break;
386 		case PCI_PRODUCT_ATTANSIC_AR8151:
387 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
388 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
389 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
390 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
391 			    ALC_MII_DBG_ADDR, 0x00);
392 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
393 			    ALC_MII_DBG_DATA);
394 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
395 			    ALC_MII_DBG_DATA, val | 0x0080);
396 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
397 			    ALC_MII_DBG_ADDR, 0x3B);
398 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
399 			    ALC_MII_DBG_DATA);
400 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
401 			    ALC_MII_DBG_DATA, val & 0xFFF7);
402 			DELAY(20);
403 			break;
404 		}
405 	}
406 
407 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
408 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
409 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
410 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
411 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
412 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
413 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
414 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
415 }
416 
417 static void
418 alc_disable_l0s_l1(struct alc_softc *sc)
419 {
420 	uint32_t pmcfg;
421 
422 	/* Another magic from vendor. */
423 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
424 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
425 	    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK |
426 	    PM_CFG_SERDES_PD_EX_L1);
427 	pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
428 	    PM_CFG_SERDES_L1_ENB;
429 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
430 }
431 
432 static void
433 alc_phy_reset(struct alc_softc *sc)
434 {
435 	uint16_t data;
436 
437 	/* Reset magic from Linux. */
438 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
439 	    GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE | GPHY_CFG_SEL_ANA_RESET);
440 	CSR_READ_2(sc, ALC_GPHY_CFG);
441 	DELAY(10 * 1000);
442 
443 	CSR_WRITE_2(sc, ALC_GPHY_CFG,
444 	    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
445 	    GPHY_CFG_SEL_ANA_RESET);
446 	CSR_READ_2(sc, ALC_GPHY_CFG);
447 	DELAY(10 * 1000);
448 
449 	/* DSP fixup, Vendor magic. */
450 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
451 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
452 		    ALC_MII_DBG_ADDR, 0x000A);
453 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
454 		    ALC_MII_DBG_DATA);
455 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
456 		    ALC_MII_DBG_DATA, data & 0xDFFF);
457 	}
458 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
459 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
460 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
461 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
462 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
463 		    ALC_MII_DBG_ADDR, 0x003B);
464 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
465 		    ALC_MII_DBG_DATA);
466 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
467 		    ALC_MII_DBG_DATA, data & 0xFFF7);
468 		DELAY(20 * 1000);
469 	}
470 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
471 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
472 		    ALC_MII_DBG_ADDR, 0x0029);
473 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
474 		    ALC_MII_DBG_DATA, 0x929D);
475 	}
476 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
477 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
478 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
479 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
480 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
481 		    ALC_MII_DBG_ADDR, 0x0029);
482 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
483 		    ALC_MII_DBG_DATA, 0xB6DD);
484 	}
485 
486 	/* Load DSP codes, vendor magic. */
487 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
488 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
489 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
490 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
491 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
492 	    ALC_MII_DBG_DATA, data);
493 
494 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
495 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
496 	    ANA_SERDES_EN_LCKDT;
497 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
498 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
499 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
500 	    ALC_MII_DBG_DATA, data);
501 
502 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
503 	    ANA_LONG_CABLE_TH_100_MASK) |
504 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
505 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
506 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
507 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
508 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
509 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
510 	    ALC_MII_DBG_DATA, data);
511 
512 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
513 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
514 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
515 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
516 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
517 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
518 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
519 	    ALC_MII_DBG_DATA, data);
520 
521 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
522 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
523 	    ANA_OEN_125M;
524 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
525 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
526 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
527 	    ALC_MII_DBG_DATA, data);
528 	DELAY(1000);
529 }
530 
531 static void
532 alc_phy_down(struct alc_softc *sc)
533 {
534 	switch (sc->alc_ident->deviceid) {
535 	case PCI_PRODUCT_ATTANSIC_AR8151:
536 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
537 		/*
538 		 * GPHY power down caused more problems on AR8151 v2.0.
539 		 * When driver is reloaded after GPHY power down,
540 		 * accesses to PHY/MAC registers hung the system. Only
541 		 * cold boot recovered from it.  I'm not sure whether
542 		 * AR8151 v1.0 also requires this one though.  I don't
543 		 * have AR8151 v1.0 controller in hand.
544 		 * The only option left is to isolate the PHY and
545 		 * initiates power down the PHY which in turn saves
546 		 * more power when driver is unloaded.
547 		 */
548 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
549 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
550 		break;
551 	default:
552 		/* Force PHY down. */
553 		CSR_WRITE_2(sc, ALC_GPHY_CFG,
554 		    GPHY_CFG_EXT_RESET | GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
555 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
556 		    GPHY_CFG_PWDOWN_HW);
557 		DELAY(1000);
558 		break;
559 	}
560 }
561 
562 static void
563 alc_aspm(struct alc_softc *sc, int media)
564 {
565 	uint32_t pmcfg;
566 	uint16_t linkcfg;
567 
568 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
569 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
570 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
571 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
572 		    PCI_PCIE_LCSR);
573 	else
574 		linkcfg = 0;
575 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
576 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
577 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
578 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
579 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
580 
581 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
582 		/* Disable extended sync except AR8152 B v1.0 */
583 		linkcfg &= ~0x80;
584 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
585 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
586 			linkcfg |= 0x80;
587 		CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR,
588 		    linkcfg);
589 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
590 		    PM_CFG_HOTRST);
591 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
592 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
593 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
594 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
595 		    PM_CFG_PM_REQ_TIMER_SHIFT);
596 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
597 	}
598 
599 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
600 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
601 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
602 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
603 			pmcfg |= PM_CFG_ASPM_L1_ENB;
604 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
605 			if (sc->alc_ident->deviceid ==
606 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
607 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
608 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
609 			    PM_CFG_SERDES_PLL_L1_ENB |
610 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
611 			pmcfg |= PM_CFG_CLK_SWH_L1;
612 			if (media == IFM_100_TX || media == IFM_1000_T) {
613 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
614 				switch (sc->alc_ident->deviceid) {
615 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
616 					pmcfg |= (7 <<
617 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
618 					break;
619 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
620 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
621 					pmcfg |= (4 <<
622 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
623 					break;
624 				default:
625 					pmcfg |= (15 <<
626 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
627 					break;
628 				}
629 			}
630 		} else {
631 			pmcfg |= PM_CFG_SERDES_L1_ENB |
632 			    PM_CFG_SERDES_PLL_L1_ENB |
633 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
634 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
635 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
636 		}
637 	} else {
638 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
639 		    PM_CFG_SERDES_PLL_L1_ENB);
640 		pmcfg |= PM_CFG_CLK_SWH_L1;
641 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
642 			pmcfg |= PM_CFG_ASPM_L1_ENB;
643 	}
644 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
645 }
646 
647 static void
648 alc_attach(device_t parent, device_t self, void *aux)
649 {
650 
651 	struct alc_softc *sc = device_private(self);
652 	struct pci_attach_args *pa = aux;
653 	pci_chipset_tag_t pc = pa->pa_pc;
654 	pci_intr_handle_t ih;
655 	const char *intrstr;
656 	struct ifnet *ifp;
657 	pcireg_t memtype;
658 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
659 	uint16_t burst;
660 	int base, mii_flags, state, error = 0;
661 	uint32_t cap, ctl, val;
662 
663 	sc->alc_ident = alc_find_ident(pa);
664 
665 	aprint_naive("\n");
666 	aprint_normal(": %s\n", sc->alc_ident->name);
667 
668 	sc->sc_dev = self;
669 	sc->sc_dmat = pa->pa_dmat;
670 	sc->sc_pct = pa->pa_pc;
671 	sc->sc_pcitag = pa->pa_tag;
672 
673 	/*
674 	 * Allocate IO memory
675 	 */
676 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
677 	switch (memtype) {
678 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
679 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
680 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
681 		break;
682 	default:
683 		aprint_error_dev(self, "invalid base address register\n");
684 		break;
685 	}
686 
687 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
688 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
689 		aprint_error_dev(self, "could not map mem space\n");
690 		return;
691 	}
692 
693 	if (pci_intr_map(pa, &ih) != 0) {
694 		printf(": can't map interrupt\n");
695 		goto fail;
696 	}
697 
698 	/*
699 	 * Allocate IRQ
700 	 */
701 	intrstr = pci_intr_string(sc->sc_pct, ih);
702 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
703 	if (sc->sc_irq_handle == NULL) {
704 		printf(": could not establish interrupt");
705 		if (intrstr != NULL)
706 			printf(" at %s", intrstr);
707 		printf("\n");
708 		goto fail;
709 	}
710 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
711 
712 	/* Set PHY address. */
713 	sc->alc_phyaddr = ALC_PHY_ADDR;
714 
715 	/* Initialize DMA parameters. */
716 	sc->alc_dma_rd_burst = 0;
717 	sc->alc_dma_wr_burst = 0;
718 	sc->alc_rcb = DMA_CFG_RCB_64;
719 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
720 	    &base, NULL)) {
721 		sc->alc_flags |= ALC_FLAG_PCIE;
722 		sc->alc_expcap = base;
723 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
724 		    base + PCI_PCIE_DCSR) >> 16;
725 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
726 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
727 		if (alcdebug) {
728 			printf("%s: Read request size : %u bytes.\n",
729 			    device_xname(sc->sc_dev),
730 			    alc_dma_burst[sc->alc_dma_rd_burst]);
731 			printf("%s: TLP payload size : %u bytes.\n",
732 			    device_xname(sc->sc_dev),
733 			    alc_dma_burst[sc->alc_dma_wr_burst]);
734 		}
735 		/* Clear data link and flow-control protocol error. */
736 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
737 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
738 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
739 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
740 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
741 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
742 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
743 		    PCIE_PHYMISC_FORCE_RCV_DET);
744 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
745 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
746 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
747 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
748 			    PCIE_PHYMISC2_SERDES_TH_MASK);
749 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
750 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
751 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
752 		}
753 		/* Disable ASPM L0S and L1. */
754 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
755 		    base + PCI_PCIE_LCAP) >> 16;
756 		if ((cap & 0x00000c00) != 0) {
757 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
758 			    base + PCI_PCIE_LCSR) >> 16;
759 			if ((ctl & 0x08) != 0)
760 				sc->alc_rcb = DMA_CFG_RCB_128;
761 			if (alcdebug)
762 				printf("%s: RCB %u bytes\n",
763 				    device_xname(sc->sc_dev),
764 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
765 			state = ctl & 0x03;
766 			if (state & 0x01)
767 				sc->alc_flags |= ALC_FLAG_L0S;
768 			if (state & 0x02)
769 				sc->alc_flags |= ALC_FLAG_L1S;
770 			if (alcdebug)
771 				printf("%s: ASPM %s %s\n",
772 				    device_xname(sc->sc_dev),
773 				    aspm_state[state],
774 				    state == 0 ? "disabled" : "enabled");
775 			alc_disable_l0s_l1(sc);
776 		} else {
777 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
778 		}
779 	}
780 
781 	/* Reset PHY. */
782 	alc_phy_reset(sc);
783 
784 	/* Reset the ethernet controller. */
785 	alc_reset(sc);
786 
787 	/*
788 	 * One odd thing is AR8132 uses the same PHY hardware(F1
789 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
790 	 * the PHY supports 1000Mbps but that's not true. The PHY
791 	 * used in AR8132 can't establish gigabit link even if it
792 	 * shows the same PHY model/revision number of AR8131.
793 	 */
794 	switch (sc->alc_ident->deviceid) {
795 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
796 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
797 		sc->alc_flags |= ALC_FLAG_APS;
798 		/* FALLTHROUGH */
799 	case PCI_PRODUCT_ATTANSIC_AR8132:
800 		sc->alc_flags |= ALC_FLAG_FASTETHER;
801 		break;
802 	case PCI_PRODUCT_ATTANSIC_AR8151:
803 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
804 		sc->alc_flags |= ALC_FLAG_APS;
805 		/* FALLTHROUGH */
806 	default:
807 		break;
808 	}
809 	sc->alc_flags |= ALC_FLAG_JUMBO | ALC_FLAG_ASPM_MON;
810 
811 	/*
812 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
813 	 * addition, Atheros said that enabling SMB wouldn't improve
814 	 * performance. However I think it's bad to access lots of
815 	 * registers to extract MAC statistics.
816 	 */
817 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
818 	/*
819 	 * Don't use Tx CMB. It is known to have silicon bug.
820 	 */
821 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
822 	sc->alc_rev = PCI_REVISION(pa->pa_class);
823 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
824 	    MASTER_CHIP_REV_SHIFT;
825 	if (alcdebug) {
826 		printf("%s: PCI device revision : 0x%04x\n",
827 		    device_xname(sc->sc_dev), sc->alc_rev);
828 		printf("%s: Chip id/revision : 0x%04x\n",
829 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
830 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
831 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
832 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
833 	}
834 
835 	error = alc_dma_alloc(sc);
836 	if (error)
837 		goto fail;
838 
839 	callout_init(&sc->sc_tick_ch, 0);
840 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
841 
842 	/* Load station address. */
843 	alc_get_macaddr(sc);
844 
845 	aprint_normal_dev(self, "Ethernet address %s\n",
846 	    ether_sprintf(sc->alc_eaddr));
847 
848 	ifp = &sc->sc_ec.ec_if;
849 	ifp->if_softc = sc;
850 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
851 	ifp->if_init = alc_init;
852 	ifp->if_ioctl = alc_ioctl;
853 	ifp->if_start = alc_start;
854 	ifp->if_stop = alc_stop;
855 	ifp->if_watchdog = alc_watchdog;
856 	ifp->if_baudrate = IF_Gbps(1);
857 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
858 	IFQ_SET_READY(&ifp->if_snd);
859 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
860 
861 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
862 
863 #ifdef ALC_CHECKSUM
864 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
865 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
866 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
867 #endif
868 
869 #if NVLAN > 0
870 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
871 #endif
872 
873 	/* Set up MII bus. */
874 	sc->sc_miibus.mii_ifp = ifp;
875 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
876 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
877 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
878 
879 	sc->sc_ec.ec_mii = &sc->sc_miibus;
880 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
881 	    alc_mediastatus);
882 	mii_flags = 0;
883 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
884 		mii_flags |= MIIF_DOPAUSE;
885 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
886 		MII_OFFSET_ANY, mii_flags);
887 
888 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
889 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
890 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
891 		    0, NULL);
892 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
893 	} else
894 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
895 
896 	if_attach(ifp);
897 	ether_ifattach(ifp, sc->alc_eaddr);
898 
899 	if (!pmf_device_register(self, NULL, NULL))
900 		aprint_error_dev(self, "couldn't establish power handler\n");
901 	else
902 		pmf_class_network_register(self, ifp);
903 
904 	return;
905 fail:
906 	alc_dma_free(sc);
907 	if (sc->sc_irq_handle != NULL) {
908 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
909 		sc->sc_irq_handle = NULL;
910 	}
911 	if (sc->sc_mem_size) {
912 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
913 		sc->sc_mem_size = 0;
914 	}
915 }
916 
917 static int
918 alc_detach(device_t self, int flags)
919 {
920 	struct alc_softc *sc = device_private(self);
921 	struct ifnet *ifp = &sc->sc_ec.ec_if;
922 	int s;
923 
924 	s = splnet();
925 	alc_stop(ifp, 0);
926 	splx(s);
927 
928 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
929 
930 	/* Delete all remaining media. */
931 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
932 
933 	ether_ifdetach(ifp);
934 	if_detach(ifp);
935 	alc_dma_free(sc);
936 
937 	alc_phy_down(sc);
938 	if (sc->sc_irq_handle != NULL) {
939 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
940 		sc->sc_irq_handle = NULL;
941 	}
942 	if (sc->sc_mem_size) {
943 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
944 		sc->sc_mem_size = 0;
945 	}
946 
947 	return (0);
948 }
949 
950 static int
951 alc_dma_alloc(struct alc_softc *sc)
952 {
953 	struct alc_txdesc *txd;
954 	struct alc_rxdesc *rxd;
955 	int nsegs, error, i;
956 
957 	/*
958 	 * Create DMA stuffs for TX ring
959 	 */
960 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
961 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
962 	if (error) {
963 		sc->alc_cdata.alc_tx_ring_map = NULL;
964 		return (ENOBUFS);
965 	}
966 
967 	/* Allocate DMA'able memory for TX ring */
968 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
969 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
970 	    &nsegs, BUS_DMA_NOWAIT);
971 	if (error) {
972 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
973 		    device_xname(sc->sc_dev));
974 		return error;
975 	}
976 
977 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
978 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
979 	    BUS_DMA_NOWAIT);
980 	if (error)
981 		return (ENOBUFS);
982 
983 	/* Load the DMA map for Tx ring. */
984 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
985 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
986 	if (error) {
987 		printf("%s: could not load DMA'able memory for Tx ring.\n",
988 		    device_xname(sc->sc_dev));
989 		bus_dmamem_free(sc->sc_dmat,
990 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
991 		return error;
992 	}
993 
994 	sc->alc_rdata.alc_tx_ring_paddr =
995 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
996 
997 	/*
998 	 * Create DMA stuffs for RX ring
999 	 */
1000 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1001 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1002 	if (error)
1003 		return (ENOBUFS);
1004 
1005 	/* Allocate DMA'able memory for RX ring */
1006 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1007 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1008 	    &nsegs, BUS_DMA_NOWAIT);
1009 	if (error) {
1010 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1011 		    device_xname(sc->sc_dev));
1012 		return error;
1013 	}
1014 
1015 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1016 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1017 	    BUS_DMA_NOWAIT);
1018 	if (error)
1019 		return (ENOBUFS);
1020 
1021 	/* Load the DMA map for Rx ring. */
1022 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1023 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1024 	if (error) {
1025 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1026 		    device_xname(sc->sc_dev));
1027 		bus_dmamem_free(sc->sc_dmat,
1028 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1029 		return error;
1030 	}
1031 
1032 	sc->alc_rdata.alc_rx_ring_paddr =
1033 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1034 
1035 	/*
1036 	 * Create DMA stuffs for RX return ring
1037 	 */
1038 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1039 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1040 	if (error)
1041 		return (ENOBUFS);
1042 
1043 	/* Allocate DMA'able memory for RX return ring */
1044 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1045 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1046 	    &nsegs, BUS_DMA_NOWAIT);
1047 	if (error) {
1048 		printf("%s: could not allocate DMA'able memory for Rx "
1049 		    "return ring.\n", device_xname(sc->sc_dev));
1050 		return error;
1051 	}
1052 
1053 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1054 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1055 	    BUS_DMA_NOWAIT);
1056 	if (error)
1057 		return (ENOBUFS);
1058 
1059 	/*  Load the DMA map for Rx return ring. */
1060 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1061 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1062 	if (error) {
1063 		printf("%s: could not load DMA'able memory for Rx return ring."
1064 		    "\n", device_xname(sc->sc_dev));
1065 		bus_dmamem_free(sc->sc_dmat,
1066 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1067 		return error;
1068 	}
1069 
1070 	sc->alc_rdata.alc_rr_ring_paddr =
1071 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1072 
1073 	/*
1074 	 * Create DMA stuffs for CMB block
1075 	 */
1076 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1077 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1078 	    &sc->alc_cdata.alc_cmb_map);
1079 	if (error)
1080 		return (ENOBUFS);
1081 
1082 	/* Allocate DMA'able memory for CMB block */
1083 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1084 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1085 	    &nsegs, BUS_DMA_NOWAIT);
1086 	if (error) {
1087 		printf("%s: could not allocate DMA'able memory for "
1088 		    "CMB block\n", device_xname(sc->sc_dev));
1089 		return error;
1090 	}
1091 
1092 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1093 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1094 	    BUS_DMA_NOWAIT);
1095 	if (error)
1096 		return (ENOBUFS);
1097 
1098 	/*  Load the DMA map for CMB block. */
1099 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1100 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1101 	    BUS_DMA_WAITOK);
1102 	if (error) {
1103 		printf("%s: could not load DMA'able memory for CMB block\n",
1104 		    device_xname(sc->sc_dev));
1105 		bus_dmamem_free(sc->sc_dmat,
1106 		    &sc->alc_rdata.alc_cmb_seg, 1);
1107 		return error;
1108 	}
1109 
1110 	sc->alc_rdata.alc_cmb_paddr =
1111 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1112 
1113 	/*
1114 	 * Create DMA stuffs for SMB block
1115 	 */
1116 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1117 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1118 	    &sc->alc_cdata.alc_smb_map);
1119 	if (error)
1120 		return (ENOBUFS);
1121 
1122 	/* Allocate DMA'able memory for SMB block */
1123 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1124 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1125 	    &nsegs, BUS_DMA_NOWAIT);
1126 	if (error) {
1127 		printf("%s: could not allocate DMA'able memory for "
1128 		    "SMB block\n", device_xname(sc->sc_dev));
1129 		return error;
1130 	}
1131 
1132 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1133 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1134 	    BUS_DMA_NOWAIT);
1135 	if (error)
1136 		return (ENOBUFS);
1137 
1138 	/*  Load the DMA map for SMB block */
1139 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1140 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1141 	    BUS_DMA_WAITOK);
1142 	if (error) {
1143 		printf("%s: could not load DMA'able memory for SMB block\n",
1144 		    device_xname(sc->sc_dev));
1145 		bus_dmamem_free(sc->sc_dmat,
1146 		    &sc->alc_rdata.alc_smb_seg, 1);
1147 		return error;
1148 	}
1149 
1150 	sc->alc_rdata.alc_smb_paddr =
1151 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1152 
1153 
1154 	/* Create DMA maps for Tx buffers. */
1155 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1156 		txd = &sc->alc_cdata.alc_txdesc[i];
1157 		txd->tx_m = NULL;
1158 		txd->tx_dmamap = NULL;
1159 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1160 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1161 		    &txd->tx_dmamap);
1162 		if (error) {
1163 			printf("%s: could not create Tx dmamap.\n",
1164 			    device_xname(sc->sc_dev));
1165 			return error;
1166 		}
1167 	}
1168 
1169 	/* Create DMA maps for Rx buffers. */
1170 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1171 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1172 	if (error) {
1173 		printf("%s: could not create spare Rx dmamap.\n",
1174 		    device_xname(sc->sc_dev));
1175 		return error;
1176 	}
1177 
1178 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1179 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1180 		rxd->rx_m = NULL;
1181 		rxd->rx_dmamap = NULL;
1182 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1183 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1184 		if (error) {
1185 			printf("%s: could not create Rx dmamap.\n",
1186 			    device_xname(sc->sc_dev));
1187 			return error;
1188 		}
1189 	}
1190 
1191 	return (0);
1192 }
1193 
1194 
1195 static void
1196 alc_dma_free(struct alc_softc *sc)
1197 {
1198 	struct alc_txdesc *txd;
1199 	struct alc_rxdesc *rxd;
1200 	int i;
1201 
1202 	/* Tx buffers */
1203 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1204 		txd = &sc->alc_cdata.alc_txdesc[i];
1205 		if (txd->tx_dmamap != NULL) {
1206 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1207 			txd->tx_dmamap = NULL;
1208 		}
1209 	}
1210 	/* Rx buffers */
1211 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1212 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1213 		if (rxd->rx_dmamap != NULL) {
1214 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1215 			rxd->rx_dmamap = NULL;
1216 		}
1217 	}
1218 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1219 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1220 		sc->alc_cdata.alc_rx_sparemap = NULL;
1221 	}
1222 
1223 	/* Tx ring. */
1224 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1225 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1226 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1227 	    sc->alc_rdata.alc_tx_ring != NULL)
1228 		bus_dmamem_free(sc->sc_dmat,
1229 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1230 	sc->alc_rdata.alc_tx_ring = NULL;
1231 	sc->alc_cdata.alc_tx_ring_map = NULL;
1232 
1233 	/* Rx ring. */
1234 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1235 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1236 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1237 	    sc->alc_rdata.alc_rx_ring != NULL)
1238 		bus_dmamem_free(sc->sc_dmat,
1239 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1240 	sc->alc_rdata.alc_rx_ring = NULL;
1241 	sc->alc_cdata.alc_rx_ring_map = NULL;
1242 
1243 	/* Rx return ring. */
1244 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1245 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1246 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1247 	    sc->alc_rdata.alc_rr_ring != NULL)
1248 		bus_dmamem_free(sc->sc_dmat,
1249 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1250 	sc->alc_rdata.alc_rr_ring = NULL;
1251 	sc->alc_cdata.alc_rr_ring_map = NULL;
1252 
1253 	/* CMB block */
1254 	if (sc->alc_cdata.alc_cmb_map != NULL)
1255 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1256 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1257 	    sc->alc_rdata.alc_cmb != NULL)
1258 		bus_dmamem_free(sc->sc_dmat,
1259 		    &sc->alc_rdata.alc_cmb_seg, 1);
1260 	sc->alc_rdata.alc_cmb = NULL;
1261 	sc->alc_cdata.alc_cmb_map = NULL;
1262 
1263 	/* SMB block */
1264 	if (sc->alc_cdata.alc_smb_map != NULL)
1265 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1266 	if (sc->alc_cdata.alc_smb_map != NULL &&
1267 	    sc->alc_rdata.alc_smb != NULL)
1268 		bus_dmamem_free(sc->sc_dmat,
1269 		    &sc->alc_rdata.alc_smb_seg, 1);
1270 	sc->alc_rdata.alc_smb = NULL;
1271 	sc->alc_cdata.alc_smb_map = NULL;
1272 }
1273 
1274 static int
1275 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1276 {
1277 	struct alc_txdesc *txd, *txd_last;
1278 	struct tx_desc *desc;
1279 	struct mbuf *m;
1280 	bus_dmamap_t map;
1281 	uint32_t cflags, poff, vtag;
1282 	int error, idx, nsegs, prod;
1283 #if NVLAN > 0
1284 	struct m_tag *mtag;
1285 #endif
1286 
1287 	m = *m_head;
1288 	cflags = vtag = 0;
1289 	poff = 0;
1290 
1291 	prod = sc->alc_cdata.alc_tx_prod;
1292 	txd = &sc->alc_cdata.alc_txdesc[prod];
1293 	txd_last = txd;
1294 	map = txd->tx_dmamap;
1295 
1296 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1297 
1298 	if (error == EFBIG) {
1299 		error = 0;
1300 
1301 		*m_head = m_pullup(*m_head, MHLEN);
1302 		if (*m_head == NULL) {
1303 			printf("%s: can't defrag TX mbuf\n",
1304 			    device_xname(sc->sc_dev));
1305 			return ENOBUFS;
1306 		}
1307 
1308 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1309 		    BUS_DMA_NOWAIT);
1310 
1311 		if (error != 0) {
1312 			printf("%s: could not load defragged TX mbuf\n",
1313 			    device_xname(sc->sc_dev));
1314 			m_freem(*m_head);
1315 			*m_head = NULL;
1316 			return error;
1317 		}
1318 	} else if (error) {
1319 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1320 		return (error);
1321 	}
1322 
1323 	nsegs = map->dm_nsegs;
1324 
1325 	if (nsegs == 0) {
1326 		m_freem(*m_head);
1327 		*m_head = NULL;
1328 		return (EIO);
1329 	}
1330 
1331 	/* Check descriptor overrun. */
1332 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1333 		bus_dmamap_unload(sc->sc_dmat, map);
1334 		return (ENOBUFS);
1335 	}
1336 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1337 	    BUS_DMASYNC_PREWRITE);
1338 
1339 	m = *m_head;
1340 	desc = NULL;
1341 	idx = 0;
1342 #if NVLAN > 0
1343 	/* Configure VLAN hardware tag insertion. */
1344 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
1345 		vtag = htons(VLAN_TAG_VALUE(mtag));
1346 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1347 		cflags |= TD_INS_VLAN_TAG;
1348 	}
1349 #endif
1350 	/* Configure Tx checksum offload. */
1351 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1352 		cflags |= TD_CUSTOM_CSUM;
1353 		/* Set checksum start offset. */
1354 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1355 		    TD_PLOAD_OFFSET_MASK;
1356 	}
1357 	for (; idx < nsegs; idx++) {
1358 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1359 		desc->len =
1360 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1361 		desc->flags = htole32(cflags);
1362 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1363 		sc->alc_cdata.alc_tx_cnt++;
1364 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1365 	}
1366 	/* Update producer index. */
1367 	sc->alc_cdata.alc_tx_prod = prod;
1368 
1369 	/* Finally set EOP on the last descriptor. */
1370 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1371 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1372 	desc->flags |= htole32(TD_EOP);
1373 
1374 	/* Swap dmamap of the first and the last. */
1375 	txd = &sc->alc_cdata.alc_txdesc[prod];
1376 	map = txd_last->tx_dmamap;
1377 	txd_last->tx_dmamap = txd->tx_dmamap;
1378 	txd->tx_dmamap = map;
1379 	txd->tx_m = m;
1380 
1381 	return (0);
1382 }
1383 
1384 static void
1385 alc_start(struct ifnet *ifp)
1386 {
1387 	struct alc_softc *sc = ifp->if_softc;
1388 	struct mbuf *m_head;
1389 	int enq;
1390 
1391 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1392 		return;
1393 
1394 	/* Reclaim transmitted frames. */
1395 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1396 		alc_txeof(sc);
1397 
1398 	enq = 0;
1399 	for (;;) {
1400 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1401 		if (m_head == NULL)
1402 			break;
1403 
1404 		/*
1405 		 * Pack the data into the transmit ring. If we
1406 		 * don't have room, set the OACTIVE flag and wait
1407 		 * for the NIC to drain the ring.
1408 		 */
1409 		if (alc_encap(sc, &m_head)) {
1410 			if (m_head == NULL)
1411 				break;
1412 			ifp->if_flags |= IFF_OACTIVE;
1413 			break;
1414 		}
1415 		enq = 1;
1416 
1417 		/*
1418 		 * If there's a BPF listener, bounce a copy of this frame
1419 		 * to him.
1420 		 */
1421 		bpf_mtap(ifp, m_head);
1422 	}
1423 
1424 	if (enq) {
1425 		/* Sync descriptors. */
1426 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1427 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1428 		    BUS_DMASYNC_PREWRITE);
1429 		/* Kick. Assume we're using normal Tx priority queue. */
1430 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
1431 		    (sc->alc_cdata.alc_tx_prod <<
1432 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
1433 		    MBOX_TD_PROD_LO_IDX_MASK);
1434 		/* Set a timeout in case the chip goes out to lunch. */
1435 		ifp->if_timer = ALC_TX_TIMEOUT;
1436 	}
1437 }
1438 
1439 static void
1440 alc_watchdog(struct ifnet *ifp)
1441 {
1442 	struct alc_softc *sc = ifp->if_softc;
1443 
1444 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
1445 		printf("%s: watchdog timeout (missed link)\n",
1446 		    device_xname(sc->sc_dev));
1447 		ifp->if_oerrors++;
1448 		alc_init(ifp);
1449 		return;
1450 	}
1451 
1452 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
1453 	ifp->if_oerrors++;
1454 	alc_init(ifp);
1455 
1456 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1457 		 alc_start(ifp);
1458 }
1459 
1460 static int
1461 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1462 {
1463 	struct alc_softc *sc = ifp->if_softc;
1464 	int s, error = 0;
1465 
1466 	s = splnet();
1467 
1468 	error = ether_ioctl(ifp, cmd, data);
1469 	if (error == ENETRESET) {
1470 		if (ifp->if_flags & IFF_RUNNING)
1471 			alc_iff(sc);
1472 		error = 0;
1473 	}
1474 
1475 	splx(s);
1476 	return (error);
1477 }
1478 
1479 static void
1480 alc_mac_config(struct alc_softc *sc)
1481 {
1482 	struct mii_data *mii;
1483 	uint32_t reg;
1484 
1485 	mii = &sc->sc_miibus;
1486 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
1487 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
1488 	    MAC_CFG_SPEED_MASK);
1489 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
1490 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
1491 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
1492 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
1493 	/* Reprogram MAC with resolved speed/duplex. */
1494 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1495 	case IFM_10_T:
1496 	case IFM_100_TX:
1497 		reg |= MAC_CFG_SPEED_10_100;
1498 		break;
1499 	case IFM_1000_T:
1500 		reg |= MAC_CFG_SPEED_1000;
1501 		break;
1502 	}
1503 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1504 		reg |= MAC_CFG_FULL_DUPLEX;
1505 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1506 			reg |= MAC_CFG_TX_FC;
1507 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1508 			reg |= MAC_CFG_RX_FC;
1509 	}
1510 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
1511 }
1512 
1513 static void
1514 alc_stats_clear(struct alc_softc *sc)
1515 {
1516 	struct smb sb, *smb;
1517 	uint32_t *reg;
1518 	int i;
1519 
1520 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1521 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1522 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1523 		    BUS_DMASYNC_POSTREAD);
1524 		smb = sc->alc_rdata.alc_smb;
1525 		/* Update done, clear. */
1526 		smb->updated = 0;
1527 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1528 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1529 		    BUS_DMASYNC_PREWRITE);
1530 	} else {
1531 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1532 		    reg++) {
1533 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1534 			i += sizeof(uint32_t);
1535 		}
1536 		/* Read Tx statistics. */
1537 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1538 		    reg++) {
1539 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1540 			i += sizeof(uint32_t);
1541 		}
1542 	}
1543 }
1544 
1545 static void
1546 alc_stats_update(struct alc_softc *sc)
1547 {
1548 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1549 	struct alc_hw_stats *stat;
1550 	struct smb sb, *smb;
1551 	uint32_t *reg;
1552 	int i;
1553 
1554 	stat = &sc->alc_stats;
1555 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1556 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1557 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
1558 		    BUS_DMASYNC_POSTREAD);
1559 		smb = sc->alc_rdata.alc_smb;
1560 		if (smb->updated == 0)
1561 			return;
1562 	} else {
1563 		smb = &sb;
1564 		/* Read Rx statistics. */
1565 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
1566 		    reg++) {
1567 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
1568 			i += sizeof(uint32_t);
1569 		}
1570 		/* Read Tx statistics. */
1571 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
1572 		    reg++) {
1573 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
1574 			i += sizeof(uint32_t);
1575 		}
1576 	}
1577 
1578 	/* Rx stats. */
1579 	stat->rx_frames += smb->rx_frames;
1580 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1581 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1582 	stat->rx_pause_frames += smb->rx_pause_frames;
1583 	stat->rx_control_frames += smb->rx_control_frames;
1584 	stat->rx_crcerrs += smb->rx_crcerrs;
1585 	stat->rx_lenerrs += smb->rx_lenerrs;
1586 	stat->rx_bytes += smb->rx_bytes;
1587 	stat->rx_runts += smb->rx_runts;
1588 	stat->rx_fragments += smb->rx_fragments;
1589 	stat->rx_pkts_64 += smb->rx_pkts_64;
1590 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1591 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1592 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1593 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1594 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1595 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1596 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1597 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1598 	stat->rx_rrs_errs += smb->rx_rrs_errs;
1599 	stat->rx_alignerrs += smb->rx_alignerrs;
1600 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1601 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1602 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1603 
1604 	/* Tx stats. */
1605 	stat->tx_frames += smb->tx_frames;
1606 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1607 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1608 	stat->tx_pause_frames += smb->tx_pause_frames;
1609 	stat->tx_excess_defer += smb->tx_excess_defer;
1610 	stat->tx_control_frames += smb->tx_control_frames;
1611 	stat->tx_deferred += smb->tx_deferred;
1612 	stat->tx_bytes += smb->tx_bytes;
1613 	stat->tx_pkts_64 += smb->tx_pkts_64;
1614 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1615 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1616 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1617 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1618 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1619 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1620 	stat->tx_single_colls += smb->tx_single_colls;
1621 	stat->tx_multi_colls += smb->tx_multi_colls;
1622 	stat->tx_late_colls += smb->tx_late_colls;
1623 	stat->tx_excess_colls += smb->tx_excess_colls;
1624 	stat->tx_abort += smb->tx_abort;
1625 	stat->tx_underrun += smb->tx_underrun;
1626 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1627 	stat->tx_lenerrs += smb->tx_lenerrs;
1628 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1629 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1630 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1631 
1632 	/* Update counters in ifnet. */
1633 	ifp->if_opackets += smb->tx_frames;
1634 
1635 	ifp->if_collisions += smb->tx_single_colls +
1636 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
1637 	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
1638 
1639 	/*
1640 	 * XXX
1641 	 * tx_pkts_truncated counter looks suspicious. It constantly
1642 	 * increments with no sign of Tx errors. This may indicate
1643 	 * the counter name is not correct one so I've removed the
1644 	 * counter in output errors.
1645 	 */
1646 	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
1647 	    smb->tx_underrun;
1648 
1649 	ifp->if_ipackets += smb->rx_frames;
1650 
1651 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1652 	    smb->rx_runts + smb->rx_pkts_truncated +
1653 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
1654 	    smb->rx_alignerrs;
1655 
1656 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
1657 		/* Update done, clear. */
1658 		smb->updated = 0;
1659 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
1660 		sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1661 	}
1662 }
1663 
1664 static int
1665 alc_intr(void *arg)
1666 {
1667 	struct alc_softc *sc = arg;
1668 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1669 	uint32_t status;
1670 
1671 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
1672 	if ((status & ALC_INTRS) == 0)
1673 		return (0);
1674 
1675 	/* Acknowledge and disable interrupts. */
1676 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
1677 
1678 	if (ifp->if_flags & IFF_RUNNING) {
1679 		if (status & INTR_RX_PKT) {
1680 			int error;
1681 
1682 			error = alc_rxintr(sc);
1683 			if (error) {
1684 				alc_init(ifp);
1685 				return (0);
1686 			}
1687 		}
1688 
1689 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
1690 		    INTR_TXQ_TO_RST)) {
1691 			if (status & INTR_DMA_RD_TO_RST)
1692 				printf("%s: DMA read error! -- resetting\n",
1693 				    device_xname(sc->sc_dev));
1694 			if (status & INTR_DMA_WR_TO_RST)
1695 				printf("%s: DMA write error! -- resetting\n",
1696 				    device_xname(sc->sc_dev));
1697 			if (status & INTR_TXQ_TO_RST)
1698 				printf("%s: TxQ reset! -- resetting\n",
1699 				    device_xname(sc->sc_dev));
1700 			alc_init(ifp);
1701 			return (0);
1702 		}
1703 
1704 		alc_txeof(sc);
1705 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
1706 			alc_start(ifp);
1707 	}
1708 
1709 	/* Re-enable interrupts. */
1710 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
1711 	return (1);
1712 }
1713 
1714 static void
1715 alc_txeof(struct alc_softc *sc)
1716 {
1717 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1718 	struct alc_txdesc *txd;
1719 	uint32_t cons, prod;
1720 	int prog;
1721 
1722 	if (sc->alc_cdata.alc_tx_cnt == 0)
1723 		return;
1724 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1725 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1726 	    BUS_DMASYNC_POSTREAD);
1727 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
1728 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1729 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
1730 		    BUS_DMASYNC_POSTREAD);
1731 		prod = sc->alc_rdata.alc_cmb->cons;
1732 	} else
1733 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
1734 	/* Assume we're using normal Tx priority queue. */
1735 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
1736 	    MBOX_TD_CONS_LO_IDX_SHIFT;
1737 	cons = sc->alc_cdata.alc_tx_cons;
1738 	/*
1739 	 * Go through our Tx list and free mbufs for those
1740 	 * frames which have been transmitted.
1741 	 */
1742 	for (prog = 0; cons != prod; prog++,
1743 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
1744 		if (sc->alc_cdata.alc_tx_cnt <= 0)
1745 			break;
1746 		prog++;
1747 		ifp->if_flags &= ~IFF_OACTIVE;
1748 		sc->alc_cdata.alc_tx_cnt--;
1749 		txd = &sc->alc_cdata.alc_txdesc[cons];
1750 		if (txd->tx_m != NULL) {
1751 			/* Reclaim transmitted mbufs. */
1752 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1753 			m_freem(txd->tx_m);
1754 			txd->tx_m = NULL;
1755 		}
1756 	}
1757 
1758 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
1759 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
1760 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
1761 	sc->alc_cdata.alc_tx_cons = cons;
1762 	/*
1763 	 * Unarm watchdog timer only when there is no pending
1764 	 * frames in Tx queue.
1765 	 */
1766 	if (sc->alc_cdata.alc_tx_cnt == 0)
1767 		ifp->if_timer = 0;
1768 }
1769 
1770 static int
1771 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, int init)
1772 {
1773 	struct mbuf *m;
1774 	bus_dmamap_t map;
1775 	int error;
1776 
1777 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
1778 	if (m == NULL)
1779 		return (ENOBUFS);
1780 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
1781 	if (!(m->m_flags & M_EXT)) {
1782 		m_freem(m);
1783 		return (ENOBUFS);
1784 	}
1785 
1786 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
1787 
1788 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
1789 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
1790 
1791 	if (error != 0) {
1792 		if (!error) {
1793 			bus_dmamap_unload(sc->sc_dmat,
1794 			    sc->alc_cdata.alc_rx_sparemap);
1795 			error = EFBIG;
1796 			printf("%s: too many segments?!\n",
1797 			    device_xname(sc->sc_dev));
1798 		}
1799 		m_freem(m);
1800 
1801 		if (init)
1802 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
1803 
1804 		return (error);
1805 	}
1806 
1807 	if (rxd->rx_m != NULL) {
1808 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1809 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1810 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1811 	}
1812 	map = rxd->rx_dmamap;
1813 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
1814 	sc->alc_cdata.alc_rx_sparemap = map;
1815 	rxd->rx_m = m;
1816 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
1817 	return (0);
1818 }
1819 
1820 static int
1821 alc_rxintr(struct alc_softc *sc)
1822 {
1823 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1824 	struct rx_rdesc *rrd;
1825 	uint32_t nsegs, status;
1826 	int rr_cons, prog;
1827 
1828 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1829 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1830 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1831 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1832 	rr_cons = sc->alc_cdata.alc_rr_cons;
1833 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
1834 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
1835 		status = le32toh(rrd->status);
1836 		if ((status & RRD_VALID) == 0)
1837 			break;
1838 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
1839 		if (nsegs == 0) {
1840 			/* This should not happen! */
1841 			if (alcdebug)
1842 				printf("%s: unexpected segment count -- "
1843 				    "resetting\n", device_xname(sc->sc_dev));
1844 			return (EIO);
1845 		}
1846 		alc_rxeof(sc, rrd);
1847 		/* Clear Rx return status. */
1848 		rrd->status = 0;
1849 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
1850 		sc->alc_cdata.alc_rx_cons += nsegs;
1851 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
1852 		prog += nsegs;
1853 	}
1854 
1855 	if (prog > 0) {
1856 		/* Update the consumer index. */
1857 		sc->alc_cdata.alc_rr_cons = rr_cons;
1858 		/* Sync Rx return descriptors. */
1859 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
1860 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
1861 		    BUS_DMASYNC_PREWRITE);
1862 		/*
1863 		 * Sync updated Rx descriptors such that controller see
1864 		 * modified buffer addresses.
1865 		 */
1866 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
1867 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
1868 		    BUS_DMASYNC_PREWRITE);
1869 		/*
1870 		 * Let controller know availability of new Rx buffers.
1871 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
1872 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
1873 		 * only when Rx buffer pre-fetching is required. In
1874 		 * addition we already set ALC_RX_RD_FREE_THRESH to
1875 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
1876 		 * it still seems that pre-fetching needs more
1877 		 * experimentation.
1878 		 */
1879 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
1880 		    sc->alc_cdata.alc_rx_cons);
1881 	}
1882 
1883 	return (0);
1884 }
1885 
1886 /* Receive a frame. */
1887 static void
1888 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
1889 {
1890 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1891 	struct alc_rxdesc *rxd;
1892 	struct mbuf *mp, *m;
1893 	uint32_t rdinfo, status;
1894 	int count, nsegs, rx_cons;
1895 
1896 	status = le32toh(rrd->status);
1897 	rdinfo = le32toh(rrd->rdinfo);
1898 	rx_cons = RRD_RD_IDX(rdinfo);
1899 	nsegs = RRD_RD_CNT(rdinfo);
1900 
1901 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
1902 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
1903 		/*
1904 		 * We want to pass the following frames to upper
1905 		 * layer regardless of error status of Rx return
1906 		 * ring.
1907 		 *
1908 		 *  o IP/TCP/UDP checksum is bad.
1909 		 *  o frame length and protocol specific length
1910 		 *     does not match.
1911 		 *
1912 		 *  Force network stack compute checksum for
1913 		 *  errored frames.
1914 		 */
1915 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
1916 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
1917 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
1918 			return;
1919 	}
1920 
1921 	for (count = 0; count < nsegs; count++,
1922 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
1923 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
1924 		mp = rxd->rx_m;
1925 		/* Add a new receive buffer to the ring. */
1926 		if (alc_newbuf(sc, rxd, 0) != 0) {
1927 			ifp->if_iqdrops++;
1928 			/* Reuse Rx buffers. */
1929 			if (sc->alc_cdata.alc_rxhead != NULL)
1930 				m_freem(sc->alc_cdata.alc_rxhead);
1931 			break;
1932 		}
1933 
1934 		/*
1935 		 * Assume we've received a full sized frame.
1936 		 * Actual size is fixed when we encounter the end of
1937 		 * multi-segmented frame.
1938 		 */
1939 		mp->m_len = sc->alc_buf_size;
1940 
1941 		/* Chain received mbufs. */
1942 		if (sc->alc_cdata.alc_rxhead == NULL) {
1943 			sc->alc_cdata.alc_rxhead = mp;
1944 			sc->alc_cdata.alc_rxtail = mp;
1945 		} else {
1946 			mp->m_flags &= ~M_PKTHDR;
1947 			sc->alc_cdata.alc_rxprev_tail =
1948 			    sc->alc_cdata.alc_rxtail;
1949 			sc->alc_cdata.alc_rxtail->m_next = mp;
1950 			sc->alc_cdata.alc_rxtail = mp;
1951 		}
1952 
1953 		if (count == nsegs - 1) {
1954 			/* Last desc. for this frame. */
1955 			m = sc->alc_cdata.alc_rxhead;
1956 			m->m_flags |= M_PKTHDR;
1957 			/*
1958 			 * It seems that L1C/L2C controller has no way
1959 			 * to tell hardware to strip CRC bytes.
1960 			 */
1961 			m->m_pkthdr.len =
1962 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
1963 			if (nsegs > 1) {
1964 				/* Set last mbuf size. */
1965 				mp->m_len = sc->alc_cdata.alc_rxlen -
1966 				    (nsegs - 1) * sc->alc_buf_size;
1967 				/* Remove the CRC bytes in chained mbufs. */
1968 				if (mp->m_len <= ETHER_CRC_LEN) {
1969 					sc->alc_cdata.alc_rxtail =
1970 					    sc->alc_cdata.alc_rxprev_tail;
1971 					sc->alc_cdata.alc_rxtail->m_len -=
1972 					    (ETHER_CRC_LEN - mp->m_len);
1973 					sc->alc_cdata.alc_rxtail->m_next = NULL;
1974 					m_freem(mp);
1975 				} else {
1976 					mp->m_len -= ETHER_CRC_LEN;
1977 				}
1978 			} else
1979 				m->m_len = m->m_pkthdr.len;
1980 			m->m_pkthdr.rcvif = ifp;
1981 #if NVLAN > 0
1982 			/*
1983 			 * Due to hardware bugs, Rx checksum offloading
1984 			 * was intentionally disabled.
1985 			 */
1986 			if (status & RRD_VLAN_TAG) {
1987 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
1988 				VLAN_INPUT_TAG(ifp, m, ntohs(vtag), );
1989 			}
1990 #endif
1991 
1992 			bpf_mtap(ifp, m);
1993 
1994 			{
1995 			/* Pass it on. */
1996 			ether_input(ifp, m);
1997 			}
1998 		}
1999 	}
2000 	/* Reset mbuf chains. */
2001 	ALC_RXCHAIN_RESET(sc);
2002 }
2003 
2004 static void
2005 alc_tick(void *xsc)
2006 {
2007 	struct alc_softc *sc = xsc;
2008 	struct mii_data *mii = &sc->sc_miibus;
2009 	int s;
2010 
2011 	s = splnet();
2012 	mii_tick(mii);
2013 	alc_stats_update(sc);
2014 	splx(s);
2015 
2016 	callout_schedule(&sc->sc_tick_ch, hz);
2017 }
2018 
2019 static void
2020 alc_reset(struct alc_softc *sc)
2021 {
2022 	uint32_t reg;
2023 	int i;
2024 
2025 	reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF;
2026 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2027 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2028 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2029 		DELAY(10);
2030 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2031 			break;
2032 	}
2033 	if (i == 0)
2034 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2035 
2036 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2037 		if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0)
2038 			break;
2039 		DELAY(10);
2040 	}
2041 
2042 	if (i == 0)
2043 		printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
2044 		    reg);
2045 }
2046 
2047 static int
2048 alc_init(struct ifnet *ifp)
2049 {
2050 	struct alc_softc *sc = ifp->if_softc;
2051 	struct mii_data *mii;
2052 	uint8_t eaddr[ETHER_ADDR_LEN];
2053 	bus_addr_t paddr;
2054 	uint32_t reg, rxf_hi, rxf_lo;
2055 	int error;
2056 
2057 	/*
2058 	 * Cancel any pending I/O.
2059 	 */
2060 	alc_stop(ifp, 0);
2061 	/*
2062 	 * Reset the chip to a known state.
2063 	 */
2064 	alc_reset(sc);
2065 
2066 	/* Initialize Rx descriptors. */
2067 	error = alc_init_rx_ring(sc);
2068 	if (error != 0) {
2069 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2070 		alc_stop(ifp, 0);
2071 		return (error);
2072 	}
2073 	alc_init_rr_ring(sc);
2074 	alc_init_tx_ring(sc);
2075 	alc_init_cmb(sc);
2076 	alc_init_smb(sc);
2077 
2078 	/* Enable all clocks. */
2079 	CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2080 
2081 	/* Reprogram the station address. */
2082 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2083 	CSR_WRITE_4(sc, ALC_PAR0,
2084 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2085 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2086 	/*
2087 	 * Clear WOL status and disable all WOL feature as WOL
2088 	 * would interfere Rx operation under normal environments.
2089 	 */
2090 	CSR_READ_4(sc, ALC_WOL_CFG);
2091 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2092 	/* Set Tx descriptor base addresses. */
2093 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2094 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2095 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2096 	/* We don't use high priority ring. */
2097 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2098 	/* Set Tx descriptor counter. */
2099 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2100 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2101 	/* Set Rx descriptor base addresses. */
2102 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2103 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2104 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2105 	/* We use one Rx ring. */
2106 	CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2107 	CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2108 	CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2109 	/* Set Rx descriptor counter. */
2110 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2111 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2112 
2113 	/*
2114 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2115 	 * if it do not fit the buffer size. Rx return descriptor holds
2116 	 * a counter that indicates how many fragments were made by the
2117 	 * hardware. The buffer size should be multiple of 8 bytes.
2118 	 * Since hardware has limit on the size of buffer size, always
2119 	 * use the maximum value.
2120 	 * For strict-alignment architectures make sure to reduce buffer
2121 	 * size by 8 bytes to make room for alignment fixup.
2122 	 */
2123 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2124 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2125 
2126 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2127 	/* Set Rx return descriptor base addresses. */
2128 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2129 	/* We use one Rx return ring. */
2130 	CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2131 	CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2132 	CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2133 	/* Set Rx return descriptor counter. */
2134 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2135 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2136 	paddr = sc->alc_rdata.alc_cmb_paddr;
2137 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2138 	paddr = sc->alc_rdata.alc_smb_paddr;
2139 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2140 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2141 
2142 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2143 		/* Reconfigure SRAM - Vendor magic. */
2144 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2145 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2146 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2147 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2148 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2149 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2150 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2151 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2152 	}
2153 
2154 	/* Tell hardware that we're ready to load DMA blocks. */
2155 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2156 
2157 	/* Configure interrupt moderation timer. */
2158 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2159 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2160 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2161 	reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2162 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2163 	/*
2164 	 * We don't want to automatic interrupt clear as task queue
2165 	 * for the interrupt should know interrupt status.
2166 	 */
2167 	reg = MASTER_SA_TIMER_ENB;
2168 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2169 		reg |= MASTER_IM_RX_TIMER_ENB;
2170 	if (ALC_USECS(sc->alc_int_tx_mod) != 0)
2171 		reg |= MASTER_IM_TX_TIMER_ENB;
2172 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2173 	/*
2174 	 * Disable interrupt re-trigger timer. We don't want automatic
2175 	 * re-triggering of un-ACKed interrupts.
2176 	 */
2177 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2178 	/* Configure CMB. */
2179 	CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2180 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2181 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2182 	else
2183 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2184 	/*
2185 	 * Hardware can be configured to issue SMB interrupt based
2186 	 * on programmed interval. Since there is a callout that is
2187 	 * invoked for every hz in driver we use that instead of
2188 	 * relying on periodic SMB interrupt.
2189 	 */
2190 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2191 	/* Clear MAC statistics. */
2192 	alc_stats_clear(sc);
2193 
2194 	/*
2195 	 * Always use maximum frame size that controller can support.
2196 	 * Otherwise received frames that has larger frame length
2197 	 * than alc(4) MTU would be silently dropped in hardware. This
2198 	 * would make path-MTU discovery hard as sender wouldn't get
2199 	 * any responses from receiver. alc(4) supports
2200 	 * multi-fragmented frames on Rx path so it has no issue on
2201 	 * assembling fragmented frames. Using maximum frame size also
2202 	 * removes the need to reinitialize hardware when interface
2203 	 * MTU configuration was changed.
2204 	 *
2205 	 * Be conservative in what you do, be liberal in what you
2206 	 * accept from others - RFC 793.
2207 	 */
2208 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2209 
2210 	/* Disable header split(?) */
2211 	CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2212 
2213 	/* Configure IPG/IFG parameters. */
2214 	CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2215 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2216 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2217 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2218 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2219 	/* Set parameters for half-duplex media. */
2220 	CSR_WRITE_4(sc, ALC_HDPX_CFG,
2221 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2222 	    HDPX_CFG_LCOL_MASK) |
2223 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2224 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2225 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2226 	    HDPX_CFG_ABEBT_MASK) |
2227 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2228 	    HDPX_CFG_JAMIPG_MASK));
2229 	/*
2230 	 * Set TSO/checksum offload threshold. For frames that is
2231 	 * larger than this threshold, hardware wouldn't do
2232 	 * TSO/checksum offloading.
2233 	 */
2234 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH,
2235 	    (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2236 	    TSO_OFFLOAD_THRESH_MASK);
2237 	/* Configure TxQ. */
2238 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2239 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2240 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2241 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2242 		reg >>= 1;
2243 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2244 	    TXQ_CFG_TD_BURST_MASK;
2245 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2246 
2247 	/* Configure Rx free descriptor pre-fetching. */
2248 	CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2249 	    ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) &
2250 	    RX_RD_FREE_THRESH_HI_MASK) |
2251 	    ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) &
2252 	    RX_RD_FREE_THRESH_LO_MASK));
2253 
2254 	/*
2255 	 * Configure flow control parameters.
2256 	 * XON  : 80% of Rx FIFO
2257 	 * XOFF : 30% of Rx FIFO
2258 	 */
2259 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
2260 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
2261 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2262 		rxf_hi = (reg * 8) / 10;
2263 		rxf_lo = (reg * 3) / 10;
2264 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
2265 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2266 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
2267 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2268 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2269 	}
2270 
2271 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2272 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2273 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2274 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2275 		    SERDES_PHY_CLK_SLOWDOWN);
2276 
2277 	/* Disable RSS until I understand L1C/L2C's RSS logic. */
2278 	CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
2279 	CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
2280 
2281 	/* Configure RxQ. */
2282 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2283 	    RXQ_CFG_RD_BURST_MASK;
2284 	reg |= RXQ_CFG_RSS_MODE_DIS;
2285 	if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0)
2286 		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
2287 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2288 
2289 	/* Configure DMA parameters. */
2290 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
2291 	reg |= sc->alc_rcb;
2292 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2293 		reg |= DMA_CFG_CMB_ENB;
2294 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
2295 		reg |= DMA_CFG_SMB_ENB;
2296 	else
2297 		reg |= DMA_CFG_SMB_DIS;
2298 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
2299 	    DMA_CFG_RD_BURST_SHIFT;
2300 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
2301 	    DMA_CFG_WR_BURST_SHIFT;
2302 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2303 	    DMA_CFG_RD_DELAY_CNT_MASK;
2304 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2305 	    DMA_CFG_WR_DELAY_CNT_MASK;
2306 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2307 
2308 	/*
2309 	 * Configure Tx/Rx MACs.
2310 	 *  - Auto-padding for short frames.
2311 	 *  - Enable CRC generation.
2312 	 *  Actual reconfiguration of MAC for resolved speed/duplex
2313 	 *  is followed after detection of link establishment.
2314 	 *  AR813x/AR815x always does checksum computation regardless
2315 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
2316 	 *  have bug in protocol field in Rx return structure so
2317 	 *  these controllers can't handle fragmented frames. Disable
2318 	 *  Rx checksum offloading until there is a newer controller
2319 	 *  that has sane implementation.
2320 	 */
2321 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2322 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2323 	    MAC_CFG_PREAMBLE_MASK);
2324 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2325 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2326 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2327 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2328 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
2329 		reg |= MAC_CFG_SPEED_10_100;
2330 	else
2331 		reg |= MAC_CFG_SPEED_1000;
2332 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2333 
2334 	/* Set up the receive filter. */
2335 	alc_iff(sc);
2336 	alc_rxvlan(sc);
2337 
2338 	/* Acknowledge all pending interrupts and clear it. */
2339 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
2340 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2341 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
2342 
2343 	sc->alc_flags &= ~ALC_FLAG_LINK;
2344 	/* Switch to the current media. */
2345 	mii = &sc->sc_miibus;
2346 	mii_mediachg(mii);
2347 
2348 	callout_schedule(&sc->sc_tick_ch, hz);
2349 
2350 	ifp->if_flags |= IFF_RUNNING;
2351 	ifp->if_flags &= ~IFF_OACTIVE;
2352 
2353 	return (0);
2354 }
2355 
2356 static void
2357 alc_stop(struct ifnet *ifp, int disable)
2358 {
2359 	struct alc_softc *sc = ifp->if_softc;
2360 	struct alc_txdesc *txd;
2361 	struct alc_rxdesc *rxd;
2362 	uint32_t reg;
2363 	int i;
2364 
2365 	callout_stop(&sc->sc_tick_ch);
2366 
2367 	/*
2368 	 * Mark the interface down and cancel the watchdog timer.
2369 	 */
2370 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2371 	ifp->if_timer = 0;
2372 
2373 	sc->alc_flags &= ~ALC_FLAG_LINK;
2374 
2375 	alc_stats_update(sc);
2376 
2377 	mii_down(&sc->sc_miibus);
2378 
2379 	/* Disable interrupts. */
2380 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
2381 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2382 	alc_stop_queue(sc);
2383 
2384 	/* Disable DMA. */
2385 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
2386 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
2387 	reg |= DMA_CFG_SMB_DIS;
2388 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
2389 	DELAY(1000);
2390 
2391 	/* Stop Rx/Tx MACs. */
2392 	alc_stop_mac(sc);
2393 
2394 	/* Disable interrupts which might be touched in taskq handler. */
2395 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
2396 
2397 	/* Reclaim Rx buffers that have been processed. */
2398 	if (sc->alc_cdata.alc_rxhead != NULL)
2399 		m_freem(sc->alc_cdata.alc_rxhead);
2400 	ALC_RXCHAIN_RESET(sc);
2401 	/*
2402 	 * Free Tx/Rx mbufs still in the queues.
2403 	 */
2404 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2405 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2406 		if (rxd->rx_m != NULL) {
2407 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2408 			m_freem(rxd->rx_m);
2409 			rxd->rx_m = NULL;
2410 		}
2411 	}
2412 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2413 		txd = &sc->alc_cdata.alc_txdesc[i];
2414 		if (txd->tx_m != NULL) {
2415 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2416 			m_freem(txd->tx_m);
2417 			txd->tx_m = NULL;
2418 		}
2419 	}
2420 }
2421 
2422 static void
2423 alc_stop_mac(struct alc_softc *sc)
2424 {
2425 	uint32_t reg;
2426 	int i;
2427 
2428 	/* Disable Rx/Tx MAC. */
2429 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2430 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2431 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2432 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2433 	}
2434 	for (i = ALC_TIMEOUT; i > 0; i--) {
2435 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2436 		if (reg == 0)
2437 			break;
2438 		DELAY(10);
2439 	}
2440 	if (i == 0)
2441 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
2442 		    device_xname(sc->sc_dev), reg);
2443 }
2444 
2445 static void
2446 alc_start_queue(struct alc_softc *sc)
2447 {
2448 	uint32_t qcfg[] = {
2449 		0,
2450 		RXQ_CFG_QUEUE0_ENB,
2451 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
2452 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
2453 		RXQ_CFG_ENB
2454 	};
2455 	uint32_t cfg;
2456 
2457 	/* Enable RxQ. */
2458 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
2459 	cfg &= ~RXQ_CFG_ENB;
2460 	cfg |= qcfg[1];
2461 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
2462 	/* Enable TxQ. */
2463 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
2464 	cfg |= TXQ_CFG_ENB;
2465 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
2466 }
2467 
2468 static void
2469 alc_stop_queue(struct alc_softc *sc)
2470 {
2471 	uint32_t reg;
2472 	int i;
2473 
2474 	/* Disable RxQ. */
2475 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
2476 	if ((reg & RXQ_CFG_ENB) != 0) {
2477 		reg &= ~RXQ_CFG_ENB;
2478 		CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
2479 	}
2480 	/* Disable TxQ. */
2481 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
2482 	if ((reg & TXQ_CFG_ENB) != 0) {
2483 		reg &= ~TXQ_CFG_ENB;
2484 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
2485 	}
2486 	for (i = ALC_TIMEOUT; i > 0; i--) {
2487 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2488 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2489 			break;
2490 		DELAY(10);
2491 	}
2492 	if (i == 0)
2493 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
2494 		    device_xname(sc->sc_dev), reg);
2495 }
2496 
2497 static void
2498 alc_init_tx_ring(struct alc_softc *sc)
2499 {
2500 	struct alc_ring_data *rd;
2501 	struct alc_txdesc *txd;
2502 	int i;
2503 
2504 	sc->alc_cdata.alc_tx_prod = 0;
2505 	sc->alc_cdata.alc_tx_cons = 0;
2506 	sc->alc_cdata.alc_tx_cnt = 0;
2507 
2508 	rd = &sc->alc_rdata;
2509 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
2510 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
2511 		txd = &sc->alc_cdata.alc_txdesc[i];
2512 		txd->tx_m = NULL;
2513 	}
2514 
2515 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2516 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2517 }
2518 
2519 static int
2520 alc_init_rx_ring(struct alc_softc *sc)
2521 {
2522 	struct alc_ring_data *rd;
2523 	struct alc_rxdesc *rxd;
2524 	int i;
2525 
2526 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
2527 	rd = &sc->alc_rdata;
2528 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
2529 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
2530 		rxd = &sc->alc_cdata.alc_rxdesc[i];
2531 		rxd->rx_m = NULL;
2532 		rxd->rx_desc = &rd->alc_rx_ring[i];
2533 		if (alc_newbuf(sc, rxd, 1) != 0)
2534 			return (ENOBUFS);
2535 	}
2536 
2537 	/*
2538 	 * Since controller does not update Rx descriptors, driver
2539 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
2540 	 * is enough to ensure coherence.
2541 	 */
2542 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2543 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2544 	/* Let controller know availability of new Rx buffers. */
2545 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
2546 
2547 	return (0);
2548 }
2549 
2550 static void
2551 alc_init_rr_ring(struct alc_softc *sc)
2552 {
2553 	struct alc_ring_data *rd;
2554 
2555 	sc->alc_cdata.alc_rr_cons = 0;
2556 	ALC_RXCHAIN_RESET(sc);
2557 
2558 	rd = &sc->alc_rdata;
2559 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
2560 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2561 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2562 }
2563 
2564 static void
2565 alc_init_cmb(struct alc_softc *sc)
2566 {
2567 	struct alc_ring_data *rd;
2568 
2569 	rd = &sc->alc_rdata;
2570 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
2571 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2572 	    sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2573 }
2574 
2575 static void
2576 alc_init_smb(struct alc_softc *sc)
2577 {
2578 	struct alc_ring_data *rd;
2579 
2580 	rd = &sc->alc_rdata;
2581 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
2582 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2583 	    sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2584 }
2585 
2586 static void
2587 alc_rxvlan(struct alc_softc *sc)
2588 {
2589 	uint32_t reg;
2590 
2591 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2592 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
2593 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2594 	else
2595 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2596 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2597 }
2598 
2599 static void
2600 alc_iff(struct alc_softc *sc)
2601 {
2602 	struct ethercom *ec = &sc->sc_ec;
2603 	struct ifnet *ifp = &ec->ec_if;
2604 	struct ether_multi *enm;
2605 	struct ether_multistep step;
2606 	uint32_t crc;
2607 	uint32_t mchash[2];
2608 	uint32_t rxcfg;
2609 
2610 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
2611 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2612 	ifp->if_flags &= ~IFF_ALLMULTI;
2613 
2614 	/*
2615 	 * Always accept broadcast frames.
2616 	 */
2617 	rxcfg |= MAC_CFG_BCAST;
2618 
2619 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
2620 		ifp->if_flags |= IFF_ALLMULTI;
2621 		if (ifp->if_flags & IFF_PROMISC)
2622 			rxcfg |= MAC_CFG_PROMISC;
2623 		else
2624 			rxcfg |= MAC_CFG_ALLMULTI;
2625 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2626 	} else {
2627 		/* Program new filter. */
2628 		memset(mchash, 0, sizeof(mchash));
2629 
2630 		ETHER_FIRST_MULTI(step, ec, enm);
2631 		while (enm != NULL) {
2632 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
2633 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2634 			ETHER_NEXT_MULTI(step, enm);
2635 		}
2636 	}
2637 
2638 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
2639 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
2640 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
2641 }
2642 
2643 MODULE(MODULE_CLASS_DRIVER, if_alc, NULL);
2644 
2645 #ifdef _MODULE
2646 #include "ioconf.c"
2647 #endif
2648 
2649 static int
2650 if_alc_modcmd(modcmd_t cmd, void *opaque)
2651 {
2652 	int error = 0;
2653 
2654 	switch (cmd) {
2655 	case MODULE_CMD_INIT:
2656 #ifdef _MODULE
2657 		error = config_init_component(cfdriver_ioconf_if_alc,
2658 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2659 #endif
2660 		return error;
2661 	case MODULE_CMD_FINI:
2662 #ifdef _MODULE
2663 		error = config_fini_component(cfdriver_ioconf_if_alc,
2664 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
2665 #endif
2666 		return error;
2667 	default:
2668 		return ENOTTY;
2669 	}
2670 }
2671